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Abstract

Online data contains a wealth of information, but as with most user-generated content, it

is full of noise, fraud, and automated behavior. The prevalence of “junk” and fraudulent

text affects users, businesses, and researchers alike. To make matters worse, there is a lack

of ground truth data for these types of text, and the appearance of the text is constantly

changing as fraudsters adapt to pressures from hosting sites. The goal of my disserta-

tion is therefore to extract high-quality content from and identify fraudulent and

automated behavior in large, complex social media datasets in the absence of ground

truth data. Specifically, in my dissertation I design a collection of data inspection, fil-

tering, fusion, mining, and exploration algorithms to: automate data cleaning to produce

usable data for mining algorithms, quantify the trustworthiness of business behavior in on-

line e-commerce sites, and efficiently identify automated accounts in large and constantly

changing social networks. The main components of this work include: noise removal, data

fusion, multi-source feature generation, network exploration, and anomaly detection.
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Chapter 1

Introduction

We are currently in the age of information overload. The Internet has moved from static

pages to those containing dynamic user-generated content. This gives us increased inter-

activity and information, but also has a downside: in the online sphere, we are deluged by

junk. The rate of data creation is high, but the quality of the data is low. In a world where

people can post whatever they want on virtually every web page they interact with, the

result is noisy, messy, illegible, unintelligible, and at times spamming and fraudulent data.

Whether through negligence or desire for monetary gain, it is hard to understand, much

less trust, much of what you see online.

This lack of trust affects users, businesses, and researchers alike. Users who do

not know any better receive misinformation that can affect their understanding of cur-

rent events, their purchasing decisions, and their perception of the world at large. Busi-

nesses mining these data can at worst get a false view of their clientele if the data are

fraudulent and at best waste time and resources trying to sift through these noisy, messy

data [1][7][14]. Researchers who are trying to learn broad principles about social networks

and user behavior face similar issues, both obtaining spurious results based on fraudulent

behavior and spending large amounts of time cleaning the data to make it usable for their

algorithms. This cleaning and sifting process is repeated over and over by different groups,
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which is wasteful to an extreme degree. This problem is a severe one, and as the number of

users and the amount of content they generate grow, finding quality and trustworthy con-

tent in the midst of noise becomes increasingly difficult. Furthermore, in addition to the

volume and low quality of data, there often exists no ground truth with which to validate

findings.

For my PhD dissertation, I designed a collection of data inspection, filtering, fusion,

and mining techniques to identify and remove low quality and fraudulent content from

online data. The main components of this work include: noise removal, data fusion, multi-

source feature generation, network exploration, and anomaly detection. All data collected

and code written for this work have been made available to the research community at

large.

There are many types of online data that can take advantage of the analysis techniques

that are presented in this dissertation. For the case studies in my dissertation, I focus on

online review and Twitter data. These types of data contains rich text, complex user net-

works, and are highly longitudinal, allowing for time series analysis as well. Furthermore,

unlike social media sites like Facebook, with strong privacy controls, it is relatively easy

to collect a review system in its entirety, and Twitter has an API specifically designed for

data collection. Furthermore, the inclusion of financial motivations for reviews and tweets,

including fake reviews or check-ins to encourage patronage as well as the use of referral

codes to receive monetary rewards, increases the likelihood of spamming and fraudulent

behavior, making these the perfect online data sources on which to test my fraud-detection

algorithms.

1.1 Noise removal

Broadly, data contamination can be viewed in two categories: noise and deliberate misrep-

resentation. Both of these are a hindrance to extracting value and meaning. To identify and
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remove noise, we create ClearView, which is an automated data cleaning pipeline. This

work is published in the 2016 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining [47] . In this work, we examine a large corpus of reviews

from TripAdvisor.com[10] and the Google Play Marketplace[4]. We identify three specific

types of noise in these datasets that need to be filtered out: syntactic noise (character- and

word-level), semantic noise (sentence-level), and rating noise (review-level). Each type of

noise presents a unique challenge.

For syntactic noise, filtering out reviews that are genuinely useless while keeping ones

that are misspelled but legible is a difficult balance. The appearance of non-printable

characters, the high percentage of nonsense words, and a high percentage of words from

our blacklist dictionary are indicators of syntactic noise in text.

For semantic noise, we use the confidence scores produced by the Stanford Core-NLP

parser[37] to identify severely malformed reviews. This approach is generalizable to any

form of English text.

In fusing text and form data, disagreement between the sentiment of the review and

the rating attached to the review may appear, which we denote as rating noise. To identify

rating noise, we iteratively train a sentiment classifier, producing an extremely over-fitted

classifier that can identify reviews whose rating does not match the sentiment of their

text. This is a novel approach that we developed, and it is a way to validate labels whose

precision is in doubt.

1.2 Behavioral profiling applied to fraud detection

In addition to noise, the identification and removal of fraudulent material is necessary to

ensure online data integrity. Online review websites are riddled with fraudulent reviews,

but the lack of ground truth makes it impossible to simply create a classifier to identify

these reviews on a review-by-review basis. To solve this problem, we create TrueView, a
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metric for the “trustworthiness” of a given entity’s review behavior. This work, as applied

to hotel reviews, was published in the 24th International World Wide Web Conference in

2015[48], and the method was officially patented in 2016[42].

Our approach to detecting fraud leverages the fusion of multiple sources to create

cross-site features. Using cross-site features leads to a more thorough and comprehen-

sive behavior profile of the entity being reviewed, leading to better support for anomaly

detection. When combining data from multiple sources, disambiguating attribute values

in common is a challenging problem. We developed a novel method to match hotels us-

ing latitude and longitude, with which we annotated the large hotel dataset using Google’s

Geocoding API, and a text comparison measure similar to length-normalized edit distance.

This technique is generalizable to any data fusion task where the entities have a name and

a location.

Lastly, we generated a new metric, TrueView, that identifies entities that have unusual

behavior profiles both within and across sites. This score was based on an ensemble of

anomaly detection algorithms, which allowed us to find entities that were anomalous in

different ways. We included a global density-based measure, a local density-based mea-

sure, and a global distance-based measure. We also develop methods to validate our find-

ings in the absence of absolute ground truth.

1.3 Efficient Adaptive Exploration of the Twitter Bot Net-

work

In addition to businesses themselves generating fraudulent content directly, they also can

create automated accounts on social media, called ‘bots,’ to push out sponsored or spam-

ming content. More than a billion people use online social networks, and the presence

of bots compromises the empowerment of these online social communities. An estimated

8.5% of Twitter accounts are bots [62] and the number of bots is growing at a higher rate
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than the rate at which Twitter removes them. Furthermore, due to suspension pressure,

Twitter bots are constantly changing their behavior to evade detection, which renders tra-

ditional supervised methods ineffective.

To address this problem, we create BotWalk, a near-real time unsupervised adaptive

Twitter exploration framework. This work is arguably the first to employ an unsupervised

approach to intelligently explore the Twitter network and identify bots exhibiting novel

behavior, and will be published at the 2017 IEEE/ACM International Conference on Ad-

vances in Social Networks Analysis and Mining.

Key contributions of this work are the implementation of an adaptive approach to fea-

ture selection and the utilization of domain knowledge to intelligently partition the feature

space, which leads to up to a 30% increase in precision. We perform experiments to evalu-

ate the performance of an ensemble of outlier detection algorithms, achieving an precision

of 90%. We also perform three levels of iterative exploration and show that we are able to

identify bots that exhibit different behavior than the seed users at a higher detection rate

than existing methods.

1.4 Roadmap

This dissertation proceeds as follows: Chapter 2 describes techniques to remove noise

from online review data (ASONAM 2016), Chapter 3 discusses data fusion, feature ex-

traction, and anomaly detection in online review data (WWW 2015), Chapter 4 discusses

network exploration and adaptive bot detection in a huge and rapidly changing network

(ASONAM 2017), and Chapter 5 concludes the work.
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Chapter 2

ClearView: Cleaning Noisy and

Spamming Reviews

2.1 Introduction

Online reviews form a unique source of unbiased information about products and services

for consumers, manufacturers, distributors, and sellers. Online reviews have been ana-

lyzed and mined for over a decade to extract useful knowledge such as opportunities to

improve services [14] and business planning [7]. Hosting sites have also evolved to collect

various forms of information from mass consumers, such as star ratings, review text, and

helpfulness ratings.

Online reviews are typically noisy and contain many types of abnormalities. In Figure

2.1, we show a set of noisy reviews that contain no informative content. The top row

shows a set of un-intelligible reviews where meaningless sequences of English characters

are posted as legitimate reviews in the Google Play Marketplace. It also shows a review

in Russian, which, while valid content, is not meaningful to English-speaking audiences.

The second row shows repeated text, inconsistently rated reviews in which the sentiment
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in the text is the opposite of the rating, and a review containing promotional content and

non-Unicode characters masquerading as standard English characters.

Noisy reviews appear in almost every kind of hosting system, including tourism, e-

commerce[10], real-estate[15], and mobile apps[4]. Surprisingly, there is no formal clean-

ing process for online reviews that can be generically applied before presenting them to

consumers or mining them for knowledge discovery. The absence of clean reviews may

lead to flawed marketing strategies[1] and lack of trust in customers[48].

In this chapter, we discuss various types of abnormalities that exist in different review

sites and develop filtering techniques to clean them. Our methods use natural language

processing (NLP) parsers and classifiers targeting three kinds of noise. To evaluate the

efficacy of our cleaning process, we conduct a user study and find that our pipeline im-

proves the quality of the dataset by up to 3.4 times. We also examine the distributions

of features that have been shown to identify abnormal and fraudulent behavior in online

review hosting sites[48]. We show that our cleaning technique standardizes these feature

distributions and improves the quality of the reviews for knowledge discovery processes.

2.2 Background

Online reviews for products and services are written by consumers with the intention of

helping people make informed decisions when making a purchase. Natural variations in

reviews occur because of the diverse backgrounds of the writers. However, fake reviews,

incentivized reviews, and revengeful reviews introduce unique anomalous variations.

We identify three major types of variations that appear in almost all review datasets.

We describe the categories below.

Syntactic Noise Reviewers often make syntactic errors. For example, misspelled words,

nonsense words, and slang are commonly used in the review space. Another example
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Figure 2.1: (top row) Unintelligible reviews. (second row) Repeated text, spamming con-
tent, and non-English reviews (third row) Positive rating with negative text (bottom row)
Negative rating with positive text

is using non-standard characters to write English words, with the intention of defeating

content-based filtering (see Section 2.4).

Semantic Noise Reviewers often write incorrect sentences that are not intelligible. Such

reviews can be the result of automated text completion during typing, or can simply be due

to the negligence of the reviewer.

Rating Noise Sometimes the review text consists of well-formed, meaningful sentences,

but the star-rating accompanying the text does not match the text sentiment. Such reviews

are confusing for the reader and not trustworthy. Furthermore, using the rating as a feature

or label in a data mining algorithm for reviews with this type of noise would lead to

erroneous results.
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We develop detection and filtering techniques for each type of noise.

2.3 Related Work

Current research on online reviews can broadly be classified based on methodology and

application. Researchers have developed topic discovery [46] and sentiment classification

[56] methods from review text. Connecting users, products and reviews in an information

network is another promising method to analyze reviews [18]. Researchers have applied

these methods for fraud detection [50] and recommending products [46].

Current text-cleaning pipelines tend to be limited and interactive [39]. They are de-

signed to prepare text for use in single algorithm specified by a data analyst, rather than

for general use. Existing data cleaning pipelines are created in an iterative [34] rather than

fully automated way. Thus, our method is arguably the first attempt to automatically filter

and normalize noisy and useless reviews.

2.4 Syntactic Cleaning

We perform two types of syntactic cleaning: character-level cleaning and word-level clean-

ing.

Character-level cleaning When examining samples of Google Play reviews, we find

many reviews that contain non-Unicode characters masquerading as normal text. We be-

lieve that this is done in an attempt to evade keyword filters which are used to detect spam-

mers. For example, in the reviews for the app Key Ring: Cards Coupon & Sales, a user

left the review shown in Figure 2.1, bottom right. Although it looks normal in the Google

Play site, when the text is processed by the LaTeX compiler it reads: “Cool ! Also

try "WILD WLL" - Mon Online! Downld "Wild Wllt" Right Now!
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Do not forget to ntr nus d: 1050157.” This is because the review con-

tains many words that are hiding non-Unicode characters. These are words that a filter may

be looking for because they indicate a spamming behavior: money, wallet, code, bonus,

enter, and app. This user has left 11 other reviews with this same signature. We catch

such reviews by checking if the characters in the review are printable, which is defined as

digits, letters, punctuation, and whitespace. If the percentage of such non-printable char-

acters (including non-English characters) is above a tunable threshold, we view the review

as not informative and filter out the review. Using a strict threshold value removes a large

number of syntactically unusable reviews.

Word-level cleaning At the word level, we check for black-listed keywords, abnormal

repetitions, and meaningless words. There are only a few valid reasons to have a long se-

quence of alpha-numerals in a review. Reviewers may identify the price, model, and fea-

ture of a product in their review to describe their experience. However, such alpha numer-

als are also a sign of abusive reviews. For example, personal ID or code for referral rewards

and promotions are advertised via reviews, e.g. Please enter my code 8zl12j

to help us both get rewards! We filter such reviews by identifying the per-

centage of words that are in a set of black-listed keywords we compiled. This black-list

contains words that most often represent abusive behavior, for example, promo-code,

invitation code, and HTTP, among many others.

We also check for abnormal repetition of a word or phrase. Some reviewers just copy

and paste words such as good, great, and nice many times. Such reviews contain very

little information compared to the length of the review.

Another type of useless review we see is reviews comprised mainly of nonsense words.

There are many ways meaningless words are written. Sometimes authors use English let-

ters to write another language, which, while obviously containing meaning, is not infor-

mative for English-only reader or a natural-language processing algorithm. Authors also

invent spellings, such as the use of nyc to represent the word nice, the use of gr8
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to represent the word great, and so on. Reviews that primarily consist of such words

contain little-to-no usable information about the product, especially from a text analysis

perspective. Using the Enchant library from Python, we identify the percentage of words

in the sentence that are in its large corpus of English words. Since reviews often contain

misspelled words or colloquial words not in this corpus, we set a threshold for our filter: if

less than a threshold of the words in a review are in this corpus, then the review is filtered

out. This threshold is a tunable parameter that can be set depending on the end usage of the

text: sentiment classification needs a high threshold, compared to robust clustering which

requires a lower threshold. We find that the Google Play dataset contains a much greater

percentage of reviews with syntactic errors than the TripAdvisor dataset. A threshold of

90% correctness works well for TripAdvisor reviews, but is much too strict for Google

Play reviews. We find that a threshold of 50% is more appropriate for these. Table 2.1

shows the results from this part of the pipeline.

Full
Dataset

Non-
Printable
Percent

Misspelled
Percent

Final
Count

TripAdvisor,
90% threshold 3,167,036 0.32% 24.4% 2,292,761

Google Play,
90% threshold 21,112,036 26.85% 69.99% 653,866

Google Play,
50% threshold 21,112,036 26.85% 22.15% 10,754,606

Table 2.1: Results of syntax filtering process.

2.5 Semantic Cleaning

To identify nonsensical reviews, we analyze the semantic structure of the sentences in a

review. We use the Stanford CoreNLP Parser[37] to label words with part-of-speech tags

and to parse sentences into tree structures. We use the confidence score of the parser as a
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B.	Booty	booty	booty	booty	booty	
booty	booty	booty	booty	booty	
booty	booty	booty	booty	booty	
booty	booty	booty	booty	booty	
booty	booty	booty	booty	booty...

I'll	give	5	stars	if	the	problem	is	solved.

Figure 2.2: The distribution of semantic scores.

measure of the semantic correctness of a sentence. The lower the score, the less likely that

the sentence is valid. For example, for the first review in Figure 2.1, the second sentence

contains mostly valid words but does not make any sense: “From me our toward u

eyes on me owned yourself to him but needed not known seems

burl.” The tree generated for this sentence is: From/IN me/PRP our/PRP toward/IN

u/NN eyes/NNS on/IN me/PRP owned/VBN yourself/PRP to/TO him/PRP but/CC needed

/VBN not/RB known/VBN seems/VBZ burl/JJ ./. and the score is �174.3. If we compare

this with a sentence found in many reviews: “I highly recommend it.”, we get a much

higher score of �33.9 because the tree is forms is highly probable: I/PRP highly/RB rec-

ommend/VBP it/PRP ./. In Figure 2.2, we show the distribution of scores of the sentences

of all reviews. Note the log scale in the y-axis.
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2.6 Rating Cleaning

The second row of Figure 2.1 shows reviews in which the sentiment of the text does not

match the rating.

We develop a method to clean such reviews by using an ensemble of sentiment clas-

sifiers. We use the sentiment classifiers to iteratively label the sentiment of the reviews to

obtain the maximal agreement with the user-given ratings. When a writer and the classi-

fiers agree on the sentiment, the review is more likely to be high quality. However, when

they mismatch, it can be either writer error or classifier error. For cleaning purposes, pre-

cision is more important than recall rate. Hence, we remain strict on absolute consensus.

2.6.1 Classifiers

The first classifier, Stanford’s Sentiment Classifier in the CoreNLP suite

[44][61], is widely acknowledged to be a top-performing sentiment classifier. This recur-

sive neural tensor net classifier stores sentences in a parsed tree format, rather than the

typical bag-of-words approach. This allows the classifier to take the sentence structure

into account when classifying sentiment. While this approach is thorough, it is also quite

slow, requiring weeks to train and classify our full datasets.

The second classifier we use is based on [52]. This classifier is a simple Naive Bayes

classifier that is smart enough to handle both negation and double negation, and adds a

negated form of the word to the opposing class’s word bank (e.g. if “good” occurs in a

review with a positive label, it adds “not good” to the negative class). This algorithm also

uses bigrams and trigrams in addition to unigrams to further improve performance. Lastly,

low-occurring words are pruned at the end of every training round.

We added in the capability for 5-class classification and iterative training to both of

these classifiers, as well as input and output pipelines including customizable performance
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Sentiment	Classifier

Reviews

New	training	
set

Rating and 
machine 

agree
Rating and 
machine 
disagree

Train

Test

Figure 2.3: Starting with the Sentiment tree bank we will append training data where
human and the classifier agree and continue until convergence. Arrows represent flow of
review data.

visualizations. Note that both of the classifiers rate individual sentences; we aggregate the

ratings to calculate one score for a review that may contain many sentences based on the

sentence scores normalized by the sentence lengths.

2.6.2 Iterative Training

The process starts with a classifier trained on the Standard Tree Bank[60]. This tree

bank contains more than 11,000 sentences from movie reviews on RottenTomatoes.com.

215,000 individual phrases of these sentences were manually labeled from “Very Nega-

tive” to “Very Positive.” We train a classifier on these data and then generate sentiment

labels for our reviews using this classifier. We then form a training set of reviews whose

sentiment scores match the user-given ratings. Reviews whose sentiment scores do not

match their ratings form the new test set. To improve the classifier, we then train the cur-

rent classifier using the new training set and evaluate its performance on the new test set.

We continue this process iteratively, adding matched reviews to the training set at every

iteration. When the process converges, we have an extremely overfitted sentiment classi-

fier that has almost memorized the noisy set, excluding the reviews remaining in the test
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set. The leftover test set is more likely to contain erroneous cases, as even an overfitted

classifier has failed to classify its members correctly.

We overfit two classifiers using the above process and filter out any reviews that have

a single disagreement between the sentiment labels and the user-given rating.

2.7 Experimental Analysis

2.7.1 Data Description

Two datasets were used for the experiments described in this section. The first dataset

consists of reviews from TripAdvisor.com. We collected all the reviews and associated

information for almost all of the US hotels on this site. For the second dataset, we collected

reviews and their associated information from nearly all of the applications in the Google

Play Store. A summary of the whole dataset is given in Table 2.2.

TripAdvisor.com Google Play Store

Number of reviews 11,275,833 50,358,932
Number of Hotels or Apps 52,696 1,057,497

Number of users 1,462,460 23,575,301
Average number of reviews 213.98 47.62

Average rating 3.35 3.80
Date range 09-30-2009 - 05-17-2014 06-2014 - 07-2014

Table 2.2: Summary of the datasets.
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Subset	of	
60,000	reviews

Final	set	of	reviews

Entire	review	
dataset

Syntactic 
Filtering

Semantic 
filtering

Rating noise 
filtering

Subset	of	
10,000	reviews
Labeled by

Turkers

Ground	Truth

Figure 2.4: Overall experimental design.

2.7.2 User Study

We run these datasets through the ClearView pipeline and filter out 874,275 malformed

reviews from the TripAdvisor dataset and 10,357,430 from the Google Play dataset. We

then perform semantic filtering and rating validation for a randomly selected subset of

60,000 reviews from each of our filtered datasets.

We also randomly select 10,000 reviews from each subset to evaluate in our user study.

For this study, we use the Amazon Mechanical Turk Marketplace to have readers evaluate

the sentiment of 10,000 reviews from each dataset. We require three different Turkers

to score each review and average these scores. The annotators can pick a score from 1-

5, just like the ratings on review websites, and we provide text examples for each rating

classification to standardize the scoring process.

2.7.3 Rating Noise Filtering Results

This user study allows us to both validate the performance of the sentiment classifier and

the filtering process as whole. Figure 2.5 shows the convergence of the sentiment clas-

sifiers over 20 training rounds for the TripAdvisor dataset. Note that the Naive Bayes
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Figure 2.5: Iterative training results for TripAdvisor

classifier starts out with lower precision but surpasses the performance of the neural net

classifier after a few training iterations. Furthermore, the entire 20 rounds ran in a few

minutes for this Naive Bayes classifier, as opposed to days for the neural net. We find

that Google Play reviews are much more difficult to properly classify. They contain many

more colloquialisms than the TripAdvisor reviews and have less consistent structure. Ta-

ble 2.3 shows some examples of rating noise identified using this filtering process. We

find that many of these examples have to do with some kind of app update or change in the

entity being reviewed. Thus, this method could potentially be utilized by app developers

to find reviews describing update issues. This would help them to more quickly assist with

remediation of the issue and could lead to an increase in customer satisfaction.
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Review Writer Turker NLP

I cant log in...i try to update the game but i still cant log in.
please fix this bug.

5 1 1.67

beautiful view of the lake and really enjoyed sitting on our
private balcony. free wifi and no problems...

1 4 4.19

Loving it. Not too long ago i mention to the developers that
the game was crashing out on my galaxy note 2 it seems like
they fixed it so now i’m playing the game again thank you.

3 4.33 5

Back to a 5 star status. Plus a cookie for devs who care about
their product. my s5 went back to the store for fixing and
during this process they performed a factory reset. i don’t
have the issue anymore and can’t replicate the previous issue
either so i am back to a happy customer!

1 4 5

Try star girl. You guys won’t get disappointed trust me has
beautiful clothes. you can join in contest once you reach
level 5. i’ve been playing celebrity story trust me i’m at
level 7 there’s not even a contest. try out star girl.

2 4 5

I cant log in. One month ago i can log in and play. but now
it says authentication failed. i try to update the game but i
still cant log in. please fix this bug.

5 1.67 1

I cant play the game. Is anybody know how to fix it and i
will appriciate it if somebody could let me know how to fix
it thank you for the attention and maybe you need space for
the game in internal storage.

3 1.67 1

Latest update keeps crashing. This is annoying especially
when im trying to make use of the mobile coupon and the
app keeps crashing when i want to make payment. this
causes multiple payments deducted from my account but not
captured on the system.

3 1.67 1

Game hanging. Remove the halloween update. the game is
hanging a lot. and the bike is going in slow motion.

5 2 1

Crashes without reason. I’ve gotten a new phone yesterday
and immediately installed this. today it’s begun to crash
multiple times even though i’ve closed all other apps. it’d
be nice if you fixed this. otherwise a very good game. i love
the animations!

4 2 1

Table 2.3: Sample of reviews identified as inconsistent through iterative sentiment classif-
ication.
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2.7.4 Results of Overall Pipeline

Full Dataset Percent
Filtered

Agreement
Before Filtering

Agreement After
Filtering

TripAdvisor 3,167,036 30% 17.7% 59.9%
Google Play 21,112,036 70% 18.7% 36.9%

Table 2.4: Results of the ClearView pipeline for the TripAdvisor and Google Play datasets.

Table 2.4 shows the results of the ClearView filtering pipeline as a whole. We use the

agreement between the rating of the review and the averaged sentiment score from the

user study as a measure of the quality of the review. If a review is nonsensical, then it is

unlikely that the Turkers’ sentiment score would agree with the review’s rating. There-

fore an increase in ‘agreement’ signifies an increase in quality of the dataset. TripAdvisor

agreement increases from 17.7% to 59.9%, which is an over three times increase. Fur-

thermore, only 30% of the reviews were filtered, which is a reasonable level. Google Play

agreement increases from 18.7% to 36.9%, which is a two times increase. Considering the

highly noisy nature of app reviews, this represents a significant improvement. However,

70% of the dataset had to be filtered out to achieve this improvement. This suggests that

for text typed on mobile phones, filtering individual sentences on a review level may be

more effective than filtering whole reviews.

Figures 2.6, 2.7, and 2.8 show feature distributions before and after filtering. These

features were shown in [48] to be effective in characterizing anomalous hotels on three

different online review websites. In all three subfigures, filtering either reduces the skew-

ness of the distribution or removes an abnormal bump, even though there was no specific

filtering done on title/ review length or rating.
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Figure 2.6: Distribution of the number of words in Google Play reviews before and after
filtering.

2.7.5 Sensitivity and Scalability

Sensitivity In the ClearView pipeline we have several thresholds that can be set depend-

ing on the needs of the user. The percentage of non-printable characters, blacklisted words,

and misspelled words, as well as the minimum semantic score, can all be set separately,

allowing for customization of this pipeline depending on the desired end-use of the data.

Scalability The Stanford sentiment classifier is unusable for the large set of reviews

we consider. For example, our training data consisted of a collection of 1.75GB for the

TripAdvisor dataset and 6.62GB for the Google Play dataset. Processing such data using

a single classification process would take on the order of days.

To calibrate the runtime of a single iteration, we run the entire workload on a single

“fat” server with 2TB memory, 120 hyperthreaded Xeon E7-4870 1.2GHz cores. Both

input and output files were accessed in tmpfs[59], making all file I/O in-memory. We use
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Figure 2.7: Distribution of the number of characters in TripAdvisor titles before and after
filtering.

Figure 2.8: Rating distributions of Google Play reviews before and after filtering
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a taskbag model in which a pool of compute server processes (i.e. workers) iteratively

fetches and executes work from the taskbag. The workers invoke the Stanford NLP sen-

timent classifier with preset parameters and input/output file names tagged with the id of

the fetched task. The whole job is self load-balancing and the task dispatch algorithm was

written in 200 lines of Go code. One iteration to classify the review set with this highly

optimized setup takes 30 hours, showing that implementation on a single laptop is clearly

infeasible for this classifier.

2.8 Conclusion

In this chapter, we presented ClearView, an automated data cleaning pipeline. We dis-

cussed various types of abnormalities that exist in different review sites and developed

filtering techniques to identify and remove them. We evaluated the performance of our

pipeline through an in-depth user study and found that our pipeline improves the quality

of the dataset by up to 3.4 times. We also examined the distributions of significant fea-

tures and found that our cleaning technique standardized these feature distributions. These

evaluations show that ClearView is an effective first step in the cleaning of review data in

preparation for a variety of data mining algorithms.
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Chapter 3

TrueView: Ranking Hotels Based on

Trustworthiness

3.1 Introduction

Online reviews on products and services can be very useful for customers, affecting many

aspects of our day-to-day life (where to eat, what to buy, what to watch, where to travel).

These reviews provide an unprecedented mechanism for current customers to share infor-

mation with potential customers. However, review hosting sites can suffer from fraudulent

behavior, generated by “biased” users or the product providers themselves. So far, most

studies have focused on analyzing online reviews from a single hosting site. The key ques-

tion of this chapter is: how could one leverage information from multiple review hosting

sites to detect fraud?

Currently, the existence of multiple review sites can add to the confusion of the user.

Each of these sites may give a different view of a hotel, and it can be difficult for the

consumer to know whom to trust. We focus on reviews of hotels for reasons we discuss

below, and we frame the problem as follows: we are given several review sites that review
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a set of partially overlapping hotels. The reviews typically include a score, user comments,

time of review and possibly a user-id. The required output is a trustworthiness score for

the reviews of a hotel that take into consideration the reviews from each site. We use the

term suspicious hotel to refer to hotels whose reviews seem to have been manipulated,

e.g. padded with fake reviews. Note that we only focus on trustworthiness and not the

relevance of reviews for a particular user, e.g. whether a hotel is a pet-friendly, which is

an important but distinct problem.

We focus on hotel reviews for a combination of reasons. First, the hospitality industry

exhibits relative stability and consistency. Proximity to the beach does not change, un-

like product properties which quickly lose their attractiveness, let alone that the products

themselves may be replaced altogether by newer models. Second, hotel properties pro-

vide some structure and ubiquitousness. Hotels are consistently evaluated on a relatively

limited number of factors (cleanliness, service, location, noise, comfort) as opposed to say

electronic goods which can vary significantly depending on the interests and intent of the

user (e.g. think digital cameras, or TVs). Our work could easily be expanded to reviews of

other “well-defined and persistent” services, such as restaurants. Thus, our overall frame-

work and fundamental functions are a great starting point for expanding our work to other

commercial sectors, even if some sector-specific adjustments are required.

Most previous work so far has focused on analyzing a single review site, and typically,

focus on temporal [29], textual [63], behavioral [51], distributional [30] and graphical

features [18] to detect fraudulent reviews. In section 3.2, we discuss the existing work in

more detail.

As our key contribution, we develop a systematic methodology to analyze, compare,

and synthesize reviews from multiple review sites. First, we introduce and evaluate fea-

tures that capture cross-site discrepancies effectively. Second, we conduct arguably the

first extensive study of cross-site discrepancies using real data. Third, we provide the

TrueView score, a non-trivial synthesis of multi-site reviews, that assesses the trustwor-

thiness of a group of reviews. We provide TrueView as a proof of concept that cross-site
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analysis can significantly improve the information that the user sees. In our study, we use

more than 15M reviews from more than 3.5M users spanning three prominent travel sites,

TripAdvisor, Hotels.com, Booking.com.

We highlight our contributions and key results below.

a. A systematic approach to cross-site review evaluation using behavioral fea-

tures. We propose a comprehensive methodology for comparing and synthesizing reviews

from different sites. We use 142 features that go beyond simple rating analysis to consider

a set of behavioral and contextual features including review-centric, reviewer-centric, and

hotel-centric features. Our features capture temporal, spatial, behavioral, and graph-based

characteristics, which provides a multi-faceted view of the reviewing process of a hotel.

A key feature of the work is that we evaluate the trustworthiness of the overall hotel in

one site using cross-site features leveraging information from the other sites. We find that

using cross-site features significantly increases the number of suspicious hotels that we

find in our experiments.

b. An extensive study of cross-site review differences. We apply our approach to our

15M reviews spanning three sites. As a necessary step, we develop an automated method

to match hotel identities across different sites, which is a non-trivial problem. Our study

provides several interesting observations:

1. Our identity-matching method matches hotels with 93% precision which we validate

manually. This method could be of independent interest even outside the scope of

this work.

2. There are big differences in the overall score of a hotel across different sites. We

find that 10.4% of common hotels from Booking.com and TripAdvisor.com and

9.3% from Hotels.com and TripAdvisor.com, exhibit significantly different rating

characteristics, which is often a sign of suspicious behavior.

3. Using multiple sites can help us detect 7 times more suspicious hotels than the union
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of suspicious hotels found for each site in isolation.

c. Developing a cross-site scoring system: TrueView. We develop the TrueView

score as a proof-of-concept that leveraging multiple sites can be very informative and

change our assessment of the hotels significantly. TrueView is a sophisticated score, com-

bining: (a) temporal, contextual, and behavioral features from each site, and (b) cross-site

features across the sites. By applying our algorithm, we find that 20% of all hotels ap-

pearing in all three sites have a low trustworthiness score (TrueView score less than 0.75).

Although there may be better ways to combine cross-site reviews, we argue that TrueView

already demonstrates the potential of such an approach.

Our work in perspective. Our work is arguably the first effort that focuses on the

synthesis of reviews from different sites. Our goal is to raise the awareness of the oppor-

tunity and the challenges related to this problem. At the same time, our approach provides

a foundation for follow up studies in the following directions: (a) detection of fraudulent

behaviors, (b) assessing the trustworthiness of review sites, since some may have policies

that enable misbehavior, and (c) creating effective review aggregation solutions. Ulti-

mately, the collective wisdom of the users is valuable and empowering, and we would like

to protect this from fraudulent behaviors.

3.2 Related Work

Existing works focus on identifying fraud reviews and reviewers, while we focus on busi-

nesses such as hotels that promote fraudulent reviews. Existing work can be categorized

based on the methodologies they adopt to detect frauds. Fraud detection using Graphi-

cal/Network structure is studied in [18][21][67] where authors exploit network effects and

clique structures among reviewers and products to identify fraud. Text-based detection

of fraud is studied to spot a fake review without having the context of the reviewer and

reviewed product in [54][35][63]. Temporal patterns, such as bursts, have been identified
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as fraudulent behavior of businesses [69][29].

There has been work on joining multiple criteria from single sources to better detect

fraud [68]. Various types of fraud have been identified in the literature: groups of fraud-

sters [51][50], unusual behavioral footprints [49], unusual distributional footprints [30],

unexpected rules [36] and unusual rating behaviors [40].

Existing works deal with a diverse set of review data in both supervised and unsuper-

vised manners. In [18], 15,094 apps are ranked based on network effects. In [68], 45 hotels

are ranked based on an unsupervised hedge algorithm. In [30], 4000 hotels located in 21

big cities are analyzed to identify distributional anomalies. In [35], reviews on 700,000

products for a month are analyzed using review-, reviewer-, and product-centric features.

In [57], 7,345 car repair shops are crawled to collect 270,121 reviews and the data of their

195,417 reviewers.

Our work considers 15 million reviews for over 10 years from three websites and

thus considers significantly more data than existing works do. None of the existing work

considers reviews from multiple sites to understand fraudulent behavior. Our work is

fundamentally different from most existing work, since our focus is on evaluating ho-

tels/businesses instead of reviews.

The closest commercial competitor of TrueView is the TrustYou score [11], which

calculates a trustworthiness score for a hotel based on the reviews about that hotel from

multiple sites. TrustYou is fundamentally different in that it scores the goodness of the

hotel itself based mainly on semantic text analysis, while TrueView scores the trustwor-

thiness of the hotel based on a wide range of features.
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3.3 Location Disambiguation

We crawled TripAdvisor.com, Hotels.com, and Booking.com. We collected all the reviews

for almost all of the hotels in these sites. For each review, we collected its text, reviewer-

name, date-time and rating. For each hotel, we collected its name, address, and overall

average rating and any overall sub-category ratings (cleanliness, etc.). A summary of the

whole dataset is given in Table 3.1.

These three websites have a lot of hotels in common and thus, provide rich cross-site

information about those hotels. We focus on the location disambiguation problem across

these three websites.

3.3.1 Challenges

The most significant challenge in location disambiguation is that hotel names are not

unique. Therefore, a full name and address is needed to uniquely identify a hotel. Un-

fortunately, addresses are also not standard across websites, and the differences between

sites are seemingly random. Differences can be as simple as Street versus St. versus St

or as complex as Hotel Atlântico Búzios Convention & Resort - Estrada da Usina, s/n,

Humaita, Búzios, CEP 28950-000 and Hotel Atlantico Buzios Convention and Resort,

strada da Usina 294Morro do Humait, Buzios, RJ, 28950-000, Brazil. For international

addresses, words can be in different orders, names can be formatted differently, country

names can be excluded, and numbers can be morphed. Addresses can even use waypoints

as reference, such as 1000 Yang Gao Road N Pudong Near Pilot Free Trade Zone Gate

3, which are not standard across websites. Even US addresses, which one might assume

follow a standard format, are not immune. For example: Hilton New Orleans Riverside,

Two Poydras Street, New Orleans Central Business District, New Orleans, LA 70130 and

Hilton New Orleans Riverside, 2 Poydras St, New Orleans, LA 70130, United States. We

can look at these two addresses and tell that they are describing the same hotel, but their
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differences are non-trivial: the use of ‘Two’ versus 2 and the inclusion of ‘New Orleans

Central Business District’. Another domestic example: Mauna Kea Beach Hotel, 62-

100 Mauna Kea Beach Drive, Waikoloa, HI 96743 and Mauna Kea Beach Hotel, 62-100

Mauna Kea Beach Dr, Kamuela, HI, 96743 United States. These two addresses have every

field in common but one: one city is listed as Waikoloa and the other as Kamuela. How

much weight should be given to each field? Due to the variety of differences possible, this

is a difficult problem to automate.

3.3.2 Disambiguation techniques

We use a combination of hotel name analysis and geodesic distance to disambiguate ho-

tels. Geodesic distance ensures that the addresses are located in the same place, despite

differences in formatting, and name comparison makes sure the hotels’ names are similar

enough to likely refer to the same business.

Hotel name comparison To compare two hotel names, we devise a similarity measure

comparing the number of letters they have in common. The similarity measure we use is

the length of the set intersection of the hotel names divided by the length of the longer

name. This measure is faster to compute than edit distance and succeeds in the face of

small spelling differences or omitted words. This measure on its own has very high pre-

cision but low recall, so when combined with geodesic distance we are able to loosen this

matching requirement.

Geodesic distance To compare the physical location of the hotels, we employ geocoding.

Using the Google Geocoding API, we translate hotel addresses into latitude and longitude

coordinates for all of our hotels. This API works well with strangely formatted addresses,

both domestic and international. We use a cluster of computers to speed up the coordinate

generation process as there is a limit on the number of requests per day. We then calcu-

late the geodesic distance between two sets of latitude and longitudes. To do this we first

convert latitude and longitude to spherical coordinates in radians, compute the arc length,

then multiply this by the radius of earth in miles to get the distance in miles between the
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two addresses.

Combining measures: By combining geodesic distance with a distance measure of the

hotel names, we are able to have efficient, high-precision matching. To find the ideal dis-

tance maximum and similarity minimum, we explored the parameter space for distances

from 90 miles to 0 miles and similarities from .1 to .9. By sampling 30 hotels at each

parameter combination and manually checking matching fidelity, we found a local maxi-

mum in precision at a geodesic distance max of 1 mile and a name similarity minimum of

0.66. Since we want high-quality matching results, we err on the side of caution with our

matching constraints.

Results of disambiguation Using these constraints, we find 13,100 total matches. 848

hotels were matched across all three sites, 1007 between Booking.com and Hotels.com,

655 between Booking.com and TripAdvisor.com, and 10,590 between Hotels.com and Tri-

pAdvisor.com. Booking.com is a much newer site, and we hypothesize that is the reason

for its reduced coverage.

Booking.com Hotels.com TripAdvisor.com

Number of reviews 11,275,833 9,050,133 3,167,035
Number of hotels 52,696 155,763 51,395
Number of unique

usernames 1,462,460 1,020,054 1,426,252

Average number of
reviews 213.98 74.3 68.71

Average rating 3.35 3.07 3.99
Percent empty reviews 24.4% 19.6% 0.0039%

Date range 09-30-2009 -
05-17-2014

02/01/2006 -
06-01-2014

02/28/2001 -
09/08/2013

Geographic range International International United States

Table 3.1: Simple Statistics of the three datasets collected from three prominent travel
websites.
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3.4 Novel Feature Set

Hotels show various inconsistencies within and across hosting sites. In this section, we

present several such inconsistencies that are not discussed previously in the literature and

derive relevant features for our trustworthiness scoring. We categorize our features in a

similar way to Jindal et al. [35]: reviewer-centric features, review-centric features and

hotel-centric features. Features are either generated using one site or multiple sites after

the hotels are joined based on location. All the single-site features are combined to put

them in the context of multiple sites.

A note worth mentioning is that the location information of these hotels provide an

unprecedented opportunity to validate goodness of the reviewers and reviews. All of our

novel features described below show promising capabilities in identifying suspicious be-

havior, and most of the time it is possible to spot such behavior for our novel location

disambiguation and merging.

For the rest of this chapter, we will use HDC for Hotels.com, TA for TripAdvisor.com

and BDC for Booking.com.

3.4.1 Reviewer-Centric Features

We identify three new scenarios involving inconsistent and unlikely reviews and capture

these scenarios through reviewer-centric features. Since it is not possible to disambiguate

users across sites, all of the reviewer-centric features are based on individual sites.

Spatial Inconsistency

We first focus on identifying reviewing behaviors that are spatially inconsistent. We find a

user named “AmishBoy” who reviewed 34 hotels in Amish Country located in Lancaster,

PA over 5 years. Lancaster County spans only 984 square miles, meaning that many of
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the hotels this user reviewed are right next door to each other. He gave 32 out of these

34 hotels 4 or 5 star ratings, which means he was pleased with his stay. Why then would

he continually switch to new hotels? Even if he is simply visiting the area for business

or pleasure every couple of months, his pattern of continually switching to new hotels is

suspicious. Whether innocent or not, the reviews of this user should be discounted on the

grounds that he does not represent a ‘typical’ traveler visiting this area.

We create a feature that identifies if a user has such a bias to a specific location and ac-

cumulate the contributions of such reviewers to every hotel. This feature is first calculated

as the maximum count of the number of reviews a reviewer made in a given zip-code. If

this value is greater than a threshold, typically 5, the reviewer is marked as a suspicious

user. To propagate the feature up to the hotel level, we then sum the number of reviews

each hotel has that came from suspicious users. If a hotel has many reviewers who have

such spatial preference, it strongly suggests potential review manipulation by the hotel.

Figure 3.1: (left) Locations of the hotels the user AmishBoy reviewed around Lancaster,
PA in TA (right) A snapshot of the reviews tonyk81 wrote in TA. He left a total of 29
reviews January 22, 2006 for businesses located across 15 states.

Temporal Inconsistency

Another type of suspicious behavior of a reviewer is writing many reviews on the same

day. Typically a traveler may review a set of businesses after he comes back from a trip.
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However, the frequency of such trips and the spatial distribution of the businesses can

provide valuable insights. For example, a user named “tonyk81” reviewed 29 businesses

on January 22, 2006, which are located across 15 states. Additionally, 21 of these reviews

are “first time reviews” for the respective hotels. The reviews describe visit dates starting

from May, 2005 till January, 2006 and all of the reviews have the words great and good in

the titles. Furthermore, many sentences in the review titles and text are repeated verbatim,

for example “Cleanliness seems to be a high priority at this hotel and the rooms are in like

new condition.” and “This hotel lives up to Marriotts high standards of quality.” The user

has only reviewed 3 hotels in the last eight years after this burst, all on the same day in

2007. Putting these pieces of evidence together, it is clear that tonyk81 is likely a spam

account.

Singleton bursts have been identified as potential indicator of manipulating hotels in

[69]. The above example suggests non-singleton bursts can show evidence of spamming

users as well. If a hotel has a large number of such reviewers, it likely has manipulated

its reviews. To calculate this feature, we find the maximum number of reviews a reviewer

left in a given day. If this is greater than a threshold, typically 3, that user is marked as

suspicious. We then propagate up to the hotel level as described above, by summing the

number of reviews each hotel has that came from suspicious users.

Graphical Inconsistency

Bipartite cliques in user-store graphs can identify groups of users that boost a set of stores

by doing a number of small transactions in the form of positive reviews [21]. Inspired by

this, we create a feature to capture information about the cliques a reviewer participates

in. We restrict ourselves only to cliques of size two and search for the maximum number

of hotels a user has reviewed in common with any other user. We find several cases where

such a clique points to an abnormal pattern in reviews. One such case we identify is two

users who have reviewed over 95% of the hotels in common on nearly the same dates,
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usually off by one day. Upon researching the reviewers further we discovered that they are

married! While a valid reason for such behavior, this shows that our method for finding

anomalous behavior by identifying bipartite cliques is successful. Another example is two

users from Germany, who have reviewed 117 of the same restaurants, hotels, or landmarks

all over the world in the past 5 years out of 189 and 186, respectively. Furthermore,

they each are ‘first to review’ (meaning they were one of the first five reviewers of that

location in their native language) for 136 and 144 locations. They also have surprising

synchronicity in both the review dates and stay dates for the hotels they have in common.

These facts indicate that these may be two accounts may be held by the same person,

which is the behavior of a paid spammer.

3.4.2 Hotel-Centric Features

Hotel-centric features are relatively more successful in identifying outliers (see Experi-

ments). As before, we have three types of inconsistencies for hotels.
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Figure 3.2: (a) Six reviews for Super 8 hotel in Indiana in the same day (October 19, 2012),
all positive, and five of them are singleton reviews where the authors have not reviewed
again in TA. (b) The number of reviews per day for a this hotel jumps to 6 on that day
which was sufficient to give the hotel a 0.5 star boost in the average rating showing in red.
(c) Immediate 5-star ratings after 1-star ratings are frequent in some hotels such as Cherry
Lane Motor Inn in Amish Country. (d) Examples of two successive opposite reviews on
the same day from two reviewers.
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Temporal Bursts and Oscillations

Bursts of positive reviews for a hotel specifically aimed to increase the average rating is

well identified in the literature. We find several such cases where there are bursts of sin-

gleton reviews with an increase in the average rating. Typically such behavior is prevalent

in the early years of the inception of a hotel in the hosting site. Figure 3.2 shows an ex-

ample of such a burst. Bursts were calculated by taking the difference between maximum

number of reviews in a day and average number of reviews in a day for each hotel.

In addition to bursts, we show cases of oscillation in ratings that are targeted to keep

a high rating at the top of the “new-to-old” sorted list. We created two features to char-

acterize oscillation: the number of times a 5 star review was immediately followed by a

1 star review for each hotel, and the number of times a 1 star review was immediately

followed by a 5 star review for each hotel. These summed feature values capture the level

of oscillation of ratings for a given hotel.

An example of oscillating ratings is shown in Figure 3.2. We see that eight out of ten

1 star ratings were followed immediately by 5 star ratings.

Temporal Correlation

The correlation between the number of ratings a hotel receives over time on different sites

is a valuable indicator of consistent customer satisfaction. Commonly, a hotel should have

very similar behavior across sites in terms of number of ratings. For example, since the

number of occupants at hotels in Myrtle Beach, SC [6] decreases from 80% in the summer

to 30% in the winter, any hotel in Myrtle Beach, SC should show a high number of ratings

per day in summer, decreasing in the winter, as the number of ratings per day follows

the average occupants of the hotel. In Figure 3.3, we show hotels and their number of

ratings per day in HDC and TA. We see the top two hotels have summer peaks in both of

the sites. However, Bluewater Resort has dense summer ratings in TA but no significant
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Figure 3.3: (left) The time series of number of ratings per day for three hotels in Myrtle
Beach, SC. The top two hotels show summer peaks in both TA and HDC. The bottom hotel
does not show any summer effect in HDC. (top right) Distribution of correlation between
ratings of hotels in TA and HDC.

peak/density in HDC, especially in summer of 2012.

Such a discrepancy in temporal behavior can exist for several reasons, each of which

are worth considering when it comes to evaluating hotels. The hotel might have received

more poor ratings in the summer which were omitted by the hosting site, or the hotel could

have sponsored some winter reviews. There can be extreme cases such as the hotel was

closed for construction, but irrespective of the real reason, a lack of correlation across sites

is a significant indicator for spotting misbehavior. We calculate the Pearson’s correlation

coefficient between the time series of number of ratings per day from two sites. We use

only the overlapping time duration for calculation. If the overlap is too small, we naively

assume perfect correlation. The distribution of these correlations is shown in Figure 3.3 as

well.
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Figure 3.4: Distribution of ratings for the same hotel in two websites showing negative
correlation.

Rating Distributions

In [30], authors have suggested that the shape of rating distribution has a strong tie to the

spamming hotels. Typically, a “J” shaped distribution has a large number of 5-star and 1-

star ratings but a small number of 4-, 3-, and 2-star ratings. Such a distribution may occur

if users review only when they are extremely happy or disappointed. However, it is suspi-

cious to have nearly equal numbers of people who hated and loved a hotel. This suggests

that one of those rating groups has been artificially inflated by spam reviews. Whereas

in [30] they had to compare distributions between hotels, we take a multi-site approach

to validate the consistency of distributions across sites for individual hotels. To find this

value we calculate the Pearson’s correlation coefficient between the rating distributions of

a hotel across different sites, represented by two vectors of counts of integer ratings. We

also directly compare the distributions of the real-valued ratings by using the one-sided

p-value from the Mann Whitney U Test as a feature.

Figure 3.4 shows the correlation coefficients of the distributions between HDC and TA.

We take a threshold of -0.9 and locate all the hotels that show less than -0.9 correlation.

As shown in Figure 3.5, we find an interesting co-location pattern for negatively correlated

hotels around Atlanta, GA which is more densely populated with such hotels than any

major urban area or popular vacation spot, such as Las Vegas, NV or Los Angeles, CA.
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Figure 3.5: Negatively correlated hotels are more abundant in the vicinity of Atlanta, GA
and almost non-existent in Las Vegas, NV area where both the cities have more than three
hundred hotels.

Around 5% of the hotels in GA show negative correlation, which is much greater than that

(1%) in CA and NV.

3.4.3 Review-Centric Features

Review-centric features are based on review text and titles. We do not use any natural

language processing techniques to spot a spam review by only text, but rather focus on

structural properties of reviews.

Empty Reviews

Reviewers often write empty reviews with no title and no comment. The incentive for

such reviews is that they can be submitted without any typing. We find an abundance of

empty reviews in HDC and BDC, with 20% and 25% empty reviews, respectively, while

TA has only 3% empty reviews. In addition to these reviews being potentially suspicious,
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we find that hosting sites treat these reviews differently. For example, in HDC, empty

reviews were visible during the time when we collected the data; however, HDC now

hides the empty reviews, while keeping counts of them in their overall review tallies. For

example, Excalibur Hotel and Casino in Las Vegas, NV has 2500 empty reviews out of

13,144 reviews in HDC, but none of them are visible through the website. Such behavior

of hiding consumer reviews has been reported several times in [3], and clearly such an

omission is not fair to consumers.

There exist some hotels that have a significantly greater proportion of empty reviews

than average. For example, Comfort Suites Newark in New Jersey has 86 empty reviews

out of 193 reviews which is more than 44% of the reviews. We find 66 hotels that have

only empty reviews in HDC. BDC has a similar-sized body of empty reviews.

Matching Reviews

Inspired by tonyk81’s matching review text described above, we create a feature that cap-

tures the proportion of sentences any pair of reviews from the same reviewer share to the

total number of reviews that reviewer made. While repeating the occasional phrase is to be

expected, having reviews that share the majority of the sentences, or are completely iden-

tical, is not. We calculate this score by comparing pairwise all reviews made by a given

user. We keep a count of the number of sentences these reviews share, and then divide

this value by the total number of reviews a reviewer wrote. We then attach this score to

each review a reviewer left. For each hotel we aggregate this score for all of its reviews

to characterize the lack of uniqueness of its review set. A hotel with many reviewers who

use the same sentences repeatedly is likely soliciting spam reviews.
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3.4.4 Cross-Site Feature Preparation

We generate 90 features including the novel features described in the previous section for

each hotel in each site. In addition to these single-site features we calculate 52 cross-site

features for the hotels that exist in multiple sites. These cross-site features are combi-

nations of similar single-site features from many sites. Cross-site features can identify

discrepancies that a hotel has between a pair of sites, for example, a difference in the

percentages of empty reviews.

We combine the single-site features in three different ways. First, we take ratios for

scalar values, such as number of reviews. Some of the scalars are only meaningful rela-

tively, such as number of 5-star ratings. We use relative frequencies when taking the ratio

of these scalar features. Second, we take correlation coefficients for sequences, such as

numbers of high to low ratings. And third, we take the p-value of the Mann-Whitney U

test for distributions, such as the distributions of review lengths in words.

The next step is to normalize these features to make them reasonably close to standard

normal distribution. The intention is to treat each feature as independent and identically

distributed. Some of the features require a log transformation to be converted to standard

normal because of their exponential fall out, for example, counts of rating scores, counts

of empty reviews, and text similarity scores. After log transformations, we normalize each

feature by Z-score. For a complete list of features and their values for all of the hotels

please visit the TrueView page [9].

3.5 Trustworthiness Score

Our work is fundamentally different from existing works. We do not wish to evaluate if

a review is fake or untruthful as most existing works do. We believe it is very difficult

to achieve high recall in identifying review fraud, mostly because of the dynamics of the
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fraudsters and the lack of labeled data. Even if we assume hypothetically that we can

achieve high recall and prevent fake reviews from being shown to the readers, the hotels

and sites that promote fraudsters are not penalized and site users are not notified of which

hotels are trying to lie to their customers.

We believe that a better approach to this problem is to evaluate hotels and sites to find

ones that promote untruthful reviews, and to produce a trustworthiness score to present to

the user. We think such scores are more beneficial to the review readers as they can use

these scores in their ultimate judgment.

3.5.1 Outlier Scores

Once all the features are generated, we use an ensemble of anomaly detection algorithms to

generate the TrueView score. This ensemble consists of a global density-based score, local

outlier factor, and a hierarchical cluster-based score. Using these algorithms in ensemble

allows for different types of normal and anomalous behavior. We describe each technique

in this section.

Global Density-based Score

To calculate this score, we need to find how different a hotel is from the centroid of hotels

in the feature space. To do this, we take the mode of each feature and form a hypothetical

hotel which lies in the center of a large “normal” cluster. We use the simple intuition

that most hotels are playing fair and only a small fraction of hotels are generating fake

and untruthful reviews. If a hotel is largely dissimilar to the mode/centroid hotel, the hotel

might disagree with the mode in many features, which makes its behavior less trustworthy.

We use the concept of density connectedness to form a large cluster of points (i.e.

hotels) carrying the mode. A point is a core point if it has k or more points within ✏

distance in the Euclidean space. Two points are density-connected if there is a sequence
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of core points from one to another where every point is within ✏-neighborhood of the

previous point. Thus, any point that is not in the core cluster is an outlier and the degree of

outlying is proportional to the distance from the nearest core point. This method is inspired

from the original density based clustering algorithm, DBSCAN. This method has a unique

advantage that the core cluster can be of any shape and based on the two parameters (i.e. ✏

and k) we can control the size of the core cluster and thus, the size of the outlying cluster.

Local Outlier Factor (LOF)

The global method assumes that all normal hotels form a core cluster. However, there

can be alternative structures with numerous small clusters of normal hotels with varying

densities in the feature space. We use local outlier factor to score outliers. Local outlier

factor uses the notion of k-distance (distk(x)) which is defined as the distance to the k-

th nearest neighbor of a point. Local reachability distance (lrdk) of x is the average of

the reachability distances from x’s neighbors to x. Here Nk(x) is the set of k-nearest

neighbors of x.

lrdk(x) =
||Nk(x)||P

y2Nk(x) max(distk(y),dist(x,y))

The LOF of a point x is the average of the ratios of the local reachability of x and its

k-nearest neighbors. LOF can capture several normal clusters of arbitrary densities that

makes it robust for any data domain. Formally, LOF is defined as below

LOFk(x) =
P

y2Nk(x)
lrdk(y)
lrdk(x)

||Nk(x)||

Hierarchical Cluster-based Score

Both of the density-based methods above use k-neighborhoods to estimate densities or

connectivities. Our third approach differs from that and uses a hierarchical clustering ap-

proach. We cluster the data hierarchically using the single linkage method. The single



Chapter 3. TrueView: Ranking Hotels Based on Trustworthiness 43

linkage method starts with singleton clusters and evaluates pairs of clusters based on the

minimum distance between any pair of points that form the two clusters. It then merges

the closest two clusters at every step. This simple bottom-up strategy can produce a den-

drogram over the points without any input parameters.

Once the complete hierarchy is built, a set of clusters can be obtained by cutting the

hierarchy at a cutoff level. Here again, we assume there is a global normal cluster that

contains most hotels and any hotel not in this cluster is an outlier. Under this assumption,

we can tune the cutoff level to get a certain percentage of points in the set of outliers.

3.5.2 TrueView Scores

One of the major challenges of creating a method based on an ensemble of anomaly de-

tection algorithms is that it requires the combination of multiple scores that are not on the

same scale. There are several different methods that can be used to combine these scores,

depending on the potential application. Some methods focus on unifying rankings, while

others focus on normalizing and combining scores [58]. For our application, having one

unified score is preferable to having an overall ranking, thus we seek to normalize and

combine these four scores. Our method is as follows, based on [38][58].

Let a hotel be x and the outlier score of x is S(x). We first do a log transform

z = � logS(x)/Smax for each hotel x to obtain a trustworthiness score, and then we

scale it using a Gaussian distribution to produce a probability P (x) of the hotel x being

trustworthy. Such a probability score is useful because it is bounded within [0,1].

TV (x) = max(0, erf( z�µzp
2�z

))

Here, TV (x) is the TrueView score. The TrueView score describes the probability of

a hotel’s reviews being truthful and is unitless. As described above, we can now produce

TrueView scores from any feature set of these hotels. We define two intermediate scores
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that can be created as well as the overall TrueView score. First, TV1 is produced only

using features from one site. Second, TV2 is produced using an union of features from all

sites. Third, the TrueView score is produced using the union of all single-site features and

the cross-site features from all three sites. Each outlier detection algorithm produces its

own scores, and we average them to get the overall TrueView score. We provide empirical

evidence in Section 3.6 that TrueView identifies successfully identifies outliers.

There are two weaknesses of the above approaches. First, the score of a hotel can

change if other hotels connect it to the core cluster. Second, there can be hotels which are

unusually good labeled as untrustworthy. These cases are pathological and become rare

with more reviews per hotel.

3.6 Experimental Analysis

We start with our reproducibility statement: all of the experiments in this section are ex-

actly reproducible with the code and data provided in the supporting page [9]. We also

have additional materials such as presentation slides, the complete feature set, and more

experiments.

3.6.1 Parameter Sensitivity

The three algorithms we use for outlier detection have a set of parameters to tune. Based on

the values of these parameters, we can have different sized sets of outliers. We experiment

to test the sensitivities of these parameters and select appropriate values for subsequent

experiments.

In the global density-based method, we have ✏ and k as parameters. We fix k = 10 and

vary ✏ and record the percentage of the dataset labeled as outliers. In LOF, we have the

neighborhood size k as the sole tunable parameter. In the hierarchical method we use the
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Figure 3.6: (left) Percentage of outliers detected in the density-based method as we vary
✏. (right) The same as we vary neighborhood size k in the LOF method.

cutoff value as the parameter and record the percentage of the dataset labeled as outliers.

Figure 3.6 shows the behavior of the mode-distance and LOF methods. We select the

parameters such that we can rank order 30% of the hotels using all three methods. This

number is an arbitrary choice and can be different in other systems.

3.6.2 Feature Importance

We evaluate feature importance in the calculation of the TrueView score. We use two

different and independent approaches to evaluate the features.

Spectral Feature Selection

We use the method in [71] to evaluate the importance of our 142 features. The method

identifies redundancy in the feature values and properly demotes dependent features. The

result is shown in Figure 3.7, where more than 100 features show very uniform impor-

tance scores, which supports the validity of our feature set. In addition, we categorize the

features into cross-site and single-site classes. We see that the most important features

are cross-site features, showing the importance of multiple-site data for evaluating hotels.

Note that the feature selection algorithm does not take into account the ultimate usage of
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these features in the algorithm, which is outlier detection in this work, but rather their

intrinsic informativeness.
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Figure 3.7: Feature importance percent scores for our 142 features. Cross-site features are
more overall important than single-site features.

Distance from Mode

In this section, we consider the outliers produced by our global density-based approach.

We pick the most different feature of an outlier with respect to the mode of that feature as

the representative for that outlier. We see a massive shift in importance of our cross-site

features, especially the star rating-based ones, that are important for more than half of the

outliers. In Figure 3.8, we show the results for other feature categories as described in

Section 3.4.

3.6.3 Validation

Since the algorithm for computing TrueView score is unsupervised, and we do not have

labeled data that identifies fraudulent hotels, we cannot directly validate with ground truth

information. We therefore take two alternate approaches to validate the soundness of our

method.
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Figure 3.8: Relative importance of review-,reviewer- and hotel-centric features based on
the distance from the centroid.

Sanity Check on Synthetic Frauds

First we generate a synthetic set of outlying hotels to validate that our global density-

based approach correctly identifies outliers. To create these outliers, we copy the center

point representing the mode of all features and mutate random feature values, randomly

setting them to either the ninety-fifth or the fifth percentile. We then calculate their True-

View score based on the global density-based method described above. This experiment

is repeated 100 times. We find the distributions of TrueView scores are heavily skewed

towards zero, showing that on the whole, they were given very low TrueView scores. Thus

our algorithm passes this sanity check, classifying 100% of our synthetic data as outliers

and giving them correspondingly low TrueView scores.

Evaluation of Extreme Features

Second, we validate that the hotels with low TrueView scores show a significant difference

in the number of extreme feature values from the hotels with high TrueView scores. To

evaluate this we find the number of features that are below the fifth percentile or above
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the ninety-fifth percentile for each hotel. We use the Wilcoxon rank-sum test to determine

whether the 40 most trustworthy hotels significantly differ in the number of extreme fea-

tures from the 40 least trustworthy accounts. A p-value of < 0.05 rejects the null hypoth-

esis, and asserts that the two populations are distinct. Table 3.2 lists the p-values for each

outlier algorithm and each feature subset. The cross-site and combined single-site feature

sets show statistically significant results for every algorithm, meaning that these feature

sets are effective in differentiating outliers. It also means that hotels given high TrueView

scores are indeed trustworthy, as most of them have only a few extreme features.

LOF Mode Density Linkage

Cross-site 3.93E-07 1.63E-08 4.60E-11
Single-site 1.63E-06 8.04E-15 1.08E-12

Booking.com 1.49E-05 0.419 0.019
Hotels.com 0.308 4.41E-04 0.038

TripAdvisor.com 0.379 0.052 0.002

Table 3.2: p-values of Wilcoxon rank-sum test. Bold faced values mean that there is a
significant difference between the top and bottom 40.
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Figure 3.9: (left) Distribution of the number of extreme features (95th percentile) in the
bottom 100 hotels in TrueView ordering (right) Distribution of the same in the top 100
hotels in TrueView ordering. Distributions are significantly different.
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3.7 Case Studies

We want to provide some initial ideas on how the TrueView score could be used in practice.

We identify two possibilities: (a) enabling the site owner to detect misbehaving hotels, and

(b) by the end user.
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Figure 3.10: Empirical cumulative distribution function of TrueView scores.

A. TrueView for the site administrator. The usage here is fairly straightforward as

a way to identify misbehaving hotels. The administrator can apply TrueView on the data

from his own site alone, in which case TrueView resolves to TV1. Assuming cross-site

cooperation, the administrator could use data from other sites.

B. TrueView for the end user. The TrueView score could help the user select ho-

tels that are more likely to have non-altered scores. In other words, the user can be more

confident that a rating of say 3.5 stars is the true reflection of unbiased customers. True-

View could be used when only a single site is available, but its power lies in its ability to

combine reviews from multiple sites.

We see two basic ways the TrueView could be used. (a) as a way to re-rank hotels, by

altering the the rate of the hotels, and (b) as a filtering mechanism, in which hotels with

unreliable TrueView score are not even shown to the user.
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Hotel HDC
Rating

T1-
HDC

TA
Stars

TV1-
TA TV2 TrueView Trust-

worthy?

Super 8 Terre
Haut 3.30 0.0 3.00 0.765 0.266 0.0 X

Excalibur Hotel
and Casino 3.60 0.154 3.50 0.150 0.049 0.239 X

Comfort
Suites Newark 3.80 0.312 3.00 0.295 0.227 0.0 X

Paradise
Resort, Myrtle

Beach
4.20 0.0 4.00 0.427 0.301 0.0 X

Bluewater
Resort, Myrtle

Beach
2.90 0.0 3.00 0.265 0.210 0.538 X

Comfort Inn
& Suites,
Statesboro

3.60 0.0 3.60 0.217 0.331 0.736 X

Table 3.3: TrueView scores for suspicious hotels.

a. Weighted rating using TrueView. There are many ways that to modify the rating

of a hotel based on the trustworthiness score. The full input is the rating from each site,

the number of reviews per site, the trustworthiness of each site (TV1), and the TrueView

across all sites. One approach would be to take the average rating and multiply it by the

trustworthiness score, but this method’s simplicity is not a proof of effectiveness without

extensive study.

b. Filtering using TrueView. In this method, we need only to find the cut-off threshold

of trustworthiness TV-thres which forms the cut-off point for hotels with a score less than

the threshold. The filtering threshold needs to balance the ability to remove suspicious

hotels with its false positive rate, which would reduce the overall choice for the end user.

This is the fundamental trade-off that needs to be considered. We present some initial

thoughts on how we could develop a threshold like this.
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Disclaimer: The discussion below is not intended to be indicative of and not a conclu-

sive and thorough determination of a filtering method. For that, a more extensive analysis

is needed to derive a conclusive statement. In addition, the user-facing service and even

the user herself can have significant impact on how “strict” the filtering process should be.

Calibration: Known suspicious hotels. First, we show the distribution of hotels having

a TrueView score less than a threshold in Figure 3.10. Obviously, we cannot just mark

the bottom 25% as being untrustworthy. However, we can evaluate how well our scoring

process works for a known set of misbehaving hotels. If we filter out the bottom 25%,

we need a threshold of 0.7. We present results for 6 suspicious hotels that were identified
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Figure 3.11: Dissimilar distribution of ratings, temporal bursts in number of ratings per
day and frequent empty reviews are just a few of the suspicious features that characterize
this hotel.

in Section 3.4 in Table 3.3. Figure 3.11 shows an example of the suspicious features that

characterize these hotels.

We see a threshold of 0.7 would give us 83% precision. In other words, filtering out

hotels with a score of less than 0.7 would ensure that 5/6 known malicious hotels are

filtered, while reducing the overall choice of hotels by 25%. For the sake of this case

study, one can argue that 0.7 could be a reasonable threshold. In a real deployment, this
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needs to be based on a much large labeled dataset.

Case study: Finding hotels in Amish Country. We choose the top 20 hotels in Amish

Country, Lancaster County, PA from Hotels.com and TripAdvisor. We choose hotels in

Amish Country because during our initial investigation many potentially suspicious hotels

were present. Amish Country is a small area with many competing hotels trying to access

a similar market, so the competition is fierce. We calculate the TrueView scores for those

that are part of our matched dataset. The results of this study are show in Table 3.4. We

find that all of these hotels have scores below our threshold of 0.7. We validate these

results we manually assess these hotels and find that they all do show suspicious behavior.

Hotel HDC
Rating

TV1-
HDC TV2 TrueView Trustworthy?

After Eight Bed &
Breakfast 4.80 0.139 0.182 0.233 X

Comfort Suites Amish
Country 4.70 0.063 0.642 0.392 X

Bird In Hand Village
Inn & Suites 4.60 0.039 0.0 0.092 X

Amish Country Motel 4.60 0.0 0.285 0.501 X
Country Inn & Suites
By Carlson Lancaster 4.60 0.0 0.325 0.522 X

Strasburg Village Inn 4.50 0.376 0.218 0.0 X
Hawthorn Suites by
Wyndham Lancaster 4.10 0.329 0.406 0.442 X

Sleep Inn & Suites
Ronks 4.10 0.437 0.264 0.224 X

Table 3.4: TrueView scores for hotels from Hotels.com.
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3.8 Conclusion

The goal of our work is to show the significant benefits we can gain by combining reviews

from multiple review sites. As a key contribution, we develop a systematic methodology

to collect, match, and analyze hotels from multiple review sites. The novelty of our ap-

proach relies one the introduction and assessment of 142 features that capture single-site

and cross-site discrepancies effectively. Our approach culminates with the introduction

of the TrueView score, in three different variants, as a proof-of-concept that the synthesis

of multi-site reviews can provide important and usable information to the end user. We

conduct arguably the first extensive study of cross-site discrepancies using real data from

15M reviews from more than 3.5M users spanning three prominent travel sites. We find

that there are significant variations in reviews, and we find evidence of review manipula-

tion.
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Chapter 4

BotWalk: Efficient Adaptive

Exploration of Twitter Bot Networks

4.1 Introduction

More than a billion people use online social networks for information dissemination, en-

tertainment, and social interaction. Unfortunately, these platforms are exploited by abusive

automated accounts, also known as bots, for financial or political gain. The presence of

these bots is a constantly growing problem that compromises the empowerment of online

social communities. Automated accounts easily allow botmasters to spam inappropriate

content [5], participate in sponsored activities [31], and make money by selling accounts

with human followers [65]. An estimated 8.5% of Twitter accounts are bots [62] and the

bots are growing at a higher rate than the rate at which Twitter suspends them.

The identification and suspension of bots is a challenging problem for several reasons:

these social networks are massive – Twitter alone is estimated to contain over 300 million

users and billions of edges. Furthermore, the amortized cost of creating a bot1 is much

1Cost of creating a bot is equivalent to a mouse click by a human to solve re-captcha.
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less than that of detecting a bot, and the cost of suspending a user incorrectly is much

higher. Lastly, the bot-masters creating these automated accounts are constantly evolving

the bots’ behavior to attempt to evade detection. This is the typical ‘Red Queen’ effect,

well known in biology and cybersecurity, in which “It takes all the running you can do, to

keep in the same place”[45]. As Twitter’s detection methods evolve, so do the botmasters’.

To win this arms race, or to even keep up, a bot detection method must have the following

characteristics:

• Very high detection rate, ideally higher than the rate at which automated accounts

can be created, which would guarantee eradication of bots.

• Scalable, the method is robust in the face of increasing social network size.

• Adaptive, which means it retains the above two properties when bot-masters evolve.

Simply training on labeled data that matches the current state is not enough, for as

the bots’ behaviors change, static classifiers will quickly become obsolete. This in-

dicates that unsupervised solutions that detect novel, anomalous behavior are likely

to be more effective in this quickly evolving environment.

• Completely automated, so that it can keep up with the rate of bot-master activity.

In this chapter, we propose a bot detection technique using Twitter’s restricted API

access for online updates that is adaptive, scalable and has the highest detection rate of

current methods. Our BotWalk algorithm uses an adaptive search strategy to maximize

detection rate in a rapidly changing social network. In the Twitter network, BotWalk can

identify up to 6000 bots per day and adapt to detect novel bot behaviors automatically.

Problem Formulation: The high-level goal of this work is to efficiently explore the

evolving Twitter network and identify bots manifesting continually changing behavioral

patterns.

Contributions:

• Creation of BotWalk, a near-real time adaptive anomaly detection framework with

90% precision in detecting bot behavior in Twitter data
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• Implementation of an adaptive approach to feature selection, necessitated by the

limited amount of data accessible in real-time and the rapidly changing Twitter en-

vironment

• Utilization of domain knowledge to intelligently partition the feature space, leading

to up to a 30% increase in precision

• Assembly of a comprehensive Twitter dataset, collected over the course of formu-

lating this work, and made available to the public [8]

4.2 Related Work

Twitter bot detection has received significant interest in the literature. Most current ap-

proaches focus on supervised, non-adaptive methods [32][28][16]. Unfortunately, a su-

pervised approach has several shortcomings. The classification is only as good as the

labeled data, which is often biased or outdated. Supervised algorithms can be useful when

trying to classify a given user as a bot, but what if the goal is identification of new bots?

And what if these bots are constantly exhibiting new behavioral patterns? It is in these

cases that supervised algorithms fall short.

In [64], the authors present an approach to semi-automatically label users as bots by

identifying several features that can discriminate between obvious bots and human users.

For each feature, the threshold value has to be manually set, and these values can vary

depending on the candidate bot set, which reduces the automated aspect of the work.

Other feature-based approaches use only a few linguistic attributes and test on a small

number of manually-labeled accounts [25], or only temporal features in a supervised [55]

or unsupervised way by identifying highly-correlated activity streams [22]. The latter

approach has high recall and a low false positive rate, but is very easy to evade since it

is just based on one feature. One study extracted a large number of features [26], but

they used them in a supervised fashion. We compare their detection rate to BotWalk’s in

Section 4.6.3.
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Our work is unique because it is an unsupervised exploratory method that is able to

adaptively identify novel bot behavior using a variety of features which capture different

dimensions of behavioral profiles. By using an unsupervised method seeded from known

bots, rather than simply training a classifier on labeled data, BotWalk is able to discover

new, unknown behavioral patterns.

4.3 Framework

Bot detection in a rapidly changing social network with limited external visibility is a

challenging computational problem. As with malware, bot masters continually modify bot

characteristics including communication patterns, content, and connectivity. Additionally,

Twitter’s query interface restrictions place significant limitations on the amount of new

data that can be collected relative to the amount being generated.

Figure 4.1 shows our approach, which combines known data, domain expertise, and

unsupervised anomaly detection. As described in Algorithm 1, we begin by selecting a

seed bots (see Section 4.6.2) and a set of random users. This random set can consist of

both normal users and bots, as it is not labeled. However, since estimates say that at most

8.5% of Twitter users are bots [62], a random sample should on average adhere to this

constraint. The anomaly detection algorithm considers the random user set as containing

the ‘normal’ group.

For each Twitter user from the seed bot one-hop follower neighborhood and the random

user set, metadata such as timeline and user account information is collected (Lines 6 –

10). Features of the seed bot neighborhood and random user sets are then assembled from

these raw data (Lines 11 – 13). Feature selection and assembly is a major contribution of

this work, and is discussed in Section 4.4.

Finally, the ensemble anomaly detection algorithm is applied, resulting in identification

of bots and normal users. Elements from these sets are used to update the seed bot and
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Figure 4.1: Overall framework of our bot identification algorithm

random user sets respectively (Lines 14 – 16). The anomaly detection algorithms and our

partitioning approach to ensemble anomaly detection is the topic of Section 4.5.

Our exploration method combines depth-first and breadth-first exploration. Depth-first

exploration constrains the search space but limits the scope, so if a human node is reached

it can be difficult to return to a bot node. Breadth-first exploration maximizes the like-

lihood of reaching other bots at each step, since it is collecting all the followers of the

current anomalous node, but the scale quickly explodes (for example, some Twitter users

have tens of thousands of followers). Our method allows us to maximize the likelihood of

identifying bots by collecting and analyzing the followers of the current seed bot, while

still constraining the search space by continuously repeating the exploration process start-

ing from individual random anomalous users. This has the added benefit of making our

approach scalable by construction; by using a limited, carefully-chosen stream selected
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Algorithm 1 NetworkExploration
1: Input: Set of seed bots B, Set of random users U ;

2: while explore = True do

3: b = pop random element from B;

4: Fuser = feature matrix of U ;

5: N(b) = follower neighborhood of b;

6: for neighbor c in N(b) do

7: // Metadata via the Twitter REST API

8: IM(c) = get profile info(c);

9: // Timeline info: 200 most recent tweets

10: IT (c) = get timeline info(c);

11: // Extract metadata-, content-, network-, and

12: // temporal-based features (Secs. 4.4.1-4.4.4)

13: FN(c) = create feat vector(IM(c), IT (c));

14: (Bout,Uout) = UnsupervisedOutlierDet( [Fuser, FN]); // (Secs. 4.4.1)

15: B.update(Bout);

16: U .update(Uout);

from this huge, constantly-changing network, this method is robust in the presence of

increasing network size.

4.4 Feature Selection and Data Collection

To generate a comprehensive behavior profile for a given user, we compile a large collec-

tion of features which capture different aspects of a user’s behavior. Each feature (e.g.,

temporal bursts) alone has been shown to be effective for identifying bots in a supervised

setting (note that we target unsupervised settings). However, bots are a diverse group and

can have many different behavioral patterns. Just looking for bots with spamming content,
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Metadata Content Network Temporal Total
Before/ After

Feature Selection 9,035/ 127 23/ 22 5/ 5 14/ 14 9,077/ 168

Table 4.1: Description of feature set before and after feature selection is performed.

for example, could ignore bots that are trying to farm followers. By combining a large col-

lection of features indicative of different aspects of behavior, we reduce bias and expand

the quantity and types of bots that we can identify.

Currently there is considerable interest in the machine learning community in using

latent features or learned representations, rather than engineered features. While this has

been shown to be effective in some cases (such as classification and link prediction), it

requires a huge learning space. Online bot behavior changes rapidly due to suspension

pressure [45]. With severely rate-limited data acquisition, massive data updates are not

feasible and impede latent feature generation, as the dataset quickly becomes stale. Addi-

tionally, in the case of identifying bots and potentially suspending users, there needs to be

a level of interpretability in the results. By using features that can be understood, rather

than latent features, we address this need.

Our features can be divided into four categories: metadata-, content-, temporal-, and

network-based. We will describe a subset of members of each category, as well as the

intuition behind them. A full listing of the features from each category is available on the

BotWalk page [8].

4.4.1 Metadata-based features

Features that characterize a user’s profile shed light on the level of effort a user put in when

generating it. We would expect a bot to have this process automated, so there may be parts

missing or repeated [66]. Bots may also want to provide less information because what

they are claiming is false, e.g., if the account claims the user is from California but all of its



Chapter 4. BotWalk: Efficient Adaptive Exploration of Twitter Bot Networks 61

tweets are coming from China, it would not want the geo-enabled setting to be turned on.

Conversely, real users often like these types of features because they provide intelligent

shortcuts when entering content. Other attributes like age of the account and whether the

username was auto-generated can provide valuable information about the likelihood that

an account is a bot. In addition to these features, we also look at whether an account is

protected or verified, neither of which a bot account is likely to be, the total number of

tweets and number of followers, both of which are likely to be higher in a bot account that

has managed to persist on Twitter, and several other metadata-related features.

4.4.2 Content-based features

Automated accounts are created for a specific purpose. Whether it is to gain followers

for marketing campaigns, disseminate information, spam sponsored content, or collect

data on other users, there is a goal in mind for each account. There are many features

in the content of the tweets themselves that capture this goal-oriented behavior. Features

quantifying items like hashtags, URLs, and domains, both on a tweet and user level, have

been shown to be effective in identifying bots [25][17]. Identifying repetition in these

entities is also informative. For example, a bot trying to direct followers to a certain site

will want to include that site’s URL in as many tweets as possible. Perhaps they try to

use different URL shorteners to camouflage this effort, so looking for repeated domains in

the extended URL is also helpful [19]. For hashtags, URLs, and domains, we look at both

the average number of entity per tweet as well as the average number of tweets with that

entity. We also quantify the number of duplicate hashtags, URLs, and domains. Another

informative feature is the normalized retweet count. Creating original content is costly

for automated accounts, so retweeting is an easy way to add a life-like feel to a profile

without having to generate this content [33]. Additional features we examine include the

maximum, minimum, mean, and standard deviation of the Jaccard similarity of inter-tweet

bags-of-words, the number of special characters, and tweet lengths.
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4.4.3 Temporal-based features

Analyzing the time series of tweets is a powerful way to distinguish between bots and

humans; indeed, whole papers have been written on bot identification based solely on

temporal characteristics [55][22][23]. Because there are limits to how rapidly and how

often a human being can tweet, quantification of burstiness, defined as ��µ
�+µ

[55], the av-

erage number of tweets per day, and the duration of the longest tweet session without a

10 minute break are informative features. Statistics describing the minimum, maximum,

mean, standard deviation, and entropy of the inter-arrival time of consecutive tweets help

to identify bots whose goal is to get as much content out as quickly as possible, or whose

activity is on a programmed schedule. Other features we use to identify scheduled be-

havior are the p-values of the �2 test applied to the second-of-minute, minute-of-hour,

and hour-of-day distributions, which evaluates whether tweets are drawn uniformly across

these distributions.

4.4.4 Network-based features

Network-based features can be very helpful in characterizing Twitter user behavior. Re-

search has shown that bots that persist in the Twitter network tend to amass a large num-

ber of followers [27] and friends. Figure 4.2 shows the connections between a set of

previously-labeled bots.

There are a variety of connections that can join nodes, including follow, friends, and

mention connections. We take an ego-based approach to these relationships, quantifying

the out-degree of the user’s follow network, the out-degree of the user’s friend network,

and the out-degree of the user’s mention network. These help to summarize the user’s

connectivity to others in a variety of ways.
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Figure 4.2: Follower relationships between Twitter bots. Node colors represent highly-
correlated activity stream clusters (see Section 4.6.2). Note the highly-connected nature
of many of the bots.

Number of
Nodes

Number of
Edges

Number of complete
out-edge sets

Number of 48hr
streams collected

362,000 226 Million 110,800 75,000

Table 4.2: Statistics of our publicly-available dataset

4.4.5 Feature selection and normalization

After encoding categorical features using one-hot encoding we have over 9000 features. It

is likely that not all of these feature are informative, so we choose to remove features that

have the same value in 99.9% of samples, which reduces the feature space to 130 features.

We then use the L2 norm to independently normalize each sample. For the partitioned

outlier detection method, described in Section 4.5.3, we perform feature selection and

feature normalization on each subset separately.
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4.4.6 Publicly-available dataset

Through the course of this research, we collected and analyzed a large body of Twitter

data, which we are releasing for public use on the BotWalk page [8]. This dataset was

collected using the Twitter API and the Tweepy Python library [12]. We collected 5 types

of information: friendship relationships, follower sets, activity streams, timelines (which

includes a user’s 200 most recent tweets), and user metadata. We store the bot and follower

metadata in a PostgreSQL database (exported to CSV files for public release) and the user

stream and timeline data in JSON files. Table 4.2 contains basic statistics of this dataset.

4.5 Ensemble Anomaly Detection

In order to adaptively identify bots with ever-changing behavior, we employ an unsuper-

vised anomaly detection approach. Anomaly detection has been shown to be successful

in identifying samples with previously-unseen or fraudulent behavior [43][48] , so it is

appropriate for this application. We employ true unsupervised anomaly detection in our

method, which learns from the structure of the data itself with no outside guidance or

labels.

To capture a variety of types of anomalous behavior, we use an ensemble of anomaly

detection algorithms, which was shown to be effective in Chapter 3. In general, anomaly

detection algorithms can be classified into four broad categories: density-based; distance-

based; angle-based; and, more recently, isolation-based. For this work we use on from

each of these categories. We choose to use Local Outlier Factor (LOF) as our baseline for

comparison, since it is well-known, commonly used, and shown to be effective on a wide

variety of data [20][48]. We find that this ensembling method improves precision by 5%

when compared to LOF alone.
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Algorithm 2 UnsupervisedOutlierDet
1: Input: Feature Matrix F

2: for column c in F do

3: �2

c =

NP
i=1

(c�µ)2

N
;

4: if �2

c < 0.001 then

5: Remove c from F;

6: for row r in F do

7: x = rp
r21+...+r2i+...+r2n

; // Normalize row

8: Normalized LOF score, sLOF = Eq4.8(Eq4.2(x));

9: Normalized distance score, sD = Eq4.8(Eq4.4(x));

10: Normalized cos distance score, sC = Eq4.8(Eq4.5(x));

11: Normalized IF score, sIF = Eq4.8(Eq4.6(x));

12: sr = sLOF+sD+sC+sIF
4

;

13: Return: Scores S;

4.5.1 Anomaly Detection Algorithms

Local Outlier Factor

Local Outlier Factor (LOF) was described in detail in Section 3.5.1. We repeat the defini-

tions here for clarity and readability. LOF uses the notion of k-distance (distk(x)), which

is defined as the distance to the k-th nearest neighbor of a point. Local reachability dis-

tance (lrdk) of x is the average of the reachability distances from x’s neighbors to x. Here

Nk(x) is the set of k-nearest neighbors of x.

lrdk(x) =
||Nk(x)||P

y2Nk(x)
max(distk(y), dist(x, y))

(4.1)

The LOF of a point x is the average of the ratios of the local reachability of x and its

k-nearest neighbors. LOF can capture several normal clusters of arbitrary densities, which
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makes it robust for any data domain. Formally, LOF is defined as below:

LOFk(x) =

P
y2Nk(x)

lrdk(y)
lrdk(x)

||Nk(x)||
(4.2)

Distance- and Angle-Based Methods

In addition to a density-based measure, we use distance- and angle-based measures. We

first generate an ideal ‘normal’ node by calculating the median of each feature (because

we have many categorical features, we use the median, rather than the mode, which was

used in Section 3.5.1).

c = median(col) 8 col in F (4.3)

We then find the Euclidean distance between every user x and this ideal individual c,

giving us a distance-based outlier score.

DBD(x) =

p
(x

1

� c
1

)

2

+ ...+ (xn � cn)2 (4.4)

To calculate an angle-based outlier score, we use the same center node but calculate the

cosine distance between the two nodes.

ABD(x) =

x · c
||x|| ||c|| (4.5)

Isolation-based Method

Lastly, we use an Isolation Forest algorithm [41]. Rather than constructing an idea of

normality and identifying instances that differ from that, this algorithm instead isolates

outliers from normal samples. Given our feature matrix F, this algorithm recursively splits

the rows of F by randomly selecting a column c and a split value s, where min(c) <=

s <= max(c). This recursive splitting forms a tree structure, and an Isolation Forest

contains k such trees. The anomaly score is then defined based on the path length h(x),

which is the number of edges a sample traverses before terminating in an external node.



Chapter 4. BotWalk: Efficient Adaptive Exploration of Twitter Bot Networks 67

Specifically, the anomaly score for a sample x from a size n dataset is defined by the

equation:

s(x, n) = 2

�E(h(x))
c(n) (4.6)

where E(h(x)) is the average of h(x) from a collection of isolation trees, and c(n) is the

average path length of an unsuccessful search in a Binary Search Tree, which is defined as

c(n) = 2H(n� 1)� (2(n� 1)/n) (4.7)

Intuitively, if a sample has very anomalous feature values, it is going to be easily split from

the remaining samples and thus will have, on average, a much shorter path length than a

normal sample. Thus, when E(h(x)) is close to 0, s(x, n) is close to 1, indicating it is very

likely an anomalous sample. When E(h(x)) is close to n, s(x, n) is close to 0, indicating

it is a normal sample.

4.5.2 Combining different anomaly detection scores

As discussed in Section 3.5.2, each of the above methods produces a different type of

score: Equation 4.2 returns a local reachability score, Equation 4.4 returns a distance,

Equation 4.5 returns a cosine distance, and Equation 4.6 returns a score based on an av-

eraged path length. Before combining these scores, we need to regularize and normalize

them. We take the approach used in Chapter 3 from [38][58], which employs Gaussian

scaling to normalize each outlier score separately before combining them into a single

score.

Let a user be x and the outlier score of x is s(x). We scale each s(x) using a Gaussian

distribution to produce a probability p(x) between 0 and 1 of the user x being an outlier.

p(x) = max(0, erf(
s(x)� µsp

2�s

)) (4.8)

We then can average these probabilities to produce one outlier score per user.
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4.5.3 Applying domain knowledge to improve performance

In addition to the interpretability of the bot labels produced by this method, another ad-

vantage to using observed features is that we can employ domain knowledge of the feature

space to improve performance. As described in Section 4.4, we have four feature cate-

gories: metadata-, content-, temporal-, and network-based. These feature subsets describe

different aspects of a user’s online behavior and have different feature spaces and scales.

For example, the majority of the metadata features are categorical, e.g., language and time

zone, and thus explode into a large feature space when using one-hot encoding. This could

potentially overwhelm other features, leading to results biased towards metadata anoma-

lies. Based on this observation, we choose to partition the feature space into these four

subdomains and apply feature selection, sample normalization, and anomaly detection

separately in each feature sub-space. We then combine these scores using the method de-

scribed in the previous section. We perform this partitioned anomaly detection both with

the ensemble of outlier detection algorithms and local outlier factor, as a baseline. Our

experimental results show that this separation increases the precision of LOF by 30% and

the ensemble method by 25%, achieving an precision of 90% for both methods.

4.6 Experimental Analysis

4.6.1 Real-time data collection

Section 4.3 described the high-level exploration algorithm. We now go into the details of

the actual execution. All code from these experiments is available on GitHub [2].

To expand from a seed user using the Twitter REST API [13], we first collect the fol-

lower set of this user, limited to the 5000 most recent followers to constrain the search

space. (These followers are also less likely to be suspended since they have performed

a recent activity, so in this way we avoid wasting queries.) We then collect the timeline,
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which is the 200 most recent tweets by the user, and the user information, which is the

metadata associated with this account, for every follower in this set. We can collect 180

timelines every 15 minutes and metadata for 90,000 users every 15 minutes (queries must

be performed sequentially, not concurrently). Once we have collected these data, we ex-

tract our comprehensive set of features and perform anomaly detection.

4.6.2 Experimental Design

We design our experiments to assess the following items:

• Is our algorithm effective at identifying bots?

• As we explore and replace the seed bots, do we continue to find high-quality results?

• Are we able to identify bots with novel behavior as we explore?

For our experiments, we first randomly select 15 non-suspended bots from our labeled

dataset. This dataset contains ⇠ 700, 000 labeled bot accounts identified by DeBot [22],

which finds users with highly-correlated activity streams. Debot has a mathematically

proven false positive rate of very close to zero [23], so we can have high confidence in the

precision of these labels. Note that these users represent a specific subset of bot behavior,

as they are so-called ‘dumb’ bots, with an obvious behavioral giveaway. We start with

these users as seed bots, and then gradually adapt to identify bots with different behavior

patterns.

We explore from these seed bots using the four outlier detection methods described

in Section 4.5: LOF and partitioned LOF as our baselines, the ensemble of four anomaly

detection algorithms (density-, distance-, angle-, and isolation-based), and this ensemble

partitioned across the feature space. We run one round of exploration per seed bot, yielding

a total of 15 rounds explored per method, which we call Level 1 exploration. We then

randomly select 15 followers from our most accurate method with the highest average

pairwise percent agreement, partitioned ensemble, and perform one round of exploration
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for each of these 15 seed bots (again using the partitioned ensemble method), which we

call Level 2 exploration. We repeat this process one more time, and call this Level 3

Exploration. The purpose of these multi-level experiments is twofold: to examine how

the identity of the seed bot affects precision and to understand how the behavior of the

identified bots changes as we explore.

4.6.3 Validation

We use four measures to evaluate our results: manual validation, examination of the dis-

tribution of feature values in the 90th or 10th percentile, differences in the distributions

of specific feature values as modeled by the maximum likelihood estimated of the em-

pirical data, and a comparison with the leading supervised method[26] and the leading

unsupervised method[23].

User Study

In fraud identification research, one challenge is that the ground truth is, in reality, un-

knowable. Only the user or botmaster herself truly knows if a given account is a bot.

User studies are thus typically performed to manually validate the results of the algorithm.

While human labeling can of course contain bias, it is still the standard way to label bot

accounts. We base our experimental design on methods from the literature [16][70] to

reduce bias as much as possible.

We first conduct a manual examination of a random sample of 20 anomalous users

from each of the six experiments to evaluate precision. The procedure for this examina-

tion is as follows: we first train our three annotators by showing them 100 different labeled

bot accounts of different types. Next, we have them label each account with ‘bot’, ‘hu-

man’, or ‘unknown’. We take the majority vote for each account as its label and calculate

the average pairwise percent agreement, which is where the agreements of all possible
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Experiment Type Number of
BotWalk-identified bots Precision Annotator

Agreement

LOF 3984 60% 67%
Ensemble 3928 65% 80%

Partitioned LOF 3633 90% 87%
Level 1 Exploration

(Partitioned Ensemble) 4040 90% 90%

Level 2 Exploration 2215 85% 83%
Level 3 Exploration 3302 75% 87%

Table 4.3: Results from the user study for the four anomaly detection methods and the
three levels of exploration.

pairs are calculated and averaged. Table 4.3 shows the results, along with the number of

anomalous users identified by BotWalk in each experiment. We estimate that starting from

the initial 15 seed bots, over the three rounds of exploration we identify 7,995 new bots,

which is over 500 times more than the initial seed bot set size. This estimate is calculated

by multiplying the number of BotWalk-identified bots found by the calculated precision

for each round and summing them. By scaling these values we avoid over-estimating this

number.

Column 3 in Table 4.3 shows that even humans do not always agree on what a bot looks

like. However, apart from unpartitioned LOF, which also has low precision, indicating it

is not an effective method in this context, all of our experiments have average pairwise

percent agreement values of 80% or higher, which is described as an acceptable level of

agreement in the literature [53]. Without partitioning, using an ensemble of anomaly de-

tection algorithms improves the precision by 5%. However, when partitioning is included,

both LOF and the ensemble have 90% precision. This means that the human annotators

agree with 90% of the bot classifications given by our partitioned anomaly detection al-

gorithms. While partitioned LOF and the partitioned ensemble had the same precision in

this experiment, the ensemble had higher average pairwise percent agreement than par-

titioned LOF. Furthermore, understanding that bot behavior continually changes, having

an ensemble of techniques may still provide better anomaly detection for future evolving
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behaviors.

When examining the results for exploration, we can see that as we explore further,

the precision stays fairly high. Level 3 Exploration contains the followers of followers of

followers of our labeled bots, so the fact that we are still able to identify a high percentage

of bots shows that our exploration method is effective. The slight dip in precision suggests

that adding some guidance into the system when selecting the seed bots could be helpful.

Perhaps choosing a small number of the most anomalous followers and only adding those

into the seed bank, rather than a random set selected from all fairly anomalous users, could

improve performance. Investigations into these types of enhancements are left to potential

future work.

Extreme feature values

To profile the anomalous users identified by BotWalk, we identify how many features each

potential bot has that are in the 10th or 90th percentile when compared to a feature vec-

tor of 17,000 random users. We limit this evaluation to integer- and floating point-valued

features. We then plot the distribution of these values for all of our Level 1 Exploration

experiments in Figure 4.3. We also include the percentiles for these random users for ref-

erence. We can see that our identified anomalies have high numbers of ‘extreme’ features,

which shows that our algorithm is successfully identifying anomalous users. Since we

know that the features in our comprehensive feature set are effective at identifying bots,

these results validate that we are indeed identifying bots in our exploration.

Figure 4.4 is a zoomed-in version comparing these distributions for the different

anomaly detection methods. We can see that the partitioned versions of the outlier detec-

tion algorithms are more effective at identifying highly anomalous users than those applied

to the feature space as a whole.

To examine how multiple iterations of the exploration process affect the type of anoma-

lous users we are identifying, we compare the extreme feature values for the anomalies
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Figure 4.3: Distribution of number of extreme features for 17,000 randomly-selected users
versus BotWalk-detected outliers. BotWalk-detected anomalous users have many more
‘extreme’ feature values when compared to random users.

found from Level 1, Level 2, and Level 3 Explorations. Figure 4.5 shows the results of

this analysis. We can see that the anomalous users’ behavior changes after the first round

of exploration, and then remains constant. This makes sense, since for our first round we

use Debot-labeled bots as our seed bots, which tend to exhibit very obvious ‘dumb’ bot be-

havior, whereas for the following rounds we use randomly-selected anomalous followers

as our seed bots.

Examination of feature distributions

We next wanted to explore the differences in behavior between random users, Debot-

labeled bots, and the bots discovered in our three levels of exploration. To perform this

comparison, we took a random sample of 10,000 of the previously-labeled bots, 10,000

random users, and the bots identified in each level of exploration and modeled their dis-

tributions using the maximum likelihood estimation of the empirical data for the above-
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Figure 4.4: Zoomed in view of the distribution of the number of extreme features for
outliers detected in the 4 experiments. Partitioned anomaly detection methods identify
outliers with more ‘extreme’ feature values.

Figure 4.5: Comparison of of the distribution of the number of extreme features for explo-
ration Levels 1, 2, and 3. Level 1 anomalies have a different extreme feature distribution
compared to Level 2 and Level 3 anomalies, which are very similar.
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(a) Random users are modeled by the exponentiated norm distribution,
previously-labeled bots by the lognorm distribution, and bots identified
in Level 1 exploration by the Beta distribution.

(b) Bots identified in Level 2 exploration are modeled by the power-
lognorm distribution, while those from Level 3 exploration are mod-
eled by the exponentiated Weibull distribution.

Figure 4.6: Distributions of number of tweets per user.
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(a) Random users are modeled by the Beta distribution, previously-
labeled bots by the log-Laplace distribution, and bots identified in
Level 1 exploration by the Beta prime distribution.

(b) Bots identified in Level 2 exploration are modeled by the power-
lognorm distribution and those from Level 3 exploration by the Beta
prime distribution.

Figure 4.7: Distribution of the maximum inter-arrival time per user.
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(a) Random users are modeled by the exponentiated power distribu-
tion, while both previously-labeled bots and bots identified in Level 1
exploration 1 are modeled by the exponentiated Weibull distribution.

(b) Bots identified in Levels 1, 2, and 3 exploration are all modeled by
the exponentiated Weibull distribution.

Figure 4.8: Distributions of out-degree of the ego network per user.

described features. We find that BotWalk-discovered bots have significantly different be-

havior than both Debot-labeled bots and random users for many of our features. Fur-
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Random
User

Debot
Bots

Level 1
Bots

Level 2
Bots

Level 3
Bots

Random User 100% 22.2 % 22.2% 16.7% 8.33%
Debot Bots – 100% 33.3% 8.33% 8.33%

Level 1 Bots – – 100% 40.9% 38.6%
Level 2 Bots – – – 100% 59.1%
Level 3 Bots – – – – 100%

Table 4.4: Percentage of features that have matching distributions

thermore, we find that as we explore we are identifying bots that are exhibiting novel

behaviors.

Table 4.4 shows the percentage of features that have matching MLE distributions for

each pair of user sets. A subset of these distributions is shown in Figures 4.6, 4.7, and

4.8. These results show that BotWalk bots behave differently than both random users

and Debot-labeled bots. Furthermore, bots identified in Level 3 exploration are the most

dissimilar. This shows that we are continuously identifying bots with novel behavior as

we explore.

Comparison with known methods

We compare BotWalk with the most promising unsupervised algorithm, Debot [22][23],

and the most popular supervised Twitter bot detection algorithm, BotOrNot [26]. We

first evaluate what percentage of our anomalous users these methods are able to detect as

bots. Note that we are examining the relative support of these methods, not comparing

performance, since this is a one-sided comparison. Table 4.5 shows the results of this

study. We see that Debot only identifies between 8.6 and 21% of our anomalous users,

which shows that BotWalk-identified bots are exhibiting novel behavior which is different

from the Debot-labeled seed bots. We find BotOrNot shows between 49-60% detection of

our bots.
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Experiment Debot Detection BotOrNot Detection

LOF 21% 49%
Ensemble 21% 51%

Partitioned LOF 17% 64%
Level 1 Exploration (Partitioned Ensemble) 19% 60%

Level 2 Exploration 11% 56%
Level 3 Exploration 8.6% 49%

Table 4.5: Detection levels of new bots by known methods

We next compare the bot-detection rate of these three methods. This rate necessarily

depends on the rate limitations imposed by Twitter for all three methods. Assuming that

these restrictions are in place, our algorithm has a much higher bot detection rate than these

two leading methods. Since supervised algorithms need to be given specific accounts

to test, the number of bots found depends on the query rate of the algorithm and the

prevalence of bots in Twitter. Using BotOrNot as an example, which has a query rate

of 180 requests per 15 minutes, 17,280 users could be tested per day. Since the current

estimate of bots in Twitter is 8.5%, this method would yield on average 1,469 bots per

day. Debot needs time to collect and analyze users’ data, so it is limited as well: Debot’s

average detection rate is estimated to be 1,619 bots per day [24]. Our method easily beats

both of these, identifying on average 6,000 bots per day. Furthermore, our algorithm is

infinitely linearly scalable: the only shared resource is the two seeds banks, and everything

else can be independent. Therefore, with additional parallel machines and additional API

keys, BotWalk’s detection rate could be even higher.

4.7 Conclusion

This chapter introduces BotWalk, arguably the first near-real time unsupervised Twitter

network exploration algorithm that adaptively identifies bots exhibiting novel behavior.

Key contributions of this work are the implementation of an adaptive approach to feature
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selection and the utilization of domain knowledge to intelligently partition the feature

space, which leads to up to a 30% increase in precision. We perform experiments to

evaluate the performance of an ensemble of outlier detection algorithms, achieving an

precision of 90%. We also perform three levels of iterative exploration and show that

we are able to identify bots that exhibit different behavior than the seed users at a higher

detection rate than existing methods.
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Chapter 5

Conclusion

The goal of this body of work was to design a collection of data inspection, filtering, fu-

sion, and mining techniques to identify and remove low quality and fraudulent content

from online data. This is a challenging problem in part because of the changing behavior

of fraudsters and the lack of ground truth available. These challenges necessitate the cre-

ation of adaptive, unsupervised methods, which is what this work focuses on. The main

components of this dissertation include: noise removal, data fusion, multi-source feature

generation, network exploration, and anomaly detection. All data collected and code writ-

ten for this work have been made available to the research community at large.

To identify and remove noise in online data, we created ClearView, which is an au-

tomated data cleaning pipeline. We discussed various types of abnormalities that exist in

different review sites and developed filtering techniques to identify and remove them. We

evaluated the performance of our pipeline through an in-depth user study and found that

our pipeline improves the quality of the dataset by up to 3.4 times.

To identify and remove fraud, we created TrueView, a metric for the “trustworthiness”

of a given entity’s review behavior based on multi-source information. The goal of this

work was to show the significant benefits that we can gain by combining reviews from

multiple review sites. As a key contribution, we developed a systematic methodology to
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collect, match, and analyze hotels from multiple review sites. The novelty of our approach

relied one the introduction and assessment of 142 features that capture single-site and

cross-site discrepancies effectively. Our approach culminated with the introduction of

the TrueView score, in three different variants, as a proof-of-concept that the synthesis

of multi-site reviews can provide important and usable information to the end user. We

conducted arguably the first extensive study of cross-site discrepancies using real data

from 15M reviews from more than 3.5M users spanning three prominent travel sites. We

found that there are significant variations in reviews, and we found evidence of review

manipulation.

To identify and remove automated accounts, we created BotWalk, arguably the first

near-real time unsupervised Twitter network exploration algorithm that adaptively identi-

fies bots exhibiting novel behavior. Key contributions of this work are the implementation

of an adaptive approach to feature selection and the utilization of domain knowledge to

intelligently partition the feature space, which led to up to a 30% increase in precision.

We performed experiments to evaluate the performance of an ensemble of outlier detec-

tion algorithms, achieving an precision of 90%. We also performed three levels of iterative

exploration and showed that we were able to identify bots that exhibit different behavior

than the seed users at a higher detection rate than existing methods.
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