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Optimal (plastic) life histories in growing
versus stable populations

Eric L. Charnov

Department of Biology, The University of New Mexico, Albuquerque, New Mexico, USA

ABSTRACT

Question: What is the effect of population dynamics on the evolutionarily optimal life history
with metabolic (allometric) production constraints?

Mathematical methods: Optimization of a phenotype’s intrinsic rate of increase r with
respect to adult mass, m�.

Results: The change in optimal adult size (m�) between growing (r > 0) and stable (r = 0)
populations is hard to predict, but reproductive effort (and lifetime reproductive effort) in the
growing population is predicted to be 1 + r ·E times larger, where E is the average adult life span.

Keywords: allometry, dimensionless, metabolic ecology, norm-of-reaction, r/k-selection.

MATHEMATICAL METHODS AND RESULTS

Natural selection usually favours earlier reproduction and greater reproductive allocation
in growing versus stable populations (Lewontin, 1965; reviewed in Roff, 1992; Stearns, 1992), because with
population growth an individual’s reproductive future is worth relatively less. If the
up-phase lasts several generations, the door opens for an individual growing up during it
to adjust facultatively its life history (adult size, reproductive allocation) to match the
optimum for the increasing population conditions. Reproductive effort (R), the mass given
to reproduction per unit of time divided by the adult’s size (Charnov et al., 2007), is predicted to
increase during the up-phase; maximization of the intrinsic rate of increase (r) in the face
of metabolic production constraints leads to a remarkable prediction: R will increase in the
up-phase compared with the value selected-for in a stable population by the multiplier
1 + r ·E, where E is the average adult life span. Larger-bodied species generally have smaller
R, but are predicted to have a similar r ·E multiplier (Charnov, 1993, Ch. 6).

Consider a mammal whose population undergoes occasional bouts of increase, lasting
several generations, followed by more or less stable numbers for several generations (periods
of decrease may lead to lower population size followed by a low stable phase . . . I ignore
these times here). This is illustrated in Fig. 1. I show that the optimal (or evolutionarily

Correspondence: E.L. Charnov, Department of Biology, The University of New Mexico, Albuquerque,
NM 87131-0001, USA. e-mail: rlc@unm.edu
Consult the copyright statement on the inside front cover for non-commercial copying policies.

Evolutionary Ecology Research, 2009, 11: 983–987

© 2009 Eric L. Charnov



stable strategy, ESS) life history during the up-phase differs from that during the stationary
phase; if we consider these two options to be plastic responses (e.g. Stearns, 1989) by individuals
growing up in the two phases, we can predict, for example, the optimal body size or
reproductive allocation for individuals in one phase relative to the other phase. If we believe
that a plastic response is unlikely, then the results for the up-phase probably apply only
to populations that often are on the increase from a catastrophic decline, where the
down-phases are really non-selective with respect to life history [see, for example, discussion
of ‘r-selection’ in Roff (1992)]. I think it more interesting to interpret the predictions
as implying plastic responses in body size and reproductive allocation to different
demographics.

One referee noted that, in this paper, ‘All individuals are assumed identical in their
capability to develop and implement the same appropriate plastic phenotype. From a
population standpoint, two other outcomes to environmental change are possible. One is to
create a polymorphic population and the other is to have one all-purpose phenotype whose
value is some sort of weighted average of the two adapted phenotypes, where the weighting
depends at least on the relative proportions and autocorrelations of the two environment
types’. I leave it to the reader to consider these possibilities.

The life history assumed (Charnov, 1991, 1993) approximates that of a mammal with deter-
minate growth; adult mass (m�) follows the allometric (metabolic) growth rate dm/dt = A ·m�

(where δ ≈ 0.7). Reproductive allocation is simply diverted personal growth (= A ·m�
� ).

Reproductive effort (R) is simply this divided by adult mass, or R = m�
�− 1. Note that for

fixed A, R decreases with m� as a power function with exponent δ − 1. In this life history,
proportion S� of the offspring survive to breed at age α (size m�), and the instantaneous
mortality rate (Zx) as a function of age is high at young ages and decreases to some fixed

Fig. 1. Data to test theory (circled): each (—) interval refers to a single generation, and during the
up-phase and the stable phase, we need estimates of the intrinsic rate of increase (r), adult size (m�),
and reproductive allocation. Also needed is an estimate of E, the average adult life span.
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value (Z�) prior to feasible ages of maturation (Charnov, 1991, 1993); note that S� = e−�
�

0
Z(x)dx and

that the average adult life span (E) is simply 1/ Z�. Density-dependent mortality is assumed
to be on Zx at small x. To allow this population to grow, I relax the density dependence on
Zx and assume that A in dm/dt = A ·m� is increased because the low population numbers
allow individuals greater access to resources. E is assumed not to change with population
size. The number of offspring born per year is b [= (dm� /dt) (1/m0)], where m0 is the size
of each offspring. The Appendix shows that this demography will lead to an intrinsic rate
of increase (r) that satisfies e r ·� [Z� + r] = b ·S. The Appendix also shows that the optimal
α (or m� if we specify A) is found easily by setting dr/dα = 0 (equations A4 and A8 in
Appendix). If As and Ag refer to the dm/dt A’s in the stationary (r = 0) versus the growth
phase (r > 0), the ratio of optimal adult body size (ms, mg) in the two phases is:

ms

mg

= ��As

Ag
� (1 + r ·E)�

1

1 −�
(1)

The ratio of optimal reproductive effort, Rg /Rs (Rs = As ·ms
�− 1, Rg = Ag ·mg

�− 1), is much
simpler:

Rg /Rs = 1 + r ·E (2)

because R = (Z� + r)/δ in each phase.
It is hard to know if predicted adult mass (m�) will be increased or decreased during the

up-phase. If Ag > As, the body growth part of equation (1) pushes for larger size, while the
population dynamic part (1 + r ·E) pushes for smaller size. Reproductive effort (equation 2),
however, should always increase by a 1 + r ·E multiplier. E · r should be similar for species
with different body sizes (mouse vs. deer); rewrite it as (α · r)(E/α) and note that, in
mammals, both α · rmax and E/α are independent of body size (Charnov, 1993, Chs. 5 and 6). I also
suspect that the 1 + r ·E multiplier applies to life histories more complicated than that
modelled here (i.e. indeterminate growth, as in fish), because rules for optimal life histories
with metabolic growth/offspring-production constraints often generalize (Charnov, 2001; Charnov

et al., 2001). Finally, lifetime reproductive effort (Charnov et al., 2007) is (dm�)/(m� ·dt) · (E), and
equals (1/δ)(1 + r ·E); here, again, it is increased in the up-phase by the 1 + r ·E multiplier.
Obviously, this predicted plastic response to altered r assumes that the individual has
knowledge of the population phase, as well as the physiological ability to respond
appropriately. I illustrate the data required in Fig. 1; I am unaware of any species that meets
this requirement.
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APPENDIX: OPTIMAL BODY SIZE AND REPRODUCTIVE EFFORT

Assuming asexual reproduction (a two-sex model gives the same answer), the intrinsic rate
of increase (r) associated with a particular life table (lx, bx schedule) is given by

1 = �
∞

0

lx ·bx

e r·x dx,

where lx is the chance of living to age x (l0 = 1) and bx is the number of offspring born to an
individual of age x.

For the life history laid out in the text:

1 =
S� ·b

er·� �
∞

α

e−z�(x − �)

er(x − �) dx.

Thus, 1 =
S� ·b

er·� (r + Z�)
, leading to [dropping the α subscript (see also Charnov, 1993, p. 118)]:

e r ·� [r + Z] − S ·b = 0 (A1)

or

r ·α + loge [Z + r] = loge b + loge S. (A2)

We need dr/dα = 0 and can implicitly differentiate equation (A2):

dr

dα
·α + r + � 1

Z + r�
dr

dα
=

d loge b

dα
+

d loge S

dα
if 

dZ

dα
= 0. (A3)

Setting dr/dα = 0 yields:

d loge b

dα
+

d loge S

dα
− r = 0. (A4)

Assume:

dm

dt
= A ·m� (A5)
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and

b ∝ m �
� . (A6)

Thus,

d loge b

dα
=

δ

m�

·
dm

dt
= δ ·Am�

�−1.

Let S = e−�
�

0
Z(x)dx, so

d loge S

dα
= −Z(α). (A7)

Putting (A6) and (A7) into (A4) gives

δ ·A ·m�
�−1 − (Z(α) + r) = 0. (A8)

With equation (A8), it is straightforward to show that if ms is m� in a stationary population
(r = 0) and mg is m� in a growing population (r > 0), the adult-size ratio is

ms

mg

= ��As

Ag
� (1 + r ·E)�

1

1 − �
,

where As and Ag refer to the mass production function A’s for stationary and growing
populations, respectively, and E = 1/Z�, the average life span.

Reproductive effort is R =
dm�

m� ·dt
= A ·m�

�−1� =
Z� + r

δ
 by equation A8�. The ratio of

reproductive efforts for the two kinds of populations Rg /Rs is simply Rg/Rs = 1 + r ·E.
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