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ABSTRACT 

Resonators and oscillators are key elements in a wide variety of natural and 

manmade systems. As such understanding and exploiting their dynamics both as isolated 

devices and members of coupled systems has been the subject of intensive investigation 

for more than a century. The advent of optomechanical resonators (OMRs) that support 

strong coupling between optical and mechanical modes resulting in self-sustained 

optomechanical oscillations, has created new opportunities for device development and 

implementation of coupled oscillatory systems. One aspect of this thesis is focused on 

exploring some of the unique features of OMRs and optomechanical oscillators (OMOs) 

that can be exploited for efficient acousto-optical transduction and signal processing in the 

context of underwater communication and sensing. Another aspect is related to interaction 

of OMOs with other types of oscillators and the behavior of the resulting oscillatory 

systems as well as closely related heterogenous oscillatory systems.    



vi 
 

Notable achievements and results discussed in this dissertation include: 1) 

Demonstrating a new and practical method for stabilizing an OMO; 2) First demonstration 

of injection locking of an OMO via acoustic waves; 3) Studying the performance of 

optomechanical resonator as an acousto-optical receiver with optomechanical gain; 4) First 

demonstration of OMO functioning as a local oscillator and mixer in an acousto-optical 

underwater communication link; 5) Theoretical and experimental study of cluster 

synchronization in a multilayer network of Colpitts oscillators; 6) Theoretical study of the 

dynamics of a heterogeneous coupled oscillatory system comprising an optoelectronic 

oscillator and an OMO; 7) Experimental observations of synchronization between an 

optoelectronic and a Colpitts oscillator both in periodical oscillatory and chaotic regimes; 

8) Application of homogeneous and heterogeneous oscillatory systems in sensing and 

detection. 
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Chapter 1 

Introduction 

1.1 Motivations 

Coupling between optical and mechanical degrees of freedom is a fascinating 

phenomenon that has been intensively studied using different platforms and configurations 

[1-6] and furtherly extended to high-Q optical microcavities [7-9]. Optomechanical 

coupling in microscale and on-chip cavities [10] enables new functionalities that may be 

exploited in various applications, such as optical signal processing [11, 12], quantum 

information processing [13, 14], sensing [15, 16] and the like. Recent developments of 

microscale fabrication technologies have facilitated the fabrication of optomechancial 

devices and reduced the cost and complexity of investigating physics and application of 

cavity optomechanics. Combining cavity optomechanics with other transduction 

mechanisms may enable exploring the full potential of micromechanical devices and 

exploit them in new applications. One objective of this thesis is exploring and exploiting 

the dynamics of optomechanical resonators and oscillators in the presence of external 

perturbation or when they are coupled to other types of oscillators.  

Study of the dynamics of coupled oscillatory systems has been an active area of 

research for a long time. Beyond its importance in many practical applications, the models 

and outcomes of these studies have played a crucial role in understanding the behavior of 

many complex systems. In particular, the study of coupled physically dissimilar oscillators 

may help with understanding the behavior of intercoupled natural and artificial systems. 
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For example, human body contains several coupled complex oscillators which are almost 

impossible to explore in vivo, as it is hard to isolate cells and control coupling among them 

in vitro. Experiments with non-biological systems may enable to provide a proxy for much 

more complex experiments using actual biological systems. Previous studies have revealed 

the similarity between the biological oscillators and various types of man-made oscillators. 

For example, Adhikari and collaborators observed a phase-flip bifurcation, or a transition 

from in-phase synchrony to out-of-phase synchrony in neuron models involving a large 

number of interacting neurons [17]. The same behavior was previously observed in certain 

electrical oscillators [18].  

For the same reason, the theoretical and experimental study of coupled 

homogeneous and heterogeneous oscillators presented in this dissertation may provide 

insights and help with understanding the behavior of certain biological systems. Note that 

most of the previous experimental studies were based on coupling between oscillators of 

the same type. Here we study coupling between OMOs, Colpitts oscillators (a type of 

electrical oscillator) and optoelectronic oscillators (OEOs) as three different types of 

oscillators each having a different dynamic, some of which are analogous to those of 

biological oscillators. For example, optomechanical oscillator can exhibit multiple spatial 

modes of oscillation like the heart [19, 20]; while same as the lungs and individual neurons, 

the OEOs cannot exhibit special modes. 

Understanding the dynamical behavior of the coupled oscillatory systems can also 

pave the way for exploring the unique properties of such systems. One example, reported 
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in this dissertation, is exploring the enhanced sensitivity of both homogeneous and 

heterogeneous oscillatory systems to external perturbations for detection. We propose and 

demonstrate that the changes made into one of the oscillators in a pair of coupled oscillators 

can be measured with a sensitivity much higher than the sensitivity of the same oscillator 

to the same change as an individual oscillator. An additional advantage of sensors designed 

based on coupled heterogeneous oscillatory systems, is the ability of simultaneously 

detecting and measuring multiple physically dissimilar perturbations (detected by different 

types of oscillators in the coupled oscillatory system). 

1.2 Chapter overview and collaborative work 

The studies and ideas presented in this thesis were supervised and guided by Prof. 

Mani Hossein-Zadeh. Some of the theoretical analysis and experimental activities 

presented in chapter 7 was co-guided by Prof. Francesco Sorrentino and was performed 

collaboratively with two members of Prof. Francesco Sorrentino’s group.    

In what follows the content of the individual chapters are briefly descried:  

Chapter 2 is an introduction to the main devices used in the experimental and 

theoretical studies covered in this dissertation. The topics covered in this chapter include a 

brief introduction to: Whispering Gallery (WGM) optical modes and optical microcavities, 

toroidal optical microcavity, optomechanical interaction, optomechanical resonators 

(OMRs), optomechanical oscillators (OMOs), and Optoelectronic oscillators (OEOs). 

Given that OMOs and OMRs have been used in nearly all of our studies, different aspects 

of their performance are discussed with more details including important parameters and 
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the terminology used to describe and analyze the behavior of these devices (e.g., 

optomechanical coupling via radiation pressure, optomechanically induced gain and loss, 

optomechanical effective mass, and the like). Theoretical frame works used to describe the 

behavior of OMOs and OMRs and the resulting modes of operation (i.e., self-sustained 

optomechanical oscillation and optomechanical cooling) and impact of various noise 

mechanism are also covered in this chapter.   

Chapter 3 describes a new and relatively simple technique for stabilizing the 

amplitude and frequency of optomechanical oscillators. The effectiveness of this method 

has been examined using microtoroidal optomechanical oscillators. We have 

experimentally demonstrated that this method can suppress the oscillation frequency and 

amplitude variations caused by changes of the surrounding temperature, optical pump 

power, and optical coupling gap.   

Chapter 4 introduces acoustic waves as a mean for coupling one or more 

optomechanical oscillators with other oscillators of the same or different type (in particular, 

electronic and electromechanical oscillators). In particular we experimentally demonstrate 

that a microtoroidal OMO can be injection locked to another oscillator that generates 

acoustic waves that are coupled and propagate on the chip which carries the OMO. Various 

aspects of the injection locking via acoustic waves are experimentally characterized and 

also analyzed using both general injection locking theory and time domain differential 

equations of optomechanical oscillator combined with the finite element modeling. 

Chapter 5 describes a new type of resonant acousto-optical transducer that exploits 
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optomechanical gain in an OMR to provide enhanced sensitivity. It has been shown that 

the radiation pressure gain in an OMR may significantly enhance the sensitivity of acousto-

optical transduction in an optomechanical cavity. As proof of concept, a microtoroidal 

OMR was used to experimentally demonstrate and characterize such enhancement. 

Chapter 6 describes the performance of OMRs as hydrophones with 

optomechanical gain and OMOs as hydrophones that are also capable of down converting 

the baseband signals from ultrasonic carriers. The performance of the aforementioned 

hydrophones is characterized using an ultrasonic underwater link based on a modulated 

ultrasonic carrier. Both systems are theoretically analyzed, the challenges and limitations 

associated with frequency response and packaging of such devices are also discussed. 

Chapter 7 presents the experimental and theoretical study of the dynamics of 

certain coupled oscillatory systems. First, the experimental results and theoretical analysis 

of cluster synchronization in a multilayer network of four coupled Colpitts oscillators is 

reported. While the theoretical framework for modeling the behavior of such system was 

well-known, to our knowledge this work is the first experimental demonstration of cluster 

synchronization in a multilayer network comprising four oscillators coupled via two 

different types of coupling mechanisms. Dr. Karen Blaha was involved with the related 

experimental activities and the theoretical analysis was done collaboratively by Prof. 

Francesco Sorrentino, Dr. Louis Pecora, and Dr. Fabio Della Rossa. 

Next, we report the outcomes of the theoretically study of two mutually coupled 

oscillators: 1) an OMO coupled with an OEO, 2) an OMO coupled with a Colpitts oscillator. 
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We also report the first experimental observation of phase synchronization and chaos 

synchronization between an OEO and a Colpitts oscillator, mutually coupled via two 

different coupling mechanisms (i.e., optical and electrical). Finally, using two examples we 

demonstrate that coupling between two homogeneous (e.g., two Colpitts oscillators) or two 

heterogeneous oscillators (a Colpitts and an OEO), may be exploited to design oscillatory 

sensors for detecting and measuring small variations in certain parameters associated with 

one of the oscillators.  

Chapter 8 briefly discusses an incomplete effort on using the acousto-optical 

transduction in OMR (assisted by radiation pressure induced optomechanical gain) for 

acousto-optical imaging as well as some future directions including: injection locking of 

OMO via surface acoustic waves, addressing challenges associated with using OMR and 

OMO based hydrophones for underwater sensing and communication, developing a phase 

model for coupled heterogeneous oscillators and theoretical modeling of the behavior of 

coupled OEO and Colpitts oscillator.       
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Chapter 2 

Microtoroidal optomechanical cavities and Optoelectronic oscillators 

Optomechanical resonators/oscillators (OMRs and OMOs) and optoelectronic 

oscillators (OEOs) are the main devices used in the work presented in this dissertation. As 

such, understanding their working mechanism and theoretical frameworks used to study 

various aspects of their behavior, is critical for understanding the corresponding systems 

and applications that have been studied and explored during the course of this project. 

Moreover, familiarity with the terminology used to describe and characterize these devices 

and systems, may facilitate understanding their role in systems that exploit their unique 

characteristics. 

In this chapter, first we review the relevant aspects of the of cavity optomechanics 

starting from the characteristics of the optical and mechanical modes of microcavities that 

support radiation pressure based coupling between these modes (hereafter referred to as 

“optomechanical resonators” or “OMRs”). In particular, we focus on a specific class of 

optomechanical resonators that their optical cavities can sustain Whispering-Gallery modes 

(WGMs). Then, we review the dynamics of radiation pressure based interaction between 

the resonant optical power of a WGM and the motion of a mechanical mode of the OMR 

(referred to as “optomechanical interaction”), covering concepts such as, optomechanical 

coupling, effective mass, optomechanical damping, optomechanical gain, optomechanical 

oscillation and optical spring effect. Next, we review the basic principles of optoelectronic 

oscillation in the context of a basic single-loop optoelectronic oscillator (OEO). Finally, 
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we briefly review the theoretical framework that we used to investigate the dynamics of an 

OEO in particular in the context of coupled oscillatory systems.  

2.1 Microtoroidal optical cavities and WGMs 

The main optical device used in this work is a silica microtoroid that is a toroidal 

optical microcavity formed from silica and supported by a slight silicon pillar. This type of 

optical microresonator is well known for supporting high quality optical and mechanical 

modes within a single structure. Silica microtoroids can support optical modes with quality 

factors in excess of 108 [1] and mechanical modes with quality factors in excess of 2000 

(at atmospheric pressure) [2]. More importantly, many mechanical modes of a 

microtoroidal structure can strongly couple to the optical modes (WGMs residing in the 

toroidal section) with a relatively small effective mass resulting in low threshold optical 

power for optomechanical oscillation [1-3]. Additionally, due to strong confinement in 

azimuthal direction, the modal spectrum of a microtoroid is relatively simple compared to 

other microresonators such as microspheres. Finally, yet importantly, the fabrication 

process of silica microtoroid is relatively easy and with low cost compared to most optical 

microresonators. 

2.1.1 High-Q WGMs in microtoroidal optical cavities 

Toroidal microcavities sustain a type of resonant optical modes called “Whispering 

Gallery Modes” or “WGMs”. WGMs are traveling electromagnetic modes that are 

confined in a circular trajectory just within the surface of the toroidal structure by means 

of total internal reflection (TIR). WGMs have a relatively small cross-sectional modal area 
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(compared to the radius of the microcavity) and feature small mode volume and may 

support long photon lifetime (or equivalently high-quality factors or high-Q) if the level of 

loss inside the corresponding microcavity is low. As such, the strength of light-matter 

interactions inside microcavities that support high-Q WGMs is enhanced by orders of 

magnitude. In the context of optomechanical interaction, the above mentioned properties 

result in large level of radiation pressure and therefore strong bidirectional coupling 

between a WGM and one or more mechanical modes of the toroidal microcavity. The 

history of WGMs goes back to almost a century ago when Lord Rayleigh explained the 

unusual propagation of sound around the curved surface of the so-called Whispering-

Gallery of St Paul’s cathedral in London [4-6]. The first observation of optical WGM was 

reported back in 1961, when stimulated emission was coupled to the WGMs of a crystalline 

spherical resonator [7]. As opposed to conventional optical resonators (e.g., Fabry–Perot 

or FP cavities) that recirculate optical waves using two or more mirrors, in WGM cavities 

optical waves are trapped in a circular dielectric boundary by means of total internal 

reflection (TIR). WGM cavities, such as the microtoroid, microring, microsphere and 

microdisk cavities, support very small mode volumes and optical quality factors that are 

usually very high. The quality factor, as one of the main characteristics that distinguishes 

WGM cavities from other cavities, is defined as the ratio of the energy stored inside a 

cavity and the round-trip loss. As such, quality factor essentially quantifies the loss in a 

cavity. In practice, the quality factor can be measured using Q ~ ν/Δν = λ/Δλ where ν and λ 

are the resonance frequency and wavelength of the corresponding mode (WGM in this 
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case), and Δν and Δλ are the FWHM of the same mode (in frequency or wavelength 

domain). The measured value of quality factor that includes all optical losses experienced 

by the mode is referred to as total-Q (Qtot) or loaded QL. Qtot can be expanded in terms of 

intrinsic quality factor Qint (quantifying all losses except coupling loss), and external 

quality factor Qext (quantifying coupling loss): 

1
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1
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1
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here λres and ωres are the optical resonant wavelength and frequency (ωres = 2𝝅c/ λres, c is 

the speed of light) of the cavity, respectively. λ0 and ω0 are the intrinsic FWHM of the 

cavity resonance in wavelength and frequency, respectively. λ and ω are the loaded 

FWHM. τ0 and τtot are the intrinsic and loaded cavity photon (energy) decay time. κ0 and 

κtot are the intrinsic and loaded photon (energy) decay rate. 

Figure 2.1 shows a schematic view of a toroidal WGM resonator and its associated 

access line that represents the optical coupling [8]. The input signal field Ain is coupled to 

the resonator mode (whose amplitude is noted as A0) with a characteristic lifetime τe that is 

determined by the coupling gap. The light trapped inside the resonator can escape from the 

cavity 1) through radiative or absorptive processes with a characteristic duration τ0 and 2) 

through back coupling to the output field Aout in the access line, still with a characteristic 

duration τe.  
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Fig. 2.1. Micrograph of a toroidal microresonator coupled to a fiber-taper. 

The intrinsic optical loss in a WGM cavity or resonator includes: the surface 

roughness induced scattering loss, the optical absorption in the structural material of the 

cavity and the bending loss (radiation loss) associated with curved optical path inside the 

cavity. The external loss associated with the power exchange between the cavity and the 

waveguide(s) used to couple light into and out of the cavity. The most common 

microsphere WGM microresonators are spherical WGM cavities made of fused silica, 

which can sustain WGMs with Q-factors of as large as 9×109 [9]. Silica microtoroids, the 

microcavities used in this work, are the on-chip version of silica microspheres and can 

sustain WGMs with Q-factors in excess of 108. The large quality factor of the WGM in 

silica microspheres and microtoroids is a result of extremely low optical absorption of silica 

in the visible and near infrared range, as well as extremely low scattering loss due to small 

surface roughness. For toroidal and spherical cavities, the smooth surface is a result of 

melting and solidification process, typically used to fabricate these types of cavities, as 

well as unique physical properties of silica. The shape and smoothness of these cavities is 

naturally controlled by heat transfer and surface-tension during the melting-solidification 

process. The fabrication of silica microtoroid is relatively simple and it was first proposed 
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and demonstrated in Ref [10], and which only involves photolithography, wet etching, dry 

etching and laser melting.  

Figure 2.2 shows the fabrication process of a silica microtoroid on a silicon chip. 

First a silica microdisk is formed on silicon substrate having a thin (~ 2 micron) layer of 

silica (SiO2) using photolithography and wet etching with Hydro fluoric acid (HF). Next, 

XeF2 etching is used to remove the Si under the silica microdisk and creates a tapered 

silicon pillar as shown in Fig. 2.2(c). Finally, the microtoroid is formed by shining a 

collimated beam of CO2 laser to melt the silica disk. The melting process is self-quenching 

and for a given laser power stops when the diameter of toroidal section and its distance 

from the silicon pillar is such that the heat generated by CO2 laser absorption is balanced 

with the heat transfer from the silica microtoroid to the silicon pillar.  

 

Fig. 2.2. (a)-(d) Show the fabrication process of microtoroid, and (e) shows the 3D picture 

of the microtoroid. (f) shows the top and side view of the microtoroid, here D is the major 

diameter of the toroid, d is the minor diameter of the donut shape cavity and Dp is the 

diameter of the pillar at the contact point.  

Whispering gallery modes (WGMs) in circular dielectric cavities resonators has 

been subject of intensive study and is well understood [11-13]. WGMs are typically 
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characterized by two polarizations (modes with transversal electrical field or TE modes, 

modes with transversal magnetic field or TM modes) and three mode numbers s, l and m 

which are the radial, angular and azimuthal mode numbers respectively. The value of l is 

close to the number of wavelengths that fit into the optical length of equator. The value l-

m+1 is equal to the number of the field maxima in the polar direction, and 2l is the number 

of maxima in the azimuthal direction around the equator. The resonant wavelength is 

determined by the value of s and l. Figure 2.3 shows a 3D view of three typical WGMs of 

a spherical dielectrical potential wall calculated using resonance theory [14, 15].  

 

Fig. 2.3. Iso-intensity surfaces and intensity cross sections (inset) for the fundamental TE 

mode l = m and s = 1 (left), second radial mode l = m and s = 2 (middle), third polar mode 

m = l − 2 and s = 1 (right) in a spherical resonator [15]. 

Generally, the field distribution associated with WGMs of a spherical dielectric 

resonator can be calculated by solving Helmholtz equation in spherical coordinates [11,16]. 

If the sphere is composed of a homogeneous dielectric material, light that circulates near 

the dielectric-air boundary inside the cavity, maintains a constant polarization along its 

trajectory and the solutions can be divided into two categories of modes, transverse 

magnetic (TM) or transverse electric (TE). The field components can be expressed in terms 

of a single field component (E for TM mode and H for TE mode) and the solutions can 

be found by solving the scalar wave equation for either the E or H alone by the separation 
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of variables, i.e., E or H  = ψ(,θ,r) = ψ()ψθ(θ)ψr(r). The mode numbers (s, l, m) 

correspond to the eigen values of the resulting eigen functions. The azimuthal eigen 

function can be written as: 

𝜓 =
1

√2𝜋
exp(±𝑖𝑚).                       (2.4) 

The polar angle dependent function (ψθ) should satisfy: 
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The last two equations have the analytical solutions that can be expanded as a 

function of generalized Legendre Polynomials 𝑃𝑚
𝑙 (𝑐𝑜𝑠𝜃) and the Bessel function 𝑗𝑙(𝑘𝑟) 

[16]. For each polar mode number l, the allowed azimuthal mode numbers are limited to –

l < m < l, resulting in 2l + 1 degenerate azimuthal modes, the non-zero value of ψr(r) when 

r is larger than the resonator radial indicates that an evanescent field exists in the 

surrounding. In spite of the simplicity of analytical solution for the WGMs in spherical 

cavities, finding such analytical solutions for WGMs of toroidal microcavities is much 

more challenging. The complexity of obtaining approximate solutions for toroidal 

geometry arises from the inseparability of a scalar wave equation in the local toroidal 

coordinates and the absence of a standard technique for finding the solutions of the 

corresponding two-dimensional problems. In order to circumvent these difficulties, B. Min 

et al., applied a perturbation method using a proper expansion parameter for a “fiber-like” 

(small inverse aspect ratio: d/D) toroidal geometry to calculate the cavity mode field inside 
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and near the periphery of a toroidal microcavity [12]. Using this method, the modal volume, 

resonant wavelength, mode index, and radiative quality factor of WGMs of toroidal 

geometry can be derived. Numerical modelling is another efficient way to simulate optical 

WGMs in toroidal microcavities, commercial Finite Element Method (FEM) software, like 

COMSOL Multiphysics and Lumerical, have been successfully used for calculating the 

WGMs in these microcavities. 

2.1.2 Coupling light to the WGMs of toroidal microcavities  

Evanescent wave coupling between a waveguide and the microcavity is the most 

efficient way to couple optical power into and out of the WGMs without degrading their 

quality factor [8, 17, 18]. The strength of evanescent coupling depends on two critical 

factors: 1) The overlap between the evanescent field of the wave propagating in the coupler 

and the evanescent field of the WGM. 2) Phase matching (velocity matching) between the 

light traveling in the coupler and the WGM circulating inside the microcavity. Figure 2.4 

shows three different evanescent wave coupling methods: prism coupling, angle-polished 

fiber coupling and fiber taper/waveguide coupling. 

 
Fig. 2.4. (a) Optical power is coupled to the WGM resonator through (a) prism, (b) angle-

polished fiber, and (c) fiber taper or optical waveguide. 

Prism coupling was the first method proposed for coupling light into WGM cavities 
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[19]. This method may enable a coupling efficiency up to 75% [20], however, it is not 

practical for coupling light into the micron scale toroidal cavities. Angle-polished fiber 

coupling can reach up to 60% coupling efficiency [21], however the fabrication of angle-

polished fibers with accurate angle is difficult and the optical coupling factor cannot be 

optimized easily. Fiber taper coupling is the most popular technique used in the laboratory, 

the fabrication of fiber taper is easy and cheap, the coupling efficiency can reach 99.97% 

[22], fiber taper coupling was used for all the experiments presented in this thesis. 

 

Fig. 2.5. Fiber pulling setup, the fiber is held by two V-grooves using magnetic clamps. 

The fiber holders are pulled away from each other by two computer controlled motors. The 

relative distance between the flame and the exposed section of the fiber is controlled using 

an XYZ translation stage on which the torch (that generates the hydrogen flame) is 

mounted.  

The silica fiber taper used here can be fabricated by heating and pulling a regular 

SMF28+ single mode fiber. Figure 2.5 shows the fiber taper pulling setup that is used in 

this work. First the plastic coating is removed from a small section (1-2 cm long) of an 

optical fiber that supports only one mode at a wavelength of 1550 nm (SEM28+ in this 

case). Next, the exposed section is cleaned with acetone, methanol and isopropyl alcohol 

and the fiber is held by two magnetically clamped V-grooves holders such that the exposed 
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section is placed between the holders. A hydrogen flame is brought close to the fiber using 

a 3D translation stage that hold the torch, in order to heat the exposed section of the fiber 

and meanwhile the holders are pulled away from each other by two pullers (on which they 

are mounted) using two computer controlled DC motors.  

During the pulling process, the thickness of the fiber taper and the optical power 

transmitted through the fiber are monitored (in real time) using a microscope and a 

photodetector. The resulting fiber taper has a symmetrical shape around a narrow waist 

starting from a minimum diameter of between 0.8 -1.2 microns and gradually growing to 

a maximum diameter of 125 microns (the diameter of a single mode fiber). As such, given 

that the core diameter of the single mode SM fiber is 8-9 microns, a section of the fiber 

taper will be air cladded. The section near the taper waist only support one transverse mode 

with relatively large evanescent tail (residing in air) suitable for coupling to WMGs of 

toroidal or spherical microcavities.  

2.2 Optomechanical coupling in microtoroidal cavities 

The structure of the microtoroid cavity described above, not only supports high-Q 

WGMs but also relatively low loss mechanical modes. The motion of these mechanical 

modes can alter the resonant frequencies (wavelengths) of WGMs, by changing their 

optical path lengths. In the meantime, the magnitude of the circulating optical power in 

WGMs can become so large that the resulting radiation pressure will affect the mechanical 

motion of the mechanical mode. In this section we explore the dynamics of this mutual 

“optomechanical” coupling. Note that the optical mode may also affect the motion of the 
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mechanical mode through thermal effects (e.g., thermomechanical deformation caused by 

the heat generated through optical absorption), however such effects are absent or 

negligible in a silica microtoroid. 

2.2.1 Optical radiation pressure force and optomechanical coupling 

The most basic optomechanical resonator that supports radiation pressure based 

optomechanical coupling is a Fabry–Pérot optical cavity with a movable mirror shown in 

Fig. 2.6(a). Here we use Fabry–Pérot optical cavity to explain the optical radiation pressure 

and optomechanical coupling. The optical input (pump) power can be coupled to the optical 

cavity if its wavelength is within the bandwidth and close to the resonant frequency 

(wavelength) of a cavity mode. The magnitude of the coupled power and therefore the 

resulting circulating optical power depends on the difference between the pump 

wavelength and the resonant wavelength. The circulating power inside the cavity can be 

much larger than the CW input power if the reflectivity of the mirrors is high enough to 

support large resonant power build up. Each photon circulating inside the cavity is reflected 

twice during each round trip. Upon each reflection the momentum transferred to the mirror 

by the photon is |Δp| = 2h/λ (where λ is the photon wavelength) resulting in a pressure 

(called “radiation pressure”) equal to 2Icirc/c inserted on each mirror (here Icirc is the 

intensity of the circulating optical power in the cavity). 
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(a)                           (b)   

 

 

(c) 

Fig. 2.6. (a) Optomechanical interaction between optical field in a Fabry–Pérot cavity with 

a movable mirror. (b) The reflection transfer function of the FP cavity near a resonant mode 

with a resonance frequency of 0. The interplay between radiation pressure and the 

mechanical stress results in harmonic oscillation of the optical path length and therefore 

0; at a fixed pump frequency p, oscillation of 0 results in modulation of the reflected 

optical power. (c) Optomechanical oscillation mechanism [23]. 

If the mirror is movable, it is pushed forward by the radiation pressure increasing 

the resonant optical path and therefore the resonant wavelength of the corresponding mode. 

Depending on the original detuning between the pump wavelength (which is fixed) and the 

resonant wavelength of the optical mode, this shift may increase or decrease the magnitude 

of the circulating power in the mode and therefore the resulting radiation pressure. As such, 

in a high-Q FP optical cavity with a movable mirror, the motion of the movable mirror and 

the magnitude of the circulating optical power are mutually coupled. This is what is known 

as radiation pressure based optomechanical coupling [24]. If originally the pump 
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wavelength is smaller (blue shifted) than the resonant wavelength of the cavity mode, 

optomechanical coupling amplifies the motion of the mirror through a feedback mechanism.  

In this case when the mirror is pushed by the radiation pressure, the circulating optical 

power drops (since the difference between the pump wavelength and resonant wavelength 

is increased). As a result, the radiation pressure decreases, and the mirror moves back by 

restoring mechanical force (similar to a spring). Figure 2.6(b) shows the transmission 

spectra of the Fabry-Perot cavity shown in part-a, at maximum and minimum displacement 

of the movable mirror. At a fixed pump power, the transmitted optical power from the 

cavity is proportional to the resonant wavelength (frequency) of the mode and therefore 

follows the dynamic of the movable mirror. As shown in Fig. 2.6(c), optomechanical 

oscillation is essentially the interplay between the energy stored in two reservoirs: a 

mechanical resonator (spring loaded movable mirror)) and an optical resonator (cavity). 

When the pump power is large enough this energy exchange results in self-sustained 

oscillation of the mirror and the circulating optical power with a frequency equal to the 

natural mechanical resonant frequency of the mirror [24-26]. Consequently, the optical 

transmitted (or reflected) optical power will be modulated at the same frequency. Such a 

system that converts CW optical input power to modulated optical power, using the 

intrinsic optomechanical coupling, is called optomechanical oscillator [27]. Self-sustained 

optomechanical oscillation in an FP cavity with a movable mirror was first predicted by 

Braginsky et al in the context of Laser Interferometric Gravitational-Wave Observatory 

(LIGO) [28].  
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2.2.2 Mechanical modes of the microtoroidal cavity 

The vibration modes of any objects can be calculated by solving the equations of 

the linear theory of elasticity under the appropriate boundary conditions that are determined 

by the geometry [29]. The eigen value problem yields a set of normal modes and each mode 

has its own eigenfrequency Ωm (m stands for “mechanical”), the loss of the mechanical 

energy is described by the (energy) damping rate Γm, which is related to the mechanical 

quality factor by Qm = Ωm/Γm. The temporal evolution of the radial displacement r(t) of the 

motion can be described by the simple canonical equation of motion for a harmonic 

oscillation of an effective mass meff: 

𝑚𝑒𝑓𝑓
𝑑𝑟2(𝑡)

𝑑𝑡2
+𝑚𝑒𝑓𝑓𝛤𝑚

𝑑𝑟(𝑡)

𝑑𝑡
+𝑚𝑒𝑓𝑓𝛺𝑚

2 𝑟(𝑡) = 𝐹𝑒𝑥(𝑡).          (2.7) 

here, the Fex(t) denotes the sum of all forces acting on the mechanical resonator. In the 

absence of any external forces, Fex(t) is the thermal Langevin force. 

The vibration modes of the object can be easily simulated using any FEM software. 

Here we used COMSOL to simulate the mechanical modes of the toroid microcavities used 

in various experiments. Figure 2.7 shows the simulated deformation associated with the 

first three mechanical modes of a silica microtoroid (with major diameter of D = 110 μm, 

pillar diameter of Dp = 60 μm and minor diameter of d = 8 μm). 
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(a)                               (b) 

 

      
(c)                               (d) 

Fig. 2.7. (a) 2D cross-sectional illustration of the deformation associated with the first 

mechanical mode of a silica microtoroid. The red dot is the location of the WGM and r(t) 

is the radial displacement of the WGM resulted from the mechanical deformation. (b)-(d) 

show the 3D cross-sectional illustration of the first three mechanical modes of a silica 

microtoroid. The simulated microtoroid has a major diameter of D = 110 μm, pillar 

diameter of Dp = 60 μm and a minor diameter d = 8 μm. Simulation are performed using 

COMSOL FEM software. Color drawing indicates the relative magnitude of displacement. 

Here fmech = Ωmech/2𝝅. 

2.2.3 Dynamic of optomechanical cavities.  

In this section, first the relevant parameters of an optomechanical oscillator (or 

resonator) are defined and then the dynamics of the radiation pressure coupled optical and 

mechanical modes is discussed. 

1) Relevant parameters in an optomechanical resonator  

1.1) Mechanical quality factor Qm 

The loss of mechanical excitations, i.e., phonons, is quantified by the energy 



25 
 

dissipation rate Γm, and the mechanical quality factor is defined as 𝑄𝑚 =
𝛺𝑚

𝛤𝑚
, Qm may  

include various dissipation processes where 
1

𝑄𝑚
= ∑

1

𝑄𝑖
 , here i labels different loss 

mechanisms, these loss mechanisms may be associated with energy loss to the molecules 

of the surrounding medium, thermoelastic damping, phonon-phonon interactions and 

material induced losses (e.g., by the relaxation of intrinsic or extrinsic defects state in the 

bulk or surface of the resonators). 

1.2) Optomechanical coupling coefficient gOM 

The coupling between optical and mechanical modes of an optomechanical cavity 

is a parametric process. The change of optical resonant frequency due to optomechanical 

interaction can be expressed as ωres(r) = ω0 + r(∂ωres/∂r) + ⸱⸱⸱, where r is the mechanical 

displacement or the amplitude of the mechanical deformation of the cavity. Accordingly, 

the optomechanical coupling coefficient, which quantifies the strength of coupling between 

the optical and mechanical modes of the cavity, is defined as gOM = ∂ωres/∂r. 

1.3) Optical detuning 

Optical detuning is defined as Δω0 = ωL - ω0 where ωL is the frequency of the pump 

laser, ω0 is the cold cavity resonance (where optical pump power is so small that radiation 

pressure has no impact on the optical boundary). Optical detuning can be also defined based 

on wavelength (Δλ0 = λL - λ0). In the presence of optomechancial interaction (when optical 

pump power is large enough to move the optical cavity boundary, Δω = ωL - ωres(r) = Δω0 

+ gOMr. A normalized detuning (ΔωN) is defined as the frequency (or wavelength) detuning 

divided by the loaded linewidth (ω) of the optical mode, so ΔωN = Δω/ω. When Δω < 0, 
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the laser is red detuned (with respect to the cavity) and the radiation pressure damps the 

mechanical motion; when Δω > 0, the laser is blue detuned, and the radiation pressure 

amplifies the mechanical motion [27]. As explained with more details in the following 

sections, the sign of the detuning controls the direction of energy transfer (from optical to 

mechanical modes or from mechanical to optical modes), and results in oscillation or 

cooling.  

1.4) Effective mass     

Optomechanical effective mass is defined as the mass involved in the motion at the 

direction that can change the optical path length of the cavity, it is written as 𝑚𝑒𝑓𝑓 =

2𝐸2/(𝑟𝑚𝑎𝑥𝛺)
2. Here, E is the total energy stored in the mechanical mode, and rmax is the 

maximum displacement in the direction that changes the optical path length. Effective mass 

can be calculated through COMSOL FEM. 

2) Dynamics of radiation pressure coupled optical and mechanical modes 

In the absence of optomechanical coupling, the susceptibility of the mechanical 

resonator (or a mechanical mode of the optomechanical cavity) can be written as: 

χ𝑚
−1(𝛺) = 𝑚𝑒𝑓𝑓[(𝛺𝑚

2 − 𝛺2) − 𝑖𝛤𝑚𝛺] . It can be shown [27] that when the mechanical 

mode is coupled to an optical mode (within the same optical cavity) via radiation pressure, 

the susceptibility is optomechanically modified and may be expressed as: 

χ𝑚,𝑒𝑓𝑓
−1 (𝛺) = χ𝑚

−1(𝛺) + 2𝑚𝑒𝑓𝑓𝛺𝑚𝑔
2(

1

(∆𝜔+𝛺)+
𝑖𝜅

2

+
1

(∆𝜔−𝛺)−
𝑖𝜅

2

).        (2.8) 

where 𝑔 = ℏ𝑔𝑂𝑀
2 |�̅�|2/(2𝑚𝑒𝑓𝑓𝛺𝑚) , and |�̅�|2  is proportional to the circulating 

photon number or optical intensity, Ω is the instant mechanical oscillation frequency, Δω 
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is the optical detuning. The effective susceptibility of Eq. (2.8) may be rewritten as: 

χ𝑚,𝑒𝑓𝑓
−1 (𝛺) = 𝑚𝑒𝑓𝑓[((𝛺𝑚 + 𝛿𝛺𝑚(𝛺))

2
− 𝛺2) − 𝑖(𝛤𝑚 + 𝛤𝑜𝑝𝑡(𝛺))𝛺].     (2.9) 

with 

𝛿𝛺𝑚(𝛺) = 𝑔2
𝛺𝑚

𝛺
(

∆𝜔+𝛺

(∆𝜔+𝛺)2+
𝜅2

4

+
∆𝜔−𝛺

(∆𝜔−𝛺)2+
𝜅2

4

).            (2.10) 

and 

𝛤𝑜𝑝𝑡(𝛺) = 𝑔2
𝛺𝑚

𝛺
(

𝜅

(∆𝜔+𝛺)2+
𝜅2

4

−
𝜅

(∆𝜔−𝛺)2+
𝜅2

4

).            (2.11) 

Equation (2.8) – (2.11) show that the impact of optomechanical coupling on the dynamics 

of the mechanical mode can be explained with a modified dissipation rate and modified 

resonant frequency.  

2.1) Optical spring effect 

The modification of resonant frequency is referred to as optical spring effect. When 

Ω = Ωm, Eq. (2.10) shows the frequency shift of the oscillator induced by the light field:  

𝛿𝛺𝑚 = 𝑔2(
∆𝜔+𝛺𝑚

(∆𝜔+𝛺𝑚)2+
𝜅2

4

+
∆𝜔−𝛺𝑚

(∆𝜔−𝛺𝑚)2+
𝜅2

4

).                (2.12) 

In the limit of large cavity decay rate (i.e., κ >> Ωm), this equation yields 

𝛿𝛺𝑚 = 𝑔2
2∆𝜔

(∆𝜔)2+
𝜅2

4

.                      (2.13) 

Equation (2.13) shows the spring constant of the mechanical resonator is softened when 

the pump laser is red-detuned (Δω < 0) and is hardened when the pump laser is blue detuned 

(Δω > 0). 

2.2) Optomechanical gain 

Optomechanically modified dissipation rate interaction may be referred to as 

optomechanical gain or optomechanical loss depending on the sign of the 
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optomechanically induced change. Considering the last term of Eq. (2.9), we have:  

𝛤𝑒𝑓𝑓 = 𝛤𝑚 + 𝛤𝑜𝑝𝑡.                      (2.14) 

Where 𝛤𝑒𝑓𝑓 is the effective damping rate,𝛤𝑚 is the intrinsic mechanical damping rate (in 

the absence of optical power or optomechanical coupling) and 𝛤𝑜𝑝𝑡  is the 

optomechanically induced damping rate given by Eq. (2.11). 

The 𝛤𝑜𝑝𝑡 can be positive or negative, in other words it can increase or decrease the 

mechanical damping rate. If Γopt > 0, it increases the damping (what can be interpreted as 

cooling the cavity), if Γopt < 0, it amplifies the amplitude of the mechanical motion above 

its natural thermal fluctuation. When 𝛤𝑜𝑝𝑡  is negative and large enough to completely 

cancel the intrinsic mechanical damping, self-sustained optomechanical oscillation will 

emerge. The optical pump power at which 𝛤𝑒𝑓𝑓 becomes zero and self-sustained 

optomechanical oscillation begins is called the threshold optical pump power (Pth) for the 

regenerative optomechanical oscillation. Pth can be calculated by equating the expression 

for the optomechanical damping (Eq. 2.11) to its intrinsic damping (Γm = Ωm/Qm), the 

following expression for the threshold optical pump power results [30]. 

𝑃𝑡ℎ =
Ω𝑚
2

Q𝑚

𝑚𝑒𝑓𝑓𝑐
2

ω0ℱ28𝑛2𝐶
(

1

4(∆𝜔−𝛺𝑚)2𝜏𝑡𝑜𝑡
2 +1

−
1

4(∆𝜔+𝛺𝑚)2𝜏𝑡𝑜𝑡
2 +1

)−1.      (2.15) 

where the ℱ  is finesse of the cavity, and 𝐶 = (𝜏/𝜏𝑒𝑥𝑡)/(4(∆𝜔𝜏𝑡𝑜𝑡)
2 + 1) . When the 

optical power is above threshold, the optomechanical resonator (OMR) becomes and 

optomechanical oscillator (OMO). Note that above threshold, Eq. (2.11) is not valid and 

cannot be used to estimate the linewidth of the mechanical resonance. Above threshold the 

optomechanical oscillation is limited by the Brownian noise in the mode [31].       



29 
 

Optomechanical cooling and amplification can be also explained in frequency 

domain [3]. Effectively the variation of the optical boundary of an optomechanical cavity 

caused by mechanical vibration leads to generation of Stokes and anti-Stokes sidebands (at 

frequencies, ω0 ± ωm where ω0 is the optical and ωm the mechanical frequency). Here we 

limit the analysis to the case where Stokes and anti-Stokes sidebands fall within the same 

cavity resonance (i.e., ωm < ω0/Qtot). The energy exchanges between optical and 

mechanical modes may be explained based on the population of the Stokes and anti-Stokes 

photons circulating in the cavity. Figure 2.8 shows the spectrum of the mechanical vibration 

and the optical waves circulating inside an optomechanical cavity assuming the period of 

mechanical vibration is comparable or longer than the cavity lifetime. The mechanical 

vibration modulates the pump laser frequency (ωL) and generates anti-Stokes and Stokes 

sidebands at ωL + Ωm and ωL - Ωm where Ωm is the frequency of the mechanical mode that 

is coupled to the optical mode.   

 

(a)                            (b) 

Fig. 2.8. Diagrams showing spectrum of the mechanical vibration and the optical waves 

circulating inside an optomechanical cavity. (a) Optomechancial amplification where the 

pump is blue detuned, and the strength of anti-Stokes scattering is reduced compared to 

Stokes scattering. (b) Optomechanical cooling where the pump is red detuned, and the 

strength of Stokes scattering is reduced compared to anti-Stokes scattering [27]. 

At a non-zero detuning the resonant enhancement inside the optical cavity is 



30 
 

different for the Stokes and anti-Stokes fields resulting in an asymmetric distribution of 

Stokes and anti-Stokes. Since the anti-Stokes photons have more energy than the low 

Stokes photons (because E = hν), the asymmetry between sidebands results in power loss 

or gain for the optical mode. As evident from Fig. 2.8(a), when the laser is blue detuned, 

the amplitude of anti-Stokes (ωL + Ωm) field is smaller than the amplitude of the Stokes 

field (ωL - Ωm) and energy is transferred from the optical mode to the mechanical mode 

(optomechanical amplification). As such, the linewidth of the mechanical vibrations 

becomes narrower and its amplitude grows above the natural thermal vibrations. With 

sufficient optical pump power (>Pth), the energy transferred to the mechanical mode will 

overcome the mechanical loss resulting in self-sustained optomechanical oscillation that 

manifests itself as extremely narrow linewidth that is only limited by the thermal noise [31]. 

Note that since mechanical oscillation can be observed only if the Stokes and anti-Stokes 

sidebands fall within the same cavity resonance (i.e., Ωm < ω0/Qtot) the oscillation frequency 

is limited by the loaded linewidth of the optical mode. For a Qtot in the 106 - 108 range the 

mechanical modes with frequencies within 1 - 100 MHz can be optomechanically excited 

and, if the optical pump power is above a threshold power (Pth), oscillate.  

Figure 2.8(b) shows the opposite case where the laser is red detuned, and the 

amplitude of the anti-Stokes field is larger than the amplitude of the Stokes field resulting 

in power transfer from the mechanical mode to the optical mode or optomechanical cooling 

(damping). In this case the linewidth of the mechanical vibrations becomes wider and its 

amplitude is suppressed below the natural thermal vibrations. Both optomechanical 



31 
 

oscillation (amplification) and cooling have been observed experimentally [1, 30].  

2.2.4 Thermal and back action noise in optomechanical resonators (OMR) 

When P < Pth , OMR can be considered as a harmonic oscillator with the damping 

and mechanical frequency modified by the optical power: 

𝑚𝑒𝑓𝑓
𝑑2𝑟(𝑡)

𝑑𝑡2
+𝑚𝑒𝑓𝑓𝛤𝑒𝑓𝑓

𝑑𝑟

𝑑𝑡
+𝑚𝑒𝑓𝑓𝛺𝑚

2 𝑟(𝑡) = 𝐹𝑎𝑝𝑝𝑙.           (2.16) 

𝛤𝑒𝑓𝑓 = 𝛤𝑚(1 −
𝑃𝑖𝑛

𝑃𝑡ℎ
).                      (2.17) 

𝛺𝑚 = 𝛺0(1 + 𝜁𝑃𝑃𝑖𝑛).                     (2.18) 

where Fappl is any external forces that may be applied on the OMR, ζP is a coefficient 

combining the thermal drift due to optical absorption in the structure and the optical spring 

effect [2]. Equation (2.16) can be transformed to frequency domain as: 

−𝛺2𝑟 + 𝑖𝛺𝛤𝑒𝑓𝑓𝑟 + 𝛺𝑚
2 𝑟(𝑡) =

𝐹𝑎𝑝𝑝𝑙(𝛺)

𝑚𝑒𝑓𝑓
.               (2.19) 

As such, the motion of the OMR cavity can be written as: 

𝑟(𝛺) = 𝜒𝑚,𝑒𝑓𝑓(𝛺)
𝐹𝑎𝑝𝑝𝑙(𝛺)

𝑚𝑒𝑓𝑓
=

1

𝛺𝑚
2 −𝛺2+𝑖𝛺𝛤𝑒𝑓𝑓

𝐹𝑎𝑝𝑝𝑙(𝛺)

𝑚𝑒𝑓𝑓
.          (2.20) 

Equation (2.20) can be used to evaluate the response of the OMR to external excitations in 

applications where OMR is used as an acousto-optical transducer (an example is discussed 

in Chapter 5). In such applications, the presence of two noise mechanism may limit the 

performance of such transducer namely thermal noise and backaction noise. In what 

follows these two noise mechanisms are briefly discussed. 

The motion of a single harmonic OMR in thermal equilibrium r(t) follows a 

trajectory oscillating at frequency Ωm. However, this oscillation has randomly time-varying 

amplitude and phase, both the amplitude and phase change in time scale given by Γeff
-1 [32]. 
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Figure 2.9 shows the typical noise spectrum of the OMR in thermal equilibrium. For weak 

damping (Γeff < Ωm), the spectrum is a Lorentzian peak of width Γeff, located at ± Ωm. 

 
Fig. 2.9. Noise spectrum of an OMR in thermal equilibrium. 

Using equipartition theory, the thermal force inducing thermal fluctuations can be 

written as [33]: 

𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = √4𝐾𝐵𝐵𝑇𝑚𝑒𝑓𝑓𝛤𝑚.                  (2.21) 

using Eq. (2.20) and (2.21), it can be shown that the resulting fluctuations of the radial 

mechanical displacement is: 

𝑟𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
√4𝐾𝐵𝐵𝑇𝑚𝑒𝑓𝑓𝛤𝑚

𝑚𝑒𝑓𝑓√Ω𝑚
2 −Ω2+𝑖𝛺𝛤𝑒𝑓𝑓

.                (2.22) 

and the power spectral associated with thermal Brownian noise can be expressed as: 

𝑆𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝛺) =
4𝐾𝐵𝐵𝑇𝛤𝑚

𝑚𝑒𝑓𝑓

1

(Ω𝑚
2 −Ω2)2+(𝛺𝛤𝑒𝑓𝑓)

2.           (2.23) 

Backaction noise is the optical noise arising from the classical amplitude noise 

induced by the shot noise of the photons circulating inside the optomechanical cavity. The 

optical shot noise exerts a random force on the mechanical mode via radiation pressure. 

The resulting fluctuations in the mechanical displacement is called back action noise and 

can be written as: 
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𝑟𝑏𝑎 =
2ℏ𝑔𝑂𝑀

𝑚𝑒𝑓𝑓
√
2𝑛𝑐𝑎𝑣

𝜅𝑡𝑜𝑡

1

√Ω𝑚
2 −Ω2+𝑖𝛺𝛤𝑒𝑓𝑓

.                 (2.24) 

the spectrum of the backaction noise can be expressed as: 

𝑆𝑏𝑎(𝛺) = 2(
2ℏ𝑔𝑂𝑀

𝑚𝑒𝑓𝑓
)2

𝑛𝑐𝑎𝑣

𝜅𝑡𝑜𝑡

1

(Ω𝑚
2 −Ω2)2+(𝛺𝛤𝑒𝑓𝑓)

2.               (2.25) 

where ncav is the intracavity photon number. 

2.2.5 Microtoroidal optomechanical oscillation (OMO) 

Silica toroid microcavity is an excellent optomechanical resonator for supporting 

optomechanical oscillation, its high optical Q, small dimensions, unique geometry, 

relatively large mechanical quality factor and reasonable large effective mass enable very 

low threshold powers and low oscillation phase noise. For a typical silica microtoroid with 

Q0 ~ 108, 1 mW input power can result in circulating power of about 100 W, which is much 

larger than the threshold power to induce the self-sustained optomechanical oscillation in 

the micro scale structures. The first optomechanical oscillation in air and room temperature 

was observed and reported in the silica microtoroid in 2005 [1], and the characteristics of 

the microtoroidal OMO was comprehensively studied in 2006 [2, 34]. 

The dynamics of an OMO have been investigated by many researchers using a 

variety of theoretical frame works for representing the corresponding coupled differential 

equations in different equivalent forms, for example, classical Newtonian theory [35], 

Lagrangian mechanics [36], in frequency domain based on Stokes and anti-Stokes fields 

[3] and quantum mechanical Hamiltonian [37]. In this thesis, the classical Newtonian 

approach is used to analyze the behavior of OMO in different configurations. 
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The dynamics of optomechanical oscillation can be expressed by two coupled 

differential equations that govern the dynamics of the optical field and the mechanical 

motion: 

𝑚𝑒𝑓𝑓
𝑑2𝑟(𝑡)

𝑑𝑡2
+𝑚𝑒𝑓𝑓𝛤𝑚

𝑑𝑟

𝑑𝑡
+𝑚𝑒𝑓𝑓𝛺0

2𝑟(𝑡) = 𝐹𝑟𝑝 =
2𝜋𝑛𝑒𝑓𝑓

𝑐𝑚𝑒𝑓𝑓

𝑐𝑛𝑒𝑓𝑓𝜀0

2
𝑠|𝐸(𝑡)|2.  (2.26) 

𝑑𝐸(𝑡)

𝑑𝑡
+ 𝐸(𝑡) [

𝜔

2𝑄𝑡𝑜𝑡
+ 𝑖∆𝜔0 + 𝑖

𝜔0

𝑟0
𝑟(𝑡)] = 𝑖√

(2𝑙𝑐𝑛𝑒𝑓𝑓𝜀0𝑠
′)𝑃𝑖𝑛𝜔

𝜏0𝑄𝑒𝑥𝑡
.      (2.27) 

where Frp is the radiation pressure force, neff is the effective refractive index of the resonant 

cavity that the optical power is experiencing, s and s' are the cross-sectional areas of the 

optical modes in the cavity and waveguide, respectively, E(t) is the intracavity optical field, 

τ0 = 2𝝅R0n/c is the photon round trip time in the optical resonator. The first equation 

describes the motion of the harmonic oscillator in the presence of radiation pressure, and 

the second equation describes the variation of circulating optical field in the resonant cavity. 

the detuning here becomes Δω = ωlaser - ωcav(r) = Δω0 + ω0r(t)/R0, and r(t)/R0 is the 

approximation of the optomechanical coupling coefficient. In the above threshold regime, 

the behavior of the oscillation frequency can still be explained by Eq. (2.18).  

While these equations can be used to estimate the oscillation amplitude of an OMO, 

as mentioned earlier, they cannot describe the oscillation linewidth that is limited by the 

thermal noise. The oscillation linewidth can be explained using the general theory of 

linewidth narrowing in self-sustained oscillators that also governs optical oscillators (laser) 

and electronic oscillators [38-40]. Prior theoretical studies of regenerative oscillator 

performance, when embedded in a thermal bath at temperature T, predict that the 

fundamental oscillation linewidth that is limited by thermal equipartition of energy 
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becomes increasingly narrowed as the oscillation power is boosted in the system. The 

oscillation linewidth of OMO can be written as [2]: 

∆𝛺 =
𝐾𝐵𝑇

2𝑃𝑑
(∆𝛺0)

2.                     (2.28) 

where ΔΩ0 is the intrinsic linewidth of the mechanical mode, Pd is the output power of the 

oscillator, in mechanical resonator the output power can be related to the stored mechanical 

energy as Pd = Ω0Estored/Qm = ΔΩ0Estored, KB is the Boltzman constant, T is the temperature. 

the Brownian noise limited linewidth of microtoroid OMO has been verified 

experimentally [31], and the linewidth matches the Eq. (2.28). Eq. (2.28) can be also 

expressed as [2]: 

∆𝛺 = (
4𝐾𝐵𝑇𝑄𝑡𝑜𝑡

2

𝑚𝑒𝑓𝑓𝛺0
2𝑅0

2)
𝛤𝛺

2𝛥𝛺0

𝑀2 .                   (2.29) 

where M = Pmod/Pmax is the optical modulation depth induced by resonator motion, Pmod 

and Pmax are the modulated and maximum power of the output, ΓΩ is the optical modulation 

transfer function that can be estimated by solving Eqs. (2.26) and (2.27).   

The oscillation stability of a free running OMO is maintained by the self-thermal 

locking mechanism [41]. Basically, In the thermal equilibrium state when the cavity 

Lorentzian is on the right side of the pump line (pump frequency is blue detuned relative 

to the resonance frequency of the cavity), there is a self-stable equilibrium since a small 

pump power decrease will reduce the cavity temperature and consequently the cavity 

wavelength will drift to the left; this will increase the absorbed power and hence will 

compensate for the pump reduction (an increase in pump power will cause a small 

compensation to the other direction). Self-thermal locking strength is proportional to the 
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pump power strength and is a weak stabilization mechanism that can only maintain the 

OMO’s oscillation for up to several minutes. In chapter 3, we will discuss our new 

technique to stabilize the OMO by using a novel feedback locking method. 

2.3 A brief review of existing optomechanical cavities  

The simplicity and superior properties of silica microtoroidal optomechanical 

resonator/cavity have made it a suitable platform for investigating the applications of 

OMR/OMO particularly in communication and sensing. Relatively low threshold optical 

power (less than 1 mW), operation at room temperature and atmospheric pressure, 

supporting multiple mechanical modes that can be selectively excited and low phase noise 

oscillation (sub-Hz oscillation linewidth) are the most important characteristics of a silica 

microtoroidal OMO. However, relying on silica fiber-tapers for optical coupling, 

challenges associated with monolithic integration with other optical components, and 

limitation on the gOM imposed by geometry and dimensions, have fueled the search for 

alternative optomechanical resonators. During the past ten years many high quality 

optomechanical resonators have been developed and served as platforms for a large number 

of experiments. These devices appear as different architectures and based on variety of 

material systems, but they all are designed to support efficient coupling between the 

mechanical modes and the optical modes in a small integrated configuration. Figure 2.10 

shows some of these optomechancial resonators. 
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        (a)                               (b)   

   

  (c)             (d)                 (e) 

Fig. 2.10. Examples of optomechanical resonators: (a) Microdisk OMRs [42], fm = 480 

MHz and 757 MHz, Qm = 1500 and 350, Qtot = 1×105 and 5×104 for InGaP and AlGaAs, 

respectively. (b) Micro-ring OMR [43], fm = 41.97 MHz, Qm = 2000, Qtot = 3×105. (c) 

Microsphere OMR [44], fm = 63 MHz, Qm = 10000, Qtot ~108. (d) Zipper photonics crystal 

OMR [45], fm = 77.7 kHz, Qm = 16, Qtot = 5400. (e) Suspended membrane in Fabry-Perot 

cavity-based OMR [50], fm = 134 kHz, Qm = 1.1×106, Qtot = 16100. 

Microdisk resonator [42], shown in Fig. 2.10(a), is another example of WGM based 

optomechanical resonators (OMRs) with a structure similar to microtoroid. The fabrication 

process of these OMRs is similar to the hat of the silica microtoroid, however the reflow 

process (with CO2 laser) is eliminated. As a result, the optical quality factor of microdisk 

OMRs is smaller than that of the silica microtoroid but they can be made of a variety of 

materials. As such, microdisk OMRs can be made of materials with interesting nonlinear 

optical properties and optical gain material. These OMRs can support radiation pressure 

based optomechanical oscillation in room temperature and atmosphere [42]. InGaP and 

AlGaAs microdisk OMRs are two examples both fabricated on top of GaAs pillar. Their 

WGMs are excited in the wavelength range of 1500 ~ 1600 nm, with a measured Qtot of 

1×105 and 1×104 for the InGaP and AlGaAs microdisk OMRs, respectively. The self-
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sustained oscillation has observed in both microdisks. The InGaP microdisk reported in 

Ref. 42 oscillates at 480 MHz with threshold power of 1.1 mW and the AlGaAs microdisk 

oscillates at 757 MHz with a threshold power of 4.2 mW. 

Microring OMR is another type of optomechanical resonator [43], the SEM 

micrograph of an example microring OMR is shown in Fig. 2.10(b). In the OMR shown in 

Fig. 2.10(b), the structure is composed of a pair of vertically stacked silicon nitride rings 

connected to a pillar via very thin spokes. Using the spokes, instead of a membrane, reduces 

the mechanical loss to the pillar and reduces the mechanical stiffness of each ring resonator 

(enhancing the sensitivity to the optical forces between the rings). At the same time the 

optical scattering of the light circulating near the outside edge of the rings is negligible. In 

Ref. 43, the oscillation threshold power of 17.4 mW at WGM wavelength of ~1.55 μm has 

been reported.  

Silica microsphere, as the most well-known WGM microcavity, can also support 

optomechanical oscillation. Silica microsphere can be simply fabricated by melting the tip 

of a single mode fiber using CO2 laser. WGMs of silica microsphere can have optical 

quality factors as large as 108. Figure 2.10(c) shows an example of a silica microsphere 

OMO with two mechanical modes, with frequencies of 98 MHz and 63 MHz, that can be 

excited via radiation pressure with a threshold optical power of about 600 μW [44].  

Optomechanical interaction has been also reported in photonic crystal (PC) 

resonators with small dimensions down to nanometers. The first PC structure that was 

specifically designed to support strong optomechanical coupling, was the Zipper cavity 
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[45-47]. Typically, these kinds of OMRs are made of two closely spaced parallel beams 

that each supports a confined optical mode, the optical modes are coupled to each other 

and to the mechanical motion of the beams (via radiation pressure force [45, 46] or optical 

gradient force [47]). The extremely small optical mode volumes and device dimensions 

result in very strong optomechanical coupling (coupling constant gOM > 100 GHz/nm) and 

high oscillation frequencies in the gigahertz regime. However, the optical quality factor is 

very low for these devices. In Ref [45] the optomechanical oscillation was observed with 

threshold power of 200 μW in vacuum. 

Fabry–Pérot cavity with a moving mirror is the oldest platform, in fact the first 

platform, used to study the optomechanical coupling via radiation pressure [48]. One of 

the typical reported Fabry–Pérot OMR [49] has mechanical modes with sub-MHz 

frequencies. Figure 2.10(e) shows the photograph of a SiN membrane on a silicon chip 

which was inserted in a Fabry–Pérot cavity in Ref. [40]. Due to the large cavity length (~67 

mm) of this device, the optomechanical phenomena has been only observed in vacuum. 

Another example of using movable cavity end mirrors to study radiation pressure induced 

optomechanical coupling was discussed in Ref [50] and which was working at cryogenic 

temperature.  

One of the important parameters of the optomechanical devices is the frequency of 

the mechanical modes. Table 2.1 lists several examples of OMR devices sorted based on 

the frequency of their optomechanically coupled mechanical mode, the main parameters of 

each device are included. 
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Table. 2.1. Parameters of several examples of optomechanical resonators. 

Cavity 

Fabry-Perot 

cavity 

[51] 

Trampoline 

resonator 

[52]  

Zipper 

cavity 

[53] 

Photonic 

crystal 

[45] 

Waveguide-

DBR 

microcavity 

[54] 

Silica 

microtoroid 

[2] 

fm 84.8 Hz 9.71 kHz 27.5 kHz 77.7 kHz 100 kHz 
0.2~150 

MHz 

Q0 
775  

(Finesse) 

29000 

(Finesse) 
9500 5400 5000 108 

Qm 44500 940000 1.4 × 106 16 20000 2000 

gOM / / 5.5 GHz/nm 44 GHz/nm 4.5 GHz/nm 40 GHz/nm 

meff 0.69 g 110 ng 10 ng 5.6 ng 6.8 ng 20~2000 ng 

Pth 1.6 mW / >116 μW 200 μW 32 μW 0.05~1 mW 

dimension 12.3 mm 40 μm 
150 µm×60 

µm×400 nm 
470 nm 

1mm×1mm×50 

nm 
40~150 µm 

Working 

conditions 

Vacuum, 

room 

temperature 

Vacuum, 

room 

temperature 

Vacuum, 

room 

temperature 

Vacuum, 

room 

temperature 

Vacuum, room 

temperature 

Air, room 

temperature 

 

Cavity 

Photonic crystal 

Zipper  

[55] 

Silicon 

micro-disk 

[56] 

Photonic crystal 

nanobeam  

[47] 

AlN micro-

disk 

[57] 

fm 5~200 MHz 1.3 GHz 0.805~3.7 GHz 10.4 GHz 

Q0 3×108 3.5×105 4×105 81000 

Qm 50~150 1.5×106 2700 1830 

gOM 430 GHz/nm 722 GHz/nm 800 GHz/nm 
100 

GHz/nm 

meff 40 pg 6 pg pg~fg / 

Pth <1 mW 3.56 μW 100 μW / 

dimension 1×40 μm 4 μm 1×30 μm 550 nm 

Working 

conditions 

Air, room 

temperature 

Air, room 

temperature 

Air, room 

temperature 

Air, room 

temperature 

As evident from the table, the frequency of the mechanical modes range from 

serveral Hertz to tens of gigahertz, so, in principle, OMR devices could meet the frequency 

requirement of many applications that may benefit from the unique properties of OMR and 

OMOs such as those described in this thesis. 
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2.4 Optoelectronic oscillators (OEO) 

In 1994, a novel photonic oscillator, characterized by high spectrum purity, high 

frequency stability, was developed by X. S. Yao et al [58]. This oscillator, called 

optoelectronic oscillator (OEO), directly converts the continuous emission from a pump 

laser to radio frequency (RF) or microwave oscillations. OEO can produce spectrally pure 

RF oscillations with high level of frequency tunability and low phase noise, also it is 

capable of generating ultra-high frequency oscillations (up to 90 GHz reported [59]) which 

is limited by the speed of electro-optic modulator and photoreceiver used in the OEO loop. 

As a hybrid oscillator, OEO’s operation involves electromagnetic oscillations both at 

optical (~200 THz) and microwave/millimeter wave (1-90 GHz) and its output can be 

collected either as a microwave signal or as an intensity modulated optical carrier. OEO 

has unique properties that may be exploited in many applications in particular those that 

involve a combination of optical and electrical elements, devices, or systems. In this thesis, 

OEO has been used for sensing applications and study of nonlinear dynamics in coupled 

heterogeneous oscillators. 

Figure 2.11 shows the configuration used in a typical OEO [58, 60, 61]. Light 

generated by a laser is coupled to an electro-optical (E/O) modulator (e.g., Mach-Zehnder 

Modulator or MZM), the optical output of the modulator transmitted through a long optical 

fiber (serving as an optical delay line) and is detected by a photodetector. The output of the 

photodetector is amplified by an RF amplifier and then filtered by a bandpass RF filter. 

Finally, the filtered signal is applied to the RF drive port of the E/O modulator closing the 
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oscillator feedback loop. The feedback loop supports self-sustained electro-optical 

oscillations at frequency determined by the total group delay of the loop (dominated by the 

optical delay in the optical fiber), the bias point of E/O modulator, and the bandpass of the 

RF filter. The output of the OEO can be extracted as an optical signal using an optical fiber 

coupler or as an electrical signal using an RF coupler (as shown in Fig. 2.11).  

 

Fig. 2.11. A typical configuration used in a single loop OEO. 

Typically, two types of optical delay may be used in the feedback loop of an OEO: 

1) A non-resonant optical delay based on a long waveguide (e.g., an optical fiber). 2) A 

resonant optical delay on an optical cavity (e.g., a WGM optical microcavity). Both optical 

delays may also provide optical gain in the feedback loop.  

It is challenging to use a long optical delay line to maintain a stable oscillation 

frequency because the oscillation frequency of the OEO is determined by the optical path 

length inside the delay line that can be affected by temperature change (as the refractive 

index of the fiber may change via thermos-optic effect and the physical length may change 

due to thermal expansion). The long length of the optical delay line (that may be more than 

a kilometer), make the delay sensitive to small temperature changes. Moreover, the large 
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size of the fiber loop may also restrict its use in certain applications. 

An elegant solution to overcome the drawback of fiber delay line based OEO is 

replacing the fiber delay line by a high optical quality factor (Qtot) optical resonator [62~69] 

that provides a long delay proportional to its long photon life time in a small form factor. 

The long delay and the intrinsic narrow linewidth filter function provided by a high-Q 

optical resonator reduces OEO’s oscillation linewidth and its phase noise. Various optical 

resonators may be used in an OEO, for example, fiber based Fabry-Perot resonator [62, 

63], microspherical and microdisk resonators [64-67], fiber ring resonator [68, 69] and 

many others. Advantageously, high-Q optical resonators can also reduce the size of an OEO 

and enable its integration with other components and devices in one compact package. 

OEOs are widely studied and used in the scientific research and application 

domains. OEOs are very good candidates of either low phase noise RF sources or optical 

pulse generators. The RF frequency of OEOs can cover the band from HF all the way to V 

band with the phase noise as low as ~140 dBc/Hz at the frequency offset of 10 kHz [70, 

71]. In addition to its application as an RF source, the low phase noise optical pulses 

generated by OEO may be used in optical networking [72] and optical sampling [73]. OEOs 

are also useful for processing of optical data signals, for example, frequency multiplexing 

[74] and down-conversion/up conversion [75]. 

An important application of OEO is sensing. As mentioned above, the oscillation 

frequency of an OEO is very sensitive to optical properties of the delay line. The optical 

path length of a delay line may be affected by parameters such as temperature, strain, 
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vibration, and the like. As such each OEO may be used to monitor and measure small 

changes in these parameters. OEOs have been used to monitor and measure strain [76, 77], 

temperature [78-80], load stress [81], and refractive index [82, 83]. In chapter 7 of this 

thesis, a new sensing mechanism has been proposed and demonstrated based on coupling 

OEO to an electronic oscillator. It has been shown that these coupled systems may provide 

much higher sensitivity compared to sensors that use a single OEO. 

Another interesting application of OEOs is exploiting its rich dynamics to study 

nonlinear dynamical systems that may help understanding the oscillation mechanism in 

certain biological systems.   

Delayed feedback enables the OEOs to generate a wide variety of waveforms, with 

differing degrees of complexity that depend on the values used for parameters that control 

the behavior of OEO. In particular, the time-delay, feedback strength and filter parameters 

can be tuned to produce highly stable periodic waveforms [84, 85], as well as complex 

waveforms that show the characteristics of robust, high dimensional chaos [86-88]. In 

chapter 7 of this thesis, the nonlinear dynamics of OEO coupled to a physically dissimilar 

oscillator is studied both experimentally and theoretically. 

The basic characteristics of OEO have been studied by several research groups and 

several theoretical frameworks have been developed to capture the dynamics of the OEO. 

Here a brief review of two well-known theoretical frameworks used to describe oscillation 

in an OEO is provided.  
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2.4.1 Quasi-linear theory of the OEO 

Based on the typical configuration of OEO shown in Fig. 2.11, the optical power 

from the output port of E/O modulator is related to the applied voltage on the modulator 

Vin(t) by [59]: 

𝑃(𝑡) = 𝛼
𝑃0

2
{1 − 𝜂sin[𝜋(

𝑉𝑖𝑛(𝑡)

𝑉𝜋
+

𝑉𝐵

𝑉𝜋
)]}.             (2.30) 

where 𝛼 is the fractional insertion loss of the modulator, V𝝅is the half-wave voltage of the 

modulator, VB is the bias voltage, P0 is the input optical power, and η determines the 

extinction ratio of the modulator by (1+η)/(1-η). 

The optical output of the modulator is fed to the photodetector that generates an 

electrical signal proportional to the received optical power; this signal is then amplified by 

the RF amplifier. The output voltage of the RF amplifier can be written as: 

𝑉𝑜𝑢𝑡(𝑡) = 𝜌𝑃(𝑡)𝑅𝐺𝐴 = 𝑉𝑝ℎ{1 − 𝜂sin[𝜋(
𝑉𝑖𝑛(𝑡)

𝑉𝜋
+

𝑉𝐵

𝑉𝜋
)]}.       (2.31) 

where 𝜌 and R are the responsivity and load impedance of the photodetector, GAis the 

amplifier’s voltage gain, and Vph= (𝛼P0𝜌/2)RGA is the photovoltage. The OEO is formed 

by feeding the voltage signal of Eq. (2.31) back to the RF input port of the E/O modulator. 

The small signal open loop gain Gs of the OEO can be obtained by solving dVout/dVinat

Vin=0.IfweassumetheinputsignalVin(t)tothemodulatorisasinusoidalwavewith

an angular frequency of ω, an amplitude of V0, and an initial phase β as Vin(t) 

=V0sin(ωt+β), the linearized output of the RF amplifier can be solved to be: 

𝑉𝑜𝑢𝑡(𝑡) = 𝐺𝑠
2𝑉𝜋

𝜋𝑉0
𝐽1 (

𝜋𝑉0

𝑉𝜋
)𝑉𝑖𝑛(𝑡) = 𝐺(𝑉0)𝑉𝑖𝑛(𝑡).          (2.32) 

J1 is the Bessel function. It is obviously that the G(V0) is a nonlinear function of the input 
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amplitude V0 and its magnitude decreases monotonically with V0. 

Similar to other oscillators, the oscillation of the OEO starts from the noise transient, 

which is then built up and sustained by the feedback loop. we can suppose that the Vin(ω,t) 

is a noise transient which is a collection of sine waves with random phases and amplitudes, 

once the loop is closed, this noise circulates in the loop and the total field at any instant is 

the summation of all circulating fields, however only the frequencies satisfying a resonant 

condition can circulate in the loop. These frequencies may be determined by: 

𝜔𝑘𝜏
′ + 𝜙(𝜔𝑘)+𝜙0 = 2𝑘𝜋.                    (2.33) 

k is the mode number, τ' is the time delay resulting from the physical length of the feedback, 

ϕ0 is the initial phase induced by the modulator, its value is determined by the bias voltage 

VB. With Eq. (2.33) the oscillation frequency of OEO can be written as: 

𝑓𝑜𝑠𝑐 = (𝑘 +
1

2
)
1

𝜏
       for G(Vosc)<0.           (2.34a) 

𝑓𝑜𝑠𝑐 = 𝑘
1

𝜏
           for G(Vosc)>0.           (2.34b) 

here, τ is the total group delay of the loop, including the physical length delay τ' and the 

group delay resulting from dispersion in components used in the OEO circuit. Finally, the 

one or subset of frequencies that may exist in OEO may be selected by the pass band of the 

RF filter in the loop. 

The quality factor Q of the oscillator is 

𝑄 =
𝑓𝑜𝑠𝑐

∆𝑓𝐹𝑊𝐻𝑀
= 2𝜋𝑓𝑜𝑠𝑐

𝜏2

𝛿
.                    (2.35) 

δ is the input noise to signal ratio [60]. We can see the quality factor is larger for higher 

order modes and the longer delay line. 
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2.4.2 Delay differential equations of the OEO 

While the Quasi-linear model is a useful tool for understanding the intrinsic 

working mechanism of OEO and estimating he value of certain OEO parameters, i.e., 

frequency, linewidth, power and other similar parameters. but this model cannot capture 

the dynamical processes in the OEO. As such a brief review of a model that may be used 

to simulate the nonlinear dynamics of OEO is presented [86]. 

In most OEOs the E/O modulator is a Mach-Zehnder modulator (MZM), so the 

output optical power of the modulator is related to the input voltage of the modulator as: 

𝑃(𝑡) = 𝑃0𝑐𝑜𝑠
2(

𝜋

2

𝑉(𝑡)

𝑉𝜋
+ 𝜑0).                   (2.36) 

where P0 is the continuous-wave optical power entering the modulator, V(t) is the voltage 

applied to the modulator and 𝜑0 is the angle describing the bias point of the modulator. 

This output power incident on the photodetector and then is amplified by the RF amplifier. 

The output voltage of the amplifier may be expressed as:  

𝑉𝑜𝑢𝑡(𝑡) = 𝜌𝑅𝐺𝐴𝑃(𝑡).                   (2.37) 

 
Fig. 2.12. OEO block diagram that illustrates the implementation of delay differential 

equation model. 

A simplified block diagram for the OEO circuit that shown in Fig. 2.12 may help 

with understanding the nonlinear model discussed here. In order to simplify the analysis, 
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all variables are made dimensionless. The feedback voltage fed to the modulator is 

normalized to be 𝑥(𝑡) =
𝜋

2

𝑉(𝑡)

𝑉𝜋
, and all the remaining proportionality constants are also 

normalized to a single dimensionless factor that describes the round trip gain of the loop 

𝛽 =
𝜋

2

𝑅𝐺𝐴𝑃0

𝑉𝜋
. Using these normalized parameters, the input to the RF filter can be written 

as: 

𝑟(𝑡) = 𝛽𝑐𝑜𝑠2[𝑥(𝑡 − 𝜏) + 𝜑0].                 (2.38) 

the RF filter here can be regarded as a two-pole band-pass filter with the transformation 

function written as: 

𝐻(𝑠) =
𝑠𝜏𝐻

(1+𝑠𝜏𝐿)(1+𝑠𝜏𝐻)
.                     (2.39) 

where τL and τH are the time constants describing the low-pass and high-pass filters, 

respectively. In the time domain, a linear filter can be represented by state-space differential 

equations of the form: 

𝑑𝒖

𝑑𝑡
= 𝑨𝒖(𝑡) + 𝑩𝑟(𝑡).                    (2.40) 

and 

𝑥(𝑡) = 𝑪𝒖(𝑡) + 𝑫𝑟(𝑡).                   (2.41) 

here r(t) is the input to the filter, and x(t) is the output, u(t) is the two-dimensional state 

vectors for the filter, A, B, C, and D are the matrices that describe the band-pass filter: 

𝑨 = [
−(

𝟏

𝝉𝑳
+

𝟏

𝝉𝑯
) −

𝟏

𝝉𝑳
𝟏

𝝉𝑯
𝟎
],  𝑩 = [

𝟏

𝝉𝑳

0
], 𝑪 = [1 0],  and D=0.    (2.42) 

now the dynamics of OEO can be described by: 

𝑑𝒖

𝑑𝑡
= 𝑨𝒖(𝑡) + 𝑩𝛽𝑐𝑜𝑠2[𝐶𝑢(𝑡 − 𝜏) + 𝜑0].           (2.43) 
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that may be written as the function of filter’s output: 

𝑑𝑥(𝑡)

𝑑𝑡
= −(

𝟏

𝝉𝑳
+

𝟏

𝝉𝑯
)𝑥(𝑡) −

𝟏

𝝉𝑳
𝑢2(𝑡) +

𝟏

𝝉𝑳
𝛽𝑐𝑜𝑠2[𝑥(𝑡 − 𝜏) + 𝜑0].        (2.44)         

𝑑𝑢2(𝑡)

𝑑𝑡
=

𝟏

𝝉𝑯
𝑥(𝑡).                       (2.45) 

u2 is one of the two components of the state vector of the filter, another one is x. 

Equation (2.44) is a delay differential equation (DDE) that in chapter 7, will be used 

to investigate the dynamics of the OEO particularly in the context of coupled oscillatory 

systems. 
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Chapter 3 

Direct stabilization of optomechanical oscillators 

3.1 Introduction 

Since the observation of radiation-pressure-induced optomechanical RF oscillation 

in high-Q silica toroidal microresonators [1–3], optomechanical oscillators (OMOs) based 

on various platforms are fabricated [4–6], and their applications in sensing [7, 8] and RF-

over-fiber communication have been demonstrated [9, 10]. In almost all of these 

demonstrations, the stability of the oscillation has been limited by the intrinsic thermal 

optical self-stability [11, 12] and, therefore, the stability of pump laser power. As described 

in chapter 2, thermal optical stability, is simply a result of the interplay between the laser 

detuning resonant wavelength (Δλdet = λres - λlaser) and the heat generated by the absorption 

of the circulating optical power (through thermo-optical effect). While this relatively weak 

and short-lived stability is sufficient for proof-of-concept demonstrations, for practical 

applications, the oscillation has to be stabilized for a long period of time. Note that the 

intrinsic thermo-optical self-stability is only effective at high optical pump power which 

also results in the generation of high harmonics in optomechanical oscillation spectrum [13, 

14]. For single tone oscillation, the low optical pump power reduces the effectiveness of 

thermal stabilization resulting in random variation of oscillation amplitude and, eventually, 

complete suppression of optomechanical gain. Besides, thermal self-stability cannot 

prevent oscillation amplitude changes due to ambient temperature variations, and cavity-

waveguide coupling gap change [11]. Stability of the oscillation amplitude and frequency 
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of an OMO is critical in all applications where OMO serves as an oscillator or sensor. For 

example, when OMO is employed in RF over fiber communication links [9, 10], 

underwater acoustic communication links [15, 16], or used to suppress the phase noise of 

other oscillators (e.g., electrical oscillators) via injection locking as discussed in chapter 7 

of this thesis, its stability directly affects the performance of the system. 

Well-known techniques developed for locking the laser wavelength to resonant 

wavelength of optical resonators (i.e., Pound–Drever–Hall [17] and Hansch–Couillaud 

[18]) have been used for stabilizing microcavity-based devices such as lasers and 

parametric oscillators and measuring the mechanical quality factor of optomechanical 

resonators [17, 18]. These methods can only lock the laser detuning from the cavity 

resonance (Δλdet = λres - λlaser), while the optomechanical oscillation amplitude is directly 

affected also by the pump power and coupling gap (in addition to wavelength detuning). 

As shown in Fig. 3.1 and discussed in chapter 2, the optomechanical gain (and 

consequently optomechanical oscillation amplitude), is affected by four parameters [13]: 

1) The detuning between the pump laser wavelength and the resonant wavelength of the 

cavity (det), 2) pump laser power (PLaser), 3) the frequency of the excited mechanical 

mode (fmech) , and 4) the coupling factor (gOM). Temperature variation affects both fmech 

and , by changing the geometrical characteristics of the microresonator (e.g., minor and 

major diameters)  fmech can be also affected by det  and Plaser through optical spring effect. 

As such, the impact of optical input power, coupling gap or temperature variation on the 

optomechanical oscillation amplitude cannot be mitigated only by keeping det constant. 
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Moreover, implementation of the above mentioned techniques adds to cost, complexity, 

and, more importantly, power consumption of the system because they use extra 

components (e.g., optical phase modulator, RF mixer, RF power source, etc.). The Hansch–

Couillaud method uses perpendicularly polarized beams to generate the error signal which 

also makes the system more susceptible to polarization fluctuations in fiber-based systems. 

Apart from these disadvantages, to the best of our knowledge, none of the above mentioned 

methods has been used for stabilizing OMOs. In this chapter, we demonstrate that the 

stabilization of the oscillation amplitude (Aosc) of silica microtoroid OMOs using Aosc itself 

as the feedback parameter and laser detuning (det) as the control parameter, can suppress 

the slow amplitude and frequency variations resulting from temperature variation, coupling 

gap variation and laser wavelength shift.  

    
(a)                             (b) 

Fig. 3.1. Relation between oscillation amplitude and feedback system parameters: det = 

λresonance - λlaser, pump laser detuning from the cavity resonance; GOM, optomechanical gain; 

Plaser, pump laser power; fmech, mechanical oscillation frequency; Temp, ambient 

temperature. (a) Standard locking method where det is locked and (b) proposed method 

where the oscillation amplitude or RF power is locked. 

Figure 3.1 shows the difference between the feedback in conventional cavity 

locking techniques (part-a) and the proposed method for OMO (part-b). Clearly the 

conventional approach (shown in part-a) cannot suppress the variations of the 
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optomechanical gain due to a change in coupling gap, pump laser power or mechanical 

frequency variation, simply because det can remain constant while these parameters 

change.    

The proposed feedback method can effectively compensate for the fluctuation and 

variation of the oscillation amplitude and, to some degree, the oscillation frequency drift 

which results from ambient temperature change, pump power fluctuation, and coupling gap 

change. This is possible because the optomechanical gain (GOM) can be controlled by det 

[3]. In other words, independent of the cause of variations, Aosc can be kept constant by 

adjusting det. We have evaluated the performance of the proposed technique using silica 

microtoroidal OMOs [1, 2, 13]. However, this technique is effective for all kinds of 

radiation-pressure-driven OMOs with different geometries and materials. 

It is worth mentioning that the Brownian noise associated with thermal vibration of 

the mechanical mode as well as the relative intensity noise (RIN) and frequency noise of 

the pump laser, will also affect the OMOs’ oscillation. However, as these are fast processes, 

their signature mainly appears as excess phase noise that broadens the linewidth of the 

optomechanical oscillation [19]. For given optical and mechanical quality factors, 

suppression of these noises is hard to achieve using external feedback loops and usually 

requires more advanced techniques (e.g., injection locking by a low noise oscillator), 

reducing the temperature and/or using a pump laser with lower noise.      

3.2 Experimental demonstration 

Figure 3.2 shows the experimental configuration used for the proof-of-concept 
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demonstration. The silica microtoroid OMO [1, 2] is driven by a 1550 nm tunable laser 

(Velocity 6300-LN, New Focus) through a silica fiber taper, and the output is fed to a 

photodetector (Model 1811, New Focus); the photocurrent (RF oscillation) is detected by 

an RF power detector which converts RF input power to DC voltage with a slope of -25 

mV/dB (ZX47-60-S+, Minicircuits), a DC block is used to eliminate the DC voltage 

corresponding to CW optical power. The detected voltage of the RF power detector is fed 

to the c ontrol system that generates the feedback signal to the tunable pump laser. A small 

part of the photocurrent is divided between an RF spectrum analyzer (for spectrum 

monitoring) and an oscilloscope (for temporal behavior and detuning monitoring). For this 

demonstration, we used a LabView program as the feedback controller since it allowed us 

to explore different control algorithms and fine-tune the corresponding parameters. Note 

that eventually the computer and the program can be replaced by a simple and compact 

PID controller for practical applications.  

 
Fig. 3.2. Experimental setup used for testing the proposed stabilization technique. 

The talk between the LabView program and the external equipment is through a 

Data Acquisition device (DAQ), it digitizes the incoming analog signal so that the 

computer (LabView) can interpret them, the DAQ then changes the computer-generated 
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digital signal to analog signal for controlling the external equipment. Here, the LabView 

program converts the DC voltage to the oscillation amplitude (Aosc) which is used to 

generate a feedback signal through the PID block (also implemented in LabView). The 

control signal is fed back to the tunable laser to adjust the wavelength detuning (Δλ) to 

compensate for oscillation amplitude variations. The required wavelength change and, 

therefore, the PID parameters, for stabilizing the oscillation amplitude depend on the 

relation between Δλdet and Aosc for the specific OMO under test. As such, initially we 

measured the relation between oscillation amplitude and wavelength detuning in the 

absence of the feedback. In this measurement, the power of the tunable pump laser is fixed, 

and the pump wavelength is scanned across the selected optical resonance while measuring 

Aosc using the oscilloscope.  

 
Fig. 3.3. Measured OMO oscillation amplitude Aosc plotted against normalized pump 

wavelength detuning for two levels of input pump power: Ppump = 1.25 × Pth and Ppump = 2 

× Pth. (Pth is the threshold pump power for optomechanical oscillation). The left inset is the 

transmitted optical power through the fiber-taper plotted against normalized wavelength 

detuning in the presence of optomechanical oscillation when Ppump = 1.25 × Pth. For the 

measurement: λ0 ~ 1533 nm; Qloaded = 4.3 × 106; fmech = 8.96 MHz (the first radial mode) 

and Pth = 243 µW. 

Figure 3.3 shows Aosc plotted against normalized wavelength detuning (Δλdet ∕2δ, 

where the 2δ is the loaded linewidth of the microtoroid OMO or 2δ ∼ λresonance/QL). For a 
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given pump power, the linear range within negative or positive slopes can be used to 

maintain Aosc by controlling Δλdet. (In our experiment, we use the negative slope, the blue 

line in Fig. 3.3.) Once the PID parameters are adjusted based on the selected slope, the 

oscillation amplitude (or power) can be locked to the desired value by selecting the 

corresponding set point. The program calculates the error (derivation from the set point) 

and applies a correction voltage on the piezo stage of the tunable laser that controls the 

laser wavelength. 

In order to test the performance of the proposed feedback loop, we used the 

proposed locking mechanism to stabilize two microtoroid OMOs while monitoring the 

oscillation amplitude and frequency. Figure 3.4(a) shows the measured oscillation 

amplitude for an OMO that oscillates at 8.96 MHz with and without a feedback loop with 

Ppump = 1.25 × Pth. When the feedback is on (black trace), the oscillation amplitude is 

almost equal to the set point value 0.015 V (the detected voltage corresponding to the 

desired Aosc). In the absence of feedback (blue trace, when only intrinsic thermal optical 

feedback maintains Δλdet), the oscillation amplitude slowly deviates from the initial value 

(set by adjusting the pump power, coupling, and detuning) and, eventually, collapses to 

zero. Figure 3.4(b) shows the same measurement when Ppump = 2 × Pth. As the pump power 

increased, the thermal locking becomes stronger, but still cannot prevent the slow drift of 

the oscillation amplitude (blue trace) in Fig. 3.4(b). Figure 3.4(c) shows the same 

measurement for another OMO that oscillates at 16.62 MHz when Ppump = 1.36 × Pth.  
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 3.4. Measured oscillation amplitude for different OMOs at various pump powers with 

and without feedback. (a) is the measured oscillation amplitude for OMO#1 with (black 

trace) and without (blue trace) feedback when Ppump = 1.25 × Pth and the setpoint is 0.015 

V. (b) is the measured oscillation amplitude for OMO#1 with (black trace) and without 

(blue trace) feedback when Ppump = 2 × Pth and the setpoint is 0.02 V. (c) is the measured 

oscillation amplitude for OMO#2 with (black trace) and without (blue trace) feedback 

when Ppump = 1.36 × Pth and the setpoint is 0.06 V. For OMO#1: Diameter = 64 μm, λ0 ~ 

1533 nm; Qloaded = 4.3 × 106; fmech = 8.96 MHz and Pth = 243 µW. For OMO#2: Diameter = 

64 μm, λ0 ~ 1557 nm; Qloaded = 8.3 × 106; fmech = 16.62 MHz and Pth = 30.95 µW. 

These measurements clearly show that this simple feedback mechanism can reduce 

oscillation amplitude fluctuations and enables long-term stability required for practical 
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applications. The standard deviation of the measured oscillation amplitude in the unlocked 

case (before its sudden drop) is 7 to 10 times larger than that of the locked case. These 

results show that even at larger Ppump, the intrinsic thermal-optical feedback is not sufficient 

to prevent oscillation degradation and fluctuations.  

We have also examined stabilizing the OMO using RF power (instead of oscillation 

amplitude) as the feedback parameter. Figure 3.5 shows the measured RF power when 

Ppump = 1.25 × Pth for OMO#1. As shown in the inset of Fig. 3.5, the measured relation 

between RF power and Δλdet is not as linear as the relation between Aosc and Δλde, but still 

it can be used to stabilize the OMO. This is important, as it allows one to directly use the 

output of the RF power detector (that is, a voltage proportional to RF power) as the 

feedback parameter. The proposed amplitude stabilization technique also reduces the OMO 

oscillation frequency variations due to the sensitivity of oscillation frequency to circulating 

optical power through an optical spring effect and optical absorption inside the cavity [13].  

 
Fig. 3.5. Measured RF power for OMO#1 with (black trace) and without (blue trace) 

feedback when Ppump = 1.25 × Pth and the setpoint is 1.4 V. Note that here the RF power is 

the feedback parameter. The measured RF power is calculated from the output voltage of 

the RF power detector which has conversion factor of -25mV/dB. The inset shows the 

measured RF power plotted against the normalized pump wavelength detuning when Ppump 

= 1.25 × Pth for OMO#1. 
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Figure 3.6 shows the temporal variations of the OMO mechanical oscillation 

frequency in the presence (black trace) and absence (blue trace) of the feedback. The high-

resolution measurement in the inset clearly shows that the feedback has reduced the 

frequency fluctuations from 900 to 300 Hz.  

 

Fig. 3.6. Measured RF frequency for OMO#2 with (black trace) and without (blue trace) 

feedback, the set point is 0.06 V for the locked operation. 

Temperature, pump power, and the coupling gap are the three main factors that 

affect the performance of OMOs. In order to demonstrate that the proposed feedback 

mechanism can compensate for the variations induced by these perturbations, we manually 

changed the ambient temperature, pump power, and the coupling gap for OMO#1 with and 

without the feedback loop and compared their impact on oscillation amplitude and 

frequency for each case. 

3.3 Stability of OMO against temperature change 

In order to verify that the proposed locking method can stabilize OMO in the 

presence of ambient temperature change, the OMO was placed in a box where the 

temperature inside the box was controlled by a heater, and monitored by a psychrometer 

(RH350, EXTECH Instruments) with temperature sensing resolution of 0.1°C. 
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Figure 3.7 shows OMO’s performance when the ambient temperature was 

increased from 26.4 °C to 27.7 °C. The oscillation amplitude of the unlocked OMO 

changed dramatically and, eventually, collapsed at 27 °C while that of the locked one 

remained constant to 27.7 °C [Fig. 3.7(a)]. Figure 3.7(c) shows while the feedback loop 

did not completely suppress the OMO oscillation frequency variation, it reduced its 

magnitude by nearly 6 times compared to oscillation frequency variation of the free-

running OMO (in the temperature range where it was still oscillating). 

 
Fig. 3.7. (a) Measured oscillation amplitude with (black point) and without (blue point) 

feedback, (b) correction signal (red point) for the locked case and (c) the corresponding 

measured RF frequency with (black point) and without (blue point) feedback for OMO#1 

when the ambient temperature increased from 26.4 ℃ to 27.7 ℃. 

3.4 Stability of the OMO against optical pump power variation 

The effect of the pump power change on the stability of an OMO was tested by 

manually increasing the optical pump power using a fiber-optic attenuator and monitoring 

the oscillation amplitude and frequency of the OMO. 

Figure 3.8 shows the OMO’s performance when the pump power increased 
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manually from 1.4 × Pth to 2.5 × Pth for OMO#1 under locked and unlocked conditions; for 

the free running (unlocked) OMO, the oscillation amplitude collapses when the pump 

power approached 2.3 × Pth. While the oscillation amplitude of the locked OMO remains 

constant even when the optical pump power is larger than 2.5 × Pth.  The impact of the 

pump power variation on optomechanical oscillation frequency is relatively small, 

however still the oscillation frequency of the locked OMO is about 5 times smaller than 

that of the unlocked OMO (10-4 versus 510-4) 

 
Fig. 3.8. (a) Measured oscillation amplitude with (black point) and without (blue point) 

feedback, (b) the correction signal (red point) for the locked case and (c) the corresponding 

measured RF frequency with (black point) and without (blue point) feedback for OMO#1 

when the pump power increased from 1.4 × Pth to 2.5 × Pth. Note: the pump power is 

increased manually with a step size of ~0.05 × Pth. 

3.5 Stability of the OMO against the coupling gap variation 

In order to test the effect of the coupling gap change on the stability of the  locked 

and free-running OMO, we manually decreased the coupling gap between the fiber taper 

and the microtoroid using a piezo stage with a resolution of 20 nm and monitor the output 
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of OMO. 

Figure 3.9 shows the OMO’s performance when the coupling gap decreased by 260 

nm for OMO#1 under locked and unlocked conditions. The mechanical frequency of the 

unlocked oscillator changes by 5 kHz and when the coupling gap decreased to 320 nm, it 

completely vanishes (not shown in the graph).  

 
Fig. 3.9. (a) Measured oscillation amplitude with (black point) and without (blue point) 

feedback, (b) correction signal (red point) for the locked case and (c) the corresponding 

measured RF frequency with (black point) and without (blue point) feedback for OMO#1 

when the coupling gap decreased by 260 nm. Note: the coupling gap is decreased manually 

with a step size of 20 nm. 

Clearly the proposed feedback locking method enables effective locking of the 

oscillation amplitude to a desired value (set point) and protects it from temperature change, 

pump power variation, and coupling gap change. This technique can overcome relatively 

large variations in order to compensate for temperature, pump, and coupling gap changes; 

the laser wavelength has been detuned 110 × 2δ (where 2δ is the loaded linewidth of the 

selected optical mode) in Fig. 3.7(b), 110 × 2δ in Fig. 3.8(b), and 66 × 2δ in Fig. 3.9(b). As 
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during these tests, the pump power and the coupling gap were changed manually with 

variable speed and through large jumps, the stable operation of the locked OMO verifies 

the fast response of the feedback mechanism which is required to correct both slow and 

sudden perturbations. 

3.6 Summary 

We have demonstrated a simple and effective locking method for stabilization of 

the oscillation amplitude of OMOs which requires only an RF power detector and a PID 

controller. Using the proposed mechanism, the oscillation amplitude can be locked to a 

desired value, and the RF frequency variations can be reduced without adding to the system 

cost and complexity. This feedback mechanism is effective in compensating for the effect 

of the temperature, pump power, and coupling gap variations. As such, this approach will 

pave the road for employment of OMOs in practical applications. For example, in chapter 

6 of this thesis, it is demonstrated that OMO can simultaneously serve as acousto-optic 

transducer and frequency down-converter in underwater acoustic links; stabilization of 

OMO with the prescribed method here may improve the performance of the corresponding 

underwater acoustic links.  
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Chapter 4 

Injection locking of optomechanical oscillators via acoustic waves 

4.1 Introduction  

In almost all applications of OMO (e.g., optical RF local oscillator, all-optical RF 

down-conversion [1, 2] and mass sensing [3, 4]), the stability of OMO and control over its 

phase and frequency are not only critical for the performance of the system, but also enable 

new functionalities. The frequency of an OMO is determined by its mechanical eigenmodes 

and therefore the microresonator size and structure. Typically, a single OMO can support 

few oscillation frequencies associated with mechanical modes that are strongly coupled to 

high quality (high-Q) optical modes of the cavity. These modes can be selected by adjusting 

the laser wavelength and coupling strength near optical resonant wavelengths with 

sufficient quality factor [1, 5, 6]. For an isolated OMO, fine tuning of each oscillation 

frequency over a limited range can be achieved by changing the optical power (through 

optical spring effect) as well as microresonator temperature [6, 7]. Alternatively, similar to 

other self-sustained oscillators, the oscillation frequency of OMO can be controlled by 

injection locking to another oscillator [8–11].  

Injection locking that has been extensively studied in electronic [12, 13] and 

photonic oscillators (lasers) [14], not only provides control over the oscillation frequency 

and phase, but also enables synchronization of multiple oscillators to each other or to an 

external source. In general injection locking involves coupling (injecting) a periodic signal 

with a frequency close to the oscillation frequency into the oscillator. If the amplitude of 
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the coupled signal is large enough, the frequency and phase of the oscillator are pulled and 

locked to that of the signal and therefore to the signal source. Basically, the injected signal 

generated by the “master” oscillator acts as a perturbation for the “slave” oscillator; so, the 

physical nature of the injected signal should be similar to one of the oscillating parameters 

in the slave oscillator. As such in electronic oscillators the injected signal can be an 

oscillating voltage, current or magnetic field and in lasers the injected signal is a coherent 

optical wave. Similarly, in an optomechanical oscillator the injected signal can be a 

modulated optical power (perturbing the circulating optical power), a periodic mechanical 

force, or a mechanical wave (perturbing the mechanical motion).  

The first experimental observation of injection locking of an OMO was reported 

based on optical pump modulation [8], where the amplitude of the optical pump was 

partially modulated using an electro-optic modulator. Basically, a small portion of the input 

power that was modulated at a frequency near fOMO, acted as the injection signal and the 

OMO was locked to the RF source that was driving the modulator. Later synchronization 

of multiple OMOs using this approach was theoretically analyzed [15] and experimentally 

demonstrated but only for few OMOs [10, 11]. While feeding a modulated optical pump to 

multiple OMOs in parallel or series configuration seems to be a trivial solution for 

synchronizing multiple OMOs, the fact that all these OMOs should have the same exact 

resonant optical wavelength, makes its practical implementation a very challenging task 

(in particular for oscillator networks). Fabrication of high-Q optomechanical cavities with 

the same exact resonant optical wavelengths is nearly impossible so these experiments 
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require active thermal tuning of the corresponding optical cavities and therefore individual 

electrical contact with each OMO.  

Recently it has been shown that OMO can be locked to an RF drive using 

electromechanical force directly applied on the OMO [16, 17]. This method uses a metallic 

electrode deposited on top of the OMO (in this case a toroidal silica microcavity) to convert 

the RF voltage to a modulated force. This approach suffers from several shortcomings: 1) 

deposition of metallic electrode on the optomechanical resonators not only makes the 

fabrication process complicated, but also degrades the optical and mechanical quality 

factor (this may explain the large threshold pump power in Ref. 17 that is more than one 

order of magnitude larger than similar OMOs). Clearly this problem is much more serious 

for nano scale optomechanical resonators such as zipper microcavities [18, 19], small 

microdisks [20] or spoke supported microrings [21] (as their optical and mechanical quality 

factors are extremely sensitive to the perturbation caused by any added structure). 2) In 

order to drive the electrodes, each OMO should be electrically connected to the RF source. 

While in a lab setting and for a single device the signal can be applied using special RF 

microprobes, in an integrated system the electric connection is a major challenge and limits 

the scalability of this technique.  

In this chapter the first experimental observation of injection locking of OMO via 

acoustic waves and characteristics of the locked OMO are described and, we demonstrate 

that the acoustic waves, generated by an electromechanical oscillator, can stimulate the 

mechanical mode coupled to the optical resonance, they can also pull and lock the 
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frequency and phase of the corresponding optomechanical oscillation to the frequency and 

phase of the electromechanical oscillator that generates them. We show injection locking 

can occur with an acoustic excitation that generates a mechanical amplitude modulation as 

small as 5% of the original optomechanically generated modulation (by radiation pressure). 

As long as the acoustic waves reaching the OMO can generate sufficient mechanical 

vibrations, the electromechanical transducer can be attached or fabricated at any location 

on the carrier chip without affecting the optomechanical properties of the OMO and 

interfering with its operation.  

As such injection locking of OMOs via acoustic waves is superior to the previously 

reported techniques since by eliminating the need for physical contact with the 

microresonator and modulation of the optical pump power, it opens a wide range of 

possibilities for injection locking and synchronization of multiple OMOs using an external 

oscillator at reduced cost and complexity. Low power and large-scale injection locking and 

synchronization of OMOs may benefit many applications such as optomechanical RF 

signal processing, optical communication and sensing.  

Beyond its engineering applications, this new technique can be used in fundamental 

studies in quantum measurement, quantum optomechanics and nonlinear dynamics of 

coupled oscillators where physical isolation is critical and phase/frequency control should 

be achieved with minimal interference with OMO’s intrinsic properties and optical 

feedback.  

For the proof of concept demonstration of this approach, we used a toroidal silica 
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microcavity as the optomechanical resonator/oscillator and a piezoelectric transducer as 

the electromechanical oscillator. While silica microtoroid has been selected because of its 

simplicity, relatively low threshold power and phase noise in atmospheric pressure [6], with 

proper design the same approach can be used to injection lock nearly any OMO (down to 

nanoscale size) without the need to modify its structure.  

Here we experimentally demonstrate and characterize the injection locking of two 

distinct mechanical modes of the selected microtoroidal OMO to an external piezoelectric 

transducer (PZT) via acoustic waves. Using a combination of finite element modeling for 

one of the modes and time-domain coupled differential equations, we verify that the 

behavior of the measured lock range as a function of RF input power fed to the PZT was 

in agreement with the classical theory of optomechanical oscillation. As such similar 

systems can be designed and optimized simply by finite element modeling of the acoustic 

energy exchange between the transducer and the selected mechanical mode and using the 

outcomes of the general coupled time domain differential equations governing the 

optomechanical oscillation. 

4.2 Experimental setup and acoustic excitation configurations    

Figure 4.1(a) shows the experimental arrangement used for characterizing the 

microtoroidal OMO and demonstration of injection locking via acoustic waves. Optical 

power from a tunable laser (λlaser ~1550 nm) is coupled to high-Q Whispering-Gallery 

modes (WGMs) circulating inside the microtoroidal optical cavity using a standard tapered 

silica fiber [22–24]. The coupling gap between the tapered fiber and the microtoroid is 
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precisely controlled with a nano-positioner. A photodetector (bandwidth = 150 MHz) is 

used to convert the optical power to electric signal for time and frequency domain analysis. 

   
         (a)                                   (b)                        

 

   
                (c)                        (d) 

Fig. 4.1. (a) Experimental arrangement for the injection locking of OMO. (b) The top view 

micrograph of the silica microtoroid coupled to a silica fiber taper. The microtoroid has a 

major diameter of D = 76 μm and minor diameter of d = 9.7 μm, the supporting silicon 

pillar has diameter of Dp = 31.5 μm. (c) Mechanical deformation associated with mode-1 

(fOMO,1 = 2.7 MHz) and mode-2 (fOMO,2 = 15.8 MHz), the modes’ shape is calculated based 

on FEM using COMSOL software. (d) The measured RF spectrum of the transmitted 

optical power at Δλ1 = -0.38λ1/QL1 (black trace), Δλ2 = -0.42 λ2/QL2 (red trace) 

corresponding to optomechanical oscillation of mode-1 with a frequency of 2.7 MHz and 

mode-2 with a frequency of 15.8 MHz, the higher harmonics that generated by the 

nonlinear optical transfer function of the cavity can be observed. The measured mechanical 

quality factor (Qmech) is 119 for mode-1 and 360 for mode-2. 

Using the standard OMO characterization procedure [6], in the absence of acoustic 

excitation, the high-Q WGMs with strongest coupling to two mechanical eigenmodes of 

the microtoroid were identified. Near each optical mode the coupling gap and wavelength 

detuning (Δλ = λlaser – λ0, λ0: resonant wavelength of the corresponding optical mode) are 
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optimized to obtain the minimum optomechanical threshold power (Pth) [22–25].  

The first optomechanical mode oscillates at fOMO,1 = 2.7 MHz and is excited by an 

optical mode with a resonant wavelength of λ01 = 1559.1 nm and loaded quality factor of 

QL1 = 3.3 × 106. The second optomechanical mode oscillates at fOMO,2 = 15.8 MHz and is 

excited by an optical mode with a resonant wavelength of λ02 = 1558.7 nm and loaded 

quality factor of QL2 = 6.1 × 106. The measured threshold optical input power for exciting 

these oscillations were Pth,1 = 90 μW and Pth,2 = 400 μW, respectively. Figure 4.1(b) shows 

the top-view micrograph of the silica microtoroid used in this experiment. After careful 

measurement of microtoroid dimensions, we used Finite Element Modeling (COMSOL 

software) to identify the mechanical eigenmodes associated with the measured oscillation 

frequencies. Figure 4.1(c) shows the calculated mechanical deformation associated with 

these two modes indicating that mode-1 (fOMO,1 = 2.7 MHz) is a flapping mode and mode-

2 (fOMO,2 = 15.8 MHz) is a breathing radial mode. Figure 4.1(d) shows the RF spectrum of 

the transmitted optical power when λlaser was tuned near λ01 (black trace) and λ02 (red trace) 

while optical input power (Po,in) was larger than Pth for the corresponding mechanical 

modes. Both modes are coupled to the circulating optical power through radial component 

of the microtoroid displacement (ΔR). As such the modulation amplitude of the output 

optical signal is proportional to ΔR [6]. The estimated effective mass is meff = 40 pg for the 

first mode and 360 pg for the second mode. Both mechanical modes were coupled to the 

optical mode with almost same optomechanical coupling coefficient of gOM = 1.05 GHz/nm 

estimated relative to the total displacement of the toroidal section (using the microtoroid 
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dimensions and Finite Element Modeling). Note that the ability of exciting and monitoring 

two distinct optomechanical modes of the OMO is important to demonstrate the possibility 

of injection locking of two different modes and showing the dependence of locking strength 

on mechanical deformation for a given acoustic excitation. 

 

Fig. 4.2. Three configurations used to study the injection locking of OMO. (a) 

Configuration-1, the PZT is attached to the bottom side of the silicon chip right below the 

microtoroid. (b) Configuration-2, the PZT is attached to the bottom side of the silicon chip 

but 4 mm away from the microtoroid in the horizontal direction. (c) Configuration-3, the 

PZT is attached to the side edge of the silicon chip with 4 mm away from the OMO in the 

horizontal direction. 

To study injection locking via acoustic waves, an external piezoelectric actuator is 

attached to the silicon chip that carries the OMO. The silicon chip has a dimension of 15 

mm (L) × 4.5 mm (W) × 0.3 mm (H) and the piezoelectric actuator is a disk with a diameter 

of 20 mm and thickness of 0.2 mm. The selected piezo transducer (PZT) is designed to 

sustain mechanical oscillations through its thickness mode at a resonant frequency of 10.1 

MHz. However, by adjusting the drive frequency it can oscillate at a wide frequency range 

from 2 to 16 MHz with slightly lower efficiency and with a FWHM linewidth of 26 Hz. 

We examined three configurations for exciting the mechanical modes of the microtoroid 

via acoustic waves generated by the PZT. These configurations are shown in Figs. 4.2(a)-

(c): In configuration-1 (Fig. 4.2(a)), The PZT is attached to the bottom of the silicon chip 
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right below the OMO, configuration-2 (Fig. 4.2(b)) is similar to configuration-1 but the 

PZT is moved 4 mm away from OMO; finally in configuration-3 (Fig. 4.2(c)) the PZT is 

rotated 90 degrees and is attached to the side of the silicon chip 4 mm away from the OMO.  

In all configurations, the piezo transducer is attached to the silicon chip using an 

acrylic double-sided tape (thickness = 70 µm) and is driven by a sinusoidal wave generated 

by an RF source. For this proof-of-concept demonstration the acoustic impedance of the 

PZT is not matched to that of the silicon chip as such a relatively small portion of the 

acoustic energy produced by the PZT is transferred to the silicon chip (only 27% and 15% 

of the acoustic energy generated by the PZT is transmitted to the silicon chip at 2.7 MHz 

and 15.8 MHz, respectively). In principle using proper acoustic impedance matching layers 

between PZT and the chip 100% of the acoustic energy can be transferred to the silicon 

chip within the operational bandwidth of the PZT. For each optomechanical mode and 

configuration, the impact of the acoustic waves (generated by the PZT) on the OMO is 

evaluated by varying the power and frequency of the RF signal delivered to the PZT. The 

spectrum of the modulated output power and the relative phase between OMO and the RF 

signal are measured using an RF spectrum analyzer and a lock-in amplifier (as shown in 

Fig. 4.1(a)). 

4.3 Experimental observation of OMO injection locking via acoustic 

waves   

For the initial demonstration OMO injection locking was examined using 

configuration-2. Figure 4.3(a) shows the RF spectrum of the modulated optical output 
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power near fOMO,1 in the presence (red trace) and absence (black trace) of acoustic excitation 

when Po.in = 2 × Pth,1. Here the RF power delivered to the PZT (PPZT) is – 40 dBm and its 

frequency ( = fPZT) is 1.7 kHz smaller than fOMO,1.  

   

(a)                                 (b) 

 

    

(c)                                  (d) 

Fig. 4.3. Injection locking of mode-1 and mode-2 using configuration-2. (a) Measured 

spectrum of the optical power in the presence (red) and absence (black) of the injection 

signal (blue) for the 1st optomechanical mode. (b) Measured spectrum of the optical power 

in the presence (red) and absence (black) of the injection signal (blue) for the 2nd 

optomechanical mode. (c) Measured spectrum of the 2nd optomechanical mode tuned by 

the injection signal. (d) Measured spectrum of the 2nd optomechanical mode while the 

frequency of the injected signal is tuned slightly beyond the lock range. Note, in (a) PPZT = 

-40 dBm, Po,in = 2.0 × Pth,1 and η = 0.138. In (b) - (d) PPZT = -5 dBm, Po,in = 1.4 × Pth,2 and 

η = 0.058. 

Figure 4.3(b) shows the RF spectrum of the optical output power near fOMO,2 in the 

presence (red trace) and absence (black trace) of acoustic excitation when Po.in = 1.4 × Pth,2. 

Here the RF power delivered to the PZT (PPZT) is – 5 dBm and its frequency ( = fPZT) is 

1.24 kHz larger than fOMO,2. It is apparent that the injected acoustic wave pulls fOMO,1 and 
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fOMO,2 and locks them to fPZT. Note that in all these measurements not only a major portion 

of the acoustic energy is lost due to impedance mismatch (between the PZT and the chip) 

and material loss, but also only a small fraction of the total energy delivered to the chip 

couples to the desired mode.  

As expected, the locking process reduced the OMO linewidth (from 400 Hz to 86 

Hz). Note that oscillation linewidth of the locked OMO is still limited by the 

thermomechanical noise in the microtoroid structure. The measured linewidth of the 

acoustic wave generated by the PZT driven by the signal generator is about 26 Hz 

(measured directly using two identical PZTs, one as transmitter and the other as receiver). 

So even in the subthreshold regime the linewidth of the blue peak is limited by the thermo-

mechanical noise in the microtoroid structure that is translated into optical domain through 

optical transfer function of the cavity.  

For both modes we have also measured optical modulation spectrum due to 

excitation of the mechanical mode by the PZT (blue trace) by lowering Po,in below Pth 

(making the radiation pressure gain less than mechanical loss). At this power level the 

frequency of the modulated optical power is equal to that of the signal generator (that drives 

the PZT) and its amplitude is effectively proportional to the amplitude of the acoustic 

excitation. As shown later sub-threshold measurements allow us to quantify the radial 

motion induced by the acoustic excitation (ΔRPZT) and its relationship with injection 

locking independent of the specific actuator and configuration used to transfer the acoustic 

energy. Figure 4.3(c) shows the spectrum of the optical output power near the frequency of 
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the mode-2 at eight different injection frequencies. Here fPZT is changed from fOMO,2 -1.36 

kHz to fOMO,2 + 1.40 kHz. As expected within a frequency range (Δflock = 2.76 kHz) around 

fOMO,2 (known as lock range) the injection locked optomechanical oscillation frequency is 

equal to fPZT and follows its variations. Figure 4.3(d) shows the frequency pulling effect at 

the edge of the lock range (again for mode-2). When fPZT is tuned slightly above and below 

the edge of the lock range, the oscillator is quasi-locked and the RF spectrum consists of a 

series of closely spaced decaying beat frequencies in the vicinity of fOMO,2. This is a well-

known effect that is studied in the context of electronic oscillators [12, 13] and is also 

observed in optically injection locked OMOs [8]. 

 

(a)                              (b) 

Fig. 4.4. Measured lock-range for mode-1 (a) and mode-2 (b) as a function of PPZT using 

configurations shown in Fig. 4.2. Note: the solid lines are exponential fit to the measured 

data, error bars along the vertical axis correspond to 2 × standard deviation (±500 Hz) for 

lock-range measurement. 

We have carefully measured the lock-range for both mechanical modes injection 

locked to the PZT based on configurations shown in Fig. 4.2. Figure 4.4(a) and 4.4(b) show 

the measured lock range as a function of PPZT for mode-1 and mode-2, respectively. The 

relation between RF power and injection strength for each configuration is complicated 

and requires a full 3D FEM analysis of the whole system (PZT + silicon chip + microtoroid 
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+ glue tape). However, the overall variation of the lock range for different modes and 

configurations can be explained based on the amplitude and the direction of mechanical 

vibrations generated by the PZT. 

For the selected PZT, RF voltage stimulates its thickness mode, so configuration-1 

and -2 generate mechanical vibrations along z-axis. As such for these configurations 

locking mode-2 requires more RF power compared to mode-1 because the vibrations along 

z-axis couple more efficiently to mode-1 compare to mode-2. Also, for both modes 

configuration-1 provides stronger injection compared to configuration-2 due to larger 

distance between PZT and OMO in configuration-2. Configuration-3 (where PZT is 90 

degree rotated compared to configuration-2) provides the weakest injection as the resulting 

mechanical displacements are perpendicular to the displacement associated with mode-1 

and mode-2. 

 

Fig. 4.5. RF spectrum of the OMO plotted against PPZT and the relative displacement ratio 

η for the 1st mode and using configuration-2. 

To show the dynamics of the locking process we have continuously monitored the 

oscillation frequency of mode-1 while increasing the input RF power at a fixed frequency 

offset. Figure 4.5 shows the measured spectrum of the OMO optical output power as a 
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function of PPZT and the corresponding values of η using configuration-2 when fPZT - fOMO 

= 1.35 kHz. As evident from the figure, above -65 dBm (η > 0.011) injection pulling begins 

and at ~-45 dBm (η = 0.111) the OMO is locked to the PZT.  

4.4 Estimating lock range based on general theory of injection locking  

Characterization of the lock range as a function of PPZT (RF power delivered to the 

PZT) for a given configuration is important and useful for designing injection locked 

OMOs. However, in order to understand and evaluate the variation of lock range based on 

the general theory of injection locked oscillators (developed in the context of electronic 

oscillators), we need to characterize its behavior as a function of injection strength (as 

opposed to PPZT). In electronic oscillators and optically injection locked OMOs this is an 

easy task because the injected signal and the force that drives self-sustained oscillations are 

identical (voltage and optical power respectively). However, when OMO is injection 

locked via acoustic waves, the injected signal is the RF power (or voltage) applied on the 

PZT while the driving force is the circulating optical power inside the cavity. Moreover, 

the strength of the mechanical stimulation of the corresponding mode strongly depends on 

the PZT characteristics and the configuration used to transport the acoustic wave to OMO. 

In order to characterize the lock range as a function of injection strength 

independent of acoustic excitation efficiency in a specific configuration, we define the ratio 

between the effective force (FA) inserted on the mechanical resonator by the acoustic wave 

and the optical force (FRP) due to radiation pressure as η = FA/FRP. These forces can only 

be measured through the response of the corresponding mechanical mode and the resulting 
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optical modulation. As shown in Ref. 6, in general the measured optical modulation depth 

(M) is related to the radial oscillation amplitude (ΔR) of the optical path length through ΔR 

= (M × D)/(2 × Γ × QL) where QL is the loaded quality factor of the optical mode, M is the 

measured modulation depth, D is the diameter of the microtoroid and Γ is the corresponding 

modulation transfer function that is ~1 when fOMO << c/λ0QL (a condition valid for both 

modes studied here). As such we use relative radial oscillation amplitude ratio or 

ΔRPZT/ΔRRP as η. Here ΔRRP is the radial oscillation amplitude of the microtoroid driven 

by the radiation pressure (Po,in > Pth) in the absence of external acoustic excitation (PPZT = 

0). ΔRPZT is the radial oscillation amplitude of the microtoroid induced by the acoustic 

wave (generated by the PZT) in the absence of selfsustained optomechanical oscillations 

(Po,in < Pth). In other words, ΔRPZT and ΔRRP are the radial oscillation amplitudes of the 

optical path length generated by acoustic energy and radiation pressure transferred to the 

corresponding mechanical mode respectively. Since below threshold the effective loss for 

a mechanical mode and therefore its response depend on Po,in, η is equal to ΔRPZT/ΔRRP 

only if ΔRPZT is measured below but close to threshold so that mechanical loss is almost 

canceled by the optomechanical gain (similar to above threshold condition where ΔRRP is 

measured). Note that above threshold ΔR is dominated by radiation pressure so ΔRPZT has 

to be measured below threshold.  

Using the above mentioned relation we have calculated ΔRRP for each Po,in (>Pth) 

by measuring M when PPZT = 0. Then for each PPZT we calculated ΔRPZT by measuring M 

while keeping Po,in below but close to threshold (~0.8 × Pth) to prevent radiation pressure 
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driven oscillation. Since ΔRPZT is a measure of the actual acoustic energy transferred to the 

corresponding mechanical mode, behavior of the lock range as a function of η is 

independent of efficiency of the PZT and acoustic energy transfer. Once the lock range is 

characterized as a function of η, finding the optimal configuration and actuation mechanism 

for minimizing the RF power required for achieving certain value of η can be addressed 

separately using acoustic-mechanical design and optimization techniques.  

Based on general theory of injection locking for self-sustained electronic oscillators 

[8, 12, 13] and the above explanation, the lock range (Δflock) can be written as:  

∆𝑓𝑙𝑜𝑐𝑘 = ∆𝑓𝑚𝑒𝑐ℎ
∆𝑅𝑃𝑍𝑇

∆𝑅𝑅𝑃
[1 − (

∆𝑅𝑃𝑍𝑇

∆𝑅𝑅𝑃
)2]−

1

2.               (4.1) 

where the Δfmech (≈ fOMO/Qmech) is the intrinsic linewidth of the passive mechanical 

resonator.  

Figure 4.6(a) and 4.6(b) show the measured lock range as a function of η (= 

ΔRPZT/ΔRRP = FA/FRP) for the mechanical mode-1 (part-a) and mode-2 (part-b) using 

different acoustic excitation configurations. For the mode-1, fOMO,1 = 2.7 MHz and Δfmech = 

23 kHz, for mode-2, fOMO,2 = 15.8 MHz and Δfmech = 44 kHz. The solid lines are the 

theoretical prediction based on Eq. (4.1). The uncertainty of η is proportional to [ΔRPZT × 

δ(ΔRRP) - ΔRRP × δ(ΔRPZT)]/(ΔRRP)2. ΔRPZT and ΔRRP are calculated based on measured 

modulation depth and therefore detected modulated optical power (Pmod,RF); so δ(ΔRRP) 

and δ(ΔRPZT) are proportional to δPmod,RF that was about ±0.8 dBm (standard deviation) for 

all measurements. The error bars along vertical axis corresponds to 2 × standard deviation 

(±500 Hz) for lock range measurement. 
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(a) 

 

 
(b) 

Fig. 4.6. Measured lock range plotted against the relative radial displacement ratio (η) 

based on different configurations for: (a) Mode-1 (fOMO,1=2.7 MHz) and (b) Mode-2 (fOMO,2 

=15.8 MHz). The solid lines are theoretical estimation based on Eq. (4.1). 

4.5 Phase locking of optomechanical oscillator via acoustic waves 

In order to verify phase locking associated with the observed frequency locking 

between OMO and the RF oscillator, we have measured their phase difference using a lock-

in amplifier (SR844, from Stanford Research). Figure. 4.7(a) and 4.7(c) show the temperal 

behavior of the measured phase difference between the RF signal driving the PZT and the 

OMO output (Δ  = OMO - RF) in the presence (ON) and absence (OFF) of the injection 

signal when fPZT = fOMO. While based on basic injection locking theory [12, 13] the phase 

difference between OMO and the injected signal should be zero when fPZT = fOMO (assuming 

PPZT is large enough to lock the OMO), here Δ is -100° and 90° at fPZT = fOMO. These 

phase off-sets are associated with delay between the injection signal (the acoustic excitation 
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fed to the toroid) and the RF drive due to propagation through RF cables, response time of 

the PZT (RC time constant) and acoustic wave propagation from the PZT to the toroidal 

section of the microresonator.  Figure 4.7(b) and 4.7(d) show the variation of Δ as a 

function of frequency detuning (Δf = fOMO - fPZT) within 5.54 kHz and 2 kHz lock range.  

   

  (a)                                 (b) 

 

  

  (c)                                (d) 

Fig. 4.7. Left column: temporal behavior of the measured phase difference between RF 

signal fed to PZT and the OMO optical output power (Δ = OMO - RF) in the presence 

(ON) and absence (OFF) of injection signal when fPZT = fOMO for (a) the mode-1 measured 

using configuration-1 and (c) the mode-2 measured using configuration-2. Right column: 

Measured Δ plotted against fOMO - fPZT for (b) Mode-1 measured using configuration-1 

and (d) Mode-2 measured using configuration-2. Here PPZT = -42 dBm and η = 0.147 for 

(a) and (b), and PPZT = -9 dBm and η = 0.037 for (c) and (d). 

 

4.6 Modeling of injection locking using classical theory of the 

optomechancial oscillations and COMSOL FEM 

We have used the time-domain classical theory of optomechanical oscillation [22, 
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23] to calculate the lock range as a function of the PPZT. The optomechanical oscillation 

can be described by two coupled differential equations that govern the temporal variation 

of radial component of the microtoroid displacement and the circulating (resonant) optical 

power. These two equations are coupled through radiation pressure of the circulating 

optical power that acts as a radial force on the microtoroid and is controlled by the optical 

frequency detuning (Δω0 = ωlaser - ω0, where ω0 is the resonant frequency of the selected 

optical mode). The presence of an acoustic excitation is equivalent to an additional 

harmonic external force (FA(t) = FA0cos(ΩPZTt)) that is added to the optical force (radiation 

pressure). The resulting coupled differential equations can be written as: 

𝑚𝑒𝑓𝑓
𝑑2𝑟

𝑑𝑡2
+ 𝑏

𝑑𝑟

𝑑𝑡
+ 𝑘𝑟 =

2𝜋|𝐴(𝑡)|2

𝑐
+ 𝐹𝐴0cos(𝛺𝑃𝑍𝑇𝑡).         (4.2)              

  
𝑑𝐴

𝑑𝑡
+ 𝐴 {

𝛼𝑐

𝑛
− 𝑖 [∆𝜔0 +

𝜔0𝑟(𝑡)

𝑅
]} = 𝑖𝐵√

𝛼𝑐

𝑛𝜏0
.             (4.3)                                                                                                                                                                   

here meff is the effective mass associated with the radial component of the corresponding 

mechanical mode, r(t) is the radial displacement of the microtoroid, b is the mechanical 

dissipation (that can be inferred from the measured sub-threshold acoustic bandwidth), k is 

the spring constant, |A(t)|2 is the circulating optical power, n is the refractive index of silica 

at 1550 nm wavelength, α is the optical loss in the cavity, R is the radius of the optical path 

(~radius of the microtoroid), B is the input pump field (normalized such that |B|2 is the 

optical pump power). FA0 is the amplitude of the equivalent radial force corresponding to 

the acoustic excitation.  

In order to calculate the optomechanical oscillation frequency as a function of the 

RF power that drives the PZT (PPZT) we have calculated the relation between FA0 and PPZT 



93 
 

using Finite Element Modelling (See Appendix A). Since modeling configuration-2 and -

3 requires a relatively large model and therefore long simulation time, we have limited our 

calculation to mode-1 excited via configuration-1. The cylindrical symmetry of 

configuration-1 allows reducing the simulated zone without significant impact on the 

outcome. The amplitude of the radial force inserted on the microtoroid when the PZT is 

driven at ΩPZT = 2πfΟΜΟ,1 can be written as (the derivation is in Appendix A): 

𝐹𝐴0 = 3.3 × 10−9 × 10(𝑃𝑃𝑍𝑇/20).                 (4.4) 

here PPZT is in dBm and it has been assumed that impedance of the RF source and the PZT 

are 50 and ~32 Ω respectively (based on the actual PZT and signal generator used in our 

experiment).  

Figure 4.8(a) shows the calculated lock range as a function of PPZT using Eqs. (4.2) 

- (4.4). The red dots are experimental results for the 1st mode and configuration-1 (extracted 

from Fig. 4.4). The good agreement between experimental and calculated results shows the 

validity of our assumptions and therefore the usefulness of this simple model for predicting 

the locking behavior of the optomechanical systems. Figure 4.8(b) shows the calculated 

the phase difference between FA(t) and r(t) ( = r0cos(ΩPZTt + γ)) for mode-1 and 

configuration-1 using the same equations, here PPZT = -42 dBm, and all parameters are the 

same as that used in the experiment to obtain Figs. 4.7(a) and 4.7(b). 
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  (a)                              (b) 

Fig. 4.8. (a) Calculated (solid line) and measured (red dots) lock-range for mode-1 

injection-locked using configuration-1. Here, b = 0.92×10-6 kg/s, n = 1.46, pump laser 

frequency is fixed 0.38 FWHM larger than the resonant frequency of the toroid, so Δω0 = 

0.38(ω0/QL1), ω0 can be inferred from λ01. Error bars along vertical axis correspond to 2 × 

standard deviation (±500 Hz) for the lock range measurement. (b) Calculated phase 

difference between the FA(t) and r(t) for mode-1 and configuration-1 using Eqs. (4.2) - 

(4.4), here PPZT = -42 dBm. 

Note that in the experiment we measured the phase difference (Δ) between r(t) 

and VRF(t) (=VRF,0cos(ΩPZTt-θ)), so although the behavior of the simulated (Fig. 4.8(b)) and 

measured (Fig. 4.7(b)) results are in good agreement, unlike the measured phase offset, the 

simulated phase offset is zero (γ = 0 at fPZT = fOMO,1). While the relation between amplitude 

of FA(t) and VRF(t) can be estimated using Finite Element Modeling, their phase difference 

(Δ) involves more advanced modeling tools and computational resources, so by using Δ 

= γ instead of Δ = γ + θ in our simulation we have ignored the delay between the RF 

voltage applied on the PZT and the acoustic excitation experienced by the microtoroid (we 

assume θ = 0). 

4.7 Summary 

An OMO can be locked to an electromechanical transducer via acoustic waves 

transmitted by the electromechanical transducer and received by the OMO. Even without 

acoustic impedance matching and optimizing the energy transfer between the transducer 
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and the OMO, a lock range of 17 kHz has been achieved with only 1 microwatt (-30 dBm) 

RF power. We expect the required RF power for a carefully designed impedance matched 

system to be significantly lower. For example, by eliminating the acoustic reflection 

between PZT and the silicon chip in configuration-1 (using an impedance matching layer), 

mode-1 can be locked within 17 kHz range with an RF power as low as 270 nano watts. 

Note that even in the absence of acoustic loss only a small portion of the transmitted 

acoustic energy is absorbed by the OMO (due to the small interaction cross-section of the 

OMO). As such with the same level of RF power multiple OMOs on a chip can be locked 

to a single RF source. Moreover, employing on-chip electromechanical transducers based 

on piezo electric thin films and interdigitated electrodes, enables excitation of various types 

of surface acoustic waves that may transfer the acoustic energy to the OMO more 

efficiently. Additionally, integrated acoustic waveguides and photonic crystals can be used 

to improve the directivity of the acoustic energy transferred to the target OMO. Using this 

approach, the acoustic energy from one transducer can be distributed among several OMOs 

or multiple transducers can be independently locked to groups of OMOs. These 

possibilities combined with the fact that injection locking via acoustic waves does not 

require power hungry optical modulators and direct physical contact with the OMO, makes 

this approach superior to the previously demonstrated techniques (based on optical 

modulation and direct application of electrostatic force) in particular for locking nanoscale 

OMOs and synchronization of OMO networks. While the physics and behavior of a 

network of synchronized OMOs has yet to be explored, theoretical studies on network of 
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synchronized oscillators has revealed very interesting properties that are promising for 

communication and sensing applications. For example, it has been shown that the 

frequency precision of a network of regenerative oscillators perturbed by N independent 

noise sources is improved by a factor of N [26].  

While we did not measure the phase-noise of the locked OMO (due to lack of access 

to a phase-noise analyzer), based on previous results (injection locking both based on 

optical modulation [8] and direct electrostatic force [17]), it is clear that in addition to 

synchronization and frequency control, injection locking via acoustic wave can reduce the 

phase noise of the OMO proportional to the power and phase noise of the RF source that 

generates the acoustic wave [27, 28]. 

As evident from Eq. (4.1), the lock range for an acoustically injection locked OMO 

is limited by its mechanical quality factor. The tradeoff between the lock range and 

mechanical loss (and therefore the threshold power) in the system is fundamental and may 

impose a limitation for certain applications. However, we expect synchronization to be 

more important than wide range frequency tuning in most applications. For example, it has 

reported that the phase difference between two synchronized oscillators, which that is 

highly sensitive to the frequency mismatch between oscillators, can be used to detect the 

changes of certain physical parameters [29, 30] (also see chapter 7); considering that single 

OMO has been used for sensing [3, 4], acoustically injection locked OMO, by looking at 

the phase difference change caused by the measurand, could exhibit enhanced sensitivity 

for sensing when compared with single OMO based sensor which looks at the frequency 
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change caused by the measurand [31]. Besides, injection locking of OMO via acoustic 

wave may enable the possibility to selectively control the optomechanical gain for different 

mechanical modes; In other words, one may be able to  select the dominant mode of an 

OMO  (from a family of modes supported by OMO), by changing the frequency of the 

injected acoustic signal. The selected optomechanical mode may dominate the OMO 

spectrum even after turning off the acoustic excitation; in such case OMO can potentially 

serve as a type of “non-volatile” optomechanical memory [32] or enabling the exploration 

of normally inaccessible stable dynamical attractors of the system [33, 34]. 
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Chapter 5 

Acousto-optical transducer with optomechanical gain 

5.1 Introduction  

High sensitivity acoustic transducers are essential for a large variety of applications 

such as sonar systems, hydrophones, non-destructive evaluation of structures, medical 

imaging and diagnosis. While most commercial sensors use piezoelectric crystals for 

acousto-electric transduction, during the past two decades a significant amount of effort 

has been dedicated to the development of their optical counterparts [1-10]. These efforts 

have been fueled by the need for reduced size, cost and weight (in particular for sensor 

arrays) and eliminating the susceptibility to electromagnetic interference [1]. Fiber Bragg 

gratings (FBGs), miniaturized Fabry-Perot resonators and to a lesser extent other optical 

microcavities have been used for converting the acoustic energy to optical amplitude 

modulation [1-10]. The resonant nature of these configurations results in the sensitivity of 

the transmitted/reflected optical output power to the optical path length modulation induced 

by the acoustic perturbation. In the acousto-optical sensors based on FBGs [3–6], acoustic 

wave generates a strain field that modulates the refractive index (through photoelastic 

effect) and the grating period of the fiber (through the applied strain). As a result, the Bragg 

wavelength and the reflectance (or the transmittance) of the FBG will be modulated 

proportional to the acoustic wave amplitude. In acoustic transducers that use Fabry-Perot 

(FP) or other microcavities [7–10], acoustic wave modulates the cavity boundary and 

therefore the resonance frequencies of the cavity; at a fixed laser wavelength this resonant 
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frequency modulation manifests itself as modulation of the reflected (or transmitted) 

optical power proportional to the acoustic wave amplitude. 

In all the above mentioned platforms, the amplitude of modulated optical power for 

a given acoustic excitation scales linearly with the optical input power to the system. 

As described in chapter 2, optomechanical resonators (OMRs) can sustain optical 

and mechanical resonance within the same structure and enable the strong coupling 

between them through radiation pressure and displacement of the cavity boundary [11–15]; 

as such they are natural candidates for acousto-optical transduction. In this chapter we 

explore the performance of optomechanical resonator (OMR) as an acousto-optical 

transducer in a regime where the radiation pressure is large enough to reduce the 

mechanical damping but does not exceed the threshold level for self-sustained 

optomechanical oscillation.  

We estimate the acousto-optical response of an OMR using a theoretical framework 

developed based on time domain equations for the sub-threshold OMR and the general 

optical transfer function of the optical cavity (described in chapter 2). By adding the main 

sources of noise (i.e., thermo-mechanical, rin noise and photodetection noise), we also 

estimate the signal-to-noise ratio for a given acoustic pressure amplitude incident on the 

OMR, as a function of the characteristics of the laser, the OMR and the photodetector used 

in the detection system. 

We show that when in the aforementioned regime, the acoustically induced optical 

modulation scales exponentially with the optical input power. As such by using a high 
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quality (high-Q) OMR and the radiation pressure assisted acoustic detection, the required 

optical power for generating a target optical modulation depth by a given acoustic 

amplitude can be significantly reduced compared to conventional acousto-optical 

transducers (where mechanical damping and optical power are decoupled). While here we 

use a high-Q silica microtoroidal OMR for the proof of concept demonstration, a similar 

behavior is expected using other types of OMRs.   

5.2 Experimental characterization of acousto-optical transduction 

assisted by optomechanical gain 

Figure 5.1(a) shows the experimental arrangement used for characterizing the 

acousto-optical response of the microtoroidal OMR. The silica microtoroid is fabricated 

using a process described in chapter two. The silica microtoroid has a major diameter of D 

= 60 μm, minor diameter of d = 7 μm, and it is attached on top of a silicon pillar. The silicon 

pillar that has a shape close to a truncated cone, a diameter of Dp = 25 μm at the point of 

contact with the microtoroid and a height of 35 μm. The silica microtoroid and the silicon 

pillar are fabricated on a rectangular silicon chip (20 mm by 5 mm) with a thickness of 300 

μm. Figure 5.1(b) shows the mechanical deformation associated with the first mechanical 

mode of the microtoroid calculated using finite element modeling (FEM). In our 

experiment, acoustic excitation frequency (fA) is tuned to the resonant frequency of this 

mode (fmech = 5.78 MHz). The optical power from a tunable laser (λlaser ∼ 1550 nm) is 

coupled to a high-Q Whispering-Gallery mode (WGM) of the microtoroidal optical cavity 

using a tapered silica fiber [12, 14]. The coupling gap between the tapered fiber and the 
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microtoroid is controlled with a nanopositioner. The polarization and power of the pump 

laser are controlled using a polarization controller and a tunable attenuator. 10% of this 

output optical power is directed to an optical power meter to monitor the power level and 

90% is fed to the fiber taper and coupled to the OMR. The transmitted optical power 

through the fiber taper is directed to a photodetector that generates a voltage proportional 

to the received optical power. This photo-voltage is measured using an oscilloscope and an 

electrical spectrum analyzer to characterize the optical modulation induced by the acoustic 

excitation.  

 

Fig. 5.1. (a) Experimental arrangement used for characterizing the OMR based acousto-

optical transducer. The inset is the micrograph of the silica microtoroid. (b) Calculated 

mechanical deformation associated with the 1st mechanical mode of the OMR which has a 

resonant frequency fmech=5.780 MHz (the deformation and the resonant frequency were 

calculated using finite element modeling). 

The acoustic wave only excites one of the mechanical modes of microtoroid that 

has resonant frequency almost equal to that of the acoustic wave. As illustrated in Fig. 5.1(b) 

the resulting mechanical motion modulates the radius of the microtoroid and hence the 

optical path length and the transmitted optical power. Note that the mechanical resonant 

frequency of the fiber taper is much lower (kHz range) and therefore its movement due to 
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acoustic wave is negligible. As such the only dominant response of the system to the 

incident acoustic wave is the modulation of the resonant frequency of the optical WGM 

inside the OMR.  

First, we measured the optomechanical properties of the OMR in the absence of 

acoustic excitation. The selected optical WGM mode had a loaded optical quality factor 

(QL = λWGM/δλL) of 8.3 × 106 and the first mechanical mode had a quality factor (Qmech) of 

578. The threshold power (Pth) for self-sustained optomechanical oscillation of this mode 

(at 5.78 MHz) was 68 μW. Using these measurements and FEM modeling we estimated an 

effective mass (meff) of 400 pg, the optomechanical coupling factor (gOM) of 6.4 GHz/nm 

and vacuum optomechanical coupling rate (g0) of 386 Hz for the first mechanical mode 

coupled to the selected WGM. To measure the acoustic response, a piezoelectric disk (PZT) 

with dimension of Ø10 mm × 0.4 mm was placed at a vertical distance of 3 mm above the 

chip and 10 mm away from the OMR. The PZT had a resonance frequency of fPZT ∼ 5.62 

MHz corresponding to its thickness mode; as such the acoustic wave was emitted mainly 

perpendicular to the chip (see Fig. 5.1(a)). The PZT was driven by a function generator and 

its oscillation amplitude was almost constant within the measurement range of 5.5 MHz to 

6.0 MHz.  

The acoustic pressure applied on the silicon chip by the PZT is estimated using 

FEM (COMSOL software). Figure 5.2(a) shows a plot of the simulated pressure field 

distribution when an RF power of -10 dBm (PPZT = -10 dBm) excites the thickness mode 

of the PZT. Figure 5.2(b) shows the pressure on the silicon chip right below the PZT (red 
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point in Fig. 5.2(a)) plotted against RF input power (PPZT) from the function generator.  

 

(a)                            (b) 

Fig. 5.2. (a) Simulated acoustic pressure distribution in air generated by the PZT when PPZT 

= -10 dBm and fA = 5.780 MHz. (b) Calculated acoustic pressure amplitude (PA) on the top 

surface of the silicon chip right below the PZT (red point in part-a) plotted against PPZT. 

Next, the acoustic response of the system was characterized by measuring the 

acoustically induced optical modulation depth near the mechanical resonance at different 

acoustic pressures and optical input power levels (Pin). For all measurements the laser was 

blue detuned from the cavity resonance with a normalized detuning (Δλ = (λlaser - λres)/δλlaser) 

of about -0.7. Figure 5.3(a) shows the detected voltage (which is proportional to the optical 

modulated optical power) as a function of the normalized input optical power (Pin/Pth) 

when acoustic pressure amplitude is 16.56 mPa. The response is measured at fA = fmech, 

fmech ± 1 kHz and fmech ± 2 kHz. 

The solid lines in Fig. 5.3(a) are the calculated results based on the coupled 

differential equations that govern the dynamics of optical and mechanical modes in OMR 

[12–16]. The exponential growth of the detected voltage with optical input power 

(especially when fA = fmech) is a signature of the optomechanical gain (as elaborated in 

section 5.3). Note that in the absence of optomechanical gain, the modulated optical power 
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at a given acoustic pressure amplitude grows linearly with Pin (as evident from previously 

reported results for acousto-optical transducers based on FBG and FP [3–9]).  

   
(a)                                (b) 

 

   
(c)                               (d) 

Fig.5.3. (a) Measured (dots) and simulated (solid lines) voltage as a function of the 

normalized input optical power at different acoustic frequencies (fA). (b) Measured power 

spectrum (PS) as a function of the acoustic pressure amplitude (different PZT drive power) 

on the silicon chip when acoustic frequency fA = 5.780 MHz and optical power Pin = 

0.96Pth. (c) Measured (dots, peak values in Fig. 5.3(b)) and calculated (solid line) voltage 

signal plotted against the incident acoustic pressure amplitude. (d) Measured SNR as a 

function of the normalized optical power at different PZT drive frequency. 

Figure 5.3(a) also shows that the acousto-optical response rapidly decays when the 

acoustic frequency is detuned away from fmech (due to the narrow linewidth of the 

optomechanical gain). Figure 5.3(b) shows the measured power spectrum (PS) of the 

modulated output of the OMR as a function of the acoustic pressure amplitude that 

impinges on the silicon surface right below the PZT transducer (red point in Fig. 5.2(a)). 

Here the sensitivity of the system is maximized by increasing the optical input power to 
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Pin = 0.96 × Pth. The amplitude of the signal, that appears as a peak (at fA = 5.78 MHz) 

above the background noise, is proportional to acoustic pressure amplitude. Figure 5.3(c) 

shows the detected peak voltages (from Fig. 5.3(b)) plotted against the incident acoustic 

pressure amplitude (the solid line is calculated). The maximum sensitivity of the transducer 

is estimated to be 1.11 V/Pa. Given the photodetector response (4.2 × 104 V/W) and the 

detected optical power level in the absence of acoustic excitation (Pdet ∼ 3 μW) in this 

measurement, the OMR can generate a modulation depth (Pmod/Pdet) of 14% induced by a 

pressure wave with an amplitude of 16 millipascal. Figure 5.3(d) shows the measured 

signal-to-noise ratio (SNR) as a function of normalized optical power when the acoustic 

pressure is 16.56 mPa. 

5.3 Analysis of the performance of OMR based acousto-optical 

transducer 

In this section, the response and noise performance of the OMR based acousto-

optical transducer are analyzed using a modified equation of motion for the mechanical 

mode (in the presence of thermal noise and optomechanical coupling) and the optical 

transmission function of the optical microresonator. 

5.3.1 Acousto-optical transduction in OMR 

1) Mechanical motion of the OMR 

As described in chapter 2, when the optical pump power is below the threshold 

optical power (Pin < Pth), the optomehcanical gain is not sufficient to induce the self-

sustained oscillation and the dynamics of the mechanical mode can be described by the 
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harmonic oscillator equation where the damping factor is replaced with an effective 

damping factor (Γeff) decreases as Pin is increased due to optomechanical gain [11]: 

𝑚𝑒𝑓𝑓
𝑑2𝑟(𝑡)

𝑑𝑡2
+𝑚𝑒𝑓𝑓𝛤𝑒𝑓𝑓

𝑑𝑟

𝑑𝑡
+𝑚𝑒𝑓𝑓𝛺𝑚

2 𝑟(𝑡) = 𝐹𝑎𝑝𝑝𝑙.          (5.1) 

𝛤𝑒𝑓𝑓 = 𝛤𝑚(1 −
𝑃𝑖𝑛

𝑃𝑡ℎ
).                       (5.2) 

𝐹𝑎𝑝𝑝𝑙 is the sum of all the forces applied on the OMR; in the experiment described above, 

it includes the forces induced by acoustic signal, thermal (Brownian) noise and Back action 

noise.  

1.1) Motion caused by acoustic signal 

The relation between the equivalent acoustic force (FA) and the RF power provided 

to the PZT (PPZT) is (see Appendix A): 

𝐹𝐴(𝑓) = 𝐶 × 10
𝑃𝑃𝑍𝑇(𝑓)

20 .                       (5.3) 

here C = ()/√10, where  = dr0/FA0 and  = dr0/VRF,0.  and  can be approximated using 

the method described in Appendix A. The amplitude of the mechanical oscillation induced 

by the equivalent acoustic force can be written as: 

𝑟𝐴(𝑓) =
𝐹𝐴(𝑓)

𝑚𝑒𝑓𝑓√((2𝜋𝑓𝑚)2−(2𝜋𝑓)2)2+(2𝜋𝑓)2𝛤𝑒𝑓𝑓
2
.              (5.4) 

where meff and fm are the effective mass and the frequency of the excited mechanical mode 

of the OMR. 

1.2) Motion caused by thermal Brownian noise 

As mentioned in chapter 2, the thermal Brownian force can be expressed as: 

𝐹𝑡ℎ = √4𝐾𝐵𝐵𝑇𝑚𝑒𝑓𝑓𝛤𝑚.                       (5.5) 
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note here, the B is the resolution bandwidth of the electrical spectrum analyzer that used 

for the measurement. The resulting thermo-mechanical excitation amplitude can be written 

as: 

𝑟𝑡ℎ(𝑓) =
√4𝐾𝐵𝐵𝑇𝑚𝑒𝑓𝑓𝛤𝑚

𝑚𝑒𝑓𝑓√((2𝜋𝑓𝑚)2−(2𝜋𝑓)2)2+(2𝜋𝑓)2𝛤𝑒𝑓𝑓
2
.               (5.6) 

1.3) Motion caused by Back action noise 

As described in chapter 2, the mechanical noise associated with back action noise 

can be expressed as: 

𝑟𝑏𝑎 =
2ℏ𝑔𝑂𝑀

𝑚𝑒𝑓𝑓
√
2𝑛𝑐𝑎𝑣

𝜅𝑡𝑜𝑡

1

√((2𝜋𝑓𝑚)2−(2𝜋𝑓)2)2+(2𝜋𝑓)2𝛤𝑒𝑓𝑓
2
.             (5.7) 

2) Derivation of the acousto-optical transduction of OMR 

Using the coupled mode theory (CMT) [17], it can be shown that the optical 

transmission through a waveguide that is coupled to a WGM microresonator can be written 

as [16]:  

𝑇(𝛥) =
(
𝜔0
2𝑄𝑒

−
𝜔0
2𝑄0

)2+𝛥2

(
𝜔0
2𝑄𝑒

+
𝜔0
2𝑄0

)2+𝛥2
.                       (5.8) 

where ω0 is the resonant frequency of the WGM, Δ = ωlaser - ω0 is the laser-cavity

frequency detuning, ωlaser is the frequency of the input optical wave, Qe is the external 

quality factor and Q0 is the intrinsic quality factor. If the OMR operates in the sideband 

unresolved regime (ω0 ≪ κ = ωlaser/Q0), the intra-cavity field and hence the field 

transmitted through the cavity, adiabatically changes according to variationofΔ = ωlaser - 

ω0 induced by the radial component of the mechanical displacement (r). In an OMR 
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detuning and mechanical displacement are related through, δΔ = gOM × r. As such, the 

optical transmission change ΔT induced by a shift of the cavity resonance frequency can 

be estimated as: 

Δ𝑇 =
𝑑𝑇

𝑑∆
𝛿∆.                           (5.9) 

given that Pout = T × Pin, the modulated transmitted optical power (Pm,o) that induced by r 

and received by the photodetector can be written as: 

𝑃𝑚,𝑜(𝑓) =
𝑑𝑇

𝑑∆
𝜂𝑖𝑛𝑃𝑖𝑛𝑔𝑂𝑀𝑟(𝑓).                  (5.10) 

here, the ηin is the optical power transmission efficiency from the OMR cavity to the 

photodetector and Pin is the optical pump power. If the photodetector has a transimpedance 

gain of RV (unit: V/W) and the generated photovoltage is measured using an electrical 

spectrum analyzer (ESA) with input impedance Z, the power spectral (PS, with unit: dBm) 

of the photoengraved electric power can be written as: 

𝑃𝑆(𝑓) = 10 ∙ 𝑙𝑜𝑔[
(𝑅𝑉𝑃𝑚,𝑜(𝑓))

2

𝑍
∙ 1000].               (5.11) 

Using Eqs. (5.10) and (5.11) while replacing the r with the radial displacement 

induced by acoustic signal rA, back action noise rba or thermal Brownian noise rth, 

transmitted optical power modulation and the PS associated with the acoustic excitation, 

thermal noise and back action noise can be calculated separately. 

5.3.2 Signal to noise ratio of the OMR based acousto-optical transducer 

Eqs. (5.4), (5.6), (5.7), (5.10), and (5.11) can be used to estimate the PS of the OMR 

output in the presence of equivalent acoustic force (due to the incident acoustic pressure), 

thermal Brownian noise and back action noise. In addition to thermal and back action noise, 
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the intensity noise (rin noise) of the laser that provides the optical input power to the OMR 

and the photodetection noise also contribute in the total noise in the OMR based acousto-

optical transducer. 

The laser intensity noise can be quantified using relative intensity noise. The 

resulting variation of the optical output power incident on the photodetector ⟨Prin⟩ is 

related to RIN through: 

〈𝛿𝑃𝑟𝑖𝑛〉 = 〈𝑃det〉
2 × 10 × 10

𝑅𝐼𝑁

10 × 𝐵.               (5.12) 

where Pdet is the instantaneous optical power incident on the photodetector. The measured 

electrical power spectrum due to laser intensity noise can be expressed as: 

𝑃𝑆𝑅𝐼𝑁(𝑓) = 10 ∙ 𝑙𝑜𝑔[
(𝑅𝑉√〈𝛿𝑃𝑟𝑖𝑛

2 〉)2

𝑍
∙ 1000].            (5.13) 

The photodetection noise comprises shot noise and the noise associated with the 

amplification of the detected photocurrent (thermo-electric noise). The variation of the 

photocurrent associated with shot noise (i2
shot) can be written as: 

〈𝛿𝑖𝑠ℎ𝑜𝑡
2 〉 =

2ℎ𝜈𝑙〈𝑃𝑑𝑒𝑡〉

𝜂𝑒
× 𝐵.                     (5.14) 

with the electrical power spectrum as: 

𝑃𝑆𝑠ℎ𝑜𝑡(𝑓) = 10 ∙ 𝑙𝑜𝑔[
(𝑅𝑉√〈𝛿𝑖𝑠ℎ𝑜𝑡

2 〉)2

𝑍
∙ 1000].             (5.15) 

here, l is the frequency of the received optical photons, and ηe is the quantum efficiency 

of the photo detector. The total noise associated with the electronic circuit that receives and 

amplifies the photocurrent can be estimated using the noise equivalent power (NEP) of the 

photodetector.  
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      〈𝛿𝑃𝑁𝐸𝑃
2 〉 = 𝑁𝐸𝑃2 × 𝐵.                     (5.16) 

with the electrical power spectrum as: 

𝑃𝑆𝑁𝐸𝑃(𝑓) = 10 ∙ 𝑙𝑜𝑔[
(𝑅𝑉√〈𝛿𝑃𝑁𝐸𝑃

2 〉)2

𝑍
∙ 1000].            (5.17) 

Figure 5.4(a) shows the calculated (solid lines) and measured (orange dots) RF 

spectrum of the electrical noise power generated by an OMR based acousto-optical 

transducer in the absence of acoustic excitation (FA= 0) when optical input power (Pin) is 

0.14 × Pth. The properties of the laser, photodetector and OMR used in this transducer are 

summarized in Table 1. 

Table 5.1. Parameters for the OMR based acousto-optical transducer experiment. 

Parameter meff Γm Pth Ωm kB B 

Value 400 pg 
2𝝅×12 

kHz 
68 μW 

2𝝅×5.78 

MHZ 

1.38×10-23 

m2 kg s-2 K-1 
11.2 Hz 

Parameter gOM C Qe Q0 ω0 Rv 

Value 
6.4 

GHz/nm 

160 

pN/V 
2.8×107 1.2×107 

2𝝅×192 

THz 

42000 

V/W 

Parameter ηin T Z RIN NEP ηe 

Value 0.047 300 K 50 Ω 
-118 

dBc/Hz 

2.5 

pW/√𝐻𝑧 
0.76 

Figure 5.4(a) shows the calculated RF spectrum associated with individual noise 

mechanisms that contribute in the total noise. Note that thermal and back action noise are 

indirectly measured through their impact on the transmitted optical power (modulated by 

mechanical displacement), as such their frequency dependence is similar to the opto-

mechanical transfer function. Figure. 5.4(b) shows the calculated and measured electrical 

noise power spectrum of the same OMR based acousto-optical transducer at several values 



114 
 

of optical input power (Pin). As expected, the total noise increases proportional to optical 

input power and is dominated by thermal Brownian noise.  

  
                    (a)                        (b) 

Fig. 5.4. Calculated and measured noise spectrum of the optical power transmitted through 

OMR based acousto-optical transducer in the absence of acoustic excitation. (a) The noise 

generated via different noise mechanisms (calculated) and the measured total noise when 

Pin = 0.14Pth. (b) Calculated and measured total noise at various pump powers with Pth = 

68 μW. 

As evident from Fig. 5.4(b) increasing the optical power, results in larger average 

noise that is amplified within a narrow bandwidth (around fOMO) due to the increased 

optomehcanical gain (similar to experimentally observed behavior reported in Fig. 5.3(a) 

and (b)). 

Figure. 5.5 shows the calculated and measured electrical power spectrum of the 

transducer in presence of acoustic excitation at different levels of optical input (pump) 

power and different acoustic frequencies. The colored dotted lines are the measured spectra 

while the black dots and the solid line are the calculated signals and the noise spectra 

respectively (calculated separately). For the most part, the measure and calculated spectra 

are in good agreement. However, in some spectra the measured signal is larger than the 

calculated signal when fPZT < fmech = 5.780 MHz and smaller than the calculated signal when 

fPZT > fmech. This is because for calculated signals the acoustic energy transfer efficiency is 
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considered to be frequency independent and equal to value calibrated at the single 

frequency value fPZT = fmech = 5.780 MHz; in the experiment however, the frequency 

dependence of the impedance mismatch results in less loss at frequencies lower than 5.78 

MHz and more at frequencies larger than 5.78 MHz.   

 

Fig. 5.5. Power spectrum of the transducer in the presence of acoustic excitation calculated 

and measured at different levels of optical input (pump) power and different acoustic 

frequencies when PPZT=10 dBm. The colored dotted lines are the measured spectra while 

the black dots and the solid lines are the calculated signals and the noise spectra 

respectively (calculated separately). 

Figure 5.6 shows calculated signal-to-noise ratio (SNR) at fPZT = fA = fmech, fmech  

1kHz, fmech  2 kHz plotted versus normalized optical power. At very low optical power 
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(Pin/Pth < 0.1) the noise is dominated by photodetector noise and RIN noise, for higher 

power levels, where the contribution of optomechanical gain becomes relevant, thermal 

noise becomes dominant (also shown from the calculations presented in Fig. 5.4). 

 

Fig. 5.6. Calculated signal-to-noise ratio (SNR) at fPZT = fA = fmech, fmech  1kHz, fmech  2 

kHz (where fmech = 5.780 MHz) plotted versus normalized optical power. 

As evident from Fig. 5.6, similar to the experimentally measured data shown in Fig. 

5.3(d), SNR is almost independent of the input optical power indicating that 

optomechanical gain enhances the thermal noise and the acoustic excitation equally. Note 

that in contrast to Fig. 5.3(d), in Fig. 5.6 SNR is independent of optical input power and 

frequency. The small variations observed in the measured SNR (at different frequencies 

and optical input powers) are associated with the optical coupling instabilities during the 

measurement that result in optomechanical gain variations (in particular the large variation 

at fmech+1 kHz) and the frequency dependence of acoustic impedance mismatch that has 

been ignored in the calculations. An SNR of 27 dB with an acoustic pressure amplitude of 

16.5 mPa means that the ultimate limit of detection (LoD) for the OMR tested here is about 

33 μPa. Ideally this limit can be obtained with a detected optical power level of 3 μW, 

given the optical losses in system, the required input optical power can be 30 μW (which 
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is also limited by the Pth). We believe modifying the design of the silicon substrate for 

optimal acoustic impedance matching, larger interaction cross-section and more efficient 

energy transfer to the OMR can improve the performance another order of magnitude.  

5.4 Comparison between OMR based acousto-optical transducer and 

other types of acousto-optical transducers 

The response of the transducers that use optical resonance for translating a given 

acoustic pressure amplitude (PA) to optical modulation, the sensitivity can be expressed as 

the optical modulation depth: 

Modulation depth = Pmod / Ptot = ηAO  PA  S 

where ηAO (=dλres/dPA unit: nm/Pascal) is the acoustically induced resonant wavelength 

change and S (=dT/dλres unit:1/nm) is the optical transmission slope. Pmod and Ptot are the 

modulated and total detected optical powers respectively. This definition is independent of 

the photodetector response and allows for a fair comparison among different acousto-

optical transducers. S is a fixed number for a selected mode of a specific optical cavity at 

a given laser detuning (Δλ = λlaser - λres). ηAO depends on the mechanical response of the 

transducer and the strength of acousto-optical coupling but typically it is independent of 

Ptot (or Pin) in previous reported acousto-optical transducers [3-9]. In the OMR used in our 

experiment the large optical quality factor of the cavity not only results in a large S but also 

enables strong mutual coupling between mechanical and optical modes. When the laser 

wavelength is blue detuned from the optical resonance (Δλ < 0), this optomechanical 

coupling manifests itself as optomechanical gain or reduction of the effective mechanical 
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damping factor (Γeff) according to Eq. (5.2). 

As such for OMR ηAO becomes proportional to the optical power making the optical 

modulation depth dependent on Pin. In other words, the optical power not only serves as a 

high sensitivity readout but also amplifies the acoustic response. To our knowledge none 

of the acousto-optical transducers reported so far (primarily based on FBG and FP) 

exhibited such behavior.  

 
Fig. 5.7. The measured modulation depth (ratio between modulated optical power and the 

power impinged on the photo-detector) versus the power impinged on the photo-detector 

at fixed acoustic pressure for an FBG based transducer [6], a Fabry-Perot based transducer 

[8] and the microtoroidal OMR (this work), the solid curves/lines are fitted to the measured 

data. 

Figure 5.7 shows the modulation depth plotted against Ptot for the microtoroidal 

OMR and two previously reported optical hydrophones [6, 8] used as examples. For FBG 

and FP based acousto-optical transducers, modulation depth is estimated based on the 

measured response reported in Refs. 6 and 8, respectively. Here the acoustic pressure 

amplitude is fixed however the responses in each case are measured at optimal frequencies 

for each device. The FBG does not support optomechanical gain and the low optical quality 

factor of the FP resonator (three orders of magnitude smaller than that of the microtoroid 

OMR) also makes the optomechanical gain negligible. As such ηAO and therefore the 
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response of both transducers is independent of optical power.  

As evident from Fig. 5.7, even at low optical powers (where Γeff  Γ0) microtoroidal 

outperforms the other two transducers simply due to its large optical quality factor 

(resulting in large S) and large mechanical response (resulting in large ηAO). Effectively for 

a given acoustic pressure amplitude and target level of modulated optical power (Pmod), 

OMR requires 4 and 2 orders of magnitude smaller optical power compared to the selected 

FP and FBG based transducers [6, 8], respectively. As such OMR can provide high 

sensitivity with extremely low power consumption.  

Unfortunately, the bandwidth of the optomechanical gain is limited by the quality 

factor of the mechanical mode of the OMR and therefore the high acousto-optical 

sensitivity is only provided within a narrow bandwidth near the mechanical resonant 

frequency. Another evident limitation of the OMR based transducers is the fact that its input 

optical power (and therefore optical power modulation) is limited by the onset of 

optomechanical oscillation. This means that one cannot increase the modulated optical 

power beyond certain level by increasing the optical power. However, given the 

performance of modern low-noise photodetectors still a reasonably large SNR can be 

obtained.  

5.5 Summary  

In this chapter we have studied the radiation pressure assisted acousto-optical 

transduction in an optomechanical resonator (OMR). We have shown that high optical 

quality factor combined with strong coupling between optical and mechanical modes of an 
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OMR results in very high sensitivity to acoustic excitation with frequency equal to the 

frequency of one of the mechanical modes of the OMR. The sensitivity, that manifests itself 

as a large acoustically induced optical modulation, is a result of the high sensitivity of the 

optical transmission to mechanical deformation as well as optical reduction of the effective 

mechanical loss via radiation pressure. The proof of principle experiment based on a silica 

microtoroid OMR has shown that even without optimal acoustic design, 14% modulation 

depth can be induced by an acoustic pressure amplitude of less than 16 mPa. For a given 

acoustic excitation the microtoroidal transducer can generate the same level of modulated 

optical power as previously demonstrated acousto-optical transducers (e.g. FBG and FP 

based) with as large as four orders of magnitude lower input optical power. However, the 

maximum achievable modulated optical power is limited by the onset of self-sustained 

optomechanical oscillations. As such the OMR based acousto-optical transducer is suitable 

where very low power consumption is a critical factor. While the intrinsically narrow 

bandwidth of this transducer is a major limitation in general underwater sensing 

applications (where a flat and wide frequency response is required), for under water 

communication its ultra-high sensitivity and low power consumption are extremely useful. 

Note that the frequency of microtoroidal OMR can be lowered by increasing the 

microtoroid diameter; microtoroid based transducers with frequencies within 1-10 MHz 

range can be used for short distance and high data rate communication and those with 

frequencies within 100-1000 kHz can be used for longer distance and lower data rate. 
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Chapter 6 

Underwater acoustic signal detection and down conversion using 

optomechanical resonance and oscillation 

6.1 Introduction  

As described in chapter 5, nearly all optical hydrophones demonstrated to date use 

fiber Bragg gratings (FBG) and to a lesser extent miniaturized Fabry–Pérot (FP), photonic 

crystal (PC) and circular microcavities [1-5]. To achieve the desired acoustic sensitivity 

(comparable to the PZT based transducers), FBGs are usually wrapped around a mandrel 

or encapsulated in thick polymer coatings and require a relatively high level of optical 

power to generate a reasonable SNR [6]. So, while FBG based optical hydrophones have 

already enabled fabrication of remotely interrogated hydrophone arrays, there is still a need 

for further reduction of weight, size and power consumption for more efficient and larger 

hydrophone arrays. On the other hand, the miniaturized resonant optical hydrophones that 

provide high sensitivity in a small footprint, still consume a relatively high level of optical 

power. In chapter 5 it was shown that the optomechanical gain in optomechanical 

resonators (OMRs) can result in high sensitivity acousto-optical transduction when the 

optical input power to OMR (Pin) is below the threshold power required for self-sustained 

oscillation (Pth, typically less than 1 mW) [7]. As such using an OMR the required optical 

power for generating a given optical modulation amplitude can be significantly reduced 

compared to existing optical hydrophones where the impact of the optical power on 

mechanical damping is negligible. This property along with low power consumption and 
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small size make OMR an excellent candidate for underwater applications where reduced 

size, weight, and power consumption (SWaP) are important [8-15]. SWaP is particularly 

critical for underwater autonomous vehicles (UAVs) and large aperture sensor arrays due 

to constraints imposed by the lifetime of the power source, limited space, and 

hydrodynamic drag [16-18]. The resonant nature of OMR based acoustic transducers limits 

their sensitivity to a relatively narrow bandwidth near the mechanical resonant frequency; 

as such these transducers are good candidates for receiver design in multichannel 

underwater communication links where the information in each channel is carried by a 

different ultrasonic carrier. Using several carriers with different frequencies increases the 

total information transfer capacity of the link beyond the bandwidth limitations of these 

transducers. An added benefit of this approach is the isolation from the relatively high level 

of low frequency noise that exists in the sea [19, 20]. 

In this chapter, we first examine the performance of subthreshold OMR as a 

hydrophone in an ultrasonic underwater link based on a modulated ultrasonic carrier. Next 

we show that when Pin ≥ Pth, the resulting self-sustained oscillation of the so-called 

optomechanical oscillator (OMO) [21] directly down-converts the intermediate frequency 

(IF) or baseband signal from the ultrasonic carrier and eliminates the need for RF local 

oscillator (LO) and mixer in the receiver. The fact that in both cases the optical input power 

level is in sub-mW range and in the case of OMO an additional (~10 mW) power is saved 

(by eliminating the LO) makes OMR and OMO based acousto-optical receivers very 

attractive for underwater applications. 
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6.2 Theoretical analysis of the OMR/OMO based acoustic receiver in 

underwater acoustic links 

In the examples presented in this chapter, a high-quality factor (high-Q) silica 

toroidal microcavity on a silicon chip [22] is used for the proof of concept demonstration 

of OMR/OMO performance as acousto-optical transducers/acoustic receiver in ultrasonic 

underwater links; however similar performance can be expected from other kinds of OMRs 

that mentioned in chapter 2 [23-26].  

The operational principle of acoustic signal detection and down conversion in OMR 

and OMO is shown in Fig. 6.1. We assume that the acoustic signal is an RF carrier (with a 

frequency fC) modulated by a baseband signal (with a frequency fb). The acoustic wave is 

normally incident to the bottom of the chip that carries the microresonator (Fig. 6.1(a)). 

The acoustic carrier frequency is equal to the frequency of the first mechanical mode (fmech) 

of the microcavity (shown in the inset); while by adjusting the frequency, an acoustic wave 

can excite any of the mechanical modes, at normal incidence the acoustic energy most 

effectively couples to the fundamental mode. When the optical input power (Pin) is coupled 

to one of the Whispering Gallery modes (WGMs) of the microcavity with radius R0, the 

radial component of the acoustically induced mechanical displacement of the toroid r(t), 

modulates the resonant frequency of the WGM (ω0' = ω0 + ω0r/R0, where ω0 is the cold 

cavity WGM frequency) and therefore the transmitted optical power Pout. r is induced by 

two forces, optical radiation pressure force (Frad) and equivalent acoustic pressure force 

(FA). By tuning the frequency of the input power (ωp = 2𝝅v) to a frequency larger than ω0, 
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Frad results in optomechanical gain (GOM) that decreases the effective mechanical damping 

[21].  

 
(a) 

 

  

(b)                            (c) 

Fig. 6.1. (a) Schematic diagram showing mechanical excitation of a toroidal OMR by a 

normally incident acoustic wave. The red line is the optical waveguide (in this case fiber-

taper) coupled to the OMR. The inset is FEM simulation of the fundamental mechanical 

mode of the OMR (flapping motion). Operational principle of the device based on optical 

transfer function (OTF): (b) OMR functioning as an acousto-optical transducer and (c) 

OMO simultaneously functioning as acousto-optical transducer, RF local oscillator and 

mixer. FA: Equivalent acoustic pressure force, Frad: Radiation pressure force, Pm: 

Modulated optical power, r: radial component of the cavity displacement, Δ: the detuning 

between the pump frequency ωP and the real time cavity resonance ω0’. 

When Pin < Pth, the reduced mechanical loss only makes the structure more sensitive 

to external acoustic excitation [7]. Figure 6.1(b) shows the Lorentzian shape optical 

transfer function (OTF) of the corresponding WGM; in this case the instantaneous 

frequency detuning Δ(= ωP - ω0')  FA and OMR simply modulates Pout proportional to the 
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incident acoustic signal strength but with an efficiency much larger than its FBG or FP 

based counterparts [7]. Since a linear response is required, ωP should be tuned to the linear 

section of the optical transfer function. The detected signal will be a modulated carrier (a 

copy of the original signal) so the baseband (or IF) has to be down converted in electrical 

domain using an RF mixer and local oscillator. When Pin ≥ Pth, the radiation pressure force 

induces self-sustained oscillation of the cavity at a frequency which is almost equal to fmech 

(referred to as optomechanical oscillation frequency or fOMO).  

Clearly in the presence of optomechanical oscillation the signature of the single 

tone acoustic excitation at fA = fOMO in the transmitted optical power is negligible. In this 

case r (and therefor Δ) is proportional to FA + Frad (see Fig. 6.1(c)). During optomechanical 

oscillation the large variation of Δ involves the nonlinear part of the OTF and generates 

components proportional to FA × Frad in the spectrum of Pout (due to (FA + Frad)
2 terms). As 

a result, Pout will be also modulated at fb and the corresponding signal can be extracted 

simply by low pass filtering of the detected signal, so OMO simultaneously functions as 

an acousto-optical transducer and down-converter. Initial alignment of ωP to the nonlinear 

section of the OTF can enhance the strength of the nonlinearity and therefore efficiency of 

the down-conversion [27]. It is worth mentioning that this mechanism is different from 

optomechanical down-conversion of baseband from a modulated optical pump in an OMO 

(described in detail in Ref. 28). In the latter case the received optical signal and the 

optomechanical oscillation are naturally multiplied and the nonlinearity of the OTF does 

not play a major role.  
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Figure 6.2(a) and 6.2(b) illustrate the signal flow in the spectral domain for the 

acousto-optical link based on OMR and OMO respectively. 

 

(a) 

 

 

(b) 

Fig. 6.2. (a) Signal flow in the OMR based acousto-optical link. (b) Signal flow in the 

OMO based acousto-optical link. 

The dynamics of OMR/OMO driven by a modulated acoustic carrier signal 

(qualitatively explained above) can be numerically analyzed by solving the coupled 

differential equations governing the mechanical and the optical modes of the microcavity: 

𝑚𝑒𝑓𝑓

𝑑2𝑟(𝑡)

𝑑𝑡2
+𝑚𝑒𝑓𝑓𝛤0

𝑑𝑟(𝑡)

𝑑𝑡
+ 𝑚𝑒𝑓𝑓𝛺𝑚

2 𝑟(𝑡) 

=
2𝜋|𝐸(𝑡)|2𝑛

𝑐
+ 𝐹𝐴[1 + 𝑚𝑐𝑜𝑠(𝛺𝑏𝑡)]𝑐𝑜𝑠(𝛺𝑏𝑡).                                         

(6.1) 
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𝑑𝐸(𝑡)

𝑑𝑡
+ 𝐸(𝑡) {

𝛼𝑐

𝑛
− 𝑖 [∆0 +

𝜔0𝑟(𝑡)

𝑅0
]} = 𝑖𝐵√

𝛼𝑐

𝑛𝜏0
.             (6.2) 

𝐸𝑜𝑢𝑡(𝑡) = (1 −
𝜏0𝛼𝑐

2𝑛
)𝐵 + 𝑖√

𝜏0𝛼𝑐

𝑛
𝐸(𝑡).               (6.3) 

where meff is the effective resonator mass for radial motion, r(t) is the radial displacement 

of the microtoroid, Γ0 is the mechanical damping factor, Ωm (= 2𝝅fmech) is angular 

frequency of the microtoroid’s excited mechanical mode. E(t) is the circulating optical field 

amplitude in the cavity, n is the refractive index of the cavity, c is the speed of light in 

vacuum, α is the optical loss in the cavity, Δ0 = ωP - ω0 is the preset optical frequency 

detuning, R0 is radius of the toroidal microcavity, B is the input pump field, τ0 is the round 

trip time of the cavity and Eout is the optical field coupled out of the microtoroidal cavity. 

Eq. (6.1) governs the motion of the mechanical cavity driven by the two forces, the first 

term on the right-hand side corresponds to Radiation pressure force induced by the 

circulating optical power, the second term is proportional to the equivalent radial acoustic 

force (FA) which is proportional to the incident acoustic pressure (PA) [29]. Here the carrier 

frequency ΩC (= 2𝝅fC) is modulated by a baseband signal (Ωb = 2𝝅 fb) with a modulation 

index m. Eq. (6.2) governs the dynamics of the circulating optical field in the microcavity 

and Eq. (6.3) is the total optical output field [30]. 

6.2.1 Theoretical analysis of the OMR based acousto-optical transducer in 

underwater acoustic links 

When Pin < Pth, the optomechanical gain is not sufficient to induce the self-

sustained oscillation and the optomechanical dynamics can be described by a harmonic 
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mechanical oscillator where the effective damping factor (Γeff) linearly decreases with Pin 

due to optomechanical gain [31]: 

𝑚𝑒𝑓𝑓

𝑑2𝑟(𝑡)

𝑑𝑡2
+𝑚𝑒𝑓𝑓𝛤𝑒𝑓𝑓

𝑑𝑟(𝑡)

𝑑𝑡
+ 𝑚𝑒𝑓𝑓𝛺𝑚

2 𝑟(𝑡) = 𝐹𝐴[1 + 𝑚 cos(𝛺𝑏𝑡)] cos(𝛺𝐶𝑡) 

= 𝐹𝐴 cos(𝛺𝐶𝑡) +
𝑚

2
𝐹𝐴 cos[(𝛺𝐶 + 𝛺𝑏)𝑡] +

𝑚

2
𝐹𝐴 cos[(𝛺𝐶 − 𝛺𝑏)𝑡] 

= 𝐹1(𝛺1) + 𝐹2(𝛺2) + 𝐹3(𝛺3).              (6.4) 

     𝛤𝑒𝑓𝑓 = 𝛤0(1 −
𝑃𝑖𝑛

𝑃𝑡ℎ
).                    (6.5) 

Subsequently the radial displacement induced by each frequency component of the incident 

acoustic wave (Ωi, i =1, 2, 3) can be written as: 

𝑟(𝛺𝑖) =
𝐹𝑖(𝛺𝑖)

𝑚𝑒𝑓𝑓√(𝛺𝑚
2 −𝛺𝑖

2)2+𝛺𝑖
2𝛤𝑒𝑓𝑓

2
= 𝜒(𝛺𝑖, 𝑃𝑖𝑛)

𝐹𝑖(𝛺𝑖)

𝑚𝑒𝑓𝑓
.            (6.6) 

here χ is the mechanical susceptibility which depends on the acoustic frequency and the 

input optical power. The resulting variation in the transmitted optical power (T) can be 

calculated using the optical transfer function of the microcavity [32, 33]: 

   𝑇(∆) = 1 −
𝜔0
2

𝑄0𝑄𝑒

1

(
𝜔0
2𝑄𝑒

+
𝜔0
2𝑄0

)2+∆2
.                  (6.7) 

Here Q0 is the intrinsic quality factor of the corresponding optical mode, Qe is the external 

quality factor which is limited by the optical attenuation due to the waveguide resonator 

coupling loss. We assume the OMR operates in the unresolved sideband regime, where Ωm 

<< ω0/Q0 (in our experiment Ωm = 2𝝅 × fm = 2𝝅 × 4.61 MHz, ω0/Q0 = 2𝝅 × 121.61 MHz), 

T adiabatically follows the variations of detuning through δT = [dT/dΔ] × δΔ where δΔ = 

gOM × r(Ωi) and gOM is the optomechanical coupling coefficient of the OMR. Therefore, 

the modulated optical output power at each frequency can be written as: 
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 𝑃𝑚(𝛺𝑖) =
𝑑𝑇

𝑑∆
𝜂𝑃𝑖𝑛𝑔𝑂𝑀𝑟(𝛺𝑖).                    (6.8) 

The coefficient η characterizes the transmission loss from microcavity to the photodetector. 

Using Eqs. (6.6) - (6.8), Pm(Ωi) can be expressed as: 

𝑃𝑚(𝛺𝑖) = (
2𝜔0

2∆

𝑄0𝑄𝑒[(
𝜔0
2𝑄𝑒

+
𝜔0
2𝑄0

)
2
+∆2]

2)(𝜂𝑃𝑖𝑛𝑔𝑂𝑀)(
𝐹𝑖(𝛺𝑖)

𝑚𝑒𝑓𝑓√(𝛺𝑚
2 −𝛺𝑖

2)2+𝛺𝑖
2𝛤𝑒𝑓𝑓

2
).    (6.9) 

This equation shows that, as opposed to conventional acousto-optical transducers, 

the modulation amplitude at each frequency component or Pm(Ωi) grows super linearly 

proportional to Pin (because Γeff in the denominator of the last term linearly decreases with 

Pin). According to Eq. (6.9), the spectral components of the acoustic signal are 

independently mapped to optical domain (see Fig. 6.2(a)); as such the spectrum of Pout is 

proportional to the spectrum of FA or acoustic signal. Subsequently, the amplitude of the 

down-converted baseband signal can be calculated considering the photodetector response 

(β), conversion loss of the RF mixer (Lc) and the RF modulation index (m). Figure 6.3(a) 

shows the calculated down converted signal amplitude plotted versus normalized optical 

input power (Pin/Pth) for three different values of mechanical qualify factor Qm (= Ωm/Γ0).  

Here the acoustic wave is suppressed carrier signal with an amplitude of 0.2 Pa 

(corresponding to FA = 27 pN). All parameters are selected based on experimental values 

(see the figure caption, and the experimental result will be discussed in section 6.3.1). 

When Pin/Pth < 0.2, optomechanical gain is negligible (Γeff  Γ0) and Pm is proportional to 

Pin [2, 34]. 
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(a)                             (b) 

Fig. 6.3. (a) Estimated performance of the OMR as an acousto-optical transducer in the 

acoustic link: (a) rms voltage of the down converted signal at different values of Qm. The 

dashed lines are the estimated performance in the absence of optomechanical gain (Γeff=Γ0). 

(b) Simulated bandwidth plotted vs. normalized optical input power for different values of 

Qm. Here, η = 0.047, gOM =2𝝅×3.21 GHz/nm, fC = fmech = 4.61 MHz, fb = 1 kHz, FA = 27 

pN (corresponding to acoustic pressure PA = 0.2 Pa), β = 4.2×104 V/W, m = 21.08, Lc = -

4.7 dB, Δ0 = 0.4 × ω0/QL, λ0=1555.4 nm, Pth = 539 μW, Q0 = 1×107, QL = 6.1×106, meff = 

580 ng (the values are chosen based on the actual parameters in our experiments, see 

section 6.3.1). 

When Pin/Pth > 0.2, the optomechanical gain results in near exponential growth of 

Pm with Pin. The dashed lines are the estimated values in the absence of optomechanical 

gain (Γeff = Γ0). As such compared to conventional acousto-optical transducers OMR 

consumes less power to generate a given signal level. Figure 6.3(b) shows the simulated 3 

dB bandwidth vs. normalized optical power for different values of Qm. These plots suggest 

that the operational bandwidth of the transducer is limited by the mechanical resonance. 

As usual there is a bandwidth penalty associated with the higher sensitivity; however, by 

employing several carriers a multi-channel receiver comprising of several OMRs can 

support faster data rates. Note that even when Pin is much lower than Pth and the 

optomechanical gain is negligible, just the combination of low loss optical and mechanical 

modes make an OMR based acousto-optical transducer more sensitive and efficient than 
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the conventional FBG and FP based acousto-optical transducers [7].  

6.2.2 Theoretical analysis of the OMO based acousto-optical transducer in 

underwater acoustic links 

In the above threshold region, the response of radiation pressure driven OMO to a 

modulated acoustic signal should be evaluated by directly solving Eqs. (6.1) - (6.3). To 

show the feasibility of the direct down-conversion we have calculated optical modulation 

(δPout  |δEout|
2 that is equivalent to Pm) induced by a suppressed carrier acoustic signal. 

 

(a) 

 

(b) 

Fig. 6.4. (a) Simulated spectrum of the OMO’s output in the presence of modulated 

acoustic pressure force FA = 148 pN (corresponding to acoustic pressure PA = 1.1 Pa). The 

discontinuity between high and low frequency is made on purpose to help observing both 

part of spectrum with high resolution. (b) Simulated bandwidth of the down converted 

signal versus the mechanical quality factor Qm. Here the values of all parameters are 

identical to those used in Fig. 6.3 except that fb is 100 kHz. 

Figure 6.4(a) shows the simulated spectrum of δPout (the values of all parameters 

are identical to the ones used in section 6.2.1 except that fb = 100 kHz here).  Since the 

optomechanical oscillation is much larger than the acoustically induced modulation the 
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sidebands look very small. Here PA is 1.1 Pa. As expected, the mixing process in the 

optomechanical domain also generates a component at fb in the spectrum of δPout. Figure 

6.4(b) shows the bandwidth vs. quality factor of the mechanical mode when quality factor 

of the optical mode is QL = 6.1×106, in our simulation the down conversion bandwidth for 

the OMO is still determined by the mechanical quality factor. 

Note that analyzing the general behavior of the 3dB down-conversion bandwidth 

for the OMO based receiver (as a function of detuning and optical pump power) is 

complicated partly due to the fact that the location of the sidebands affect the oscillation 

amplitude of the OMO; in other words it cannot be assumed that OMO’s oscillation 

amplitude is independent of the received signal. 

6.3 Experimental demonstration of the OMR/OMO based acoustic 

receiver in underwater acoustic links 

For the proof of principle demonstration, we used high-Q silica toroidal 

microcavities (fabricated on a silicon chip) as the OMR and OMO [22]. Figure 6.5(a) and 

6.5(b) show the experimental arrangements used to characterize the performance of the 

acousto-optic receivers based on OMR (Pin < Pth) and OMO (Pin ≥ Pth) respectively. In both 

arrangements, a narrow linewidth tunable laser (1550 nm) generates the input optical power 

(Pin) that is coupled into and out of the microcavity through a fiber taper. The optical output 

power (Pout) is fed to a photodetector with responsivity (β) of 4.2×104 V/W. The carrier 

chip is encapsulated so that it can be immersed in water but to increase the distance from 

the transducer here only the bottom part is immersed so that the silicon chip is in direct 



135 
 

contact with water. The silicon chip has dimensions of 18 × 5 × 0.3 mm3 for both 

experiments. The modulated acoustic carrier is generated by mixing a local oscillator 

(frequency = fc) with the baseband signal (frequency = fb) in an RF mixer. The resulting 

suppressed carrier signal (with an index of m = 21.08) is fed to an encapsulated 

piezoelectric transducer (PZT) that is placed at the bottom of a container 10 cm away from 

the silicon carrier chip. The frequency of the acoustic carrier (local oscillator) is equal to 

the frequency of the mechanical mode (fmech) of the OMR or OMO.  

  
(a)                               (b) 

Fig. 6.5. Experimental arrangements (acousto-optical link) for testing the performance of 

OMR and OMO based acousto-optical receivers. (a) Pin < Pth (OMR based receiver); here 

OMR functions only as an acousto-optical transducer. The inset shows the top and side 

view of the toroidal microcavity. (b) Pin ≥ Pth (OMO based receiver); here the OMO 

simultaneously functions as acousto-optical transducer, RF local oscillator and RF mixer. 

In both cases D = 125 μm, Dp = 80 μm, d = 12 μm, fm = 4.61 MHz, Qm = 376, Pth = 539 μW 

and the size of the silicon chip is 18 mm (L) × 5 mm (W) × 0.3 mm (H). 

In the first configuration shown in Fig. 6.5(a), where Pin < Pth, the OMR only 

functions as a sensitive acousto-optical transducer. So, in order to extract the baseband 

signal from the acoustic carrier the detected signal is mixed with the original local oscillator 

in an RF mixer. In the second configuration, shown in Fig. 6.5(b), Pin ≥ Pth and the self-

oscillation of OMO performs the RF down-conversion in optical domain; as a result a 

baseband component (fb) appears in the detected signal that can be separated from the main 
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signal simply by using a low-pass RF filter (without the need for local oscillator and mixer 

at the receiver end). Note that down-conversion in OMO happens only if fOMO (= fm) is 

equal to the carrier frequency (fC). 

6.3.1 Underwater acoustic link based on OMR acousto-optical transducer  

Figure 6.6(a) shows the measured amplitude of the measured down-converted 

signal plotted against normalized optical input power (Pin/Pth) for the link shown in Fig. 

6.5(a) where an OMR (Pin < Pth) transducer is used in the receiver.  

   
(a)                                  (b) 

 

 
(c) 

Fig. 6.6. Performance of the OMR based receiver (Pin < Pth). (a) Simulated (red line) and 

measured (black points) rms voltage of the down-converted signal versus Pin/Pth.  (b) 

Simulated (red line) and measured (black points) 3 dB bandwidth of the receiver. The 

parameters for the simulations are the same as the Fig. 6.3 and Qm = 376. (c) The original 

(left) and the corresponding received baseband waveforms (right) of the OMR based 

underwater acoustic link. The frequency and acoustic pressure amplitude (PA) for the 

sinusoidal, square and triangular waves are: (4 kHz, 0.2 Pa), (100 Hz, 0.25 Pa), (1 kHz, 

0.16 Pa),). 
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In this link, fC = 4.61 MHz and a single tone baseband with fb = 1 kHz. The red line 

is the simulated value based on Eq. (6.9) and characteristic of the RF mixer used in the 

experiment. The exponential growth is a signature of the presence of optomechanical gain 

in OMR. 

Figure 6.6(b) shows the simulated (red line) and measured bandwidth of the down-

converted signal for the OMR based receiver (that, as expected, is limited by the bandwidth 

of the mechanical mode). The deviation of the measured data from the simulation is 

partially due to non-flat spectral response of the PZT. The minimum acoustic pressure at 

which a measurable down-converted signal can be generated is about 0.1 mPa. 

In order to examine the fidelity of the OMR based underwater acoustic link, we 

recorded the temporal variation of the received baseband signal for three different types of 

input basebands. The left column of Fig. 6.6(c) shows the temporal variation of the input 

baseband signals (c-1: sinusoidal wave with frequency of 4 kHz; c-2: Square wave with 

frequency of 100 Hz; and c-3: Triangle wave with frequency of 1kHz) before mixing with 

the RF carrier. After mixing (up-conversion) the resulting RF signal drives the PZT in the 

water (see Fig. 6.5(a)), the output optical power of the OMR is converted to an RF voltage 

by the photodetector and then mixed with a local oscillator (same oscillator used for up 

converting the baseband signal) to down-convert the baseband signal. Subsequently a low 

pass RF filter removes the high frequency components (transmitted and generated by the 

mixer), and the down converted signal is monitored using an oscilloscope. The right 

column of Fig. 6.6(c) shows the temporal variation of the down-converted signals. The 
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negligible distension of the received signals indicate that the performance of the OMR is 

satisfactory. 

6.3.2 Underwater acoustic link based on OMO acousto-optical transducer 

As discussed in section 6.2.2, an OMO can simultaneously receive (i.e., modulated 

the optical carrier proportional to the amplitude of incident acoustic signal) and down-

convert the based band signal. As such the configuration shown in Fig. 6.5(b) the receiver 

only comprises an OMO, a photodetector and a low pass RF filter. The down converted 

signal is monitored using an electrical spectrum analyzer. Figure 6.7(a) shows the spectrum 

of the RF signal (fC = 4.61 MHz and fb = 100 kHz) used to drive the PZT transducer. Figure 

6.7(b) shows measured spectrum of Pout when Pin = 0.9Pth. Note that while in the original 

RF signal the carrier is suppressed, the natural thermal vibration of the OMR has boosted 

the amplitude at fC, however this small thermal excitation won’t coherently mix with the 

original signal. That is why no signal is observed at fb. Figure 6.7(c) shows the measured 

spectrum of Pout when Pin = 1.7Pth (~900 μW).  In this case optomechanical oscillation 

generates a strong amplitude modulation at fC; here the coherent mixing of the carrier 

generated through optomechanical oscillation and the sidebands has generated a baseband 

component (the left panel). So only 0.9 mW of optical input power has generated a down-

converted signal with an SNR >20 dB with no need for RF oscillator and mixer after the 

photodetector.  
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(a) 

 

 
(b) 

 

 

(c) 

Fig.6.7. (a) Spectrum of the suppressed carrier signal that drives the PZT. Here fC = 4.61 

MHz and fb = 100 kHz. (b) The spectrum of Pout when Pin = 0.9 × Pth (~450 μW). (c) The 

spectrum of Pout when Pin = 1.7 × Pth (~900 μW). The left panel (0-0.5 MHz) and the right 

panel (4-5 MHz) are separated to help observing the carrier and baseband signals with high 

resolution. The resolution bandwidth for these measurements was 3 kHz. 

Qualitatively Fig. 6.7(c) and Fig. 6.4(a) are in good agreement (i.e. the location of 

the frequency components and their relative amplitude almost match); however, near 

carrier frequency (fOMO), the simulated background level in Fig. 6.4(a) is much larger than 

the actual noise floor in Fig. 6.7(c). This difference is due to limited resolution in our 
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simulation. Note that in Eqs. 6.1 - 6.3 (used for generating Fig. 6.4(a)), noise has not been 

taken into account and the background level observed in the simulated data is a numerical 

artifact and does not carry any information. It is worth mentioning that in the measured 

spectrum the two side bands (located near fOMO) have slightly different amplitudes. This 

asymmetry is due to frequency dependence of the acoustic impedance as well as the 

frequency response of the acoustic transducer used to generate the acoustic waves (its 

response at fOMO - fb is about 1 dB larger than its response at fOMO + fb). 

Figure 6.8 shows the measured down-converted signal amplitude as a function of 

normalized optical power (Pin/Pth) for OMO based receiver (Pin ≥ Pth) when fc = fOMO = 4.61 

MHz and fb = 100 kHz. The slight difference between the measured and simulated results 

is due to variation of the preset frequency detuning (Δ0) during the measurement. In the 

above threshold experiment, we have not been able to accurately measure the 3dB 

bandwidth due to the limited working bandwidth of the PZT transducer; however, we 

expect the bandwidth to be limited by the mechanical mode as predicted in Fig. 6.4(b). 

 
Fig. 6.8. The measured rms voltage of the down-converted baseband signal versus 

normalized optical power for OMO based receiver (Pin ≥ Pth). 
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Unfortunately, due to executive noise in our system we were not able to record the 

temporal behavior of the down converted signal using the oscilloscope. So while the 

functionality of the OMO based underwater acoustic link has been verified by the presence 

of the down converted signal on the electrical spectrum analyzer (Fig. 6.7), we were not 

able to evaluate the fidelity of the down-converted signal as we did for OMR based 

underwater acoustic link experiment.  

Our experimental observation indicates that the frequency pulling and injection 

locking [29] may impose a lower limit on the baseband (or IF) frequency. While evaluating 

the ultimate limit requires more investigation, in a similar case where the received signal 

was used to modulate the pump instead of inducing mechanical vibration, audio data was 

successfully down converted from a high frequency carrier [28].  

6.4 Frequency considerations for the OMR/OMO based acoustic 

receiver in underwater acoustic links 

The mechanical resonance frequencies of typical toroidal microcavities that have a 

diameter between 50 and 100 micron varies between 2 to 100 MHz. This frequency range 

is considered high for direct (without a carrier) underwater communication. While the 

preferred acoustic frequency varies depending on the application, generally for underwater 

wireless communication, the acoustic frequency is between 10 kHz to several megahertz. 

Lower frequencies are more suitable for long range communication as they experience less 

absorption in sea water [35]. Meanwhile, lower frequencies suffer from bandwidth 

restriction, ambient noise and multipath effects [19, 36]. High frequency waves that are 
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generally used for short range communication with high channel capability can overcome 

the multipath effect and are immune from the ambient noise that exist in the sea water [15, 

37]. Past research work has already demonstrated the feasibility of using 1 MHz acoustic 

waves to realize 60 ~ 100 meters undersea wireless communication links [38, 39]. As such 

typical toroidal microcavities can be employed in short-range underwater communication. 

It is also possible to fabricate toroidal microcavities with frequencies in kHz range 

by making their diameter larger and the pillar size smaller. Figure 6.9 shows the simulated 

mechanical frequency of the fundamental mechanical mode of the toroidal microcavity 

versus the membrane length (D/2 - Dp/2). We believe, the toroid based acousto-optical 

transducers with kHz range operational frequency can significantly enhance the 

performance (sensitivity and power consumption) of kilometers range underwater links. 

 
Fig. 6.9. Simulated mechanical frequency versus the radial cavity length for the first 

flapping mode for microtoroid resonator, the simulation is processed by using COMSOL 

multi-physics software. 

Beyond toroidal microcavities, several other chip scale optomechanical 

microcavities, that support lower resonant frequencies, can be used as acousto-optical 

transducers. For example, those designed based on photonics-crystals can be 
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resonate/oscillate at frequencies as low as tens of kilohertz [33, 40] and still provide 

efficient optomechanical transduction [41]. 

6.5 Packaging acousto-optical transducers based on microtoroidal 

OMRs/OMOs 

In order to be used in practical applications, microtoroid based acousto-optical 

transducers have to be properly packaged. The package design for these transducers should 

take into account two major requirements: 1) the package should be completely sealed to 

protect the microtoroid and the fiber-taper from water and moisture (that are detrimental to 

the quality factor of the microtoroid and the optical transmission of the fiber-taper). The 

package should stay sealed at pressure levels associated with the operation depth of the 

hydrophone. In the meantime, the package should support fiber-optic input and output 

ports. 2) Due to small size of the OMR, its acoustic cross-section (i.e., the effective area 

that interacts with acoustic waves) is very small. In order to increase the amount of acoustic 

energy received by the OMR (and therefore the sensitivity of the transducer), the package 

should be designed to capture more acoustic energy and efficiently transfer it to the 

acousto-optical transducer. The first requirement alone is relatively easy to satisfy; for 

example, the silicon chip that carries the microtoroid can be placed in a small sealed box 

while the input and output sections of the fiber–taper pass through two small holes provided 

on the box. The small clearance between the hole and the fiber (<50 micron) can be easily 

sealed using specialized glue. The second requirement is much more challenging as it 

requires efficient acoustic transmission from water to the package and from the package to 
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the silicon chip. As such, here we propose a possible design strategy that may be used to 

address the second requirement.             

We propose a package comprising an acoustic lens that enables focusing the 

acoustic waves received by a relatively large area (~20× larger than the silicon chip that 

carries the OMR) to the OMR [42, 43]. In addition to focusing the acoustic energy, the 

proposed design enables acoustic impedance matching between the sea water and the 

silicon chip. For example, at 5 MHz, the acoustic impedance of sea water is about 1.48 

MRayl while the acoustic impedance of silicon chip is about 19.7 MRayl; so if the silicon 

chip directly receives the acoustic waves from sea water (similar to the configurations used 

in the demonstrations described above), the impedance mismatch results in 74% reflection 

of the acoustic energy at the interface between sea water and silicon.  

Figure 6.10 shows an example of the proposed packaging design that uses a 

biconcave acoustic lens to focus the acoustic pressure on the silicon chip that carries the 

microtoroid. The lens is optimized for focusing the acoustic waves having a frequency 

equal to that of the mechanical mode of the microtoroid used for acousto-optical 

transduction. In this design, an acoustic impedance matching layer is attached to (or 

deposited) the bottom side of the silicon chip so that nearly all the energy of the focused 

acoustic wave can be transferred to the silicon chip without any reflection.  

In the specific design shown in Fig. 6.10(a), the microtoroid has a major diameter 

of 104 μm, a minor diameter of 12 μm and a pillar diameter of 76 μm. This design is 

optimized for exciting the fundamental mode of this microtoroid that has a frequency of 5 
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MHz. The acoustic lens is made of acrylic resin, its diameter is 20 mm and radius of the 

curvature is also 20 mm. The silicon based microtoroid is encapsulated in a container made 

of Schott glass, the bottom side of the silicon chip is covered by an impedance matching 

layer composed of araldite glue [44], that is also used to attach the glass container to the 

base of the glass container. The glass container is attached to an acrylic ring that is attached 

to the lens using four pillars (where the ring, the pillar and the lens are all machined as one 

part). Figure 6.10(b) shows a 3D illustration of the package. The thickness of the araldite 

glue between the silicon chip and the glass container, and the thickness of the glass 

container, can be selected to match the impedance of the focused incident wave 

(transmitted through water) and the impedance of the acoustic wave transmitted in the 

silicon chip. Basically, the glass layer and the glue layer together act as an anti-reflection 

layer. Using the method presented in Ref. [45], the optimal thickness of the glue is 

determined to be 43 µm + N × 262 µm, and the optimal thickness of the Schott glass is 

determined to be 65 µm + N × 491 µm (where N is an integer). Note that, given the acoustic 

loss in the glass and glue, a smaller N results in lower insertion loss. Figure 6.10(a) also 

shows the calculated acoustic pressure field distribution (using FEM method), resulted 

from an acoustic plane wave incident to the lens. As evident from the figure, all the energy 

captured by the lens aperture, is focused on the silicon chip. Fig. 6.10(c) shows the acoustic 

pressure level along the propagation direction before and after the acoustic lens. In this 

simulation, absorption and scattering in the acoustic lens are ignored. According to this 
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simulation, the acoustic pressure level received by the microtoroid, can be 12 dB larger 

than the acoustic pressure of the incident wave. 

 
(a)                  (b) 

 

 
(c) 

Fig. 6.10. A package design for an optical hydrophone based on microtoroidal OMR.  

This design comprises an acoustic lens. (a) The proposed design and the simulated 

distribution of acoustic pressure field resulting from incident acoustic plane wave. (b) A 

3D illustration of the design shown in part-a.(c) The acoustic pressure plotted along the 

propagation direction of the incident wave. Note: the microtoroid on the silicon chip is 

magnified for clarity. 

6.6 Summary 

In this chapter, we demonstrated the application of strong optomechanical coupling 

and resulting gain in acousto-optical transduction and frequency mixing in the context of 

underwater signal transmission with ultrasonic carrier frequencies. We have shown that 

OMR can function as a narrow-band and high sensitivity acousto-optical transducer with 

low power consumption. We also demonstrated that when pumped above threshold, OMO 
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can down convert the baseband signal from the ultrasonic carrier without the need for RF 

oscillator and mixer resulting in unprecedented level of simplicity and power consumption 

for ultrasonic receiver design. In both OMR and OMO based receivers the down-converted 

signal with an SNR larger than 20 dB was generated with sub-milliwatt optical input power. 

While our calculations and measurements have revealed some of the basic properties of 

OMO/OMR based acoustic receivers, still many parameters in these systems have to be 

investigated. Dynamic range, behavior of the 3B down-conversion bandwidth (as a 

function of various parameters) are examples of issues that will be the subject of future 

studies and publications. 

We have also proposed a packaging strategy that not only protects the OMR (or 

OMO), but also increases the sensitivity of the acousto-optical transducer, by increasing 

the effective acoustic cross section of the device and providing an impedance matching 

layer to increase the acoustic energy delivered to the OMR.          

This work may pave the way for further development of this new application of 

cavity optomechanics and exploiting the unique properties of optomechanical resonators 

and oscillators that for the most part have remained untapped. Given the rapid progress 

towards design and fabrication of high performance monolithic optomechanical micro-

cavities, the proposed approach can be used to fabricate compact and low power acousto-

optical receivers for multichannel underwater acoustic signal detection and processing. 
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Chapter 7 

Dynamics of coupled oscillators and their applications in sensing 

7.1 Introduction  

Resonators and oscillators are key elements in a wide variety of natural and 

manmade systems. As such understanding and exploiting their dynamics both as isolated 

devices and members of coupled systems has been the subject of intensive investigation 

for more than a century. The advent of optomechanical resonators (OMRs) that support 

strong coupling between optical and mechanical modes resulting in self-sustained 

optomechanical oscillations, has created new opportunities for device development and 

implementation of coupled oscillatory systems. 

For decades, the dynamics of coupled oscillators remains a subject of active 

investigation. Many theoretical papers reported important findings in the context of 

coupled homogeneous oscillators [1-7] and heterogeneous oscillators [8-10]. However, 

experimental work is needed to verify theoretical predictions against noise mechanisms, 

parasitic effects, and unexpected coupling mechanisms. Experimental research has 

considered coupled homogeneous oscillators in various domains, such as biological 

oscillators [11], optical oscillators [12, 13], electrical oscillators [14-16], optomechanical 

oscillators [17], chemical oscillators [18], mechanical oscillators [19], optoelectronic 

oscillators [20, 21] and so on. While several experimental works have dealt with coupled 

homogeneous oscillators, a relatively unexplored area is the study of interactions between 

physically dissimilar oscillators [22-24]. 

Instances of coupled heterogeneous oscillators may be found in many biological 

systems. An example is provided by the cardiorespiratory interactions between the lungs 
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and the heart, with each having different temporal variations; the respiratory oscillation is 

near sinusoidal [25], while the heartbeat has a more complex behavior that may vary due 

to a disease or other factors. The lungs may be considered as a single oscillator [26] while 

the heart is composed of numerous oscillating cells [27, 28]. There is scientific evidence 

that arrhythmia and other cardiac disorders are associated with changes in other oscillations 

in the body, such as neuronal and circadian [29, 30].  

It is therefore important to understand how physically dissimilar oscillators interact 

with each other and what are the possible causes for dramatic changes in their dynamics. 

Unfortunately, experimentation with biological systems is not easy due to the weak and 

irregular nature of their interactions [22] and most importantly due to the inherent difficulty 

of isolating the oscillating entities and quantifying their coupling. As such, experimental 

platforms based on non-biological systems may provide a proxy for much more complex 

biologically systems and pave the way toward a better understanding of their behavior. For 

example, Prasad et al. observed a phase-flip bifurcation, or a transition from in-phase 

synchrony to out-of-phase synchrony as the coupling delay between two oscillators is 

increased in an electrical circuit [31]; later, Adhikari et al. observed similar transitions in 

neuron models involving a large number of interacting neurons [32]. 

In this chapter the outcomes of the experimental and theoretical studies on coupled 

physically dissimilar oscillators are presented. The studies include characterization of the 

dynamics (synchronization, bifurcation, chaos and so on) of the coupled oscillatory 

systems as well as exploring their applications (i.e., sensing).  

More specifically, the coupling oscillatory systems include Colpitts oscillators (a 

type of electronic oscillator), optoelectronic oscillators (OEOs) and optomechanical 
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oscillators (OMOs). The fundamental differences between these oscillators make the 

resulting systems highly heterogenous with interesting dynamical behavior. These systems 

may have different natural frequencies: typically, kHz ~ MHz, kHz ~ GHz, and ~MHz in 

the Colpitts oscillators, OEOs, and OMOs, respectively. Some features of the oscillators 

we studied here are listed in table 7.1.  

Table 7.1 The oscillators studied in this chapter. 

Oscillators Kind Log10(fre (Hz)) Oscillation nature 

OMO Optomechanics 5-8 Mechanical, Optical  

OEO Optoelectronics 4-9 Electrical, Optical 

Colpitts Electronics 4-9 Electrical 

7.2 Cluster synchronization in coupled Colpitts oscillators 

Because the complexity of the OMOs and OEOs, direct coupling and exploration 

of them are not easy and which need experimental and theoretical working experience. 

Considering the simple feature and well-developed models of the Colpitts oscillators, the 

first system selected for our study includes four identical coupled Colpitts oscillators. This 

first study lays the path for building and studying more complex oscillatory systems based 

on OMOs and OEOs. Moreover, the specific configuration used to couple four Colpitts 

oscillator supports interesting dynamics that was not observed before. 

By coupling eletrical Colpitts oscillators, we are the first to study cluster 

synchronization in a fully analog symmetrical multilayer network with both diffusive and 

non-diffusive coupling. Despite its simplicity, this analog electronic system not only 

represents the smallest multilayer network with multiple symmetries but also captures the 

uncertainties and fluctuations present in real and more complex physical systems. We 
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describe the possible cluster synchronizations of the system as we vary coupling 

parameters. We experimentally observe and theoretically characterize clusters of nodes that 

synchronize on different time evolutions. The system is fully analog, where other studies 

have used a computer interface to implement coupling [33, 34, 35]. 

7.2.1 Observation of Cluster synchronization in coupled Colpitts oscillators 

Electronic circuits are ideal test beds for the study of nonlinear behavior in networks 

[36]; we choose to use coupled four classical Colpitts oscillators.  

 

(a)                  (b) 

Fig. 7.1. Experimental setup for the cluster synchronization in multilayer networks. (a) 

Ring of four Colpitts oscillators coupled to their neighbors via resistor Rx and mutual 

magnetic coupling between the tank inductors, controlled by the inductor separation x. 

From upper left going clockwise, oscillators 1, 2, 3, and 4. Internal connections of each 

Colpitts are represented in black, coupling between Colpitts is shown in red. (b) A 

photography of the system. 

As shown in the Fig. 7.1, the Colpitts oscillator is a simple electronic oscillator 

based on a bipolar junction transistor (BJT) that uses two center-tapped capacitors in series 

with a parallel inductor as its resonance tank circuit.  

The single Colpitts oscillator can be described by: 
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𝐶1
𝑑𝑉𝑐𝑒

𝑑𝑡
= 𝐼𝐿 − 𝐼𝐶.                         (7.1) 

𝐶2
𝑑𝑉𝑏𝑒

𝑑𝑡
= −

𝑉𝑒𝑒+𝑉𝑏𝑒

𝑅𝑒𝑒
− 𝐼𝑏 − 𝐼𝐿.                  (7.2) 

𝐿
𝑑𝐼𝐿

𝑑𝑡
= 𝑉𝑐𝑐 − 𝑉𝑐𝑒 + 𝑉𝑏𝑒 − 𝐼𝐿𝑅𝐿.                 (7.3) 

where Vce is the voltage drop between the collector and the emitter of the transistor, Vbe is 

the voltage drop between the base and the emitter of the transistor. Vcc and Vee are applied 

voltages with values of 3.2 V and -1.6 V, respectively. Ib and Ic are the current of the base 

and the collector, respectively. The transistor operates in two regimes, forward active and 

cutoff. We can describe this behavior with a piecewise function [37]: 

𝐼𝑏 = {
0, 𝑉𝑏𝑒 < 𝑉𝑡ℎ

𝑉𝑏𝑒−𝑉𝑡ℎ

𝑅𝑜𝑛
, 𝑉𝑏𝑒 ≥ 𝑉𝑡ℎ

,𝐼𝑐 = 𝛽𝑓𝐼𝑏.             (7.4) 

We use a 2N2222 transistor. Vth = 0.75 V is the threshold voltage, Ron = 325 Ω is 

the resistance, and βf = 200 is the current gain of the transistor. We create a multilayer 

network with the four Colpitts oscillators connected by two kinds of coupling, resistive and 

magnetic, following the schematic in Fig. 7.1. The proposed circuit can be seen as a two-

layer network. Each layer contains two oscillators, with resistive intralayer coupling; the 

magnetic coupling forms the interlayer coupling, as shown in Fig. 7.2. Because the 

oscillators in the two layers are identical, the multilayer network can be flattened to obtain 

a multidimensional network. 
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Fig. 7.2. Visualization of multidimensional network as a multilayer network. Nodes 2 and 

3 belong to one layer, and nodes 1 and 4 belong to the other. Resistive coupling is intralayer 

coupling; magnetic coupling is interlayer coupling. 

The four nodes, each a Colpitts oscillator, form a ring with coupling alternating 

between resistive and magnetic. We achieve resistive coupling by connecting the collectors 

of transistors in pairs of oscillators through a resistor Rx; we tune the coupling by 

connecting resistors of the desired value. To achieve magnetic coupling, we bring the 

inductors of two nodes sufficiently near, such that the mutual inductance Mij becomes large 

enough; we tune the coupling by changing the inductor separation distance x. The dynamics 

of the network shown in Fig. 7.1 and 7.2 is: 

𝐶1,𝑖
𝑑𝑉𝑐𝑒,𝑖

𝑑𝑡
= 𝐼𝐿,𝑖 − 𝐼𝐶(𝑉𝑏𝑒,𝑖) +

1

𝑅𝑥
∑ ℜ𝑖𝑗[(𝑉𝑐𝑒,𝑗 − 𝑉𝑐𝑒,𝑖) − (𝑉𝑏𝑒,𝑗 − 𝑉𝑏𝑒,𝑖)]
𝑁
𝑗=1 .      (7.5) 

𝐶2,𝑖
𝑑𝑉𝑏𝑒,𝑖

𝑑𝑡
= −

𝑉𝑒𝑒+𝑉𝑏𝑒,𝑖

𝑅𝑒𝑒,𝑖
− 𝐼𝑏(𝑉𝑏𝑒,𝑖) − 𝐼𝐿,𝑖 −

1

𝑅𝑥
∑ ℜ𝑖𝑗[(𝑉𝑐𝑒,𝑗 − 𝑉𝑐𝑒,𝑖) − (𝑉𝑏𝑒,𝑗 − 𝑉𝑏𝑒,𝑖)]
𝑁
𝑗=1 . 

7.6) 

𝐿𝑖
𝑑𝐼𝐿,𝑖

𝑑𝑡
= 𝑉𝑐𝑐 − 𝑉𝑐𝑒,𝑖 + 𝑉𝑏𝑒,𝑖 − 𝐼𝐿,𝑖𝑅𝐿,𝑖 − ∑ 𝑀𝑖𝑗𝔐𝑖𝑗

𝑑𝐼𝐿,𝑗

𝑑𝑡

𝑁
𝑗=1 .           (7.7) 

where i =1,…4 is the index of the oscillator, Li is the inductance, C1,i, C2,i are the 

capacitances of the circuit components (see Fig. 7.1), Vce,i is the voltage drop between the 

collector and the emitter of the transistor, and Vbe,i is the voltage drop between the base and 

the emitter. Vcc and Vee are applied voltages, Ib and Ic are the current of the base and the 
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collector, respectively. These two currents are the nonlinear terms in the system, they are 

zero below a threshold voltage and increase linearly above this cutoff as manifested in Eq. 

(7.4). In a BJT these currents are related through β = ΔIc = ΔIb ≈ Ic = Ib, where β is the BJT 

amplification factor. The magnitudes of the resistive and magnetic coupling coefficients 

are 1/Rx and Mij = k√𝐿𝑖𝐿𝑗 , respectively. k characterizes the mutual inductance and is 

roughly proportional to 1/x2, k is positive if the currents induced by mutual and self-

inductance are in phase and negative if they are antiphase. Note that the resistive and 

magnetic couplings are different in nature and therefore enter the dynamic equations in 

different forms. Resistive coupling is diffusive and affects the current. Magnetic coupling 

is non-diffusive, differential [38], and affects the voltage. The adjacency matrices 𝕽 and 

𝕸 describe how the oscillators are connected to one another by resistive and magnetic 

coupling, respectively. In our four-member ring network, 𝕽 and 𝕸 are: 

ℜ = [

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

].                        (7.8) 

𝔐 = [

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

].                        (7.9) 

In order to calibrating the magnetical coupling strength, we have to measure the 

relationship between inductor separation, x, and mutual inductance, Mij, we first measured 

the inductances L1 and L2 of the two inductors. We then connect the first inductor (L1) and 

a resistor to a signal generator which applies a sinusoidal voltage with known amplitude. 

The frequency of the signal we used is 100 kHz, which is comparable with the frequencies 
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of the Colpitts oscillator investigated in the paper. We then aligned the second inductor (L2) 

to the first inductor and varied the distance x. We measure the current in the first inductor, 

IL,1, and the induced voltage in the second inductor, VL,2. With the relationship VL,2 = M1,2𝐼�̇�,1 

and M1,2 = k√𝐿1𝐿2, we can derive k. Figure 7.3 shows the experimental measurements of 

k versus the inductor separation. We found that k = 27.4/x2 + 0.014, where x is the center-

to-center separation of the inductors in millimeters.  

 

Fig. 7.3. Experimental fitting of the mutual induction M versus the inductor separation x. 

On the vertical axis we report the value of the parameter k = M1,2 /√𝐿1𝐿2, 

The parameters for the components used in the experiment are listed in table 7.2. 

Table 7.2. Experimental values of Colpitts oscillator parameters 

Parameter Osc#1 Osc#2 Osc#3 Osc#4 

RL (Ω) 27.4 27.4 27.3 27.3 

Ree (Ω) 74.9 75.1 74.8 75.2 

L (μH) 97.06 93.02 95.42 96.80 

C1 (nF) 61.29 63.10 59.17 58.91 

C2 (nF) 62.27 60.42 61.03 60.86 

After calibration, we measured the magnetic coupling range achievable for the 

setup. The oscillators 2 and 3 (see Fig. 7.1(b)) are mounted on a caliper, we can set x 

precisely and identically for both inductor pairs. Due to physical constraints of the system 

(for example, once the inductors are touching, they can’t get any closer), magnetic coupling 
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is restricted to the range 0.03 < |k| < 0.4. 

By inspection of the four-node system (Fig. 7.1), we observe three symmetries 

present in the multilayer network, i.e., three permutations of the nodes which leave the 

network unchanged:  

(1) vertical symmetry, permuting 1 with 4 and 2 with 3;  

(2) 180° rotation, permuting 1 with 3 and 2 with 4; 

(3) horizontal symmetry, permuting 1 with 2 and 3 with 4.  

These permutations, along with the identical permutation (that maps each node to 

itself), form a mathematical group G that we call the symmetry group of the multilayer 

network. Subgroups of G define possible cluster patterns [39]. 

We performed experiments at five values of Rx (27 Ω, 300 Ω, 510 Ω, 750 Ω, and 

1000 Ω) and varied k from -0.03 to -0.4 for the parallel inductor configuration and from 

0.03 to 0.4 for the antiparallel inductor configuration. To detect the presence of multiple 

attractors, we first increase then decrease k, guided by the theoretically predicted hysteresis 

between the periodic in-phase and the periodic antiphase solutions. The top left-hand panel 

of Fig. 7.4 shows the cluster state observed at each experimental measurement. Figure 7.4 

shows broad agreement between our experimental and theoretical results. Each of the four 

cluster types (reported in the bottom boxes of Fig. 7.4) observed experimentally is 

predicted by the theoretical analysis. The system exhibits bi-stability between the fully 

synchronized state [(A), gray] and the vertical two-cluster state [(C), pink] for large ranges 

of k and Rx. We observe the fully synchronized solution for large positive magnetic 
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coupling and small negative coupling; we observe the vertical two cluster solution for small 

positive and large negative coupling. Near k = 0.12, we see the quasiperiodic vertical two-

cluster state [(D), magenta]. At k = 0.05 and Rx = 27 Ω, we observe the vertical two-cluster 

with a phase separation near π=2 rad [(B), turquoise]. 

 

Fig. 7.4. Comparison between experimental results and theoretical predictions. Capital 

letters in figure indicate experimental observations; lowercase letters indicate theoretical 

predictions. [(A), (a), gray] one-cluster state; [(C), (c), pink] vertical two-cluster state; [(B), 

(b), turquoise] vertical two-cluster state, two-cluster with a phase offset up to π/ 2; [(D), 

(d), magenta] quasi-periodic solution of the vertical two-cluster state; [white] no stable 

frequency locking. Stripes of two colors represent bi-stability between the two states 

represented by each color. (Top left) Experimentally observed cluster states. Black dots 

represent individual experimental measurements; we infer a color mesh from these results. 

(Top right) Theoretical prediction of cluster states. (Bottom) Experimental time series of 

Vbe(t) demonstrating clusters corresponding to the theoretical predictions. 
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7.2.2 Importance of this work 

This work is the first study on cluster synchronization in multilayer networks with 

symmetries. We show that a small network with well-understood periodic Colpitts 

oscillators exhibits rich dynamical behavior such as bi-stability, hysteresis, and quasi-

periodicity. This is the first experimental observation of a clustered quasiperiodic state. The 

coworkers on this work [40] did a lot of analysis that innovatively combines bifurcation 

analysis and the computation of transverse Lyapunov exponents, allowing us to overcome 

limitations of each individual approach. First, unlike the bifurcation analysis of the full 

system, our approach can handle multiple symmetries using standard software [41, 42]. 

Second, compared to the computation of transverse Lyapunov exponents alone, it can find 

any possible cluster pattern even in the presence of multiple attractors of the quotient 

networks. The interplay of theory and experiments was essential for an in-depth 

phenomenological understanding of the system behavior; experiments allowed us to 

understand which theoretically predicted cluster states were observable, while theory 

helped us identify hard to find cluster states. Note that even though we have applied our 

analysis to a very simple multilayer network, it is possible to scale the described approach 

to networks with any numbers of nodes or layers. This scaling is nontrivial and requires 

the definition of the group of symmetries of a multilayer network; Our work shows how 

different interaction layers influence the overall state of the system; applications of the 

described theory can be found in a variety of fields where patterned behavior and multilayer 

systems arise. The method requires three ingredients: (1) a dynamical system describing 
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the network, (2) multiple kinds of interactions, and (3) patterned behavior. Understanding 

the dynamical behavior of symmetric multilayer networks may play an important role in 

the design and development of neuromorphic computational systems [43]. To our 

knowledge, none of the studies on neuromorphic systems has considered dissimilar 

interactions between nodes, which seems to be an essential feature of most biological 

networks such as the brain [44] as well as a contributor to the overall robustness of a system 

[45, 46]. 

7.3 Theoretical investigation of the coupled OMO and OEO  

Both optomechanical oscillator (OMO) and optoelectronic oscillator (OEO) can be 

considered as hybrid oscillator. OMO’s operation involves an optical mode and a 

mechanical mode [47] and its output is optical power modulated by the cavity’s mechanical 

oscillation. OEO involves the optical signal, optical delay and electric voltage [48]. OEO’s 

output can be modulated optical power or modulated eletrical signal (before or after the 

photodiode in the OEO loop). The coupling between OMO and OEO can be achieved using 

both optical and electrical signals. Compared to eletrical coupling, optical coupling 

eliminates the use of electrical components and the electro-optical modulators, which 

makes the system less complicated and free from the electromagnetic interference. 

However, the challenge for optical coupling is the fact that the OMO only works when the 

optical wavelength matches the resonant wavelength of an optical mode.  

Figure 7.5(a) is the configuration of the coupled OMO and OEO system, while Fig. 

7.5(b) is the proposed circuits of the coupled system.  
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(a) 

 

 
 (b) 

Fig. 7.5. (a) The configuration and (b) circuits for proposed experimental setup of the 

coupled OEO and OMO system. 

Here a microtoroidal OMO and a single loop fiber delayed OEO are used. In Fig. 

7.5(b) the OMO and the OEO are coupled through the optical fibers (via optical signal), 

the attenuator (or optical amplifier) in each coupling path is used to control the coupling 

strengths by controlling the transmitted optical power. The β12 and β21 represent the 

coupling strengths from OMO to OEO and from OEO to OMO. The coupling strength β12 

is defined as the ratio between the optical power coupled from the OMO to OEO and the 

optical power in the OEO loop before coupling, the coupling strength β21 is defined as the 

ratio between the optical power coupled from the OEO to OMO and the optical power in 

the OMO loop before coupling. 

Here we assume the coupling delay τ12, τ21 is zero (≪1/f ~ 0.2μs, generally f ~ 5 
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MHz is the OMO and OEO oscillation frequency) if the fibers that connect the OMO and 

OEO are not too long (≪ 41 m, 41 m corresponds to a delay of ~ 0.2 μs).  

In Fig. 7.5(b) the optical power from a 1550 nm laser is split into the OMO and 

OEO loops by using a 50/50 fiber coupler. In the OMO loop 10% of the optical output from 

the OMO is directed to a photodetector for monitoring and 90% is directed to the 

photodetector in the OEO loop through an optical power attenuator or amplifier as coupled 

power. In the OEO loop 20% of the optical output from the Mach-Zander modulator (MZM) 

is directed to the OMO through a fiber and an optical attenuator or amplifier as coupled 

power, another 80% of the optical power is feed back to the photodetector inside the OEO 

loop. The eletrical output of the OEO can be coupled out from the RF coupler and directed 

to an oscilloscope (Osc) and an eletrical spectrum analyzer (ESA) for monitoring.  

The dynamics of single OMO and OEO have been theoretically investigated in Refs. 

[49] and [50]. The state equations of the coupled OMO and OEO can be derived with the 

inspiration from these two research papers and maybe written as: 

∆𝜔(𝑡) = ∆𝜔0 +
𝑟(𝑡)

𝑅0
𝜔0.                   (7.10) 

𝐵(𝑡) = √𝑃01(𝑡) + 𝛽21𝑃02𝑐𝑜𝑠2(𝑥(𝑡) + ∅0).            (7.11) 

𝑃𝑂𝑀𝑂(𝑡) = | (1 −
𝜏0𝛼𝑐

2𝑛
)𝐵(𝑡) + 𝑖√

𝜏0𝛼𝑐

𝑛
𝐴(𝑡)|2.               (7.12) 

𝑚𝑒𝑓𝑓
𝑑2𝑟

𝑑𝑡2
+ 𝑏

𝑑𝑟

𝑑𝑡
+ 𝑘𝑟 =

2𝜋𝑛

𝑐
|𝐴(𝑡)|2.                 (7.13) 

𝑑𝐴

𝑑𝑡
+ 𝐴 [

𝛼𝑐

𝑛
− 𝑖∆𝜔(𝑡)] = 𝑖𝐵(𝑡)√

𝛼𝑐

𝑛𝜏0
.                 (7.14) 

𝑑𝑥

𝑑𝑡
= −(

1

𝜏𝐿
+

1

𝜏𝐻
) 𝑥(𝑡) −

1

𝜏𝐿
𝑢2(𝑡) +

1

𝜏𝐿
𝑅𝐺(𝛽22𝑃02𝑐𝑜𝑠

2(𝑥(𝑡 − 𝜏) + ∅0) + 𝛽12𝑃𝑂𝑀𝑂(𝑡)).                                          

(7.15) 
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𝑑𝑢2

𝑑𝑡
=

1

𝜏𝐻
𝑥(𝑡).                      (7.16) 

The first five equations describe the dynamics of OMO and the last two describe 

the dynamics of the OEO. The coupling terms (β12, β21) are included in Eq. (7.11) and Eq. 

(7.15). Here, r is the radial displacement of the OMO; Δω0 = ωL - ω0 is the pre-set detuning 

between the pump laser frequency ωL and the optical resonant frequency ω0 of the OMO; 

R0 is the radius of the microcavity (microtoroid); Δω(t) is the real time frequency detuning 

between the pump frequency and OMO optical resonant frequency; B(t) is the real time 

optical field coupled into the OMO; P01 is the optical input (pump) power to the OMO 

from the laser; P02 is the optical input (pump) power to OEO from the laser; Ø0 is the fixed 

phase set by the bias voltage of the MZM; POMO is the output power of OMO; α is the 

internal optical loss in the OMO (which defines its intrinsic quality factor); τ0 is the 

roundtrip time of the photon inside the OMO; n is the refractive index of the microtoroid; 

A(t) is the optical field inside OMO; meff is the effective mass of the OMO’s mechanical 

mode; b is the corresponding mechanical dissipation; k is the spring constant of the OMO; 

x(t) is the output voltage of the RF filter; u2 is a state vector of the filter system; τL and τH 

are the time constants used to construct band pass filters in the OEO loop; R is the 

responsivity of the photodetector in the OEO loop; G is the gain of the OEO loop; τ is the 

total time delay of the OEO loop.  

Based on typical OMOs and OEOs that can be fabricated in the lab, we choose the 

parameters’ values of the OMO and OEO as listed in Table 7.3 for our simulation. 

 



168 
 

Table 7.3 Parameters of the OMO and OEO used in the simulation 

Parameters P01 P02 fOMO τ τL τH 

Values 
300 

μW 

50 

μW 

5.455 

MHz 

5.7  

μs 

15.9  

ns 

159  

ns 

Parameters Ø0 λ0 Δω0 R0 R G 

Values -𝝅/4 
1461 

nm 

8.87×107 

rad 

29 

μm 

1 

V/W 
3×104 

1) The OMO injection locking the OEO 

First, we assume β21 = 0 and solving the Eqs. (7.10) ~ (7.16). Figure 7.6 shows the 

frequency of the OEO (ω02/(2𝝅)) and OMO (ω01/(2𝝅)) plotted against β12. As we can see 

the OEO is pulled toward and final injection locked to the OMO when increasing the 

coupling strength β12. 

 

Fig. 7.6. Simulated frequency of OMO and OEO plotted against β12. 

2) The OEO injection locking the OMO 

Next we assume β12 = 0 and solving the equation system. Figure 7.7 shows the 

frequency of the OMO and OEO plotted against β21.  

 

Fig. 7.7. Simulated frequency of OMO and OEO plotted against β21. 
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3) The OEO and OMO are bilaterally coupled 

Now both the coupling strengths (β12, β21) are larger than zero, one of the interesting 

phenomena of the coupled OMO and OEO versus changing coupling strength β12 and β21 

is shown in Fig. 7.8. The intrinsic frequency (prior to coupling) of the OEO and OMO are 

fOEO,i = 5.43 MHz, and fOMO,i = 5.46 MHz. The figure shows that the OMO and OEO are 

synchronized when β12 = 0.05 and β21 = 0, with increasing the β21 alone the frequency of 

the synchronized system shifts up and then desynchronize with the frequency of the two 

oscillators start to move to the opposite directions when β21 is larger than 0.13. 

 

Fig. 7.8. Simulated frequency of OMO and OEO versus β21 when β12 is fixed at 0.05. 

The experimental implementation of the configuration shown in Fig. 7.5(b), is 

complicated and challenging. The only access to one tunable narrow linewidth laser 

(required to tune the wavelength to an optical mode of the OMO) with an output optical 

power less than 7 mW plus the optical loss associated with multiple fiber couplers used in 

this configuration, this laser power was not sufficient to pump both OMO and OEO, the 

power will not be enough to pump the OMO for the loss caused by the fiber couplers. As 

such we weren’t able to experimentally verify the above mentioned outcomes. 



170 
 

7.4 The investigation of coupled Colpitts oscillator and OMO  

The eletrical Colpitts oscillator used here is the same as the Colpitts oscillator used 

in section 7.2.1. Considering the only electrical signal in the Colpitts loop as well as the 

optical signal and eletrical signal in the OMO loop, it is possible to couple these two 

oscillators electrically. It also possible to revise the Colpitts oscillator by integrating a 

photodiode to the Colpitts circuits so that the OMO and the Colpitts can be coupled either 

electrically or optically.  

7.4.1 Electrical coupling to a Colpitts oscillator 

Before coupling the Colpitts oscillator and the OMO, we have to test which part of 

the Colpitts oscillator can be used for accepting injected signal. The electronics circuit of 

the single typical Colpitts oscillator together with the value of the parameters used in our 

test is shown in Fig. 7.9. The capacitor C12 and C22 are tunable with the capacitance tunable 

between 20 pF and 600 pF. In order to couple another oscillator to a Colpitts oscillator, a 

port should be identified through which an external signal can control the dynamics of the 

Colpitts. Typically the possible connection ports of the Colpitts circuit that can be used for 

injection of external voltage or current are the collector port (C), emitter port (E) and base 

port (B) of the transistor (as shown in Fig. 7.9), basically, injecting the current to the base 

port could be the most efficient way to perturb the Colpitts oscillator because the current 

in the base port can get amplified in the transistor provided that the injected current can 

enter the base port. However, for this typical Colpitts oscillator the base port is grounded, 

so only the collector port and the emitter port may be used to couple external signals. 
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Fig. 7.9. The electrical Colpitts oscillator with the value of the parameters. 

We quantify the coupling (or perturbation) efficiency by measuring the locking 

range of the Colpitts oscillator for given strength of injected signal. As such the coupling 

efficiency can be measured by injection locking of Colpitts to a harmonic (e.g., generated 

by a function generator). 

1) Injection locking the Colpitts oscillator through the collector port 

First, we measure lock range of the Colpitts oscillator by injecting the signal to the 

collector port, the circuit of the setup is shown in Fig. 7.10, the output of the function 

generator (a sinusoidal voltage) is fed to a homemade voltage buffer and then transmitted 

to the Colpitts oscillator through the collector port of the transistor. A resistor with value 

RC = 2180 Ω is used as the coupling resistor. The buffer used here makes the coupling 

unidirectional (from the function generator to the Colpitts oscillator).   
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Fig. 7.10. Injection locking of the Colpitts oscillator to a function generator. The injected 

signal passes through a voltage buffer and then enters the Colpitts oscillator through the 

collector port. Signal of the Colpitts oscillator is monitored through the emitter port using 

an eletrical spectrum analyzer. 

The oscillation frequency of the Colpitts oscillator can be approximated using the 

equation: 

𝑓𝐶𝑜𝑙 =
1

2𝜋√𝐿
𝐶1𝐶2
𝐶1+𝐶2

.                        (7.17) 

The state equation of this system shown in Fig. 7.10 may be written as: 

𝐶1
𝑑𝑉𝐶1

𝑑𝑡
= 𝐼𝐿 − 𝐼𝐶 +

𝑉𝑖𝑛𝑗−(𝑉𝐶1+𝑉𝐶2)

𝑅𝐶
.                  (7.18) 

𝐶2
𝑑𝑉𝐶2

𝑑𝑡
=

𝑉𝐸−𝑉𝐶2

𝑅2
+ 𝐼𝐵 + 𝐼𝐿 +

𝑉𝑖𝑛𝑗−(𝑉𝐶1+𝑉𝐶2)

𝑅𝐶
.               (7.19) 

𝐿
𝑑𝐼𝐿

𝑑𝑡
= 𝑉𝐶 − 𝑉𝐶1 − 𝑉𝐶2 − 𝐼𝐿𝑅1.                  (7.20) 

𝐼𝐵 = {
0

−𝑉𝐶2−𝑉𝑇𝐻𝑀

𝑅𝑂𝑁

−𝑉𝐶2≤𝑉𝑇𝐻𝑀
−𝑉𝐶2>𝑉𝑇𝐻𝑀

.                    (7.21) 

𝐼𝐶 = ℎ𝐹𝐸𝐼𝐵.                          (7.22) 

Where Vinj is the injected voltage that enters the collector port of the transistor. 

2) Injection locking the Colpitts oscillator through the emitter port 

The second configuration is to injection locking the Colpitts oscillator through the 
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emitter port of the transistor, which is shown in Fig. 7.11. In the setup, the sinusoidal signal 

generated by the function generator passes though the buffer and the coupling resistor, then 

injected to the emitter port, the eletrical spectrum analyzer is connected to the collector 

port of the transistor for monitoring. 

 

Fig. 7.11. Injection locking of the Colpitts oscillator to a function generator. The signal 

generated by the function generator passes through a home-made voltage buffer and then 

directed to the Colpitts oscillator through the emitter port. Signal of the Colpitts oscillator 

is monitored through the collector port using an eletrical spectrum analyzer. 

The state equations of the configuration shown in Fig.7.11 may be written as: 

𝐶1
𝑑𝑉𝐶1

𝑑𝑡
= 𝐼𝐿 − 𝐼𝐶.                        (7.23) 

𝐶2
𝑑𝑉𝐶2

𝑑𝑡
=

𝑉𝐸−𝑉𝐶2

𝑅2
+ 𝐼𝐵 + 𝐼𝐿 +

𝑉𝑖𝑛𝑗−𝑉𝐶2

𝑅𝐶
.                (7.24) 

𝐿
𝑑𝐼𝐿

𝑑𝑡
= 𝑉𝐶 − 𝑉𝐶1 − 𝑉𝐶2 − 𝐼𝐿𝑅1.                 (7.25) 

𝐼𝐵 = {
0

−𝑉𝐶2−𝑉𝑇𝐻𝑀

𝑅𝑂𝑁

−𝑉𝐶2≤𝑉𝑇𝐻𝑀
−𝑉𝐶2>𝑉𝑇𝐻𝑀

.                  (7.26) 

𝐼𝐶 = ℎ𝐹𝐸𝐼𝐵.                          (7.27) 

The measured lock range versus the injected signal strength (rms voltage) for the 

mentioned two coupling configurations is plotted in Fig. 7.12, we can see that more 
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efficient perturbation could be achieved through the emitter port. 

 

Fig. 7.12. The measured lock range vs. injected signal strength by injecting the signal to 

the collector port (black line) and emitter port of the transistor (red line). 

7.4.2 Optical coupling to Colpitts oscillator 

In order to optically couple a Colpitts oscillator to optically assisted oscillators such 

as OMO or OEO, the Colpitts oscillator should have an optical input port through which 

an optical signal can affect its dynamics. We have provided such port, by adding a 

photodiode into the Colpitts oscillator circuit. To examine the efficiency of the optical 

coupling, we used a modulated optical power to injection locking Colpitts oscillator to a 

signal generator through the added optical port. 

Two possible configurations to integrate the photodiode into the Colpitts oscillator 

and using modulated optical signal to injection locking the Colpitts is shown in Fig. 7.13. 

In Fig. 7.13(a) the photodiode is added between the DC voltage supply and the base 

port of the transistor while in Fig. 7.13(b) the photodiode is connected between the DC 

voltage supply and the collector port. The optical power from a laser passes through a 

Mach-Zadeh modulator (MZM) driven by a function generator, and the modulated optical 

power is fed to the photodiode, the optical power is converted to photocurrent in the 
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photodiode and perturbs the Colpitts oscillator.  

     
(a)                                (b) 

Fig. 7.13. Modulated optical power is fed to a photodiode integrated with the Colpitts 

oscillator to enable optical coupling. (a) photodiode is added between the DC voltage 

supply and the base port. (b) photodiode is added between the DC voltage supply and the 

collector port. Here, V1 = +1.5 V, V2 = -1.5 V, R1 = 40 Ω, R2 = 426 Ω, L = 2.2 µH, C1 = 363 

Ω, C2 = 657 Ω. MZM DC bias voltage is 3.1 V. 

Figure 7.14 shows the measured locking range of the Colpitts oscillator at different 

injected photocurrent strengths (peak-peak current) for the first configuration (shown in 

Fig. 7.13(a)). In the measurement the laser output power is 20 μW, the modulated optical 

(current) strength can be achieved by changing the RF power applied on the MZM. 

 

Fig. 7.14. Measured lock range of the Colpitts oscillator shown in Fig. 7.13(a). 

The injection locking efficiency for the second configuration (shown in Fig. 7.13(b)) 

was too low and is not plotted here. For the second configuration, when optical power is 

27 µW and modulated photocurrent is Ipp_pho = 28.8 µA, the lock range is 1.5 kHz, when 

the modulated photocurrent is Ipp_pho=35.0 µA, the lock range is 2.7 kHz. In conclusion, 
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the Colpitts circuit shown in Fig. 13(a) could be a potential configuration of coupling 

Colpitts oscillator with other oscillators optically.    

7.4.3 Electrical coupling between OMO and a Colpitts oscillator 

1) The OMO unidirectionally coupled to the Colpitts oscillator 

In our first demonstration we inject the electrical signal generated by converting 

the output of an OMO in a photodetector (PD) to a Colpitts oscillator through the emitter 

port (that was shown to support efficient locking, see section 7.4.11). Figure 7.15 shows 

the configuration used to unidirectionally couple OMO to a Colpitts oscillator. The optical 

output of the OMO is fed to a photodector (PD) where it converted to photovoltage, this 

voltage is transferred through a buffer (to avoid reverse coupling) and then injected to the 

emitter port of the transistor through the coupling resistor RC. The values of the eletrical 

components are labelled in the figure. For the OMO, λ0 = 1555.0 nm, fOMO = 4.718 MHz, 

the optical pump power is P = 670 μW, Qm = 210, meff = 52 ng. 

 

Fig. 7.15. The OMO unidirectionally coupled to the Colpitts oscillator.  

Before coupling, the waveform and spectrum of the OMO is measured at an optical 

pump power of P = 670 μW; the waveform of the OMO is measured after the PD (red line) 
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and after the coupling resistor (RC) (black line), both of which are shown in Fig.7.16(a).  

The spectrum of the OMO (PD output) is shown in Fig. 7.16(b), Figures 7.16(c) and 7.16(d) 

are the measured waveforms and spectrum of the Colpitts oscillator respectively. 

  

(a)                             (b) 

 

  

               (c)                             (d) 

Fig. 7.16. The measured output of the two oscillators before coupling. (a) Waveform of the 

OMO measured after the PD (red line) and measured after the coupling resistor RC (black 

line), (b) Spectrum of the OMO measured after the PD, (c) measured waveform of the 

Colpitts oscillator (black line is the waveform measured across the capacitor C1 and C2, red 

line is the waveform measured across the capacitor C2), (d) measured spectrum of the 

Colpitts oscillator. Here RC = 2180 Ω, optical pump power is 670 μW. 

Figure 7.17(a) shows the output of the OMO (black trace), that is measured after PD 

and the measured voltage VCE (red line) of the Colpitts oscillator when the Colpitts 

oscillator is injection locked to the OMO. Here VCE has a peak-to-peak value of ~500 mV 

(same as Fig. 7.16(c)), VEB has a peak-to-peak value of ~200 mV (not shown here). The 

output of OMO has peak-to-peak voltage of ~1.1 V (measured after PD) and ~30 mV 
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(measured after the RC, not shown here). The measured lock range for this system is 7 kHz. 

Figure 7.17(b) shows the spectrum of the Colpitts oscillator before (black line) and after 

injection locking (red line). As we can see here the Colpitts oscillator frequency spectrum 

can be “cleaned” by the OMO using injection locking method, the linewidth of the Colpitts 

oscillator is 7 kHz before injection locking and 30 Hz after injection locking. 

   

    (a)                                (b) 

Fig. 7.17 (a) After injection locking, the waveform of the OMO (black line) measured after 

the PD and the waveform of the Colpitts oscillator VCE (red line), (b) the spectrum of the 

Colpitts oscillator before (black line) and after injection locking (red line). 

The measured lock range is shown in Fig. 7.18, here the VEB has peak to peak 

voltage value of ~200 mV prior to injection locking, the x axis is the peak-peak voltage of 

the OMO measured after Rc. 

 

Fig. 7.18. Measured lock range vs. injected peak-peak voltage. 
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2) The Colpitts oscillator unidirectionally coupled to the OMO 

Figure 7.19 shows the circuit of the setup we used to study the unidirectional 

perturbation on OMO induced by the Colpitts oscillator. The voltage from the collector 

port of the Colpitts oscillator is injected to the RF port of the MZM in the OMO loop 

through a buffer, the buffer has unit gain and maintains unidirectional coupling. 

 
Fig. 7.19. The Colpitts oscillator unidirectional coupled to the OMO. 

In this experiment, the MZM is working on its quadrature point, the DC bias voltage 

is 2.4 V, the parameters for the OMO are λ0 = 1556.0 nm, fOMO = 5.55 MHz, the optical 

pump power is P = 700 μW, Qm = 108, meff = 49 ng, the drive voltages of the Colpitts 

oscillator are VC = 1.2 V and VE = -3.4 V. 

 

Fig. 7.20. The output of the Colpitts oscillator measured after the buffer (black line). The 

photovoltage (measured after MZM using a photodetector with responsivity of 4.2×104 

V/W) of the modulated optical power by using the Colpitts oscillator to modulate the MZM 

(red line). The output of the OMO prior to coupling measured with the same photodetector, 

with responsivity of 4.2×104 V/W (blue line). 
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Figure 7.20 shows the waveform of the Colpitts oscillator in black line, this voltage 

waveform is measured after the buffer, this voltage is then directed to the MZM and 

modulate the optical power, the red line shows the modulated optical power detected by a 

photodetector (responsivity of 4.2 × 104 V/W). The blue line shows the voltage output of 

the OMO when it is uncoupled (no Colpitts voltage is injected) by directing the optical 

output of the OMO to a photodetector (responsivity of 4.2 × 104 V/W). 

 
Fig. 7.21. The output spectrum of the Colpitts that is unidirectionally coupled to the OMO. 

The spectrum of the OMO and the Colpitts oscillator when the frequency of the Colpitts 

oscillator is tuned across the OMO frequency by changing the value of the tunable 

capacitors C3 and C4. 

Next we inject the modulated voltage into the RF port of the MZM and measure 

the spectrum of the OMO vs. different Colpitts oscillation frequency (Only the Colpitts 

oscillation frequency is tuned by adjusting the value of the two tunable capacitors C3 and 

C4 here, as shown in Fig. 7.19). The spectrum of the OMO and the Colpitts is plotted in 
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Fig. 7.21. As we can see in Fig. 7.21 when tuning the frequency of the Colpitts oscillator 

across the frequency of the OEO, no talk between the two oscillators in the spectrum is 

observed. 

In this preliminary experiment, we did not observe any interesting phenomenon. 

Judging by the spectrum the Colpitts oscillator cannot affect the OEO at all. The reason 

maybe that the linewidth of the Colpitts oscillator is much larger than that of the OMO; 

therefore its energy is distributed over a wide frequency range and density of the coupled 

power to OMO (that can be only affected with signals having a frequency within its narrow 

linewidth) is too weak to affect the OMO (i.e., pull the OMO’s frequency). 

7.5 Experimental observations of synchronization between 

bidirectionally coupled OEO and Colpitts oscillators 

In this section, we experimentally study the complex dynamics of two physically 

dissimilar oscillators bidirectionally coupled using two different types of coupling 

mechanisms. Specifically, an OEO is coupled to a Colpitts oscillator via optical power and 

the Colpitts oscillator is coupled back to the OEO via electrical voltage. Like other delayed 

feedback oscillators, OEO can be configured to generate a wide variety of waveforms with 

differing degrees of complexity. In particular, at large optical pump power, OEO can exhibit 

high dimensional chaotic behavior [51-54]. Colpitts oscillator, which has been extensively 

used for investigation of various dynamical phenomena, is an electronic oscillator based 

on an LC tank. This oscillator can also exhibit a rich dynamical behavior including periodic 

oscillation, period doubling and chaotic oscillations [55-58]. We investigate and 
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characterize phase synchronization and generalized chaos synchronization in the coupled 

OEO-Colpitts system. 

7.5.1 Experiment design 

Figure 7.22(a) shows the configuration of the mutually coupled OEO and Colpitts 

circuits where the red line indicates optical coupling and the black line indicates electrical 

coupling. The parameters κ12 and κ21 represent the strength of the optical and electrical 

coupling, respectively. Figure 7.22(b) shows the implementation of the coupled OEO-

Colpitts system used in our experiment. The OEO (oscillator system in the top shaded 

region) is fabricated using a simple single loop architecture with an optical delay line 

consisting of 1 km single mode optical fiber. The optical pump power is generated by a 

narrow linewidth (~ 0.5 MHz) fiber coupled semiconductor laser at a wavelength of 1.55 

μm. After passing through a polarization controller, the pump power is fed into a Mach-

Zehnder modulator (MZM) where the transmitted optical power through the MZM is a 

nonlinear function of the applied voltage on the RF port of the MZM. Light exiting the 

modulator passes through a 1 km long single mode optical fiber and then is converted to 

voltage by a photodiode (PD1). The resulting voltage signal passes through an RF 

combiner and then amplified by an RF amplifier, the amplified signal is filtered by an RF 

filter and the loop is closed by feeding back the filtered signal to the RF port of the MZM. 

A small portion (-19 dB) of the RF power circulating in the OEO loop is coupled out by an 

RF coupler and fed to one of the four channels (channel #1) of an oscilloscope (Osc) 

(TDS2024B, Tektronix, 4 channels, 200 MHz bandwidth, 2GS/s sample rate) and an 
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electrical spectrum analyzer (ESA) (N9320B, Keysight, 9 Hz~3 GHz range, 10 Hz to 1 

MHz RBW) for monitoring the temporal and spectral characteristics of the OEO. 

  

(a)                              (b) 

 

 
(c) 

Fig. 7.22. (a) Schematic of the bidirectionally coupled OEO and Colpitts oscillator, the 

OEO is coupled to the Colpitts oscillator through optical power while the Colpitts oscillator 

is coupled to the OEO through voltage. κ12 and κ21 are the coupling strengths. (b) Circuit 

diagram of the bidirectionally coupled OEO and Colpitts oscillator. The circuits in green 

are the oscilloscope (Osc) and electrical spectrum analyzer (ESA) for the wave and 

frequency spectrum monitoring. Here, Pin is optical pump power of the OEO, Vb is the DC 

bias voltage of the Mach-Zehnder modulator (MZM), G1 is the coupling loss of the fiber 

coupler, G2 is the voltage gain of the photodiode (PD1),  G3 is the voltage loss of the RF 

combiner, G4 is the voltage gain of the RF amplifier, G5 is the voltage loss of the RF coupler, 

Vcol is the drive voltage of the Colpitts oscillator, L is the inductor, R1, R2, R3, and R4 are 

the resistors, C1, C2 are the capacitors, the transistor is P2N222A NPN transistor, and a 

photodiode (PD2) is biased between the voltage supply and the base port of the transistor 

with the responsivity as β. (c) The experimental setup that includes: a: ESA, b: Osc; c: RF 

Coupler; d: AMP; e: RF Combiner; f: PD1; g: Fiber delay; h: The PCB board contains 

Colpitts oscillator, Buffer and PD2; i: RF Attenuator; j: Optical Attenuator; k: MZM and 

m: Laser. 
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The Colpitts oscillator circuit comprises an LC tank and an NPN bipolar transistor 

configured as a common emitter amplifier. The LC tank consists of one inductor (L) and 

two capacitors (C1 and C2). A photodiode (PD2) is connected between the collector port 

and base port of the transistor to enable optical coupling to the Colpitts. The same 

oscilloscope (through channel #2) and electrical spectrum analyzer are used to monitor the 

waveform and frequency spectrum of the Colpitts from the collector port of the transistor. 

In order to couple the OEO to the Colpitts oscillator, half of the circulating optical 

power in the OEO loop is directed to PD2 using a 1×2 50/50 fiber optical directional 

coupler. The coupled optical power is converted to photocurrent in PD2 and distributed to 

the base port of the transistor because of the bias network constructed using R3 and R4. The 

photocurrent that entered the base port gets amplified in the transistor together with the 

Colpitts intrinsic current and then circulate inside the LC tank. The magnitude of the 

coupled optical power and so the resulting photocurrent can be adjusted by a tunable fiber 

optical attenuator.  

To couple the Colpitts oscillator to the OEO, a portion of the RF voltage from the 

collector port of the transistor is unidirectionally directed to the RF power combiner placed 

in the OEO loop using an electronic buffer and an RF power attenuator. This coupled RF 

voltage will be combined with the OEO intrinsic RF voltage in the RF combiner and then 

circulate inside the OEO loop. The magnitude of the coupled RF voltage is controlled by 

the tunable RF attenuator. As such OEO and Colpitts are mutually coupled via two different 

types of coupling mechanisms where both couplings are unidirectional and adjustable. 
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Using the coupled system shown in Fig. 7.22(b) we have investigated the 

synchronization of the mutually coupled OEO and Colpitts oscillators in the two distinctive 

regimes which are 1) OEO and Colpitts both oscillate periodically before coupling, 2) OEO 

and Colpitts both oscillate chaotically before coupling. The values of the system parameters 

are adjusted (as listed in Tables 7.4 and 7.5) to ensure that the OEO and Colpitts operate in 

these two distinct regimes prior to coupling. 

We define κ12, the coupling strength from the OEO-to-Colpitts, as the ratio between 

the average photocurrent induced by the optical power incident on the PD2 and the average 

base current of the Colpitts oscillator before coupling. We define κ21, the coupling strength 

from Colpitts-to-OEO, as the ratio between the injected average voltage from the Colpitts 

oscillator and the intrinsic average voltage of the OEO before coupling. 

7.5.2 Phase synchronization  

In this section, the value of the various parameters that control the behavior of the 

OEO and the Colpitts oscillator are chosen such that, before coupling, both oscillators 

oscillate periodically. These values are listed in table 7.4. 

Figure 7.23 shows the waveforms and the spectrum generated by the OEO and 

Colpitts under test, when the two oscillators are decoupled (κ12 = κ21 = 0) and both oscillate 

periodically. The intrinsic oscillation frequencies of the OEO (fOEO-i) and the Colpitts 

oscillator (fCol-i) are 296.87 kHz and 304.15 kHz, respectively. 
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Table 7.4. Parameters for the OEO and Colpitts for them to oscillate periodically when they 

are uncoupled  

Parameter 
Pin 

(μW) 

Vb 

(V) 

G1 G2 

(V/W) 

G3 G4 

Value 53.3  3.2 0.5 22670 -0.5 57 

Parameter 
G5 

 

Vamp 

(V) 

Vcol 

(V) 

L 

(μH) 

R1 

(Ω) 

R2 

(Ω) 

Value 0.92 9 3 22 60.56 88.93 

Parameter 
R3 

(Ω) 

R4 

(Ω) 

C1 

(μH) 

C2 

(μH) 

β 

(A/W) 

Value 75.90 300.60 29 39 0.96 

The difference between these frequencies are selected such that synchronization 

can be achieved with accessible coupling strengths. As evident from the plots, OEO’s 

output carries more noise and the output of Colpitts has a DC voltage shift of +2 Volts. 

    
(a)                                     (b) 

Fig. 7.23. (a) Waveform of the OEO (black) and Colpitts oscillator (red) and (b) spectrum 

of the OEO (black) and the Colpitts oscillator (red) when they are running separately (κ12 

= κ21 = 0). 

The behavior of the coupled oscillatory system is characterized by monitoring the 

oscillation frequency of each oscillator as the unidirectional coupling coefficients (κ12 and 

κ21) are changed. Figure 7.24(a) shows the oscillation frequency of OEO (fOEO) and Colpitts 

(fCol) plotted against κ21for different values of κ12. The solid dots are the measured values 

of fOEO while hollow squares are the measured values of fCol.  κ21 is varied between 0 and 

0.014 while κ12 is varied between 0 and 0.172. These ranges are selected such that the 
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transitions between asynchronous and synchronous oscillations can be captured. For each 

value of κ12, as κ21 increases the fOEO and fCol are pulled toward each other until at a certain 

value of κ21 they collapse into one single value that gradually grows by further increasing 

κ21. 

   
(a)                               (b) 

 

 
(c) 

Fig. 7.24. Route to phase synchronization in the coupled OEO and the Colpitts oscillator. 

(a) Frequency of the OEO and Colpitts oscillator vs. coupling strengths (κ12, κ21), (b) the 

frequency difference Δf ( = fCol - fOEO) vs. coupling strengths, and (c) the relation between 

the two coupling strengths (κ12, κ21) when the coupled OEO and Colpitts oscillator are just 

synchronized, the solid line is the linear fit of the data points. 

In Fig. 7.24(a) the trace of the black dots and black squares show that when κ12 = 0, 

fOEO (black dots) is unidirectionally pulled up toward fCol-i as κ21 is increased, and at κ21 = 

0.00612 collapses to fCol-i. Here the sudden rise of fOEO from κ21 = 0.00546 to κ21 = 0.00612 

is artificially induced by the resolution of the κ21 variable while performing the 

measurement (due to the 1 dB attenuation step of the RF power attenuator used here). 
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Similarly, the trace of the hollow squares with different colors on y-axis, where κ21 = 0, 

shows fCol is unidirectionally pulled down toward fOEO-i as κ12 is increased, and collapses to 

fOEO-i at κ12 = 0.172. When both κ12 and κ21 are larger than zero, fOEO and fCol are pulled 

toward each other and collapse to a single oscillation frequency fs between the fOEO-i and 

fCol-i (i.e., the intrinsic oscillation frequencies of OEO and Colpitts) at a particular value of 

κ12 for a given value of κ21. The synchronization process can be visualized by plotting the 

frequency difference between the OEO and Colpitts (Δf = fCol - fOEO). Figure 7.24(b) shows 

Δf plotted versus κ21 for different values of κ12. We see that, Δf is a monotonically 

decreasing function of both coupling strengths and becomes zero at particular values of κ12 

and κ21 referred to as critical values (κ12,C and κ21,C). The black dashed line in Fig. 7.24(a) 

shows a near linear relation between fs and κ21,C. 

Since each κ21,C is associated with a unique κ12,C, a functional relation can be found 

between these critical values in the form κ21,C = F(κ12,C) or κ12,C = F-1(κ21,C). Figure 7.24(c) 

shows the measured values of κ12,C plotted against κ21,C. A match between measured data 

points and a linear fit reveals a linear relationship between κ21,C and κ12,C in the form κ12,C 

+ 26.837κ21,C = 0.1675. This means that the κ21 is 26.837 times more effective than κ12 in 

pulling the oscillation frequencies toward each other. In other words, one may define an 

equivalent coupling strength κeq = κ12,C + 26.837κ21,C for this coupled oscillatory system 

where κeq ≥ 0.1675 is the required condition for Δf = fOEO - fCol to be zero. The measured 

linewidth of the free running OEO is 300 Hz and the measured linewidth of the free running 

Colpitts is 15 Hz, the linewidth of the OEO is almost 26 times larger than the linewidth of 
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the Colpitts. For general mutually coupled oscillators in accordance with simple Adler or 

Kuramoto model, the pulling strength of the target oscillator is proportional to the product 

of the coupling strength (κij) and the target oscillator’s linewidth [59-61], this means the 

oscillator with smaller linewidth is more resistive to be pulled and so needs higher injection 

strength. This may just explain the higher efficiency of κ21 compared to κ12 in pulling the 

oscillation frequencies (OEO is easier to be pulled by Colpitts, while in comparison, 

Colpitts is more difficult to be pulled by OEO). 

While Δf = 0 is usually an indication of synchronized oscillation (in the context of 

injection locking), however in order to better characterize synchronization we have also 

measured the phase difference between OEO and Colpitts. Figure 7.25 shows the variation 

of the measured phase difference between the synchronized OEO and Colpitts oscillator 

(𝜑Col - 𝜑OEO) as the coupling strengths are changed. The positive phase difference indicates 

that the Colpitts oscillator is leading the OEO. As shown in Fig. 7.25, the phase difference 

increases both by increasing κ12 and increasing κ21. 

 

Fig. 7.25. The measured phase difference (𝜑Col - 𝜑OEO) between the synchronized OEO and 

Colpitts oscillator at different coupling strengths κ12 and κ21. 
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7.5.3 Generalized chaos synchronization 

In this section, the control parameters of the OEO and the Colpitts oscillator are 

chosen such that they both oscillate chaotically before coupling. The values of these 

parameters are listed in Table 7.5. 

Table 7.5. Parameters for the OEO and Colpitts for them to oscillate chaotically when they 

are uncoupled  

Parameter 
Pin 

(μW) 

Vb 

(V) 

G1 G2 

(V/W) 

G3 G4 

Value 224.2  3.2 0.5 22670 -0.5 57 

Parameter 
G5 

 

Vamp 

(V) 

Vcol 

(V) 

L 

(μH) 

R1 

(Ω) 

R2 

(Ω) 

Value 0.92 9 5 95 20.67 387 

Parameter 
R3 

(Ω) 

R4 

(Ω) 

C1 

(μH) 

C2 

(μH) 

β 

(A/W) 

Value 65.30 183.57 50.8 50.8 0.96 

 

Figure 7.26(a) shows the measured waveforms generated by the isolated (κ12 = κ21 

= 0) chaotic OEO and the Colpitts oscillator and Fig. 7.26(b) shows their measured 

frequency spectrum. The gray trace in Fig. 7.26(b) is the measured background noise of 

the electrical spectrum analyzer in the absence of an input. The black and red traces are the 

measured spectrum for the OEO and the Colpitts oscillator, respectively. The measured 

spectrum for both oscillators comprises a few sharp peaks superimposed on a broad 

background; such features are typically considered the signature of chaos in power 

spectrum of an oscillator [62-64]. Using the measured waveforms, we have extracted the 

two largest Lyapunov exponents (LEs) for the OEO and the Colpitts oscillator. The 

Lyapunov exponents are LE1,OEO = 1.36 × 106 bit/sec, LE2,OEO = 2.90 × 105 bit/sec for the 
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OEO and LE1,Col = 8.41 × 104 bit/sec, LE2,Col = -1.39 × 105 bit/sec for the Colpitts oscillator 

[65]. The largest LE for the OEO is almost twenty times larger than the largest LE for the 

Colpitts oscillator; this difference is in agreement with the measured spectrum in Fig. 

7.26(b) where OEO’s spectrum is extended to much larger frequencies compared to that of 

the Colpitts oscillator. The fact that the two largest LEs of the OEO are both positive, 

indicates that the OEO is hyperchaotic. The fact that the largest LE of the Colpitts is 

positive while the second largest LE is negative indicates that the Colpitts oscillator is 

chaotic but not hyperchaotic [66]. 

   
                  (a)                                   (b) 

Fig. 7.26. (a) Measured waveform of the OEO (black) and the Colpitts oscillator (red), and 

(b) measured frequency spectrum of the OEO (black) and the Colpitts oscillator (red) when 

they are uncoupled (κ12 = κ21 = 0). The gray line in part-b, is associated with the background 

noise of the ESA used for these measurements (when there is no input to the ESA). 

Next, in order to investigate the emergence of synchronization as a function of the 

coupling strengths; the two oscillators are mutually coupled and the coupling strengths (κ12 

and κ21) are increased. Generally, one can characterize synchronization using two standard 

techniques, namely, correlation function and the generalized return plots [67, 68]. We 

introduce the correlation function S(Δt) between two time-varying parameters x1(t) and x2(t) 

as: 
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𝑆(∆𝑡) =
〈𝑥1(𝑡)𝑥2(𝑡−∆𝑡)〉

√〈𝑥1
2(𝑡)〉〈𝑥2

2(𝑡)〉
.                            (7.28) 

where 〈•〉 indicates a time average over an extended period of time, here x1(t) is the 

OEO output voltage subtracted by its mean value (x1(t) = VOEO(t) - 𝑉𝑂𝐸𝑂̅̅ ̅̅ ̅̅ ) and x2(t) is the 

Colpitts output voltage subtracted by its mean value (x2(t) = VCol(t) - 𝑉𝐶𝑜𝑙̅̅ ̅̅ ̅)  We search for 

the time shift Δt at which the correlation between the outputs of OEO and Colpitts is 

maximized. The maximum value of S is typically referred to as correlation degree. 

Figure 7.27 shows the correlation degree (max{S(Δt)}) calculated at several values 

of coupling strengths (κ12, κ21) that happened at certain time shift Δt. We can see, as the 

coupling strengths increase, the correlation degree increases rapidly from 0.1 (when κ12 = 

κ21 = 0) until it reaches a saturation value ~0.8 (when κ12 > 0.53 and κ21 > 0.04). Note that 

while when the two oscillators are isolated, the correlation degree should be zero, the 

experimentally measured signal have a correlation degree of S = 0.1 when κ12 = κ21 = 0. It 

is believed that is due to unwanted coupling through electromagnetic radiation and antenna 

effects associated with wires, and other electrical components used in the experimental 

setup.  

 
Fig. 7.27. Correlation degree (max{S(Δt)) calculated for different values of κ12 and κ21 that 

achieved at certain time shift Δt. 

The large correlation (~0.8) between the outputs of the OEO and the Colpitts 
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oscillator at large coupling strengths indicates the two oscillators are essentially 

synchronized [67]. To further investigate the onset of synchronization between these 

originally chaotic oscillators, in Fig. 7.28 S(Δt) is plotted versus Δt (time shift) when κ12 = 

κ21 = 0 and when κ12 = 0.6008, κ21 = 0.0501. As mentioned before, the weak correlation 

shown in Fig. 7.28(a) is due to the parasitic electromagnetic coupling. Figure 7.28(b) shows 

that appearance of sharp peaks at Δt = n × τ (n = 1, 2, 3, …) where τ ~ 0.0073 ms. 

  
                   (a)                                  (b) 

Fig. 7.28. Correlation function between the OEO and the Colpitts oscillator when (a) κ12 = 

κ21 = 0 and (b) κ12 = 0.6008, κ21 = 0.0501. 

The largest peak of S(Δt) (marked by a red dot in Fig. 7.28(b)) indicates 

synchronized chaotic oscillation. This peak has a magnitude of 0.77 and it appears at Δt = 

0.051 ms.  

We also did the similarity measure of the x1(t) and x2(t-Δt) when κ12 = 0.6008, κ21 

= 0.0501 using the function: 

𝐷𝑖𝑠𝑡(𝑥1(𝑡), 𝑥2(𝑡 − 𝛥𝑡)) = √∑ |𝑥1(𝑡) − 𝑥2(𝑡 − 𝛥𝑡)|2𝑡 .        (7.29) 

Figure 7.29 shows the measured similarity at various time delay. Same as the result 

obtained by using correlation function analysis, one of the local minima occurs at Δt = 

0.051 ms, at which the synchronization happens. 
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Fig. 7.29. Similarity function for coupled OEO and Colpitts oscillator (both operating in 

chaotic regime) when κ12 = 0.6008, κ21 = 0.0501. 

The temporal variation of the corresponding output signals (when κ12 = 0.6008, κ21 

= 0.0501) is shown in Fig. 7.30(a). Figure 7.30(b) shows x1(t) and x2(t-0.05ms). The overlap 

and coincidence of the maxima and minima of one wave form with a time shifted version 

of the other waveform observed here, is known as achronal generalized synchronization 

[13, 68]. Figure 7.30(c) shows a generalized return plot where x1(t) is plotted against x2(t-

0.05ms). As evident from the plot the oscillation amplitudes are confined within a narrow 

region that is extended approximately along a 45° direction. The dynamical properties of 

this achronal state originate from the bidirectional coupling of the two physically dissimilar 

subsystems. It is worth noting that the achronal state is not a perfectly synchronized state 

of the coupled system; such state may only exist for coupled periodic oscillators [67, 68]. 

The spectrum of the coupled chaotic system under generalized synchronization is shown 

in Fig. 7.30(d), which still consists of broad spectrum with many sharp peaks. 

When the OEO and Colpitts oscillator are synchronized (for κ12 = 0.6008, κ21 = 

0.0501), we measured the two largest LEs for the system with LE1 = 2.28 × 105 bit/sec and 

LE2 = -1.55 × 105 bit/sec. Both the spectrum and the LEs indicate that the system is chaotic. 
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                   (a)                                (b) 

 

  
                   (c)                                 (d) 

Fig. 7.30. Characterization of output signals generated by the synchronized OEO and 

Colpitts oscillator when both oscillators are operating in chaotic regime, here κ12 = 0.6008 

and κ21 = 0.0501. (a) The output waveform extracted from the OEO (black) and Colpitts 

oscillator (red). (b) The time trace of x1(t) and x2(t-0.05 ms). (c) The generalized return plot 

for of x1(t) and x2(t-0.05 ms). (d) The frequency spectrum of the OEO measured through 

the output port of the RF coupler in the OEO loop shown in Fig. 1(b). The gray line in part-

d is the background noise spectrum of the ESA (in the absence of input). Here x1(t) is the 

output waveform of OEO subtracted with its mean value and x2(t-0.05 ms) is the output 

waveform of the Colpitts oscillator subtracted with its mean value and then shift with a 

time of 0.05 ms. 

We have calculated the two largest LEs for the coupled system based on the signal 

measured through the RF coupler in OEO loop (see Fig. 7.22-b) at different values of κ12 

and κ21. We have found that as the coupling strengths increase, the system transitions from 

hyperchaos to chaos. For example, when κ12 = 0.1335 and κ21 = 0.0355, the two largest LEs 

of the system are LE1 = 4.98 × 105 bit/sec and LE2 = 8.80 × 104 bit/sec, indicating the 

system is in hyperchaotic regime. When the κ12 = 0.6008 and κ21 = 0.0501, (with the 
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attractor is shown in Fig. 7.30-c), the system becomes chaotic with the two largest LEs 

measured as LE1 = 2.28 × 105 bit/sec and LE2 = -1.44 × 105 bit/sec.  

Figure 7.31(a) and (b) show the largest and the second largest LE of the coupled 

system as a function of κ12 and κ21 respectively. As evident from the plots, the largest LE 

(part-a) decreases from 1.36 × 106 bit/sec when κ12 = κ21 = 0 to 2.28 × 105 bit/sec when κ12 

= 0.6008 and κ21 =0.0501, while the second largest LE (par-b) decreases from 2.90 × 105 

bit/sec when κ12 = κ21 = 0 to -1.55 × 105 bit/sec when κ12 = 0.6008 and κ21 =0.0501. 

Additionally, Figure 7.31(b) shows a gradual transition of the second largest LE from 

positive to negative values in a certain region of κ12-κ21 plane indicating a gradual transition 

from hyperchaos to chaos. 

 

                 (a)                                (b) 

Fig. 7.31. Variation of the two largest Lyapunov exponents (LEs) of the measured OEO 

output as a function of coupling strengths (κ12 and κ21). (a) Contour plot of the largest LE. 

(b) Contour plot of the second largest LE. 

7.5.4 Importance of this work 

In this work, we have experimentally studied the behavior of a coupled oscillatory 

system comprising two physically dissimilar oscillators coupled bidirectionally through 
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two different coupling mechanisms. More specifically we have characterized the behavior 

of a coupled system wherein an optoelectronic oscillator (OEO) is coupled to a Colpitts 

oscillator via optical power, and the Colpitts is coupled back to the OEO via RF voltage.  

The experimental arrangement, selected coupling mechanisms, measurement strategy and 

the results obtained in this paper, may pave the way toward designing new experiments 

that enable characterizing coupled systems that involve coupling between a larger variety 

and larger number of oscillators. Understanding the complex dynamics of such highly 

heterogeneous systems, is critical for many disciplines of science and engineering. 

7.6 Detection and sensing with homogenous and heterogeneous coupled 

oscillatory systems   

Oscillators have been extensively used for various sensing applications. In 

particular for sensing and measuring physical parameters that can affect their oscillation 

frequency (e.g. mass, temperature, humidity, etc.). Typically the interaction of the 

measurand with the resonator or the feedback loop of the oscillator results in a change in 

the oscillation frequency; subsequently the magnitude of the measured frequency change 

can be used to extract the strength of the interaction with the measurand that is typically 

proportional to the magnitude of the measurand (e.g. mass, temperature, number of 

molecules,…). Frequency based sensing using a single oscillator has been the subject of 

extensive investigation. For example, electrical oscillators have been used for mass sensing 

[69], humidity sensing [70], load sensing [71], etc. Mechanical oscillators have been used 

for mass sensing [72, 73], charge detection [74], gas and pressure sensing [75], etc. 
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Optomechanical oscillators have been used for mass sensing [76, 77]. Optoelectronic 

oscillators have been used for temperature sensing [78 79], distance [80], load and strain 

[81] measurement, refractive index sensing [82] and thermos-optical coefficient 

measurement [83]. 

To a lesser extent, synchronized coupled oscillators have been also considered for 

sensing applications. Juillard et al [84, 85] showed that the phase difference between the 

two oscillators synchronized through mutual coupling is highly sensitive to the mismatch 

between the oscillators and can be used to detect the changes of certain physical 

parameters. It has been demonstrated that the amplitude change of the antisymmetric 

vibrational mode of two coupled cantilevers (micromechanical oscillators) is more 

sensitive than frequency change of single cantilever to the added mass on one of them [86]. 

Spletzer et al [87] have shown that the amplitude of both symmetric and antisymmetric 

modes of two coupled cantilevers exhibits higher sensitivity than the frequency change of 

each one of them when upon adding a mass. Barbarossa et al [88] theoretically showed that 

a sensor based on a network of synchronized oscillators exhibits higher reliability than a 

sensor based on a single oscillator because the SNR of the sensor can be improved by the 

oscillator nodes. Beyond sensing, coupled oscillators have been also used in image sensors 

where nodal phase change in a network of 32×32 synchronized oscillators was used for 

imaging [89]. In almost all of these experimentally demonstrated sensing systems, the 

sensor includes two identical oscillators, which before coupling have the exact same 

oscillation frequency. Once they are coupled, either two distinctive modes with two 
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different frequencies emerge or the two oscillators are synchronized. The amplitude change 

of one of these two emerged modes or the phase difference between the synchronized 

oscillators is then used as a sensing parameter to detect a change induced by perturbing a 

parameter in one of them. 

The sensing mechanism and coupled oscillatory system studied here, is based on 

two oscillators that when they are decoupled, have close but non-identical oscillation 

frequencies. These oscillators can be physically similar or dissimilar, but their oscillation 

frequencies are close enough so that after mutual or unidirectional coupling, they become 

synchronized. We demonstrate that when these two oscillators are coupled (mutually or 

unidirectionally) and their coupling is adjusted such that the coupled system is at the 

synchronization edge , the frequency difference between them can be used for enhanced 

sensing of an external perturbation affecting one of the oscillators (hereafter referred to as 

the “detector oscillator”). When a measurand perturbs a parameter of the detector oscillator, 

that changes its oscillation frequency, the two oscillators become desynchronized and their 

oscillation frequencies split. This frequency splitting can be converted to a measurable beat 

frequency that is proportional to the perturbation strength (i.e., the magnitude of the target 

measurand). We show that the variation of the beat frequency is much larger than the 

oscillation frequency shift of the isolated detector oscillator induced by the same type and 

magnitude of perturbation. 

Previously the beat frequency generated by oscillation of two coupled mechanical 

modes of a single resonator (e.g., a single crystal) has been used for force and temperature 
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sensing [90, 91]. In some other examples, the beat frequency between excited modes of 

two mechanical resonators fabricated on the same substrate has been used for temperature 

sensing [92].  In those systems, the coupling between the modes was naturally provided 

through the mechanical structure resulting in simultaneous perturbation of both modes by 

the measurand. As such, to make the beat frequency sensitive to a perturbation, the 

frequency of each mode had to be affected differently. Moreover, since in such 

configurations the coupling factor is determined by the structure, preparation of the system 

in a specific oscillatory state (e.g., synchronization edge) can be very challenging. Note 

that in other kinds of oscillators that support multimodal oscillations (e.g., optomechanical 

oscillators and optoelectronic oscillators [93, 94]), the response of each mode to a 

perturbation is an inherent property of the system and cannot be easily manipulated to 

provide significantly different response (to support a large beat frequency change up on 

exposure to a measurand).  

Here, we first derive a general theory that explains the enhanced sensitivity 

provided by the coupled oscillatory system (compared to single oscillator sensors), then 

we demonstrate its validity by building and testing two oscillatory systems: 1) two non-

identical mutually coupled electronic oscillators and 2) an optoelectronic oscillator 

unidirectionally coupled (injection locked) to an electronic oscillator. 

7.6.1 General theory  

In this section, we theoretically analyze the performance of an oscillatory sensing 

system comprising two non-identical coupled oscillators that may be physically similar or 
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dissimilar. The coupling strengths considered here are weak; in other words, the injected 

signal from one to the other oscillator is much smaller than the oscillation amplitude of the 

oscillator that receives the signal (sinj/sint≪1). With this assumption, the oscillation 

amplitude variation induced by coupling can be ignored, and the interaction between the 

two oscillators may be described by the well-known Kuramoto model [95-97]. As such the 

dynamic of the coupled oscillatory system can be captured by the coupled differential 

equations governing the phase of each oscillators: 

  
𝑑𝜃1

𝑑𝑡
= 𝜔01 + 𝜅1sin(𝜃2 − 𝜃1).                  (7.30) 

  
𝑑𝜃2

𝑑𝑡
= 𝜔02 + 𝜅2sin(𝜃1 − 𝜃2).                  (7.31) 

where θ1, θ2 are the phases of the two oscillators, κ1, κ2 ≥ 0 are the coupling strengths, and 

ω01, ω02 are their isolated oscillation frequencies, ω01, ω02 are close enough to support 

synchronization between the two oscillators (here we assume ω01 ≥ ω02). This simple phase 

model has been reported to be useful in predicting the behavior of a large variety of coupled 

oscillators [97], for example, it has been used in modelling biological oscillators [96], 

electrical oscillators [98, 99], chemical oscillators [100, 101], mechanical oscillators [102, 

103] and optical oscillators [104, 105]. 

Using Eqs. (7.30) and (7.31) the temporal variation of the phase difference between 

the two coupled oscillators can be written as: 

𝑑(𝜃1−𝜃2)

𝑑𝑡
= (𝜔01 − 𝜔02) − (𝜅1 + 𝜅2)sin(𝜃1 − 𝜃2).          (7.32) 

If the two oscillators are synchronized, the temporal variation of their phase 

difference is zero, so Eq. (7.32) is simplified as: 
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(𝜔01 − 𝜔02) = (𝜅1 + 𝜅2)sin(𝜃1 − 𝜃2).             (7.33) 

Eq. (7.33) shows that the necessary condition for synchronization is: 

|(𝜔01 − 𝜔02)| ≤ (𝜅1 + 𝜅2).                  (7.34) 

that is essentially the condition for Eq. (7.33) to have a real solution. In Eq. (7.34) equal 

sign corresponds to the frequency difference that for a given coupling can be considered 

the synchronization edge; meaning that a change in the original frequency difference or the 

coupling strength will desynchronize the two oscillators. 

Under this condition the coupled system responds to an external perturbation 

(applied on one of the oscillators) with the highest level of sensitivity. Here we consider 

that oscillator #1 is the detector oscillator that is perturbed (a change induced in one or 

more parameters that determine its oscillation frequency). We assume that the magnitude 

of the perturbation is small enough such that the induced change in the oscillation 

frequency of the isolated oscillator (ω01') is linearly proportional to the perturbation 

strength and can be written as 

𝜔01
′ = 𝜔01 + 𝜖𝑆.                       (7.35) 

where S is the strength of the perturbing signal and ϵ is the proportionality constant. Using 

Eq. (7.35), Eq. (7.32) is modified as: 

 
𝑑(𝜃1−𝜃2)

𝑑𝑡
= (𝜔01

′ − 𝜔02) − (𝜅1 + 𝜅2)sin(𝜃1 − 𝜃2).           (7.36) 

This equation is similar to Adler’s equation that was developed in context of electronic 

oscillators [106]. 

We now introduce a phase variable φ(t) = exp(j(θ1-θ2)) to capture the phase 
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difference of the coupled oscillators. Using this phase variable, Eq. (7.35) can be rewritten 

as: 

𝑑𝜑

𝑑𝑡
= −

𝜅1+𝜅2

2
𝜑2 + 𝑗(𝜔01

′ − 𝜔02)𝜑 +
𝜅1+𝜅2

2
.               (7.37) 

following procedures similar to those presented in Refs. [99] and [107], the solution for 

φ(t) may be expressed as: 

𝜑(𝑡) =
𝜎2−𝐶𝜎1𝑒

𝑗√(𝜔01
′−𝜔02)

2
−(𝜅1+𝜅2)

2𝑡

1−C𝑒
𝑗√(𝜔01

′−𝜔02)
2
−(𝜅1+𝜅2)

2𝑡

.                 (7.38) 

where C is a constant, and σ1, σ2 are defined as: 

𝜎1 = 𝑗(
𝜔01

′−𝜔02

𝜅1+𝜅2
+√(

𝜔01
′−𝜔02

𝜅1+𝜅2
)2 − 1).                 (7.39) 

𝜎2 = 𝑗(
𝜔01

′−𝜔02

𝜅1+𝜅2
−√(

𝜔01
′−𝜔02

𝜅1+𝜅2
)2 − 1).                 (7.40) 

Eq. (7.38) indicates that φ(t) is a harmonically oscillating parameter with an 

oscillation frequency equal to: 

𝜔B = 𝜔01c − 𝜔02c = √(𝜔01
′ − 𝜔02)2 − (𝜅1 + 𝜅2)2.            (7.41) 

where ω01c and ω02c are the oscillation frequencies of the two coupled oscillators after 

perturbing the detector oscillator. ωB is essentially the beat frequency that can be extracted 

from the oscillatory systems by subtracting the output frequency of the two coupled 

oscillators (in practice, ωB can be generated using a frequency mixer followed by a low 

pass filter).  

If the coupled system is tuned to oscillate at the synchronization edge (i.e. κ1 + κ2 = 

ω01 - ω02), Eq. (7.41) can be written as: 

       𝜔B = √(𝜔01 + 𝜖𝑆 − 𝜔02)2 − (𝜅1 + 𝜅2)2 = √(𝜖𝑆)2 + 2(𝜔01 − 𝜔02)𝜖𝑆. 
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                                                             (7.42) 

A comparison between Eq. (7.35) (the oscillation frequency shift for the isolated 

detector oscillator) and Eq. (7.42) (the beat frequency for the coupled system) shows ωB is 

much larger than ϵS, especially when the perturbing signal is very weak (i.e. ϵS ≪ ω01 -

ω02). One can define an enhancement factor as the ratio between the beat frequency ωB and 

the frequency shift ω01' - ω01 as: 

𝜂 =
√(𝜖𝑆)2+2(𝜔01−𝜔02)𝜖𝑆

𝜖𝑆
= √1 + 2

𝜔01−𝜔02

𝜖𝑆
.              (7.43) 

7.6.2 Experiment design 

In order to test the proposed sensing scheme and validate the corresponding theory, 

we fabricated two different kinds of oscillators to detect two different measurands. The 

first experiment uses two mutually coupled Colpitts electronic oscillators to detect a current 

change in one of them (more specifically optically induced current change or a 

photocurrent). The second experiment uses an optoelectronic oscillator (OEO) injection 

locked to an electronic oscillator to detect the temperature change that affects the OEO’s 

optical time delay. For both measurements we compare the frequency shift of the isolated 

detector oscillator (that in the first case can be one of the two Colpitts and in the second 

case is the OEO) with the frequency difference between the two coupled oscillators (beat 

frequency), for a given change in the measurand (photocurrent and temperature). We also 

calculate the frequency shift for the isolated detector oscillator, beat frequency for the 

coupled system and the sensitivity enhancement using Eqs. (7.35), (7.42), and (7.43) and 

show that the calculated results are in good agreement with the experimental results. 
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7.6.3 Using Colpitts oscillators to detect DC current 

Figure 7.32 shows the first coupled oscillatory system that consists of two 

resistively coupled Colpitts oscillators. Each oscillator uses an NPN bipolar transistor 

configured as a common emitter amplifier, and an LC tank as the feedback. The oscillation 

frequency of the first oscillator (#1) is fC1 = 398.20 kHz and its oscillation linewidth is 

11.94 Hz. The oscillation frequency of the second oscillator (#2) is fC2 = 395.00 kHz and 

its linewidth is 12.60 Hz. This system is used to compare the sensitivity of the oscillation 

frequency of a single oscillator and beat frequency of a coupled system to a current change 

applied to the base port of the first oscillator (serving as the detector oscillator). 

 

Fig. 7.32. Two resistively coupled Colpitts oscillators used to detect a DC photocurrent 

(IDC) applied to the base port of the first oscillator (serving as the detector oscillator). The 

blue circuit is used to generate the beat frequency and its output is measured using an 

electric spectrum analyzer (ESA). Here, V1 = 3 V, L1 = 16 μH, R11 = 33 Ω, R12 = 68 Ω, R13 

= 83 Ω, R14 = 327 Ω, C11 = 27 nF, C12 = 33 nF, V2=3 V, L2 = 22μH, R21= 33 Ω, R22 = 69 Ω, 

R23 = 75 Ω, R24 = 325 Ω, C21 = 31 nF, C22 = 21 nF, and Rc = 3500 Ω. 

Firstly, we use oscillator #1 (as a single isolated oscillator) to detect the DC 

photocurrent generated by a photodiode. The magnitude of the DC current is controlled by 

changing the intensity of the incident light. The black dots in Fig. 7.33 are the measured 

data points for the frequency change (ΔfC1) plotted against the applied photocurrent (IDC). 
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The oscillation frequency is monitored through the collector port of the transistor using a 

buffer circuit (to make sure the measurement does not affect the oscillation). Next, 

oscillator #1 (the detector oscillator) is coupled to the oscillator #2. The two oscillators are 

bidirectionally coupled through a resistor RC that can be selected according to desired 

coupling strength. 

 

Fig. 7.33. Response of a single isolated Colpitts oscillator and a coupled Colpitts oscillating 

system to induced current change in one of the oscillators. Black dots and black triangles 

are the measured values of ΔfC1 and fB plotted against applied photocurrent (IDC) 

respectively. The squares are the measured values for η = fB/(ΔfC1). The lines are the 

calculated values for fB (dashed black), ΔfC1 (solid black) and η (solid red) using Eqs. 

(7.34), (7.41), and (7.42) for ϵ = 2𝝅 × 8.3184 Hz/μA (extracted from the measured values 

of ΔfC1) and ω01 - ω02 = 2𝝅 × 3200 Hz. 

For the system in Fig. 7.32 when RC is 3500 Ω, the coupled oscillatory system will 

oscillate at the synchronization edge (as defined by Eq. (7.34)). Here the ratio between the 

amplitude of the injected current through RC to each oscillator and amplitude of the intrinsic 

current flowing in the oscillator (Iinj/Iint) is 1.3  10-4. Once a system oscillating at the 

synchronization edge is prepared, the photocurrent is induced only in the base port of 

oscillator #1 by illuminating the photodiode connected between V1 and the base port of the 

transistor. In this case the readout circuit (blue circuit in Fig. 7.32) includes a mixer and a 
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low-pass filter (in addition to the buffer) that together they generate an output proportional 

to Sin(ωBt). The frequency of this signal (fB) is monitored using an electric spectrum 

analyzer.     

The triangles in Fig. 7.33 are the measured values of fB plotted against applied 

photocurrent (IDC). The squares in the same figure are the calculated ratio (η) between 

measured beat frequency (fB) and the measured frequency shift (ΔfC1). The solid lines are 

the calculated values of fB, ΔfC1 and η using Eqs. (7.35), (7.42), and (7.43) for ϵ = 2𝝅 × 

8.3184 Hz/μA (extracted from the measurement) and measured value of ω01 - ω02 = 2𝝅 × 

3200 Hz. It is worth mentioning that when the photocurrent is too small (less than 6 μA) 

the resulting frequency shift (ΔfC1) in the single Colpitts oscillator is not detectable since 

its magnitude is in the same order or smaller than the oscillation linewidth. However, the 

magnitude of fB of the coupled system is large enough to be resolved. As such the limit of 

detection (LoD) for the coupled system is significantly larger compared to the single 

oscillator system (~500 times larger based on the linewidth of the Colpitts oscillator). 

7.6.4 Using OEO to detect temperature change 

The second coupled oscillatory system studied here is a heterogeneous system 

consisting of an optoelectronic oscillator (OEO) [48] injection locked to an electronic 

oscillator. Figure 7.34 shows the schematic diagram of the coupled oscillatory system. The 

electronic oscillator is a commercially available signal generator (HP, 8648B).  The OEO 

that serves as detector oscillator, is fabricated using a simple single loop architecture with 

an optical delay line consisting of 1 km of single mode fiber. The RF filter in the OEO 



208 
 

feedback loop has been selected to force OEO to oscillate at 10.5650 MHz. The measured 

linewidth of the resulting oscillation is 16.09 Hz. Here the measurand is temperature and 

the affected OEO parameter is the optical delay. As such the fiber optic delay has been 

enclosed in a chamber so that the temperature of the entire loop can be controlled with an 

electrical heater placed inside the chamber. A Commercial psychrometer (EXTECH, 

RH350) with temperature sensing resolution of 0.1°C, is used to characterize the 

temperature. 

 

Fig. 7.34. A coupled heterogeneous oscillatory system consisting of an OEO injection 

locked (unidirectionally coupled) to an electronic oscillator, the fiber-optic delay loop is 

enclosed in a temperature-controlled chamber. The blue circuit is used to generate the beat 

frequency and its output is measured using an electric spectrum analyzer (ESA). 

First, we measure the oscillation frequency change (ΔfOEO) of the isolated OEO as 

a function of the temperature of the optical delay. In this experiment the oscillating RF 

power inside the OEO is monitored using a direction RF coupler that couples 19 dB of the 

RF power circulating in OEO’s feedback loop out. The readout circuit for the single 

oscillator characterization only includes a buffer that isolates the ESA from the feedback 

loop. The black dots in Fig. 7.35 are the measured oscillation frequency of the free running 

OEO as a function of the temperature of fiber optic delay. 
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Next, the output RF power of a tunable electronic oscillator is fed to OEO’s 

feedback loop using a 3-port RF combiner as shown in Fig. 7.34. The strength of the 

coupling is adjusted by tuning the oscillation frequency of the electronic oscillator and 

controlling the magnitude of the coupled (injected) RF power using a tunable RF 

attenuator. When the frequency of the electronic oscillator is 10.5687 MHz and the ratio 

between injected voltage amplitude and the intrinsic oscillating voltage amplitude of the 

OEO (Vinj/Vint) is 0.02, the coupled system oscillates at the synchronization edge. Similar 

to the previous experiment, a mixer and a low-pass filter are used after the buffer to 

generate an output proportional to Sin(ωBt) without affecting the oscillation of the system 

(see the blue circuit in Fig. 7.34). The resulting beat frequency is monitored using an ESA. 

 

Fig. 7.35. Single and coupled OEO is used to detect the temperature change in the chamber 

containing the fiber-optic delay, Black dots and black triangles are the measured values of 

ΔfOEO and fB plotted against the temperature, respectively. The squares are the measured 

values for η = fB/(ΔfOEO). The lines are the calculated values for fB (dashed black), ΔfOEO 

(solid black) and η (solid red) using Eqs. (7.35), (7.42), and (7.43). Here ϵ = 2𝝅 × 1794.20 

Hz/ °C, and ω01 - ω02 = 2𝝅 × 3700 Hz. 

The black triangles in Fig. 7.35 are the measured values of the beat frequency (fB) 

at different temperatures. The red squares are the magnitude of the enhancement ratio (η) 

calculated based on measured frequencies (fB, ΔfOEO). The solid lines are the calculated 
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values of fB, ΔfOEO and η using Eqs. (7.35), (7.42), and (7.43) for ϵ = 2𝝅 × 1794.20 Hz/C 

(extracted from the measurement) and measured value of ω01-ω02 = 2𝝅 × 3700 Hz. As 

expected, the temperature sensitivity of the beat frequency is much larger than that of the 

single OEO oscillation frequency change. In particular between 0 and 0.1°C, η can be as 

large as 20. Note that the smallest data point measured is limited by the resolution of our 

temperature sensor and it is not related to the limit of detection of the system.  

7.6.5 Discussion of the proposed sensor 

The sensing method described above relies on the fact that the perturbation of the 

sensor oscillator increases the difference between the intrinsic oscillation frequencies of 

the two oscillators. So assuming the two oscillators are synchronized and the coupling 

coefficients are selected so that the system is at the synchronization edge, two scenarios 

are possible: 1) the intrinsic oscillation frequency of the sensor oscillator is larger than the 

other oscillator; in this case the perturbation should increase the frequency of the sensor 

oscillator. 2) the intrinsic oscillation frequency of the sensor oscillator is smaller than the 

other oscillator; in this case the perturbation should decrease the frequency of the sensor 

oscillator. Given that the oscillation frequency of any oscillator is selectable by design, 

once the response of the sensor oscillator to a target measurand is known, the frequency of 

any other oscillators can be selected to provide maximum sensitivity to a change in the 

target measurand in a given direction. Clearly, this requirement imposes a limit on the 

direction or sign of the measurand change; in other words, if the system is designed to 

detect an increase in certain measurand with highest sensitivity (initially synchronized at 

synchronization edge), then it will be insensitive to the decrease of that measurand. 

Alternatively, the system may be tuned such that initially it is not right at the 
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synchronization edge so that the beat frequency is present even in the absence of a 

measurand change; in this case the system may detect both an increase and decrease of the 

measurand but with a lower sensitivity.    

 Since the limit of detection (LoD) of the proposed oscillatory sensor system is 

ultimately limited by the smallest measurable beat frequency, the signal-to-noise ratio 

(SNR) of the beat signal may impose a bound on the limit of detection beyond the limit 

defined by the resolving power of the frequency measurement system. Our preliminary 

theoretical analysis and experimental observations indicate that the amplitude of the beat 

signal decreases as the perturbation (and therefore the beat frequency) becomes smaller. 

Given that generally (at least in electronic circuits) the level of noise increases at lower 

frequencies (e.g., due to 1/f noise mechanisms), we expect the SNR to degrade as the 

magnitude of the perturbation decreases. A comprehensive study and analysis of the 

amplitude variations of the beat frequency and the noise in such system is beyond the scope 

of this paper but it should be considered as an important limitation in particular for 

applications where a low LoD is required. 

Generally, the temperature dependence of the oscillation frequency can be different 

for the two coupled oscillators in the sensing system. As such if temperature of the 

oscillators varies during the measurement, the measured value of the beat frequency cannot 

be used to accurately monitor a change in the measurand (due to residual shift resulted 

from temperature variations). This problem can be mitigated by stabilizing the temperature 

of the oscillators (by active control) and thermally isolating them from the sensing element 

of the sensor oscillator that is used to detect the measurand (e.g., the fiber delay in the 

OEO). 
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Another possible limitation of the proposed method is the fact that the beat 

frequency is much smaller than the oscillation frequencies of the individual oscillator. As 

such, depending on the frequency measurement system used (e.g., a frequency counter, RF 

spectrum analyzer, and the like), measuring small changes in a small beat frequency may 

require longer integration time compared to the time required for monitoring the frequency 

of isolated oscillators. This factor should be taken into account when evaluating the 

enhanced sensitivity provided by the coupled system. 

7.6.6 Importance of this work 

The enhanced sensitivity and the fact that the oscillatory system and the sensing 

mechanism used in this work support dissimilar oscillators with slightly different 

frequencies, suggest that this work may become an effective technique in many 

applications. The tolerance for small frequency difference between two oscillators is an 

advantage over previously demonstrated systems, since fabrication of oscillators with 

identical oscillation frequencies (a prerequisite of most previously demonstrated systems), 

is a challenging task. The heterogeneous systems may provide the added benefit of 

simultaneous detection of small perturbations of physically distinctive measurands (e.g., 

temperature, optical power, current, magnetic field, etc.).  

The proposed approach is particularly suitable for detection of extremely small 

perturbations where the frequency shift of a single oscillator may be screened by noise, but 

the high sensitivity of the beat frequency change in the proposed coupled oscillatory 

systems is large enough to be measured (resulting in significantly lower limit of detection). 
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While the variation of the beat frequency in a coupled oscillatory system is inherently 

nonlinear, for detecting small changes around a background value or starting from a zero 

perturbation, the sensitivity can be approximated by linear slope. Moreover, in many 

applications only detection (as opposed to measurement) of a small change of a parameter 

is the objective, in which case the nonlinearity of the response becomes irrelevant. An 

example of such applications is detection of small quantity of hazardous molecules (in 

particular in gaseous state) and triggering an alarm when the detected signal exceeds a pre-

set threshold. 

7.7 Summary  

In this chapter we investigated the dynamics of certain coupled homogeneous and 

heterogeneous oscillatory systems and some of their applications. The oscillators included 

in our studies were optomechancial oscillator, Colpitts oscillator and optoelectronic 

oscillator. 

 First, we experimentally investigated the cluster synchronization in a multilayer 

network of four electrical Colpitts oscillators with two interaction layers. We observed the 

appearance of several cluster states; to our knowledge, the clustered quasiperiodic state 

was observed for the first time. This work was also the first experimental study of a 

multilayer network of oscillators with dissimilar coupling between layers. This outcome 

may provide some insight for understanding clustering in various multilayer systems.  

In our second study, we investigated certain aspect of coupling between 

optoelectronic oscillator, optomechanical oscillator and Colpitts oscillator. Simulation of 
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the coupled optoelectronic oscillator and optomechancial oscillator showed that once the 

two oscillators are synchronized, further increasing the coupling strength may destroy the 

synchronization and push the frequencies of the two oscillators to the opposite directions, 

this is a very unusual but interesting phenomenon, which needs experimental verification 

and detailed investigation. In addition, we theoretically and experimentally studied the 

coupling between the optomechanical oscillator and Colpitts oscillator. We found that the 

noisy spectrum of a Colpitts oscillator can be “cleaned” once injection locked to a high 

quality optomechancial oscillator (the linewidth of the Colpitts oscillator can be narrowed 

from tens of kilohertz to 30 Hertz), this finding might be helpful in some MEMS devices 

as well as certain electronic circuits and systems. Chip based electrical oscillators are 

widely used in various applications, however electronic oscillators that use an LC tank on 

a chip generally exhibit poor quality factor compared to those with quatz crystal resonator 

(note that high frequency quatz crystals are not practical and cannot be integrated with on-

chip circuits [108, 109]). In contrast, high frequency and high quality optomechanical 

oscillator are CMOS compatible and can be fabricated on a chip [110, 111]. So, it is 

plausible to integrate the OMOs and electronic oscillators on a single chip and injection 

lock the on-chip electronic oscillators to OMOs to achieve high quality electronic 

oscillation at higher frequencies. 

Next, we experimentally studied the complex dynamics of bidirectionally coupled 

optoelectronic oscillator and electrical Colpitts oscillator via two different coupling 

mechanisms. More specifically, we coupled an optoelectronic oscillator to a Colpitts 
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oscillator via optical coupling and coupled back the Colpitts oscillator to the optoelectronic 

oscillator using a voltage. We investigated and observed phase synchronization and 

generalized chaos synchronization in the resulting coupled oscillatory system. The phase 

synchronization was observed when both oscillators were initially pre-set to oscillate in 

periodical regime (before coupling), while the generalized chaos synchronization was 

observed if both oscillators were pre-set to oscillate in chaotic regime (when isolated). In 

the periodical regime we observed simple linear relationship between the values of 

coupling factors at which a transition to phase synchronization occur. In the chaotic regime, 

we observed a chaos to hyperchaos transition associated with the synchronization. This 

work is one of the first experimental studies on the synchronization of two physically 

dissimilar coupled oscillators. 

Finally, we studied the potential application of a coupled oscillatory system in 

sensing and detection. We theoretically demonstrated that the beat frequency generated by 

a coupled oscillatory system comprising two originally synchronized similar or dissimilar 

oscillators is highly sensitive to a weak perturbation of the frequency of one of the 

oscillators. Based on the well-known Kuramoto model, we analytically showed that the 

variation of the beat frequency resulted from the desynchronization of the coupled 

oscillators induced by external perturbation is much larger than the frequency shift of a 

single oscillator exposed to the same level of perturbation. The theoretical predications 

were validated by experimental measurements of the response of two different coupled 

oscillatory systems to external perturbation: 1) Two bidirectionally coupled electronic 
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Colpitts oscillators, when a photo induced current is applied to one of them. 2) An 

electronic oscillator unidirectionally coupled to an optoelectronics oscillator (OEO), when 

the temperature of the delay line of the OEO is changed.  

In conclusion, coupled oscillatory systems, particularly when they are heterogenous, 

support many interesting phenomena that are worth exploring. The outcomes of these 

studies may benefit many related studies and may also find applications in unexpected 

domains.  
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Chapter 8 

Future directions 

8.1 Injection locking of OMO via surface acoustic waves (SAWs) 

As is discussed in chapter 3, injection locking of OMO via acoustic waves can be 

a very efficient non-contact method for synchronizing one or more OMOs with another 

type of oscillator. As such, many applications such as RF signal processing, optical 

communication and sensing may benefit from this method. In the proof-of-demonstration 

experiment, we used a bulk PZT transducer attached to the carrier chip of the OMO to 

generate acoustic signal to injection lock the OMO. However, in a monolithically  

integrated chip, the bulk transducer may be replaced with on-chip electromechanical 

transducers based on piezo electric thin films and interdigitated electrodes that not only 

result in more compact systems, but also enable excitation of various types of surface 

acoustic waves (SAWs) that may transfer the acoustic energy to selected modes of the 

OMO more efficiently. Moreover, integrated acoustic waveguides and phononic crystals 

can be used to improve the directivity of the acoustic energy transfers to the target OMO. 

With this approach, the acoustic energy from one transducer can be distributed among 

several OMOs or multiple transducers can be independently locked to groups of OMOs. 

In the past few years high quality factor optomechanical cavities have been already 

fabricated on single crystal Lithium Niobate (LiNbO3) [1]; since LiNbO3 is also a 

piezoelectric material that can serve as a substrate for SAW devices [2], a possible 

monolithic system may include optomechanical cavities and SAW devices fabricated on a 
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single LiNbO3 chip. Acoustic waveguides can also be fabricated on the same chip to 

redirect or concentrate the acoustic energy to the target OMOs [3, 4]. Figure 8.1 (a) shows 

an example of surface acoustic wave generated by a SAW device calculated based on finite 

element modeling (FEM) using a commercial software (COMSOL); here the SAW 

generator is a interdigital transducer (IDT) formed from Al electrode deposited on a 

LiNbO3 substrate (the characteristic frequency of this IDT, that is determined by the period 

of the Al electrodes, is 9.58 MHz). Figure 8.1(b) is a schematic diagram showing of toroidal 

microcavity on the same substrate. 

     
                   (a)                               (b)  

Fig. 8.1. (a) Surface acoustic wave generated by an IDT, and (b) Microtoroidal cavity 

integrated with the SAW generator shown in part-a. 

8.2 Performance of OMR/OMO based acoustic receiver 

In chapter 5 and 7 we demonstrated the application of strong optomechanical 

coupling and the resulting gain in acousto-optical transduction and down conversion in the 

context of acoustic transducer and underwater acoustic link. While our calculations and 

measurements have revealed some of the basic properties of OMR/OMO based acoustic 

receivers, still many parameters in these systems needs to be investigated. Some related 

future directions may include: 
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1) Improving Acoustic transmission efficiency and the device packaging 

As mentioned in chapter 6, The large impedance mismatch between the cavity 

material (e.g., silicon) and the acoustic signal transfer medium (e.g., sea water) results in 

significant insertion loss of the acoustic energy due to reflection at the interface between 

silicon and water. Meanwhile the small size of the cavity device (~ hundreds micron) limits 

its capability of capturing acoustic energy. In the example discussed in chapter 6 (section 

6.5), a combination of acoustic impedance matching, and acoustic concentration were 

proposed to overcome this problem. Similar configuration with a more compact form factor 

may be implemented to fabricate more practical acousto-optical transducers based on OMR. 

Clearly, the efficiency of acoustic energy transfer cannot be addressed independent of 

packaging.     

2) Measuring the bandwidth and dynamic range of the OMR/OMO based acoustic 

receiver 

Dynamic range is one of the important characteristics of an acousto-optical 

transducer. However, measuring the dynamic range of the OMR/OMO based acoustic 

receiver needs a carefully designed setup, that can resolve problems like fiber taper 

vibration caused by the acoustic wave during the measurement. Bandwidth is another 

important characteristic of an acoustic transducer. Considering the injection locking can 

happen at certain frequency range with certain acoustic power in the OMO based acoustic 

receiver, characterization of the bandwidth of the OMO based acoustic receiver is a 

challenging task and requires a good acoustic source with wide flat spectrum. 



230 
 

8.3 Photoacoustic imaging using OMR 

Noninvasive laser-based diagnostic and imaging techniques have been subject of 

research and development for several decades. Photoacoustic imaging is a relatively new 

technique that has demonstrated great potential for visualization of the internal structures 

and function of soft tissue [5, 6] and it has particularity shown great potential for small 

animal imaging [7]. This imaging technique is based on selective of absorption of light in 

certain biological materials and subsequent generation of acoustic waves that may be used 

to form an image. A pulsed or modulated laser source illuminates a sample volume and the 

absorbed optical energy produces thermal variations and therefore pressure waves 

generated by expansion and contraction of the volume in which light is absorbed. The 

generated acoustic waves can be detected by ultrasound transducers positioned outside the 

sample in order to determine their origin and create an image of the points from which the 

acoustic waves emerge. For example, because of the large difference between optical 

absorption at certain wavelengths (i.e., 488 nm) between blood and surrounding tissue, the 

ultrasound wave induced by the laser irradiation at 488 nm may be used for the imaging 

the microvascular system. Typical acoustic imaging techniques use a short-pulsed laser 

source to irradiate the sample. In 2004, a novel frequency domain photoacoustic imaging 

methodology has been proposed [8], in which the acoustic wave is generated by periodic 

modulation of the laser source. It has been shown that frequency-domain approaches yield 

higher signal-to-noise ratios than time-domain approaches [9]. 

As demonstrated in this thesis, OMR shows enhanced modulation depth than any 
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other type of opto-acoustic transducers at fixed optical power. In addition, the modulation 

depth of the OMR’s detection increases proportional to level of the optical pump power 

(due to optomechanical gain). So, it should be possible to reduce the power consumption 

and enhance the efficiency of photoacoustic imaging by using an OMR transducer instead 

of other optical transducers or piezoelectric transducers.  

8.3.1 Preliminary experimental work for acousto-optical imaging using OMR 

Photoacoustic imaging was demonstrated upon different samples by using different 

laser wavelengths, the main considerations are the cost, laser intensity and the sample’s 

absorption of the laser power. Table 8.1 shows some typical photoacoustic imaging 

experiments for imaging different samples with different wavelengths. 

We have designed an experimental setup for proof of demonstration of photo-

acoustic imaging system based on microtoroidal OMR. We selected a laser with a 

wavelength of 488 nm as the optical source. Such a wavelength is absorbed in samples 

such as sutures made of Nylon, Silk, Polyester, Polypropylene, Catgut with diameters of 

150 μm and 200 μm as well MEH-PPV powder dissolved in toluene solution (which has 

peak absorption in 488 nm [19]). 

Figure 8.2 shows the experimental setup that we built to test microtoroid OMR 

acoustic transducer for photoacoustic imaging. The sample is placed inside an acoustic gel 

and on top of a thin cover glass with thickness of 170 μm. The laser light is focused on the 

sample using a microscope objective (UPLFLN 20X, from Olympus) that generates a beam 

waist with a diameter of 1 μm. 
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Table. 8.1. Various photoacoustic imaging experiments 

Approach 

type 
Sample Wavelength Transducer References 

Frequency 

domain 
Rubber in water 1064 nm 

PZT 

PanametricsV382 
[8] 

 Pulsed 

laser 
Microvascular of rat 584 nm PZT array [10] 

Pulsed 

laser 
Chicken breast 650 nm 

PZT 

L8-4, Philips 

Healthcare 

[11] 

Frequency 

domain 
Agar phantom 808 nm 

PZT 

V382, Olympus-

NDT 

[12] 

Pulsed 

laser 
Human hair, Black ink 532 nm 

PZT 

V323, 

Panametrics-

NDT 

[13] 

Pulsed 

laser 
Blood flow in zebrafish 532 nm LiNbO3 [14] 

Frequency 

domain 

Castor/Mineral/Olive oil 

and Glycerin 
1210 nm 

PZT 

V382, 

Panametrics, 

Olympus 

[15] 

Frequency 

domain 

Indocyanine Green 

aqueous solution 
785 nm 

PZT 

UST,Olympus 

NDT 

[16] 

Frequency 

domain 

Chromium line and blood 

smear 
405 nm 

Onda, needle 

hydrophone: 

HNC 1000 

[17] 

Frequency 

domain 

Suture and 

eyeball/suture/vasculature 

of zebrafish larva 

488 nm 

PZT 

SONAXIS, 

Besancon 

[18] 

Frequency 

domain 

Sutures (Nylon, Silk, 

Polyester, Polypropylene, 

Catgut) and MEH-PPV in 

toluene 

488 nm 
OMR 

On Si chip 
Our work 

In the experiment, the maximum average optical power from the 488 nm laser 

(QFLD-488-10SAX, from QPhotonics) incident on the objective lens is about 7 mW so a 
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fluence as large as 0.4 MW/cm2 could be generated on the sample (note that in practical 

applications, the maximum fluence allowed is limited by the ANSI safety standards and 

should be less than 200 mW/cm2). In order to scan the sample to obtain the image, the 

cover glass was attached to a computer-controlled translation stage with the horizontal 

travel resolution of 29 nm.  

  

     (a)                               (b) 

Fig. 8.2. (a) Experimental configuration designed for proof-of-concept demonstration of 

photoacoustic imaging using a microtoroidal OMR. (b) Photograph of the experimental 

setup. A: 488 nm laser; B: Objective; C: Computer controlled high resolution translation 

stage; D: Manual controlled translation stage; E: Cover glass with sample and F: OMR on 

silicon chip. (the region shown in red rectangle is magnified for better visibility). 

An RF function generator was used to modulate the output optical power of the 

laser with sinusoidal wave. A modulation depth of 100% was achieved at a modulation 

frequency of 100 kHz, and with modulation depth of 76% was achieved at a modulation 

frequency of 10 MHz (that is equal to the frequency of one of the mechanical eigen modes 

of the OMR). The optical output of the OMR is converted to voltage signal using a fast 

photodetector with transimpedance gain of 4.2×104 V/W. The output signal was measured 

using a Lock-in amplifier (SR844, Stanford Research Systems). The microtoroid cavity 



234 
 

used here has major diameter D = 110 μm; minor diameter d = 10 μm; pillar diameter Dp = 

70 μm; and fundamental mode frequency fmech = 10 MHz, the Qtot = 3.1 × 106 and Qm = 

238; the silicon chip has dimension of 150 mm × 45 mm × 0.35 mm. 

8.3.2 Problems and the possible solutions 

We have examined several samples including Nylon, Silk, Polyester, Polypropylene, 

Catgut with diameters of 150 μm and 200 μm as well as MEH-PPV dissolved in toluene. 

Unfortunately, after many attempts, we did not observe any photoacoustic signal. One 

possible reason can be the strong thermal noise generated near the mechanical frequency 

of the selected OMR. Further investigation is required to find the origin of the problem and 

the experiment should be systematically repeated with OMRs with higher optical and 

mechanical quality factors. Moreover, the alignment of the focused laser beam with the 

sample should be revisited. Unfortunately, we were not able to continue the experimental 

work as our lab was closed due to a pandemic (COVID-19).    

8.4 Dynamics of two coupled heterogenous oscillators 

As mentioned earlier, the dynamic of coupled heterogeneous oscillators may have 

applications in sensing [20] and may benefit study of oscillatory living system [21]. In 

chapter 7 some of the basic aspects of the physics and dynamics of relatively simple 

coupled heterogeneous oscillatory systems were presented; however, there are still many 

interesting aspects remaining that require further investigation. For example: 

1) Coupling function of two coupled heterogeneous oscillators 

Several theoretical approaches have been reported in the literatures to analyze 
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coupled homogeneous oscillators, for example, some are based on dynamical equations 

[22, 23] and some are based on group-theoretical approach [24, 25]. The most commonly 

employed method is to work directly with the differential equations describing the coupled 

oscillators—i.e., the Oregonator model for BZ reaction [26], the Kirchhoff’s law for 

coupled Colpitts oscillators [27]. However, it is generally difficult to determine the 

differential equations governing the dynamics of coupled oscillatory systems in biological 

systems, especially coupled heterogeneous biological systems. 

A complementary, and perhaps a more promising approach, is using a phase model. 

Such approach has been used to study the dynamics of various coupled homogeneous 

systems [28-30]. To the best of our knowledge, there is no effort reported to build a phase 

model for coupled heterogeneous oscillators. Considering that the coupled heterogeneous 

oscillatory system involves dissimilar oscillators with different working mechanisms and 

dissimilar coupling mechanisms which makes the study on it very complicated. So, 

building a phase model applicable for such system is very necessary to simplify the 

research process. 

2) Numerical study of the coupled OEO and electrical Colpitts oscillator 

In chapter 7, we experimentally studied the dynamics of the coupled OEO and 

electrical Colpitts oscillator, we found that a simple linear relationship exists between the 

two coupling mechanisms in phase synchronization regime. We also observed a transition 

from chaotic synchronization regime to hyperchaotic synchronization regime in that 

system. A comprehensive theoretical study of the system may reveal more interesting 
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phenomena that may have been missed in current experiments. Verification and 

explanation of these phenomena may lead to discovery of new properties only found in 

heterogeneous oscillatory systems.  
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Appendix A: Relation between RF driving power and equivalent 

acoustic force 

As mentioned in section 4.6 in chapter 4, in order to simulate the variation of lock 

range and relative oscillation phase as a function of the RF power fed to the PZT (PPZT) 

using coupled differential Eqs. (4.2) and (4.3), the radial component of the equivalent 

acoustic force (FA0) experienced by the microtoroid should be known as a function of PPZT. 

Here we present the calculation procedure that leads to Eq. (4.4). We used Finite Element 

Modeling (COMSOL electrical mechanical package) for these calculations. Since 

modeling configuration-2 and -3 requires a relatively large model and therefore long 

simulation time, we have limited our calculation to mode-1 (fOMO,1 = 2.7 MHz) excited via 

configuration-1. 

 The cylindrical symmetry of configuration-1 allows reducing the simulated zone 

without significant impact on the outcome. Figure A.1(a) shows the configuration used in 

the simulation where the silicon and acrylic tape thicknesses are selected based on 

experimental values while the area of the chip below OMO is reduced to 80 × 80 μm2. The 

thickness of the PZT is also reduced as the software allows adjusting the PZT parameters 

such that its response is similar to that of the actual PZT without the need to model the 

whole PZT thickness. 
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(a)                        (b) 

 

 
(c) 

Fig. A.1. (a) The model used for calculating the relation between FA0 and PPZT using the 

Finite Element Modeling. (b) Calculated displacement amplitude (dr0) as a function of the 

amplitude of the external force (FA0) inserted on the toroidal section of the microresonator. 

(c) Calculated displacement amplitude (dr0) as a function of the amplitude of the voltage 

(VRF,0) applied on the PZT. 

As the software did not allow direct calculation of the amplitude of the force 

experienced by a certain mechanical mode (FA0) we used amplitude of the radial 

displacement of toroidal section to find the relation between FA0 and PPZT. First, we 

calculated the relation between an external harmonically varying radial force (FA = 

FA0cos(ΩPZT) where ΩPZT = 2πfOMO,1) inserted on the toroidal section of the microresonator 

and the resulting displacement amplitude (dr = dr0cos(ΩPZT). Figure. A.1(b) shows that dr0 

varies linearly with FA0 with a slope of 3 mm/N. Next we calculated the dr0 as a function 

of the amplitude of the RF voltage (peak voltage) applied on the PZT (VRF = VRF,0cos(ΩPZTt-

θ)). The PZT parameters and mechanical boundary conditions were selected such that the 
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acoustic waves generated by the PZT for a given RF power is the same as the actual PZT. 

This was done by exciting the same mechanical mode (thickness mode) of the PZT that is 

excited in the experiment and adjusting the piezoelectric and mechanical properties of the 

PZT according to its actual specifications (extracted from the spec sheet). Figure 4.A.1(c) 

shows that dr0 varies linearly as a function of PZT driving voltage with a slope of 39 pm/V. 

As mentioned earlier the limitation of our software did not allow extracting the phase 

difference (θ) between VRF and dr.  

As such we concluded that the amplitude of the equivalent radial force is related to 

the amplitude of the applied RF voltage via: 

𝐹𝐴0 =
𝜂

𝜁
× 𝑉𝑅𝐹,0 =

39×10−12

3×10−3
× 𝑉𝑅𝐹,0 = 13 × 10−9 × 𝑉𝑅𝐹,0.       (A-1) 

The impedance of the RF source is 50 Ω and the estimated impedance of the PZT 

at 2.7 MHz (based on its value at resonance) is about 32 Ω. So VRF,0 in the above equation 

can be replaced by PPZT: 

𝐹𝐴0 = (
𝜂

𝜁
)√

2𝑍

1000
× 10(𝑃𝑃𝑍𝑇/10) = 3.3 × 10−9 × 10(𝑃𝑃𝑍𝑇/20).     (A-2) 

here the unit of PPZT is dBm, FA0 is in Newton. 
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