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A Generalized Confidence Interval
approach to comparing log-normal means,

with application

by
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Abstract

Generalized Confidence Intervals (GCI) can be constructed for cases where an exact

confidence interval based on sufficient statistics is not available. In this thesis, we first

review three existing tests for log-normal data using the GCI approach. Then we pro-

pose fiducial generalized pivotal quantities (FGPQ)-based simultaneous confidence

intervals for ratios of log-normal means, and prove that the constructed confidence

intervals have correct asymptotic coverage. These methods are then applied to a

dataset from the Carbon Reduction Commitment Energy Efficiency Scheme (CRC)

to test for differences between energy saving percentages among different groups.
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Chapter 1

Introduction

Given a data set x, for a certain significance level α and a parameter of interest θ,

let u(x) and v(x) be functions of x, such that Pr(u(x) ≤ θ ≤ v(x)) = 1 − α, we

call (u(x), v(x)) the (1 − α) confidence interval of θ. For most common statistical

tests, confidence intervals can be constructed based on sufficient statistics using the

central limit theorem.

However, for some distributions, it might not be possible to construct a confidence

interval based on sufficient statistics. This is the case with the Exponential and the

Log-normal distributions. For data that follows these distributions, for example, if

we wish to do a comparison between two means, or to do inference for one mean, we

can use the method of Generalized Confidence Intervals (GCI) (Weerahandi, 1993).

In a GCI, the expressions for u(x) and v(x) include some random terms from known

distributions, such as Z ∼ N(0, 1) and U2 ∼ χ2
n−1. The procedure continues with

finding a generalized test statistic, T , for the specific distribution and θ we wish to

test, then generates a large number of the random terms, and calculates a number

of Ti from the distribution of T for i = 1, · · · ,m. The values for u(x) and v(x) are

then given by using the appropriate percentiles of T .

1



Chapter 1. Introduction

The log-normal distribution is widely used to describe the distribution of posi-

tive random variables that exhibit skewness in biological, medical, economical and

social studies. For example, the Carbon Reduction Commitment Energy Efficiency

Scheme (CRC) is a mandatory energy usage reporting scheme for large organiza-

tions in the UK (refer to Section 3.1 for details). However, the percentage savings

between two years for both the absolute and growth emissions variables do not fol-

low a normal distribution even after transformation. After grouping the observations

into representative groups, the variables are log-normally distributed. The problem

of testing equality and multiple comparisons of the group means are common inter-

ests in many observational and experimental data arising from several populations.

Unfortunately, if sample variances are unequal, the standard ANOVA tests don’t ap-

ply for log-normal distributions even after transformation, since the null hypothesis

based on log-transformed outcomes is not equivalent to the one based on the original

outcomes (Zhou et al., 1997).

The problem of testing equivalence of the means of several log- normal popula-

tions has been well studied in literature. Approximation procedures are commonly

used regarding this problem, for example, Alexander-Govern test (1994), the Welch

test (1951) and the James second-order test (1951) etc. These three approximate

tests behave similarly, and perform better than the ANOVA F-test (Guo & Luh,

2000). Later, Gupta and Li (2006) presented a score test. Weerahandi (1993),

Krishnamoorthy and Mathew (2003) investigated inferences on the means of log-

normal distributions by generalized p-values and GCIs. Bebu and Mathew (2008)

proposed a GCI method for testing equivalence of bivariate response variables. Li

(2009) proposed a new generalized p-value procedure.

Simultaneous confidence intervals for certain log-normal parameters are useful in

many areas. For example, in order to investigate the effects of Automated Meter

Reading (AMR) on energy savings, we can carry out a simultaneous comparison of

2



Chapter 1. Introduction

the mean Absolute Emissions savings ratio of organizations with different levels of

AMR (refer to Section 3.6 for details). To find out if there are AMR effects among

different groups, we require a new method of multiple comparisons for several log-

normal distributions. Hannig, Iyer, and Patterson (2006) introduced a subclass of

Weerahandi’s generalized pivotal quantities, called fiducial generalized pivotal quan-

tities (FGPQs), and provided procedures to derive FGPQs. Hannig, Lidong, et al.

(2006) proposed simultaneous fiducial GCI for ratios of means of log-normal distri-

butions. Xiong and Mu (2009) proposed two kinds of simultaneous intervals based

on FGPQ for all pairwise comparisons of treatment means in a one-way layout un-

der heteroscedasticity. Xiong and Mu (2009) pointed out that if sample sizes are

sufficiently large, Hannig, Lidong, et al. (2006)’s simultaneous confidence intervals

are equal to one of their proposed intervals. Otherwise, Xiong and Mu (2009) meth-

ods perform better than Hannig, Lidong, et al. (2006)’s methods. Following Xiong

and Mu (2009)’s idea, we proposed FGPQ-based simultaneous confidence intervals

for all-pairwise comparisons for ratios of means from several log-normal populations

under heteroscedasticity.

This thesis is outlined as follows. In Chapter 2, the methodology section, we

review the log-normal distribution and discuss cases where it can be an appropriate

modelling choice (Section 2.1). We then discuss the concepts behind the method of

GCI as outlined by Weerahandi (1993) in Section 2.2. Then, we review three GCI

test statistics for log-normal data: GCI for inference of one mean (Krishnamoorthy

& Mathew, 2003) in Section 2.3, GCI for testing equivalence of bivariate response

variables (Bebu & Mathew, 2008) in Section 2.4 and GCI for the difference between

two independent log-normal means (Krishnamoorthy & Mathew, 2003) in Section

2.5. We then propose a FGPQ-based simultaneous confidence intervals for k log-

normal means under heteroscedasticity and unbalanced design in Section 2.6. In

Chapter 3, the analysis section, we apply the four tests to CRC data and have derived

some interesting findings. In Chapter 4, the conclusions section, we summarize both

3



Chapter 1. Introduction

theoretical and application results, and propose future work.
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Chapter 2

Methodology

In this chapter, we first give an overview of the log-normal distribution and its

possible applications. Next, we introduce the GCI concept from Weerahandi (1993).

We then review three methods of comparing log-normal means using GCI: GCI

for a log-normal mean (Krishnamoorthy & Mathew, 2003), GCI for equivalence of

bivariate log-normal means (Bebu & Mathew, 2008) and GCI for two independent

log-normal means (Krishnamoorthy & Mathew, 2003). Finally, we propose a new

GCI for simultaneous pairwise comparisons of k log-normal means.

2.1 Log-Normal Distribution

Following Casella and Berger (2002, page 109), if the logarithm of a variable X is

normally distributed, X follows the log-normal distribution - that is, Y = log(X) ∼

N(µ, σ2). The mean and variance of a log-normal distribution is given by:

E(X) = e(µ+
σ2

2
) ,

V ar(X) = e(2µ+σ
2) − e2(µ+σ2) ,

5



Chapter 2. Methodology

Figure 2.1: Probability density functions for a normal and log-normal distribution

where µ and σ2 are the mean and variance of the normal distribution - see Figure 2.1

for a comparison of the probability density functions for a normal and log-normal

distribution.

The log-normal distribution is widely used in a number of fields, for example

ecology where the abundance of species can be modelled using a log-normal distri-

bution (Magurran, 1998), geology where the concentration of elements in earth’s

crust are log-normally distributed (Malanca, 1996), in medicine where latency peri-

ods (the time between the infection and the first symptoms) are log-normal (Kondo,

1977), lingustics where the number of words per sentence are log-normal (Williams,

1940), network traffic (Antoniou et al., 2002), in economics where it can be used to

model markets, for example incomes (Bundesamt fur Statistik, 1997), closing prices

on stocks (Antoniou et al., 2004) and futures hedging (Lien & Balakrishnan, 2006).

In particular, the log-normal distribution is very useful for modelling populations

which exhibit the following properties:

6



Chapter 2. Methodology

1. Positive only values: As the logarithm of negative numbers does not exist,

it can only be used to model data which cannot take negative values, such

as species population numbers and income levels. As a consequence, the log-

normal distribution cannot take values < 0, and hence it can be a preferable

model choice for cases where the normal distribution could give negative values

but the data can never be negative.

2. Increased skewness: Some data generally follows a normal distribution for

values close to the mean, but exhibit larger variance than expected at the

tails. By using a log-normal distribution, this skewness is incorporated in the

right-hand skew of the probability density function, and hence the log-normal

distribution can be useful for modelling populations with larger than expected

variances at the tail, such as market volatility.

3. Multiplicative property: The classical case of the Central Limit Theorem

states that the sum of a sufficient number of independent random variables Wi

is normally distributed (non-normalized version of Casella and Berger (2002,

page 236)),

lim
n→∞

1

n

n∑
i=1

Wi → N

(
µ,
σ2

n

)
. (2.1)

If instead we multiply together Wi,
n∏
i=1

Wi will tend towards a log-normal dis-

tribution as log

(
n∏
i=1

Wi

)
=

n∑
i=1

log(Wi).

To illustrate these three properties, we will use the example of stock market

prices. It is commonly accepted that stock market prices are more appropriately

modelled by a log-normal distribution than a normal distribution. To see why this

is so, consider the following three properties of stock market prices (adapted from

Daniel (2008) and Sharpe (2004)), which corresponds to the three properties outlined

above:

7



Chapter 2. Methodology

1. Positive values: If the stock price followed a normal distribution, there is a

possibility of the stock price taking a negative value, which is impossible. Stock

prices can then only take positive values, fulfilling criteria 1 above.

2. Market volatility: There are many examples of market prices - whether in

stocks, securities or cotton - showing much higher volatility (variance) than

what would be expected were prices perfectly normally distributed. This re-

sults in fatter tails, and hence is an argument to use a log-normal distribution

following the second criteria above.

3. Rate of Return: The rate of return on an investment, such as a stock, is the

change in value of the stock, plus dividends paid, at the end of a certain time

period such as one year. Using the notation from Daniel (2008) of initial stock

price S0, and the price after some interval k as Sk, the rate of return Rk for

any one interval is given by

Rk =
Sk
Sk−1

.

Then Sk = S0(Rk ∗ Rk−1...R2 ∗ R1). If we assume that the Rks are normally

distributed and independent we see that unlike a normal CLT approximation

which involves a sum of Rk, we are dealing with a product of Rks, which

approximates to a log-normal distribution as per the multiplicative property.

Hence we can view as per Daniel (2008) the price of a stock at time t as a

product of the initial price S0 and a log-normal variable:

St = S0e
N(µt,σ2t) = S0e

r .

By dividing out the initial price S0 from both sides of this equation we see the

change in the dollar price s given by

log(s) = R ,

8



Chapter 2. Methodology

which is the definition of a log-normal distribution. This exemplifies the mul-

tiplicative nature of the log-normal distribution, as each year’s rate of change

is a product of the previous year’s rate of return - which corresponds to the

third criteria above.

In the Analysis section, we will examine the CRC Energy Savings data and show

that this also fulfills the three above properties, and hence assuming it passes the

Shapiro-Wilks test on Y = log(X) can be appropriately modeled using a log-normal

distribution.

2.2 Generalized Confidence Intervals

The principles of GCI is outlined by Weerahandi (1993). The idea is to be able to

construct confidence intervals for cases where we cannot construct exact confidence

intervals based on sufficient statistics, such as for comparing two means from the

exponential distribution, or the log-normal distribution. The confidence interval is

constructed using a pivotal quantity (Weerahandi, 1993, page 900):

Let R be a function r(X; x,υ) where X = (X1, . . . , Xn) is a random sample, x

are the observed values of X, and υ = (θ, δ) where θ is an unknown parameter of

interest from X and δ is a vector of nuisance parameters. Then R is a generalized

pivotal quantity if it has the following two properties:

• Property A: R has a probability distribution free of unknown parameters

• Property B: The observed pivotal, defined as robs = r(x; x,υ) does not depend

on the nuisance parameter δ.

Suppose that α is the desired significance level, such that the α-level confidence

interval is given by Pr(u(x) ≤ θ ≤ v(x)) = 1− α. Then, given the pivotal quantity

9



Chapter 2. Methodology

R and the significance level α, we can define a subset of the sample space Cα:

Pr(R ∈ C(x)) = 1− α . (2.2)

Define Θc(r) to be a subset of the parameter space such that:

Θc(r) = {θ ∈ Θ |r(x; x,υ) ∈ Cα} . (2.3)

Following the argumentation in Theorem 2.1 of (Weerahandi, 1993), Θc is the gen-

eralized confidence region of θ.

Using this idea of generalized pivot quantities, one can explore the concept of

a generalized test variable T . T is defined as T = t(X; x,υ), and has the same

properties A and B as the generalized pivot quantity discussed above, as well as one

additional:

• Property C: T is monotonically increasing in θ

Hence T is a general pivotal quantity with one additional restriction. We can then

define the generalized p-value (Tsui & Weerahandi, 1989) as p(t) = Pr(T ≥ t|θ = θ0),

where t is the observed test variable, θ and θ0 are given by the null hypothesis we

wish to test:

H0 : θ ≤ θ0 vs Hα : θ > θ0 . (2.4)

One can show that the function π(T ; θ) = Pr(T ≥ t|θ) has a uniform(0,1) distri-

bution, and hence we can use the generalized p-value p(t) in the usual fashion, that

is reject H0 in Eq (2.4) when p < α.

To summarize how to use this method in practice, once the equation for the gen-

eralized test statistic T has been found for a specific distribution and parameters to

be tested, one can generate a number of simulated Ti, order these from Tmin, ..., Tmax

10



Chapter 2. Methodology

and the two-sided (1−α)-level confidence interval is given by the α/2 and (1−α/2)

percentiles of t.

Using similar argumentation, outlined by Tsui and Weerahandi (1989), one can

find a p-value for a hypothesis by looking at the mean of an indicator variable Ii,

which takes the value Ii = 1 when ti indicates that H0 is true, and Ii = 0 when ti

indicates Hα is true. The generalized p-value is then given by (1/m)
∑m

i=1 Ii (where

i = 1, ...,m).

However, finding the pivotal quantities for a specific parameter for a specific

distribution is non-trivial, and much work has been carried out to identify and test

pivotal quantities. In Weerahandi (1993), the author outlines some methods for

simplifying identification of pivotal quantities. Below, we will use three existing

pivotal quantities / generalized test statistics for testing three different scenarios

involving the log-normal distribution, which have been identified by the authors of

the papers referenced in each sub-section. In addition we propose a new GCI test

statistic for comparing several log-normal means. For each pivotal quantity, we use

the method outlined here to generate suitable GCIs and generalized p-values for the

specific problems we wish to address.

2.3 Confidence Interval for a Log-Normal Mean

As mentioned above, if the variable to be analyzed is log-normally distributed, that

is: if X is a log-normally distributed variable, and µ and σ2 are the mean and variance

of Y = log(X) ∼ N(µ, σ2), the mean of the log-normal distribution is given by:

E(X) = eη where η = µ+
σ2

2
.

If we wish to construct a confidence interval for η, using the method of GCI

11



Chapter 2. Methodology

outlined above, we first need to identify the generalized test statistic T .

Krishnamoorthy and Mathew (2003) have identified such a test statistic T for

drawing inferences on η. It is based on the following two sufficient statistics:

Ȳ =
1

n

n∑
i=1

Yi and S2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2 .

Let ȳ and s2 be the observed values of Ȳ and S2 respectively, the generalized test

statistic T is a function of the random variables Ȳ , S2, ȳ and s2 as follows:

T = ȳ − Ȳ − µ
S/
√
n
s/
√
n+

1

2

σ2

S2
s2 − η . (2.5)

In order to remove the unknown values of µ and σ2, we reduce them to known

distributions using Z =
√
n(Ȳ − µ)/σ2 ∼ N(0, 1), and independently U2 = (n −

1)S2/σ2 ∼ χ2
n−1. Substituting these into Eq (2.5) gives us:

T = ȳ − Z

U/
√
n− 1

s√
n

+
1

2

s2

U2/(n− 1)
− η , (2.6)

which satisfies the three required properties outlined above.

We are interested in the upper confidence interval for η only, hence we wish to

test the null hypothesis:

H0 : η ≥ η0 vs Hα : η < η0 . (2.7)

For the upper confidence interval for η, we remove the term for η from Eq (2.6):

T = ȳ − Z

U/
√
n− 1

s√
n

+
1

2

s2

U2/(n− 1)
, (2.8)

where as above Z ∼ N(0, 1) and U2 ∼ χ2
n−1. Hence, the generalized upper confidence

interval of η can be derived by using the (1−α) percentile of T as defined in Eq (2.8).

The algorithm proposed by Krishnamoorthy and Mathew (2003) to construct this

confidence interval is as follows:

Algorithm 1:

12



Chapter 2. Methodology

1. For a given data set x1, . . . , xn, set yi = log(xi), i = 1, . . . , n

2. Compute ȳ = (1/n)Σn
i=1yi and s2 =

∑n
i=1(yi − ȳ)2/(n− 1)

3. For i = 1 to m

(a) Generate Z ∼ N(0, 1) and U2 ∼ χ2
n−1

(b) Set Ti = ȳ − (Z/(U/
√
n− 1))s/

√
n+ 1

2
s2/(U2/(n− 1))

4. End i loop

5. Let Ii = 1 if Ti ≥ η0, else Ii = 0

6. The 100(1−α) percentile of T1, . . . , Tm, denoted by T (1−α), is a Monte Carlo

estimate of the 100(1−α) generalized upper confidence interval for η = µ+σ2/2

7. (1/m)
∑m

i=1 Ii is the generalized p-value for the null hypothesis in Eq (2.7)

We use the test statistic in Eq (2.8) and the algorithm above to construct a custom

function in R to allow us to generate the generalized upper confidence interval for

η. The function is referred to as CIfunction(η, η0, m, α), where η is the log-normal

mean to be tested, η0 is the constant in the null hypothesis, m is the number of

iterations and α is the desired significance level. Details of how this function is set

up can be found in Appendix B.

In simulations carried out by Krishnamoorthy and Mathew (2003), this method

was shown to yield more accurate confidence intervals for small samples, than the

parametric bootstrap method (Angus & Angust, 1994), or the large sample test

method (Land, 1973) for constructing confidence interval for a log-normal mean.

13



Chapter 2. Methodology

2.4 Equivalence of Bivariate Log-Normal Means

In this section we identify a test for the equivalence of bivariate means from the

log-normal distribution, based on the work of Bebu and Mathew (2008).

Let (Y1, Y2)
′ = (log(X1), log(X2))

′ follow a bivariate normal distribution, where

µ is the means for (Y1, Y2)
′ and the covariance matrix is denoted by Σ:

µ =

 µ1

µ2

 , Σ =

 σ11 σ12

σ12 σ22

 .

By the definition of the means and variances of the log-normal distribution we have:

E(X1) = e(µ1+
1
2
σ11) = eη1 & E(X2) = e(µ2+

1
2
σ22) = eη2 .

Let θ = η1 − η2 = (µ1 − µ2) + 1
2
(σ11 − σ22). To test

H0 : η1 = η2 vs Hα : η1 6= η2 , (2.9)

we wish to construct a confidence interval for θ.

If this confidence interval for θ includes 0 at some significance level α then we

cannot reject the null hypothesis that η1 and η2 are equivalent, in other words that

the two bivariate response variables are equivalent.

In order to construct a GCI for θ, we need to identify the generalized test statistic

T . Bebu and Mathew (2008) discussed GCI for this θ. Let

A =
n∑
i=1

 Y1i − Ȳ1
Y2i − Ȳ2

 Y1i − Ȳ1
Y2i − Ȳ2

′ =
 A11 A12

A12 A22

 .

Then, (Ȳ1, Ȳ2)
′ ∼ N(µ, (1/n)Σ) and A ∼ W2(Σ, n− 1), where W2 is the bivariate

Wishart distribution. Using the properties of the Wishart distribution we define:

A11.2 = A11 −
A2

12

A22

and σ11.2 = σ11 −
σ2
12

σ22
,

14
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U22 =
A22

σ22
∼ χ2

n−1 ,

U11.2 =
A11.2

σ11.2
∼ χ2

n−2 ,

Z1 =

(
A12 − σ12

σ22
A22

)
√
σ11.2A22

∼ N(0, 1) .

Using aij for the observed values of Aij, we can define a matrix R:

R =

 R11 R12

R12 R22

 ,

R22 =
a22
U22

,

R12 =
a12
U12

−
(
√
a11.2a22

Z1√
U11.2

1

U22

)
,

R11 =
a11.2
U11.2

+
R2

12

R22

.

Then we can use these values to construct the generalized test statistic T :

T = (ȳ1 − ȳ2)−
Z2√
n

√
R11 − 2R12 +R22 +

1

2
(R11 −R22) . (2.10)

This test statistic T fulfills the three required properties outlined in Section 2.2,

and can hence be used to construct the GCI for θ.

To generate the confidence interval we will generate a number of values Ti, where

i = 1, 2...m by randomly generating values for U22 ∼ χ2
n−1, U11.2 ∼ χ2

n−2 and Z1 ∼

N(0, 1), Z2 ∼ N(0, 1) and using them in Eq (2.10). The algorithm proposed by Bebu

and Mathew (2008) to generate this confidence interval is as follows:

Algorithm 2:
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1. For a given sample (x1i, x2i) from the log-normal distribution, set (y1i, y2i)
′ =

(log(x1i), log(x2i))
′

2. Compute the sample mean (ȳ1, ȳ2), and the matrix

a =
n∑
i=1

 y1i − ȳ1
y2i − ȳ2

 y1i − ȳ1
y2i − ȳ2

′ =
 a11 a12

a12 a22

 .

3. For j = 1 to m

(a) Generate Z1 ∼ N(0, 1), Z2 ∼ N(0, 1), U22 ∼ χ2
n−1 and U11.2 ∼ χ2

n−2

(b) Compute R22, R11.2 and R11

(c) Compute

T = (ȳ1 − ȳ2)−
Z2√
n

√
R11 − 2R12 +R22 +

1

2
(R11 −R22)

4. End j loop

5. The 100(α/2) and 100(1−α/2) percentiles of T provide a Monte Carlo estimate

of the two-sided 100(1−α) confidence interval for θ = (µ1−µ2) + 1
2
(σ11− σ22)

The confidence interval for θ is then given by the Tj(1− α
2
) and Tj(

α
2
) quantiles

of Tj. If this confidence interval includes 0, we cannot reject the null hypothesis that

η1 = η2 at the α confidence level.

We use this method to investigate the equivalence of the Absolute and Growth

response variables. We construct a custom function bivariate(c, d, m, α) in R, where

we take the two variables c = X1 and d = X2, m is the number of iterations and α

is the required significance level. See Appendix B for details of how this function is

constructed.
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2.5 Confidence Interval of Two Independent Log-

Normal Means

The methodology for comparing the equivalence of two independent log-normally

distributed means follow much the same structure as that for constructing a confi-

dence interval for one mean outlined above, also from Krishnamoorthy and Mathew

(2003). Let Yj = log(Xj) ∼ N(µj, σ
2
j ), j = A,B. To compare the log-normal means

from two samples A and B, ηj (j = A,B), we wish to test the following hypothesis:

H0 : ηA ≥ ηB vs Hα : ηA < ηB . (2.11)

We need to find a generalized test statistic T which fulfills the three criteria of

being free from unknown parameters, the observed value t being free of nuisance pa-

rameters, and T is stochastically increasing in θ. From Krishnamoorthy and Mathew

(2003), such a test statistic is:

Tj = ȳj −
Ȳj − µj
Sj/
√
nj

sj√
nj

+
1

2

σ2
j

S2
j

s2j , (2.12)

where j = A,B. As before, ȳj is the observed mean of Yj, s
2
j is the observed variance

of Yj, and nj is the sample size for group j. We can then replace Ȳj, µj, σ
2
j and S2

j

with Zj ∼ N(0, 1) and U2
j ∼ χ2

nj−1 to obtain:

Tj = ȳj −
Zj

Uj/
√
nj − 1

sj√
nj

+
1

2

s2j
U2
j /(n− 1j)

. (2.13)

Using the definition of Tj as per Eq (2.13), we can calculate the test statistic for

the null hypothesis in Eq (2.11) as

T2 = TA − TB , (2.14)

which allows us to calculate the GCI for T2. This is again done by generating m

random values for Zj ∼ N(0, 1) and U2
j ∼ χ2

n−1, and finding the proportion T2i ≤ 0

17
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(where i = 1, 2...m). The two-sided confidence interval for T2, the differences between

the log-normal means of group A and group B, is again the (1 − α
2
) quantile and α

2

quantile of of T2 respectively.

The algorithm to construct this confidence interval is the same as Algorithm 1

per Section 2.3 to generate TA and TB, and the test statistic T2 is calculated using

Eq (2.14).

This method is used for finding whether the savings are significant for organiza-

tions in two subpopulations, such as those where AMR = 0 vs AMR > 0. In R, we

construct a custom function comparison(a, b, m, α) which will in the notation above

take as inputs the data sets A and B, the number of iterations m and the significance

level α, and output a p-value for the hypothesis in Eq (2.11) and a confidence interval

for ηA − ηB. Details of this function can be found in Appendix B.

This test was compared by Krishnamoorthy and Mathew (2003) to the large

sample test for one- and two- sided large sample Z-score (Zhou & Gao, 1997), and

it was shown that the method outlined above produced more accurate confidence

intervals for small samples sizes.

2.6 Inference of Several Log-Normal Distributions

In this section we propose FGPQ-based simultaneous confidence intervals for com-

paring several log-normal means when variances are heteroscedastic and group sizes

are unequal. We also prove that the constructed confidence intervals have correct

asymptotic coverage. Simulation studies show that the proposed confidence intervals

work well even for small samples.
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2.6.1 Notation and Li’s overall test

First we briefly review and define notation. LetXij, where i = 1, ..., k and j = 1, ..., ni

be random samples from k log-normal distributions, with parameters µi and σ2
i , and

let Yij = log(Xij). Let Ȳi and S2
i be the observed mean and variance of Yi, and as

per Section 2.4 define

Zi =
√
ni(Ȳi − µi)/σi ∼ N(0, 1) ,

U2 = (ni − 1)S2
i /σ

2
i ∼ χ2

ni−1 .

Then, from the expectations of the log-normal distribution we define

Mi = E(Xij) = eµi+σ
2
i /2 and θi = log(Mi) = µi + σ2

i /2 . (2.15)

As discussed in section 2.3 and 2.5, from Krishnamoorthy and Mathew (2003),

we have the following generalized pivot statistics:

Tµi = ȳi −
√
ni − 1

ni
· Zisi
Ui

and Tσ2
i

=
s2i

U2
i /(ni − 1)

. (2.16)

In the following, we will also review the overall tests of several log-normal groups

proposed by Li (2009). The hypothesis of interest is:

H0 : M1 = M2 = . . . = Mk vs Hα : Not all Mi are equal ,

which is equivalent to

H0 : θ1 = θ2 = · · · = θk vs Hα : Not all θi are equal . (2.17)

Let H be a matrix with dimensions (k − 1)× k:

H =


1 0 · · · 0 −1

0 1 · · · 0 −1
...

...
...

...
...

0 0 · · · 1 −1

 ,
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and let θ = (θ1, θ2, · · · , θk)′, Ȳ = (Ȳ1, Ȳ2, · · · , Ȳk),S2 = (S2
1 , S

2
2 , · · · , S2

k), ȳ =

(ȳ1, ȳ2, · · · , ȳk), and s2 = (s21, s
2
2, · · · , s2k).

Then, using the generalized test statistic from Eq (2.16), we find the pivotal

quantities for θi and Hθ to be:

θi = Tµi + Tσ2
i
/2

THθ = H(Tθ1 , · · · , Tθk)′.

The pivotal quantity is then THθ, whose mean and variance are given by:

µT = E(THθ|(ȳ, s2)) = HE(Tθ|(ȳ, s2))

ΣT = cov(THθ|(ȳ, s2)) = Hcov(Tθ|(ȳ, s2))H′ .

Then, the generalized p-value is given by

p = P
{

(THθ − µT )′Σ−1T (THθ − µT ) ≥ µ′TΣ−1T µT
}
. (2.18)

To calculate the generalized p-values using this method, Li (2009) suggested the

following algorithm:

Algorithm 3:

1. For a given sample with group sizes (n1, . . . , nk), group means (ȳ1, . . . , ȳk) and

variances (s21, . . . , s
2
k)

2. For l = 1 to L

(a) Generate Zi and Ui, where i = 1, . . . , k

(b) Compute Tl = THθ = H(Tθ1, . . . , Tθk)
′

(c) Compute µ̂T = 1
L

∑L
l=1 Tl and Σ̂T = 1

L−1
∑L

l=1(Tl − µ̂T )(Tl − µ̂T )′
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(d) Compute ‖ ˜̂
T‖2l = (Tl − µ̂T )′Σ̂−1T (Tl − µ̂T ), where l = 1, . . . , L

(e) Compute ‖ ˜̂µ0‖2 = µ̂′T Σ̂−1T µ̂T

(f) Let Wl = 1 if ‖ ˜̂
T‖2l ≥ ‖ ˜̂µ0‖2, otherwise Wl = 0

3. End l loop

4. The generalized p-value for Eq (2.17) is given by (1/L)
∑L

l=1Wl

2.6.2 GCI for simultaneous pairwise comparison

In order to construct a GCI for simultaneous pairwise comparisons of k log-normal

means, we first need to define the test we wish to carry out:

H0 : Mi = Mj for all i 6= j vs Hα : at least one Mi 6= Mj .

If we define the ratio of means as Mij = Mi/Mj, and

θij = log(Mij) = log

(
Mi

Mj

)
= log

(
eµi+σ

2
i /2

eµj+σ
2
j /2

)
=

(
µi −

σ2
i

2

)
−
(
µj −

σ2
j

2

)
,

then, since constructing a confidence interval for Mij = Mi/Mj is equivalent to

constructing one for θij as defined above, the null hypothesis we wish to test can be

expressed as

H0 : All θij = 0 vs Hα : Not all θij = 0 .

Following Xiong and Mu (2009), we can define the FGPQs for µi and σ2
i (for

i = 1, ..., k) as Rµi and Rσ2
i
:

Rµi = Ȳi −
√
n1 − 1

ni
· SiZi
Ui

,

Rσ2
i

=
(ni − 1)S2

i

U2
i

,
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which then gives us the pivotal statistic for θi, Rθi :

Rθi = Rµi −
Rσ2

i

2
= Ȳi −

√
ni − 1

ni
· S

2
i Zi
Ui

+
(ni − 1)S2

i

2U2
i

.

Using this defintion of Rθi , we can define Rθij as

Rθij = Ȳi − Ȳj −
√
ni − 1

ni

SiZi
Ui

+

√
nj − 1

nj

SjZj
Uj

+
(ni − 1)S2

i

2U2
i

−
(nj − 1)S2

j

2U2
j

. (2.19)

Then, the expectation η and variance V of Rθij , conditional on the observed

values of ȳ and s2 for groups i and j are:

ηij = E(Rθij |Ȳ,S2) = Ȳi − Ȳj +
ni − 1

2(ni − 3)
S2
i −

ni − 1

2(ni − 3)
S2
i , (2.20)

Vij = V ar(Rθij |Ȳ,S2) =
ni − 1

ni(ni − 3)
S2
i +

(ni − 1)2

2(ni − 3)2(ni − 5)
S4
i

+
nj − 1

nj(nj − 3)
S2
j +

(nj − 1)2

2(nj − 3)2(nj − 5)
S4
j .

(2.21)

If ξij is the variance of ηij, and Rξij the pivotal statistic of ξij, then:

ξij = Var{E(Rθij |Ȳ,S2)}

=
σ2
i

ni
+
σ2
j

nj
+

(
ni − 1

2(ni − 3)

)2
2σ4

i

ni
+

(
nj − 1

2(nj − 3)

)2 2σ4
j

nj

=
σ2
i

ni
+

(ni − 1)2

2ni(ni − 3)2
+
σ2
j

nj
+

(nj − 1)2

2nj(nj − 3)2
,

(2.22)

Rξij =
(ni − 1)S2

i

niU2
i

+
(ni − 1)2

2ni(ni − 3)2

(
(ni − 1)S2

i

U2
i

)2

+
(nj − 1)S2

j

njU2
j

+
(nj − 1)2

2nj(nj − 3)2

(
(nj − 1)S2

j

U2
j

)2

.

(2.23)

Using FGPQs to approximate distributions as per (Xiong & Mu, 2009), we can

approximate the distribution
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max
i≤j

∣∣∣∣∣∣θij − E(Rθij |Ȳ,S2)√
Var(Rθij |Ȳ,S2)

∣∣∣∣∣∣ , (2.24)

with

Q = max
i≤j

∣∣∣∣∣Rθij − E(Rθij |Ȳ,S2)√
Rεij

∣∣∣∣∣ . (2.25)

Then, the simultaneous confidence intervals for θij is

ηij ± q(α)
√
Vij , (2.26)

where q(α) is the upper α quantile of Q.

Based on the following theorem, the confidence interval in Eq (2.26), have the

correct coverage probabilities - the proof of this theorem is available in Appendix C.

Theorem 1. Let Yi1, · · · , Xini , i = 1, · · · , k be random samples from k different

populations and be mutually independent. Assume that 0 < σ2
i = V ar(Yi1) <∞, µi =

E(Yi1), N =
∑k

i=1 ni and ni
N
→ λi ∈ (0, 1) as N →∞ for all i, then

P (θij ∈ ηij ± q(α)
√
Vij for all i < j)

p→ 1− α.

The algorithm proposed to use the above method to generate confidence intervals

is as follows:

Algorithm 4:

1. For given observations xij (where i = 1, . . . , k, j = 1, . . . , ni) compute yij =

log(xij)

2. Compute ȳi and s2i (where i = 1, . . . , k)

3. For l = 1, . . . ,m
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(a) Generate Zi ∼ N(0, 1) and U2
i ∼ χ2

ni−1

(b) Compute Rθij , Rξij and Ql

4. End l loop

5. The confidence interval for θ is then given by computing q(α), the 100(1− α)

percentile of Q

In R, we create a function severalmeans(data, m, α), where data is an array with

the k groups we wish to compare, m is the number of iterations for each comparison,

and α is the desired significance level. The output is the two-sided confidence interval

for each θi−θj, and if this interval includes 0 we cannot reject the null hypothesis that

the two log-normal means are the same. Details of how this function is calculated

are available in Appendix B.

2.6.3 Simulations

To ensure the above methodology gives the correct coverage probabilities, simula-

tions were carried out, following similar settings as per Li (2009). ȳi and s2i are

generated using ȳi ∼ N(0, σ2/ni) and s2i ∼ σ2
i χ

2
ni−1/(ni − 1), where 0 ≤ σ2 ≤ 1, and

i = 2, ..., k.

The simulations has the following parameters:

1. Number of groups k: k = 3 and k = 6

2. Population variance σ = (σ2
1, ..., σ

2
k): various combinations

3. Population mean µ = (µ1, ..., µk): various combinations

4. Significance level α: α = 0.01, α = 0.05 and α = 0.1
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5. Group sizes n = (n1, ..., nk): various combinations

For a given sample size and parameter configuration, we generated 2000 observed

vectors (s21, ..., s
2
k, ȳ1, ..., ȳk) and used 5000 runs to estimate the Type 1 errors (simu-

lated p-value). According to our experience, 5000 runs is sufficient to guarantee the

precision of simulated p-value. We consider both overall tests (Li, 2009) and multi-

ple comparisons (proposed method). Algorithm 3 is used to estimate the simulated

p-value of overall test. Algorithm 4 is used to find qα, the 1 − α percentile of the

simulated distribution of Q.

Tables 1 and 2 report the simulation results of Li (2009)’s overall test and the

proposed multiple comparison procedure under different settings. We can see that

simulated p-values of the overall test and multiple comparison procedure are close to

the nominal levels when the group sizes are 10 or more. We found that the overall

tests and the proposed MCP perform well for both unbalanced unequal variance and

balanced equal variance cases.

25



Chapter 2. Methodology

Table 2.1: Simulation result 1

n = (n1, n2, n3) is a vector of unequal group sizes with n(1) = (10, 16, 20),n(2) =
(10, 10, 10),n(3) = (20, 16, 10); µ = (µ1, µ2, µ3) is a vector of unequal means, with
µ(1) = (1, 1, 1),µ(2) = (1, 1, 1.25),µ(3) = (1, 1.25, 1.45); σ = (σ21, σ

2
2, σ

2
3) is a vector of

unequal variances, with σ(1) = (0.1, 0.1, 0.1),σ = (1, 1, 0.5),σ(3) = (1, 0.5, 0.1). “Overall”
means overall test from Li, 2009 for equality of group means; “MCP” is the FGPQ-based
multiple comparison procedure (proposed method); Numbers in Table are simulated p-
values.

α = .01 α = .05 α = .1
n (µ,σ) Overall MCP Overall MCP Overall MCP

n(1) (µ(1),σ(1)) 0.0070 0.0105 0.0405 0.0475 0.0800 0.0840
(µ(2),σ(2)) 0.0065 0.0150 0.0395 0.0410 0.0835 0.0825
(µ(3),σ(3)) 0.0060 0.0170 0.0390 0.0455 0.0845 0.0800

n(2) (µ(1),σ(1)) 0.0070 0.0150 0.0385 0.0410 0.0735 0.0765
(µ(2),σ(2)) 0.0060 0.0105 0.0410 0.0450 0.0870 0.0830
(µ(3),σ(3)) 0.0050 0.0140 0.0435 0.0385 0.0790 0.0830

n(3) (µ(1),σ(1)) 0.0070 0.0100 0.0445 0.0400 0.0785 0.0890
(µ(2),σ(2)) 0.0080 0.0090 0.0435 0.0335 0.0725 0.0720
(µ(3),σ(3)) 0.0075 0.0070 0.0365 0.0500 0.0780 0.0755
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Table 2.2: Simulation result 2

n = (n1, n2, n3, n4, n5, n6) is a vector of unequal group sizes with n(1) =
(10, 12, 12, 16, 16, 20),n(2) = (10, 10, 10, 10, 10, 10),n(3) = (20, 16, 16, 12, 12, 10); µ =
(µ1, µ2, µ3) is a vector of unequal means, with µ(1) = (1, 1, 1, 1, 1, 1),µ(2) =
(1, 1, 1, 1, 1, 0.8),µ(3) = (1, 1, 1, 1, 1, 0.9); σ = (σ21, σ

2
2, σ

2
3, σ

2
4, σ

2
5, σ

2
6) is a vector of unequal

variances, with σ(1) = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1),σ(2) = (0.1, 0.1, 0.1, 0.1, 0.1, 0.5),σ(3) =
(0.1, 0.1, 0.1, 0.1, 0.1, 0.3). “Overall” means overall test from Li, 2009 for equality of group
means; “MCP” is the FGPQ-based multiple comparison procedure (proposed method);;
Numbers in Table are simulated p-values.

α = .01 α = .05 α = .1
n (µ,σ) Overall MCP Overall MCP Overall MCP

n(1) (µ(1),σ(1)) 0.0060 0.0125 0.0445 0.0530 0.0845 0.0995
(µ(2),σ(2)) 0.0065 0.0140 0.0475 0.0590 0.0830 0.0925
(µ(3),σ(3)) 0.0070 0.0140 0.0440 0.0500 0.0855 0.0985

n(2) (µ(1),σ(1)) 0.0065 0.0150 0.0470 0.0600 0.0795 0.0920
(µ(2),σ(2)) 0.0070 0.0140 0.0440 0.0570 0.0800 0.0875
(µ(3),σ(3)) 0.0060 0.0115 0.0465 0.0580 0.0835 0.0895

n(3) (µ(1),σ(1)) 0.0070 0.0140 0.0480 0.0570 0.0870 0.0920
(µ(2),σ(2)) 0.0080 0.0185 0.0430 0.0600 0.0890 0.1050
(µ(3),σ(3)) 0.0080 0.0125 0.0495 0.0525 0.0965 0.0935
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Analysis

In this chapter, we consider a data set which is based on the Carbon Reduction

Commitment Energy Efficiency Scheme (CRC) in the UK (for more details see

Department of Energy and Climate Change (2014)). This government scheme re-

quires all large organizations which meet the specified participation criteria to report

their total energy use every year and pay a levy for each tCO2 (ton of carbon diox-

ide or equivalent gasses) emitted. Also reported by many organizations is their

energy intensity (Emissions over Revenue) each year, commonly referred to as the

“Growth Emissions”. In the first year, they also report their industry classification,

the percentage of emissions covered by Automated Meter Reading (AMR), and the

percentage of emissions covered by an Energy Management Standard (EMS), as well

as other variables which we will not use in this analysis. We will use the first two

years of the scheme, Year 1 (Financial Year 2010 / 2011) and Year 2 (Financial Year

2011 / 2012) as those data set are currently available.

Organizations with better AMR and EMS coverage were given higher positioning

in the public Performance League Table for the first two years of the scheme (when

no historical data was available), as it was felt that these two measures indicated
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that an organization was actively working to improve their energy efficiency. We are

therefore interested in finding whether organizations which had higher percentages

of AMR and EMS coverage achieved a better savings ratio in Year 2.

Our response variable is the ratio of emissions in Year 2 versus Year 1, X =

Emissions Year 2/Emissions Year 1. A value of 1 therefore indicates no change, a

value > 1 indicates higher emissions in Year 2, and values < 1 indicate a saving in

Year 2.

In this section we will first outline the CRC scheme in more detail and discuss the

variables of interest, as well as show why this dataset can be justified to be modelled

using a log-normal distribution. We will then apply the methods outlined in Section

2 to carry out the following analysis on this data set:

Equivalence of Absolute and Growth Emissions We test whether the two re-

sponse variables Absolute Emissions and Growth Emissions are equivalent us-

ing the test for equivalence of bivariate log-normal means

Overall Saving Test whether the savings in Year 2 compared to Year 1 are statis-

tically significant

AMR We test whether organizations with some AMR have a better savings ratio

than those with no AMR, and also further subdivide organizations into four

groups depending on their percentage of AMR and carry out pairwise compar-

ison among the three groups.

EMS Similar to the AMR analysis, we test the mean savings ratios of organizations

with no EMS vs some EMS, and the equivalence among four groups with

different EMS.
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3.1 CRC Energy Efficiency Scheme

The CRC Energy Efficiency Scheme (often referred to as simply “the CRC”) is a

mandatory scheme aimed at improving energy efficiency and cutting emissions in

large public and private sector organisations in the United Kingdom (Department of

Energy and Climate Change, 2014). These organizations are responsible for around

10 percent of the UKs greenhouse gas emissions - there are currently just over 2000

organizations with reporting obligations.

The CRC affects large public and private sector organizations across the UK.

Participants include supermarkets, water companies, banks, local authorities and all

central government departments. Qualifying organizations are required to report

their annual energy consumption to the Environment Agency (or the Scottish Envi-

ronmental Protection Agency or Northern Irish Environment Agency depending on

jurisdiction), together with a number of other metrics.

The energy consumption in MWh is then used to calculate tCO2 based on the

UK’s energy mix for each year, and so calculate the CO2 emissions indirectly gener-

ated by each organizations energy use. The organization is then required to pay a

carbon levy per tCO2 emitted, thus providing a direct financial incentive to reduce

energy consumption.

In addition to this levy, the Environment Agency also publishes an annual Per-

formance League Table (PLT), which ranks organizations according to three metrics:

Absolute Metric

The current year’s energy consumption compared to the historical average from

previous years

Growth Metric

The current year’s energy consumption per £1m revenue, compared to the
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historical average of the same

Early Action Metric

The percentage of energy consumption covered by AMR, and the percentage

of energy consumption covered by the Carbon Trust Standard (or equivalent)

Energy Management Scheme (EMS)

The weights of these three metrics for the overall rank changes as the scheme

progresses. The Early Action Metric is only used for the first two years when histor-

ical data is not available. It was introduced to incentizive the uptake of automated

systems of meter readings which would enable organizations to more closely monitor

their energy use with the aid of a real-time computer system, and the adoption of

an energy management standard which would allow them to identify and act upon

energy saving opportunities throughout the organization.

The data used in this thesis is based on the publically available Performance

League Table (PLT). The PLT for each year can be downloaded from the Environ-

ment Agency’s website as an XML file (Environment Agency, 2011, 2012). Please

see Appendix A for full details on how these XML files were used to create a CSV

file with the data set to be analyzed. We are interested in the following variables:

Absolute Emissions

The absolute emissions in tCO2, calculated by the Environment Agency by

converting the reported energy consumption in MWh to tCO2 using each year’s

Energy Mix for the United Kingdom. The savings ratio are the current year’s

emissions divided by the rolling historical average emissions.

Growth Emissions

What is usually referred to the Growth Emissions are the energy intensity,

given by the year’s Absolute Emissions divided by the revenue, given in units
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of £1m. The resulting value is tCO2 per £1m revenue, and again the saving

ratio is the current year’s growth emissions divided by the historical average.

SIC Code

The Standard Industry Code (SIC) for the organization, in the following for-

mat: N.23.12, where N denotes the overall industry, the first number group

(23) denoted the industry subsector, and the final number group (12) denotes

the specialization. This is only available for private sector organizations.

AMR

The percentage of emissions in that year covered by AMR. This is a required

field for all organizations, and takes values between 0 - 100. Around 34% of

the organizations had no AMR in Year 1. This variable is only reported in the

first two years as it is part of the Early Action Metric which has no impact on

the PLT from Year 3 onwards.

EMS

The percentage of emissions in that year covered by an EMS. As with AMR,

this is a required field and takes values between 0 - 100. Around 65% of the

organizations had no EMS in Year 1. Similar to AMR, it is only reported in

the first two years.

There were 2278 organizations which reported in Year 1. However, we only use the

data for organizations which reported both in Year 1 and Year 2 (if an organization

did not meet the qualification criteria in one of the years they were not required to

report), and which reported both their Absolute and their optional Growth Emissions

in both years. This brings the total number of useable observations to 1314. The

reason we restrict this is as part of our analysis will be on the equivalence of the

Absolute and Growth Emissions variables.

32



Chapter 3. Analysis

For future publication years, the scheme has been simplified and there will no

longer be a full PLT published. Instead, a spreadsheet will be made available each

year which will contain only the Absolute Emissions, Historical Average of Absolute

Emissions, and savings percentage. See the Future Work section for details of the

implication of this on our analysis.

3.2 Data Source and Structure

The Performance League Table for each year is available to download as an XML

file from the Environment Agency’s website. For detailed instructions on how these

two XML files were converted into one .csv file which is used in this analysis, see

Appendix A.

Most of these 32 variables are not of interest to this analysis, and we keep the

following variables in the final data file:

1. Registrant Number: The unique identifier for each organization

2. Registrant Name: Company / Organization name

3. Trading Name: If different from the Registrant Name

4. SIC Code: The Standard Industrial Classification Code classifies private com-

panies into industries

5. Company Number: The official Company Number, only available for private

sector organizations

6. Public Body Type: Free-text field giving details of the type of public sector

organization
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7. Industry: This variable is not an original one in the XML file, but is simply

the letter from the SIC code, that is the highest level industry categorization.

The Public sector organizations which do not have an SIC code were assigned

the value “AA”

8. Absolute Emissions 1: The Absolute Emissions for Year 1, in tCO2

9. % Emissions Covered by AMR 1: The percentage of total emissions cov-

ered by voluntary AMR in Year 1

10. % Emissions Covered by EMS 1: The percentage of total emissions covered

by the Carbon Trust Standard or an equivalent EMS, in Year 1

11. Emissions per million £Turnover 1: The Growth Emissions for Year 1, in

tCO2 / £1m

12. Absolute Emissions 2: The Absolute Emissions for Year 2, in tCO2

13. % Emissions Covered by AMR 2: The percentage of total emissions cov-

ered by voluntary AMR in Year 2

14. % Emissions Covered by EMS 2: The percentage of total emissions covered

by the Carbon Trust Standard or an equivalent scheme (EMS), in Year 2

15. Absolute Achivement Result: The percentage saving in Absolute Emissions

of Year 2 compared to Year 1. A positive value indicate a saving, a negative

value indicate higher emissions in Year 2

16. Emissions per million £Turnover: The Growth Emissions for Year 1, in

tCO2 / £1m

17. Growth Achivement Result: The percentage saving in Growth Emissions

of Year 2 compared to Year 1. A positive value indicate a saving, a negative

value indicate higher emissions in Year 2
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Our response variables of interest are the ratio of Absolute Emissions and the

ratio of Growth Emissions, that is:

Xabs = Absolute Emissions2/Absolute Emissions1

Xgrowth = Growth Emissions2/Growth Emissions1 .
(3.1)

We will also use the percentage values of AMR and EMS from Year 1 as explana-

tory variables.

The variables included in the original XML files which were not used in this

analysis include the details of scores for placement in the Performance League Table

as the PLT positioning is not of interest to us, as well as details of emissions covered

by renewable energy generation, as very few organizations reported these details.

There were also fields for participant comments, and yes/no tickboxes for questions

about the organizational structure which were not of interest to our analysis.

3.3 Log-Normal Assumption and Grouping

The data set downloadable from the Environment Agency’s website contains a vari-

able for the percentage savings between Year 2 and the historical average (Year 1),

for both Absolute and Growth Emissions. However, testing for normality on both of

these variables separately using the Shapiro-Wilks test gives us a p-value < 0.0001 for

both variables, indicating we should reject the null hypothesis that they are normally

distributed.

As some of the these percentages are negative, we instead use the ratio of emis-

sions between Year 2 and Year 1, to allow us to carry out a log-transformation.

We construct two new response variables as per Equation 3.1, the ratio of Absolute

Emissions Xabs and the ratio of Growth Emissions Xgrowth. However, even after log-

transformation these variables are not normally distributed, as the Shapiro-Wilks test
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Figure 3.1: Boxplot of log(Xabs)

This ratio show a much higher variance / spread than expected from a normal distribution

gives p-values less than 0.0001 for both Yabs = log(Xabs) and Ygrowth = log(Xgrowth).

Looking at the boxplot in Figure 3.1, we see that the data does not appear to be

normally distributed.

To reduce variability, we group the organizations together in Industry groups,

by using the first letter in the Standard Industry Classification (SIC) code. The

letter denotes the main industry grouping, and using the UK SIC scheme the private

organizations in our dataset is divided into 13 groups, with one additional group for

all Public sector organizations (as they do not have an SIC code).

However, out of these 13 groups there are five groups with fewer than 10 orga-

nizations. These groups therefore exhibit large variations, and in order to ensure

normality we group the organizations from these five groups into one industry clas-

sification, “Other”. This ensures that all industry groups have >10 observations

each. We therefore have 10 groups in total whose means are representative of their
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ungrouped observations (8 from SIC letters, one for Public organizations, and one

for “Other” industries) - see Figure 3.3.

Carrying out the Shapiro-Wilks test for normality on the 10 data points after

industry grouping has been carried out gives the following p-values:

Yabs = log(Xabs) : W = 0.8834, p-value = 0.1428

Ygrowth = log(Xgrowth) : W = 0.9628, p-value = 0.8174 .

Hence after grouping by industry, our basic assumption of log-normality holds as

both p-values > 0.05. Although the data also passes the Shapiro-Wilks normality

test for the non-log-transformed variable after grouping (and hence could be analyzed

using standard statistical methods), it is more appropriate to use the log-normal

distribution as the data fullfills the three properties outlined in the Methodology

section:

1. Positive values: As energy usage can take only positive values the ratio of

two year’s energy usage is always positive.

2. Volatility: As we have explained above, the variance of the data is larger than

what is expected from a normal distribution.

3. Annual Savings Ratio: The ratio of energy savings for year t, defined as

Xt = Emissionst/Emissionst−1, is similar to the rate of return Rr = St
St−1

in the

stock price example. Hence following the same argument as in Section 2.1, if

we were to analyse the energy savings over several years a log-normal model

could be appropriate.

At the time of writing this thesis, only two years of energy usage data is available

and hence the third point, about modelling several years of savings, seems moot -

however as the CRC scheme is intended to continue for some time, if the data is
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Figure 3.3: Boxplot of log(Xabs) for each industry grouping

We see that all industry groups have similar means and variances

analyzed using log-normal methods now it can easily be generalized to incorporate

additional data when it becomes available, whereas a normal model might be more

restricted to a one-off analysis.

In all sections below the variables Y and X will indicate the variables grouped
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by industry.

3.4 Equivalence of Absolute and Growth Emis-

sions

Before investigating the savings ratios for different groups of AMR and EMS, we need

to ensure we use the correct response variables. There are two possible variables, the

ratio of Absolute Emissions, and the ratio of Growth Emissions (energy intensity).

We wish to test whether these two response variables are equivalent, and so model

them as a bivariate log-normal distribution, using the notation from Section 2.4 :Y1

= Yabs and Y2 = Ygrowth, to test the null hypothesis:

H0 : ηabs = ηgrowth vs Hα : ηabs 6= ηgrowth , (3.2)

where ηabs is the log-normal mean of Yabs = log(Xabs), and ηgrowth is the mean of

the log-normal variable Ygrowth = log(Xgrowth). Using the method outlined in section

2.4 for testing the equivalence of bivariate log-normal means, we wish to construct a

confidence interval for θ, where θ = ηabs−ηgrowth = (µabs−µgrowth)+ 1
2
(σabs−σgrowth).

We know from Section 3.5 that Yabs and Ygrowth are log-normally distributed. In

order to construct the test statistic T from Eq (2.10), we use the function bivariate-

comparison(x, z, m, α), where we set x = Yabs, z = Ygrowth, the number of Monte

Carlo iterations m = 5000 and the significance level α = 0.05.

The output is the GCI for θ, which is (-1.834, 0.444). Therefore, the confidence

interval for the ratio of the bivariate means in the units of the ratios is (e−1.835, e0.424)

= (0.159, 1.559). As this confidence interval comfortably includes 1, we conclude we

cannot reject the null hypothesis in Eq (3.2) that the ratio of the means of Absolute
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and Growth Emissions are not significantly different.

We will therefore proceed with the analysis of comparisons of means below using

only the Absolute Emissions variable. There are three reasons for this:

1. As we have just shown, the means for the two response variables Absolute and

Growth Emissions are not significantly different.

2. The variance of the Growth variable is very high, so the lower variance of the

Absolute variable allow us to better find the main effects of the explanatory

variables.

3. As of Year 3, the Growth variable will no longer be reported, hence in order

to make it easy to incorporate future data into this analysis only Absolute

Emissions should be used.

3.5 Overall Significance of Savings Ratios

In this section we will investigate whether the savings in Year 2 are statistically sig-

nificant. As outlined above, as the response variable we will use the ratio of Absolute

Emissions, Yabs. We wish to determine whether energy savings ratio Yabs2/Yabs1 is

lower than the no change scenario, at a significance of α = 0.05.

As we know Yabs can be modelled as being log-distributed, we can use the method-

ology in section 2.4 to test out the following hypothesis, where ηabs is the log-normal

mean of Yabs. We set the constant η0 = 0, as that would give a savings ratio of

eη0 = 1, i.e. no change between Year 1 and Year 2:

H0 : ηabs ≥ 0 vs Hα : ηabs < 0 . (3.3)

Using Eq (2.8) to construct the generalized test statistic T , we can construct a
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confidence interval for ηabs, and a p-value for the null hypothesis in Eq (3.3). This is

done by using the function CIFunction(a, η0,m, α) with a = Yabs, η0 = 0, m = 5000

and α = 0.05.

The output of this function is a 95% upper confidence interval for ηabs of -0.0413

and a p-value for the null hypothesis in Eq (3.3) of p = 0 (which since we used

m = 5000 equates to p < 0.002). Hence as the p-value is far below the significance

level of α = 0.05, and the upper confidence level is below 0, we conclude that the

overall Absolute Emissions for all participants were significantly lower in Year 2 than

in Year 1.

As the overall savings are significant, we can continue our analysis of the difference

of organizations with AMR and EMS.

3.6 Automated Meter Reader

In the first year of the scheme, participants were asked to submit information on

the percentage of their total emissions which was covered by AMR. AMR refers to

technologies which automatically reports energy usage data to a central location

without the need for manual meter readings, and which allows an organization to

identify areas where energy usage could be streamlined, and to get a real-time picture

of the current energy usage. This variable was included to allow a Performance

League Table (PLT) to be published for Year 1, as it was felt that uptake of AMR

would allow organizations to more efficiently monitor their energy usage, and hence

identify saving options.

This variable takes a value between 0 - 100%, with approximately one third of

the reporting organizations having no AMR. In order to investigate the effects of

AMR on energy savings in the first year of the CRC, we will carry out a comparison
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of the mean Absolute Emissions savings ratio of organizations with different levels

of AMR, allocated into groups.

We first carry out a comparison of two groups, organizations with no AMR (group

1: G1), and organizations with AMR>0 (group 2: G2), to see if organizations with

some AMR had a better savings percentage (lower ratio) than those with no AMR.

This is therefore a comparison of two independent log-normal means, and we will

proceed to find the generalized upper confidence limit for Eq (3.4), using the methods

outlined in Section 2.8.

H0 : ηG2 ≥ ηG1 vs Hα : ηG2 < ηG1 . (3.4)

To construct the two groups G1 and G2, we subdivide each Industry group in

those organizations with no AMR, and those with some AMR. For example, for

the organizations where Industry = C, we divide them into those with no AMR

G1C and those with some AMR G2C , and the mean absolute savings ratio of these

organizations respectively is the mean of G1C and G2C . Therefore ηG1 is the log-

normal mean of G1j , where j are the 10 industry groupings.

To carry out the comparison of independent log-normal means as outlined in Sec-

tion 2.8, to test the hypothesis in Eq (3.4), we use the custom function comparsion(ηa,

ηb, m, α), where ηa is the log-normal mean of G2 (with some AMR), ηb is the log-

normal mean of G1 (no AMR), number of iterations m = 5000 and a significance

level of α = 0.05.

The output of this function gives an upper level confidence interval value of 0.085,

and a p-value of 0.8968. As the upper confidence interval is above 0, and p > α, we

conclude that we cannot reject the null hypothesis H0 in Eq (3.4), and hence we see

that organizations with some AMR did not achieve a better savings ratio compared

to those with no AMR.
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Next, we wish to see if there is a difference in saving ratios for different percentages

of AMR. We therefore divide each industry group into four segments as follows:

• G1: AMR % = 0

• G2: 0 < AMR % ≤ 33%

• G3: 33 < AMR % ≤ 66%

• G4: 66 < AMR % ≤ 100%

For G2, there were no industries from group C which satisfied this criteria, and for

G4 only one company from industry group H, so this observation was removed as it

provided too large variance for the log-normality test. With these two adjustments,

all four groups pass the Shapiro-Wilk test for log-normality at α = 0.05. Thus we

have four groups with different log-normal mean saving ratios (ηi, i = 1, 2, 3, 4), and

we wish to carry out all pairwise comparisons and construct confidence intervals for

the differences η1−η2, η1−η3 etc. The GCI we construct will test the null hypothesis:

H0 : ηi − ηj = 0 vs Hα : ηi − ηj 6= 0 (3.5)

where i, j = 1, 2, 3, 4 and i 6= j.

Using the methods from section 2.6, we use the function severalmeans(data, m,

α) where the array data are the groups G1,2,3,4, number of iterations m = 5000 and

the significance level α = 0.05. The output from the function is as follows:

From this table we can conclude that the only difference that was statistically

significant at α = 0.05 was that between G1 and G4, that is organizations with an

AMR percentage > 66% had a higher ratio than those with no AMR. All other
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i j Lower CI Upper CI

1 2 -0.963 0.047
1 3 -0.846 0.052
1 4 -0.131 -0.006
2 3 -0.058 0.074
2 4 -0.106 0.017
3 4 -0.111 0.006

comparisons included 0 in their confidence interval hence we cannot reject the null

hypothesis that there is no difference among them.

As mentioned previously, AMR (and EMS) were included in the CRC reporting

as it was felt that these measures would allow organizations to easier identify energy

saving opportunities. This analysis shows no difference in energy savings between

groups with AMR and groups with no AMR, and in fact indicates that organizations

with high AMR performed worse than those with no AMR. The data that is currently

available is only for one ratio (from the first two years of the scheme), and hence there

are two additional factors to take into consideration when interpreting these results:

first, organizations with high AMR are more likely to have worked on improving their

energy efficiency prior to the first CRC reporting year, and secondly energy efficiency

improvements are subject to diminishing returns, as discussed by for example Jaffe

and Stavins (1995) and Arimura et al. (2011).

As can be seen from a case-study of AMR installation by Leicester City Council

(Ferreira et al., 2007), AMR allows organizations to identify and act on easy saving

opportunities, the so-called “low-hanging fruit”. As achieving high AMR coverage

usually takes some time (in the case of Leicester City Council they had at the time of

the case-study been installing AMR for 5 years and did not yet have full coverage),

it is likely that organizations with high AMR started installing new meters several

years prior to 2010, and hence have already acted on these easier saving opportunities.

Organizations with no AMR however, are less likely to have seriously tried to improve
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their energy efficiency before having an additional financial incentive to do so in the

form of the CRC scheme, with the result that organizations with high AMR have

a worse savings ratio between 2010 and 2011, whereas organizations with no AMR

could act on the easier saving opportunities before the diminishing returns took

effect.

It is therefore of interest to carry out this analysis again with a few more years

worth of data, when all organizations have more evenly matched starting points and

the early adopters of energy efficiency aren’t “penalized” as described above. Due to

the multiplicative property of the log-normal distribution, this means we could carry

out the same analysis as above with the ratio from future years multiplied.

3.7 Energy Management Systems

An EMS, in the context of energy efficiency, is an organizational-level system which

sets out to help an organization achieve energy efficiency, using specific procedures

and methods. It also includes systems for continual improvement and monitoring,

which will spread awareness of energy efficiency throughout an entire organization.

Under the CRC, an organization was considered to be using an EMS when it was

certified under an Energy Management Standard, such as the Carbon Trust Standard

(Carbon Trust, 2014) or an equivalent scheme.

The analysis here will take the same format as for AMR - we first compare no

EMS to some EMS, then we divide the organizations into four groups depending on

their % level of EMS and do a pairwise comparison.

First, we divide each industry group into those organizations with no EMS and

those with some EMS:
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• F1: EMS % = 0

• F2: EMS % > 0

Carrying out the Shapiro-Wilk test on log(F1) gives a p-value of 0.996, and for

log(F2) it is 0.049 - thought technically it fails the log-normality test at α = 0.05 it

is close enough that we will go ahead and analyze these groups using a log-normal

model. We wish to test the hypothesis:

H0 : ηF 2 ≥ ηF 1 vs Hα : ηF 2 < ηF 1 . (3.6)

To compare the two groups using the methods in Section 2.5, we as before make

use of the custom function comparion(ηa, ηb, m, α), where ηa is the log-normal

mean of F2, ηb is the log-normal mean of F1, number of iterations m = 5000 and a

significance level of α = 0.05.

The upper level confidence interval for Eq (3.6) is given as 0.0935, with a p-value

of 0.944. Hence we cannot reject the null hypothesis, and conclude that, as with

AMR, there is no difference in savings ratios between organizations with no EMS

and those with some EMS.

We then proceed to test the differences among the four groups:

• F1: EMS % = 0

• F2: 0 < EMS % ≤ 33%

• F3: 33 < EMS % ≤ 66%

• F4: 66 < EMS % ≤ 100%
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All groups but F3 passes the Shapiro-Wilk test of log-normality, but as the addi-

tional variance in F3 is due to one single outlier (from Industry = P), we will continue

and analyze all pairwise comparisons using the log-normal model. We then wish to

test the null hypothesis:

H0 : ηi = ηj vs Hα : ηi 6= ηj , (3.7)

where i, j = 1, 2, 3, 4, and also i 6= j. Using the function severalmeans(data, m,

α) where the data array contains the groups F1,2,3,4, the number of iterations m =

5000 and a significance level α = 0.05, we see the following output for all pairwise

comparisons:

i j Lower CI Upper CI

1 2 -0.051 0.112
1 3 -0.127 0.089
1 4 -0.098 0.011
2 3 -0.177 0.077
2 4 -0.163 0.014
3 4 -0.137 0.088

As none of these confidence intervals exclude 0, we cannot reject the null hypoth-

esis that the log-normal mean for all four groups are the same. Hence, there is no

evidence that different % levels of EMS results in different savings ratios. As with the

AMR analysis, the assumption we set out to test (that higher percentages of EMS

coverage would result in higher savings ratios) is subject to the same restrictions as

for AMR, where organizations with higher percentages have already acted on the

easier savings opportunities and hence see diminishing returns.

47



Chapter 4

Conclusions & Discussion

Log-normal distribution is widely used to describe the distribution of positive ran-

dom variables that exhibit skewness in biological, medical, economical and social

studies. For example, the CRC energy efficiency scheme is a mandatory energy us-

age reporting scheme for large organizations in the UK. After grouping by industry,

data was shown to be log-normally distributed. Simultaneous confidence intervals

for certain log-normal parameters are useful in pharmaceutical and other statistics.

Our research addresses the simultaneous confidence interval problem for data from

several log-normal distributions under heteroscedasticity and unequal group sizes.

In this thesis, we first gave an overview of the GCI approach and reviewed three

tests: GCI for inference of one mean, GCI for testing equivalence of bivariate re-

sponse variables, and GCI for the difference between two independent log-normal

means. Based on the concepts of FGPQ (a subclass of GCI), we then proposed

simultaneous confidence intervals for ratios of the means from k log-normally dis-

tributed data under heteroscedasticity and unequal group sizes. We have proved that

the constructed confidence intervals have correct asymptotic coverage. A computing

algorithm was proposed to construct the confidence intervals. Simulations showed
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that the simulated p-values are close to the nominal level. The proposed methods

work well even for small (∼ 10) samples. This research together with overall tests

by Li (2009) provide a solution of inference on several log-normal distributions.

The existing GCI methods and the proposed methods were applied to analyze

data from the CRC scheme for financial Year 2010 / 2011 (Year 1) and 2011/2012

(Year 2). Using the bivariate log-normal GCI test, the absolute emissions was shown

to be a representative response variable. We also concluded that the overall energy

saving for Year 2 was significant compared to Year 1. After dividing organizations

into groups by their percentage of AMR and EMS coverage, and using the proposed

simultaneous pairwise comparison, we have found that there is no significant dif-

ference among the groups, with the exception that organizations with high AMR

(> 66%) performed worse than organizations with no AMR. Organizations that had

already been working on their energy efficiency are more likely to already have AMR

installed and therefore ended up in the higher groups of AMR %, whereas organiza-

tions which did not carry out energy efficiency work prior to the start of the scheme

are unlikely to have installed any AMR. Therefore the no AMR group showed a

better savings ratio for Year 2 compared to the high AMR group, as they were able

to put in effect the easier energy saving opportunities, which the high AMR group

organizations had already carried out prior to 2010.

The CRC scheme will continue collecting, and publishing energy usage data in

future years in a slightly different format. For future publication years, the scheme

has been simplified, and a spreadsheet will be made available each year containing

only the Absolute Emissions, Historical Average of Absolute Emissions, and savings

percentage. We could integrate the new data into the existing data source file, and

extend our analysis to the saving ratios for future years using the existing R code.

We also intend to address the longitudinal analysis problem using continuous-time

Markov models or time series models when more future years’ CRC data is available.
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Our research on simultaneous pairwise comparisons using GCI is done in the

context of log-normal model, but it can also be extended to other distributions where

confidence intervals based on sufficient statistics are not available.
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Data Source

The data is available as two XML files, one for each year of the scheme, to down-

load from the Environment Agency’s PLT website: (Environment Agency, 2011),

(Environment Agency, 2012).

The XML files were imported in Excel using the XML importing tool, and the

following steps were carried out:

1. Due to the three free text boxes for Participant Comments, each organization

was listed three times when the XML import was completed - two of these were

deleted for each organization.

2. The data from the two separate files were copied into a new file. Using the

VLOOKUP function in Excel, the unique CRC identifier for each organizations

was used to ensure the data from the same CRC Identifier were copied to the

same row.

3. The column names for the Year 2 data had a “2” added at the end of the

variable name - so “crcEmissions” and “crcEmissions2” refer to the absolute

emissions from Year 1 and Year 2 respectively.
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4. Any organizations which did not have a value in both “emissionsPerMillion-

PoundsTurnover” and “emissionsPerMillionPoundsTurnover2” were deleted, as

that indicated an organization which did not report their Growth Emissions in

both years (Absolute Emissions were mandatory to report).

5. Superfluous columns not used in the analysis were removed.

6. A new column “Industry” was added, which contained the first letter from the

SIC code if that was available, and the letter “P” (for Public) if there was

no SIC code. In addition, due to the low number of organizations in industry

groups A, E, F, L, N and M, these were all given Industry code A, indicating

“other” industry.

7. A new column “Private” was created, where an organizations was given the

value 1 if it was a private organization, and 0 if it was not. This data did not

end up being used in the final analysis.

8. The file was saved in the .csv format, allowing it to be easily imported into R

The final columns / variables in the .csv file are, along with their numbering

(used for referencing the column number in some of the below code):

1. registrantNumber

2. registrantName

3. tradingName

4. sicCode

5. companyNumber

6. publicBodyType
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7. Industry

8. Private

9. crcEmissions

10. percentageOfEmissionsCoveredByVoluntaryAMR

11. percentageOfEmissionsCoveredByCarbonTrustStandard

12. emissionsPerMillionPoundsTurnover

13. crcEmissions2

14. percentageOfEmissionsCoveredByVoluntaryAMR2

15. percentageOfEmissionsCoveredByCarbonTrustStandard2

16. absoluteAchievementResult2

17. emissionsPerMillionPoundsTurnover2

18. growthAchievementResult2
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R Codes

B.1 GCI functions overview

There were four custom functions defined in R which were used to analyze the data

in Section 3. What follows is a plain text explanation of the R functions created for

calculating the GCI’s, based on the Algorithms outlined in Section 2. The full code

is available below.

CIFunction(a, η0,m, α) : The input variables are:

a The variable to be tested

η0 A constant, for testing ηa < η0

m The number of Monte Carlo simulations

α Significance level for Confidence Intervals and p-values

Following the structure of Algorithm 1, first various statistics are calculated for

log(a), and these are then used in Eq (2.8) to create the test statistic T , using m
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Monte Carlo iterations for the randomly generated values of Z and U2. The output

is the upper 100(1− α)% confidence interval to the for ηa.

bivariatecomparison(x, z,m, α) : The input variables are:

x & z The bivariate variables to be tested for equivalence

m The number of Monte Carlo simulations

α Significance level for constructing the Confidence Intervals

Using Algorithm 2, summary statistics of log(x) and log(z) are calculated, and

these are then used in Eq (2.10) to create the test statistic T , using m Monte Carlo

iterations for the randomly generated values of Z and U2. The output is the confi-

dence interval to the 100(1− α) percent for T .

comparison(a, b,m, α) : The input variables are:

a The variable to be tested for a < b

b The variable to be tested for a < b

m The number of Monte Carlo simulations

α Significance level for constructing the Confidence Intervals

Various statistics are first calculated for log(a) and log(b), which are used in a

modified Algorithm 1 using Eq (2.13) and Eq (2.14) to create the test statistic Ta

and Tb, using m Monte Carlo iterations for the randomly generated values of Z and

U2. The output is the two-sided confidence interval to the 100(1 − α) percent for

T = Ta − Tb.
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severalmeans(array,m, α) : The input variables are:

array An array of all k variables for which we want a pairwise comparison, where

each column in the array contains one group, and there is no other data in the

array.

m The number of Monte Carlo simulations

α Significance level for constructing the Confidence Intervals

For each pair k and k−1, the log is taken of the variable and a confidence interval

for ηk− ηk−1 is constructed using Algorithm 4, with the test statistic Eq (2.26). The

output is all pairwise confidence intervals for the k variables.

B.2 R code - GCI Functions

The following R code is used to define the four custom function outlined in Section

B.1:

## CIFunction (a, eta_0, m, alpha) creates a confidence interval for a, and p-value

for a < eta_0

# "a" is the data variable

# "eta_0" is a constant for testing a < eta_0 - to test the hypothesis of no change

this is set to 0

# m is the number of iterations , and alpha is the significance level

CIFunction <- function(a, eta_0, m, alpha)

{

# Calculate means and variances for the log - transformed variable

y <- log(a)

n <- length(a)
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ybar_a <- (1/n)*sum(y)

s2_a <- (1/(n-1))*sum((y - ybar_a)^2)

s_a <- sqrt(s2_a)

T <- rep(0,m) # Empty array for the test statistic

for (i in 1:m)

{

# Define Z~N(0 ,1), U^2 ~ ChiSq(n -1) , U ~ sqrt(U^2)

Z <- rnorm (1,0,1)

U2 <- rchisq(1, n-1)

U <- sqrt(U2)

# Set T_2i = ybar - (Z/(U/sqrt(n -1))) s / sqrt(n) + 1/2 s^2 / U^2 / (n -1)

T[i] <- ybar_a - (Z/(U/sqrt(n-1)))*(s_a/sqrt(n)) + 0.5*(s2_a/(U2/(n-1)))

# End i loop

}

# Confidence Intervals are given by percentiles of T

UpperCI_b <- quantile(T, 1-(alpha))

# P-value for a < eta_0 is give by the proportion of T < eta_0

K <- rep(0, m) # Empty array for storing k

for (i in 1:m)

{

if (T[i] >= eta_0)

{

K[i] <- 1

}

else

{

K[i] <- 0

}

}

# (1/m) sum(K_i) is a monte carlo estimate of the generalized p-value

pvalue <- (1/m)*sum(K)
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# Output pvalue and CI ’s as a list , to be called with [ functionname ]$UpperCI and [

functionname$pvalue]

CIoutput <- list(UpperCI=UpperCI_b, pvalue=pvalue)

CIoutput

}

## comparison (a, b, m, alpha) gives a confidence interval for for T = eta_a - eta_b,

and a p-value for eta_a < eta_b

# "a" is the variable to be tested as lower than "b"

# "b" is the variable to be tested against

# m is the number of iterations , and alpha the significance level

comparison <- function(a,b, m, alpha)

{

# Calculate means and variances for a and b

y_a <- log(a)

n_a <- length(a)

y_b <- log(b)

n_b <- length(b)

ybar_a <- (1/n_a)*sum(y_a)

s2_a <- (1/(n_a-1))*sum((y_a - ybar_a)^2)

s_a <- sqrt(s2_a)

eta_a <- ybar_a + (s2_a/2)

ybar_b <- (1/n_b)*sum(y_b)

s2_b <- (1/(n_b-1))*sum((y_b - ybar_b)^2)

s_b <- sqrt(s2_b)

eta_b <- ybar_b + (s2_b/2)

# Empty arrays to store the test statistics

T_a <- rep (0,m)

T_b <- rep (0,m)

for (i in 1:m)
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{

# Define Z~N(0 ,1), U^2 ~ ChiSq(n -1) , U ~ sqrt(U^2) for a

Z_a <- rnorm (1,0,1)

U2_a <- rchisq(1, n_a-1)

U_a <- sqrt(U2_a)

# Calculate T_a

T_a[i] = ybar_a - (Z_a/(U_a/sqrt(n_a-1)))*(s_a/sqrt(n_a)) + 0.5*(s2_a/(U2_a/(n

_a-1)))

# Define Z~N(0 ,1), U^2 ~ ChiSq(n -1) , U ~ sqrt(U^2) for b

Z_b <- rnorm (1,0,1)

U2_b <- rchisq(1, n_b-1)

U_b <- sqrt(U2_b)

# Calculate T_b

T_b[i] = ybar_b - (Z_b/(U_b/sqrt(n_b-1)))*(s_b/sqrt(n_b)) + 0.5*(s2_b/(U2_b/(n

_b-1)))

}

# Calculate the difference T = T_a - T_b

T = T_a - T_b

# The confidence interval for T is given by the quantiles

UpperCI <- quantile(T, 1-(alpha/2))

LowerCI <- quantile(T, (alpha/2))

# P-value is given by the proportion of T equal to or above 0

K <- rep(0, m)

for (i in 1:m)

{

if (T[i] >= 0)

{

K[i] <- 1

}

else
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{

K[i] <- 0

}

}

# (1/m) sum(K_i) is a monte carlo estimate of the generalized p-value

pvalue <- (1/m)*sum(K)

# Output pvalue and CI as a list , to be called with [ functionname ]$LowerCI etc

CIoutput <- list(LowerCI=LowerCI , UpperCI=UpperCI , pvalue=pvalue)

CIoutput

}

## BivariateComparison (x, z, m, alpha) tests the equivalence of the bivariate

variables x and z

# "x" and "z" are the bivariate variables

# "m" is the number of monte carlo simulations , and "alpha" is the alpha -level

confidence

BivariateComparison <- function(x, z, m, alpha){

# Calculate summary stats to be used below

y_x <- log(x)

n_x <- length(x)

y_z <- log(z)

n_z <- length(z)

ybar_x <- (1/n_x)*sum(y_x)

s2_x <- (1/(n_x-1))*sum((y_x - ybar_x)^2)

s_x <- sqrt(s2_x)

ybar_z <- (1/n_z)*sum(y_z)

s2_z <- (1/(n_z-1))*sum((y_z - ybar_z)^2)

s_z <- sqrt(s2_z)

# Defining the matrix a

a_11 <- sum((y_x-ybar_x)^2)
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a_12 <- sum((y_x-ybar_x)*(y_z-ybar_z))

a_22 <- sum((y_z-ybar_z)^2)

a_11_2 <- a_11 - ((a_12)^2)/a_22

# Empty array to store test statistics

T <- rep(0,m)

for (i in 1:m)

{

# Generate the random values for U and Z

U_22 <- rchisq(1, n_x-1)

U_11_2 <- rchisq(1, n_x-2)

Z_1 <- rnorm(1, mean=0, sd=1)

Z_2 <- rnorm(1, mean=0, sd=1)

# Calculate R’s

R_22 <- a_22 / U_22

R_12 <- (a_12/U_22) - (sqrt(a_11_2 * a_22) * (Z_1/sqrt(U_11_2)) * (1/U_22))

R_11 <- (a_11_2 / U_11_2) + (((R_12)^2)/R_22)

# Calculate the test statistic T

T[i] <- (ybar_x - ybar_z) - ((Z_2 / sqrt(n_x)) * sqrt(R_11 - R_12 - R_12 + R_

22)) + (0.5 * (R_11 - R_22))

}

# Confidence interval of theta are upper and lower quantiles of T

UpperCI <- quantile(T, (1-(alpha/2)))

LowerCI <- quantile(T, (alpha/2))

# Output the two CI ’s in a list

output <- list(UpperCI=UpperCI , LowerCI=LowerCI)

}

## severalmeans (array , m, alpha) gives us a confidence interval for each pairwise

comparison of the k variables in "data"

# "data" is an array where each entry is a variable containing the data from each of

the k groups

62



Appendix B. R Codes

# m is the number of iterations , and alpha the significance level

severalmeans <- function(data , m, alpha)

{

k <- length(data) # k = the number of variables to be compared

# k*(k -1) / 2 gives the total number of combinations of comparisons

# Empty arrays for storing eta_i and eta_j for each combnation

J <- rep(0,(k*(k-1))/2)

I <- rep(0,(k*(k-1))/2)

# Empty arrays for storing all eta_i - eta_j confidence intervals

UpperCI <- rep(0,(k*(k-1))/2)

LowerCI <- rep(0,(k*(k-1))/2)

# The function will compare eta_j - eta_i. j can take values from 1 to k-1

for (j in 1:(k-1))

{

# For each given j, i can take values from j+1 to k. For example when j = 2 and

k = 4, we want to compare eta_2 - eta_3 and eta_2 - eta_4.

for (i in (j+1):k)

{

# Take logs and calculate n of the variables

y_a <- log(data[[j]])

n_a <- length(data[[j]])

y_b <- log(data[[i]])

n_b <- length(data[[i]])

# Calculate means and variances

ybar_a <- (1/n_a)*sum(y_a)

s2_a <- (1/(n_a-1))*sum((y_a - ybar_a)^2)

s_a <- sqrt(s2_a)

eta_a <- ybar_a + (s2_a/2)

ybar_b <- (1/n_b)*sum(y_b)

s2_b <- (1/(n_b-1))*sum((y_b - ybar_b)^2)

s_b <- sqrt(s2_b)
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eta_b <- ybar_b + (s2_b/2)

# Calculate eta_ij

eta_ij = ybar_a - ybar_b + (((n_a - 1) / (2 * (n_a - 3))) * s2_a) - (((n_b

- 1) / (2 * (n_b - 3))) * s2_b)

# Calculate V_ij

V_ij = (((n_a - 1) / (n_a * (n_a - 3))) * s2_a) + ((((n_a - 1)^2) / (2 *

((n_a - 3)^2) * ((n_a - 5)^2))) * s2_a^2) + (((n_b - 1) / (n_b * (n_b

- 3))) * s2_b) + ((((n_b - 1)^2) / (2 * ((n_b - 3)^2) * ((n_b - 5)^2))

) * s2_b^2)

# Prepare the dataframes for m number of simulations

R_theta <- rep(0,m)

R_xi <- rep(0,m)

Q <- rep(0,m)

# Carry out m iterations of the test statistic

for (z in 1:m)

{

# Generate values for Z~N(0 ,1) and U^2_k ~ ChiSq(n_k -1)

Z_a <- rnorm (1,0,1)

U2_a <- rchisq(1, n_a-1)

U_a <- sqrt(U2_a)

Z_b <- rnorm (1,0,1)

U2_b <- rchisq(1, n_b-1)

U_b <- sqrt(U2_b)

# Calculate R_theta

R_theta[z] = ybar_a - ybar_b - sqrt((n_a - 1)/n_a) * ((s_a * Z_a) /

(U_a)) + sqrt((n_b - 1)/n_b) * ((s_b * Z_b) / (U_b)) + (((n_a -

1) * s2_a) / (2*U2_a)) - (((n_b - 1) * s2_b) / (2*U2_b))

# Calculate R_xi

R_xi[z] = (((n_a - 1)*s2_a) / (n_a * U2_a)) + (((n_a-1)^2) / (2 *

n_a * (n_a - 3)^2)) * (((n_a - 1) * s2_a) / (U2_a))^2 + (((n

_b - 1)*s2_b) / (n_b * U2_b)) + (((n_b-1) ^2) / (2 * n_b * (n_b

- 3)^2)) * (((n_b - 1) * s2_b) / (U2_b))^2

# Calculate Q and q
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Q[z] = max(abs((R_theta[z] - eta_ij) / sqrt(R_xi[z])))

q <- quantile(Q, (1-( alpha/2)))

} # end z loop

# The confidence interval is given by eta_ij +- (q * sqrt(V_ij)). Save

these values in the below dataframes at the location given by the

function [(i-j) + ((j -1)*k) - ((j*(j -1))/2)]

UpperCI [(i-j) + ((j-1)*k) - ((j*(j-1))/2) ] <- eta_ij + (q * sqrt(V_ij

))

LowerCI [(i-j) + ((j-1)*k) - ((j*(j-1))/2) ] <- eta_ij - (q * sqrt(V_ij))

J[(i-j) + ((j-1)*k) - ((j*(j-1))/2) ] <- j

I[(i-j) + ((j-1)*k) - ((j*(j-1))/2) ] <- i

} # end i loop

} # end j loop

# Output J, I, UpperCI and LowerCI in the dataframe PairwiseCI and print this as

the output of the function

PairwiseCI <- data.frame(J, I, UpperCI , LowerCI)

PairwiseCI

}

B.3 R code - Industry Grouping and Misc

The data, available in .csv format following the procedure in Appendix A, was read

into R, which was also used to produce the boxplots in Section 3.

Producing the p-values for testing for log-normality on a variable x was done

using the command

shapito.test(log(x))

The Industry variable in the .csv file was used to carry out the industry grouping,
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using the subset command in R in the following fashion:

## Create the industry groups

C <- subset(fulldata , Industry =="C")

D <- subset(fulldata , Industry =="D")

G <- subset(fulldata , Industry =="G")

# etc

The response variables used as inputs in the overall test, and the bivariate equiv-

alence test in Sections 3.4 and 3.5 were defined as follows:

## Calculate the overall mean for the Absolute and Growth emissions for the test in

Section 3.4 and 3.5:

# The column numbers in the csv file for Absolute Emissions Year 1 was 9, for Year 2

was 13, hence dividing column 13 by column 9 yielded the energy savings ratio

overallmeanabs <- c((sum(A[,13])/sum(A[,9])), (sum(C[,13])/sum(C[,9])), (sum(D[ ,13])

/sum(D[,9])), (sum(G[,13])/sum(G[,9])), (sum(H[,13])/sum(H[,9])), (sum(I[,13])/

sum(I[,9])), (sum(J[ ,13])/sum(J[,9])), (sum(K[ ,13])/sum(K[,9])), (sum(O[,13])/

sum(O[,9])), (sum(P[ ,13])/sum(P[,9])))

# Similarly for the Growth response , using columns 12 and 17

overallmeangrowth <- c((sum(A[ ,17])/sum(A[,12])), (sum(C[ ,17])/sum(C[,12])), (sum(D

[,17])/sum(D[,12])), (sum(G[,17])/sum(G[,12])), (sum(H[,17])/sum(H[,12])), (sum(

I[,17])/sum(I[ ,12])), (sum(J[,17])/sum(J[ ,12])), (sum(K[,17])/sum(K[,12])), (sum

(O[,17])/sum(O[,12])), (sum(P[,17])/sum(P[,12])))

## Create the GCI for bivariate equivalence test

bivartest <- BivariateComparison(overallmeanabs , overallmeangrowth , 5000, 0.05)

## Create the GCI and p-value for the overall significance test

overalltest <- CIFunction(overallmeanabs , 0, 5000, 0.05)

For Section 3.6, for the two-group test each industry group was further subdivided

into those with AMR = 0 and AMR > 0, and aggregated in the same fashion:

# Create two groups for each industry classification , amr0 with no AMR and amr1 with

some AMR

C_amr0 <- subset(fulldata , Industry =="C" & AMRYear1 ==0)

C_amr1 <- subset(fulldata , Industry =="C" & AMRYear1 >0)

D_amr0 <- subset(fulldata , Industry =="D" & AMRYear1 ==0)

D_amr1 <- subset(fulldata , Industry =="D" & AMRYear1 >0)

G_amr0 <- subset(fulldata , Industry =="G" & AMRYear1 ==0)

G_amr1 <- subset(fulldata , Industry =="G" & AMRYear1 >0)

# etc
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## Calculate the response variables to be compared , with column numbers 13 and 9

corresponding to the Absolute Emissions variable

amr0 <- c((sum(A_amr0 [,13])/sum(A_amr0 [,9])), (sum(C_amr0 [,13])/sum(C_amr0 [,9])), (

sum(D_amr0 [,13])/sum(D_amr0 [,9])), (sum(G_amr0 [,13])/sum(G_amr0 [,9])), (sum(H_

amr0 [,13])/sum(H_amr0 [,9])), (sum(I_amr0 [,13])/sum(I_amr0 [,9])), (sum(J_amr0

[,13])/sum(J_amr0 [,9])), (sum(K_amr0 [,13])/sum(K_amr0 [,9])), (sum(O_amr0 [,13])/

sum(O_amr0 [,9])), (sum(P_amr0 [ ,13])/sum(P_amr0 [,9])))

amr1 <- c((sum(A_amr1 [,13])/sum(A_amr1 [,9])), (sum(C_amr1 [,13])/sum(C_amr1 [,9])), (

sum(D_amr1 [,13])/sum(D_amr1 [,9])), (sum(G_amr1 [,13])/sum(G_amr1 [,9])), (sum(H_

amr1 [,13])/sum(H_amr1 [,9])), (sum(I_amr1 [,13])/sum(I_amr1 [,9])), (sum(J_amr1

[,13])/sum(J_amr1 [,9])), (sum(K_amr1 [,13])/sum(K_amr1 [,9])), (sum(O_amr1 [,13])/

sum(O_amr1 [,9])), (sum(P_amr1 [ ,13])/sum(P_amr1 [,9])))

## Carry out the two means test

twoamrtest <- comparison(amr1 ,amr0 , 5000, 0.05)

For the test in Section 3.6 using 4 groups, the same methodology was used:

# Create four groups for each industry group , amr0 , amr1 , amr2 and amr3 with

different % of AMR coverage

C_amr0 <- subset(fulldata , Industry =="C" & AMRYear1 ==0)

C_amr1 <- subset(fulldata , Industry =="C" & AMRYear1 >0 & AMRYear1 <=33)

C_amr2 <- subset(fulldata , Industry =="C" & AMRYear1 >33 & AMRYear1 <=66)

C_amr3 <- subset(fulldata , Industry =="C" & AMRYear1 >66)

D_amr0 <- subset(fulldata , Industry =="D" & AMRYear1 ==0)

D_amr1 <- subset(fulldata , Industry =="D" & AMRYear1 >0 & AMRYear1 <=33)

D_amr2 <- subset(fulldata , Industry =="D" & AMRYear1 >33 & AMRYear1 <=66)

D_amr3 <- subset(fulldata , Industry =="D" & AMRYear1 >66)

G_amr0 <- subset(fulldata , Industry =="G" & AMRYear1 ==0)

G_amr1 <- subset(fulldata , Industry =="G" & AMRYear1 >0 & AMRYear1 <=33)

G_amr2 <- subset(fulldata , Industry =="G" & AMRYear1 >33 & AMRYear1 <=66)

G_amr3 <- subset(fulldata , Industry =="G" & AMRYear1 >66)

# etc

## Construct four variables with the means from each group , to be used as the inputs

for the simultaneous pairwise comparisons

amr0 <- c((sum(A_amr0 [,13])/sum(A_amr0 [,9])), (sum(C_amr0 [,13])/sum(C_amr0 [,9])), (

sum(D_amr0 [,13])/sum(D_amr0 [,9])), (sum(G_amr0 [,13])/sum(G_amr0 [,9])), (sum(H_

amr0 [,13])/sum(H_amr0 [,9])), (sum(I_amr0 [,13])/sum(I_amr0 [,9])), (sum(J_amr0

[,13])/sum(J_amr0 [,9])), (sum(K_amr0 [,13])/sum(K_amr0 [,9])), (sum(O_amr0 [,13])/

sum(O_amr0 [,9])), (sum(P_amr0 [ ,13])/sum(P_amr0 [,9])))

# For amr1 , C was removed as it had no responses fulfilling this criteria
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amr1 <- c((sum(A_amr1 [,13])/sum(A_amr1 [,9])), (sum(D_amr1 [ ,13])/sum(D_amr1 [,9])), (

sum(G_amr1 [,13])/sum(G_amr1 [,9])), (sum(H_amr1 [,13])/sum(H_amr1 [,9])), (sum(I_

amr1 [,13])/sum(I_amr1 [,9])), (sum(J_amr1 [,13])/sum(J_amr1 [,9])), (sum(K_amr1

[,13])/sum(K_amr1 [,9])), (sum(O_amr1 [,13])/sum(O_amr1 [,9])), (sum(P_amr1 [,13])/

sum(P_amr1 [,9])))

amr2 <- c((sum(A_amr2 [,13])/sum(A_amr2 [,9])), (sum(C_amr2 [,13])/sum(C_amr2 [,9])), (

sum(D_amr2 [,13])/sum(D_amr2 [,9])), (sum(G_amr2 [,13])/sum(G_amr2 [,9])), (sum(H_

amr2 [,13])/sum(H_amr2 [,9])), (sum(I_amr2 [,13])/sum(I_amr2 [,9])), (sum(J_amr2

[,13])/sum(J_amr2 [,9])), (sum(K_amr2 [,13])/sum(K_amr2 [,9])), (sum(O_amr2 [,13])/

sum(O_amr2 [,9])), (sum(P_amr2 [ ,13])/sum(P_amr2 [,9])))

# For amr3 , M was removed for no responses , and H as it had only one response

amr3 <- c((sum(A_amr3 [,13])/sum(A_amr3 [,9])), (sum(C_amr3 [,13])/sum(C_amr3 [,9])), (

sum(D_amr3 [,13])/sum(D_amr3 [,9])), (sum(G_amr3 [,13])/sum(G_amr3 [,9])), (sum(I_

amr3 [,13])/sum(I_amr3 [,9])), (sum(J_amr3 [,13])/sum(J_amr3 [,9])), (sum(K_amr3

[,13])/sum(K_amr3 [,9])), (sum(O_amr3 [,13])/sum(O_amr3 [,9])), (sum(P_amr3 [,13])/

sum(P_amr3 [,9])))

## Simultaneous pairwise GCI ’s

data <- list(amr0 , amr1 , amr2 , amr3)

fouramrtest <- severalmeans(data , 5000, 0.05)

In Section 3.7, the same procedure was used as for AMR, but with EMS. For the

two group comparison test:

## Create two groups , ems0 and ems1

C_ems0 <- subset(fulldata , Industry =="C" & StandardYear1 ==0)

C_ems1 <- subset(fulldata , Industry =="C" & StandardYear1 >0)

D_ems0 <- subset(fulldata , Industry =="D" & StandardYear1 ==0)

D_ems1 <- subset(fulldata , Industry =="D" & StandardYear1 >0)

G_ems0 <- subset(fulldata , Industry =="G" & StandardYear1 ==0)

G_ems1 <- subset(fulldata , Industry =="G" & StandardYear1 >0)

# etc

## Calculate the two response variables to be used in the " comparison " custom

function

ems0 <- c((sum(A_ems0 [,13])/sum(A_ems0 [,9])), (sum(C_ems0 [,13])/sum(C_ems0 [,9])), (

sum(D_ems0 [,13])/sum(D_ems0 [,9])), (sum(G_ems0 [,13])/sum(G_ems0 [,9])), (sum(H_

ems0 [,13])/sum(H_ems0 [,9])), (sum(I_ems0 [,13])/sum(I_ems0 [,9])), (sum(J_ems0

[,13])/sum(J_ems0 [,9])), (sum(K_ems0 [,13])/sum(K_ems0 [,9])), (sum(O_ems0 [,13])/

sum(O_ems0 [,9])), (sum(P_ems0 [ ,13])/sum(P_ems0 [,9])))

ems1 <- c((sum(A_ems1 [,13])/sum(A_ems1 [,9])), (sum(C_ems1 [,13])/sum(C_ems1 [,9])), (

sum(D_ems1 [,13])/sum(D_ems1 [,9])), (sum(G_ems1 [,13])/sum(G_ems1 [,9])), (sum(H_
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ems1 [,13])/sum(H_ems1 [,9])), (sum(I_ems1 [,13])/sum(I_ems1 [,9])), (sum(J_ems1

[,13])/sum(J_ems1 [,9])), (sum(K_ems1 [,13])/sum(K_ems1 [,9])), (sum(O_ems1 [,13])/

sum(O_ems1 [,9])), (sum(P_ems1 [ ,13])/sum(P_ems1 [,9])))

## Carry out the two means test

twoemstest <- comparison(ems1 ,ems0 , 5000, 0.05)

Again, for Section 3.7 with four groups, the same method was used:

## Create four subgroups for different % of EMS , ems0 , ems1 , ems2 and ems3

C_ems0 <- subset(fulldata , Industry =="C" & StandardYear1 ==0)

C_ems1 <- subset(fulldata , Industry =="C" & StandardYear1 >0 & StandardYear1 <=33)

C_ems2 <- subset(fulldata , Industry =="C" & StandardYear1 >33 & StandardYear1 <=66)

C_ems3 <- subset(fulldata , Industry =="C" & StandardYear1 >66)

D_ems0 <- subset(fulldata , Industry =="D" & StandardYear1 ==0)

D_ems1 <- subset(fulldata , Industry =="D" & StandardYear1 >0 & StandardYear1 <=33)

D_ems2 <- subset(fulldata , Industry =="D" & StandardYear1 >33 & StandardYear1 <=66)

D_ems3 <- subset(fulldata , Industry =="D" & StandardYear1 >66)

G_ems0 <- subset(fulldata , Industry =="G" & StandardYear1 ==0)

G_ems1 <- subset(fulldata , Industry =="G" & StandardYear1 >0 & StandardYear1 <=33)

G_ems2 <- subset(fulldata , Industry =="G" & StandardYear1 >33 & StandardYear1 <=66)

G_ems3 <- subset(fulldata , Industry =="G" & StandardYear1 >66)

## Calculate the response variables to be used:

ems0 <- c((sum(A_ems0 [,13])/sum(A_ems0 [,9])), (sum(C_ems0 [,13])/sum(C_ems0 [,9])), (

sum(D_ems0 [,13])/sum(D_ems0 [,9])), (sum(G_ems0 [,13])/sum(G_ems0 [,9])), (sum(H_

ems0 [,13])/sum(H_ems0 [,9])), (sum(I_ems0 [,13])/sum(I_ems0 [,9])), (sum(J_ems0

[,13])/sum(J_ems0 [,9])), (sum(K_ems0 [,13])/sum(K_ems0 [,9])), (sum(O_ems0 [,13])/

sum(O_ems0 [,9])), (sum(P_ems0 [ ,13])/sum(P_ems0 [,9])))

# For ems1 , we removed groups A, C, H, J & M as they had insufficient number of

responses

ems1 <- c((sum(D_ems1 [,13])/sum(D_ems1 [,9])), (sum(G_ems1 [,13])/sum(G_ems1 [,9])), (

sum(I_ems1 [,13])/sum(I_ems1 [,9])), (sum(K_ems1 [,13])/sum(K_ems1 [,9])), (sum(O_

ems1 [,13])/sum(O_ems1 [,9])), (sum(P_ems1 [,13])/sum(P_ems1 [,9])))

# For ems2 , we have taken out A, M, O

ems2 <- c((sum(C_ems2 [,13])/sum(C_ems2 [,9])), (sum(D_ems2 [,13])/sum(D_ems2 [,9])), (

sum(G_ems2 [,13])/sum(G_ems2 [,9])), (sum(H_ems2 [,13])/sum(H_ems2 [,9])), (sum(I_

ems2 [,13])/sum(I_ems2 [,9])), (sum(J_ems2 [,13])/sum(J_ems2 [,9])), (sum(K_ems2

[,13])/sum(K_ems2 [,9])), (sum(P_ems2 [,13])/sum(P_ems2 [,9])))

# For ems3 , we have removed groups H and M

ems3 <- c((sum(A_ems3 [,13])/sum(A_ems3 [,9])), (sum(C_ems3 [,13])/sum(C_ems3 [,9])), (

sum(D_ems3 [,13])/sum(D_ems3 [,9])), (sum(G_ems3 [,13])/sum(G_ems3 [,9])), (sum(I_

ems3 [,13])/sum(I_ems3 [,9])), (sum(J_ems3 [,13])/sum(J_ems3 [,9])), (sum(K_ems3
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[,13])/sum(K_ems3 [,9])), (sum(O_ems3 [,13])/sum(O_ems3 [,9])), (sum(P_ems3 [,13])/

sum(P_ems3 [,9])))

## Pairwise comparisons among the 4 groups

data <- list(ems0 , ems1 , ems2 , ems3)

fouremstest <- severalmeans(data , 5000, 0.1)

The GCI values and p-value can then be called with the appropriate function-

name, see details of possible call options in B.2 above:

twoemstest$UpperCI

twoemstest$LowerCI

twoemstest$pvalue
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Proof of Theorem 1

Proof of Theorem 1.

Proof. By the central limit theorem, we have

√
N ((η12 − θ12), (η13 − θ13), · · · , (ηk−1,k − θk−1,k))

d→ N(0,U),

where U is an k(k − 1)/2 × k(k − 1)/2 positive definite matrix. Let uab, a, b =

1, 2, · · · , k(k − 1)/2 be its (a, b)th entry. It can be shown that

uaa =
σ2
i

λi
+
σ4
i

2λi
+
σ2
j

λj
+

σ4
j

2λj

and

NVij →
σ2
i

λi
+
σ4
i

2λi
+
σ2
j

λj
+

σ4
j

2λj

almost surely. Therefore,(
η12 − θ12√

V12
,
η13 − θ13√

V13
, · · · , ηk−1,k − θk−1,k√

Vk−1,k

)
d→ N(0,U∗),

where the (a, b)th entry of U∗ is uab/
√
uaaubb.

Take a random vector (Z1, Z2, · · · , Zk(k−1)/2) distributed according to N(0,U∗). By
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the continuous mapping theorem

maxi<j

∣∣∣∣∣θij − ηij√
Vij

∣∣∣∣∣ d→ max|Za|

for 1 ≤ a ≤ k(k − 1)/2.

For i = 1, · · · , k, U2
i /ni

p→ 1. For all i 6= j,

√
N(Rθij − ηij) =

√
N

{
−
√
ni − 1

ni
· SiZi
Ui

+

√
nj − 1

nj
· SjZj
Uj

+
(ni − 1)S2

i

2U2
i

−
(nj − 1)S2

j

2U2
j

− ni − 1

2(ni − 3)
S2
i +

nj − 1

2(nj − 3)
S2
j

}
=

σi√
λi
Zj −

σi√
λi
Zi + op(1) (C.1)

conditionally on T = (Ȳ,S2) almost surely.

Recall that NVij →
σ2
i

λi
+
σ4
i

2λi
+
σ2
j

λj
+

σ4
j

2λj
almost surely and note that

NRξij = N
(ni − 1)S2

i

niU2
i

+N
(ni − 1)2

2ni(ni − 3)2

(
(ni − 1)S2

i

U2
i

)2

+ N
(nj − 1)S2

i

njU2
j

+N
(nj − 1)2

2nj(nj − 3)2

(
(ni − 1)S2

i

U2
i

)2

=
σ2
i

λi
+
σ4
i

2λi
+
σ2
j

λj
+
σ4
j

λj
+ op(1)

conditionally on T almost surely. It can be shown that Equation (C.1) implies

maxi<j

∣∣∣∣∣θij − ηij√
Rξij

∣∣∣∣∣ d→ max1≤a≤k(k−1)/2|Za| (C.2)

on T almost surely. Let F be the cdf of max1≤a≤k(k−1)/2|Za|. By the continuity of F

supx|Fn(x|T )− F (x)| → 0

almost surely, where Fn is the conditional distribution function of the left side of
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(C.2). As a result,

P
(
θij ∈ ηij ± q(α)

√
Vij for all i < j

)
= P

{
Fn

(
maxi<j

∣∣∣∣∣θij − ηij√
Vij

∣∣∣∣∣
∣∣∣∣∣T
)
≤ 1− α

}

= P

{
F

(
maxi<j

∣∣∣∣∣θij − ηij√
Rξij

∣∣∣∣∣
)

+ op(1) ≤ 1− α

}
d→ 1− α
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