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Abstract 
 
Adolescent cigarette smoking behavior is affected by peer relationships, but 

how these peer relationships influence the behavior of other adolescent smokers 

is not well understood. Mixing among cigarette smokers in adolescent friendship 

networks could indicate peer influence or a homophilous association among 

likeminded individuals. The goal of this thesis will be to examine a set of adolescent 

friendship networks to determine if different cigarette smoking behaviors can be 

predictive of friendship nominations in the network. Examining the structure of 

social networks requires among other things, inspection of the presence (or 

absence) of relational ties. Tie formations in social networks are often conditional 
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on the existence of other ties in the network. This conditional dependency along 

with purely structural network characteristics, creates a unique set of problems 

from a statistical modeling perspective.  Fitted exponential random graph models 

for a group of adolescent schools will be examined, to assess how the underlying 

structure of these social networks is influenced by smoking behaviors. 
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Chapter 1: Introduction

According to the American Lung Association, 68 percent of adults who smoke

began smoking regularly at the age 18 or younger. Adolescents who reported three

or more friends who smoked had a smoking prevalence approximately ten times

that of adolescents who reported that none of their friends smoked. Peer smok-

ing relationships are a strong indicator of adolescent cigarette smoking. Despite

the large body of work that suggests an association between peer friendships and

smoking, an understanding of how peers influence the behavior of other adoles-

cents is still not well understood. Correlation between adolescent smoking and the

smoking habits of friends could be an effect of peer influence, as has been implied

by many previous studies. Or can this correlation be attributed to what is called as-

sortativity or assortative mixing? Assortative mixing is a preference for a network’s

nodes (adolescent teens) to attach to others that are similar in some way.

Though we will mainly be interested in assortative mixing of smoking behav-

ior on a dyadic level, one has to wonder if this mixing is due to smoking habits

spreading through the network as contagion or epidemic models suggest [1]. It is

difficult to ascertain if the mixture of smokers is due to contagion of smoking in the

network (peer influence) or if it is merely an effect of adolescent smokers befriend-

ing other smokers (assortative mixing). This assumption that peer influence is the

only cause of mixing among smokers is the precise point of contention in the much

debated Christakis and Fowler’s paper on the spread of obesity in social networks

[2]. Realistically, both peer influence and assortative mixing are affecting clus-

tering of smokers and nonsmokers in adolescent friendship networks. It is nearly

impossible to differentiate between peer influence and assortative mixing if network

evolution is ignored completely [3], because assortative mixing at a specific time

step in a social network could be the outcome of previous peer influence and not
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attributed to assortative mixing. As previously mentioned, both peer influence and

assortative mixing can contribute to the homogeneity of peer social networks. This

work will focus on the effects that assortative mixing have on adolescent smoking

without examining the possible effects of peer pressure.

By modeling the network structure using exponential random graphs models

on a cross-section of the longitudinal Add Health data set [4] for individual schools,

the hope is that a more detailed description of the network topology can be cap-

tured in the model and this will in turn lead to a better understanding of the role

that assortative mixing may have on adolescent smoking behaviors. Additionally,

by modeling individual schools and the effects that grade level has on mixing of

smokers in the network, we hope to account for the differences that schools and

grade levels have on smoking patterns. If smoking assortative mixing is prevalent

in an adolescent social network then a well executed statistical analysis will show

adolescent smokers are more likely to friend smoking peers than non-smoking

peers.

Review of Related Literature

Statistical social network analysis has been in development for a few decades.

Early work on distributions for graphs were restricted to forcing network modelers

to adopt independence assumptions [5]. A significant breakthrough in statistical

modeling of networks came in a paper by Frank and Strauss [6] who named their

models, Markov random graphs. These Markov random graphs were further devel-

oped for estimation of parameters in a paper by Strauss and Ikeda [7]. As stated

by Robins and Morris, “A good [statistical network graph] model needs to be both

estimable from the data and a reasonable representation of that data, to be theo-

retically plausible about the type of effects that might have produced the network,

and to be amenable to examining which competing effects might be the best ex-
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planation of the data.” [8]. An exponential random graph model (ERGM) allows us

to describe the complex structure of the network, by providing a way to represent

both the complex interdependent structure of the network and the individual nodal

attributes. An ERGM is not focused on prediction as much as revealing patterns to

enable inference on tie formations in complex networks structures.

The possibility of a tie between two actors in a social network can be explained

by a combination of factors among the two actors but it can also be described by

the presence or absence of other ties in the network. ERGMs compare an ob-

served network to the other possible network configurations. Network structures

have a finite number of ways that ties can be arranged, this is called the sam-

ple space. When a model includes only terms that represent the composition of

node attributes within ties, it is similar to traditional logistic or log-linear models

for contingency tables [9]. Such models are said to exhibit dyadic independence

because the probability of any tie does not depend on the value of other ties, only

on the attributes of the two actors involved. An important early paper that paved

the way to modern ERG models was written by Holland and Leinhardt [10]. They

introduced a modeling approach that applied to directed graphs (digraphs) that

is particularly applicable to social networks. This dyadic independent statistical

model is often called the p1 model. A dyad is a tie (relationship) between two

variables (Yi j,Y ji), that can take on many forms from reciprocity to sending and

receiving. Even though the p1 network models did a fair job of representing the

dyadic structure of a social network, they didn’t go beyond that. In the p1 network

model all parameters are fixed effects, model the four possible dyadic outcomes,

and describe the probability of an edge between node i and j.
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The Holland-Leinhardt’s log-linear equations for the p1 model can be expressed

as follows for the probability of an edge occurring between nodes i and j:

log P(no edge) = P(0,0) = λi j

log P(i to j) = P(1,0) = λi j +αi +β j +θ (1)

log P( j to i) = P(0,1) = λi j +α j +βi +θ

log P(bidirected edge) = P(1,1) = λi j +αi +βi +α j +β j +2θ +ρi j.

Where the fixed effects are: reciprocity(ρ), sending (α), receiving (β ) , nor-

malizing constant (λ ), and edge (θ). Although these models could be represented

using standard log-linear models the independence assumption between nodes

creates a limitation for representation of complex network structures. For example,

trying to model reciprocity in a social network using a p1 model does not allow for

taking into account the dependency structure. Additionally, statistical approaches

such as logistic regression can be used to model dichotomous outcomes such as

the formation of a network tie but require independence among observations. As

stated by Hunter et al. [11], ERG models can be used to understand a particular

phenomenon or to simulate new random realizations of networks that retain the

essential properties of the original. ERGMs are a statistical approach to modeling

network data that extend the restrictive dyadic independence assumptions of both

p1 models and logistic regression approaches. This allows ERGMs to describe

complex dependency structures of social networks. For example in a direct social

network it is not plausible that the tie Yi j is independent of Y ji.
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ERGMs have a goal to loosen these restrictions of this independence assump-

tion and to allow for these dependencies among tie-variables. ERGMs are very

similar to general linear models specifically the logistic linear models. The main

difference between the two modeling techniques is that in ERGMs the observa-

tions in the sample are assumed to be dependent. ERGMs do not predict a social

tie independent of other social ties as with logistic regression, but rather the con-

ditional probability of a tie given what is observed in the rest of the network. The

probability of a set of ties Y given a set of actors and parameters Frank & Strauss

[12] and Wasserman & Pattison [13]:

P(Y = y) =
(

1
c(θ)

)
exp

{
∑
k

θkSk(y)

}
(2)

• k is a set of possible edges among a subset of vertices in G

• Y is a random adjacency matrix for the network and y is a particular realiza-

tion of Y

• θk vector of parameters for a given configuration

• Sk(y) = ∏yi j∈k yi j vector of sufficient network statistics for a given configuration

that is 1 if the configuration is observed and 0 otherwise

• c(θ) = ∑
all y

exp{θ T s(y)} is a normalizing constant to ensure that P(·) sums to

one over its range of values

Most ERG models are conducted on cross-sectional data but recent work has been

done to extend this to longitudinal data Krivitsky [14]. The idea behind Krivitsky’s
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separable temporal ERGM (STERGM) is to model the transition of a network from

Y t to a network at Y t+1. The formation and dissolution of ties occur independently

from each other within the same time step. A key idea is that the process and

factors that result in ties being formed are not the same as those for ties being

dissolved. Two separate ERG models are created. One ERGM is created for tie

formations:

P(Y+ = y+|Yt) =

(
1

c(θ+)

)
exp
{
(θ+)T s(y+)

}
. (3)

And another ERGM is created for tie dissolution:

P(Y− = y−|Yt) =

(
1

c(θ−)

)
exp
{
(θ−)T s(y−)

}
. (4)

Then the probability of transitioning from a given network at time t, yt to a net-

work at t +1, yt+1 can be expressed by the conditional probability statement:

P(Yt+1 = yt+1|Yt) =
(

1
c(θ+,θ−)

)
exp
{
(θ)T s(yt,yt+1,X)

}

= P(Y− = y−|Yt,X)×P(Y+ = y+|Yt,X).

(5)

A visual representation of the how these two models can be formed can be seen
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in the following figure.

(t)

(-)

(+)

(t+1)

Figure 1: STERGM formation

Two general ways for representing dependence between tie variables have been

presented in the literature. One is by postulating latent nodal variables and condi-

tional independence of the observations, given the latent variables, in the classical

Lazarsfeld tradition of latent structure models. A discrete latent class approach was

proposed in Nowicki and Snijders [15]. The second way is by directly modeling this

dependence, as is done in exponential random-graph models. One important ad-

vantage of the latent structure models is that they allow missing data in a network

to be imputed with likelihood-based inference [16].
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Chapter 2: Methods

The National Longitudinal Study of Adolescent Health (Add Health) is a longi-

tudinal study of a nationally representative sample of adolescents in grades 7-12

in the United States during the 1994-95 school year. The Add Health cohort has

been followed into young adulthood with four in-home interviews, the most recent

in 2008, when the sample age was 24-32. The study combines longitudinal sur-

vey data on respondent’s social, economic, psychological and physical well-being.

The network data examined in this study is from the first wave (1994-1995) of Add

Health. The first wave of Add Health contains data on 86 schools with 90,118 stu-

dents and 578,594 friendship nominations. Three schools from Add Health will be

used in the analysis which we will refer to as: school1, school2, and school3. The

three schools will be used to examine the relationship of friendship nominations

and smoking habits and were selected for their varying smoking prevalence. To

collect the friendship data, each student was asked to nominate five close female

and male friends. The students were allowed to nominate friends outside the roster

or less than the required five female and male friends. To clean our data for con-

struction of the network, friendship nominations to people outside the school were

removed. In addition to including the friendship nominations, both smoking habits

and grade level survey data were included into each model. The survey question,

“How often did you smoke cigarettes in the past twelve months” was broken into

three categories:

• never

• once or twice, once a month or less, 2 or 3 days a month

• once or twice a week, 3 to 5 days a week, nearly everyday.
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These three categories will classify a students smoking status as: nonsmoker, light

smoker and smoker. The reason for grouping the responses was both for economy

during the simulation process of building the model and secondly to look at the

relationship between light smokers and regular smokers. Schools with fairly large

data sets have been chosen in order to have an ample population of smokers

among the different grade levels. The friendship nominations are directed since

student A can nominate student B without B nominating student A.

Commonly in statistical social network models, data sets like Add Health will

be represented as undirected graphs (mutual friendships). This is often done not

only to simplify the estimation of model parameters, but also used to capture only

reciprocated friendship nominations. Using an undirected representation of the

network helps not only in the Markov chain Monte Carlo (MCMC) calculations but

also in the amount of terms that are needed to represent the network structure in

the ERG model. In this work we will retain the direction of the friendship nomi-

nations and model each individual school as a directed network, to capture more

of the smoking assortative mixing in the school networks than just reciprocated

friendship nominations. Due to the considerable computational cost of modeling

directed graphs from the Add Health data set, parallel processing was employed

for the MCMC simulations to help alleviate the computational cost of simulating

directed networks. An additional benefit of modeling the network with directed tie

formations is to help capture the friendship nominations that are based on admira-

tion. Although reciprocated friendship nominations make up a significant number

of the tie formations in the schools analyzed, a lot of detail in the network would be

lost by disregarding the unreciprocated friendship nominations.

Exploratory Network Analysis

We can represent a directed social network Y as a set of n actors and m dyads
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where Yi j = 1 if the actors (i, j) are connected and Yi j = 0 if they are not con-

nected. Before conducting the formal analysis we will look at some exploratory

data analysis of the three social networks. One of the most basic measurements

for describing a social network, or any connected network is density. The density

of a social network is the proportion of the connections between actors to the total

possible number of connections. Density for a n× n social network can be repre-

sented by the following:

D =

∑
i, j

Yi j

n(n−1)
(6)

There are several common measures for centrality: degree, betweeness, close-

ness, and eigenvector. Centrality of an actor is a measure of its relative impor-

tance in a social network or how influential the person is in a social network. Since

centrality is an important indicator of diffusion of smoking in a social network, we

will use a form of it to validate our model called geodesic distance. Geodesic dis-

tance also represent high-order network statistics not directly related to any of the

statistics included in our models, and thus provide a strong independent criterion

for goodness of fit [16]. In a graph, a geodesic distance between actors ni and n j is

the shortest path between them. Therefore the distance between ni and n j is equal

to the distance between n j and ni, d(i, j) = d( j, i). Betweenness centrality also is

a measure of the relative importance of an actor in a social network. It is equal

to the number of shortest paths from all actors to all others that pass through that

node. The betweenness centrality of an actor n is given by the expression:
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g(n) = ∑
s 6=n 6=t

σst(n)
σst

(7)

where σst is the total number of shortest paths from actors s to actor t and σst(n)

is the number of those paths that pass through n. Histograms of the distribution of

betweenness centrality for each school is given in the Appendix: Figure 13, Figure

14, and Figure 15. Another important measure in social network analysis is actor

degree, which is relatively easy to calculate. In a directed network we have both

in-degree and out-degree statistics. Degree indicates an actors involvement in a

social network and will also be examined in the goodness of fit in the model. Figure

2 shows school3 colored from light to dark for actors with in-degree from 1 to 10.
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Figure 2: In-degree for school3

Histograms of the degree distributions for each school are given in the Ap-

pendix. After density, the next most important statistic in social networks is central-

ity. Transitivity can be used to measure the local structuring of smoking assortative

mixing in a network, defined when there is a tie from actor ni to n j and also a tie

from n j to nh. There is a strong proportion of actors that display transitivity in all

three networks. Terms for representing degree and transitivity in the network will be

discussed in further detail in the analysis section for modeling smoking assortative

mixing in the social networks. Figure 3 represents the social network for school3

colored in red for nonsmokers, green for light smokers and blue for smokers. It is
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difficult to capture a good graphical representation for social networks of this size

(952 nodes and 4109 directional edges).

Figure 3: Smoking behaviors for school3

Modeling Adolescent Smoking Behaviors

To model the social behavior of adolescent students in the Add Health network,

a class of models called exponential random graph models (ERGMs) described in

the literature review section were employed. Some general work with ERGMs has

previously been done on the Add Health network such as the paper by Goodreau,
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Kitts and Morris [17], which looks at patterns in the adolescent social network

through examination of mutual friendship ties and exogenous attributes of sex, race

and grade level. Other studies have investigated the effects of cigarette smoking

within the Add Health peer network using logistic regression [18]. While some have

looked at the dynamics of smoking by way of common descriptive network statistics

such as centrality to look at the clustering behavior of the smoking population in

the social network [19]. In contrast, this paper attempts to take the mechanics

built into the ERG models by looking at the adolescent school network data in a

social network framework. The approach will be to quantify the influence smoking

behavior has on formation of friendship nominations on a dyadic level to explore

the influence smoking habits have on friendship nominations, by creating a formal

statistical model to describe adolescents who smoke.

Many of the studies that have been conducted on smoking in social networks

have used logistic regression and relied on summary statistics for describing the

structure of the network while leaving out a formal statistical model of the network

itself. A social network can be thought of as a set of nodes and vertices connected

by edges (in this instance friendship nominations). The network can be written as

G = (V, Y ) where V consists of a set of actors V = {v1, . . . ,vn}and Y is an n× n

matrix with binary values for the present or absence of friendship nominations.

Then P(Yi j = yi j) is the probability of the Yi j edge where it is 1 if the i student

nominates j and 0 otherwise. Rather than modeling network ties conditional on

a fixed set of attributes, it is possible to model a set of attributes conditional on a

fixed network within a ERGM-type framework. Such a model represents a social

influence or social contagion process, Robins, Pattison, and Elliot [20]. This is

similar to logistic regression but tie probabilities are recursively dependent. This

makes them especially valuable for modeling relational data like social networks.

This ability to model the dependency structure of the network while retaining the
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explanatory nature of the logistic regression model is what makes the ERG model

so useful in social network framework.

The conditional log-odds (logit) of an edge occurring from node i to j can be

represented by the following:

logit P(Yi j = 1|Y c
i j) = log

P(Yi j = 1|Y c
i j)

P(Yi j = 0|Y c
i j)

= log


(

e
θT S(y+i j )

θ

)
(

e
θT S(y−i j )

θ

)
 (8)

= θ
T

δ (y)i j

• where y+i j is the graph with Yi j = 1 and y−i j is the graph with Yi j = 0

• δ (y)i j =

[
S(y+i j)−S(y−i j)

]
is the change statistics if yi j where to change the

value of the network statistic from 0 to 1

• δ (y)i j multiplied by the parameter value is the log-odds of the existence of a

tie due to the statistic

Model degeneracy is a common problem that occurs when fitting ERGMs to social

networks. When a model does not fit the data well or MLEs don’t exist, or they

exist but don’t fit the data well, then a ERGM is called degenerate. Assessing if a

particular MLE fits the data will be determined in a later section using a paramet-

ric boostrapping method. Degeneracy is a sign that the model is not constructed

properly, which is often caused by overly strong assumptions of homogeneity in

one of more descriptive network statistics. The idea is to limit the probability of

higher order statistics like k-triangles in network analysis, relaxing the homogene-

ity assumption. Homogeneity is the idea that all isomorphic graphs have the the
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same probability. Parameter specific differences to different vertices are not intro-

duced. This assumption is necessary for many social networks especially for di-

rected graphs due to the large number of parameters associated. One approach to

dealing with model degeneracy is to limit the number of configurations or hypothe-

sized parameters [21]. This can be accomplished by using geometrically weighted

statistics for describing network structures. Often over estimation of these values

are due to lower-order statistics being nested in high-order statistics. One problem

is that the model gives large probabilities on graphs with larger degrees. An exam-

ple of this nesting problem can be seen in Figure 4 showing a 1-triangle nested in

a 2-triangle.

i

j

t1 t2

Figure 4: k-triangles

A solution to this is to set declining marginal returns for each additional 3-cycle

with decreasing weights on the number of shared partners:

Sk(y) =
n−1

∑
k=0

e−αdk(y). (9)
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Where Sk(y) is the sufficient network statistic from equation (2), dk(y) is the number

of nodes with degree k, and α > 0 controls the geometric rate of decreasing in

the weights. All of the models in this analysis (excluding the baseline Bernoulli

model) contain a geometrically weighted edgewise shared partner (GWESP) term

to capture transitivity in the network and to help with model degeneracy [22]. The

GWESP parameter estimates the number of shared friends of two adolescents in

the network. This network statistics will help model the clustering in the network by

way of triadic structures.

For clarity, smoking mixing will be analyzed for grades 9-12 and for students

who responded that they smoked at least once in the past month. The primary

interest here is to examine if a parametric model can be created based on network

characteristics and the preference of smoking high school students to nominate

smoking peers in their school. After creating an ERG model, the creation of ties

are probabilistic in nature. Due to the stochastic nature of the ERG model there is

some uncertainty when inferring the parameters in the model based on the data.

Given an observed network, can we quantify the uncertainty of various structural

and parametric characteristics in the model? Goodness-of-fit diagnostics of the

estimated model parameters can be assessed by randomly simulating the distri-

bution of graphs to see whether other features of the observed network data (i.e.,

non-fitted effects) are being properly represented. A large amount of uncertainty

will generally produce high p− values. Suppose we are interested in inferring reci-

procity in a directed network. If the observed network exhibits a high reciprocity

statistic, it is unlikely that it was drawn from an ERGM but not impossible. Testing

uncertainty about parameter values of an ERG model requires a way to measure

their uncertainty. The sampling distribution of an estimator is the distribution of the

estimator over multiple samples of data from the same population. The first step

is to determine the sampling distribution of the estimators in the ERG model, get
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maximum likelihood estimations for parameters in ERG model, simulate networks

with the sample probability distributions for MLE estimates, and test individual mod-

els for goodness-of-fit for their ability to predict global network properties that are

not explicit terms in the ERG model. This is the approach that will be used for

assessing uncertainty and goodness-of-fit in the model [14].
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Chapter 3: Analysis

Modeling Specification and Verification

The observed adolescent school network is assumed to be the realization of

a stochastic process. Parameter estimates of the exponential random graph are

estimated using frequentist Markov chain Monte Carlo methods. To assess the

goodness-of-fit of the model results sampling from the fitted model is compared

to network topology from the observed adolescent friendship network. Once a

suitable fitted network is chosen, it can be analyzed for its explanatory ability for

describing smoking assortative mixing. Since our ERG model can be rewritten in

terms of the log-odds of a tie occurring, we can use logistic regression to represent

the dependent variable of a friendship tie. To conduct the model selection process,

a set of model configurations for each school will be evaluated and compared. A

bottom-up approach will be used by first fitting a simple Bernoulli random graph

as our baseline model. This model assumes independence among all friendship

ties for each student in the social network. A dependency structure between ties in

friendship networks is a more realistic assumption than independence when mod-

eling friendship networks. For instance, if student A nominates student B as a

friend and student B nominates student C then it is more likely student C will nom-

inate students A. If our assumption is that there is a strong dependency structure

in the network then we should be able to formulate a better model than a baseline

Bernoulli random graph. To assist in model selection we will use Akaike informa-

tion criterion (AIC). When fitting a model, it is possible to increase the likelihood of

fit by adding parameters, but doing so may result in overfitting. In addition to using

AIC scores for model selection we will conduct goodness-of-fit diagnostics to as-

sess overfitting and overall fit to network statistics from the observed network data

[20]. Comparison of a single outcome from the simulation of the fitted model to the
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original network is of limited value. Our process will be to generate 200 random

networks from our fitted ERG model and then use the distribution of the network

topology of these 200 simulations to compare them to the observed Add Health

network.

Assessing Model Degeneracy

As stated previously in many MCMC samples of ERG models there is a com-

mon problem called model degeneracy, meaning they are very dense or very

sparse networks. Often when an ERG model is degenerate the model terms will

over estimate or under estimate the observed network even under maximum likeli-

hood coefficients. One possible reason for this occurring is that the Markov chain is

too slow at mixing or reaching a stationary distribution. Another possible reason for

the model degeneracy is that the parameters are too close to the boundary of the

parameter space. To assist in determining if model degeneracy exists in a given

model from one of the three schools assessed, both trace and density plots during

the final iterations of the MCMC algorithm will be examined for each parameter.

The plots should both vary stochastically around the mean, with non-stochastic

trends from the mean being indicative of degeneracy. Another way for determining

if a given ERG model is degenerate is to simulate from the model parameter esti-

mates and compare the simulated networks to the observed for the statistics in the

model as discussed above in section about goodness-of-fit. Both of these methods

will be used and discussed to assess model degeneracy in the next chapter.
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Chapter 4: Results

As stated previously, we will be comparing three schools from the National

Longitudinal Study of Adolescent Health (Add Health) data set. The schools were

chosen for their variation in smoking prevalence in the student population. After a

baseline Bernoulli model was fit to each school with a single predictor for describ-

ing network density, a second model was fit with predictors for density (edges)

and reciprocity (mutuality). The third model that was fit to each school had the

two terms from the previous model plus an added term to represent network tran-

sitivity (geometrically weighted edgewise shared partners). The final model has

all the previous terms for describing the topological structure of the network plus

82 = 64 possible terms for all the possible pairings of light smokers and smokers

from 9th−12th grade. A number of these pairings should be statistically significant

if smoking assortative mixing is a strong predictor for modeling friendship nomina-

tions in the observed adolescent social networks.

Model Results

Tables 1, 2 and 3 in the Appendix show the significant parameters for each

model chosen to represent the adolescent social network for each school respec-

tively. All three models for each school produced statistically significant predictors

for density, reciprocity, and transitivity. Or as show by values for edges, mutual, and

GWESP respectively. The last two significant predictors should not come as a sur-

prise, since most social networks show strong tendencies for friendship reciprocity

and transitivity. The statistically significant terms that varied were the 64 possible

predictors for smoking assortativity based on grade level.

The terms for smoking assortativity selected in the final models for the three

schools ranged from thirteen for school2 to twenty-five for school1. For the sake
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of brevity we will give the interpretations of the model coefficients only for school2;

similar logic can be used to discuss the model results for the other two schools.

Models were selected both on AIC scores and goodness-of-fit tests. After choosing

a final model, coefficients that were statistically significant at the α = 0.01 level were

left in the model. Figure 5 shows the goodness-of-fit for the edge-wise shared part-

ners and out degree from 200 random simulations from our final selected model.

The boxplots represent the simulations for the model and the dark black lines rep-

resent the network statistics for the observed data. Two network statistics will be

shown for each of the models, one for edge-wise shared partners and the another

for out degree. Edge-wise shared partner statistic is the number of unordered pairs

{i, j} such that yi j = 1 and i and j have exactly k common neighbors and out de-

gree is the number of outward friendship nominations for a given actor. As we can

see in the following figure, the final model for school2 over estimates slightly for

one edge-wise shared partner and under estimates for the observed network for

two and three edge-wise shared partners.

Figure 5: Goodness-of-fit final model school2 with assortative mixing my grade
level
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Comparing these results to 200 simulations from the model with no predic-

tor variables for smoking assortative mixing by grade level and three terms to

represent network characteristics: density(edges), transitivity(GWESP), and reci-

procity(mutual). We can see that the model does a fair job representing the two

network statistics from the original network, edge-wise shared partners and out

degree . Additionally for the other two schools examined in this study, significant

improvements in the overall fit to the observed network data can be observed (Ap-

pendix).

Figure 6: Goodness-of-fit model without smoking assortative mixing by grade level
school2

Discussion

Now that we have a final parametric representation for tie formations in the

network, we can start to interpret our results. All 3 schools show similar values for

edges (-6.2 to -6.6), mutual (4.0 to 4.2) and GWESP (1.7 to 2.0). The model for

school2 can be interpreted by using log-odds of a friendship tie occurring, where

the log-odds estimate for edges is -6.2453 (Table 2). This estimate can be de-
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scribed as the log-odds of two arbitrary students (i, j) having a directed friendship

nomination between them when they don’t have any friends in common. This log-

odds estimate has a corresponding probability of 0.0019. The results for the edge

term (significantly negative) can be interpreted as saying the observed network is

sparse. Additional the positive term for mutual implies there is a high probabil-

ity of reciprocating friendship nominations and the positive term for GWESP says

there is a high probability for triangle closure in the network. The transitivity ef-

fect (GWESP) was generally found to be stronger in all 3 schools than terms for

describing smoking habits in predicting the existence of ties in the network.

As shown above, the final model with terms for smoking assortativity by grade

level does a much better job of capturing edge-wise shared partnerships and out

degree statistics in the observed network data. The positive coefficients for smok-

ing assortativity in the network show that adolescent smokers form friendships

more often than two dissimilar adolescents. For example the MLE of the log-odds

of a friendship nomination between a 11th grade light smoker and a 12th grade

smoker is 1.11859 with a corresponding probability of e1.11859

(1+e1.11859)
= 0.75. This is

the largest positive coefficient for smoking assortativity in the model. This indi-

cates that 11th grade light smokers have the strongest preference to nominate 12th

grade smokers than any other smoking adolescent pair in the network. From look-

ing at all the estimates for smoking assortativity, it is clear that homophily is not

uniform across all grade and smoking levels. For example, in school2 six out of

eight positive coefficients for smoking assortativity include 12th grade smokers in

the school, indicating that there is a strong tendency in this social network for 12th

grade smokers to either be nominated or nominate other smokers. The second

largest positive coefficients for smoking assortativity in school2 are 9th grade light

smokers nominating 12th grade light smokers with a log-odds estimate of 0.90952

and a corresponding probability of 0.7129.
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Chapter 5: Conclusion

Exponential random graph models offer a unique approach to modeling both

the network and nodal attributes of adolescent friendship networks. The models

allow flexible ways of modeling the dependency structure of the data with clear

explanatory results of coefficient estimates. Additionally, ERGMs provide a useful

technique for characterizing network assortativity and give insight into the detailed

assessment of intra-grade and inter-grade smoking relationships. The Add Health

data set allows for a reasonable goodness-of-fit to the observed school networks,

and an objective way to look at metrics such as probabilities of connections among

students of different grades and smoking behaviors. One should be aware that the

Add Health data has a fair amount of missing data due to absentee students (af-

fecting out-degree) and nominations to non-unique nodes (students not registered

in the same school). These are some of the constraints when working with the

limited adolescent friendship network data available. Based on the results from the

three final models there are some interesting smoking assortative mixing occur-

ring in the adolescent social networks. The assortative mixing is heterogeneous

across smoking habits and grade level, and each school’s characteristics are dif-

ferent; however, there are some interesting patterns that emerge across the three

schools, like the strong smoking homophily effect for 9th grade smokers nominating

smoking peers at all four grade levels examined. Though it has been shown that

these models can give adequate descriptions of the network structures examined,

there is no reason to assume that these specific model parameters will describe

other social networks and it should not be presumed to be a general framework for

further analysis.
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There are a number of future directions for this research. Further statistically

significant model parameters for additional schools with different smoking preva-

lence could be examined to assess similarities and differences among schools

in the Add Health data set. Since much of the dependency in social networks

can be observed at the dyadic and triadic network level, investigating other ways

of modeling adolescent social networks by taking a more localized approach to

parametrization of the dependency structures in the network through the use of

multilevel modeling techniques might offer stronger model representations of the

observed networks. Finally, another interesting future direction would be to explore

dynamic modeling to investigate if the effects of peer influence and smoking ho-

mophily in adolescent social networks can be separated by comparing smoking

assortative mixing in networks across multiple time steps.
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Figure 7: Goodness-of fit comparison school1

1st row: 200 simulated networks with all predictor variables.

2nd row: 200 simulated networks from first three predictor variables.
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Figure 8: Goodness-of-fit comparison school2

1st row: 200 simulated networks with all predictor variables.

2nd row: 200 simulated networks from first three predictor variables.
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Figure 9: Goodness-of-fit comparison school3

1st row: 200 simulated networks with all predictor variables.

2nd row: 200 simulated networks from first three predictor variables.
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Table 1: Significant terms final model school1

Estimate Std. Error p-value

edges -6.24949 0.05109 <0.0001

gwesp 1.71636 0.03817 <0.0001

mutual 4.14233 0.02211 <0.0001

9th light smoker<-9th light smoker -0.68657 0.15040 <0.0001

10th light smoker<-9th light smoker -0.36167 0.13863 0.00908

10th smoker<-9th light smoker -1.74732 0.29615 <0.0001

11th light smoker<-9th light smoker -2.25862 0.36813 <0.0001

9th light smoker<-9th smoker 0.46551 0.11408 <0.0001

11th light smoker<-9th smoker 0.42302 0.16154 0.00883

11th smoker<-9th smoker -1.16357 0.21811 <0.0001

12th smoker<-9th smoker 0.47075 0.15135 0.00187

9th light smoker<-10th light smoker 0.67523 0.11395 <0.0001

12th smoker<-10th light smoker 0.56347 0.13382 <0.0001

10th smoker<-10th smoker 0.45656 0.08932 <0.0001

11th light smoker<-10th smoker 0.55877 0.16631 0.00078

9th smoker<-11th light smoker -0.72608 0.21180 0.00061

10th light smoker<-11th light smoker -0.63264 0.22683 0.00529

12th light smoker<-11th light smoker -0.76556 0.23330 0.00103

9th light smoker<-11th smoker 0.44770 0.11550 0.00011

10th smoker<-11th smoker 0.51785 0.13664 0.00015

11th light smoker<-11th smoker 0.63327 0.13643 <0.0001

9th smoker<-12th light smoker 0.51027 0.14674 0.00051

11th light smoker<-12th light smoker 0.79414 0.17100 <0.0001

12th smoker<-12th light smoker 0.68685 0.15831 <0.0001

9th smoker<-12th smoker -1.19371 0.24383 <0.0001

10th smoker<-12th smoker -0.73044 0.27036 0.00690

11th smoker<-12th smoker -1.25979 0.23514 <0.0001

12th light smoker<-12th smoker -0.77377 0.22875 0.00072
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Table 2: Significant terms final model school2

Estimate Std. Error p-value

edges -6.24543 0.07121 <0.0001

gwesp 1.66499 0.05792 <0.0001

mutual 4.03862 0.02877 <0.0001

11th light smoker->12th smoker 1.11859 0.19232 <0.0001

9th light smoker->12th light smoker 0.90952 0.24911 0.000261

12th light smoker->12th light smoker 0.87371 0.15528 <0.0001

12th smoker->12th light smoker 0.76483 0.18838 <0.0001

9th light smoker->10th light smoker 0.70676 0.20574 0.000592

10th light smoker->10th light smoker 0.61774 0.14376 <0.0001

12th smoker->10th light smoker 0.57065 0.17657 0.00123

12th smoker->11th smoker 0.57043 0.15649 0.000267

10th light smoker->12th smoker -0.73109 0.25743 0.004512

12th smoker ->11th light smoker -0.95297 0.32592 0.003456

9th light smoker->12th smoker -1.03374 0.29683 0.000497

10th smoker->10th light smoker -1.05484 0.37125 0.004493

10th light smoker->11th smoker -1.33606 0.47025 0.004495
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Table 3: Significant terms final model school3

Estimate Std. Error p-value

edges -6.57566 0.05843 <0.0001

gwesp 1.97628 0.04459 <0.0001

mutual 4.22147 0.02019 <0.0001

9th light smoker<-11th light smoker 1.34554 0.19544 <0.0001

9th smoker<-9th light smoker 1.17585 0.16178 <0.0001

12th light smoker<-10th light smoker 0.88067 0.17193 <0.0001

12th light smoker<-9th light smoker 0.76373 0.23038 0.00092

9th smoker<-12th smoker 0.73466 0.24356 0.00256

10th smoker<-9th light smoker 0.64093 0.19575 0.00106

9th light smoker<-11th smoker 0.62293 0.20521 0.00240

10th light smoker<-9th light smoker 0.61997 0.18357 0.00073

11th smoker<-11th light smoker 0.58426 0.20869 0.00512

11th light smoker<-10th smoker 0.52847 0.18770 0.00487

10th light smoker<-10th smoker -0.54239 0.20164 0.00715

10th light smoker<-10th light smoker -0.60316 0.18421 0.00106

11th light smoker<-11th smoker -0.75593 0.27643 0.00625

10th light smoker<-12 smoker -0.77772 0.30174 0.00995

9th light smoker<-10th smoker -0.91676 0.30063 0.00229

11th smoker<-9th light smoker -0.97169 0.29105 0.00084

9th light smoker<-10th light smoker -1.23336 0.31734 0.00010

12th light smoker<-11th light smoker -1.34510 0.50741 0.00803

9th light smoker<-12th light smoker -1.69170 0.44111 0.00013

11th smoker<-9th smoker -1.92123 0.46745 <0.0001

11th light smoker<-9th light smoker -2.01683 0.46059 <0.0001
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Figure 10: MCMC density estimate school1
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Figure 11: MCMC density estimate school2
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Figure 12: MCMC density estimate school3

36



Indegree Distribution

Indegree

D
en

si
ty

0 5 10 15 20
0.

00
0.

05
0.

10
0.

15

Outdegree Distribution

Outdegree

D
en

si
ty

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

Total Degree Distribution

Total Degree

D
en

si
ty

0 5 10 15 20 25

0.
00

0.
02

0.
04

0.
06

0.
08

School1

Betweenness centralilty

A
ct

or
 fr

eq
ue

nc
y

0 10000 20000 30000 40000 50000

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 13: Degree and betweeness centrality school1

37



Indegree Distribution

Indegree
D

en
si

ty

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

Outdegree Distribution

Outdegree

D
en

si
ty

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

Total Degree Distribution

Total Degree

D
en

si
ty

0 5 10 15 20 25 30

0.
00

0.
02

0.
04

0.
06

0.
08

School2

Betweenness centralilty

A
ct

or
 fr

eq
ue

nc
y

0 10000 20000 30000 40000 50000

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 14: Degree and betweeness centrality school2

38



Indegree Distribution

Indegree
D

en
si

ty

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

Outdegree Distribution

Outdegree

D
en

si
ty

2 4 6 8 10

0.
00

0.
10

0.
20

Total Degree Distribution

Total Degree

D
en

si
ty

0 5 10 15 20 25 30 35

0.
00

0.
02

0.
04

0.
06

0.
08

School3

Betweenness centralilty

A
ct

or
 fr

eq
ue

nc
y

0 10000 20000 30000 40000 50000 60000

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 15: Degree and betweeness centrality school3

39



References

[1] Rowe DC, Rodgers JL (1991). Adolescent smoking and drinking: Are they

epidemics? Journal of Studies on Alcohol. Volume 52.

[2] Nicholas A. Christakis, M.D., Ph.D., M.P.H., and James H. Fowler, Ph.D (2007).

The Spread of Obesity in a Large Social Network over 32 Years.

[3] Kobus, K., (2003). Peers and adolescent smoking.

[4] Harris, K.M., C.T. Halpern, E. Whitsel, J. Hussey, J. Tabor, P. Entzel, and J.R.

Udry (2009). The National Longitudinal Study of Adolescent Health: Research

Design [WWW document].

URL: http://www.cpc.unc.edu/projects/addhealth/design.

[5] Mark S. Handcock and Krista J. Gile (2010). Modeling social networks from

sampled data. Annals of Applied Statistics. Volume 4, Issue 1.

[6] Ove Frank; David Strauss (1986). Markov Graphs. Journal of the American

Statistical Association, Volume 81, Issue 395.

[7] David Strauss; Michael Ikeda (1990). Pseudolikelihood Estimation for Social

Networks. Journal of the American Statistical Association. Volume 85, Issue 409.

[8] G. Robins and M. Morris (2007). “Recent developments in exponential random

graph (p∗) models for social networks,” Social Networks. Volume 29, Issue 2.

[9] Koehly L, Goodreau SM, and Morris M. (2004). Exponential family models for

sampled and census network data. Sociological Methodology. Volume 34.

[10] Paul W. Holland; Samuel Leinhardt (1981). An Exponential Family of

Probability Distributions for Directed Graphs. Journal of the American Statistical

Association. Volume 76, Issue 373.

40



[11] Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008). ergm:

A Package to Fit, Simulate and Diagnose Exponential-Family Models for

Networks. Journal of Statistical Software. Volume 24, Issue 3.

[12] Ove Frank; David Strauss (1986). Markov Graphs. Journal of the American

Statistical Association. Volume 81, Issue 395.

[13] Wasserman S, Pattison P (1996). Logit Models and Logistic Regressions for

Social Networks: I. An Introduction to Markov Graphs and p*. Psychometrika.

Volume 61, Issue 3.

[14] Pavel N. Krivitsky and Mark S. Handcock (2010). A Separable Model for

Dynamic Networks.

[15] Nowicki, K. and T. A. B. Snijders (2001). Estimation and prediction for

stochastic blockstructures. Journal of the American Statistical Association.

Volume 96, Issue 45.

[16] David R. Hunter, Steven M.Goodreau, Mark S. Handcock (2005). Goodness

of Fit of Social Networks Models. Center for Statistics and the Social Sciences

University of Washington.

[17] Goodreau SM, Kitts JA, and Morris M. (2009). Birds of a feather, or friend of a

friend? Using exponential random graph models to investigate adolescent social

networks. Demography.

[18] Cheryl Alexander, Marina Piazza, Debra Mekos, Thomas Valente (2001).

Peers, schools, and adolescent cigarette smoking. Journal of Adolescent Health.

Volume 29, Issue 1.

[19] Nicholas A. Christakis, James H. Fowler. (2008). The Collective Dynamics of

Smoking in a Large Social Network. New England Journal of Medicine.

[20] Robins, G.L., Elliot, P., & Pattison, P.E. (2001b). Network models for social

selection processes. Social Networks. Volume 23 Issue 1.

41



[21] Snijders TAB, Pattison P, Robins GL, Handcock MS (2006). New

Specifications for Exponential Random Graph Models.

Sociological Methodology. Volume 36, Issue 1.

[22] Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008). ergm:

A Package to Fit, Simulate and Diagnose Exponential-Family Models for

Networks. Journal of Statistical Software. Volume 24, Issue 3.

42


	Social Network Analysis of Peer Influence on Adolescent Smoking
	Recommended Citation

	tmp.1473356525.pdf.y7jjI

