








Figure 2: In-degree for school3

Histograms of the degree distributions for each school are given in the Ap-

pendix. After density, the next most important statistic in social networks is central-

ity. Transitivity can be used to measure the local structuring of smoking assortative

mixing in a network, defined when there is a tie from actor ni to n j and also a tie

from n j to nh. There is a strong proportion of actors that display transitivity in all

three networks. Terms for representing degree and transitivity in the network will be

discussed in further detail in the analysis section for modeling smoking assortative

mixing in the social networks. Figure 3 represents the social network for school3

colored in red for nonsmokers, green for light smokers and blue for smokers. It is
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difficult to capture a good graphical representation for social networks of this size

(952 nodes and 4109 directional edges).

Figure 3: Smoking behaviors for school3

Modeling Adolescent Smoking Behaviors

To model the social behavior of adolescent students in the Add Health network,

a class of models called exponential random graph models (ERGMs) described in

the literature review section were employed. Some general work with ERGMs has

previously been done on the Add Health network such as the paper by Goodreau,
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Kitts and Morris [17], which looks at patterns in the adolescent social network

through examination of mutual friendship ties and exogenous attributes of sex, race

and grade level. Other studies have investigated the effects of cigarette smoking

within the Add Health peer network using logistic regression [18]. While some have

looked at the dynamics of smoking by way of common descriptive network statistics

such as centrality to look at the clustering behavior of the smoking population in

the social network [19]. In contrast, this paper attempts to take the mechanics

built into the ERG models by looking at the adolescent school network data in a

social network framework. The approach will be to quantify the influence smoking

behavior has on formation of friendship nominations on a dyadic level to explore

the influence smoking habits have on friendship nominations, by creating a formal

statistical model to describe adolescents who smoke.

Many of the studies that have been conducted on smoking in social networks

have used logistic regression and relied on summary statistics for describing the

structure of the network while leaving out a formal statistical model of the network

itself. A social network can be thought of as a set of nodes and vertices connected

by edges (in this instance friendship nominations). The network can be written as

G = (V, Y ) where V consists of a set of actors V = {v1, . . . ,vn}and Y is an n× n

matrix with binary values for the present or absence of friendship nominations.

Then P(Yi j = yi j) is the probability of the Yi j edge where it is 1 if the i student

nominates j and 0 otherwise. Rather than modeling network ties conditional on

a fixed set of attributes, it is possible to model a set of attributes conditional on a

fixed network within a ERGM-type framework. Such a model represents a social

influence or social contagion process, Robins, Pattison, and Elliot [20]. This is

similar to logistic regression but tie probabilities are recursively dependent. This

makes them especially valuable for modeling relational data like social networks.

This ability to model the dependency structure of the network while retaining the
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explanatory nature of the logistic regression model is what makes the ERG model

so useful in social network framework.

The conditional log-odds (logit) of an edge occurring from node i to j can be

represented by the following:

logit P(Yi j = 1|Y c
i j) = log

P(Yi j = 1|Y c
i j)

P(Yi j = 0|Y c
i j)

= log


(

e
θT S(y+i j )

θ

)
(

e
θT S(y−i j )

θ

)
 (8)

= θ
T

δ (y)i j

• where y+i j is the graph with Yi j = 1 and y−i j is the graph with Yi j = 0

• δ (y)i j =

[
S(y+i j)−S(y−i j)

]
is the change statistics if yi j where to change the

value of the network statistic from 0 to 1

• δ (y)i j multiplied by the parameter value is the log-odds of the existence of a

tie due to the statistic

Model degeneracy is a common problem that occurs when fitting ERGMs to social

networks. When a model does not fit the data well or MLEs don’t exist, or they

exist but don’t fit the data well, then a ERGM is called degenerate. Assessing if a

particular MLE fits the data will be determined in a later section using a paramet-

ric boostrapping method. Degeneracy is a sign that the model is not constructed

properly, which is often caused by overly strong assumptions of homogeneity in

one of more descriptive network statistics. The idea is to limit the probability of

higher order statistics like k-triangles in network analysis, relaxing the homogene-

ity assumption. Homogeneity is the idea that all isomorphic graphs have the the
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same probability. Parameter specific differences to different vertices are not intro-

duced. This assumption is necessary for many social networks especially for di-

rected graphs due to the large number of parameters associated. One approach to

dealing with model degeneracy is to limit the number of configurations or hypothe-

sized parameters [21]. This can be accomplished by using geometrically weighted

statistics for describing network structures. Often over estimation of these values

are due to lower-order statistics being nested in high-order statistics. One problem

is that the model gives large probabilities on graphs with larger degrees. An exam-

ple of this nesting problem can be seen in Figure 4 showing a 1-triangle nested in

a 2-triangle.

i

j

t1 t2

Figure 4: k-triangles

A solution to this is to set declining marginal returns for each additional 3-cycle

with decreasing weights on the number of shared partners:

Sk(y) =
n−1

∑
k=0

e−αdk(y). (9)
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Where Sk(y) is the sufficient network statistic from equation (2), dk(y) is the number

of nodes with degree k, and α > 0 controls the geometric rate of decreasing in

the weights. All of the models in this analysis (excluding the baseline Bernoulli

model) contain a geometrically weighted edgewise shared partner (GWESP) term

to capture transitivity in the network and to help with model degeneracy [22]. The

GWESP parameter estimates the number of shared friends of two adolescents in

the network. This network statistics will help model the clustering in the network by

way of triadic structures.

For clarity, smoking mixing will be analyzed for grades 9-12 and for students

who responded that they smoked at least once in the past month. The primary

interest here is to examine if a parametric model can be created based on network

characteristics and the preference of smoking high school students to nominate

smoking peers in their school. After creating an ERG model, the creation of ties

are probabilistic in nature. Due to the stochastic nature of the ERG model there is

some uncertainty when inferring the parameters in the model based on the data.

Given an observed network, can we quantify the uncertainty of various structural

and parametric characteristics in the model? Goodness-of-fit diagnostics of the

estimated model parameters can be assessed by randomly simulating the distri-

bution of graphs to see whether other features of the observed network data (i.e.,

non-fitted effects) are being properly represented. A large amount of uncertainty

will generally produce high p− values. Suppose we are interested in inferring reci-

procity in a directed network. If the observed network exhibits a high reciprocity

statistic, it is unlikely that it was drawn from an ERGM but not impossible. Testing

uncertainty about parameter values of an ERG model requires a way to measure

their uncertainty. The sampling distribution of an estimator is the distribution of the

estimator over multiple samples of data from the same population. The first step

is to determine the sampling distribution of the estimators in the ERG model, get
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maximum likelihood estimations for parameters in ERG model, simulate networks

with the sample probability distributions for MLE estimates, and test individual mod-

els for goodness-of-fit for their ability to predict global network properties that are

not explicit terms in the ERG model. This is the approach that will be used for

assessing uncertainty and goodness-of-fit in the model [14].
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Chapter 3: Analysis

Modeling Specification and Verification

The observed adolescent school network is assumed to be the realization of

a stochastic process. Parameter estimates of the exponential random graph are

estimated using frequentist Markov chain Monte Carlo methods. To assess the

goodness-of-fit of the model results sampling from the fitted model is compared

to network topology from the observed adolescent friendship network. Once a

suitable fitted network is chosen, it can be analyzed for its explanatory ability for

describing smoking assortative mixing. Since our ERG model can be rewritten in

terms of the log-odds of a tie occurring, we can use logistic regression to represent

the dependent variable of a friendship tie. To conduct the model selection process,

a set of model configurations for each school will be evaluated and compared. A

bottom-up approach will be used by first fitting a simple Bernoulli random graph

as our baseline model. This model assumes independence among all friendship

ties for each student in the social network. A dependency structure between ties in

friendship networks is a more realistic assumption than independence when mod-

eling friendship networks. For instance, if student A nominates student B as a

friend and student B nominates student C then it is more likely student C will nom-

inate students A. If our assumption is that there is a strong dependency structure

in the network then we should be able to formulate a better model than a baseline

Bernoulli random graph. To assist in model selection we will use Akaike informa-

tion criterion (AIC). When fitting a model, it is possible to increase the likelihood of

fit by adding parameters, but doing so may result in overfitting. In addition to using

AIC scores for model selection we will conduct goodness-of-fit diagnostics to as-

sess overfitting and overall fit to network statistics from the observed network data

[20]. Comparison of a single outcome from the simulation of the fitted model to the
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original network is of limited value. Our process will be to generate 200 random

networks from our fitted ERG model and then use the distribution of the network

topology of these 200 simulations to compare them to the observed Add Health

network.

Assessing Model Degeneracy

As stated previously in many MCMC samples of ERG models there is a com-

mon problem called model degeneracy, meaning they are very dense or very

sparse networks. Often when an ERG model is degenerate the model terms will

over estimate or under estimate the observed network even under maximum likeli-

hood coefficients. One possible reason for this occurring is that the Markov chain is

too slow at mixing or reaching a stationary distribution. Another possible reason for

the model degeneracy is that the parameters are too close to the boundary of the

parameter space. To assist in determining if model degeneracy exists in a given

model from one of the three schools assessed, both trace and density plots during

the final iterations of the MCMC algorithm will be examined for each parameter.

The plots should both vary stochastically around the mean, with non-stochastic

trends from the mean being indicative of degeneracy. Another way for determining

if a given ERG model is degenerate is to simulate from the model parameter esti-

mates and compare the simulated networks to the observed for the statistics in the

model as discussed above in section about goodness-of-fit. Both of these methods

will be used and discussed to assess model degeneracy in the next chapter.
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Chapter 4: Results

As stated previously, we will be comparing three schools from the National

Longitudinal Study of Adolescent Health (Add Health) data set. The schools were

chosen for their variation in smoking prevalence in the student population. After a

baseline Bernoulli model was fit to each school with a single predictor for describ-

ing network density, a second model was fit with predictors for density (edges)

and reciprocity (mutuality). The third model that was fit to each school had the

two terms from the previous model plus an added term to represent network tran-

sitivity (geometrically weighted edgewise shared partners). The final model has

all the previous terms for describing the topological structure of the network plus

82 = 64 possible terms for all the possible pairings of light smokers and smokers

from 9th−12th grade. A number of these pairings should be statistically significant

if smoking assortative mixing is a strong predictor for modeling friendship nomina-

tions in the observed adolescent social networks.

Model Results

Tables 1, 2 and 3 in the Appendix show the significant parameters for each

model chosen to represent the adolescent social network for each school respec-

tively. All three models for each school produced statistically significant predictors

for density, reciprocity, and transitivity. Or as show by values for edges, mutual, and

GWESP respectively. The last two significant predictors should not come as a sur-

prise, since most social networks show strong tendencies for friendship reciprocity

and transitivity. The statistically significant terms that varied were the 64 possible

predictors for smoking assortativity based on grade level.

The terms for smoking assortativity selected in the final models for the three

schools ranged from thirteen for school2 to twenty-five for school1. For the sake
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of brevity we will give the interpretations of the model coefficients only for school2;

similar logic can be used to discuss the model results for the other two schools.

Models were selected both on AIC scores and goodness-of-fit tests. After choosing

a final model, coefficients that were statistically significant at the α = 0.01 level were

left in the model. Figure 5 shows the goodness-of-fit for the edge-wise shared part-

ners and out degree from 200 random simulations from our final selected model.

The boxplots represent the simulations for the model and the dark black lines rep-

resent the network statistics for the observed data. Two network statistics will be

shown for each of the models, one for edge-wise shared partners and the another

for out degree. Edge-wise shared partner statistic is the number of unordered pairs

{i, j} such that yi j = 1 and i and j have exactly k common neighbors and out de-

gree is the number of outward friendship nominations for a given actor. As we can

see in the following figure, the final model for school2 over estimates slightly for

one edge-wise shared partner and under estimates for the observed network for

two and three edge-wise shared partners.

Figure 5: Goodness-of-fit final model school2 with assortative mixing my grade
level
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Comparing these results to 200 simulations from the model with no predic-

tor variables for smoking assortative mixing by grade level and three terms to

represent network characteristics: density(edges), transitivity(GWESP), and reci-

procity(mutual). We can see that the model does a fair job representing the two

network statistics from the original network, edge-wise shared partners and out

degree . Additionally for the other two schools examined in this study, significant

improvements in the overall fit to the observed network data can be observed (Ap-

pendix).

Figure 6: Goodness-of-fit model without smoking assortative mixing by grade level
school2

Discussion

Now that we have a final parametric representation for tie formations in the

network, we can start to interpret our results. All 3 schools show similar values for

edges (-6.2 to -6.6), mutual (4.0 to 4.2) and GWESP (1.7 to 2.0). The model for

school2 can be interpreted by using log-odds of a friendship tie occurring, where

the log-odds estimate for edges is -6.2453 (Table 2). This estimate can be de-
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scribed as the log-odds of two arbitrary students (i, j) having a directed friendship

nomination between them when they don’t have any friends in common. This log-

odds estimate has a corresponding probability of 0.0019. The results for the edge

term (significantly negative) can be interpreted as saying the observed network is

sparse. Additional the positive term for mutual implies there is a high probabil-

ity of reciprocating friendship nominations and the positive term for GWESP says

there is a high probability for triangle closure in the network. The transitivity ef-

fect (GWESP) was generally found to be stronger in all 3 schools than terms for

describing smoking habits in predicting the existence of ties in the network.

As shown above, the final model with terms for smoking assortativity by grade

level does a much better job of capturing edge-wise shared partnerships and out

degree statistics in the observed network data. The positive coefficients for smok-

ing assortativity in the network show that adolescent smokers form friendships

more often than two dissimilar adolescents. For example the MLE of the log-odds

of a friendship nomination between a 11th grade light smoker and a 12th grade

smoker is 1.11859 with a corresponding probability of e1.11859

(1+e1.11859)
= 0.75. This is

the largest positive coefficient for smoking assortativity in the model. This indi-

cates that 11th grade light smokers have the strongest preference to nominate 12th

grade smokers than any other smoking adolescent pair in the network. From look-

ing at all the estimates for smoking assortativity, it is clear that homophily is not

uniform across all grade and smoking levels. For example, in school2 six out of

eight positive coefficients for smoking assortativity include 12th grade smokers in

the school, indicating that there is a strong tendency in this social network for 12th

grade smokers to either be nominated or nominate other smokers. The second

largest positive coefficients for smoking assortativity in school2 are 9th grade light

smokers nominating 12th grade light smokers with a log-odds estimate of 0.90952

and a corresponding probability of 0.7129.
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Chapter 5: Conclusion

Exponential random graph models offer a unique approach to modeling both

the network and nodal attributes of adolescent friendship networks. The models

allow flexible ways of modeling the dependency structure of the data with clear

explanatory results of coefficient estimates. Additionally, ERGMs provide a useful

technique for characterizing network assortativity and give insight into the detailed

assessment of intra-grade and inter-grade smoking relationships. The Add Health

data set allows for a reasonable goodness-of-fit to the observed school networks,

and an objective way to look at metrics such as probabilities of connections among

students of different grades and smoking behaviors. One should be aware that the

Add Health data has a fair amount of missing data due to absentee students (af-

fecting out-degree) and nominations to non-unique nodes (students not registered

in the same school). These are some of the constraints when working with the

limited adolescent friendship network data available. Based on the results from the

three final models there are some interesting smoking assortative mixing occur-

ring in the adolescent social networks. The assortative mixing is heterogeneous

across smoking habits and grade level, and each school’s characteristics are dif-

ferent; however, there are some interesting patterns that emerge across the three

schools, like the strong smoking homophily effect for 9th grade smokers nominating

smoking peers at all four grade levels examined. Though it has been shown that

these models can give adequate descriptions of the network structures examined,

there is no reason to assume that these specific model parameters will describe

other social networks and it should not be presumed to be a general framework for

further analysis.
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There are a number of future directions for this research. Further statistically

significant model parameters for additional schools with different smoking preva-

lence could be examined to assess similarities and differences among schools

in the Add Health data set. Since much of the dependency in social networks

can be observed at the dyadic and triadic network level, investigating other ways

of modeling adolescent social networks by taking a more localized approach to

parametrization of the dependency structures in the network through the use of

multilevel modeling techniques might offer stronger model representations of the

observed networks. Finally, another interesting future direction would be to explore

dynamic modeling to investigate if the effects of peer influence and smoking ho-

mophily in adolescent social networks can be separated by comparing smoking

assortative mixing in networks across multiple time steps.
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Figure 7: Goodness-of fit comparison school1

1st row: 200 simulated networks with all predictor variables.

2nd row: 200 simulated networks from first three predictor variables.
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Figure 8: Goodness-of-fit comparison school2

1st row: 200 simulated networks with all predictor variables.

2nd row: 200 simulated networks from first three predictor variables.
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Figure 9: Goodness-of-fit comparison school3

1st row: 200 simulated networks with all predictor variables.

2nd row: 200 simulated networks from first three predictor variables.
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Table 1: Significant terms final model school1

Estimate Std. Error p-value

edges -6.24949 0.05109 <0.0001

gwesp 1.71636 0.03817 <0.0001

mutual 4.14233 0.02211 <0.0001

9th light smoker<-9th light smoker -0.68657 0.15040 <0.0001

10th light smoker<-9th light smoker -0.36167 0.13863 0.00908

10th smoker<-9th light smoker -1.74732 0.29615 <0.0001

11th light smoker<-9th light smoker -2.25862 0.36813 <0.0001

9th light smoker<-9th smoker 0.46551 0.11408 <0.0001

11th light smoker<-9th smoker 0.42302 0.16154 0.00883

11th smoker<-9th smoker -1.16357 0.21811 <0.0001

12th smoker<-9th smoker 0.47075 0.15135 0.00187

9th light smoker<-10th light smoker 0.67523 0.11395 <0.0001

12th smoker<-10th light smoker 0.56347 0.13382 <0.0001

10th smoker<-10th smoker 0.45656 0.08932 <0.0001

11th light smoker<-10th smoker 0.55877 0.16631 0.00078

9th smoker<-11th light smoker -0.72608 0.21180 0.00061

10th light smoker<-11th light smoker -0.63264 0.22683 0.00529

12th light smoker<-11th light smoker -0.76556 0.23330 0.00103

9th light smoker<-11th smoker 0.44770 0.11550 0.00011

10th smoker<-11th smoker 0.51785 0.13664 0.00015

11th light smoker<-11th smoker 0.63327 0.13643 <0.0001

9th smoker<-12th light smoker 0.51027 0.14674 0.00051

11th light smoker<-12th light smoker 0.79414 0.17100 <0.0001

12th smoker<-12th light smoker 0.68685 0.15831 <0.0001

9th smoker<-12th smoker -1.19371 0.24383 <0.0001

10th smoker<-12th smoker -0.73044 0.27036 0.00690

11th smoker<-12th smoker -1.25979 0.23514 <0.0001

12th light smoker<-12th smoker -0.77377 0.22875 0.00072
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Table 2: Significant terms final model school2

Estimate Std. Error p-value

edges -6.24543 0.07121 <0.0001

gwesp 1.66499 0.05792 <0.0001

mutual 4.03862 0.02877 <0.0001

11th light smoker->12th smoker 1.11859 0.19232 <0.0001

9th light smoker->12th light smoker 0.90952 0.24911 0.000261

12th light smoker->12th light smoker 0.87371 0.15528 <0.0001

12th smoker->12th light smoker 0.76483 0.18838 <0.0001

9th light smoker->10th light smoker 0.70676 0.20574 0.000592

10th light smoker->10th light smoker 0.61774 0.14376 <0.0001

12th smoker->10th light smoker 0.57065 0.17657 0.00123

12th smoker->11th smoker 0.57043 0.15649 0.000267

10th light smoker->12th smoker -0.73109 0.25743 0.004512

12th smoker ->11th light smoker -0.95297 0.32592 0.003456

9th light smoker->12th smoker -1.03374 0.29683 0.000497

10th smoker->10th light smoker -1.05484 0.37125 0.004493

10th light smoker->11th smoker -1.33606 0.47025 0.004495
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Table 3: Significant terms final model school3

Estimate Std. Error p-value

edges -6.57566 0.05843 <0.0001

gwesp 1.97628 0.04459 <0.0001

mutual 4.22147 0.02019 <0.0001

9th light smoker<-11th light smoker 1.34554 0.19544 <0.0001

9th smoker<-9th light smoker 1.17585 0.16178 <0.0001

12th light smoker<-10th light smoker 0.88067 0.17193 <0.0001

12th light smoker<-9th light smoker 0.76373 0.23038 0.00092

9th smoker<-12th smoker 0.73466 0.24356 0.00256

10th smoker<-9th light smoker 0.64093 0.19575 0.00106

9th light smoker<-11th smoker 0.62293 0.20521 0.00240

10th light smoker<-9th light smoker 0.61997 0.18357 0.00073

11th smoker<-11th light smoker 0.58426 0.20869 0.00512

11th light smoker<-10th smoker 0.52847 0.18770 0.00487

10th light smoker<-10th smoker -0.54239 0.20164 0.00715

10th light smoker<-10th light smoker -0.60316 0.18421 0.00106

11th light smoker<-11th smoker -0.75593 0.27643 0.00625

10th light smoker<-12 smoker -0.77772 0.30174 0.00995

9th light smoker<-10th smoker -0.91676 0.30063 0.00229

11th smoker<-9th light smoker -0.97169 0.29105 0.00084

9th light smoker<-10th light smoker -1.23336 0.31734 0.00010

12th light smoker<-11th light smoker -1.34510 0.50741 0.00803

9th light smoker<-12th light smoker -1.69170 0.44111 0.00013

11th smoker<-9th smoker -1.92123 0.46745 <0.0001

11th light smoker<-9th light smoker -2.01683 0.46059 <0.0001
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Figure 10: MCMC density estimate school1
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Figure 11: MCMC density estimate school2
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Figure 12: MCMC density estimate school3
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