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ABSTRACT 

Urban areas have been found to affect the atmosphere locally through changes in 

emissions, thermal properties, the addition of moisture, and changes in airflow patterns. 

This study assessed the relationship between urban areas in central New Mexico and 

thunderstorm intensity and duration between 2001 and 2020. Weather radar data was 

used to derive thunderstorm events, as it is well-suited to fast-changing thunderstorm 

conditions. Regression analyses were used to determine the relationship between 

developed land cover and thunderstorm intensity and duration, while controlling for 

factors such as elevation, aspect, and near-surface temperatures. It was found that 

developed land cover was statistically significant and positively correlated with 

thunderstorm intensity and duration. Additionally, although developed land cover and the 

population of central New Mexico increased, it was found that maximum intensity, mean 

intensity, and duration did not increase between 2001 and 2020. Maximum intensity in 

the 95th percentile did increase during that time. 
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1.0 Introduction 

Thunderstorms are a powerful combination of moisture, instability, and vertical motion in 

the atmosphere. Lightning and flash flooding caused by thunderstorms are the primary 

causes of weather-related fatalities during the summer in New Mexico (Sullivan et al., 

2018), in addition to producing damaging winds and hail. Urbanization has the potential 

to change thunderstorms that occur in the vicinity (Bentley et al., 2010; Bentley et al., 

2012; Shem & Shepherd, 2009; Shepherd, 2006). As city populations grow worldwide 

(Seto & Shepherd, 2009), increasing numbers of people are further exposed to 

thunderstorm hazards such as “large hail, high winds, tornadoes, and lightning” (Sullivan 

et al., 2018, p. 15). New Mexico’s population has also seen growth in recent decades. 

Between 2001 and 2020, the population of the Albuquerque metropolitan area, New 

Mexico’s largest urban center, grew by about 160,000 people, an increase of 30% (US 

Census). During the same time period, the city of Rio Rancho, within the northwestern 

extent of the Albuquerque metropolitan area, grew from a population of 54,893 to 

104,257, an increase of 90% (US Census). 

 

Urban environments can make a number of changes to the local atmosphere. Paved 

surfaces and buildings have distinct thermal properties, emissions from vehicles and 

industry add particulates to the air, irrigated lawns and sources of exhaust emit moisture 

into the atmosphere, and buildings change the pattern of airflow over the surface (Oke et 

al., 2017). Clouds form when water vapor condenses onto particles, called cloud 

condensation nuclei (CCN). Urban aerosols and air pollution can potentially provide a 

source of CCN (Oke et al., 2017, p. 270). In addition, higher temperatures and surface 
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roughness over cities can provide uplift to create clouds (Oke et al., 2017). Precise 

measurements of the effects of these factors can be difficult as the resulting changes in 

precipitation may not occur directly over the urban area but move beyond the city with 

the prevailing winds (Shepherd, 2006; Shem & Shepherd, 2009). Changes in cloud cover 

and precipitation indicate changes in atmospheric properties. Thunderstorm activity can 

also be presumed to reflect these changes. 

 

Both thunderstorm activity and urban land cover relate to the temperature profile of the 

atmosphere, airflow across the surface, concentrations of air particulates, and 

atmospheric moisture. As such, it is noted that the output and characteristics of 

urbanization may correspond to the inputs for the initiation and life cycles of 

thunderstorms. As the population of central New Mexico has grown, these elements of 

urbanization have increased, while exposing more people to summer weather hazards. 

 

This study assessed the relationship between the growth of the Albuquerque metropolitan 

area, including Rio Rancho and other neighboring communities, between 2001 and 2020, 

and the intensity and duration of thunderstorms in central New Mexico during that time. 

Regression analyses controlling for factors known to affect thunderstorms, such as the 

elevation of the terrain and near-surface temperatures, were used to assess the impact of 

urbanization. Twenty years of data from ground-based weather radar were used to 

represent the intensity and duration of thunderstorms. These data were compared to 
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surface land cover to determine if and how changes in the urban environment have 

affected thunderstorm activity in central New Mexico. 
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2.0 Background 

A number of studies (Bentley et al., 2010; Bentley et al., 2012; Shem & Shepherd, 2009; 

Shepherd, 2006) have related changes in thunderstorms and precipitation to the urban 

heat island (UHI) effect and other results of urbanization, including increases in aerosols 

over and near cities. There are still debates about the extent to which these atmospheric 

changes may be directly linked to urban environments, or if other factors, including 

climate change, may be responsible. Much of the existing research (Bentley et al., 2010; 

Bentley et al., 2012; Shem & Shepherd, 2009; Shepherd, 2006) consists of case studies, 

as each city exists in a different topographic and climatic regime. Much of this work has 

focused on large cities such as Atlanta, Georgia (Shem & Shepherd, 2009; Haberlie et al., 

2015); Indianapolis, Indiana (Niyogi et al., 2011); and Phoenix, Arizona (Shepherd, 

2006). The current study presents analysis of a 20-year dataset of thunderstorm activity in 

central New Mexico, a location not previously studied. 

 

2.1 Properties of Thunderstorms 

In the late 1940s the Thunderstorm Project was conducted in Florida and Ohio to study 

“ordinary thunderstorms,” and resulted in the creation of an idealized model of these 

storms and their life cycle. Ordinary thunderstorms, also known as airmass 

thunderstorms, or single-cell thunderstorms, were found to have a three-stage life cycle: 

the cumulus stage, the mature stage, and the dissipating stage. The cumulus stage is 

defined primarily by updrafts throughout the cloud. Downdrafts, created by drag from 

falling rain drops, signify the mature stage. The dissipating stage consists mainly of 

downdrafts and can be identified by its anvil shape as the top of the thunderstorm reaches 
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the upper limits of the troposphere and spreads out horizontally (Wallace & Hobbs, 2006, 

pp. 350 – 351). This is an idealized model; “single cell thunderstorms are rare; almost all 

thunderstorms are multicell. A multicell cluster thunderstorm … consists of a cluster of 

cells at various stages of their life cycle. With an organized multicell cluster, as the first 

cell matures, it is carried downwind, and a new cell forms upwind to take its place” 

(FAA, 2016, pp. 19-2 – 19-3). 

 

Thunderstorms can form when the “ingredients” of conditional instability, atmospheric 

moisture, and a lifting mechanism are present. These atmospheric conditions, or their 

proxies, influenced the selection of regression variables used in this study. 

 

2.1.1 Conditional Instability 

There are a number of measures of change in air temperature with an increase in height 

above the ground. These include the environmental lapse rate, which is the actual change 

in air temperature with height, as measured by sensors carried aloft by weather balloons. 

 

Atmospheric instability can be caused or increased by several mechanisms. Increased 

instability is based on the environmental lapse rate becoming steeper, “that is, as the air 

temperature drops rapidly with increasing height. This circumstance may be brought on 

by either air aloft becoming colder or the surface air becoming warmer” (Ahrens, 2007, 

p. 145). The air aloft may become colder due to wind bringing in colder air. Air near the 

surface may become warmer due to “daytime solar heating of the surface,” “an influx of 
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warm air brought in the by the wind,” or “air moving over a warm surface” (Ahrens, 

2007, p. 146). 

 

Air that is unsaturated, meaning that its relative humidity is less than 100 percent, cools 

with an increase in height at a rate of 10°C/km. When saturated air, which has a relative 

humidity of 100 percent, is lifted and cooled, it releases latent heat as the moisture in the 

air condenses. This causes the lapse rate of saturated air to vary, but it is approximated to 

6°C/km. Unsaturated air, once it has been lifted sufficiently to cool to its dew point, will 

then become saturated and cool at the saturated lapse rate (Ahrens, 2007, p. 140). 

Conditional instability, one of the ingredients necessary for thunderstorm formation, 

“occurs whenever the environmental lapse rate is between the [saturated] adiabatic lapse 

rate and the dry adiabatic lapse rate” (Ahrens, 2007, p. 145). Further, conditional 

instability “depends on whether or not the rising air is saturated. When the rising parcel 

of air is unsaturated, the atmosphere is stable; when the parcel of air is saturated, the 

atmosphere is unstable. Conditional instability means that, if unsaturated air could be 

lifted to a level where is becomes saturated, instability would result” (Ahrens, 2007, p. 

145). The depth of the conditionally unstable layer, above the LCL, determines the 

vertical extent of any cumulus clouds that have formed, and whether they are able to 

develop into thunderstorms (Ahrens, 2007, pp. 151 – 152). 

 

Instability is described by several different metrics. One of the most common is 

convective available potential energy (CAPE), which describes the difference between 
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the measured air temperature and the temperature of a theoretical parcel of air rising and 

cooling at the saturated lapse rate (Wallace & Hobbs, 2006, p. 345). CAPE “is the 

maximum amount of energy available to an ascending air parcel for convection.… CAPE 

is directly related to the maximum potential vertical speed within an updraft” (FAA, 

2016, p. 12-10). 

 

2.1.2 Atmospheric Moisture 

Sufficient atmospheric moisture must be present to form clouds. Moisture, in the form of 

water vapor, can enter the atmosphere from the surface as evaporation from areas of open 

water or transpiration from vegetation (FAA, 2016, p. 3-2). 

 

Winds can bring atmospheric moisture into New Mexico as “low-level southeast flow 

ushers in moisture from the Gulf of Mexico” and “mid- and high-level moisture from the 

Pacific Ocean [is] most common with west to southwest flow aloft” (Sullivan et al., 2018, 

p. 14). However, “during the summer monsoon season, enhanced atmospheric moisture 

moves into the state from both the southwest and southeast” (Sullivan et al., 2018, p. 14) 

and “remnants of tropical storms, from both the Pacific Ocean and the Gulf of Mexico, 

can bring locally intense tropical rainfall. Such tropical events peak in September” 

(Sullivan et al., 2018, p. 15).  

 

In multicell thunderstorms, surface outflow from one storm may enhance the intake of 

moisture into next storm cell (Ahrens, 2007, p. 371). Once the thunderstorm reaches the 



8 
 

mature stage, “precipitation descends through the cloud and drags adjacent air downward, 

creating a strong downdraft alongside the updraft” (FAA, 2016, p. 19-2). This 

precipitation is measured by weather radar (discussed in detail in Section 2.2) and thus, 

thunderstorms are not well detected by radar during their initial formation (Vasquez, 

2015, p. 120; Fabry, 2015). Once the downdraft contacts the surface and spreads ahead of 

the storm as a gust front, “uplift … may trigger the formation of new [thunderstorm] 

cells, sometimes well ahead of the parent cell” (FAA, 2016, p. 19-2). 

 

2.1.3 Lifting Mechanisms 

Thunderstorms are a visible indicator of convective activity in the atmosphere, as 

“convection is the upward transfer of thermal energy by air motion” (Barry & Blanken, 

2016, p. 109). Convection can be initiated by heating of the surface, creating regions of 

lower air density, as well as when air “flow over the surface is perturbed by inertial 

forces due to surface irregularities forcing it to rise” (Barry & Blanken, 2016, p. 109). 

More specifically, lifting mechanisms that begin to move air upward can include cold 

fronts or surface lows, but most commonly in New Mexico lifting is caused by uneven 

heating of the earth’s surface or by wind moving over rising terrain (FAA, 2016; Bowen, 

1996). As previously mentioned, lifting may also be caused by outflow from nearby 

thunderstorms. 

 



9 
 

2.1.4 Spatial and Temporal Distribution of Thunderstorms 

The spatial and temporal distribution of thunderstorms in New Mexico, Arizona, Texas, 

and central Mexico has been studied a number of times and discussed relative to 

topographic features in each location (Sullivan et al., 2018; Bowen, 1996; Fosdick & 

Watson, 1995; Novo & Raga, 2013; Wagner et al., 2006; Maddox et al., 2002; Watson et 

al., 1994; and López et al., 1997). A 10-year study of rain gauge and other meteorological 

data collected near Los Alamos, New Mexico, in the Jemez Mountains northwest of 

Santa Fe, showed that the number of thunderstorm days peaked in July and August and 

about 35% of the annual rainfall occurred during those months (Bowen, 1996). 

Consistently, precipitation occurred at high elevations in early afternoons, and at lower 

elevations later in the afternoon and evening, with lower elevations receiving more 

precipitation overall (Bowen, 1996). 

 

Additionally, a study using cloud-to-ground lightning flash data archived by the Bureau 

of Land Management (BLM) was used to map the distribution of lightning flash densities 

and the number of thunderstorm days in New Mexico for June through September of 

1985 to 1990. The study found that “high flash densities correlate closely with the 

elevated terrain found in the mountainous areas…. An excellent example of the strong 

correspondence between high flash densities and elevated terrain was the high lightning 

activity … directly over the Jemez Mountains, which are comprised of isolated peaks 

rising over 11,000 feet (3,353 m)” (Fosdick & Watson, 1995, p. 19). The authors also 

found that lightning activity generally started in the mountainous areas of New Mexico, 

particularly the Sangre de Cristo Mountains immediately east and northeast of Santa Fe, 
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at midday, and ended in the plains southeast of the mountains at night (Fosdick & 

Watson, 1995). This movement was surmised to be due to “mid-level northwest flow 

[that] may be steering the mountain-generated thunderstorms southeastward across the 

Plains later in the day,” and that mid-level northwest flow corresponded with the 

maximum “frequency of thunderstorm genesis along the eastern slopes of the Sangre de 

Cristo Mountains,” where “leeside convergence” occurred (Fosdick & Watson, 1995, p. 

22). The authors concluded that “this suggests that terrain features, such as slope and 

aspect, play a more critical role in the development of deep convection than elevation 

alone” (Fosdick & Watson, 1995, p. 22). 

 

Mexico, Arizona, New Mexico, and other western states experience the North American 

monsoon (NAM) season in the summer months (Adams & Comrie, 1997). In New 

Mexico, the NAM occurs mainly in July and August, and during that time, most of New 

Mexico receives about half of its yearly rainfall, much of it coming from “high-intensity, 

short-duration, thunderstorm events” (Sullivan et al., 2018, p. 14). Sullivan et al. (2018) 

add, “Although thunderstorms become more numerous statewide during the monsoon 

months of July and August, the number of severe thunderstorms decreases from spring to 

summer” (p. 16). 

 

2.2 Weather Radar 

The NEXRAD (Next Generation Weather Radar) WSR-88D (Weather Surveillance 

Radar – 1988, Doppler) is a ground-based weather radar system that was developed 
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through the 1970s and 1980s. WSR-88D was first installed in Oklahoma City as a 

prototype in 1990, then deployed at 154 locations across the United States between 1993 

and 1997. WSR-88D remains the current system used in the United States (Vasquez, 

2015, p. 7) and there are 160 sites in operation as of 2022 (NOAA, 2022b). The data used 

in this study were generated by the Albuquerque, New Mexico, NEXRAD WSR-88D 

weather radar; its identifier is KABX. 

 

2.2.1 WSR-88D Fundamentals 

Each WSR-88D unit consists of a transmitter, antenna and pedestal, receiver, and signal 

processor. These four components comprise the radar data acquisition (RDA) unit. The 

RDA unit sends data to the radar product generator (RPG), which does additional data 

processing to create Level III products (not used in this study) (Vasquez, pp. 39 – 40, 

2015). 

 

The WSR-88D transmitter sends out very short pulses of electromagnetic energy in the 

microwave portion of the electromagnetic spectrum. The energy transmitted and received 

by a WSR-88D unit has a peak wavelength (λ) of 10cm and is classified as S-band. When 

the pulses of energy strike particles in the atmosphere, they are generally scattered in all 

directions. The energy that returns to the antenna, called backscatter, is interpreted and 

presented as analog data (Level I), by the RDA. The signal processer in the RDA 

performs additional data processing to convert the analog Level I data to digital Level II 
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data products. These products include reflectivity, mean radial velocity, and spectrum 

width (Vasquez, p. 39, 2015). This study used Level II Reflectivity data. 

 

If the diameter of a particle is one-fifth of the wavelength or less, Rayleigh scattering will 

occur, and the energy will be scattered in all directions, including back toward the 

antenna. If the particle is larger, Mie scattering will occur, and the energy will be 

forward-scattered, meaning that very little energy will return to the antenna. In the case of 

the WSR-88D, with a wavelength of 10cm, the threshold between Rayleigh and Mie 

scattering is a diameter of 2cm (Vasquez, p. 21, 2015). 

 

The electromagnetic pulse emitted by the transmitter lasts for 1.57 microseconds. 

Because the pulse is traveling at the speed of light, this means that the pulse of energy 

extends over a length of 470 meters (Vasquez, 2015, p. 25; NEXRAD Tech Info). 

Additionally, the energy transmitted has a beamwidth of 1° (NEXRAD Tech Info). 

Therefore, each pulse encompasses and samples a 3-dimensional volume of the 

atmosphere as it moves outward from the antenna. As it moves outward, this volume of 

space expands, meaning that with an angular beamwidth of “1 degree a pulse 100 miles 

from the radar will be two miles in height and width. As a result, features in a large 

volume like this that are much smaller than the beam width tend to show a weaker power 

return and might give false indications of intensity” (Vasquez, 2015, p. 26). Also, 

because even the lowest tilt angle of the antenna is greater than zero degrees, the volume 
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that is being sampled is much higher than the elevation of the antenna at far distances 

(Vasquez, 2015, p. 30). 

 

Between each pulse the antenna is in a listening period. While the pulse is only 1.57 

microseconds long, the listening period is 998 microseconds long. This means that the 

“total time the radar is actually transmitting a signal (when the duration of transmission 

of all pulses, each hour, are added together), is for a little over 7 seconds each hour. The 

remaining 59 minutes and 53 seconds are spent listening for any returned signals” (NWS, 

n.d.b). 

 

2.2.2 Volume Coverage Pattern 

The antenna is capable of rotating 360° and can tilt between 0.5° and 19.5° above 

horizontal (NEXRAD Tech Info). The antenna follows a predetermined scanning routine, 

called the volume coverage pattern (VCP). The VCP describes the number of pulses per 

second, the number of tilt angles used, and the time it takes to complete one scan. A 

number of VCPs exist, and each is designed to maximize the efficiency of the radar unit 

for particular meteorological conditions. For example, VCP 12 scans 14 tilt angles in 4.5 

minutes and is most suitable for rapidly changing convective (thunderstorm) conditions, 

while VCP 32 has only 5 tilt angles and completes its pattern in 10 minutes, so it is best 

suited for clear conditions (Vasquez, 2015, p. 145). Generally, the two lowest tilt angles 

are scanned twice to reduce ground clutter and other anomalies (OFCM, 2006, p. 2-2). 
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This study used the lowest tilt angle of 0.5° in order to analyze conditions closest to 

urban and non-urban land cover surfaces. 

 

2.2.3 Reflectivity 

Reflectivity is the radar product used in this study. Reflectivity is a “measure of the 

efficiency of a target in intercepting and returning radio energy. With hydrometeors, it is 

a function of the drop size distribution, number of particles per unit volume, physical 

state (i.e., ice or water), shape, and aspect” (OFCM, 2021, p. 18). The backscattered 

energy is initially calculated as equivalent reflectivity (Ze), which is determined by the 

following equation: 

 

𝑍𝑒 = (𝑃𝑟 𝑟2)/(𝐶𝑟𝐿𝑎), 

 

where Pr is power received, r is range, and La is a constant representing attenuation factor 

(Vasquez, 2015, p. 22). Cr is a “radar constant” for that particular hardware, and includes 

“transmitter power, antenna gain, beam width, pulse width, dielectric constant, and 

wavelength” (NWS, n.d.b). Range (r) must be accounted for because reflectivity is 

stronger for near targets and weaker for more distant targets. Once range is accounted for, 

the primary determinant of equivalent reflectivity is the power received, which is an 

expression of how much backscattered energy is received by the antenna. This equation 

assumes that Rayleigh scattering is occurring (Vasquez, 2015, pp. 22, 25). 
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Equivalent reflectivity is expressed in mm6m-3, which describes the number of drops and 

their size per cubic meter. This could range from 10mm6m-3 in light snow to 106mm6m-3 

in hail (Vasquez, 2015, p. 25). To make reflectivity values easier to use, the following 

equation applies a logarithmic scale to Ze to produce decibels of equivalent reflectivity 

(dBZ) (Vasquez, 2015, p. 25): 

 

dBZ = 10 log10 𝑍𝑒 

 

Decibels of equivalent reflectivity (dBZ) are “widely used in radar meteorology and may 

be described simply as intensity” (Vasquez, 2015, p. 25). 

 

Two products derived from radar data that are seen online or in the media are the Base 

Reflectivity product and Composite Reflectivity product. Base Reflectivity shows the 

intensity of radar energy received at the lowest tilt angle of 0.5°. Composite Reflectivity 

displays the “maximum echo intensity (reflectivity) from any elevation angle,” and “this 

product is used to reveal the highest reflectivity in all echoes”(NWS, n.d.a). The public 

can access either product at radar.weather.gov. Media such as television weather 

broadcasts usually use the Base Reflectivity product (NOAA, 2023). As previously 

mentioned, this study used data gathered at the 0.5° tilt angle, so that while the Base 
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Reflectivity product was not used, the dataset created for this work is similar to the Base 

Reflectivity product. 

 

2.2.4 WSR-88D Limitations 

Weather radar is well-suited for studying thunderstorms because of its high temporal 

resolution. Information about thunderstorms can also be gathered by weather satellites 

and lightning detection systems; however, while thunderstorms are visible in satellite 

imagery, their extent may be obscured by surrounding clouds, and their intensity is not 

directly measured. Lightning data also would not provide a direct measure of intensity. 

 

However, weather radar has some important limitations. It is restricted to line-of-sight, so 

high terrain obstructs radar energy. Also, weather radar may return data for non-

meteorological phenomena, known as clutter. Clutter may be generated by smoke from 

wildfires; large groups of birds, bats, or insects; and wind turbines at wind farms. Also, 

when the “radar dish is pointing into the rising or setting sun, a spike may be seen 

extending in this direction” (Vasquez, 2015, p. 50). 

 

Stationary objects on the ground, such as buildings, trees, and terrain, can be filtered out 

by the WSR-88D ground clutter algorithm. However, wind turbines remain a problem: 
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NEXRAD's clutter filter scheme only removes clutter that is stationary, such as 

buildings, trees, and terrain. Unfortunately, both precipitation and wind turbine 

blades are moving and the filter is not applied to them. Trying to filter out moving 

blades will inevitably alter how the radar sees real precipitation…. A single radar 

volume sample (gate) at 48 km (26nm) from the radar is approximately a square 

kilometer. Thus, for a typical wind farm, the radar may receive reflected energy 

from many turbines within that gate, each with multiple rotating blades. These 

numerous rotating blades appear similar to precipitation, which is also made up of 

numerous distributed moving targets…. There are fewer blades than raindrops 

within a sample volume, but the blades make up for their smaller numbers by 

reflecting significantly more energy back to the radar. However, the radar has no 

way to determine the number of targets it is sampling within a particular gate. 

Also, the reflected energy is constantly changing as the blades change their pitch 

and orientation relative to radar, with some blades moving towards the radar, 

some moving away, and some not appearing to move at all (perpendicular). This 

is analogous to the movement of precipitation within a volume sample. (NOAA, 

2022a) 

 

The portion of the atmosphere sampled by each tilt of the radar should also be 

considered. The volume samples the atmosphere at higher and higher altitudes above the 

elevation of the antenna as the pulse moves outward. Also, the size of the pulse volume 

increases with distance from the antenna. 
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2.3 Urban Effects on Local Climate 

In their 2016 book, Microclimate and Local Climate, Roger G. Barry and Peter D. 

Blanken define a local climate, or topoclimate, as existing on a scale of hundreds of 

meters to approximately 10km and encompassing an area less than 100km2. A 

topoclimate, or “topographical climate,” is one that is defined by valleys, slopes, and 

ridges, as well as urban areas. Their chapter on urban climates summarizes some of the 

foundational works of T. R. Oke on the causes of the urban heat island. The urban heat 

island (UHI) is defined as the “difference between air temperature in the urban and 

adjacent rural areas” (Barry & Blanken, 2016, p. 250), and it involves a number of 

factors, including changes in the radiation balance due to alterations in atmospheric 

composition and albedo; the production of heat by buildings and traffic; the reduction of 

heat diffusion due to surface roughness; and the increase in sensible heat due to the 

reduction of evapotranspiration (Barry & Blanken, 2016). 

 

Shem and Shepherd (2009) applied Weather Research and Forecast (WRF) numerical 

simulations to two case studies for Atlanta, GA. The simulation of the two storms, which 

occurred in August of 2002 and July of 1996, followed the actual events closely. The 

authors then changed the parameters of the model by removing the urban land cover that 

represented Atlanta, and replaced it with dryland, cropland, and pasture. When they ran 

the simulation without the urban land cover, they found that the thunderstorms started at 

the same time as before, showing that initiation of the storms was not affected; however, 

significantly more rainfall occurred in the urban model. The authors discussed several 

limitations, particularly the omission of urban aerosols. 
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Debbage and Shepherd (2015) studied the spatial contiguity and temperature intensity of 

the fifty most populous cities in the United States. Spatial contiguity in this regard 

describes the level of fragmentation of urban land cover. Earlier research on the “spatial 

configuration of cities” had come to conflicting conclusions that “both sprawling and 

high-density urban development can amplify urban heat island intensities” (Debbage & 

Shepherd, 2015, p. 181). Sprawling cities cover more land area and impair heat 

circulation in the city center, while higher-density cities experience heat storage due to 

urban canyon geometry. Using Ordinary Least Squares (OLS) regression modeling 

Debbage and Shepherd (2015) determined that the urban heat island is “generally 

magnified by more contiguous urban development, across a variety of urban intensity 

levels,” suggesting that “sprawling and high-density city configurations both have the 

propensity to increase UHI intensities if the urban development is highly contiguous” 

(Debbage & Shepherd, 2015, p. 190). Additionally, they found no significant correlation 

between UHI intensity and population. 

 

A study using 108-year-old precipitation records, observations from a global climate 

observing system, and satellite data analyzed changes in precipitation in two arid cities: 

Phoenix, AZ, and Riyadh, Saudi Arabia (Shepherd, 2006). The study found that during 

the monsoon season of July through September, the suburbs of Phoenix had a 12 – 14% 

increase in precipitation between the “pre-urban” time period (1895 – 1949) and “post-

urban” time period (1949 on) even though the area was experiencing a severe drought. 

The author hypothesizes that this is due to “urban-topographic interactions and possibly 
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irrigation moisture” (Shepherd 2006, p. 607). The results for Riyadh are less clear. There 

was an increase in precipitation near the city, but there was also an increase 50 to 100km 

north of the city as well. The author calls for more research to investigate the relationship 

between urban land use and precipitation, especially the role of aerosols (Shepherd, 

2006). 

 

Niyogi et al. (2011) studied the interaction of the Indianapolis urban region with 

thunderstorms during the summer months of May through August, from 2000 to 2009. 

Using radar data, the authors studied the occurrences of 91 thunderstorms as they passed 

the urban environment and moved over rural areas nearby. The “observed base-

reflectivity radar plots were subjectively analyzed for storm-structure changes. Storm-

composition change was noted when the change occurred (initiated, split, intensified, or 

dissipated) in and around the urban or rural region” (Niyogi et al., 2011, p. 1131). The 

researchers found that “more than 60% of storms changed structure over the Indianapolis 

area as compared with only 25% over then rural regions” (Niyogi et al., 2011, p. 1129). 

Additionally, simulations of a typical thunderstorm event were conducted with and 

without the urban land cover and it was found that the storm could not be reproduced 

without the urban land cover. 

 

Bentley et al. (2010) created a 10-year “radar climatology” for the Atlanta, GA, region, 

using WSR-88D radar data for June through August of 1997 to 2006, with a 5-minute 

temporal resolution. They found that a large number of high-reflectivity storm events 
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occurred near the downtown area, confirming their hypothesis that the UHI of Atlanta 

affects thunderstorm development. However, the research does not seem to consider 

conditions outside of the city area. Potentially there are an equal number of storms in 

rural areas of Georgia as well. In a slightly more recent study, Ashley et al. (2012) used 

the same concept of “radar climatologies” for major and medium-sized cities in the 

Southeastern United States. They found that urban areas increased thunderstorm 

frequency and intensity, and that these changes corresponded to the size of the urban 

footprint. This study also attempted to overcome past critiques of similar studies by 

including nearby control regions, in addition to large and medium-sized cities.  

 

Haberlie et al. (2015) further expanded upon the study of thunderstorm activity near 

Atlanta. The authors used 17 years of weather radar data, for the months of May through 

September, from 1997 to 2013, to extract isolated convective initiation (ICI) events. They 

defined ICI events through their selection criteria, analyzing the “evolution of each cell 

through time, requiring that qualifying events must meet or exceed a 40dBZ threshold, 

their location must be greater than 30km from existing convection, and the initial cluster 

of convectively active pixels must develop into a storm that lasts at least 30 min.” 

(Haberlie et al., 2015, p. 666). The authors created two study areas, one centered over the 

Atlanta urban area and one 150km west of the city as a rural control region. Haberlie et 

al. (2015)’s results were similar to other studies. ICI events occurred more often over and 

downwind of Atlanta than over nearby rural areas. Additionally, more ICI events 

occurred on weekdays than weekends, suggesting that aerosols linked to work commute 

schedules may also play a role. Aerosols have been found to exist in higher quantities on 
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weekdays than weekends due to fluctuations in commuting traffic. Haberlie et al. (2015) 

compared the numbers of ICI events on weekdays to weekends and found that, in the 

city, there were significantly more ICI occurrences during the week, especially Tuesdays 

and Wednesdays, than on the weekends. Rural areas showed very little difference in the 

frequency of ICI events based on day of the week. 

 

Haberlie et al. (2015) also collected the prevailing wind at 700 hPa (pressure altitude 

approximating 10,000 feet above sea level) at the beginning of each ICI event. They 

divided both the Atlanta area and the rural control area into two halves, upwind and 

downwind. Then they divided the ICI events that occurred into upwind and downwind 

groups. There was no significant difference in the groups for the rural control area, but 

there were significantly more ICI events downwind of the Atlanta area. Finally, the 

authors caution that complex terrain can influence thunderstorm activity in ways that may 

complicate studies of urban effects on convective activity (Haberlie et al., 2015). 

 

Lazzarini et al. (2015) addressed the effect of vegetation in urban areas located in arid 

and semiarid regions. Compared to more temperate regions, cities in arid regions may 

have a greater amount of vegetation in urban areas than in undeveloped areas, potentially 

creating a cooling, “oasis effect” (Lazzarini et al., 2015, p. 9981). Lazzarini et al. (2015) 

found that in hot desert cities, “downtown areas [are] on average cooler than suburbs 

during the daytime (urban cool island) and warmer at night (classical UHI)” (p. 9980), 

due to “the abundance of irrigated vegetation in [hot desert cities], which creates large 
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areas where surface temperatures are mitigated through evaporative cooling,” as well as 

“shadowing and plant transpiration” (p. 9987). Additionally, moisture that would not 

normally be present in dry regions is added to the atmosphere by vehicle exhaust, air 

conditioners, swimming pools, and irrigation of lawns and agriculture (Lazzarini et al., 

2015; Oke et al., 2017). 

 

An understanding of the genesis of thunderstorms and the development of a local “radar 

climatology” (Myers, 1964) should allow for new insights into the characteristics of 

thunderstorms in the Albuquerque urban area over the last twenty years. The 

Albuquerque metropolitan area differs from other cities used in studies of urban climate 

effects on local precipitation and thunderstorms, due to its smaller population and 

differing climate and topography. Atlanta, GA, has a population of nearly 6 million 

people, and is located in flat terrain. Phoenix, AZ, has a population of 4.8 million people, 

and is situated in a hotter, drier climate where irrigated lawns and agriculture provide 

stark contrast to the natural environment. A study of Albuquerque’s unique climate, 

topography, and city morphology adds to knowledge of thunderstorms and urban effects 

on local climate. 
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3.0 Methods 

To evaluate the effects of urbanization on thunderstorms in central New Mexico, 

regression analyses were used to compare thunderstorm intensity and duration to 

measures of urban land cover and relevant control variables (e.g., temperature, elevation, 

surface aspect, and other land cover characteristics). The following subsections provide 

details about the study area, the data used, and the analytical methods applied. 

 

3.1 Study Area 

The study area contains much of New Mexico’s Middle Rio Grande region, which 

“includes the urban environments of Albuquerque, Santa Fe, as well as surrounding small 

towns, and rural agricultural communities” (Benson et al., 2014, p. 196). The spatial 

extent of the study area is based on the limitations of Albuquerque NEXRAD WSR-88D 

weather radar station (KABX). As noted earlier, weather radar is subject to a number of 

limitations, including line-of-sight. Due to the mountainous terrain of central New 

Mexico, radar coverage does not extend to its full range in all directions. Figure 1 depicts 

the study area, KABX, and urban areas in relation to terrain. 
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Figure 1. Study area, terrain, urban areas, and the KABX weather radar antenna relative to the state of New 

Mexico. 
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3.1.1 Topography and Climate of the Study Area 

The KABX station is centrally located in New Mexico at 35.14972° N, 106.82333° W, at 

an elevation of 1,789m (5,870 feet) above sea level. It is located on a mesa immediately 

west of the city of Albuquerque. 

 

The elevation of the study area varies from 1,363m (4,472 feet) to 3,943m (12,936 feet) 

above sea level. The Rio Grande, and adjacent farmland and Bosque (i.e., riparian zone), 

run north-south through the study area. There are several areas of mountainous terrain to 

note as well. Mount Taylor is approximately 70km west of KABX, and the Sandia and 

Manzano Mountains are immediately east and southeast of the city of Albuquerque. The 

southern extent of the Jemez Mountains begins approximately 55km north of KABX, and 

the Sangre de Cristo Mountains are immediately east and northeast of Santa Fe. 

 

The elevation of the study area varies by more than 2,600m (8,000 feet), and thus the 

region contains a number of different climate classifications. Within the study area, there 

are regions classified as arid (BSk and BWk); warm temperate (Cfb) in the mountainous 

areas; and boreal (Dfb and Dfc) in the high mountain regions. Albuquerque is located in a 

BSk (arid) region with a warm temperate Cfb region in the Sandia Mountains nearby to 

the east. Santa Fe is also located in a warm temperate region in close proximity to boreal 

Dfb and Dfc areas in the mountains to the east and northeast (Kottek et al., 2006). Figure 

2 shows the monthly average near-surface temperatures in and around the study area for 
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June 2018, which was selected as an illustrative example. Figure 3 depicts the land cover 

in and around the study area as of 2019. 

 

This study focused on the months of May through September, from 2001 to 2020. These 

five months were selected for a number of reasons. For the most part, these months are 

free of “the large-scale processes that drive [synoptic-scale cyclones that] may mask any 

urban effects,” and it has been found that “urban influences are greatest during periods of 

weather dominated by convection, especially during the warm season when heating of the 

Earth’s surface generates uplift” (Oke et al., 2015, p. 282). The North American monsoon 

occurs in New Mexico in July and August (Sullivan et al., 2018, p. 16), and this study 

period is meant to capture thunderstorm activity before, during, and after that time. Oke 

et al. (2015, p. 282), however, warn that both monsoon flow and complex topography 

may make it difficult to discern urban influences on thunderstorms. 
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Figure 2. Monthly (a.) maximum and (b.) minimum near-surface temperature in and around the study area 

for June 2018, with urban areas outlined in grey. 
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Figure 3. Land cover in and around the study area, as shown in the 2019 NLCD dataset. See Figure 4 for 

the classification legend and Table 5 Section 3.2.2 for descriptions of each class. 
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Figure 4. NLCD legend. Source: 

https://www.mrlc.gov/sites/default/files/NLCD_Colour_Classification_Update.jpg. 

 

Drought may be an additional influence on the occurrence and severity of thunderstorms 

in New Mexico. The southwestern United States, which includes most of New Mexico, 

experiences periodic droughts. Shortly before the time period for this study began, the 

region experienced its “wettest 19-year period (1980 – 1998) in at least 1200 years” 

(Williams et al., 2020). However, during most of the study period, from 2000 to 2018, 

drought conditions in the region were “the second driest 19-year period since 800 CE, 

exceeded only by a late-1500s megadrought” (Williams et al., 2020). 
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Figure 5 shows drought severity between 2001 and 2020, measured weekly, for New 

Mexico and Bernalillo County, which is located centrally within the study area and 

contains most of the Albuquerque metropolitan area. The legend, contained in Table 1, 

details the impacts of each level of severity, specific to New Mexico. There are a few 

distinct differences between the conditions averaged over the state and those within 

Bernalillo County. Specifically, in Bernalillo County the drought was less severe at the 

end of 2003 and into 2004, and through 2011 and 2018. The drought was more 

pronounced in Bernalillo County than in the state as a whole during the middle of 2013. 

A more detailed look at the relationship between drought and thunderstorm activity 

would require further research, beyond the scope of this study. 

 

 

 

 

 

 

 

 

 

 



32 
 

a. 

 

b. 

 
Figure 5. (a.) Drought conditions for the state of New Mexico, 2001 – 2020, measured weekly. Data current 

as of August 9, 2022. (https://www.drought.gov/states/new-mexico). (b.) Drought conditions for Bernalillo 

County, 2001 – 2020, measured weekly. Data current as of November 28, 2022. 

(https://www.drought.gov/states/New-Mexico/county/Bernalillo). See legend in Table 1, which is specific 

to the state of New Mexico. 

 

 

 

 

https://www.drought.gov/states/new-mexico
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Table 1. Drought conditions legend. The categories of historically observed impacts are specific to New 

Mexico. 

Category Historically observed impacts 

D0 
Soil moisture is low 

Fire danger increases 

D1 
Livestock need supplemental feed and water 

Burn bans and firework restrictions begin 

D2 

Pasture yield is limited; producers sell livestock 

Irrigated crops are stunted; dryland crops are brown 

Dust storms occur 

Abundance and magnitude of wildfires may increase; fuel mitigation 

practices are in effect 

Wildlife feeding patterns change 

Well water decreases 

D3 

Livestock are suffering; producers are selling herds; feed costs are high; 

emergency CRP grazing is authorized; crop yields are low 

Fire danger is extreme 

Irrigation allotments decrease 

Vegetation and native trees are dying 

D4 

Federal lands begin to close for fire precautions; burn bans increase 

Bears encroach on developed areas; migratory birds change patterns 

No surface water is left for agriculture, farmers use private wells 

Rio Grande and other large rivers are dry 
Source: https://droughtmonitor.unl.edu/DmData/StateImpacts/ImpactExamples.aspx 

 

 

 

 

 

https://droughtmonitor.unl.edu/DmData/StateImpacts/ImpactExamples.aspx
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3.1.2 Population Change in the Study Area 

Based on US Census estimates, the population of the Albuquerque metropolitan area has 

grown from 532,100 people in 2001 to 692,387 people in 2020 (30% increase). This total 

includes Albuquerque, Rio Rancho, Corrales, the town of Bernalillo, and Los Ranchos de 

Albuquerque. 

 

Albuquerque itself grew from 457,627 in 2001 to 564,648 in 2020 (23% increase). 

Especially of note, Rio Rancho grew from a population of 54,893 in 2001 to 104,257 in 

2020, a 90% increase, making it the second largest urban area in New Mexico by the end 

of the study period. Additionally, Santa Fe grew from 65,699 people in 2001 to 87,684 

people in 2020 (33% increase). Population changes within the study area are detailed in 

Table 2. 
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Table 2. Population and percent population change between 2001 and 2020 in urban centers within the 

study area (does not include sparsely populated areas). Source: US Census. 

Name 
2001 

Population 

2020 

Population 

Percent change from 

2001 to 2020 

Albuquerque metropolitan area 

Albuquerque 457,627 564,648 23% 

Rio Rancho 54,893 104,257 90% 

Corrales 7,277 8,517 17% 

Town of Bernalillo 6,893 9,084 32% 

Los Ranchos de Albuquerque 5,410 5,881 9% 

Subtotal 532,100 692,387 30% 

 

Population centers outside of Albuquerque metropolitan area 

North of 

Albuquerque 

Santa Fe 65,699 87,684 33% 

Espanola 10,159 10,514 3% 

South of 
Albuquerque 

Los Lunas 10,401 17,370 67% 

Bosque 
Farms 

3,946 4,053 3% 

Peralta 3,485 3,380 -3% 

Belen 7,252 7,386 2% 

Socorro 8,871 8,549 -4% 

West of 

Albuquerque 

Grants and 

Milan 
11,343 11,672 3% 

Subtotal 121,156 150,608 24% 

 

Total 653,256 842,995 29% 
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3.1.3 Land Cover Change in the Study Area 

In addition to an increasing population, changes in land cover have also occurred within 

the study area. The Multi-Resolution Land Characteristics (MRLC) Consortium releases 

the National Land Cover Database (NLCD) 30m raster dataset every two to three years 

(this dataset is discussed in more detail in Section 3.2.2). The 2001 dataset corresponds 

with the beginning of the study period and the 2019 dataset corresponds most closely 

with the end of the study period. See Table 5 in Section 3.2.2 for detailed descriptions of 

each land cover class. 

 

The following noteworthy changes occurred within the study area between the 2001 and 

2019 datasets, and are summarized in Table 3. All developed land cover classes 

combined increased by 13.94%, high-intensity developed land cover increased by 

46.94%, and medium-intensity development increased by 38.56%. Both evergreen and 

deciduous forest land cover decreased, especially in mountainous regions where wildfires 

had occurred, and were typically replaced by grassland/herbaceous or shrub/scrub 

vegetation classes. Especially of note is the increase in developed land cover on the 

northwest periphery of the Albuquerque metropolitan area, as well as the infill in the 

center of the city, as seen in Figure 6 and Figure 7. 
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Figure 6. Developed land cover, open water, agricultural land cover, and natural land cover in the 

Albuquerque metropolitan area, in (a.) 2001 and (b.) 2019. 
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Figure 7. Changes in land cover between 2001 and 2019 in the Albuquerque metropolitan area are shown. 

Changes from undeveloped land cover to developed land cover are shown in red. Changes from one class 

of developed land cover to a higher level of development are shown in yellow. 
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Table 3. Area of each land cover class within the study area, percent of the study area covered by each land 

cover class, and percent land cover change, based on the 2019 NLCD product. See Table 5 for descriptions 

of each land cover class. 

Land Cover Class  
(NLCD classification 

code) 

Area of 
land cover 
(ha) 2001 

Percent of 
total 

hectares 
2001 

Area of 
land cover 
(ha) 2019 

Percent of 
total 

hectares 
2019 

Percent 
change 

from 2001 
to 2019 

Note: the study area is 5,508,056 hectares (ha). 

Developed, high 
intensity (24) 

4,564 0.08% 6,706 0.12% 46.94% 

Developed, medium 
intensity (23) 

18,642 0.34% 25,830 0.47% 38.56% 

Developed, low 
intensity (22) 

29,568 0.54% 32,338 0.59% 9.37% 

Developed, open space 
(21) 

63,833 1.16% 67,987 1.23% 6.51% 

Medium, low, and open 
space developed classes 

(21, 22, 23) 
112,042 2.03% 126,156 2.29% 12.60% 

All developed land 
cover classes  

(21, 22, 23, 24) 
116,606 2.12% 132,862 2.41% 13.94% 

 

Barren land 
(rock/sand/clay) (31) 

8,299 0.15% 8,893 0.16% 7.15% 

 

Deciduous forest (41) 41,898 0.76% 38,974 0.71% -6.98% 

Evergreen forest (42) 1,436,596 26.08% 1,367,753 24.83% -4.79% 

Mixed forest (43) 18,544 0.34% 18,929 0.34% 2.08% 

All forest land cover 
classes (41, 42, 43) 

1,497,038 27.18% 1,425,657 25.88% -4.77% 

 

Grassland/herbaceous 
(71) 

542,084 9.84% 570,914 10.37% 5.32% 

Shrub/scrub (52) 3,266,480 59.30% 3,289,202 59.72% 0.70% 

 

Pasture / hay (81) 27,743 0.50% 25,006 0.45% -9.87% 

Cultivated crops (82) 14,334 0.26% 19,244 0.35% 34.25% 
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Table 3 (cont.) 

Land Cover Class  
(NLCD classification 

code) 

Area of 
land cover 
(ha) 2001 

Percent of 
total 

hectares 
2001 

Area of 
land cover 
(ha) 2019 

Percent of 
total 

hectares 
2019 

Percent 
change 

from 2001 
to 2019 

Woody wetlands (90) 12,844 0.23% 14,146 0.26% 10.14% 

Emergent herbaceous 
wetlands (95) 

16,748 0.30% 17,557 0.32% 4.83% 

Open water (11) 5,881 0.11% 4,577 0.08% -22.17% 

 

3.2 Data 

This study used two primary types of data: (1) thunderstorm activity represented by a 

time series of weather radar data and (2) the National Land Cover Database (NLCD) 

dataset. Thunderstorm activity was sampled by NEXRAD WSR-88D weather radar and 

used to derive a “radar climatology” (Bentley et al., 2010; Myers, 1964) of the Middle 

Rio Grande. Weather radar data were used to determine what effects developed urban 

land cover has had on thunderstorm activity in the study area. Table 4 summarizes the 

data sources used in the study and the variables derived from those data. 

 

Weather radar data were clustered by time and location into polygons representing 

thunderstorm events, which were used as the unit of analysis. These polygons were then 

used to collect land cover data within their boundaries, as well as other surface and near-

surface data including temperature, elevation, and aspect. 
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Table 4. Data formats and sources. 

Primary Data Format Use Source Derived Variables 

NEXRAD WSR-

88D weather 

radar data 

Vector 

shapefiles 

Represent 

thunderstorm 

events with 

≥40dBZ radar 

reflectivity 

NOAA’s Weather and 

Climate Toolkit (WCT) 

https://www.ncdc.noaa

.gov/wct/ 

Maximum intensity of 

thunderstorm events 

Mean intensity of 

thunderstorm events 

Duration of 

thunderstorm events 

National Land 

Cover Database 

(NLCD), 2019 

release 

Raster 

Land cover 

typology for 

2001 through 

2020 

Multi-Resolution Land 

Characteristics (MRLC) 

Consortium  

https://www.mrlc.gov/

data 

Land cover typology 

Secondary 

Data 
Format Use Source Derived Variables 

PRISM Monthly 

Temperature 
Raster 

Measure of the 

condition of the 

atmosphere near 

the surface 

PRISM Climate Group, 

Oregon State 

University, 

http://prism.oregonsta

te.edu  

Mean monthly 

temperature  

Maximum monthly 

temperature  

Minimum monthly 

temperature  

Digital 

Elevation 

Model (DEM) 

Raster 

Measure of 

elevation, slope, 

and aspect  

RGIS 

https://rgis.unm.edu/ 

Elevation 

Slope 

Aspect 

Auxiliary Data Format Use Source Derived Variables 

Metropolitan 

Statistical Areas 

(MSAs) 

Vector 

shapefiles 

Define 

boundaries of 

urban areas 

US Census 

https://www.census.go

v/cgi-

bin/geo/shapefiles/ind

ex.php   

For user reference 
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3.2.1 NEXRAD Weather Radar Data 

The study area boundary was created based on the area sampled by the Albuquerque 

NEXRAD WSR-88D weather radar station. No GIS-friendly layer existed which 

depicted that boundary; however, an ungeoreferenced image showing NEXRAD radar 

coverage was available from the National Oceanic and Atmospheric Administration 

(NOAA), National Weather Service (NWS) Radar Operations Center (ROC) (NOAA, 

2022c). This coverage image was georeferenced and the outline of the service area for 

KABX was digitized to delineate the extent of the study area as seen in Figure 1. The 

digitized study area was created using the NAD 1983 UTM Zone 13N (EPSG: 26913) 

spatial reference system. 

 

NEXRAD weather radar data, like many other types of earth science data, is available 

online and for free to the public. NEXRAD data can be downloaded manually, through 

the Weather and Climate Toolkit (WCT; https://www.ncdc.noaa.gov/wct/), or by creating 

a script that will access, download, and convert the format of the data. The WCT is free 

to download from NOAA’s National Centers for Environmental Information (NCEI) and 

it includes a graphical user interface that allows users to select and download the data 

they require. The Toolkit’s limitation, in regard to this study, is that data can be 

downloaded for only one day at a time and downloading subsequent days’ data must be 

started manually. 
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An example Python script for downloading and converting radar data to shapefiles was 

found in the supplementary materials in Ansari et al. (2018). The script allowed for data 

to be downloaded one month at a time and was modified to select data for the KABX 

radar station. The final script can be found in Appendix B. The Python script uses the 

Weather and Climate Toolkit to convert the data from its original binary format to 

polygon shapefiles. The call function in the script uses two files from the WCT, wct-

export.bat, which is a Windows Batch file written in Java, and wctBatchConfig.xml, 

which is an xml file containing user settings. The XML file was modified to download 

only polygons with a value of 40 dBZ or greater (see Haberlie et al. 2015). One critical 

step was found to be that the memory space for the Java virtual machine had to be 

lowered in the wct-export.bat file. The script uses Python 3 and was run using Spyder, via 

Anaconda3. 

 

All available timestamps for May through September, from 2001 through 2020, were 

downloaded as shapefiles. Each shapefile typically contained dozens of polygons, one for 

each gate that returned data with an intensity value of 40 dBZ or higher. Each polygon 

contained an intensity value, timestamp, radial angle, beginning and ending distance from 

the radar antenna, height above the ground, and height above the antenna.  

 

These shapefiles were reprojected into NAD 1983 UTM Zone 13N (EPSG: 26913), 

clipped to the study area, and merged into monthly aggregates, which retained intensity 

values and timestamps for each polygon within the shapefiles. Centroid points were then 



44 
 

created for each polygon in the monthly shapefiles. The centroid point shapefiles were 

then used for further processing, as described in section 4.1. All GIS preprocessing was 

done in ArcMap 10.6 and ArcGIS Pro using Python scripts and the arcpy site package. 

 

3.2.1.1 NEXRAD Weather Radar Data Limitations and Considerations 

As previously mentioned, weather radar is limited by line-of-sight, and as such cannot 

return data that are obscured by high terrain. There are other limitations to consider as 

well. By using only one tilt angle, only one “slice” of the atmosphere was sampled. This 

“slice” rises at a 0.5° angle, meaning that data collected closest to the radar station is 11m 

(approximately 36 feet) above the radar antenna, while the pulse of energy sampling the 

atmosphere over Santa Fe, 95km (59 miles) away, is 1,400m (4,593 feet) above the 

elevation of the radar antenna, and continues rising. Additionally, this “slice” expands as 

it moves away from the radar station, therefore sampling larger portions of the 

atmosphere as the pulse moves away from the antenna. 

 

NEXRAD data is collected at regular intervals called gates, and along radials, which are 

lines extending out from the radar antenna at 0.003 degree intervals. Through the year 

2007, the gates were 1,000m apart, and starting in 2008, they were 250m apart (Figure 8). 

So, while actual thunderstorm activity often has fuzzy boundaries, the data are collected 

at regularly spaced intervals. These locations are called bins, and they are “the most 

granular level of digital radar output” (Vasquez, 2015, p. 27). 
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Figure 8. June 2018 points. Detailed look at regularly aligned points (polygon centroids) corresponding 

with gates and radials. Each gate is 250m apart and each radial is 0.003 degrees apart. Before 2008, the 

gates were 1,000m apart. 
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3.2.2 National Land Cover Database 

The Multi-Resolution Land Characteristics (MRLC) Consortium releases the National 

Land Cover Database (NLCD) raster dataset every two to three years. NLCD land cover 

data are derived from Landsat Analysis Ready Data (ARD), as well as “ingesting partner 

data from 10 different Government partners and Federal agencies that are used to 

improve accuracy and ensure a cohesive product across these partners” (Dewitz, 2020). 

Land cover is classified using the Anderson Level II classification system, and the 

datasets have a spatial resolution of 30m. Descriptions of each class are given in Table 5. 

The most recent release, from 2019, includes raster datasets for the years 2001, 2004, 

2006, 2008, 2011, 2013, 2016, and 2019.  

 

Most changes from one raster dataset to the following one are small. However, land cover 

data for the years in between datasets cannot be interpolated because significant, 

localized changes can occur. For example, within a few days or months wildfires caused 

significant land cover changes across parts of the study area, primarily in the mountains 

north and southeast of Albuquerque. 

 

As shown in Table 5, NLCD land cover classifications divide developed land cover into 

four classes based on the percent of impervious surface. The NLCD define “urban 

impervious surfaces as a percentage of developed surface over every 30-meter pixel” 

(MRLC, 2021). Additionally, Table 5 describes the most common types of built 

structures and surfaces found in each developed land cover class. In arid and semi-arid 
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climates, Developed Open Space land cover, which consists of less than 20% impervious 

surfaces, and is mainly comprised of irrigated vegetation, such as lawns, parks, and golf 

courses, may provide a cooling effect by adding more moisture to the atmosphere that 

would not have been present without human influence (Lazzarini et al., 2015). This 

moisture may also potentially contribute to the moisture needed to form clouds and 

thunderstorms. 
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Table 5. National Land Cover Database legend and description of classes. 

Class Value Classification Description 

Water 

 
11 

Open Water – areas of open water, generally with less than 
25% cover of vegetation or soil. 

Developed 

 

21 

Developed, Open Space – areas with a mixture of some 
constructed materials, but mostly vegetation in the form of 
lawn grasses. Impervious surfaces account for less than 20% of 
the total cover. These areas most commonly include large-lot 
single-family housing units, parks, golf courses, and vegetation 
planted in developed settings for recreation, erosion control, 
or aesthetic purposes. 

22 

Developed, Low Intensity – areas with a mixture of 
constructed materials and vegetation. Impervious surfaces 
account for 20% to 49% of total cover. These areas most 
commonly include single-family housing units. 

23 

Developed, Medium Intensity – areas with a mixture of 
constructed materials and vegetation. Impervious surfaces 
account for 50% to 79% of total cover. These areas most 
commonly include single-family housing units. 

24 

Developed, High Intensity – highly developed areas where 
people reside or work in high numbers. Examples include 
apartment complexes, row houses, and commercial / 
industrial. Impervious surfaces account for 80% to 100% of the 
total cover. 

Barren 

 

31 

Barren Land (Rock / Sand / Clay) – areas of bedrock, desert 
pavement, scarps, talus, slides, volcanic material, glacial 
debris, sand dunes, strip mines, gravel pits, and other 
accumulations of earthen material. Generally, vegetation 
accounts for less than 15% of total cover. 

Forest 

 

41 

Deciduous Forest – areas dominated by trees generally 
greater than 5 meters tall, and greater than 20% of total 
vegetation cover. More than 75% of the tree species shed 
foliage simultaneously in response to seasonal change. 

42 

Evergreen Forest – areas dominated by trees generally greater 
than 5 meters tall, and greater than 20% of total vegetation 
cover. More than 75% of the tree species maintain their leaves 
all year. Canopy is never without green foliage. 

43 

Mixed Forest – areas dominated by trees generally greater 
than 5 meters tall, and greater than 20% of total vegetation 
cover. Neither deciduous nor evergreen species are greater 
than 75% of total tree cover. 

 



49 
 

Table 5 (cont.) 

Class Value Classification Description 

Shrubland 

 

52 

Shrub / Scrub – areas dominated by shrubs; less than 5 meters 
tall with shrub canopy typically greater than 20% of total 
vegetation. This class includes true shrubs, young trees in an 
early successional stage or trees stunted from environmental 
conditions. 

Herbaceous 

 

71 

Grassland / Herbaceous – areas dominated by gramanoid or 
herbaceous vegetation, generally greater than 80% of total 
vegetation. These areas are not subject to intensive 
management such as tilling, but can be utilized for grazing. 

Planted / Cultivated 

 

81 

Pasture / Hay – areas of grasses, legumes, or grass-legume 
mixtures planted for livestock grazing or the production of 
seed or hay crops, typically on a perennial cycle. Pasture / hay 
vegetation accounts for greater than 20% of total vegetation. 

82 

Cultivated Crops – areas used for the production of annual 
crops, such as corn, soybeans, vegetables, tobacco, and 
cotton, and also perennial woody crops such as orchards and 
vineyards. Crop vegetation accounts for greater than 20% of 
total vegetation. This class also includes all land being actively 
tilled. 

Wetlands 

 

90 

Woody Wetlands – areas where forest or shrubland 
vegetation accounts for greater than 20% of vegetative cover 
and the soil or substrate is periodically saturated with or 
covered with water. 

95 

Emergent Herbaceous Wetlands – areas where perennial 
herbaceous vegetation accounts for greater than 80% of 
vegetative cover and the soil or substrate is periodically 
saturated with or covered with water. 

Source: https://www.mrlc.gov/data/legends/national-land-cover-database-class-legend-and-description 
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3.2.3 PRISM Temperature Data 

Maximum, mean, and minimum temperature rasters with a spatial resolution of 800m 

were downloaded from PRISM (PRISM Climate Group, Oregon State University, 

https://prism.oregonstate.edu). The temperature rasters were resampled to a spatial 

resolution of 60m using the “nearest-neighbor” resampling technique. This is the same 

spatial resolution as the digital elevation model (DEM). 

 

While near-surface temperature data does not give much indication of whether a 

conditionally unstable lapse rate is present, it does give some indication of the 

temperature within the lowest portion of the atmosphere. It was deemed impractical to 

include data showing the atmospheric lapse rate, as those data are collected at only one 

point within the study area (near the airport that serves the Albuquerque metropolitan 

area). 

 

The minimum and maximum temperatures were selected to characterize diurnal 

temperature fluctuations. The minimum temperature was specifically selected because the 

urban heat island effect is often more pronounced at night (Debbage & Shepherd, 2015). 

A relatively high minimum temperature, especially in urban areas, would indicate that the 

land surface is not cooling as much as non-urban areas, likely due to the urban heat island 

effect. 
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3.2.4 Digital Elevation Model 

A digital elevation model (DEM) with a 60m spatial resolution was acquired from RGIS 

(https://rgis.unm.edu/). The DEM was used to generate elevation, slope, and aspect data. 

These variables provide an indication of the surface terrain, which can influence the 

initiation and life cycle of thunderstorms. Airflow over uneven terrain can lift moisture to 

an altitude where it can condense and form clouds. Rising terrain can also provide the lift 

necessary to move an air parcel above the level of free convection (LFC), allowing for 

thunderstorm growth. 
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4.0 Sampling Design 

Weather radar data was downloaded as polygons via the Weather and Climate Toolkit, 

clipped to the study area, and preprocessed into centroid points. Further processing was 

used to cluster the points by time and location to create thunderstorm event polygons. 

Underlying data were gathered from raster datasets and added to the event polygon 

attributes. See Table 6 for a table of the most relevant variables used in this study and see 

Table 14 in Appendix C for the complete list of variable names and descriptions derived 

from the radar data. 

 

4.1 Derivation of Thunderstorm Events from Weather Radar Data 

As previously mentioned, radar data for each timestamp were downloaded as polygons, 

and each polygon included a timestamp and intensity value. After the polygons were 

clipped to the study area, they were converted into centroid points which retained the 

same attributes. The points were merged into monthly shapefiles (Figure 9). Since all of 

the preprocessing was done in ArcGIS Desktop and ArcGIS Pro, the time field was 

converted to an ESRI date field. This key step allowed for much of the further processing 

to be accomplished. The monthly shapefiles were converted to feature classes in a 

geodatabase in ArcGIS Pro. 

 

Using June 2018 as an example, Figure 9 depicts the centroid points within the study 

area. Months started at 12:00:00 UTC (6:00:00am local time) on the first day of the 

month and ended at 11:59:59 UTC (5:59:00am) on the first day of the following month, 
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except for May and September, which started at 00:00:00 UTC on the first day of the 

month and ended at 11:59:59 UTC on the last day of the month, respectively. 12:00:00 

UTC was chosen as the cut-off time between months because it was expected that 

thunderstorm activity would be at a minimum at this time, thereby minimizing the 

number of ongoing thunderstorms that would be arbitrarily divided into two events, one 

in each month. 

 

 
Figure 9. Centroid points derived from polygons for June 2018. There are 1,656,306 points in this month. 
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The Find Point Clusters tool in ArcGIS Pro was used to cluster monthly points by time 

and distance. The clustering algorithm used the Defined Distance (DBSCAN) method. 

Cluster parameters were set to contain a minimum of 20 points. Points were grouped into 

the same cluster if they were within a distance of 1700m and had a start time within 30 

minutes of each other (see Haberlie et al., 2015). 

 

The parameter specifying a minimum of 20 points was determined through an iterative 

process. Clusters with varying numbers of minimum points were compared with 

screenshots of actual radar weather as displayed on the website aviationweather.gov 

(Figure 10). The distance parameter of 1700m was selected because points farthest from 

the radar station, where points are the farthest apart, were found to be approximately 

1600m apart, for most years, so a parameter of 1700m would allow points to be grouped 

together that were likely part of the same thunderstorm activity. The time parameter of 30 

minutes was chosen because airmass thunderstorms in New Mexico are typically 

considered to last approximately 30 minutes or less (Sullivan et al., 2018), thus a 

parameter of at least 30 minutes would capture thunderstorm activity that signified a 

weather event that could present hazards to people on the ground. 
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Figure 10. This screenshot from aviationweather.gov depicts the base reflective radar image from June 13, 

2020, at 21:42 UTC. The intensity level of 40 dBZ of reflectivity is represented by dark yellow in this 

image. 

 

 

 

 

 



56 
 

Each cluster automatically generated a start date and start time, an end date and end time, 

and a unique Cluster ID, in addition to the previously mentioned attributes (Figure 11a). 

The start date and time are the same as the earliest timestamp in the cluster, and the end 

date and time correspond to the last timestamp in the cluster. Points that did not meet one 

or more of the criteria were not included in any further analysis. 

 

The Minimum Bounding Geometry (MBG) tool was then used to create polygons 

enclosing each cluster, according to its unique Cluster ID. The polygons were created 

using convex hull geometry (Figure 11b). The MBG polygons were then clipped to the 

study area. Although each MBG polygon has a definite outline, the thunderstorm event it 

represents has fuzzy boundaries. The boundary of each MBG polygon should be 

considered an approximation of the outline of each event. These polygons are hereafter 

referred to as thunderstorm event polygons, and are the unit of analysis used in this study. 
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Figure 11. (a.) Points for June 2018, symbolized by Cluster ID. Each color represents a different cluster. 

There are 1,294 clusters in June 2018. The smaller, yellow points were not grouped into any cluster 

because they did not meet one or more of the parameters. These unassociated points were disregarded in 

any further analysis. Not all clusters are visible in the figure. (b.) MBG polygon feature class for June 2018. 

Not all clusters are visible in the figure. 

 

A second set of polygons was created using the Minimum Bounding Geometry tool to 

group points by both Cluster ID and timestamp, so that each polygon included only one 

timestamp for each Cluster ID. The convex hull parameter was also used for this set of 

polygons, and centroid points were created for each polygon. Lines were created to 

connect the centroid points sequentially. One line was created for each Cluster ID and the 

vertices of the line were drawn in order by timestamp. This set of lines was used to derive 

several variables: line bearing in degrees, the distance between the start point and end 

point of the line, the length of the line, and the ratio of the length of the line to the 

distance from the start-point to the end-point (line length ratio). The line length ratio was 

created because it was found that while some thunderstorm events moved fairly linearly 

for long distances, others stayed in one area. It is beyond the scope of this study, but a 
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number of observations could be made comparing these variables to the relative size of 

each thunderstorm event, to terrain and other surface features, or other analyses. Also, 

some thunderstorms that had a long time duration but stayed in a small geographic area 

were identified as potentially erroneous storms in the dataset during the data cleaning 

process. 

 

A number of fields were added to the monthly thunderstorm event polygon feature 

classes. Each point within a cluster had retained its original intensity value, so statistics 

on intensity values within each cluster could be derived. Summary tables in ArcGIS Pro 

were used to generate the maximum intensity and mean intensity values for each cluster 

from the individual point intensity values, and these values were added to the attribute 

table of each monthly polygon feature class. The start date and start time and the end date 

and end time were used to create a time duration field. A full list of the variables is in 

Table 14 in Appendix C, and Table 6, below, has a summary of the most relevant 

variables. 

 

4.2 Addition of Land Cover, Temperature, and Elevation Attributes to 

Thunderstorm Events 

Additional attributes were added to the thunderstorm event polygons from several raster 

sources: the NLCD datasets, PRISM temperature data, and the DEM. The Tabulate Area 

tool in ArcGIS Pro was used to add land cover data to the event polygons. The area of 

each event was used to derive the percent of each type of land cover. The NLCD dataset 
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is in square pixels, and the minimum bounding geometry polygons surrounding each 

event are irregular shapes, so in some cases, the percent area was more than 100%. This 

was addressed during the data cleaning process. 

 

Data derived from the PRISM temperature rasters using the Zonal Statistics as Table tool 

in ArcGIS Pro were added to the thunderstorm event polygon attribute tables. It was 

found that in order for the radar polygons to sample the temperature data, the center point 

of at least one pixel must fall within a polygon. Due to the small size of some of the 

polygons, the temperature rasters were resampled to 60m. Sixty meters was chosen as the 

new spatial resolution so that it would be sufficiently small and the same as the spatial 

resolution of the digital elevation model (DEM). The Zonal Statistics as Table tool was 

also used to derive elevation, slope, and aspect variables from the DEM. See Table 6 for 

a table of the most relevant variables used in the study and see Table 14 in Appendix C 

for the complete list of variable names and descriptions. 
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Table 6. A portion of the variables created for this study. See Appendix C for the full table. 

Variable name Description 

Cluster_Mean_Intensity_Value Mean intensity 

Cluster_Max_Intensity_Value Maximum intensity 

Time_Duration_minutes Duration, in minutes 

Percent_All_Developed 

Percentage of the sum of all four Developed 

areas (Open Space, Low Intensity, Medium 

Intensity, and High Intensity) 

Percent_Developed_High Percentage of Developed, High Intensity area 

Percent_Develop_Med_Low_OpnSp 

Percentage of the sum of Medium Intensity, 

Low Intensity, and Open Space Developed 

areas 

Aspect_median Median aspect value, in degrees 

Elevation_range_meters Range of elevation values, in meters 

Mean_MaxTemp 
Mean of the maximum temperature, in 

degrees Celsius 

Mean_MinTemp 
Mean of the minimum temperature, in 

degrees Celsius 

Percent_All_Forest 
Percentage of the sum of all three Forest 

areas (Deciduous, Evergreen, and Mixed) 

Percent_PastureHay Percentage of Pasture / Hay 

Percent_CultivatedCrops Percentage of Cultivated Crops 

Percent_WoodyWetlands Percentage of Woody Wetlands 

Percent_EmHerbWetlands 
Percentage of Emergent Herbaceous 

Wetlands 

Percent_OpenWater Percentage of Open Water area 

Percent_Barren 
Percentage of Barren Land (Rock / Sand / 

Clay) 
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4.3 Data Cleaning 

After all of the attributes were added to the monthly thunderstorm event polygons, the 

polygons were combined into yearly feature classes, then into one feature class 

containing all twenty years of thunderstorm events. Once the dataset had been 

consolidated, several iterations of data cleaning were applied in an effort to remove the 

effects of ground clutter and wind turbines as much as possible. 

 

First, a shapefile was found that depicted the locations of wind turbines in New Mexico 

(https://eerscmap.usgs.gov/uswtdb/data/). The most obvious set of wind turbines in the 

study area is located on the northeast flank of Mount Taylor. A minimum bounding 

geometry polygon with convex hull geometry was created around those wind turbines, 

and thunderstorm polygons that were located completely within that polygon were 

removed from the dataset. Additionally, a circular polygon with a radius of 2 kilometers 

was created around the KABX antenna and any polygons that were completely within 

that circle were removed. 

 

In the next iteration of cleaning, thunderstorm event polygons that met at least one of 

several criteria were removed. Based on a personal communication with the Albuquerque 

National Weather Service office, it was determined that events exceeding a time duration 

of greater than 600 minutes (10 hours) should be removed. Thunderstorm events with an 

area less than 100 square kilometers and time duration greater than 300 minutes (5 hours) 

or an area less than 10 square kilometers and time duration greater than 180 minutes (3 

https://eerscmap.usgs.gov/uswtdb/data/
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hours) were removed. These parameters were based on observations of actual 

thunderstorm events in central New Mexico. 

 

It was found that a small number of event polygons had land cover percentages exceeding 

200%. Those events were removed because it was deemed unreasonable to have percent 

land cover equal to twice the size of the polygon. This occurred due to the fact that the 

land cover raster contains square pixels, while the event polygons are not regular shapes 

and the Tabulate Area tool accounted for the entire pixel, rather than only the part that 

overlapped the polygon. 

 

A number of thunderstorm event polygons that appear to be potentially erroneous remain 

in the dataset (Figure 12). These polygons are distinct because they are grouped together 

more so than most of the other polygons, and one or more or their vertices meet at the 

same locations, instead of being more evenly distributed. However, no objective method 

of confirming their validity was found. They are primarily located between the 

Albuquerque metropolitan area and the nearby Sandia Mountains. This is an area where it 

is reasonable to find numerous thunderstorm events, but it is also apparent that the 

vertices that are collocated are often found close to large roads in Albuquerque, where 

antennas and other ground clutter are likely to be found. It is possible that ground clutter 

returned erroneous data to KABX which the clutter filter did not remove. 

 



63 
 

 
Figure 12. The outlines of polygons are shown in blue, and overlaid on a satellite base map. The base map 

shows the eastern portion of the Albuquerque metropolitan area, and the Sandia Mountains can be seen in a 

north-south alignment in the right half of the image. There are two groups of potentially erroneous 

polygons in this image: a large one in the center, and a smaller one south of it. The western vertices of the 

smaller polygon are concentrated near Interstate 25, where it is likely that a number of towers, antennas, 

and other ground clutter are present. 
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4.4 Analysis 

A smaller subset of the variables in the MBG polygon attribute tables was needed for the 

analysis to avoid redundancy in the regression models. A large number of variables were 

created for this study, as seen in Table 14 in Appendix C, and many of them are likely 

correlated with each other. It is expected that changes in elevation will produce similar 

changes in temperature and slope, and potentially corresponding changes in vegetation as 

well. A subset of variables was selected for their relevance to thunderstorm formation, 

based on the three “ingredients” needed to form and sustain thunderstorm activity: a 

lifting action, instability, and moisture (see Table 7), and tested for correlation. 
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Table 7. Variables most relevant to thunderstorm formation. 

Variable name and thunderstorm 
“ingredient” 

Relevance to thunderstorm activity 

Lifting action 

 

Aspect_median 

Interaction between predominant wind 
direction and rising terrain; heating from 
the sun in the afternoon; uneven heating 
and presence or lack of moisture as 
indicated by dry side vs wet side of 
mountains 

Slope_range 
Indicative of rising terrain for wind to flow 
over 

Elevation_range_meters 
High terrain may indicate rising slopes for 
wind to flow over 

Range_MaxTemp 
Variations in temperature imply uneven 
heating of the surface 

Instability 

 

Mean_MaxTemp 

How hot is the lowest portion of the 
atmosphere? Higher temperatures near 
the surface can indicate less stable 
atmosphere 

Mean_MinTemp 
Is it cooling off at night? Especially over 
urban areas? 

Moisture 

 
Percent_All_Forest 

May indicate presence of moisture 
needed to maintain forest biome; 
evapotranspiration 

Percent_PastureHay, 
Percent_CultivatedCrops 

Irrigated crops may indicate more 
moisture available for evaporation, 
evapotranspiration 

Percent_WoodyWetlands, 
Percent_EmHerbWetlands 

Areas of vegetation where the “soil or 
substrate is periodically saturated with or 
covered with water” (NLCD) 

Percent_OpenWater 
Can add moisture to the air through 
evaporation 

Percent_Barren 
May indicate a lack of moisture on the 
surface and lowest portion of the 
atmosphere 
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Correlation matrices were run in RStudio in order to further narrow down the list of 

variables to those that were not strongly correlated with each other (see Appendix D). A 

threshold of r < 0.6 was used to exclude correlated variables. It was found that 

Elevation_range_meters was strongly correlated with Slope_range (r = 0.81) and 

Range_MaxTemp (r = 0.88). Mean_MaxTemp and Mean_MinTemp were also strongly 

correlated (r = 0.87), as expected. Slope_range and Range_MaxTemp were also 

moderately correlated (r = 0.65) with each other, and so Slope_range and 

Range_MaxTemp were excluded from analysis. Elevation_range_meters, along with the 

other variables that were not strongly correlated, were retained for regression analysis 

(Table 8). 

 

Mean_MaxTemp and Mean_MinTemp were both kept for analysis, but run separately 

(i.e., Mean_MaxTemp would be run with all of the other variables, then Mean_MinTemp 

would be substituted for Mean_MaxTemp and run with all of the other variables). As 

previously mentioned, the minimum temperature can provide a useful metric for 

measuring the influence of surface features on atmospheric temperature, particularly in 

urban climate regimes where temperatures may stay elevated after sunset. 

 

The final set of selected variables (Table 8), along with variables representing developed 

land cover, constituted the independent variables in multi-variate regression to determine 

the effect of developed land cover on thunderstorm intensity and duration. Separate 
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correlation matrices were created for each set of the independent variables to be used in 

each model (see Appendix D). 

 

Table 8. Variables that were not strongly correlated to each other, and relevant to thunderstorm activity, 

along with developed land cover variables, were used as the independent variables in regression analysis. 

Independent variables 

Developed land cover variables  Supporting independent variables 

Percent_All_Developed Aspect_median 

Percent_Developed_High Elevation_range_meters 

Percent_Develop_Med_Low_OpnSp Mean_MaxTemp (alternatively, 

Mean_MinTemp) 

Percent_All_Forest 

Percent_PastureHay 

Percent_CultivatedCrops 

Percent_WoodyWetlands 

Percent_EmHerbWetlands 

Percent_OpenWater 

Percent_Barren 

 

4.5 Modeling 

Simple and multivariate Ordinary Least Squares (OLS) regression models were used to 

determine changes in thunderstorm activity and what effect developed land cover had on 

thunderstorm intensity and duration. The models were run using the linear model (lm()) 

function in RStudio. 

 

OLS assumes that data exhibits complete spatial randomness (CSR). CSR means that a 

phenomenon has an equal probability of existing in any location and that the location of 

any phenomenon is independent of the location of any other occurrence (O’Sullivan & 
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Unwin, 2010). The locations of thunderstorms are influenced by their environment, such 

as the underlying terrain and atmospheric temperature profile (Bowen, 1996; Wallace & 

Hobbs, 2006), and so it is unlikely that thunderstorms have an equal probability of 

forming and existing in any location. Also, the outflow from one thunderstorm may help 

perpetuate or regenerate another thunderstorm (Wallace & Hobbs, 2006) and thus the 

frequency or intensity of one thunderstorm may affect nearby occurrences. Based on 

these concepts, it is likely that the dataset does not exhibit CSR, and is spatially 

autocorrelated. Spatial autocorrelation is the concept that “spatial data from near 

locations are more likely to be similar than data from distant locations” (O’Sullivan & 

Unwin, 2010, page 199). Spatial autocorrelation of the dependent variables 

(Cluster_Max_Intensity_Value, Cluster_Mean_Intensity_Value, Time_Duration_minutes) 

was tested using the Global Moran’s I in ArcGIS Pro and all three variables were found 

to be statistically significant, meaning that they are spatially autocorrelated (Table 9). 

 

Table 9. The three dependent variables were found to be statistically significant. 

Variable Results 

Cluster_Max_Intensity_Value 
p = 0 

z-score = 245 

Cluster_Mean_Intensity_Value 
p = 0 

z-score = 548 

Time_Duration_minutes 
p = 0 

z-score = 402 

 

However, in addition to the dataset containing polygons with spatial relationships to each 

other that may violate CSR, the polygons also exist over a long span of time. The 
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polygons relate to neighboring polygons and underlying processes in time as well as 

space, and so it may be assumed that the data also has temporal autocorrelation. Because 

the data may be affected by both spatial and temporal autocorrelation, one of two 

approaches is required for analysis: either run the dataset in a spatial-temporal model or 

use a simpler, non-spatial model such as OLS. As such, OLS was used for both single 

and multivariate models (Table 10). Debbage and Shepherd (2015) used OLS in their 

study of spatial contiguity and temperature intensity of the fifty most populous cities in 

the United States. They acknowledge that the assumptions of OLS can be difficult to 

meet when researching spatial phenomena, and in their research omitted outliers as a 

corrective action (Debbage & Shepherd, 2015, p. 185). 

 

Thunderstorm maximum intensity, mean intensity, and duration were tested in the 

following models (Table 10). Also, a subset of thunderstorms with a maximum intensity 

in the 95th percentile were tested. This subset allowed for an analysis of the most intense 

thunderstorms that occurred within the study area. While the full dataset had 220,304 

thunderstorm event polygons, the subset consisting of thunderstorms with a maximum 

intensity in the 95th percentile had 11,704 events. Models 2, 8, 9, and 10 used this smaller 

subset to test for changes over time and the relationship between land cover and 

thunderstorm maximum intensity for the most intense thunderstorms. 
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Table 10. Variables and number of thunderstorm event polygons for each model used. 

Model 

Thunderstorm 

Events (MBG 

polygons) 

Dependent variable Independent variable(s) 

Control set consists of the following variables: Aspect_median, Elevation_range_meters, 

Mean_MaxTemp, Percent_All_Forest, Percent_PastureHay, Percent_CultivatedCrops, 

Percent_WoodyWetlands, Percent_EmHerbWetlands, Percent_OpenWater, Percent_Barren 

1 220,304 Cluster_Max_Intensity_Value START_DATE 

2 11,704 Cluster_Max_Intensity_Value START_DATE 

3 220,304 Cluster_Mean_Intensity_Value START_DATE 

4 220,304 Time_Duration_minutes START_DATE 

5 220,304 Cluster_Max_Intensity_Value 
Percent_All_Developed,  

Control set 

6 220,304 Cluster_Max_Intensity_Value 
Percent_Developed_High,  

Control set 

7 220,304 Cluster_Max_Intensity_Value 

Percent_Develop_Med_Lo

w_OpnSp,  

Control set 

8 11,704 Cluster_Max_Intensity_Value 
Percent_All_Developed,  

Control set 

9 11,704 Cluster_Max_Intensity_Value 
Percent_Developed_High,  

Control set 

10 11,704 Cluster_Max_Intensity_Value 

Percent_Develop_Med_Lo

w_OpnSp,  

Control set 

11 220,304 Cluster_Mean_Intensity_Value 
Percent_All_Developed,  

Control set 

12 220,304 Cluster_Mean_Intensity_Value 
Percent_Developed_High,  

Control set 

13 220,304 Cluster_Mean_Intensity_Value 

Percent_Develop_Med_Lo

w_OpnSp,  

Control set 
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Table 10 (cont.) 

Model 

Thunderstorm 

Events (MBG 

polygons) 

Dependent variable Independent variable(s) 

14 220,304 Time_Duration_minutes 
Percent_All_Developed,  

Control set 

15 220,304 Time_Duration_minutes 
Percent_Developed_High,  

Control set 

16 220,304 Time_Duration_minutes 

Percent_Develop_Med_Lo

w_OpnSp,  

Control set 
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5.0 Model Interpretation 

This study made several hypotheses about the relationship between thunderstorm activity 

and the surface environment in central New Mexico. The first four hypotheses relate to 

changes in thunderstorm intensity and duration over time. The subsequent hypotheses 

relate to the effects of developed land cover on thunderstorm characteristics (Table 11). 

The hypothesis number in Table 11 corresponds to the model number in Table 10. 

Hypotheses 2, 8, 9, and 10 used a smaller subset of the data, selecting only those 

polygons that had a maximum intensity value that was in the 95th percentile. 
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Table 11. Null hypothesis and test for each hypothesis. The Model number corresponds with the 

Hypothesis number. 

Hypothesis 

number 
Hypothesis Null Test 

Change over time 

1 

Cluster_Max_Intensity_Value 

has increased between 2001 

and 2020 

Cluster_Max_Intensity_Value 

has not increased between 

2001 and 2020 

Positive slope 

at p ≤ 0.05 

2 

Cluster_Max_Intensity_Value 

(95th percentile subset) has 

increased between 2001 and 

2020 

Cluster_Max_Intensity_Value 

(95th percentile subset) has 

not increased between 2001 

and 2020 

Positive slope 

at p ≤ 0.05 

3 

Cluster_Mean_Intensity_Valu

e has increased between 

2001 and 2020 

Cluster_Mean_Intensity_Valu

e has not increased between 

2001 and 2020 

Positive slope 

at p ≤ 0.05 

4 

Time_Duration_minutes has 

increased between 2001 and 

2020 

Time_Duration_minutes has 

not increased between 2001 

and 2020 

Positive slope 

at p ≤ 0.05 

Maximum intensity 

5 

Percent_All_Developed 

within each thunderstorm 

event is positively correlated 

with 

Cluster_Max_Intensity_Value 

Percent_All_Developed 

within each thunderstorm 

event is not statistically 

significant or positively 

correlated with 

Cluster_Max_Intensity_Value 

Percent_All_D

eveloped has 

a positive 

slope at 95% 

6 

Percent_Developed_High 

within each thunderstorm 

event is positively correlated 

with 

Cluster_Max_Intensity_Value 

Percent_Developed_High 

within each thunderstorm 

event is not statistically 

significant or positively 

correlated with 

Cluster_Max_Intensity_Value 

Percent_Devel

oped_High 

has a positive 

slope at 95% 

7 

Percent_Develop_Med_Low_

OpnSp within each 

thunderstorm event is 

positively correlated with 

Cluster_Max_Intensity_Value 

Percent_Develop_Med_Low_

OpnSp within each 

thunderstorm event is not 

statistically significant or 

positively correlated with 

Cluster_Max_Intensity_Value 

Percent_Devel

op_Med_Low

_OpnSp has a 

positive slope 

at 95% 
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Table 11 (cont.) 

Hypothesis 

number 
Hypothesis Null Test 

Maximum intensity (95th percentile subset) 

8 

Percent_All_Developed 

within each thunderstorm 

event is positively correlated 

with 

Cluster_Max_Intensity_Value 

(95th percentile subset) 

Percent_All_Developed 

within each thunderstorm 

event is not statistically 

significant or positively 

correlated with 

Cluster_Max_Intensity_Value 

(95th percentile subset) 

Percent_All_D

eveloped has 

a positive 

slope at 95% 

9 

Percent_Developed_High 

within each thunderstorm 

event is positively correlated 

with 

Cluster_Max_Intensity_Value 

(95th percentile subset) 

Percent_Developed_High 

within each thunderstorm 

event is not statistically 

significant or positively 

correlated with 

Cluster_Max_Intensity_Value 

(95th percentile subset) 

Percent_Devel

oped_High 

has a positive 

slope at 95% 

10 

Percent_Develop_Med_Low_

OpnSp within each 

thunderstorm event is 

positively correlated with 

Cluster_Max_Intensity_Value 

(95th percentile subset) 

Percent_Develop_Med_Low_

OpnSp within each 

thunderstorm event is not 

statistically significant or 

positively correlated with 

Cluster_Max_Intensity_Value 

(95th percentile subset) 

Percent_Devel

op_Med_Low

_OpnSp has a 

positive slope 

at 95% 

Mean intensity 

11 

Percent_All_Developed 

within each thunderstorm 

event is positively correlated 

with Cluster_Mean_Intensity 

_Value 

Percent_All_Developed 

within each thunderstorm 

event is not statistically 

significant or positively 

correlated with 

Cluster_Mean_Intensity 

_Value 

Percent_All_D

eveloped has 

a positive 

slope at 95% 

12 

Percent_Developed_High 

within each thunderstorm 

event is positively correlated 

with Cluster_Mean_Intensity 

_Value 

Percent_Developed_High 

within each thunderstorm 

event is not statistically 

significant or positively 

correlated with 

Cluster_Mean_Intensity 

_Value 

Percent_Devel

oped_High 

has a positive 

slope at 95% 
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Table 11 (cont.) 

Hypothesis 

number 
Hypothesis Null Test 

Mean intensity (cont.) 

13 

Percent_Develop_Med_Low_

OpnSp within each 

thunderstorm event is 

positively correlated with 

Cluster_Mean_Intensity 

_Value 

Percent_Develop_Med_Low_

OpnSp within each 

thunderstorm event is not 

statistically significant or 

positively correlated with 

Cluster_Mean_Intensity 

_Value 

Percent_Devel

op_Med_Low

_OpnSp has a 

positive slope 

at 95% 

Duration 

14 

Percent_All_Developed 

within each thunderstorm 

event is positively correlated 

with Time_Duration_minutes 

Percent_All_Developed 

within each thunderstorm 

event is not statistically 

significant or positively 

correlated with 

Time_Duration_minutes 

Percent_All_D

eveloped has 

a positive 

slope at 95% 

15 

Percent_Developed_High 

within each thunderstorm 

event is positively correlated 

with Time_Duration_minutes 

Percent_Developed_High 

within each thunderstorm 

event is not statistically 

significant or positively 

correlated with 

Time_Duration_minutes 

Percent_Devel

oped_High 

has a positive 

slope at 95% 

16 

Percent_Develop_Med_Low_

OpnSp within each 

thunderstorm event is 

positively correlated with 

Time_Duration_minutes 

Percent_Develop_Med_Low_

OpnSp within each 

thunderstorm event is not 

statistically significant or 

positively correlated with 

Time_Duration_minutes 

Percent_Devel

op_Med_Low

_OpnSp has a 

positive slope 

at 95% 
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6.0 Results 

Single and multivariate OLS regression models were used to determine changes in 

thunderstorm activity and if those changes can be explained by changes in urban land 

cover. Changes in the maximum intensity, mean intensity, and duration in the study area 

are summarized in Table 12. The effects of developed land cover variables on 

thunderstorm characteristics are given in Table 13. 

 

6.1 Changes in Thunderstorm Activity 

Models 1, 2, 3, and 4 sought to establish general characteristics about thunderstorm 

activity in the study area. Thunderstorm maximum intensity (H1) did not increase in the 

study area between 2001 and 2020 (p < 2.2e-16, at a 95% confidence level), and so the 

null hypothesis could not be rejected. The model adjusted R2 (R2 = 0.01074) showed that 

time explains only 1% of the change in maximum intensity. Thunderstorm maximum 

intensity in the 95th percentile (H2) showed a slight increase over time at a 95% 

confidence level (p-value = 0.00454), so the null hypothesis was rejected. Model 2 also 

had a low model adjusted R2 (R2 = 0.0006027). This model used only 11,704 

thunderstorm events, while Models 1, 3, and 4 used the full dataset of 220,304 events. 

 

Thunderstorm mean intensity (H3) did not increase in the study area between 2001 and 

2020 (p < 2.2e-16), and so the null hypothesis could not be rejected. The model adjusted 

R2 (R2 = 0.06114) showed little relationship between the mean intensity and time, at least 

in a linear model. As seen in Appendix F, a non-linear model may have been better suited 
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to the fluctuating nature of the data. Thunderstorm duration (H4) also did not increase in 

the study area between 2001 and 2020 (p < 2.2e-16), so the null hypothesis could not be 

rejected. The model adjusted R2 (R2 = 0.01958) was similar to Model 1. 

 

Table 12. Summary of results for Models 1, 2, 3, and 4. 

Hypothesis 
Model adjusted 

R-squared 

Model 

p-value 
Slope Null Rejected 

1 0.01074 <2.2e-16 -3.640e-09 No 

2 0.0006027 0.00454 0.016235 Yes 

3 0.06114 <2.2e-16 -2.970e-09 No 

4 0.01958 <2.2e-16 -4.145e-08 No 

 

6.2 The Impact of Development on Thunderstorm Maximum Intensity 

Models 5, 6, and 7 queried the relationship between developed land cover and 

thunderstorm maximum intensity. All three models were significant at a 95% confidence 

level, and all had a model adjusted R2 of ~0.2. The percent of all classes of developed 

land cover (Percent_All_Developed) within each thunderstorm event polygon (H5) was 

found to be positively correlated with thunderstorm maximum intensity 

(Cluster_Max_Intensity_Value) and significant at a 95% confidence level (p < 2e-16), so 

the null hypothesis was rejected. The model fit (R2 = 0.2007) showed that the 

independent variables selected for this model explained 20% of the variance in the 

maximum intensity of thunderstorms in the study area between 2001 and 2020. 

Additionally, the percent high developed land cover (Percent_Developed_High) (H6) 

was found to be positively correlated with maximum intensity 

(Cluster_Max_Intensity_Value) (p < 2e-16), so the null hypothesis was rejected. Further, 
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the percent of medium, low, and open space developed land cover 

(Percent_Develop_Med_Low_OpnSp) (H7) was found to be positively correlated with 

maximum intensity (Cluster_Max_Intensity_Value) (p < 2e-16), so the null hypothesis 

was rejected. 

 

6.3 The Impact of Development on Thunderstorm Maximum Intensity in the 95th 

Percentile 

Models 8, 9, and 10 looked at the relationship between developed land cover and the 

subset of thunderstorms with a maximum intensity in the 95th percentile. All three models 

were significant at a 95% confidence level, but all had a model adjusted R2 of ~0.03, 

showing that only 3% of the variance in maximum intensity values in the 95th percentile 

could be explained by these models. The percentage of developed land cover 

(Percent_All_Developed) (H8) was found to be positively correlated with maximum 

intensity values in the 95th percentile (p = 7.17e-07), so the null hypothesis was rejected. 

The percent high developed land cover (Percent_Developed_High) (H9) was found to be 

positively correlated with maximum intensity values in the 95th percentile (p = 0.003904), 

so the null hypothesis was rejected. The percent of medium, low, and open space 

developed land cover (Percent_Develop_Med_Low_OpnSp) (H10) was found to be 

positively correlated with maximum intensity values in the 95th percentile (p = 4.61e-07), 

so the null hypothesis was rejected. 
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6.4 The Impact of Development on Thunderstorm Mean Intensity 

Models 11, 12, and 13 tested the relationship between developed land cover and 

thunderstorm mean intensity. All three models were significant at a 95% confidence 

level, but all had a model R2 of ~0.03, showing that only 3% of the variance in mean 

intensity could be explained by these models. The percent of developed land cover 

(Percent_All_Developed) within each thunderstorm event polygon (H11) was found to be 

positively correlated with thunderstorm mean intensity and significant at a 95% 

confidence level (p < 2e-16), so the null hypothesis was rejected. The percent high 

developed land cover (Percent_Developed_High) (H12) was also found to be positively 

correlated with mean intensity (p < 2e-16) and the null hypothesis was rejected. The 

percent of medium, low, and open space developed land cover 

(Percent_Develop_Med_Low_OpnSp) (H13) was found to be positively correlated with 

mean intensity (p < 2e-16), so the null hypothesis was rejected. 

 

6.5 The Impact of Development on Thunderstorm Duration 

Models 14, 15, and 16 queried the relationship between developed land cover and 

thunderstorm duration. The three models had model adjusted R2 values of 22% to 25%, 

showing that 25% of the variance in duration can be explained by the independent 

variables used in this model. The percent developed land cover (Percent_All_Developed) 

(H14) was found to be positively correlated with thunderstorm duration (p < 2e-16), so 

the null hypothesis was rejected. The percent high developed land cover 

(Percent_Developed_High) (H15) was found to be positively correlated with duration (p 

< 2e-16), so the null hypothesis was rejected. The percent of medium, low, and open 
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space developed land cover (Percent_Develop_Med_Low_OpnSp) (H16) was found to be 

positively correlated with duration (p < 2e-16), so the null hypothesis was rejected. 
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Table 13. Summary of results for Models 5 through 16. 

Hypothesis 

Model 

adjusted 

R-squared 

Model 

p-value 
Variable Variable slope 

Variable 

p-value 

Null 

Rejected 

Maximum intensity 

5 0.2007 
< 2.2e-

16 

Percent_All_

Developed 
3.792e-02 < 2e-16 Yes 

6 0.1937 
< 2.2e-

16 

Percent_Dev

eloped_High 
2.149e-01 < 2e-16 Yes 

7 0.2009 
< 2.2e-

16 

Percent_Dev

elop_Med_L

ow_OpnSp 

4.151e-02 < 2e-16 Yes 

Maximum intensity (95th percentile subset) 

8 0.03356 
< 2.2e-

16 

Percent_All_

Developed 
9.493e-03 7.17e-07 Yes 

9 0.03221 
< 2.2e-

16 

Percent_Dev

eloped_High 
5.329e-02 0.003904 Yes 

10 0.03363 
< 2.2e-

16 

Percent_Dev

elop_Med_L

ow_OpnSp 

1.045e-02 4.61e-07 Yes 

Mean intensity 

11 0.03217 
< 2.2e-

16 

Percent_All_

Developed 
1.035e-02 < 2e-16 Yes 

12 0.02742 
< 2.2e-

16 

Percent_Dev

eloped_High 
5.482e-02 < 2e-16 Yes 

13 0.03239 
< 2.2e-

16 

Percent_Dev

elop_Med_L

ow_OpnSp 

1.138e-02 < 2e-16 Yes 

Duration 

14 0.2488 
< 2.2e-

16 

Percent_All_

Developed 
0.6504379 < 2e-16 Yes 

15 0.2151 
< 2.2e-

16 

Percent_Dev

eloped_High 
3.1915033 < 2e-16 Yes 

16 0.2508 
< 2.2e-

16 

Percent_Dev

elop_Med_L

ow_OpnSp 

0.7189678 < 2e-16 Yes 
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7.0 Discussion 

It was found that thunderstorm maximum intensity, mean intensity, and duration did not 

increase overall between 2001 and 2020. However, the maximum intensity values of 

thunderstorms with a maximum intensity in the 95th percentile did increase during that 

time, showing that the intensity of the most intense thunderstorms increased between 

2001 and 2020. As seen in Appendix F, the mean of the maximum intensity values, mean 

intensity values, and duration fluctuated throughout the study period, but did not result in 

a net increase. 

 

It was found that the percent of developed land cover within a thunderstorm event 

polygon was statistically significant and positively correlated with thunderstorm 

maximum intensity, meaning that an increase in percent developed land cover resulted in 

an increase in maximum intensity. All three levels of percent developed land cover that 

were tested resulted in similar positive correlations: percent developed land cover 

(Percent_All_Developed), percent high developed land cover 

(Percent_Developed_High), and percent of medium, low, and open space developed land 

cover (Percent_Develop_Med_Low_OpnSp). Percent high developed land cover 

(Percent_Developed_High) resulted in the highest slope of these three models (slope = 

2.149e-01), even though it is only 0.12% of the land cover in the study area and 5% of 

developed land cover in the study area (as of 2019). Percent high developed land cover 

(Percent_Developed_High) can be expected to have the greatest influence on local 

atmospheric conditions because it is likely to include surfaces and activities that will 

contribute to the urban heat island effect (“due to the urban canyon geometry altering 
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heat storage release” (Debbage & Shepherd, 2015, p. 182)), surface roughness, and the 

release of air pollution and moisture associated with industrial areas and high density 

housing (Oke et al., 2017). Thunderstorms that occur near larger and rapidly expanding 

cities with a greater urban footprint can also be expected to exhibit increasing maximum 

intensity values and longer duration times. 

 

Most of the urban development in the study area consists of medium, low, and open 

space developed land cover, which consist of a mixture of impervious surfaces and 

vegetation. Impervious surfaces account for 20% to 80% of the areas covered in those 

three land cover classes. The vegetation in these areas can be irrigated surfaces such as 

parks, golf courses, and lawns (Table 5). Although these three classes have fewer 

impervious surfaces and less intense industrial activities, they comprise 2.29% of the 

study area and 95% of developed land cover in the study area, as of 2019. As proposed 

by Lazzarini et al. (2015), the vegetation introduced in areas of medium, low, and open 

space developed land cover, such as lawns and golf courses, may introduce moisture to 

the atmosphere that would not normally be present in a semi-arid climate. 

 

Thunderstorm maximum intensity in the 95th percentile, thunderstorm mean intensity, 

and thunderstorm duration were also statistically significant and positively correlated 

with the percent developed land cover (Percent_All_Developed), percent high developed 

land cover (Percent_Developed_High), and percent of medium, low, and open space 

developed land cover (Percent_Develop_Med_Low_OpnSp). However, the model 
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adjusted R2 values for maximum intensity in the 95th percentile (R2 = 0.03) and mean 

intensity (R2 = 0.03) were much lower than those of maximum intensity (R2 = 0.19 to R2 

= 0.2) and duration (R2 = 0.22 to R2 = 0.25). This suggests that the selected variables 

were more explanatory of the peak intensity and longevity of all thunderstorms in the 

study. Models 8, 9, and 10, which used a subset of the data with maximum intensity 

values in the 95th percentile as the dependent variable, may have had a smaller model 

adjusted R2 value because they used a smaller n. Detailed results for Models 8, 9, and 10 

(see Appendix G) show that typically only about half of the independent variables used in 

the model were statistically significant, which is fewer than in the other models. As seen 

in the box plots in Appendix F, the distribution of values for maximum intensity and 

duration are fairly even across the 20-year study period. However, mean intensity values 

contain numerous outliers in the year 2009, which could have adversely affected the 

model adjusted R2 values. When Debbage and Shepherd (2015) used OLS in their study, 

they recognized and removed outliers before conducting their analysis. However, for this 

study, further investigation should be conducted into the distribution of mean intensity 

values before considering removing any data from the analysis. Avenues of investigation 

should include changes made to the KABX NEXRAD weather radar station hardware or 

software, actual weather conditions that occurred in 2009, and any other factors that may 

have affected the count or intensity of thunderstorms during the study period. 

 

The thunderstorm duration models resulted in higher slope values than the other models 

in the study, showing that an increase in developed land cover leads to a greater increase 

in thunderstorm duration than other storm characteristics. Maximum intensity (H1) and 
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duration (H4) did not increase in the study area as a whole during the study period, but a 

positive correlation between developed land cover and maximum intensity (H5, H6, H7) 

and duration (H14, H15, H16) was found. Because it has been shown that developed land 

cover increased during the study time (Table 3), these findings suggest that increases in 

maximum intensity and duration have occurred over urban land cover more so than over 

non-urban parts of the study area. 

 

It was found that maximum intensity, mean intensity, and duration for each thunderstorm 

event polygon were spatially autocorrelated. Using spatial regression models would most 

likely result in higher R2 values for Models 5 through 16. By not using spatial models, the 

correlation coefficients may be larger than their true value, and may not be statistically 

significant (Gong, 2019). Further research applying spatial regression modeling to the 

dataset could provide a useful comparison to the results presented in this study. 

Additionally, a similar research methodology could be applied to larger and expanding 

cities, particularly those in arid or semi-arid climates, to develop a better understanding 

of the relationship between urban development and thunderstorm formation and life 

cycles. 

 

This study joins other related studies by creating a multi-year radar climatology to 

investigate the relationship between urban land cover and thunderstorm activity. Similar 

to Bentley et al. (2010), Niyogi et al. (2011), Ashley et al. (2012), and Haberlie et al. 

(2015), this study found a relationship between urban land cover and thunderstorm 
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activity. Like Debbage and Shepherd (2015), this study used Ordinary Least Squares 

(OLS) regression modeling. In line with other studies on urban climates (Debbage and 

Shepherd, 2015; Oke et al., 2017), the urban heat island (UHI) effect was considered in 

the methodology of this study. The UHI effect was incorporated when regression 

analyses were run using the mean minimum temperature for each thunderstorm event 

polygon. These results are detailed in Appendix G and were found to be similar to those 

that used the mean maximum temperature. 

 

Unlike previous studies, this investigation used software (the Find Point Clusters tool in 

ArcGIS Pro) to derive thunderstorm events from radar data, rather than through human 

observation of radar data. Many of the previous studies used Atlanta, GA, a large urban 

area in an area of flat terrain. This study used a much smaller urban center, the 

Albuquerque metropolitan area, which is centered in a region with complex topography. 

Also unlike previous work, this study considered a larger geographic area, without 

specifying upwind and downwind regions, and did not break down the study period into 

weekdays and weekends or consider the effects of aerosols. 
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8.0 Conclusion 

Regression analyses were used to assess the relationship between developed land cover in 

central New Mexico and thunderstorm characteristics. This area has complex topography 

and a relatively small urban footprint compared to cities that have been used in other 

studies, such as Atlanta, GA, or Phoenix, AZ. However, the analyses in this study 

resulted in several statistically significant findings. Variables that corresponded with the 

input for thunderstorm initiation and formation, along with variables representing 

developed land cover, were used to determine the relationship between developed land 

cover and thunderstorm characteristics. It was established that while thunderstorm 

maximum intensity, mean intensity, and duration did not increase over the 20-year study 

period, maximum intensity values of thunderstorms in the 95th percentile did increase. 

This finding implies that, by the end of the study period, whenever the most intense 

thunderstorms occurred, they may have presented a greater hazard to people on the 

ground and could have caused greater property damage. 

 

It was also found that developed land cover was positively correlated with thunderstorm 

maximum intensity, maximum intensity in the 95th percentile, mean intensity, and 

duration. If the population of central New Mexico continues to grow, it may add further 

developed land cover to previously undeveloped areas, as well as increase the level and 

contiguity of existing development in established urban areas. This development has the 

potential to change the local atmosphere and increase thunderstorm intensity and 

duration. Future analyses of radar climatologies in and around urban areas in other arid 

and semi-arid regions may provide useful platforms on which to test other variables to 
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see which ones contribute to thunderstorm activity. Additionally, multi-year datasets can 

be potentially used to separate the effects of El Niño and La Niña (ENSO) and climate 

change from urban influences on local atmospheric processes. 

 

Further research, including spatial regression modeling, is needed to continue to extract 

the relationship between thunderstorm characteristics and surface influences. The radar 

climatology dataset created for this study will be made available for future research. 
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9.0 Limitations 

There are a number of polygons (see Figure 12) that appear to be potentially erroneous. 

These polygons are primarily located where the Albuquerque metropolitan area meets the 

foothills of the Sandia Mountains. This is a location where thunderstorms would be 

expected to form; however, these polygons appear to be grouped together more densely 

than elsewhere in the study area. No objective parameter was found that could be used to 

isolate and remove them. Due to the existence of these potentially erroneous polygons, no 

analysis was made using subdivisions of the study area. Analysis using smaller 

subdivisions of the study area would allow for comparison of thunderstorm events over 

or near urban areas to those over non-urban areas, as well as comparison of areas upwind 

and downwind of the Albuquerque metropolitan area, as in Haberlie et al. (2015). 

 

The use of OLS regression models provided an initial look at the dataset used in this 

study. However, the use of spatial regression models could have provided a much more 

robust analysis of thunderstorm activity, as it is inherently spatially autocorrelated, due to 

its relationship to terrain, temperature, land cover, and other nearby thunderstorms. 

Additionally, thunderstorms are temporally autocorrelated, which means that spatial-

temporal models are needed for a complete analysis. 

 

Atmospheric processes are complex phenomena, with a wide range of factors that can 

affect local weather. These processes can range in scale from the local to the global. 

Some of the factors that were not taken into account in this study are aerosols and air 
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pollution, including particulates from wildfire smoke. Additionally, atmospheric 

moisture, as well as the effects of El Niño and La Niña (ENSO), and climate change, 

were not accounted for in this study. 
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Appendix A: Acronyms and Abbreviations 

BLM – Bureau of Land Management 

CAPE – convective available potential energy 

dB – decibel 

dBZ – radar reflectivity factor; units of intensity used refer to radar data 

ENSO – El Niño-Southern Oscillation 

FAA – Federal Aviation Administration 

GIS – geographic information systems; geographic information science 

ICI events – isolated convective initiation events 

KABX – identifier for the Albuquerque, NM NEXRAD WSR-88D weather radar station 

LFC – level of free convection 

MRLC Consortium – Multi-Resolution Land Characteristics Consortium (formerly 

National Land Cover Database (NLCD)) 

MSA – metropolitan statistical area 

NAM – North American monsoon 

NCEI – National Centers for Environmental Information 

NEXRAD – Next Generation Radar 

NLCD – National Land Cover Database 

NOAA – National Oceanic and Atmospheric Administration 
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NWS – National Weather Service 

RDA – radar data acquisition 

ROC – Radar Operations Center 

RPG – radar product generator 

SALR – saturated adiabatic lapse rate 

SUHI – surface urban heat island 

UHI – urban heat island 

USDA – United States Department of Agriculture 

VCP – volume coverage pattern 

WCT – Weather and Climate Toolkit 

WSR-88D – Weather Surveillance Radar – 1988, Doppler 

Z – reflectivity 

Ze – equivalent radar reflectivity factor 
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Appendix B: Python Script for Downloading and Formatting NEXRAD Data 

This script, modified from Ansari et al. (2018), accesses NEXRAD binary data files from 

Amazon’s S3 bucket (https://s3.amazonaws.com/noaa-nexrad-level2/index.html) and 

converts them into shapefiles. The script uses the Weather and Climate Toolkit, which 

includes wct-export.bat and wctBatchConfig.xml. The wctBatchConfig.xml file needs to 

be configured to the user’s specifications. 

 

Filepath names have been obscured for this document. Any future users should insert the 

applicable filepath name in the indicated lines in the following script. 

 

### 

from xml.dom import minidom 

#from sys import stdin 

from urllib.request import urlopen 

from subprocess import call 

import os 

from datetime import datetime 

 

start = datetime.now() 

print ("Download started at " + str(start)) 
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def getText(nodelist): 

    rc = [] 

    for node in nodelist: 

        if node.nodeType == node.TEXT_NODE: 

            rc.append(node.data) 

    return ''.join(rc) 

 

n = 1 

while n < 10: 

    date = "2018/05/0"+str(n) 

    print (date) 

    n+=1 

 

    site = "KABX" 

    bucketURL = "http://noaa-nexrad-level2.s3.amazonaws.com" 

    dirListURL = bucketURL+ "/?prefix=" + date + "/" + site 
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    print ("Listing files from %s" % dirListURL) 

 

#xmldoc = minidom.parse(stdin) 

    xmldoc = minidom.parse(urlopen(dirListURL)) 

    itemlist = xmldoc.getElementsByTagName('Key') 

    print (len(itemlist) , "keys found...") 

 

# For this test, WCT is downloaded and unzipped directly in the working directory 

# The output files are going in 'Z:/__[username]__/Radar/2018' 

# http://www.ncdc.noaa.gov/wct/install.php 

    for x in itemlist: 

        file = getText(x.childNodes) 

    #print "Found %s " % file 

        print ("Processing %s " % file) 

    #Convert to Shapefile 

        call(["wct-export.bat", "%s/%s"%(bucketURL,file), 

"Z:/__[username]__/Radar/2018", "shp", "wctBatchConfigAJV.xml"], shell = True) 

    #Delete temporary files 
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        filelist = [f for f in os.listdir("C:/Users/__[username]__/AppData/Local/Temp/wct-

cache/data") if f.endswith(".uncompress")] 

        for f in filelist: 

            os.remove(os.path.join("C:/Users/__[username]__/AppData/Local/Temp/wct-

cache/data", f)) 

 

while n <= 31: 

    date = "2018/05/"+str(n) 

    print (date) 

    n+=1 

 

    site = "KABX" 

    bucketURL = "http://noaa-nexrad-level2.s3.amazonaws.com" 

    dirListURL = bucketURL+ "/?prefix=" + date + "/" + site 

 

    print ("Listing files from %s" % dirListURL) 

 

#xmldoc = minidom.parse(stdin) 

    xmldoc = minidom.parse(urlopen(dirListURL)) 
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    itemlist = xmldoc.getElementsByTagName('Key') 

    print (len(itemlist) , "keys found...") 

 

# For this test, WCT is downloaded and unzipped directly in the working directory 

# The output files are going in 'Z:/__[username]__/Radar/2018' 

# http://www.ncdc.noaa.gov/wct/install.php 

    for x in itemlist: 

        file = getText(x.childNodes) 

    #print "Found %s " % file 

        print ("Processing %s " % file) 

    #Convert to Shapefile 

        call(["wct-export.bat", "%s/%s"%(bucketURL,file), 

"Z:/__[username]__/Radar/2018", "shp", "wctBatchConfigAJV.xml"], shell = True) 

    #Delete temporary files 

        filelist = [f for f in os.listdir("C:/Users/__[username]__/AppData/Local/Temp/wct-

cache/data") if f.endswith(".uncompress")] 

        for f in filelist: 

            os.remove(os.path.join("C:/Users/__[username]__/AppData/Local/Temp/wct-

cache/data", f)) 
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end = datetime.now() 

 

elapsedtime = end - start 

 

print ("Download started at " + str(start)) 

print ("Download ended at " + str(end)) 

print ("Time to download " + str(elapsedtime)) 
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Appendix C: Variable Names 

The following table contains the full names and descriptions of the variables created for 

this dataset. 

 

Table 14. All variables created for this study. 

Variable name Description 

Cluster intensity variables within each MBG polygon (in dBZ of reflectivity) 

Cluster_Mean_Intensity_Value Mean intensity 

Cluster_Max_Intensity_Value Maximum intensity 

Cluster_Range_Intensity_Value Range of intensity values 

Cluster_StDev_Intensity_Value Standard deviation of the intensity values 

Cluster_Median_Intensity_Value Median intensity  

Cluster_Variance_Intensity_Value Variance of the intensity values 

 

Time variables for each MBG polygon 

START_DATE Beginning time and date  

END_DATE End time and date 

Time_Duration_minutes Duration, in minutes 

 

Line variables within each MBG polygon 

Line_Bearing_degrees 
The bearing from the starting vertex of the 

line to the ending vertex of the line 

Line_StartToEndDistance_meters 
The distance from the starting vertex of the 

line to the ending vertex of the line 

Line_Length_Ratio 

The value found by dividing 

Line_StartToEndDistance_meters by 

Line_Length_meters 

Line_Length_meters The length of each line, in meters 
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Table 14 (cont.) 

Variable name Description 

Land Cover variables within each MBG polygon (area in square meters) 

OpenWater_11 Open Water 

Developed_OpenSpace_21 Developed, Open Space 

Developed_Low_22 Developed, Low Intensity 

Developed_Medium_23 Developed, Medium Intensity 

Developed_High_24 Developed, High Intensity 

Barren_31 Barren Land (Rock / Sand / Clay) 

DeciduousForest_41 Deciduous Forest 

EvergreenForest_42 Evergreen Forest 

MixedForest_43 Mixed Forest 

ShrubScrub_52 Shrub / Scrub 

GrasslandHerb_71 Grassland / Herbaceous 

PastureHay_81 Pasture / Hay 

CultivatedCrops_82 Cultivated Crops 

WoodyWetlands_90 Woody Wetlands 

EmergHerbWetlands_95 Emergent Herbaceous Wetlands 

All_GrassHerb_ShrubScrub 
Sum of Grassland / Herbaceous and Shrub / 

Scrub areas 

All_Developed 

Sum of all four Developed areas (Open 

Space, Low Intensity, Medium Intensity, and 

High Intensity) 

All_Developed_Barren 
Sum of all four Developed areas and Barren 

Land 

All_Forest 
Sum of all three Forest areas (Deciduous, 

Evergreen, and Mixed) 

All_Vegetated 

Sum of Deciduous, Evergreen, and Mixed 

Forest; Shrub / Scrub; Grassland / 

Herbaceous; Pasture / Hay; Cultivated 

Crops; Woody Wetlands; and Emergent 

Herbaceous Wetlands 

 

 

 



102 
 

Table 14 (cont.) 

Variable name Description 

Land Cover variables within each MBG polygon (area in square meters) (cont.) 

Develop_Med_Low 
Sum of Medium Intensity and Low Intensity 

Developed areas 

Develop_Med_Low_OpnSp 
Sum of Medium Intensity, Low Intensity, 

and Open Space Developed areas 

Develop_High_Med 
Sum of High Intensity and Medium Intensity 

Developed areas 

Develop_High_Med_Low 
Sum of High Intensity, Medium Intensity, 

and Low Intensity areas 

OW11_PH81_CC82_WW90_EHW95 

Sum of Open Water, Pasture / Hay, 

Cultivated Crops, Woody Wetlands, and 

Emergent Herbaceous Wetlands areas 

OW11_WW90_EHW95 
Sum of Open Water, Woody Wetlands, and 

Emergent Herbaceous Wetlands areas 

PH81_CC82 
Sum of Pasture / Hay and Cultivated Crops 

areas 

PH81_CC82_WW90_EHW95 

Sum of Pasture / Hay, Cultivated Crops, 

Woody Wetlands, and Emergent 

Herbaceous Wetlands areas 

 

Land Cover variables within each MBG polygon (percentage) 

Percent_All_Developed 

Percentage of the sum of all four Developed 

areas (Open Space, Low Intensity, Medium 

Intensity, and High Intensity) 

Percent_All_Developed_Barren 
Percentage of the sum of all four Developed 

areas and Barren Land 

Percent_All_Forest 
Percentage of the sum of all three Forest 

areas (Deciduous, Evergreen, and Mixed) 

Percent_All_Vegetated 

Percentage of the sum of Deciduous, 

Evergreen, and Mixed Forest; Shrub / Scrub; 

Grassland / Herbaceous; Pasture / Hay; 

Cultivated Crops; Woody Wetlands; and 

Emergent Herbaceous Wetlands 
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Table 14 (cont.) 

Variable name Description 

Land Cover variables within each MBG polygon (percentage) (cont.) 

Percent_GrassHerb_ShrubScrub 
Percentage of the sum of Grassland / 

Herbaceous and Shrub / Scrub areas 

Percent_OpenWater Percentage of Open Water area 

Percent_Developed_OpenSpace Percentage of Developed, Open Space area 

Percent_Developed_Low 
Percentage of Developed, Low Intensity 

area 

Percent_Developed_Medium 
Percentage of Developed, Medium Intensity 

area 

Percent_Developed_High 
Percentage of Developed, High Intensity 

area 

Percent_Barren 
Percentage of Barren Land (Rock / Sand / 

Clay) 

Percent_DeciduousForest Percentage of Deciduous Forest 

Percent_EvergreenForest Percentage of Evergreen Forest 

Percent_MixedForest Percentage of Mixed Forest 

Percent_ShrubScrub Percentage of Shrub / Scrub 

Percent_GrasslandHerb Percentage of Grassland / Herbaceous 

Percent_PastureHay Percentage of Pasture / Hay 

Percent_CultivatedCrops Percentage of Cultivated Crops 

Percent_WoodyWetlands Percentage of Woody Wetlands 

Percent_EmHerbWetlands 
Percentage of Emergent Herbaceous 

Wetlands 

Percent_Develop_Med_Low 
Percentage of the sum of Medium Intensity 

and Low Intensity Developed areas 

Percent_Develop_Med_Low_OpnSp 

Percentage of the sum of Medium Intensity, 

Low Intensity, and Open Space Developed 

areas 

Percent_Develop_High_Med 
Percentage of the sum of High Intensity and 

Medium Intensity Developed areas 

Percent_Develop_High_Med_Low 
Percentage of the sum of High Intensity, 

Medium Intensity, and Low Intensity areas 
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Table 14 (cont.) 

Variable name Description 

Land Cover variables within each MBG polygon (percentage) (cont.) 

Percent_OW11PH81CC82WW90EHW95 

Percentage of the sum of Open Water, 

Pasture / Hay, Cultivated Crops, Woody 

Wetlands, and Emergent Herbaceous 

Wetlands areas 

Percent_OW11_WW90_EHW95 

Percentage of the sum of Open Water, 

Woody Wetlands, and Emergent 

Herbaceous Wetlands areas 

Percent_PH81_CC82 
Percentage of the sum of Pasture / Hay and 

Cultivated Crops areas 

Percent_PH81_CC82_WW90_EHW95 

Percentage of the sum of Pasture / Hay, 

Cultivated Crops, Woody Wetlands, and 

Emergent Herbaceous Wetlands areas 

 

Terrain variables within each MBG polygon 

Elevation_min_meters Minimum elevation value, in meters 

Elevation_max_meters Maximum elevation value, in meters 

Elevation_range_meters Range of elevation values, in meters 

Elevation_mean_meters Mean elevation value, in meters 

Aspect_median Median aspect value, in degrees  

Slope_min Minimum slope value, in degrees 

Slope_max Maximum slope value, in degrees 

Slope_range Range of slope values, in degrees 

Slope_mean Mean slope value, in degrees 

 

Temperature variables within each MBG polygon (in degrees Celsius) 

Min_MaxTemp 
Minimum of the maximum temperature, in 

degrees Celsius 

Max_MaxTemp 
Maximum of the maximum temperature, in 

degrees Celsius 

Range_MaxTemp 
Range of maximum temperature values, in 

degrees Celsius 

Mean_MaxTemp 
Mean of the maximum temperature, in 

degrees Celsius 
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Table 14 (cont.) 

Variable name Description 

Temperature variables within each MBG polygon (in degrees Celsius) (cont.) 

Min_MeanTemp 
Minimum of the mean temperature, in 

degrees Celsius 

Max_MeanTemp 
Maximum of the mean temperature, in 

degrees Celsius 

Range_MeanTemp 
Range of mean temperature values, in 

degrees Celsius 

Mean_MeanTemp 
Mean of the mean temperature, in degrees 

Celsius 

Min_MinTemp 
Minimum of the minimum temperature, in 

degrees Celsius 

Max_MinTemp 
Maximum of the minimum temperature, in 

degrees Celsius 

Range_MinTemp 
Range of minimum temperature values, in 

degrees Celsius 

Mean_MinTemp 
Mean of the minimum temperature, in 

degrees Celsius 

 

Area variables within each MBG polygon 

MBG_Area_Sqm Area in square meters 

Area_SqKilometers Area in square kilometers 

 

Additional time variables for each MBG polygon 

Year Year of the start date 

Month Month of the start date 

MonthTxt Month of the start date, in text data format 

Month_and_Year Month and year of the start date 

Week Week of the start date 

Year_short Year of the start date, in short data format 

Month_short 
Month of the start date, in short data 

format 

Week_short Week of the start date, in short data format 
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Appendix D: Correlation Matrices 

The following correlation matrices were run for relevant variables used in this study. 

 

Table 15. Correlation matrix for variables related to thunderstorm formation. 
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Table 16. Correlation matrix for variables used in Models 5, 8, 11, and 14. 
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Table 17. Correlation matrix for variables used in Models 6, 9, 12, and 15. 
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Table 18. Correlation matrix for variables used in Models 7, 10, 13, and 16. 
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Appendix E: Count of Thunderstorm Events 

The following graphs show the number of thunderstorm events, as captured by this 

dataset, by year and by month. Monthly counts show that there is substantial variation in 

the number of events throughout the summer seasons of the study period, and provide a 

useful reference for understanding the intensity and duration measures gathered from this 

dataset. 

 

 
Figure 13. Thunderstorm event count by year. The year 2009 stands out in the first half of the study period 

as having more thunderstorm events, and it is only surpassed by the years 2015 and 2016. It is unknown 

why early years in the study have far fewer thunderstorm events captured in this dataset than later years, 

though it may be due to changes and updates in radar technology. However, the most recent years do not 

have the highest count, so the numbers did not increase continuously over time. Other than the year 2009, 

the peak in thunderstorm count occurred in 2016, and then showed a decrease through the end of the study 

in 2020. Numerous other factors may account for these variations, including El Niño / La Niña (ENSO) and 

climate change. 
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Figure 14. Thunderstorm event count for the month of May for each year. In a monthly breakdown of the 

count, for the month of May, the year 2009 is especially conspicuous as having the most thunderstorm 

events. The only other year that similarly stands out is 2015. 

 

 
Figure 15. Thunderstorm event count for the month of June for each year. The year 2009 again stands out 

as having far more thunderstorms than most other years for the month of June. Again, 2015, and also 2016, 

have similarly high counts. 
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Figure 16. Thunderstorm event count for the month of July for each year. The year 2009 does not stand out 

as having a high count of thunderstorm events. 

 

 
Figure 17. Thunderstorm event count for the month of August for each year. Again, in August, the year 

2009 does not stand out as having a high count of thunderstorm events. 
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Figure 18. Thunderstorm event count for the month of September for each year. In September, the year 

2009 once again stands out as having a high number of thunderstorm events, though there is more variation 

between years. 
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Appendix F: Graphical Results for Models 1, 2, 3, and 4 

Scatterplots and box plots for Models 1, 2, 3, and 4 are provided below. As noted in 

Appendix E, the year 2009 had more thunderstorm events than other years in the first half 

of the study, especially in May, June, and September. 

 

Model 1: Maximum Intensity 

 
Figure 19. Scatterplot for Model 1. The regression line has a slope of -3.640e-09. 

 

 
Figure 20. Box plot showing the distribution of maximum intensity values for each year of the study. 
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Model 2: Maximum Intensity in the 95th Percentile 

 
Figure 21. Scatterplot for Model 2. The regression line has a slope of 0.016235. 

 

Model 3: Mean Intensity 

 
Figure 22. Scatterplot for Model 3. The regression line has a slope of -2.970e-09. 
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Figure 23. Box plot showing the distribution of mean intensity values for each year of the study. 

 

Model 4: Duration 

 
Figure 24. Scatterplot for Model 4. The regression line has a slope of -4.145e-08. 
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Figure 25. Box plot showing the distribution of duration times for each year of the study. 
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Appendix G: Detailed Regression Results for Models 5 through 16 

The following results include the slope, p-value, and statistical significance for each 

variable used in the OLS multivariate regression. Results are also included for models 

that used the mean of the minimum temperature (Mean_MinTemp) instead of the mean of 

the maximum temperature. 

 

Table 19. Results for Model 5. 

Model 5 

Dependent variable: maximum intensity 
Model adjusted R2: 0.2007 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.478e+01 < 2e-16 *** 

Percent_All_Developed 3.792e-02 < 2e-16 *** 

Aspect_median 8.586e-05 0.583 None 

Elevation_range_meters 8.725e-03 < 2e-16 *** 

Mean_MaxTemp 1.821e-01 < 2e-16 *** 

Percent_All_Forest -2.293e-02 < 2e-16 *** 

Percent_PastureHay -4.082e-02 < 2e-16 *** 

Percent_CultivatedCrops 7.763e-03 0.167 None 

Percent_WoodyWetlands -5.086e-02 7.29e-12 *** 

Percent_EmHerbWetlands 5.008e-02 6.47e-14 *** 

Percent_OpenWater -1.071e-01 4.59e-13 *** 

Percent_Barren -1.642e-01 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 20. Results for Model 5, using the mean minimum temperature. 

Model 5 (Mean_MinTemp) 

Dependent variable: maximum intensity 
Model adjusted R2: 0.196 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.847e+01 < 2e-16 *** 

Percent_All_Developed 3.487e-02 < 2e-16 *** 

Aspect_median -1.300e-04 0.407941 None 

Elevation_range_meters 8.496e-03 < 2e-16 *** 

Mean_MinTemp 1.436e-01 < 2e-16 *** 

Percent_All_Forest -2.713e-02 < 2e-16 *** 

Percent_PastureHay -3.647e-02 < 2e-16 *** 

Percent_CultivatedCrops 1.864e-02 0.000939 *** 

Percent_WoodyWetlands -4.777e-02 1.40e-10 *** 

Percent_EmHerbWetlands 4.834e-02 5.36e-13 *** 

Percent_OpenWater -1.056e-01 1.15e-12 *** 

Percent_Barren -1.905e-01 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 21. Results for Model 6. 

Model 6 

Dependent variable: maximum intensity 
Model adjusted R2: 0.1937 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.491e+01 < 2e-16 *** 

Percent_Developed_High 2.149e-01 < 2e-16 *** 

Aspect_median 1.169e-03 5.14e-14 *** 

Elevation_range_meters 8.603e-03 < 2e-16 *** 

Mean_MaxTemp 1.784e-01 < 2e-16 *** 

Percent_All_Forest -2.495e-02 < 2e-16 *** 

Percent_PastureHay -2.315e-02 3.38e-11 *** 

Percent_CultivatedCrops 1.251e-02 0.0266 * 

Percent_WoodyWetlands -5.750e-02 1.22e-14 *** 

Percent_EmHerbWetlands 5.018e-02 7.32e-14 *** 

Percent_OpenWater -1.032e-01 3.86e-12 *** 

Percent_Barren -1.634e-01 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 22. Results for Model 6, using the mean minimum temperature. 

Model 6 (Mean_MinTemp) 

Dependent variable: maximum intensity 
Model adjusted R2: 0.1901 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.842e+01 < 2e-16 *** 

Percent_Developed_High 1.971e-01 < 2e-16 *** 

Aspect_median 8.577e-04 3.62e-08 *** 

Elevation_range_meters 8.384e-03 < 2e-16 *** 

Mean_MinTemp 1.493e-01 < 2e-16 *** 

Percent_All_Forest -2.851e-02 < 2e-16 *** 

Percent_PastureHay -2.072e-02 3.21e-09 *** 

Percent_CultivatedCrops 2.320e-02 4.09e-05 *** 

Percent_WoodyWetlands -5.452e-02 2.91e-13 *** 

Percent_EmHerbWetlands 4.907e-02 2.91e-13 *** 

Percent_OpenWater -1.029e-01 5.04e-12 *** 

Percent_Barren -1.890e-01 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 23. Results for Model 7. 

Model 7 

Dependent variable: maximum intensity 
Model adjusted R2: 0.2009 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.477e+01 < 2e-16 *** 

Percent_Develop_Med_Low_OpnSp 4.151e-02 < 2e-16 *** 

Aspect_median 3.908e-05 0.803 None 

Elevation_range_meters 8.729e-03 < 2e-16 *** 

Mean_MaxTemp 1.823e-01 < 2e-16 *** 

Percent_All_Forest -2.284e-02 < 2e-16 *** 

Percent_PastureHay -4.207e-02 < 2e-16 *** 

Percent_CultivatedCrops 7.103e-03 0.206 None 

Percent_WoodyWetlands -5.080e-02 7.68e-12 *** 

Percent_EmHerbWetlands 5.012e-02 6.12e-14 *** 

Percent_OpenWater -1.067e-01 5.68e-13 *** 

Percent_Barren -1.647e-01 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 24. Results for Model 7, using the mean minimum temperature. 

Model 7 (Mean_MinTemp) 

Dependent variable: maximum intensity 
Model adjusted R2: 0.1962 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.847e+01 < 2e-16 *** 

Percent_Develop_Med_Low_OpnSp 3.818e-02 < 2e-16 *** 

Aspect_median -1.730e-04 0.27103 None 

Elevation_range_meters 8.499e-03 < 2e-16 *** 

Mean_MinTemp 1.435e-01 < 2e-16 *** 

Percent_All_Forest -2.706e-02 < 2e-16 *** 

Percent_PastureHay -3.760e-02 < 2e-16 *** 

Percent_CultivatedCrops 1.803e-02 0.00137 ** 

Percent_WoodyWetlands -4.769e-02 1.49e-10 *** 

Percent_EmHerbWetlands 4.836e-02 5.21e-13 *** 

Percent_OpenWater -1.052e-01 1.41e-12 *** 

Percent_Barren -1.910e-01 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 25. Results for Model 8. 

Model 8 

Dependent variable: maximum intensity (95th percentile subset) 
Model adjusted R2: 0.03356 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 6.739e+01 < 2e-16 *** 

Percent_All_Developed 9.493e-03 7.17e-07 *** 

Aspect_median 2.642e-03 3.01e-07 *** 

Elevation_range_meters 5.849e-04 < 2e-16 *** 

Mean_MaxTemp -1.168e-01 < 2e-16 *** 

Percent_All_Forest -2.293e-03 0.06753 . 

Percent_PastureHay 6.825e-03 0.68282 None 

Percent_CultivatedCrops 3.299e-02 0.33607 None 

Percent_WoodyWetlands -1.686e-01 0.00108 ** 

Percent_EmHerbWetlands 1.918e-02 0.65684 None 

Percent_OpenWater -7.288e-02 0.64271 None 

Percent_Barren -1.369e-01 0.10105 None 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 26. Results for Model 8, using the mean minimum temperature. 

Model 8 (Mean_MinTemp) 

Dependent variable: maximum intensity (95th percentile subset) 
Model adjusted R2: 0.0321 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 6.523e+01 < 2e-16 *** 

Percent_All_Developed 1.138e-02 2.17e-09 *** 

Aspect_median 2.948e-03 1.43e-08 *** 

Elevation_range_meters 6.325e-04 < 2e-16 *** 

Mean_MinTemp -1.102e-01 < 2e-16 *** 

Percent_All_Forest 6.621e-05 0.95441 None 

Percent_PastureHay 6.549e-03 0.69525 None 

Percent_CultivatedCrops 1.195e-02 0.72832 None 

Percent_WoodyWetlands -1.660e-01 0.00131 ** 

Percent_EmHerbWetlands 3.998e-03 0.92627 None 

Percent_OpenWater -3.757e-02 0.81123 None 

Percent_Barren -1.061e-01 0.20458 None 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 27. Results for Model 9. 

Model 9 

Dependent variable: maximum intensity (95th percentile subset) 
Model adjusted R2: 0.03221 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 6.749e+01 < 2e-16 *** 

Percent_Developed_High 5.329e-02 0.003904 ** 

Aspect_median 3.069e-03 1.26e-09 *** 

Elevation_range_meters 5.604e-04 < 2e-16 *** 

Mean_MaxTemp -1.205e-01 < 2e-16 *** 

Percent_All_Forest -3.039e-03 0.014395 * 

Percent_PastureHay 1.120e-02 0.501767 None 

Percent_CultivatedCrops 3.443e-02 0.315852 None 

Percent_WoodyWetlands -1.763e-01 0.000632 *** 

Percent_EmHerbWetlands 2.088e-02 0.628786 None 

Percent_OpenWater -5.707e-02 0.716514 None 

Percent_Barren -1.443e-01 0.083935 . 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 28. Results for Model 9, using the mean minimum temperature. 

Model 9 (Mean_MinTemp) 

Dependent variable: maximum intensity (95th percentile subset) 
Model adjusted R2: 0.03013 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 6.523e+01 < 2e-16 *** 

Percent_Developed_High 6.420e-02 0.000487 *** 

Aspect_median 3.454e-03 1.3e-11 *** 

Elevation_range_meters 6.034e-04 < 2e-16 *** 

Mean_MinTemp -1.113e-01 < 2e-16 *** 

Percent_All_Forest -5.481e-04 0.634496 None 

Percent_PastureHay 1.154e-02 0.489572 None 

Percent_CultivatedCrops 1.356e-02 0.693805 None 

Percent_WoodyWetlands -1.762e-01 0.000648 *** 

Percent_EmHerbWetlands 5.810e-03 0.893140 None 

Percent_OpenWater -1.880e-02 0.904952 None 

Percent_Barren -1.156e-01 0.167311 None 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 29. Results for Model 10. 

Model 10 

Dependent variable: maximum intensity (95th percentile subset) 
Model adjusted R2: 0.03363 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 6.739e+01 < 2e-16 *** 

Percent_Develop_Med_Low_OpnSp 1.045e-02 4.61e-07 *** 

Aspect_median 2.624e-03 3.72e-07 *** 

Elevation_range_meters 5.854e-04 < 2e-16 *** 

Mean_MaxTemp -1.167e-01 < 2e-16 *** 

Percent_All_Forest -2.267e-03 0.0707 . 

Percent_PastureHay 6.553e-03 0.6949 None 

Percent_CultivatedCrops 3.268e-02 0.3407 None 

Percent_WoodyWetlands -1.683e-01 0.0011 ** 

Percent_EmHerbWetlands 1.906e-02 0.6587 None 

Percent_OpenWater -7.294e-02 0.6424 None 

Percent_Barren -1.367e-01 0.1014 None 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 30. Results for Model 10, using the mean minimum temperature. 

Model 10 (Mean_MinTemp) 

Dependent variable: maximum intensity (95th percentile subset) 
Model adjusted R2: 0.03221 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 6.523e+01 < 2e-16 *** 

Percent_Develop_Med_Low_OpnSp 1.253e-02 1.14e-09 *** 

Aspect_median 2.926e-03 1.86e-08 *** 

Elevation_range_meters 6.332e-04 < 2e-16 *** 

Mean_MinTemp -1.103e-01 < 2e-16 *** 

Percent_All_Forest 8.395e-05 0.94221 None 

Percent_PastureHay 6.239e-03 0.70905 None 

Percent_CultivatedCrops 1.153e-02 0.73733 None 

Percent_WoodyWetlands -1.656e-01 0.00134 ** 

Percent_EmHerbWetlands 3.846e-03 0.92908 None 

Percent_OpenWater -3.755e-02 0.81130 None 

Percent_Barren -1.058e-01 0.20574 None 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 31. Results for Model 11. 

Model 11 

Dependent variable: mean intensity 
Model adjusted R2: 0.03217 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.228e+01 < 2e-16 *** 

Percent_All_Developed 1.035e-02 < 2e-16 *** 

Aspect_median 5.390e-04 < 2e-16 *** 

Elevation_range_meters 1.030e-03 < 2e-16 *** 

Mean_MaxTemp 3.414e-02 < 2e-16 *** 

Percent_All_Forest -1.089e-03 7.93e-14 *** 

Percent_PastureHay -1.516e-02 < 2e-16 *** 

Percent_CultivatedCrops -4.466e-03 0.03441 * 

Percent_WoodyWetlands -1.636e-02 4.52e-09 *** 

Percent_EmHerbWetlands 1.941e-03 0.43952 None 

Percent_OpenWater -1.619e-02 0.00362 ** 

Percent_Barren -3.920e-02 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 32. Results for Model 11, using the mean minimum temperature. 

Model 11 (Mean_MinTemp) 

Dependent variable: mean intensity 
Model adjusted R2: 0.03175 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.291e+01 < 2e-16 *** 

Percent_All_Developed 9.703e-03 < 2e-16 *** 

Aspect_median 4.909e-04 < 2e-16 *** 

Elevation_range_meters 9.850e-04 < 2e-16 *** 

Mean_MinTemp 3.251e-02 < 2e-16 *** 

Percent_All_Forest -1.617e-03 < 2e-16 *** 

Percent_PastureHay -1.461e-02 < 2e-16 *** 

Percent_CultivatedCrops -2.154e-03 0.30790 None 

Percent_WoodyWetlands -1.618e-02 6.77e-09 *** 

Percent_EmHerbWetlands 2.012e-03 0.42296 None 

Percent_OpenWater -1.649e-02 0.00306 ** 

Percent_Barren -4.393e-02 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 33. Results for Model 12. 

Model 12 

Dependent variable: mean intensity 
Model adjusted R2: 0.02742 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.232e+01 < 2e-16 *** 

Percent_Developed_High 5.482e-02 < 2e-16 *** 

Aspect_median 8.447e-04 < 2e-16 *** 

Elevation_range_meters 9.951e-04 < 2e-16 *** 

Mean_MaxTemp 3.309e-02 < 2e-16 *** 

Percent_All_Forest -1.658e-03 < 2e-16 *** 

Percent_PastureHay -1.027e-02 4.80e-15 *** 

Percent_CultivatedCrops -3.209e-03 0.12946 None 

Percent_WoodyWetlands -1.828e-02 6.38e-11 *** 

Percent_EmHerbWetlands 1.979e-03 0.43161 None 

Percent_OpenWater -1.497e-02 0.00728 ** 

Percent_Barren -3.906e-02 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 34. Results for Model 12, using the mean minimum temperature. 

Model 12 (Mean_MinTemp) 

Dependent variable: mean intensity 
Model adjusted R2: 0.02755 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.289e+01 < 2e-16 *** 

Percent_Developed_High 5.095e-02 < 2e-16 *** 

Aspect_median 7.759e-04 < 2e-16 *** 

Elevation_range_meters 9.526e-04 < 2e-16 *** 

Mean_MinTemp 3.419e-02 < 2e-16 *** 

Percent_All_Forest -2.015e-03 < 2e-16 *** 

Percent_PastureHay -1.015e-02 9.30e-15 *** 

Percent_CultivatedCrops -9.203e-04 0.66377 None 

Percent_WoodyWetlands -1.817e-02 8.17e-11 *** 

Percent_EmHerbWetlands 2.234e-03 0.37479 None 

Percent_OpenWater -1.560e-02 0.00518 ** 

Percent_Barren -4.357e-02 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 35. Results for Model 13. 

Model 13 

Dependent variable: mean intensity 
Model adjusted R2: 0.03239 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.228e+01 < 2e-16 *** 

Percent_Develop_Med_Low_OpnSp 1.138e-02 < 2e-16 *** 

Aspect_median 5.241e-04 < 2e-16 *** 

Elevation_range_meters 1.031e-03 < 2e-16 *** 

Mean_MaxTemp 3.421e-02 < 2e-16 *** 

Percent_All_Forest -1.060e-03 3.48e-13 *** 

Percent_PastureHay -1.553e-02 < 2e-16 *** 

Percent_CultivatedCrops -4.650e-03 0.02761 * 

Percent_WoodyWetlands -1.633e-02 4.83e-09 *** 

Percent_EmHerbWetlands 1.951e-03 0.43698 None 

Percent_OpenWater -1.608e-02 0.00385 ** 

Percent_Barren -3.933e-02 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 36. Results for Model 13, using the mean minimum temperature. 

Model 13 (Mean_MinTemp) 

Dependent variable: mean intensity 
Model adjusted R2: 0.03195 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 4.291e+01 < 2e-16 *** 

Percent_Develop_Med_Low_OpnSp 1.068e-02 < 2e-16 *** 

Aspect_median 4.768e-04 5.90e-16 *** 

Elevation_range_meters 9.862e-04 < 2e-16 *** 

Mean_MinTemp 3.248e-02 < 2e-16 *** 

Percent_All_Forest -1.595e-03 < 2e-16 *** 

Percent_PastureHay -1.495e-02 < 2e-16 *** 

Percent_CultivatedCrops -2.328e-03 0.27047 None 

Percent_WoodyWetlands -1.614e-02 7.34e-09 *** 

Percent_EmHerbWetlands 2.015e-03 0.42220 None 

Percent_OpenWater -1.638e-02 0.00326 ** 

Percent_Barren -4.406e-02 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 37. Results for Model 14. 

Model 14 

Dependent variable: duration 
Model adjusted R2: 0.2488 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 6.9644006 < 2e-16 *** 

Percent_All_Developed 0.6504379 < 2e-16 *** 

Aspect_median 0.0169918 < 2e-16 *** 

Elevation_range_meters 0.0768347 < 2e-16 *** 

Mean_MaxTemp 0.5111810 < 2e-16 *** 

Percent_All_Forest -0.2096986 < 2e-16 *** 

Percent_PastureHay -0.5715456 < 2e-16 *** 

Percent_CultivatedCrops -0.0636767 0.161 None 

Percent_WoodyWetlands -0.2817821 2.71e-06 *** 

Percent_EmHerbWetlands 0.0721773 0.182 None 

Percent_OpenWater -1.1723964 < 2e-16 *** 

Percent_Barren -0.9115502 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 38. Results for Model 14, using the mean minimum temperature. 

Model 14 (Mean_MinTemp) 

Dependent variable: duration 
Model adjusted R2: 0.2482 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 17.6753635 < 2e-16 *** 

Percent_All_Developed 0.6422580 < 2e-16 *** 

Aspect_median 0.0164240 < 2e-16 *** 

Elevation_range_meters 0.0761991 < 2e-16 *** 

Mean_MinTemp 0.3751707 < 2e-16 *** 

Percent_All_Forest -0.2227624 < 2e-16 *** 

Percent_PastureHay -0.5580507 < 2e-16 *** 

Percent_CultivatedCrops -0.0345101 0.448 None 

Percent_WoodyWetlands -0.2711129 6.43e-06 *** 

Percent_EmHerbWetlands 0.0653054 0.227 None 

Percent_OpenWater -1.1651221 < 2e-16 *** 

Percent_Barren -0.9864771 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 39. Results for Model 15. 

Model 15 

Dependent variable: duration 
Model adjusted R2: 0.2151 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 9.3107785 < 2e-16 *** 

Percent_Developed_High 3.1915033 < 2e-16 *** 

Aspect_median 0.0368763 < 2e-16 *** 

Elevation_range_meters 0.0745410 < 2e-16 *** 

Mean_MaxTemp 0.4433159 < 2e-16 *** 

Percent_All_Forest -0.2466935 < 2e-16 *** 

Percent_PastureHay -0.2584371 < 2e-16 *** 

Percent_CultivatedCrops 0.0127846 0.783 None 

Percent_WoodyWetlands -0.4088155 2.75e-11 *** 

Percent_EmHerbWetlands 0.0752225 0.173 None 

Percent_OpenWater -1.0860826 < 2e-16 *** 

Percent_Barren -0.9076648 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 40. Results for Model 15, using the mean minimum temperature. 

Model 15 (Mean_MinTemp) 

Dependent variable: duration 
Model adjusted R2: 0.2153 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 16.5486945 < 2e-16 *** 

Percent_Developed_High 3.1365904 < 2e-16 *** 

Aspect_median 0.0358968 < 2e-16 *** 

Elevation_range_meters 0.0739607 < 2e-16 *** 

Mean_MinTemp 0.4918309 < 2e-16 *** 

Percent_All_Forest -0.2499082 < 2e-16 *** 

Percent_PastureHay -0.2586941 < 2e-16 *** 

Percent_CultivatedCrops 0.0450374 0.332 None 

Percent_WoodyWetlands -0.4097202 2.46e-11 *** 

Percent_EmHerbWetlands 0.0810333 0.142 None 

Percent_OpenWater -1.0980253 < 2e-16 *** 

Percent_Barren -0.9668699 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

Table 41. Results for Model 16. 

Model 16 

Dependent variable: duration 
Model adjusted R2: 0.2508 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 6.8049009 < 2e-16 *** 

Percent_Develop_Med_Low_OpnSp 0.7189678 < 2e-16 *** 

Aspect_median 0.0159069 < 2e-16 *** 

Elevation_range_meters 0.0769303 < 2e-16 *** 

Mean_MaxTemp 0.5157808 < 2e-16 *** 

Percent_All_Forest -0.2076419 < 2e-16 *** 

Percent_PastureHay -0.5967611 < 2e-16 *** 

Percent_CultivatedCrops -0.0755440 0.096 . 

Percent_WoodyWetlands -0.2786398 3.4e-06 *** 

Percent_EmHerbWetlands 0.0727905 0.177 None 

Percent_OpenWater -1.1667353 < 2e-16 *** 

Percent_Barren -0.9193800 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 42. Results for Model 16, using the mean minimum temperature. 

Model 16 (Mean_MinTemp) 

Dependent variable: duration 
Model adjusted R2: 0.2501 
Model p-value: < 2.2e-16 

Independent variables Estimate p-value Signif. 

(Intercept) 17.6957052 < 2e-16 *** 

Percent_Develop_Med_Low_OpnSp 0.7100289 < 2e-16 *** 

Aspect_median 0.0153534 < 2e-16 *** 

Elevation_range_meters 0.0762905 < 2e-16 *** 

Mean_MinTemp 0.3717767 < 2e-16 *** 

Percent_All_Forest -0.2211524 < 2e-16 *** 

Percent_PastureHay -0.5825645 < 2e-16 *** 

Percent_CultivatedCrops -0.0463041 0.308 None 

Percent_WoodyWetlands -0.2674124 8.35e-06 *** 

Percent_EmHerbWetlands 0.0653691 0.226 None 

Percent_OpenWater -1.1587850 < 2e-16 *** 

Percent_Barren -0.9951197 < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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