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Evolution of life history parameters in animals with
indeterminate growth, particularly fish

ERIC L. CHARNOY and DAVID BERRIGAN
Department of Biology, University of Utah, Salt Lake City, UT 84112, USA

Summary

Most evolutionary life history theory is developed in terms of the allocation of resources to the competing
ends of growth, reproduction, and survivorship. In this paper we show that certain dimensionless numbers
may be used to describe the relationship between growth, maturation, and adult mortality; our theory aims
to predict these numbers and we are led to aggregate some basic features of life histories, rather than
explicitly considering the allocation of a limited resource to different components of fitness. The
phenomenology developed here has the convenient property that only parameters describing the shapes of
two assumed trade-offs among life history traits appear in the solution of the resulting optimisation problem.
Comparative inter- and intraspecific data on fish, lizard, snake and shrimp populations suggest that this
approach may help explain some common patterns in the life histories of animals with indeterminate
growth.

Keywords: Dimensional analysis, body size allometry, ESS, evolution of maturation, growth curve
evolution

Discussion

Thirty years ago Beverton and Holt (1959) and Beverton (1963) pioneered the comparative study
of fish life histories by showing that within limited taxonomic boundaries (such as within the cod,
salmon or herring family), there existed certain across-species (or populations within a species)
patterns in growth and mortality. These patterns, reviewed in Cushing (1968) and Pauly (1980),
are three in number. Within eéach group the adult instantaneous mortality rate, M, and the
Bertalanffy growth coefficient, K, are positively related to each other so that the ratio K/M tends
to be relatively constant; and the K/M ratio differs between taxa. The second pattern is that the
length at maturity (/) is positively related to the Beralanffy asymptotic length (/) so that the
relative length at maturity, /,/l., tends to be a constant value within a taxa. K/M and [,/l., are
themselves connected in an interesting way. If growth follows the two parameter Bertlanffy
equation then

ly

.
where « is the age of maturity. If a group of species share a common [/l value, they also share
the same K-« value; but if they also have K/M = constant, then the product M-a will itself be a
constant. Thus, species with the same K/M and [,/ ratios will have adult instantaneous mortality
rates (M) that are inversely proportional to the ages of maturity (o). Combining Beverton’s
(1963) Tables 4 and 10 shows that M = 2.1/a for Clupeids and Engraulids (see also Roff 1984,
Equation 37). The third pattern is that K and [/, are negatively related across species (or
populations) within a closely related group. Pauly (1980; Munro and Pauly 1983; Pauly and
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Munro 1984; Moreau et al. 1986; reviewed in Chapter 9 of Longhurst and Pauly 1987) showed
that plots of log.l,, versus log.K, among closely related species or populations within a species,
are generally linear with slopes clustering near —1/2 (see also Table 1). For example, such a plot
for 100 populations of closely related Tilapia species gives a linear relation with a functional
regression (Ricker 1973) slope of —0.57 (Moreau et al., 1986). Table 1 shows regression analysis
for 11 other species.

Table 1. Estimates of h from within species regressions of log./. on log K.

Standard error  Correlation coefficient/ Probability level
Family/species Kl of h sample size? (2 tailed test)

Gadidae (Cod)

1. Gadus morhua 0.55 0.06 r=—0.65n=49 < (.0001
2. Melanogrammus aeglefinus  0.75 0.14 r=-0.78,n= 13 < 0.002
3. Merlangius merlangus 0.40 0.021 r=—0.87,n=91 < 0.0001
Clupeidae (Herring, Sardines)
4. Clupea harengus 0.50 0.08 r=-0.39,n=39 < 0.014
5. Sardina pilchardus 0.42 0.08 r=-0.66,n =18 < 0.003
6. Sardinops caerula 0.41  0.08 r=-0.54,n=19 < 0.02
7. Sardinella aurita 0.38 0.08 r=—073,n=13 <0.005
8. Brevoortia tyrannus 0.49 0.06 r=-0.67,n=43 <0.0001
Engraulidae (Anchovies)
9. Engraulis japonicus 0.44 0.065 r=—085n=15 < 0.0001
10. Engraulis encrasicholus 0.31 0.06 r= —0.66,n=17 < 0.004
11. Engraulis mordax 0.27 0.025 r=-090,n=26 < 0.0001

'h is minus the slope of the functional regression (Ricker (1973) also called the major axis) of
log.l. vs log. K within a species, between populations and/or year classes (see Note 2). The within-species
data were used to estimate the &° because plots at higher taxonomix levels (e.g. within a family, or pooling
all species) lead to higher values of #. We suspect that this effect results from larger species having higher A
values (but it could also be a statistical artifact (Pagel and Harvey, 1988)).

2A datum is a separate population, stock or year class.

Beverton (1963) went beyond the basic description of the patterns and proposed that they must
reflect the action of natural selection. In his words: . . . An adaptive interpretation of the
adjustment of growth and longevity might be explicable in simple Darwinian terms by supposing
that it is an ‘advantage’ to the individual to complete as much as possible of its potential growth
within its likely maximum life-span, this advantage being that which best enables its reproductive
potential to be realised and so maximises the contribution of its progeny to future generations.
But in this case the age at first maturity must also be adjusted to life-span; that this happens is
shown in Figure 7 by the constancy of the ratio of length at first maturity to asymptotic length
(I/1.).” We view the present paper as a development of Beverton’s argument, recast in terms of
evolutionary life history theory.

Our reasons for being interested in these patterns are first, that the within-taxa constancy of
the dimensionless numbers K/M, [ /I, and a-M has also been shown for three other groups of
animals: snakes; lizards; and Pandalid shrimp (Charnov 1979, 1989; Charnov and Shine 1990)
(and K/M is near 1 for many sea urchin species, Ebert, 1975) and, second, that an approach to life
histories which classifies them using a few aggregated numbers would itself seem to be a useful
exercise. Thus, our goal is to develop life history theory to predict the values of these
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Evolution and life history parameters 65

dimensionless numbers. See Charnov and Berrigan (1990) for how various life styles affect the
oM number and Charnov (1991) for discussion of the utility of Jooking for life history
generalisations in terms of dimensionless numbers. While we do not claim that the present
modelling exercise is unique, the phenomenology developed leads in a rather simple and elegant
way to the predicted constancy of the three dimensionless numbers, and attaches specific
meaning to their particular numerical values.

Models in evolutionary genetics show that the average number of offspring produced over an
individual’s total lifespan (R,) is a measure of Darwinian fitness in a non-growing population
(Lande, 1982; Charnov, 1986; 1990). Consider a newborn female and define /, as the probability

she is alive at age x, and b, as her birth rate, in daughters, at age x. Her lifetime production

of daughters is R, = [ o /b.dx. We can rewrite R, as R, = ¢, [Q‘Z/M]; the term in brackets is
the average number of daughters born over a female’s adult lifespan, the ‘Fisherian reproductive
value’ (Fisher 1930) of an age « (a just mature) female, and will therefore be labelled V(a). We
thus have

o= lu V() 6

To allow for the possibility that mortality decreases over the immature period, a common
feature of life tables, write /7, as /, = e~J&M@dx, where M(x) may decrease with x. Charnov (1989,
1990), building on a suggestion by Roff (1984, 1986), proposed that V(a) could often be
represented as V(a) o< I3 (length at age a to the power 8). We also assume Bertalanffy growth
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Figure 1. A graphical method to estimate the equilibrium £ and ! (= R) from 3 and h (or vice versa);
from Equation 3 and 4 in the text. The right hand panel is the solution of equation 3: R as a function of A.
The upper left panel transforms R into R/(1—R). The lower left panel is the solution to equation 4; it
transforms R/(1—R) into K/M for the appropriate 8 value. The dotted lines show one example. Of course,

. the graphs also allow us to estimate 8 and 7 from R and K/M.
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(I, = l.(1—e~Kx)), and that /. and K are inversely related as ., = A-K— (with h < 1).
Putting the above into equation 1 gives

R, o e—I& M(x)dx. AS. K—hd(| —e—K-a)p @

Natural selection acts on this model lzfe history through choice of « and K. Evolutionary
equilibrium is where 2 k;ij = 0 and 2 E%R" 0 at the same time. These operations on
Equation 2 produce the following results; in what follows, M refers to M(o), the adult
instantaneous mortality rate, assumed a constant over the adult lifespan (1 e. it stops decreasing
at age ) and R refers to the relative length at the age of maturity (R = ﬁ =1— eKa).

[_%’QKg_Bg =0] h= B—! log. (1I-R) 3)
3 log.R, _ K R_

These two equations, as functions of the two shape coefficients 8 and 4, thus fix the value of two
dimensionless numbers, K/IM and [ /I, (= R). Three implications of these equations are
noteworthy (see also Fig. 1).

First, Equation 3 has the following meaning: # must be <1, and for a given h there is only one
R ratio which satisfies the equation. Second, Equation 4 shows that for a given R and 8 values,
there is only one K/M ratio allowed; thus all species with the same 4,8 values are predicted to
have the same K/M ratio. Third, if we rewrite —log, (1-R) as K-« and substitute it into Equation
3, we can combine this with equation 4 to show that M-« = 3-h (Equation 5); the adult
instantaneous mortality rate (M) is inversely proportional to the age of maturity, «, with the
proportionality constant equal to d-A.

If log regressions (functional regressions, Ricker 1973) of [, on K can be used to estimate k,
then the Pauly analysis mentioned earlier has & about the right magnitude (= 0.5) since most
fish have R in the range 0.4 to 0.8 (Beverton and Holt 1959), leading through Equation 3 to
being predicted to be in the range 0.4 to 0.8 (Fig. 1). This regression technique should give a valid
estimate of 4 if: (i) the data come from populations with similar R values; and (ii) the height
parameters in the particular trade- offs (the A of I, = A-K-#) are the same and/or at least
uncorrelated with either of two variables (I, or K). Of course, functional regression (also called
the major ax1s) assumes equal error variance on each axis; if more precise information is known
about the respective error variances, other estimation schemes become more reasonable (Ricker,
1973; Pagel and Harvey, 1988). Our use of functional regression is motivated by the fact that
between species (or population) variation in A (or log.A) contributes to error almost
symmetrically on both axes. It should also be noted that the growth data used to estimate I, and
K (within each population) must span the entire age range; otherwise [, and K will have a
negative covariance due simply to the estimation of each from the same data.

Since h is predicted to be inversely related to R (Equation 3, Fig. 1), a powerful test of
hypothesis would be to estimate the slope of the functional regression of log.l. on log.K within
groups of species (or populations) with similar R values, and then see if the relation between R
and A looks like Equation 3. One comparison of this type is possible using the growth data
compilation of Pauly (1978). He compiled or estimated growth curves for 1501 populations,
stocks or year classes of 515 species of fish (in 104 families). Beverton and Holt (1959) and
Beverton (1963) showed that R averaged = 0.55 for the cod family (Gadidae) and = 0.75 for the
herring, sardines and anchovies (the Clupeomorpha, families Clupeidae and Engraulidae); these
values for R are near the outer bounds for fish. From Equation 3 we predict # = 0.45 for fish in
the Clupeomorpha and k& = 0.65 for cod. From the Pauly (1978) compilation 11 species (three
cods, five Clupeids, three Engraulids) have 13 or more observations per species (stocks and/or
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year classes); Table 1 shows the results of functional regressions (Ricker 1973) of log,/., versus
log. K within each of these species. The estimates of 4 ranged from 0.27 to 0.75; Fig. 2 is a plot of
the h, broken down by cod versus Clupeomorpha. Notice that the cod are generally much higher
than the Clupeomorpha (the highest two & are cod) and the averages (£), are not far from the
theoretical expected: cod; theory = 0.65, observed = 0.57; Clupeomorpha; theory = 0.45,
observed = 0.40. While this comparison involves few species (and while the within-family/
between-species differences are not explained), the averages do indeed provide support for the
theoretical approach suggested here.

[} Clupeidae or Engraulidae
B Gadidae

00 (N0 71 e 6B W

0.3 0.4 0.5 0.6 0.7

h

Figure 2. A graphical representation of the & values of Table 1. In general, the cod (M) are higher than the
Clupeomorpha (0); the averages (O = observed; T = theoretical) are also shown.

The phenomenology developed here (Equation 2) aggregates the life history in two ways, first
by assuming that V («) o B, and second by assuming a growth trade-off of the form I, = A-K—5.
It leads to predictions as to the values of the desired dimensionless numbers (themselves
aggregate variables), as functions of the shape coefficients 8 and 4. We consider this aggregate
approach to life histories complementary to the more detailed, mechanistic approach adopted in
most resource allocation models; it goes without saying that one might wish to derive the shape
coefficients 8 and k£ from more basic allocation principles (or even ignore the 5, h
phenomenology’ and use allocation principles directly to account for the data patterns of the
dimensionless numbers — D. Roff (personal communication)). However, such aggregration, both
in the theory (3, /) and in the data (K/M, oM, [,/l.,) may often allow us to see broader patterns
(e.g. Charnov and Berrigan, 1990 for a-M). We end this note with one such puzzle about the K/M
number; the between-species average K/M value for the Beverton-Holt (1959) fish data is near |
or K = M; this numerical relation, K = M, is also true on average for snakes, for lizards, and
even for sea urchins (Charnov and Shine, 1990; Ebert, 1975). Why should it be the case that K =
M for such seemingly different animals? It is not true for Pandalid shrimp, where K = 0.37 M
(Charnov, 1989). And of course not all fish have K = M; the clupeids have K = 0.67 M (Beverton,
1963).
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