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Distribution pdf

Normal f(x|µ,σ) = 1
σ
√
2π

exp
(

− (x−µ)2

2σ2

)

Cauchy f(x|µ,σ) = 1

πσ(1+(x−µ
σ

)2)

Laplace f(x|µ,σ) = 1
2σ

exp
(

− |x−µ|
σ

)

Logistic f(x|µ,σ) =
exp(−x−µ

σ )
σ(1+exp(−x−µ

σ ))
2

Gumbel f(x|µ,σ) = 1
σ
exp

(
−x−µ

σ
− exp

(
−x−µ

σ

))

Table 4.1: Distribution candidates for the prediction error

Characterizing the prediction error

We saw previously that the decoder needs to model the error function. To this end,

we use the errors produced by the affine predictor given above. Errors are normalized

dividing by their corresponding Ti.

We select some candidate distributions and estimate their parameters using MLE,

as this method chooses the value of the parameters that produce a distribution that

gives the observed data with the greatest probability. Afterwards, we evaluate the

goodness-of-fit using different metrics: the KLD, the χ2 , the Kolmogorov-Smirnov

(KS) and the Anderson-Darling (AD). The smaller the value the better is the fit in

all of them.

The candidate distributions were selected among the most common continuous

distributions that have support at least on the range of our data, i.e (−1, 1). The

chosen distributions are Normal, Cauchy, Laplace, Logistic and Gumbel. Their pdfs

can be seen in Table 4.1.

Table 4.2 shows the parameters obtained by MLE. Table 4.3 shows the goodness-

of-fit test results, where it is shown that the Laplace distribution best models our

data.

We also denormalize the intervals, hence we get the distribution of the error



Chapter 4. Prediction-based Flow Correlation 73

Distribution Parameters
Normal µ = 0.0023, σ = 0.1474
Cauchy µ = 0.00048, σ = 0.0809
Laplace µ = 0.00014, σ = 0.1107
Logistic µ = 0.00013, σ = 0.0797
Gumbel µ = −0.0791, σ = 0.1983

Table 4.2: MLE Parameters

Test Filtered Data
Distribution KLD χ2 KS AD
Normal 0.1608 801057 0.1005 1090
Cauchy 0.0846 586019 0.0763 197
Laplace 0.0315 592904 0.0310 176
Logistic 0.0888 600276 0.06545 514
Gumbel 0.3043 1540593 0.1561 17761

Table 4.3: Goodness of Fit

given the measured RTT, Ti, and we make the simplification µ ≈ 0 (cf. Table 4.2).

Therefore, we can write

fεi|Ti
(εi|ti) =

1

2σti
exp

(

−|εi|
σti

)

, (4.5)

where the value of σ is shown in Table 4.2.

4.4 Analysis and Results

4.4.1 Mathematical analysis

In this section we want to calculate the threshold η for a given probability of false

positive, and the probability of detection that is achieved with such threshold. First,

we statistically model the number of cells per unit of time si/Ti and the round-trip

time for a cell, Ti. Afterwards, we derive the expressions for η and PD.
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Distribution pdf

Gen. Poisson f(x|λ,θ) =
{

λ(λ+θx)x−1 exp(−λ−θx)
x!

x = 0, 1, . . .

0 x > ⌈− θ
λ
⌉ if θ < 0

Gen. Neg. Bin. f(x|p,β,r) = r
r+βx

(
r+βx
x

)
px(1− p)r+βx−x

Table 4.4: Distribution candidates for the number of cells per unit of time

Modelling the number of cells per unit of time

We consider four possible models: the usual ones of chapter 3, Poisson and Negative

Binomial, and their generalizations: Generalized Poisson and Generalized Negative

Binomial. We show the formal pdfs in Tables 3.4 and 4.4 and we refer the reader

to [112] for properties and parameter estimation.

To validate each model we use seven different World Wide Web server logs from

the Internet Traffic Archive and UVigo. We estimate the parameters by MLE [112].

Results (cf. Table 4.5) show that both the Generalized Poisson and the Generalized

Negative Binomial can model the number of requests. We choose to use the General

Poisson Approximation as it has one degree less of freedom than the General Negative

Binomial.

Log
Poisson NB Gen. Poisson Gen. NB
K-L Div. K-L Div. K-L Div. K-L Div.

Calgary 0.0121 0.0076 0.0001 0.0001
UVigo 0.0845 0.0504 0.0012 0.0012

Saskatchewan 0.0246 0.0066 0.0014 0.0017
EPA 0.0979 0.0025 0.0003 0.0001
Nasa 0.0882 0.0002 0.0001 0.00005

Clarknet 0.2534 0.0028 0.0009 0.0009
World Cup 1.9701 0.0074 0.0059 0.0056

Table 4.5: Goodness of Fit for the number of requests
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Modelling a cell round trip delay

A characterization of the pdf of the round-trip time is needed. Our measurements

confirm the result by Loesing et al. that the delays can be modeled as a Fréchet

distribution [104].

Theoretical probabilities

Recalling from previous sections, we decide that the eavesdropped flow contains

Alice’s if the random variable W defined as

W =
n∏

i=1

1

si

∑

Yj∈Pi

exp

(

−|Yj − Ŷxi
|

σTi

)

︸ ︷︷ ︸

Uj
︸ ︷︷ ︸

Vi

(4.6)

is larger than η. Also notice that in (4.6) we have defined the auxiliary random

variables Uj and Vi.

Recall that Yxi
represents the message coming from Alice’s flow if it exists, while

Yj, j 6= xi corresponds to messages from any other source, then, for the latter kind

of messages:

fUj |Ti
(uj|ti) =







σ
uj

uj ∈ (a, b)

2σ
uj

uj ∈ (b, 1)
, j 6= xi (4.7)

where

a = min

{

exp

(

−0.46ti + 0.02

σti

)

, exp

(

−0.54ti − 0.02

σti

)}

b = max

{

exp

(

−0.46ti + 0.02

σti

)

, exp

(

−0.54ti − 0.02

σti

)}

.

For the case j = xi, we have fUxi
|Ti
(uxi

|ti) ∼ Uniform(0, 1).
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We characterize Vi as

fVi
(vi) =

∫ ∞

0

∞∑

si=0

fVi
(vi|si, ti)fS|T (si|ti)fTi

(ti)dti, (4.8)

where f(si|ti) and fTi
(ti) have been characterized in previous sections as Generalized

Poisson and Fréchet distributions, respectively. The pdf fVi
(vi|si, ti) can be computed

by convolving the distributions of Vj|Ti, for j = 1, . . . , ni. Formally,

fV (vi|si, ti) =







δ(vi) si = 0

si
(
fU0|Ti

∗ fV1|Ti
∗ · · · ∗ fVni

|Ti

)
(visi) si > 0

. (4.9)

Note that the case si = 0 is not possible when H1 holds because the cell from Alice’s

flow must arrive inside the interval Pi. Also note that the convolution is evaluated

at visi, this fact comes from (4.6) where the sum is multiplied by 1/si.

Lastly, we characterize W , as f(w) = fv1·v2···vn(w), where the density of the

product of two independent random variables can be obtained as

fv1·v2(v) =

∫ 1

v

1

x
fv1(x)fv2(

v

x
)dx. (4.10)

So we calculate the value of the threshold, η, as the (1− PF )th quantile of fw|H0

and the probability of detection as PD = 1− Fw|H1(η), where Fw denotes the cdf of

fw. As an example, Figure 4.4 shows the theoretical PD as a function of L for Uvigo

traffic and PF = 10−6.

4.5 Results

We have created a simulator to show how close real results are from our predictions,

and to compare with other existing approaches. Then we implement the proposed

flow correlation scheme in the live Tor network against a hidden service.
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Figure 4.4: Theoretical PD for UVigo log for PF = 10−6

4.5.1 Simulator

We created a simulator to validate our theoretical analysis and to compare with

other existing approaches: RAINBOW [88], SWIRL [89] and Interval-based [90]. We

simulate the following scenario. We send an HTTP request every 10 seconds, each

request generates two cells (cf. Figure 4.2). Those flows are watermarked with each

scheme. Each cell is delayed by an amount selected from the dataset so that the

time correlation is preserved. To model the behavior of other users, we send HTTP

requests mimicking the pattern that was measured in one of the logs.

Each experiment is simulated 10 million times. We run this simulator in two

different scenarios. The first case assumes that the other users’ requests are the same

as for UVigo with 3 HTTP requests. The second scenario simulates the traffic of the

web server at NASA’s Kennedy Space Center. This second server is considerably
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Figure 4.5: Simulator Results for UVigo web server with 3 requests

busier than the first one, so we increase the number of HTTP requests to 20.

Results are shown in figures 4.5 and 4.6. We see that this small number of requests

is enough to achieve a very good performance. The performance of our algorithm,

measured by the PD for a given PF is several orders of magnitude better than other

watermarking schemes for the same number of messages. We also see that simulation

results give a better performance than the analysis. This is due to the fact that in our

analysis we assumed no autocorrelation in the log and in the delays, an assumption

that does not hold in reality.

4.5.2 Real Implementation

Obviously, simulations are not fully realistic. For instance, our simulator assumes

that no cells reach the hidden service other than the two generated by each request,

which may lead to overestimating performance. This means that we can filter off
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Figure 4.6: Simulator Results for NASA web server with 20 requests

all the control cells (i.e. padding, create and destroy [33]) and keep only those relay

cells that carry actual information.

The real implementation was done using three computers connected to live Tor:

a hidden service and two clients, one that tries to correlate the flow and another that

sends requests according to the log of the simulated machine. We do not perform

any kind of filtering, keeping all the control cells.

In our experiment, Alice sends one request 10 seconds after she receives the re-

sponse. The gap between two different flow-correlation attacks is fixed to 30 seconds.

We repeat 1,000 times the flow-correlation attack for each experiment. The exper-

iment uses the UVigo log with n = 1, 2 requests. Results are shown in Figure 4.7.

We see that the lack of filtering reduces the performance of the real implementation

compared to the simulator and gives very similar results to the theoretical ones.
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Figure 4.7: Real Implementation, Simulation and Theoretical Results for Uvigo web
server

4.5.3 Detectability

We have mentioned that our scheme is completely undetectable through the TCP’s

intrinsic features as they are not modified, i.e. we do not add any extra delay to

any message. Therefore, actual watermark detection algorithms from 2.4.3 cannot

detect our flow-correlation attack as they rely on those characteristics. This also

makes impossible that an intermediate node detects that Alice is trying to correlate

the flows.

We also want to prevent that Bob can detect the flow-correlation attack, i.e. we

want a low detectability. There are two ways Bob could detect our watermark: the

first, due to the modification of the pdf of the number of received messages, and the

second, due to the uncommonness of the messages pattern. We do not consider the

second, as we have assumed that Alice’s messages follow a normal user’s pattern.
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Figure 4.8: Detectability using the KLD

We measure the detectability using the KLD of the distributions of requests

including Alice’s flow and in its absence. Note that the detectability decreases with

the time between requests, Treq, as seen in Figure 4.8, but we also want that the

flow-correlation attack is done in a reasonable time.

Notice that the anonymous server may try to detect the watermark using higher-

order statistics. Specifically, an increment of the autocorrelation periodically in Treq+

E[Ti] indicates the presence of this watermark as shown in Figure 4.9. This problem

can be easily solved by making the time between requests pseudorandom as seen in

Figure 4.10.

4.6 Conclusions

This chapter proposes a non-blind fingerprint for a flow created by the client. Our

proposed scheme outperforms existing methods. This is due to two reasons: first,
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Figure 4.9: Autocorrelation of the number of requests per second with time between
requests fixed to 30

information generated during the creation of the fingerprint is used in the detection,

and second, the use of an optimal decoder.

The fingerprint is constructed by sending requests, each request determines one

interval. A prediction of the time of arrival is done for each request. The perfor-

mance is studied theoretically and empirically, through both a simulator and a real

implementation of the algorithm. Results show that we can create a fingerprint with

very few requests: less than 10 for a server with little traffic and of a few tens for a

busier web server.

An implementation of the attack against a real hidden server connected to the

Tor network has been carried out, showing a performance greater than the theoretical

results.

We also study the detectability of the algorithm, and see that the larger the

average time between requests, the less detectable our algorithm is, and that we
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Figure 4.10: Autocorrelation of the number of requests per second distributed uni-
formly between 0 and 60

need the time between intervals to be pseudorandom to avoid detection through

higher order statistics.
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Chapter 5

Interval-count-based Flow

Correlation

5.1 Introduction

In this chapter we deal with the same problem as in Chapter 4, i.e., deciding if an

eavesdropped flow is carrying a flow of interest. This second method is based on

detecting an increment of the number of packets that fall inside certain intervals

with respect to the expected when the flow of interest is not present.

We use the same scenario as in Chapter 4, locating a hidden service from Tor

network with the attacker having access to the encrypted flow from the suspected

machine to the Tor network.

The attacker sends requests to the hidden service and the decision is made by de-

tecting the increment of traffic in the eavesdropped link. Time is divided in intervals

and the test considers those in which the cells of the request are predicted to reach

the hidden service. Results show that we can identify a hidden service in a reliable

way with just a couple of requests.
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Figure 5.1: System Model

5.2 Model Problem

In this section, we formally describe the problem and recall the notation presented

in Chapter 2.

The system model is shown in Figure 5.1, where Alice connects to Bob through a

one-hop Tor circuit to the rendezvous point, to reduce the latency variability. Alice

is also able to obtain the time and size of the packets from the flow between the

suspected Bob and his entry guard. Alice wants to correctly decide whether that

flow belongs to Bob or not.

Our application deals with two bidirectional cell flows: the flow that Alice sends to

Bob through its rendezvous point with timing information Xn, and the eavesdropped

flow (suspected to belong to Bob) with timing information Y n2 . As the flows are

bidirectional, we add a subscript I or B to differentiate the direction: I for the flow

that goes from Alice to Bob and B for the opposite direction. In the case that the

expression is valid for both directions, we drop this subscript to keep the notation

simpler.

We consider the following intervals at Bob’s side:

Pi = (bi, ei) = (b0 + i · T, b0 + (i+ 1) · T ), i = 0, . . . , L− 1, (5.1)



Chapter 5. Interval-count-based Flow Correlation 86

where bi is the beginning of each interval, ei is the end, T is the interval length and

L is the number of considered intervals. Alice chooses b0 = X1, i.e., the first interval

starts at the moment Alice sends her first cell to Bob, and intervals are contiguous.

Alice makes her decision based on the number of cells that fall inside Pi, denoting

this random variable by Si, hence:

Si =

n2∑

j=1

✶Pi
(Yj). (5.2)

where ✶A(x) is the indicator function of x ∈ A.

The flow at the alleged Bob can have either one of two sources: the cells from

Alice’s flow or a different source, i.e., other users’ flows. We represent this as SL =

EL +RL, where EL is the number of cells that come from Alice and RL denotes the

remaining cells. Formally,

Ei =
n∑

j=1

✶Pi
(Yxj

). (5.3)

where Yxj
indicates the value of Y that corresponds to the same cell as Xj, if it

exists.

Formally, we can express this problem via classical hypothesis testing with the

following hypotheses:

H0: The suspected flow does not contain Alice’s flow.

H1: The suspected flow contains Alice’s flow.

5.3 Basic Detector

In this section we derive our detector and model the distributions of the number of

packets from other sources and the network delay.
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5.3.1 Detector construction

As in previous chapters, we use the likelihood ratio test for constructing our detector

in order to get the maximum probability of detection for a given probability of false

positive. Hence, our detector chooses H1 when

Λ(sL|xn) =
L(H1|SL, Xn)

L(H0|SL)
=

f(sLB|xn
B, H1)

f(sLB|H0)

f(sLI |xn
I , H1)

f(sLI |H0)

=

∑

eL fEL
B
(eL|xn

B)fRL
B
(sLB − eL)

fRL
B
(sLB)

·
∑

eL fEL
I
(eL|xn

I )fRL
I
(sLI − eL)

fRL
I
(sLI )

> η (5.4)

and H0 in the opposite case. Recall that L represents the likelihood function and η

is a threshold that we fix to achieve a certain probability of false positive. Note that

R has to be greater or equal to 0, hence ei can never be larger than si.

For feasibility reasons, we constraint the detector to use first-order statistics,

discarding the information carried by higher-order statistics. We also assume that

the amount of traffic from other sources, RL, is independent of Bob’s flow.

Hence the likelihood ratio becomes

Λ(sL|xn) =
L∏

i=1

∑sB,i

ei=0 fEB,i|Xn
B
(ei|xn

B)fRB
(sB,i − ei)

fRB
(sB,i)

·
∑sI,i

ei=0 fEI,i|Xn
I
(ei|xn

I )fRI
(sI,i − ei)

fRI
(sI,i)

> η. (5.5)

From (5.5), we notice that we need to model the number of cells a hidden service

receives from other sources (i.e., other clients and control cells) and the number

of cells we will receive in each interval from Alice’s flow, i.e. determine fR(r) and

fEi|Xn(ei|xn) for both directions I and B.
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5.3.2 Modelling the number of cells per unit of time

To model the distribution of the number of cells a hidden service receives per unit of

time, we first measure them in several real connections, then fit these data to some

candidate distributions and select the distribution that matches best.

Alice does not know the distribution of R so she uses the flow prior to sending

her request as training set. We denote by Ttr the length of this training set. Since

Alice uses the traffic just before sending her request, she minimizes the effects of the

non-stationary traffic to Bob.

We used two hidden web servers that replicate two real ones: the old hidden

service Silk Road (SR), and the search engine DuckDuckGo (DDG). We request

each web page according to a Poisson model with rates 58.75 requests per hour for

SR and 2.75 requests per hour for DDG. These vaues are chosen so the total number

of requests is the measured in the original hidden service according to [113]. The

data were captured during 24 hours.

To construct the model, we assume an i.i.d. (independent and identically dis-

tributed) sequence. We use the following models: the empirical distribution; the ker-

nel density estimation (KDE), a non-parametric probability density function (pdf)

estimator also called Parzen-Rosenblatt window; Poisson; Negative Binomial, and

Generalized Poisson [112]. The pmfs of the parametric models, i.e., those that have

a closed-form pmf, are shown in previous chapters in Tables 3.4 and 4.4.

To calculate the KDE we use a Gaussian kernel as shown in [114]. For the

parametric distributions, i.e. Poisson, Negative Binomial and Generalized Poisson,

we estimate the parameters through MLE.

We measure the goodness of fit between the test sequence and the model using

the square root of the Jensen-Shannon divergence (JSD).

We depict the results in Figures 5.2, 5.3 for the SR hidden service and in Figures
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5.4 and 5.5 for the DDG hidden service. First, we see that the Poisson model is

not adequate for cells even when the users requests follow a Poisson distribution,

which is consistent with the results of [115]: users’ requests can be well-modelled as

a Poisson process but packets cannot due to their burstiness. Second, it is clear that

Ttr=5 minutes is enough to model R properly.

Although the empirical distribution gives the best fit, we decide not to use it

because of its lack of robustness, for instance, if a certain value, r, does not appear

in Alice’s training set, then the empirical model would imply fR(r) = 0. Among the

rest we decide to use the Negative Binomial model as its performance is better than

the other parametric models for both directions, I and B, and the KDE performs

well in some situations but not always. Hence, we consider

fR(r|t, q) =
(
t+ r − 1

r

)

qt(1− q)r (5.6)

where t and q are the parameters that Alice obtains through MLE using the previous

300 seconds before sending her request, as previously indicated.

5.3.3 Modelling the number of cells from Alice’s flow in each

interval

In order to characterize the number of cells from Alice that appear in Pi, i.e., fEi|Xn ,

we fist predict the moment when a cell appears at Bob’s side (Ŷx), then we charac-

terize the prediction error with the aim of obtaining the probability of a concrete cell

appearing in each interval, and finally we obtain a model for fEi|Xn .

Predicting cell time at the hidden service

Traffic from hidden services is bursty in most of the cases, such as the response of

HTTP. This implies that the cell delay depends on the position inside the burst,
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Figure 5.2: Goodness of fit for the different models for flow B to SR Hidden Service
(TB=100 ms).

thus we cannot consider cell delays to be identically distributed. To overcome this

problem, we predict the cell delay, Ŷxj
, with information from Alice’s flow including

the position inside its burst.

Figure 5.6 shows the sequence of cells sent after the rendezvous connects the

circuits from Alice and Bob, where besides the RELAY DATA cells (shown in black)

we plot the RELAY SENDME (shown in red), that are used for stream-level flow control

(Onion Proxy to Onion Proxy) and circuit-level flow control (Onion Router to Onion

Proxy). These are sent in a deterministic way (in general, every 50 cells for stream-

level flow control and every 100 cells for circuit-level flow control). Note that the cells

in the B direction tend to scatter, in the sense that the Tor delay tends to increase.

We predict the values of ŶXB,j
as a function of RTT0 (Round Trip Time with a

burst of only 1 cell), RTTn (Round Trip Time corresponding to the cell to predict)
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Figure 5.3: Goodness of fit for the different models for flow I to SR Hidden Service
(TI=100 ms).

and n (number of cells inside the burst). We show in Figure 5.6 how Alice measures

these values. The values of ŶXI,j
are obtained as a function of only the RTT0 as they

do not have a bursty nature.

First, we deploy a hidden service that returns an object of the requested size and

capture the traffic at both ends, i.e. Alice and Bob. We request objects of 1 KB,

10 KB, 100 KB and 500KB for a total of 500 of each kind using different circuits

for each request. As it is customary, we separate these data into three subsets: a

training set, an evaluation set and a test set, using 350 requests for the training set

and 75 requests of each size for both the evaluation and test sets. We remove the

circuit flow-control cells as they do not reach the other end.

For the flow I we use the predictor from Chapter 4, that is, ŶXI,j
= 0.46 ·RTT0+

0.02 +XI,j.
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Figure 5.4: Goodness of fit for the different models for flow B to DDG hidden service
(TB=250 ms).

We compare in Figure 5.7 the accuracy of the predictor for flow B ŶXB,j
measured

by the mean-square error (MSE). We decide to use a MLP with 5 neurons in the

hidden layer as increasing the number of nodes above this value produces negligible

improvements. Polynomial predictors of 6 and higher order give a larger MSE due

to precision errors.

Characterizing the prediction error

We want to obtain the probability that a cell appears at Bob’s side within a partic-

ular interval. The first step is characterizing the prediction error. This is done by

fitting the errors made by the predictor of the previous section to some candidate

distributions and selecting the distribution that matches best.

The candidate distributions are Cauchy, Gumbel, Laplace, Logistic and Nor-
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Figure 5.5: Goodness of fit for the different models for flow I to DDG hidden service
(TI=250 ms).

mal.Their pdfs are shown in Table 4.1 . We estimate the respective parameters using

robust statistics to prevent that outliers coming from wrong cell identification affect

the measurements, as explained in [116, Chapter 3].

Results from Table 5.1 show the estimated parameters and the goodness of fit

using the JSD, being the Cauchy distribution the best fit.

Table 5.1: Goodness of fit of the candidate distributions for Prediction Error and its
parameters

Cauchy Gumbel Laplace Logistic Normal

Flow I
DJS 0.1117 0.1784 0.1475 0.1793 0.1999
µI −0.0100 −0.0227 −0.0100 −0.0100 −0.0100
σI 0.0266 0.0347 0.0384 0.0243 0.0395

Flow B
DJS 0.1224 0.1937 0.1238 0.1568 0.1910
µO 0.0135 −0.0164 0.0135 0.0135 0.0135
σO 0.0627 0.0817 0.0904 0.0570 0.0929
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AT RP EG HS
Relay{Begin :80}

Relay {Connected}

Relay {Data, "HTTP GET..."}

Relay {Data, Response}

Figure 5.6: Cell Sequence of an HTTP request-response to a HS
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Figure 5.7: Performance of the MLP predictor and polynomial regression
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Therefore, we can calculate the probability that the cell Xj leaves (B) or reaches

(I) Bob’s interval Pi as follows:

Pr(Yxj
∈ Pi) =

1

π

(

arctan

(

bi + T − Ŷxj
− µ

σ

)

− arctan

(

bi − Ŷxj
− µ

σ

))

. (5.7)

Model for the number of cells Bob receives from Alice in each interval

After obtaining the probability that the cell Xj appears at Bob’s link within the

interval Pi, we can determine fEi|Xn(ei|xn) as a sum of n non-homogeneous dependent

Bernoulli random variables. Formally, Ei =
∑n

i=1 Bernoulli(Pr(Yxj
∈ Pi)), which we

can approximate by a binomial distribution [109] with parameters:

mi =







(
∑n

j=1 Pr(Yxj
∈ Pi)

)2

∑n
i=1 Pr(Yxj

∈ Pi)2
+ 1/2





 and

oi =

∑n
i=1 Pr(Yxj

∈ Pi)

mi

. (5.8)

Therefore,

fEi|Xn(ei|xn) =

(
mi

ei

)

oi
ei(1− oi)

mi−ei (5.9)

5.3.4 Detector

Hence, from (5.5) we obtain the likelihood-ratio test as:

Λ(sL|xn) =
L∏

k=1

f(NB(tI ,qI)∗Bin(m(k,I),o(k,I))(s(k,I))

f(NB(tI ,qI))(s(k,I))

·
f(NB(tB ,qB)∗Bin(m(k,B),o(k,B))(s(k,B))

f(NB(tB ,qB))(s(k,B))
> η (5.10)
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where ∗ denotes the convolution operation that can be expressed as:

f(NB(t,q)∗Bin(m,o))(x) =

min(m,x)
∑

j=0

fNB(t,q)(x− j) · fBin(m,o)(j) (5.11)

where fNB(t,q) and fBin(m,o) denote the pdfs of a negative binomial and binomial

distribution, respectively. These distributions are shown in Table 3.4.

5.3.5 Calculating the threshold to achieve a certain proba-

bility of false positive

We first show how the threshold can be obtained theoretically, but in a real im-

plementation we suggest to use a Monte Carlo simulation due to the fact that this

theoretical calculation is not practical when L grows.

From the previous section, the Test (5.10) can be expressed as

Λ(sL|xn) =

W
︷ ︸︸ ︷
L∏

k=1

gI(sk,I)
︸ ︷︷ ︸

UI

·gB(sk,B)
︸ ︷︷ ︸

UB

> η (5.12)

where the function g is the ratio of the two likelihood functions in (5.10), i.e., fNB∗B

and fNB, but once the parameters m, o, t and q are fixed, it becomes deterministic.

Hence, the distribution of U |H0 can be obtained as fU |H0(u) =
∑

s∈g−1(u) f(NB(t,q))(s).

Finally, we characterize W as f(w) = fUI,1·UO,1···UI,L·UO,L
(w), where the density

of the product of two independent random variables can be obtained as fU1·U2(w) =
∑

u1,u2:u1u2=w fU1(u1)fU2(u2). So we can calculate the value of the threshold, η, as

the (1− PF )th quantile of fw|H0 .

This method has the drawback that its complexity grows exponentially with L,

so in a practical scenario we use a Monte Carlo method, assuming the model for R

is accurate.
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5.4 Results

In order to validate our proposal, we carried out an experiment on the live Tor

network. We used the two hidden web services discussed in Section 5.3.2, i.e. DDG

and SR. Besides Alice, 10 different machines are requesting the web page as explained

in Section 5.3.2 so the total number of requests from those clients is the same as in

the original hidden service measured by [113], that is, 27.5 and 587.5 requests per

hour for DDG and SR, respectively. We captured the traffic on both ends with

tcpdump and we repeated the experiment 1000 times.

5.4.1 Interval size

We first analyze the influence of T , the interval size, on the performance, using

thresholds calculated with Monte Carlo methods as mentioned in the previous sec-

tion.

In the case that our data would perfectly fit the model, the smaller the interval

the best results we would expect to obtain. In practice, this may not be true; for

instance the prediction error is likely to be correlated for two contiguous cells. This

information cannot be inferred from first order statistics.

In order to measure the performance we use different values of T . We depict the

result for the DDG hidden service in Figure 5.8 and in Figure 5.9 for the SR hidden

service. For the DDG hidden service the detector performs better in a neighborhood

of T = 0.5 s, but for SR it seems that the smaller the interval, the better. Recall

that the the threshold is calculated assuming that R comes from an i.i.d negative

binomial whose parameters are obtained through MLE using the previous 5 minutes

of the suspected flow, as explained above.
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Figure 5.8: Performance depending on the interval size for DDG hidden service for
one request

5.4.2 Results

Obviously, the assumption used to calculate the theoretical result does not completely

hold in a real application, as R is not an independent sequence because the cells from

one request can fall in several intervals. In order to evaluate this assumption, we

duplicate both hidden services, naming ”Carol” to the second hidden service. We

send requests to each hidden service from 10 different machines according to a Poisson

model, as explained before, and Alice only makes requests to Bob but never to Carol.

We use the Test (5.10) for Bob’s flow, Λ(sL|H1, x
n) and Λ(sL|H0, x

n) for Carol’s flow.

For different values of η we obtain PD as the rate of Λ(sL|H1, x
n) > η, and PF as the

rate of Λ(sL|H0, x
n) > η. We repeat the experiments 1000 times.

Figure 5.10 depicts the ROC for the DDG hidden service using T = 0.5, 1 and

1.5 s and Figure 5.11 depicts the ROC for SR hidden service using T = 0.2, 0.5 and
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Figure 5.9: Performance depending on the interval size for SR hidden service for one
request

1 s. We can see that in the real implementation the parameter T affects less than

when R is chosen according to the model, i.e., an i.i.d. negative binomial sequence,

and as we could expect, correlation between intervals decreases the performance.

5.4.3 Comparison with prediction-based technique

In this section, we compare the performance for this technique with the one developed

in Chapter 4. For this purpose we use the the SR hidden service, but we increase the

number of requests from other machines so that the hidden service receives requests

according to a Poisson model at rate 6000 requests per hour. We make 2000 requests

to the server and 1000000 different combinations of 10 requests. We decode using

two methods: the one described in Chapter 4 and the one described previously in

this chapter, depicting the results in Figure 5.12. We can see that for this scenario,
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Figure 5.10: ROC for DDG hidden service

locating a Tor hidden service, the method presented in the previous chapter gives

better results. This is due to using the whole timing information instead of just

interval information, and even though the prediction-based method only uses the

information of cells from client to the hidden service, I, discarding the information

of B cells, those cells are the ones that carry more information for the test as they

can be predicted more accurately.

5.5 Conclusions

This chapter presents a non-blind fingerprint for a flow created by the client. This

method is based on counting the number of packets in certain intervals. To improve

performance, we predict the time that the packet should be at the eavesdropping

place and we use an optimal decoder.
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Figure 5.11: ROC for SR hidden service

The performance is studied empirically in the live Tor network to locate a hid-

den service. We also compare the results with the previous method, showing that

performance is not as good as with the method presented in Chapter 4, but we also

claim that under certain conditions, for instance where I and B flows are similar,

this method could perform better than the pediction-based one.



Chapter 5. Interval-count-based Flow Correlation 102

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

 

 

Count−based, 10 requests T=0.25 s (0.997949)

Prediction−based, 10 requests (0.999421)

Figure 5.12: Performance for SR hidden service with 6000 requests per hour using
10 requests



103

Chapter 6

Inter-packet-delays-based Flow

Correlation

6.1 Introduction

In this chapter we propose a second method to solve the problem set out in Chapter

2, i.e., deciding if the eavesdropped traffic is carrying a flow of which we have the

timing information. Contrary to the approach of Chapter 4, this second method does

not need an estimator of the time that packets arrive to the TA detector, hence this

method can be applied even when the network in the middle is unknown.

The proposed method saves the Inter-packet delays (IPDs) of the flow and uses a

detector based on the likelihood ratio test (Neyman-Pearson lemma). This method

outperforms any of the state-of-the-art traffic watermarking schemes even using pas-

sive traffic analysis. For instance, 21 packets separated at least 10 ms are enough to

correlate two flows, one in Virginia, the other in California, correctly with probability

0.9861 when the false positive probability is fixed to 10−5 and no countermeasures

are exerted.



Chapter 6. Inter-packet-delays-based Flow Correlation 104

As IPDs are not robust against the insertion and drop of packets, we develop

a modification which is robust against chaff packets, repacketization, flow splitting,

and attacks that add or remove packets from the flow. We also make it robust against

random delays under a maximum delay constraint.

6.2 Proposed Scheme

This section recalls the notation we use and explains how we correlate the flows to

decide whether they are linked or not.

Figure 2.1 illustrates our system model. A flow of length n packets, that we are

interested in tracking, goes through a certain link, termed “creator”, where we can

measure its packet timing information, Xn. The ith IPD at the creator is defined

as ∆Xi = Xi+1 − Xi, i = 1, . . . n − 1, and these values are saved for later use in

detection. This flow continues through the network without any modification.

The “detector” is another link in which we can measure the timing information,

Y n = xn +Dn, where Di is the network delay suffered by the ith packet. Then, the

IPDs at the detector are

∆Yi = Yi+1 − Yi = Xi+1 −Xi +Di+1 −Di = ∆Xi +∆Di, i = 1, . . . , n− 1 (6.1)

where ∆D represents the PDV, also known as jitter. Note that we have assumed

that there are no packets added or dropped to the flow, this assumption allow us to

simplify the notation from Chapter 2 using Yi instead of Yxi
.

By using the information of the actual values ∆Xn and ∆Y n, the detector has

to decide correctly if the two flows are linked. Two flows are linked if they follow a

common timing pattern due to sharing the same source (i.e. the unencrypted payload

is the same). Formally, we can express this problem via classical hypothesis testing
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with the following hypotheses:

H0: The flows are not linked.

H1: The flows are linked.

6.3 Basic Detector

In this section we derive our detector and model the distributions of PDVs and IPDs

as needed.

6.3.1 Detector construction

In order to obtain the best possible performance, we construct the optimal detector,

which is the likelihood ratio test. Neyman-Pearson lemma proves that this test is the

most efficient one between two simple hypotheses [83]. Hence, our detector chooses

H1 when

Λ(∆Y n,∆Xn) =
L(H1|∆Y n,∆Xn)

L(H0|∆Y n,∆Xn)
=

f(∆Y n|∆Xn, H1)

f(∆Y n|∆Xn, H0)
> η. (6.2)

and H0 in the opposite case. L represents the likelihood function and η is a threshold

that we fix to achieve a certain probability of false positive.

Recall from (6.1) that if H1 holds, then ∆Y n = ∆Xn + Jn−1. Conversely, if H0

holds, ∆Y n is a sequence with joint pdf f∆Y n(∆yn).

For feasibility reasons, we constrain the detector to use first-order statistics, dis-

carding the information carried by higher-order statistics. This is equivalent to as-

suming sample-wise independence in the sequences ∆Dn and ∆Y n.

In fact, independence in ∆Dn does not hold as both ∆di and ∆di−1 depend on

the value of the network delay di. We show this in Figure 6.1. The assumption of
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Figure 6.1: Autocorrelation of the PDV

independence in ∆Y n is more reasonable as shown in Figure 6.2. In Section 6.4.2 we

quantify the impact of this assumption on performance comparing the real results

with those that would be obtained for independent and identically distributed (i.i.d.)

sequences.

Under these assumptions, the likelihood ratio becomes

Λ(∆Y n,∆Xn) =
n−1∏

i=1

f∆D(∆yi −∆xi)

f∆Y (∆yi)
. (6.3)

Therefore, we need to model the PDVs and the IPDs, i.e., determine f∆D(∆d)

and f∆Y (∆y).
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Figure 6.2: Autocorrelation of the IPD

6.3.2 Modeling the packet delay variation

To model the distribution of the PDVs, we first measure them in several real connec-

tions, then fit these data to some candidate distributions and select the distribution

that matches best.

The measured delays are reported in [117]. This dataset contains the delays

between two hosts during 72 hours, and for 11 different scenarios. As it is customary,

we separate these data into three subsets: training, validation and test, using 24 hours

of data for each.

Scenarios 1 to 9 measure common Internet connections between two hosts. Sce-

nario 10 models the delays of a stepping-stone scenario, where a host in Oregon is

retransmitting to a host in California the flow coming from a host in Virginia. Sce-

nario 11 measures the delays associated with one instance of the Tor network [33].
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Source Dest. n̄ [ms] Var. [s2] PNL

Sc1 CA-US NM-US 15 8 · 10−5 2 · 10−4

Sc2 OR-US NM-US 27 1 · 10−5 6 · 10−4

Sc3 VA-US NM-US 41 1 · 10−3 2 · 10−3

Sc4 ES NM-US 94 7 · 10−6 0
Sc5 IE NM-US 74 5 · 10−5 1 · 10−4

Sc6 JP NM-US 69 6 · 10−5 1 · 10−4

Sc7 AU NM-US 109 1 · 10−4 1 · 10−3

Sc8 BR NM-US 80 0.029 1 · 10−3

Sc9 SG NM-US 110 8 · 10−5 1 · 10−1

Sc10 VA-US CA-US 63 0.006 5 · 10−3

Sc11 NM-US NM-US 3117 0.265 0.16

Table 6.1: Basic Statistics of the measured delays

In order to get a general idea about the connection scenarios, we show some basic

information of the hosts and the connections in Table 6.1, where PNL is the proba-

bility of packet loss and the source and destination are represented with ISO 3166

codes [118].

From these measured delays we calculate the measured PDV as ji = di+1 − di.

The basic statistics from Table 6.2 imply a nearly symmetric (i.e., small skewness)

and leptokurtotic distribution (i.e., sharp peak and heavy tail).

To construct the model, we make the same assumptions as to build the test,

i.e., an i.i.d. sequence. The candidate distributions were selected among the ones

that have support on R and possess the mentioned characteristics. The chosen

distributions are Cauchy, Gumbel, Laplace, Logistic and Normal. Their pdfs are

summarized in Table 6.3. Recall that ✶[a,b](x) is the indicator function that takes

the value 1 when x ∈ [a, b], and is 0 otherwise.

We estimate the respective parameters using robust statistics, to prevent that

outliers affect the measurements. These estimators are based on the median and me-

dian absolute deviation and calculated as explained in [116, Chapter 3]. Afterwards,

we measure the goodness of fit between the validation sequence and the model using
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∆̄d [s] Var. [s2] Skew. Kurtosis
Sc1 1 · 10−10 1 · 10−4 0.02 83185
Sc2 −2 · 10−10 1 · 10−5 5.84 408
Sc3 −2 · 10−10 2 · 10−3 0.003 85187
Sc4 1 · 10−9 1 · 10−6 17.1 81139
Sc5 −7 · 10−9 3 · 10−6 3.81 622
Sc6 −2 · 10−9 6 · 10−5 0.78 71212
Sc7 2 · 10−8 2 · 10−5 −0.01 78821
Sc8 9 · 10−9 6 · 10−3 −10−5 19893
Sc9 2 · 10−8 4 · 10−6 4.41 620
Sc10 −8 · 10−9 3 · 10−4 2.37 22789
Sc11 −1 · 10−6 6 · 10−3 2.97 410

Table 6.2: Basic Statistics of the measured PDV.

the square root of the JSD (Jensen-Shannon Divergence), DJS [82]. Recall from

Chapter2, that JSD is a metric for two probability densities P,Q, which is based on

the KLD as follows:

DJS(P,Q) =

√

1

2
(D(P || M) +D(Q || M)) (6.4)

where M = 1
2
(P +Q) is the mid-point measure, and D(·||·) is the KLD.

Distrib. pdf
Cauchy f(x|µ, σ) = 1

πσ(1+(x−µ
σ

)2)
Gumbel f(x|µ, σ) = 1

σ
exp

(
−x−µ

σ
− exp

(
−x−µ

σ

))

Laplace f(x|µ, σ) = 1
2σ

exp− |x−µ|
σ

Logistic f(x|µ, σ) = exp(−x−µ
σ )

σ(1+exp(−x−µ
σ ))

2

Normal f(x|µ, σ) = 1
σ
√
2π
exp

(

− (x−µ)2

2σ2

)

Exp. f(x|λ) = λ exp(−λx)✶[0,∞)(x)

Pareto f(x|α, xm) =
αxα

m

xα+1✶[xm,∞)(x)

LogNor. f(x|µ, σ2) = 1

x
√
2πσ2

exp
(

− (log x−µ)2

2σ2

)

LogLog. f(x|α, β) = (β/α)(x/α)β−1

(1+(x/α)β)
2 ✶[0,∞)(x)

Weibull f(x|γ, β) = γ
β
xγ−1 exp

(

−xγ

β

)

✶[0,∞)(x)

Table 6.3: Pdfs of the candidate distributions for PDV and IPD.



Chapter 6. Inter-packet-delays-based Flow Correlation 110

Scenario Cau. Gum. Lap. Log. Nor.
Sc. 1 0.168 0.218 0.101 0.123 0.159
Sc. 2 0.156 0.201 0.157 0.150 0.171
Sc. 3 0.135 0.211 0.163 0.167 0.192
Sc. 4 0.294 0.369 0.252 0.270 0.296
Sc. 5 0.153 0.193 0.139 0.135 0.159
Sc. 6 0.203 0.174 0.152 0.120 0.130
Sc. 7 0.136 0.300 0.231 0.267 0.298
Sc. 8 0.168 0.307 0.195 0.261 0.308
Sc. 9 0.183 0.185 0.171 0.141 0.146
Sc. 10 0.227 0.384 0.340 0.364 0.384
Sc. 11 0.251 0.201 0.194 0.228 0.253

Table 6.4: Goodness of fit of the candidate distributions for PDV.

Results from Table 6.4 show that no distribution stands out above the rest, being

the Laplace and the Cauchy distributions the best fits.

The Laplacian is the most commonly used model for the jitter, but an alpha-stable

distribution models it better [119]. Note that a Cauchy distribution is a particular

case of an alpha-stable distribution, but we do not generalize it further, as we are

interested in a close-form pdf model.

The performance of the two possible detectors, based on Laplace and Cauchy

distributions, respectively, is evaluated in Section 6.4.2.

6.3.3 Modeling the Inter-Packet Delays

In many works it is assumed a Poisson model for the traffic because of its desir-

able theoretical properties [120]. This model implies that IPD times are an i.i.d.

exponentially-distributed sequence, but Paxson et al. [115] have shown that this

model is not accurate in interactive applications.

We model the IPDs on both SSH and HTTP protocols. As done in [115], we only

take into account packets that are separated at least by 10 ms, considering that if
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Set Flows Packets
SSH Train. 6447 14442323
SSH Val. 1128 2594550
SSH Sim. 714 16595655
HTTP Train. 1108909 356620487
HTTP Val. 208896 63982082
HTTP Sim. 1007545 322853437

Table 6.5: Characteristics of the IPD sets.

Distribution
SSH HTTP

Error Parameters Error Parameters
Exponential 0.756 λ = 5.46 0.758 λ = 12.69
Pareto 0.149 α = 0.86, xm = 10−2 0.247 α = 0.53, xm = 10−2

Log-Normal 0.627 µ = −1.14, σ2 = 1.43 0.723 µ = −0.40, σ2 = 4.02
Log-Logistic 0.343 α = 0.27, β = 1.77 0.508 α = 0.47, β = 0.95
Weibull 0.554 γ = 0.49, β = 0.81 0.591 γ = 0.40, β = 1.33

Table 6.6: MLE Estimator and goodness of fit of the candidate distributions for IPD.

two packets are separated by less than 10 ms they are subpackets of the same packet.

Therefore, the considered IPDs are lower bounded by 10 ms. We use the captures

from Dartmouth College [121], using the traces from Fall 03 as training set, Spring

02 as validation set and Fall 01 as test set for the simulator. The basic characteristics

of these sets are shown in Table 6.5.

We estimate the parameters through MLE and measure the goodness of fit using

the square root of the JSD. The candidate distributions are: Exponential, Pareto,

Log-Normal, Log-Logistic, and Weibull. Their pdfs can be seen in Table 6.3.

Results shown in Table 6.6 confirm the findings of Paxson et al., i.e., that the

Pareto distribution is a better model for interactive traffic. In non-interactive traffic

such as HTTP, this model also gives acceptable results. Therefore, we will assume

that

f∆Y (∆y) = αxα
m∆y−α−1

✶[xm,∞)(∆y). (6.5)
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6.3.4 Detector

Once we have a model for the IPD and PDV sequences, we derive the likelihood test.

If Cauchy-distributed PDVs are assumed, the test chooses H1 when

Λ(∆yn,∆xn) =
n−1∏

i=1

(∆yi)
α+1

πσαxα
m

(

1 +
(
∆yi−∆xi

σ

)2
) > η (6.6)

and H0 otherwise.

In the case that a Laplace model for PDV is adopted, then

Λ(∆yn,∆xn) = exp

(

−
∑n−1

i=1 |(∆yi −∆xi|
σ

) (∏n−1
i=1 ∆yi

)α+1

(2σαxα
m)

n−1
. (6.7)

When it comes to finding η and obtaining the theoretical probabilities of detection

and false positives, we use the Monte Carlo method as the derivation of closed-form

expressions is infeasible in most cases, as shown in Appendix A, where we obtain the

theoretical η and PD for tests (6.6) and (6.7).

6.4 Performance

In this section we construct a simulator and present the scenarios we use in the

remaining of the paper. Afterwards, we test the model assumptions and measure the

performance with different sequence lengths.

6.4.1 Simulator and Scenarios

.

Simulations are carried out in the following way. First, we generate timing infor-

mation at the creator using the IPD test set, Xn
1 . The purpose of this sequence is to
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Figure 6.3: Simulated Scenario A.

TOR

Client Web Server

Figure 6.4: Simulated Scenario B.

evaluate the performance when H1 holds. A delay is added to each packet using the

measured delays from the test set (as explained in the following paragraphs), obtain-

ing Y n
1 . We generate a second sequence Y n

0 , using the IPD test set; this sequence has

the purpose of evaluating the performance under H0. Finally, we use the Test from

(6.6) or (6.7), to obtain both Λ(dn0 , c
n
1 ) and Λ(dn1 , c

n
1 ). This experiment is repeated

106 times, and for different values of η we obtain PD as the rate of Λ(dn1 , c
n
1 ) > η, and

PF as the rate of Λ(dn0 , c
n
1 ) > η. Note that due to the number of runs, PF < 10−5

cannot be measured and results of this order are not accurate.

The sequences are generated in the following way: we place all the IPDs from the

test set in an order-preserving list. The starting point is randomly selected from the

list and the generated IPDs are the following n− 1 values.

For generating the delays, we used the test set as a list with the delay every 50

ms. We select one value randomly from the list that will be considered time 0 ms; the

following values will represent the delay at times 50 ms, 100 ms, and so on. To obtain
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the delays at times where we do not have a measure, we use linear interpolation.

The performance is evaluated in the two scenarios depicted in Figures 6.3 and

6.4. Scenario A represents a stepping stone that forwards SSH traffic inside the

Amazon Web Services [122] network. The creator, stepping stone and detector are

EC2 instances located in Virginia, Oregon and California, respectively. This example

corresponds to tracing the source of an attack that was launched from a compromised

Amazon instance. The simulated delays correspond to those of Scenario 10 in Section

6.3.2, where the standard deviation of the network delay is 4 ms.

Scenario B simulates a web page accessed from Tor network whose real origin is

to be found, and where the creator will be the web page and the detector the client.

For instance, this case can correspond to a company in whose forum an anonymous

insulting post has been placed using Tor and it is to be known whether the source

comes from an employee within the company. The simulated delays correspond to

the measurements of Scenario 11 in Table 6.4, where the standard deviation of the

network delay is 340 ms.

6.4.2 Impact of our assumptions

In this section, we wish to quantify the impact of the assumptions we have made,

that is, the PDVs form an i.i.d. Cauchy or Laplace sequence. To this end, we extend

our simulator to create 3 types of delays: first, according to the model (Cauchy

or Laplace), second as a random sample from the data, and last, from the data

maintaining the time correlation. n = 4 is used for Scenario A and n = 21 for

Scenario B. Results are shown in Figures 6.5 and 6.6. We notice two details: first, that

the Cauchy-based detector gives slightly better performance than the Laplace under

real data, and second, that the independence of the PDVs previously assumed slightly

reduces the performance. In the sequel, we just derive the expressions for a Cauchy-

based detector. The modification for a Laplace detector is rather straightforward.
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Figure 6.5: Impact of assumptions in Scenario A with n = 4.

6.4.3 Performance dependence on n

We want to evaluate how much performance is improved when longer sequences are

used. The result is depicted in Figures 6.7 and 6.8. We can see that Scenario B,

whose IPDs have a larger variance because of the Tor network, needs much longer

sequences to achieve the same performance. For instance, with fixed PF = 10−4, in

Scenario A for n = 6 we obtain PD = 0.8926. However, in Scenario B the n needed

for a comparable result is around 250, with which we obtain PD = 0.8947. If we

compare the AUCs (Area Under the ROC Curve), in Scenario A with n = 6 we

obtain 0.9955 while a similar result in Scenario B requires a value of n between 10

and 25.
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Figure 6.6: Impact of assumptions in Scenario B with n = 21.

6.5 Robust detector

The previous test does not take the existence of any countermeasure into account.

Attacks to timing correlation can be exerted by introducing uncorrelated random

delays, adding chaff traffic or splitting the flow, making the Test in (6.6) ineffective.

In this section, we build a test that is robust to these attacks. First, we deal with

adding or removing packets from the flow, and then with random delays.

6.5.1 Matching packets

Hitherto, we have assumed that there is a one-to-one relation between the flows at

the creator and the detector; i.e., no packets are added or removed. This assumption

is not necessarily valid for every situation, not only due to the presence of an active

attacker, but also as a result of many applications that repacketize flows, changing
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Figure 6.7: Performance dependence with n in Scenario A.

the number of packets, for instance, SSH tunneling [123].

To deal with packet addition and removal, we first choose the most likely packet

at the detector for each packet at the creator. In the case that there is no packet

likely enough, we consider the creator packet as lost.

Given the ith packet at the creator, we match it with the most likely jth packet

at the detector, denoting this as i → j. Consequently, if ρ is a synchronization

constant to be discussed in Section 6.5.3, and γ is the threshold for which a packet

is considered lost, the condition for a match in the ith packet is

|xi − (yj − ρ)| < |xi − (yk − ρ)|, ∀k 6= j, (6.8)

and to avoid considering it lost,

|xi − (yj − ρ)| < γ. (6.9)

Threshold γ should be large enough so that the probability PM that a packet is
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Figure 6.8: Performance dependence with n in Scenario B.

wrongly considered lost is very small, for instance, 10−6. Although this can lead to

incorrectly matching with another packet when the packet is indeed lost, the impact

on Test (6.10) of this mismatch is very small. Empirically, the best performance we

obtained for Scenario A is when γ ≈ 75 ms, and when γ ≈ 7 s for Scenario B.

In practice, the standard deviation of the network delay can be larger than some

of the IPDs, especially in Scenario 2, in which case the matching is likely to fail.

The impact of these matching errors is evaluated in Section 6.5.5. In the case that

most of the IPDs are smaller than the standard deviation of the network delay, a

better matching function is the one proposed in Chapter 7. This corresponds to

the injective function that minimizes the mean square error between xn and ym − ρ,

which has the drawback of a higher computational cost.

The matching process modifies the timing sequences to xm and ym, where m ≤ n,

as the lost packets are removed. Formally, we can define the new sequences as

xm = {xi | ∃ j : i → j}, and ym = {yj | ∃ i : i → j}.
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6.5.2 Test robust to chaff and flow splitting

From (6.6), we can obtain a test robust to packet removal and insertion as

Λ(∆xm,∆ym) = PL
n−m ·

m−1∏

i=1



PL + (1− PL) ·
(∆yi)

α+1

πσαxα
m

(

1 +
(
∆yi−∆xi

σ

)2
)



 , (6.10)

where PL is the probability that a packet at the creator cannot be matched at the

detector. This can be due to three reasons: network loss with a probability PNL,

lack of matching when the packet appears, and flow splitting into S subflows by the

stepping stone, i.e., 1/S of the original packets are seen by the detector, as only one

of the subflows traverses this link. Therefore,

PL = 1− (1− PNL)(1− PM)

S
=

S − 1 + PNL

S
+

PM − PNLPM

S

≈ S − 1 + PNL + PM

S
(6.11)

6.5.3 Self-Synchronization

We have mentioned that ρ is a synchronization constant. The detector can perform

detection maximizing the value of Λ(∆xm,∆ym) with respect to ρ through an ex-

haustive search. For instance, Figure 6.9 shows a detector trying values of ρ using

steps of 1 ms in the interval [0, 0.5] s. We can see that the maximum Λ(∆xm,∆ym)

occurs when ρ ≈ n̄, as expected. Recall that n̄ is the sample mean of the network

delays.

In a real situation, calculating PL with (6.11) may not be feasible due to S being

unknown for the detector, and PNL can be difficult to estimate as packets may go

through several stepping stones. In that case, we propose to use also exhaustive

search. Figure 6.10 shows a detector trying different values for PL in steps of 0.01.

We can see that the maximum Λ(∆xm,∆ym) occurs at a value in a neighborhood of

the real PL = 0.75. We can also see that the peak of Λ(∆xm,∆ym) is fairly wide, so

not such small step is needed for the search in practice.
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Figure 6.9: Synchronization in Scenario A with n = 6.

6.5.4 Robust test against random delays

So far the situation where an attacker can inject random delays has not been consid-

ered. Random delay injection is a well-known technique for covert channel prevention

and can be easily implemented via buffering by attackers across their step stones.
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We assume that the attacker has the constraint of not being able to delay any

packet more than Amax seconds. Hence, she can modify the PDV by a quantity

A that falls in the interval [−Amax, Amax]. As we do not know the distribution of

the attacker’s random delay, the detector assumes a uniform distribution. Thus, the

PDV at the decoder is ∆D′m = ∆Dm + Am, and

f∆D′(j) =
1

2Amaxπ

(

(arctan

(
j + Amax

σ

)

− arctan

(
j − Amax

σ

))

(6.12)

Consequently, the likelihood ratio becomes

Λ(∆ym,∆xm) = PL
n−m ·

m−1∏

i=1

(

PL + (1− PL) ·
(∆yi)

α+1f∆D′(∆yi −∆xi)

αxα
m

)

(6.13)

A game-theoretic approach to this problem is taken in Chapter 7, where the de-

tector is first constrained to estimating and compensating the attack and then the

optimal detector for the same game is derived. Results show that a nearly determin-

istic attack impairs the detector performance more than a uniform distribution even

if the detector knows the attack distribution.

6.5.5 Performance

To evaluate the proposed robust algorithms, the functionalities of adding chaff traf-

fic, splitting the flow, and delaying the packets randomly are implemented in our

simulator. This is done as follows: each packet is delayed by a certain quantity.

We implement two different delay strategies: a) the value is picked from a uniform

distribution in the range [0, Amax], and b) the values are taken to minimize (6.10),

i.e. the values are chosen by an intelligent adversary who knows both the test and its

parameters. Then, the simulator adds traffic according to a Poisson process with a

fixed rate proportional to the rate of the original traffic. Afterwards, it simulates the

flow split, which is implemented by discarding packets as a Bernoulli process with a

probability equal to 1 − 1
S
. Recall that S is the number of subflows we divide the

flow into.
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Figure 6.11: Performance under different traffic modifications in Scenario A, n=21.

We created five different attacks. In the first three, we evaluate each traffic

modification strategy separately, namely, Attack 1 adds 500% of chaff traffic; Attack

2 splits the flow into 4 subflows; Attack 3 adds delays with Amax = 50 ms; Attack

4 combines 500% of chaff traffic with delays constrained to Amax = 50 ms, and

Attack 5 is a complex attack where a combination of Attack 4 with splitting the

flow into 2 subflows takes place. For Attacks 3 to 5, we consider the two delay

strategies specified above: with Z indicating the attack number, we denote by Za

the case where the delays are chosen randomly, and by Zb where they are chosen

by an intelligent attacker. We simulate these situations using sequences of length

n = 21 in Scenario A and n = 251 in Scenario B. Results are depicted in Figures

6.11 and 6.12.

Comparing these figures under no attacks with the corresponding plots for the

case of no mismatches of Figs. 6.7 and 6.8, we can evaluate the impact of mismatched
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Figure 6.12: Performance under different traffic modifications in Scenario B, n=251.

packets, as the AUC drops from 0.9990 to 0.9979 in Scenario 1 and from 0.9996 to

0.9982 in Scenario 2.

In low jitter situations, namely Scenario A, chaff traffic by itself has little impact,

but the effect when combined with random delays is significantly increased. The

reason behind this is that in the first case the matching process chooses the real

packets with a very low probability of error but when a random delay is added the

probability of a mismatch increases. We also see that the flow splitting attack has a

considerable impact as the received sequence length is reduced.

In high jitter situations, i.e. Scenario B, random delays have considerably smaller

influence, because the standard deviation of the network delay is larger than the

attack delay. In fact, due to the high network-delay variability, chaff traffic alone

has a significant impact on performance without the need of an attacker injecting

random delays.
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6.6 Comparison with an active watermark

We want to analyze how much performance can be improved by sacrificing unde-

tectability. For this purpose, we create an active watermark designed with invisibility

as a goal, and we study the trade off between performance and detectability.

We measure the latter as the KLD between the covertext, i.e., the sequence

without watermark, and the stegotext, i.e., watermarked. Cachin [103] defines a

stegosystem to be ǫ-secure against passive adversaries if D(fC ||fS) < ǫ, where fC is

the distribution of the covertext and fS is the distribution of the stegotext. Hence,

we measure the detectability as the minimum ǫ for which our system is ǫ-secure.

The watermark is embedded adding a random uniform delay between [0,Wmax].

Thus, the watermarked flow is xn = un + wn, hence ∆W n is triangular-distributed

between [−Wmax,Wmax] as it is the difference of two delays uniformly distributed.

As the saved IPDs are the ones after embedding the watermark, the detector remains

(6.13).

We assume that the attacker knows the original traffic as done in [102, 99] and

wants to test for the existence of a watermark. Therefore, the attacker’s goal is to

differentiate between ∆(W n +Dn) and ∆Dn.

We simulate Scenario A with n = 6 and Scenario B with n = 26 under no traffic

modification, where we evaluate the trade-off between the detectability and PD when

PF is fixed. Results are depicted in Figures 6.13 and 6.14, where we can see that wa-

termarking schemes give a significant improvement under low-jitter conditions even

with Wmax = 2 ms, (where DKL(∆D||∆W n+∆Dn) = 0.486), but this improvement

is significantly lower on large-jitter conditions, e.g. the Tor network, even of very

large Wmax , for instance, for Wmax = 250 ms (where DKL(∆D||∆W n + ∆Dn) =

0.679).
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Figure 6.13: PD vs the detectability for fixed PF in Scenario A with n = 6.

6.7 Comparison with other schemes

We want to compare our passive analysis with four other state-of-the-art traffic water-

marking schemes: IBW (Interval Based Watermark) [90], ICBW (Interval-Centroid-

Based Watermark) [91] , RAINBOW (Robust And Invisible Non-Blind Watermark)

[88] and SWIRL (Scalable Watermark that is Invisible and Resilient to packet Losses)

[89] that where described in Chapter 2. To this end, we extend our simulator to be

able to embed the mentioned watermarks and to detect them.

The presented results have been obtained with the following parameters: IBW,

ICBW and SWIRL use a time interval of 500 ms; this is the value used in the

original ICBW experiments reported in [91].The experiments for SWIRL in [89] use

2 s, but with short sequences this implies that many flows cannot be watermarked

as the whole flow falls into one interval. We compensate this shorter interval by
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Figure 6.14: PD vs the detectability for fixed PF in Scenario B with n = 26.

dividing it into less subintervals (5 instead of 20). In our experiments RAINBOW

can modify the IPD up to 20 ms, which is the largest watermark amplitude used in

the simulations in [88].

We first compare the performance in both scenarios when the flows do not suffer

any addition or removal of packets, for this we use (6.6). We take n = 6 in Scenario

A and n = 51 in Scenario B. Figure 6.15 shows the results for Scenario A, where

our scheme and RAINBOW outperform the rest by a significant amount. This is

due to the fact that both are non-blind and perform well with short sequences if

the PDV has small variance. The other watermarking schemes do not perform well

with short sequences. Figure 6.16 shows the results in Scenario B. We see that with

longer sequences IBW and ICBW despite of the larger PDV sequence improve their

performance.

We also compare the performance under traffic modification using Attack 5a,



Chapter 6. Inter-packet-delays-based Flow Correlation 127

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

 

 

Our Scheme
(0.9953)
Rainbow
(0.9837)
Swirl
(0.7134)

IB (0.8218)

ICB (0.7734)

Figure 6.15: Comparison of algorithms on Scenario A with n = 6.

i.e., 500% chaff traffic added, S = 2 and random delays with Amax = 50 ms. As

before, we fix n = 51 in Scenario A and n = 251 in Scenario B. Results are shown

in Figures 6.17 and 6.18. Note that RAINBOW or SWIRL are not designed to be

robust against an active attacker.

Our algorithm is more robust to the considered traffic modifications than the

rest of schemes, for example, in Scenario B, we achieve AUC = 0.9828, while IBW

achieves AUC = 0.8842, ICBW AUC = 0.8350, and for both RAINBOW and

SWIRL AUC < 0.6. Recall also that we do not modify the flow, while the rest

do.

Our scheme performs better than RAINBOW, which is also a non-blind detection,

although it does not modify the IPDs. The improvement in performance is due to

using a likelihood test (optimal) instead of a normalized correlation. Recall also that

the IPDs have been restricted to be larger than 10 ms. Lifting this restriction would
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Figure 6.16: Comparison of algorithms on Scenario B with n = 51.

have a bigger impact on passive analysis than on a watermarking scheme.

6.8 Real Implementation

Obviously, simulations are not fully realistic. To check if simulator results are appli-

cable to real networks, we carry out a real implementation of the proposed passive

analysis scheme, the watermark modification proposed in Section 6.6 and the water-

mark schemes with which we compared in Section 6.7 for scenarios A and B.

For the first experiment, we launched three EC2 [122] instances. We used replayed

SSH connections from real traces taken at University of Vigo and the stepping stone

was created by forwarding the traffic with the socat command. For the second

experiment, we replay connections from real HTTP traces also from University of

Vigo. We use n = 6 packets and n = 51 for Scenarios A and B, respectively. The
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Figure 6.17: Comparison of algorithms on Scenario A under flow modification with
n = 51.

experiment is repeated 1000 times in each case. In order to obtain values of the test

under H0, we use the saved timing information from the previous sequence in the

non-blind cases, i.e., our proposed method and RAINBOW, while for the blind cases,

i.e., IBW, ICBW and SWIRL, we use a different random key.

The chosen parameters are the maximum IPD variation for RAINBOW and a

watermark modification of 5 ms in Scenario A and 20 ms in Scenario B, that are

the median and maximum amplitudes in the experiments presented in [88]. For the

blind-watermark, IBW and ICBW use an interval size of 500 ms, and SWIRL uses

an interval length of 250 ms and 1000 ms for Scenarios A and B, respectively, divided

into 5 subintervals of 3 slots each. These values have been chosen to maximize the

AUC in each scenario.

Experiments are carried out in a non-active-attack scenario, this means that
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Figure 6.18: Comparison of algorithms on Scenario B under flow modification with
n = 251.

insertions and losses are only due to repacketization. As the detector from(6.10)

needs a value for PL, we use PNL from Table 6.1.

Results in Scenario A are similar to the simulator results: AUC=0.9987 for Real

Scenario vs AUC=0.9983 for the Simulator. However, Scenario B shows a decrease

in performance for the Real Scenario compared to the simulator results. This loss of

performance affects all schemes, being for ours less severe.

6.9 Conclusions

In this chapter we have presented a highly-optimized traffic analysis method for

deciding if two flows are linked which can be used as passive analysis. We also present

a watermarking scheme based on this scheme. We develop an optimal decoder, i.e.,
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Figure 6.19: Real Implementation on Scenario A with n = 6.

the likelihood-ratio test, that allows to achieve a very good performance under a

passive analysis scheme. For example, with 21 packets separated at least 10 ms we

can correlate two flows, obtaining PD = 0.9861, given a false alarm probability equal

to 10−5, without flow modifications.

A more robust detector is created that can deal with chaff traffic, flow splitting

and random delays added by an attacker. To this end, packet matching is carried

out by removing the packets that do not have a correspondent in the other flow.

Then, a new likelihood-ratio test that considers losses and the maximum delay that

an attacker can add is derived.

Afterwards, we study the trade-off between improvement and detectability of a

watermarking scheme based on our algorithm. We also show a comparison with

four state-of-the-art traffic watermarking schemes. Finally, a real implementation is

carried out to show that the simulator results can be extended to real networks.
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Figure 6.20: Real Implementation on Scenario B with n = 51.

The obtained results show that when dealing with independent flows, passive

analysis schemes with an optimal detector can compete with and even outperform

state-of-the-art traffic watermarking schemes, giving the advantages of being unde-

tectable, which decreases the risk of a traffic modification attack, and that they can

be carried out ex-post, in addition to in real-time. This makes it possible to use our

schemes in forensic analysis applications as well as in intrusion detection.
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Chapter 7

Flow-Correlation with an

adversary

7.1 Introduction

We have seen in Chapter 6 how to correlate flows based on the IPDs, and we discussed

the possibility that an adversary, such as a stepping stone or an anonymous network

relay, may modify the flow to prevent the correlation by introducing delays or adding

dummy packets to such flow. There, we dealt with an adversary that chooses its

attack randomly instead of selecting the optimal attack. In this chapter, we deal

with an adversary that has the largest impact on the correlation.

The aim of this chapter is to study the limits of passive traffic-analysis and

flow fingerprinting in an adversarial environment. To achieve this goal, we propose

a game-theoretic framework and look for the optimum strategies that the players

should adopt. A similar game-theoretic framework has been used in other contexts

such as Information Hiding [124], and Source Identification [125].

This game involves two players: the traffic analyst (TA) that tries to correlate



Chapter 7. Flow-Correlation with an adversary 134

flows and the adversary (AD) whose goal is to impair this correlation.

We propose two different games depending on the characteristics of the flows we

deal with: independent flows and correlated flows. In the first case, the TA wants

to differentiate if the received flow is linked with a known flow or is a different flow

without any relation with the known flow but coming from the same IPD distribution.

For instance, a real scenario for this game is to differentiate between different SSH

sessions. In the second game, the TA wants to decide between a fingerprinted flow and

the same flow with no fingerprinted, an application can be to differentiate between

clients that access the same web page.

7.2 Player order and equilibria

Recall from Section 2.2 that in sequential games, where players choose their actions

in a given order, the subgame perfect equilibrium (SPE) is a refinement of the Nash

Equilibrium that eliminates non-credible threats.

The SPE solution varies with the order in which players choose their actions,

as a given player at the SPE knows which actions have taken place before his own

(otherwise the player could improve his/her utility given this information). Hence,

the solution to the game depends on the order in which the players choose their

actions.

As the players choose their actions in a given order, an intuitive approach for a

player (A) is to assume that the other player (B) will find out their action pattern and

B decides his next action according to it, for instance this situation seems realistic

when the detection is done off-line. Hence, the equilibrium of the game is:

u∗ = max
wn

min
AAD

max
Λ1

u(ATA, AAD), (7.1)

that we represent with the superscript *. In the graphs the solution of this game is
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Figure 7.1: Model of the Flow Fingerprinting Game: independent flows

plotted with a solid line.

A more conservative approach for the TA is to assume that he is unable to know

AAD but the adversary is able to know TA’s action pattern. Under this situation,

the equilibrium is:

u = max
wn,Λ1

min
AAD

u(ATA, AAD), (7.2)

which is represented with an underline. This scenario would model a real-time detec-

tion of stepping stones where the adversary knows the intrusion detection techniques

used by the TA.

The most optimistic scenario for the TA is when the adversary behavior is known,

in this case the equilibrium is:

u = min
AAD

max
wn,Λ1

u(ATA, AAD), (7.3)

which is denoted using an overline. For instance, a real situation can be when the

adversary is a Tor relay whose behavior is public.

As u ≤ u∗ ≤ u, equality holds only when a saddle-point strategy exists. In a

zero-sum a saddle-point is always a Nash equilibrium (NE) [126].
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7.3 Flow fingerprinting game: independent flows

The flow fingerprinting game for independent flows is represented in Figure 7.1. In

this game, the TA has to correctly decide whether the candidate flow (yn2) is the

known flow (un) or a different one. This is the problem dealt with in Chapter 6.

Formally, the task of the TA is to accept or reject the hypothesis that yn2 is indeed

the same flow as un.

To improve the efficiency, the TA can modify the flow by embedding a fingerprint

wn. Due to the nature of the problem, the modification must be additive, i.e.,

xn = un + wn. We constrain the fingerprint to delay any packet at most Wmax

seconds. This flow will suffer a network delay of dn1 before reaching the adversary.

We denote by rn the flow received by the adversary.

The goal of the adversary is to modify the flow, producing zn2 , in such a way

that the detector decides that this sequence is not related with un. In order to do

this, the adversary can modify the flow by adding delays and dummy packets. We

denote by zn2 the output flow of the adversary. This flow suffers an additional delay

dn2
2 due to the network between the adversary and the detector.

We represent by D the delay suffered by a packet in the whole path, i.e., D =

D1 +D2. Recall that ∆D is the PDV or jitter.

We assume that f∆U(∆u) is known by both players and define the hypotheses:

H0 : y
n2 and unare not linked

H1 : y
n2 and unare linked.

We define the flow fingerprinting game for independent flows as follows:

Definition 1. The FFGI(ATA;AAD; u) is a zero-sum game played by the TA and

the adversary, where
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• The set of actions the TA can choose from, i.e. ATA, is the duple of possible

fingerprint sequences wn and acceptance regions Λ1:

ATA = {wn × Λ1 : 0 ≤ wi ≤ Wmax, i ∈ [1, n]} (7.4)

• The set of possible attacks that the adversary can choose from AAD = {f(zn2

|rn)}. As we will study two different adversaries, we will formally define this

function in each section.

• We use two different utility functions. The first utility function, uD is the

probability of detection, PD, for which the probability of false positive, PF , is

below a certain threshold η:

uD(ATA, AAD) = Pr(Y n2 ∈ Λ1|H1) ∧ Pr(Y n2 ∈ Λ1|H0) < η. (7.5)

The second utility function we use, denoted by uA, is the AUC:

uA(ATA, AAD) =

∫ 1

0

Pr(Y n2 ∈ Λ1|H1)dη, where η = Pr(Y n2 ∈ Λ1|H0). (7.6)

7.3.1 Optimal Detector

As for directly correlating timing sequences a precise estimate of fD is required, and

this is in some cases difficult to obtain, the use of the difference timing sequence,

that is, IPDs, seems more reasonable.

The optimal detector, according to Neyman-Pearson Lemma, is the likelihood

ratio test:

Λ1(y
n2 , xn, f̂(zn2 |rn)) =

∫

R+n

∫

R+n2

f∆D
n2
2
(∆(yn2 − zn2))f̂(zn2 |rn)

f∆Un2 (∆yn2)

· f∆Dn
1
(∆(rn − xn))dzn2drn (7.7)

where f̂(zn2 |rn) is the assumed distribution of f(zn2 |rn) by the detector. If we are

under condition 7.1 and 7.3, then f̂(zn2 |rn) = f(zn2 |rn).
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7.4 Delaying adversary

In this section we derive the detector for the case when the adversary is limited to

delaying the packets up to Amax seconds, without adding or removing any packets

from the flow. Under this condition, there exists a one-to-one correspondence be-

tween xn and yn2 , i.e., n2 = n. Formally, the adversary’s actions can be defined

as:

AAD = {f(an|rn) : 0 ≤ ai ≤ Amax, i ∈ [1, n]}, (7.8)

where an = zn − rn is the sequence of delays added by the adversary.

From (7.7), the likelihood ratio test under this adversary becomes:

Λ1(y
n, xn, f̂An|Xn) =

∫

Rn

f∆Dn(∆(yn − xn − an))f̂An|Xn(an|xn)

f∆Un(∆yn)
dan. (7.9)

Restricting the detector (7.9) to first order statistics, we obtain

Λ1(y
n, xn, f̂An|Xn) =

n−1∏

i=1

∫

R f∆D(∆di + z))f̂Ai+1−Ai|Xn(z|xn)dz

f∆U(∆yi)
(7.10)

where f̂Ai+1−Ai|Xn(x) =
∫ Amax

0
f̂Ai+1

(y)f̂Ai
(y − x)dy.

The solutions of the different games are:

u∗
D = max

wn
min
fAn|xn

Pr(Λ1(x
n + An +Dn, xn, fAn|xn) > ǫ) (7.11)

uD = max
wn,f̂An|xn

min
fAn|xn

Pr(Λ1(x
n + An +Dn, xn, f̂An|xn) > ǫ) (7.12)

uD = min
fAn|un

max
wn

Pr(Λ1(x
n + An +Dn, xn, fAn|un) > ǫ) (7.13)

Unfortunately, calculating the solutions given by (7.11), (7.12) or (7.13) are still

intractable problems if we allow any kind of delay distribution.
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7.4.1 Deterministic Attack

The simplest adversary we can imagine is one that acts in a deterministic way. This

means that if he receives two identical sequences the output will be the same, i.e

an = f(rn). Hence, fAn|∆rn(x
n) =

∏n
i=1 δ(xi − ai) and f̂An|∆rn(x

n) =
∏n

i=1 δ(xi − âi).

The solutions of this game are:

u∗ = max
wn

min
an

Pr

(
n−1∏

i=1

f∆D(∆id
n)

f∆U(∆i(un + wn + an + dn))
> ǫ

)

(7.14)

u = max
wn,ân

min
an

Pr

(
n−1∏

i=1

f∆D(∆i(d
n + an − ân))

f∆U(∆i(un + wn + an + dn))
> ǫ

)

(7.15)

u = min
an

max
wn

Pr

(
n−1∏

i=1

f∆D(∆id
n)

f∆U(∆i(un + wn + an + dn))
> ǫ

)

(7.16)

Note that when ân = an (i.e., when the detector is chosen after the adversary) the

adversary delays are the ones that maximize the likelihood of xn+an+dn coming from

the distribution of Un, i.e., making the sequence as typical as possible. Conversely,

the fingerprint delays are the ones that minimize this likelihood.

Performance

We calculate the solution of the game for the same two scenarios studied in Section

6.4.1 using n = 5 and n = 10 for scenarios 1 and 2, respectively.

We evaluate 4 different conditions:

• A1: Passive analysis without attack (Amax = Wmax = 0 ms)

• A2: Passive analysis with attack (Amax = 150 ms and Wmax = 0 ms).

• A3: Passive analysis with attack (Amax = 250 ms and Wmax = 0 ms).

• A4: Fingerprint with attack (Amax = 250 ms and Wmax = 100 ms).
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Note that Amax −Wmax is identical in A2 and A4. Also we do not plot u in A2 and

A3 as it is identical to u∗ due to the lack of fingerprint.

Results are depicted in Figures 7.2 and 7.3 from which we can draw several

conclusions. First, if we focus on the case where both fingerprint and attack exist, i.e.,

A4 conditions, we see a different behavior for u∗ between both scenarios; in Scenario

1, the ROC for u∗ is nearer to u than to u, while in Scenario 2 the performance for

u∗ is very similar to u. The reason for this different behavior is that in Scenario 1 the

variation of the IPDs comes basically from the attack delay and not from the network

variability, then the detector knowing the attack becomes the predominant factor,

while in Scenario 2 the PDV is comparable to adversary’s delays so the knowledge

of the attack is not so important for the detector.

Second, comparing A2 and A4 we see that in Scenario 1 the A4 situation is

beneficial for the TA if the detector knows the attack, i.e., u∗ and u, but is beneficial

for the adversary if the attack is chosen knowing the detector actions, i.e., u. In

Scenario 2, the results of A2 and A4 are very similar unless the fingerprint is selected

knowing the attack function, i.e., u.

7.4.2 Truncated-Gaussian Attack

The previous model gives the chance to the other player to compensate it in the next

action. For this reason, players may be interested in randomizing their actions, i.e.,

given the same input, the output can vary.

We study the case when the distribution of delays follows a truncated Gaussian in

the allowed interval. Hence, ai ∼ N(µa,i, σ
2
a|0 ≤ ai ≤ Amax) and wi ∼ N(µw,i, σ

2
w|0 ≤

ai ≤ Wmax). Note that this model includes as extreme cases the deterministic attack

seen previously (i.e., σ2 → 0), and a uniform attack (i.e., σ2 → ∞). The detector

comes from (7.10) where the attack delays are a truncated Gaussian with guessed
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Figure 7.2: Solution of the constant games for Scenario 1 (n = 5).

parameters µ̂n
a and σ̂2

a.

Formally, the actions available to each player are:

ATA = {µn
w × σ2

w × µ̂n
a × σ̂2

a} (7.17)

AAD = {µn
a × σ2

a} (7.18)

Since the simultaneous optimization with respect to all the variables is compu-

tationally unfeasible, we compute first the solution for the mean sequence assuming

zero variance, i.e. the solution of the constant game shown in equations (7.14), (7.15)

and (7.16) for u∗, u and u, respecitvely. Afterwards, we calculate the variance at the

SPE without modifying the mean sequence. We solve the two scenarios presented

previously for each of the proposed games. Tables 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6 show

the uA depending on the parameters and we represent the solution of the game in
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Figure 7.3: Solution of the constant games for Scenario 2 (n = 10).

boldface.

The fingerprint variance, σ2
f , is very small in most of the cases and when it is

a bit larger the utility of choosing the smallest variance is reduced only by a small

quantity. This means that a deterministic fingerprint is optimal or quasi-optimal.

In the case that the fingerprint is chosen without knowing the attack distribution

parameters, i.e., u∗ and u conditions, the adversary should choose a variance in the

interval [10−3, 10−2] ·Amax. This small variance makes the attack virtually determin-

istic (i.e., σ → 0), implying that making the output sequence more typical prevails

over increasing the uncertainty of an for the detector. When the TA fingerprinter

knows the behavior of the adversary, i.e., u, then the latter is forced to increase his

variance to 10−1 to prevent the TA from choosing the fingerprint that is less affected
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Table 7.1: u∗
A(σf , σa) for Scenario 1 (n = 5, Amax = 250ms and Wmax = 100ms).

σa/Amax

σf/Wmax 10−4 10−3 10−2 10−1 1

10−4 0.9978 0.9987 0.9963 0.9960 0.9968
10−3 0.9900 0.9891 0.9878 0.9873 0.9727
10−2 0.9418 0.9447 0.9428 0.9415 0.9319
10−1 0.9710 0.9733 0.9686 0.9721 0.9774
1 0.9977 0.9982 0.9972 0.9967 0.9981
10 0.9979 0.9985 0.9965 0.9977 0.9982

Table 7.2: u∗
A(σf , σa) for Scenario 2 (n = 10, Amax = 250ms and Wmax = 100ms).

σa/Amax

σf/Wmax 10−4 10−3 10−2 10−1 1

10−4 0.9333 0.9396 0.9360 0.9252 0.9043
10−3 0.9131 0.9223 0.9181 0.9051 0.8843
10−2 0.9086 0.9129 0.9094 0.9001 0.8809
10−1 0.9487 0.9496 0.9454 0.9458 0.9465
1 0.9988 0.9991 0.9991 0.9988 0.9988
10 0.9990 0.9991 0.9990 0.9991 0.9989

by the attack.

We also see that when the detector does not know the parameter of the adversary,

i.e. u, the detector has to overestimate the variance chosen by the adversary, for

instance choosing σ̂a = 10−1 instead of 10−2, so that the adversary is not able to

impair the correlation by selecting a high variance attack.

Table 7.3: uA(σa, σ̂a) for Scenario 1 (n = 5, Amax = 250ms and Wmax = 100 ms).

σ̂/Amax

σ/Amax 10−4 10−3 10−2 10−1 1 10

10−4 0.9708 0.9389 0.8955 0.8936 0.8475 0.8448
10−3 0.9751 0.9481 0.9010 0.8958 0.8514 0.8532
10−2 0.9754 0.9581 0.9043 0.9047 0.8836 0.8816
10−1 0.9581 0.9532 0.9369 0.9641 0.9813 0.9773
1 0.9357 0.9414 0.9579 0.9949 0.9991 0.9987
10 0.9345 0.9429 0.9618 0.9954 0.9989 0.9987
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Table 7.4: uA(σa, σ̂a) for Scenario 2 (n = 10, Amax = 250ms and Wmax = 100ms).

σ̂a/Amax

σa/Amax 10−4 10−3 10−2 10−1 1 10

10−4 0.9236 0.9087 0.9061 0.9122 0.9435 0.9494
10−3 0.9231 0.9096 0.9085 0.9109 0.9421 0.9450
10−2 0.9215 0.9100 0.9076 0.9139 0.9473 0.9484
10−1 0.9138 0.9082 0.9118 0.9485 0.9856 0.9895
1 0.9032 0.9043 0.9277 0.9893 0.9989 0.9988
10 0.9027 0.9039 0.9259 0.9882 0.9988 0.9986

Table 7.5: uA(σf , σa) for Scenario 1 (n = 5, Amax = 250ms and Wmax = 100ms).

σa/Amax

σf/Wmax 10−4 10−3 10−2 10−1 1

10−4 0.9982 0.9990 0.9969 0.9968 0.9987
10−3 0.9983 0.9991 0.9970 0.9967 0.9988
10−2 0.9982 0.9989 0.9968 0.9965 0.9977
10−1 0.9960 0.9975 0.9950 0.9946 0.9931
1 0.9982 0.9985 0.9964 0.9968 0.9983
10 0.9980 0.9982 0.9962 0.9967 0.9983

Table 7.6: uA(σf , σa) for Scenario 2 (n = 10, Amax = 250ms and Wmax = 100ms).

σa/Amax

σf/Wmax 10−4 10−3 10−2 10−1 1

10−4 0.9989 0.9991 0.9994 0.9985 0.9990
10−3 0.9989 0.9991 0.9993 0.9983 0.9984
10−2 0.9984 0.9984 0.9986 0.9971 0.9963
10−1 0.9934 0.9949 0.9943 0.9922 0.9915
1 0.9989 0.9991 0.9991 0.9984 0.9989
10 0.9991 0.9993 0.9991 0.9988 0.9990

7.4.3 Other distribution attacks

In this section, we evaluate whether the game results change significantly when other

different distributions are used. Concretely, we evaluate the truncated Laplace and

the truncated Cauchy distributions. We solve the game in the same way as presented

in the previous section. We depict the ROC at the SPE for the proposed distribution

in Figures 7.4 and 7.5, and the scale parameter at the SPE in Tables 7.7 and 7.8.
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Gaussian (u=0.935437)
Gaussian (u = 0.996098)
Laplacian (u∗=0.943297)
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Laplacian (u = 0.997182)
Cauchy (u∗=0.947499)
Cauchy (u=0.945135)
Cauchy (u = 0.997520)

Figure 7.4: Solution of the truncated Gaussian (blue), truncated Laplace (red) and
truncated Cauchy (green) games for Scenario 1 (n = 5, Amax = 250ms and Wmax =
100ms).

We see that the difference among the distributions is not significant, but in any case

the Gaussian distribution is the one that impairs slightly more the correlation based

on the AUC.

7.4.4 Distribution mismatch between the adversary and the

decoder

In this section, we evaluate the consequences of an adversary who not only chooses

the distribution parameters but also the distribution itself. Obviously, only differs

from the previous one under u, in which the adversary uses an attack distribution

different than that the assumed at the detector.
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Cauchy (u = 0.998029)

Figure 7.5: Solution of the truncated Gaussian (blue), truncated Laplace (red) and
truncated Cauchy (green) games for Scenario 2 (n = 20, Amax = 250ms and Wmax =
100ms).

Table 7.7: Scale parameter at the SPE for different distribution attacks for Scenario
1 (n = 5, Amax = 250ms and Wmax = 100ms).

u∗
A uA uA

Truncated Gaussian
σF = 10−3 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

Truncated Laplace
σF = 10−3 σF = 10−3 σF = 10−4

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

Truncated Cauchy
σF = 10−3 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−3 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

We assume that the detector is designed using a Gaussian-distributed attack as

it is the distribution that impairs slightly more the detector, and we evaluate the
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Table 7.8: Scale parameter at the SPE for different distribution attacks for Scenario
2 (n = 10, Amax = 250ms and Wmax = 100ms).

u∗
A uA uA

Truncated Gaussian
σF = 10−3 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−3 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

Truncated Laplace
σF = 10−2 σF = 10−3 σF = 10−4

σA = 10−2 σA = 10−3 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

Truncated Cauchy
σF = 10−4 σF = 10−3 σF = 10−3

σA = 10−3 σA = 10−3 σA = 10−2

σ̂A = 10−3 σ̂A = 10−1 σ̂A = 10−2

performance of the other two attack distributions used in the previous section. We

simulate the same scenarios as in previous sections, and we depict the results in

Figures 7.6 and 7.7 for Scenario 1 and 2 respectively. We can see that even the TA

is known to decode assuming a truncated Gaussian the adversary does not increase

significantly the impairment to the correlation by choosing a different distribution

attack, allowing us to conclude that the location and scale parameters, i.e., mean

and variance, are the predominant factors in the detector rather than the assumed

attack distribution.

7.5 Chaff traffic adversary

In this section we derive the detector when the adversary not only can delay packets

as we have assumed so far but he can also add certain amount of chaff traffic, making

n2 ≥ n. Formally, the adversary actions can be defined as:

AAD ={f(zn2 |rn) : ∃cnA | 0 ≤ ai ≤ Amax ∧ nA

n
≤ PA ∧ 0 ≤ cj ≤ rn + Amax

∧ zn2 = sort((rn + an)||cnA), i ∈ [1, n] and j ∈ [1, nA]}, (7.19)

where cnA is the sequence of chaff packets, PA is the maximum ratio between chaff and

real traffic, || represents the concatenation of sequences, and sort(xn) is a function
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Cauchy At., Gaussian Det. (u=0.941285)

Figure 7.6: ROC curves using Gaussian detector for Scenario 1 (n = 5, Amax = 250ms
and Wmax = 100ms).

that returns a sorted version of the input sequence.

A Neyman-Pearson detector when n2 6= n has to be based on the joint distribution

as shown in (7.7) and this test becomes intractactable. For this reason, we implement

the detector in two steps: first, a matching process takes place that outputs two

sequences of the same size, and then we use the same likelihood test constructed in

the previous section.

7.5.1 Matching Process

When dummy packets are added, i.e., PA > 0, there does not exist a one-to-one

relation between the flows xn and yn2 . To deal with this problem, we match each



Chapter 7. Flow-Correlation with an adversary 149

10
−4

10
−3

10
−2

10
−1

10
0

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
F

P
D

 

 

Gaussian At., Gaussian Det. (u=0.899887)
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Cauchy At., Cauchy Det. (u=0.903040)
Cauchy At., Gaussian Det. (u=0.899834)

Figure 7.7: ROC curves using Gaussian detector for Scenario 2 (n = 10, Amax =
250ms and Wmax = 100ms).

packet of xn with the most likely from yn2 , later removing those packets of yn2 that

have no correspondence in xn.

We represent the fact that the ith packet from xn is paired with the jth packet

from yn2 bym(i) = j. LetM be the set of all injective functions fromN = {1, . . . , n}
to N2 = {1, . . . , n2}, i.e., ∀i1, i2 ∈ N , m(i1) = m(i2) =⇒ i1 = i2. Then the

matching functionm(xn, yn2) is the function fromM that minimizes the mean square

error between xn and a shifted version of yn2 as follows:

m = argmin
M

n∑

i=1

(yp(i) − xi − ρ− E(ai))
2, (7.20)

where E(ai) is the expected value for the delay added by the adversary to the ith

packet, and ρ is a synchronization constant equal to the sample mean of the delays,
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i.e. ρ = 1
n

∑n
i=1 di. In a real implementation, where the sample mean is unknown,

ρ can be obtained through an exhaustive search (self-synchronization property) as

shown in Chapter 6.

7.5.2 Chaff traffic of the adversary

We assume that the matching process selects those packets that give a higher value for

the detector, i.e., Λ1(m(xn, yn2), xn, fAn|∆Xn) > Λ1(m
′(xn, yn2), xn, fAn|∆Xn), ∀m′ ∈

M. Under this assumption, the adversary has to choose cnA so that these dummy

packets are removed in the matching process. On the other hand, the adversary

needs these packets to force the TA to consider longer possible sequences for yn+nA ,

as longer sequences of Y n2 will increase ǫ for a given PF .

7.5.3 Results

In this section, we obtain the solution of the proposed games when the adversary can

also add chaff traffic, so we extend the simulator to handle it. We use the truncated

Gaussian version of the game, as in the previous section we showed that among the

attack distributions there is not a significant difference on the performance.

We show the utility, uA, at the SPE for the proposed distribution in Tables 7.9

and 7.10, and the scale parameter at the SPE in Tables 7.11 and 7.12. As expected,

the utility decreases with the amount of chaff, but the amount of traffic that would

drop the correlation is very large, for instance in Scenario 2 u∗
A only drops from 0.9810

to 0.9649 using 1000% of chaff traffic. We also notice that under larger amount of

chaff traffic the variance of the attack for u increases towards a uniform attack.
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Table 7.9: Comparison of the utility at the SPE for different amount of chaff traffic
for Scenario 1 (n = 5, Amax = 250ms and Wmax = 100ms).

u∗
A uA uA

No Chaff 0.9732 0.9669 0.9990
PA = 1 0.9650 0.9555 0.9977
PA = 10 0.9328 0.9224 0.9880

Table 7.10: Comparison of the utility at the SPE for different amount of chaff traffic
for Scenario 2 (n = 10, Amax = 250ms and Wmax = 100ms).

u∗
A uA uA

No Chaff 0.9810 0.9780 0.9988
PA = 1 0.9764 0.9739 0.9963
PA = 10 0.9649 0.9655 0.9926

Table 7.11: Scale parameter at the SPE for different amount of chaff traffic for
Scenario 1 (n = 10, Amax = 250ms and Wmax = 100ms).

u∗
A uA uA

No chaff
σF = 10−4 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

PA = 1
σF = 10−3 σF = 10−4 σF = 10−2

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−1 σ̂A = 10−1 σ̂A = 10−1

PA = 10
σF = 10−4 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−2 σA = 10
σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10

7.6 Flow Fingerprinting Game: correlated flows

We propose a second game, that is shown in Figure 7.8. In this game, the task of

the TA is to add a fingerprint to the flow in such a way that he can differentiate

between this flow and an identical flow that has not been fingerprinted. The goal of

the adversary is to modify the fingerprinted flow in such a way that the TA decides

that there is no fingerprint.

In this game, we also consider that the flows enter at a particular time in the

system, so we denote by δl to the sequence that represents the time difference between
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Table 7.12: Scale parameter at the SPE for different amount of chaff traffic for
Scenario 2 (n = 20, Amax = 250ms and Wmax = 100ms).

u∗
A uA uA

No chaff
σF = 10−4 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

PA = 1
σF = 10−4 σF = 10−3 σF = 10−3

σA = 10−2 σA = 10−2 σA = 10−1

σ̂A = 10−2 σ̂A = 10−1 σ̂A = 10−1

PA = 10
σF = 10−2 σF = 10−3 σF = 10−4

σA = 10−2 σA = 10−1 σA = 1
σ̂A = 10−2 σ̂A = 10−1 σ̂A = 1

AD

TA

Detector

TA

Fingerprinter

Figure 7.8: Model of the Flow Fingerprinting Game: correlated flows

the moment that the fingerprinted flow and an identical flow enter the system. The

rest of the conditions are identical to the previous game. Recall that Dn = Dn
1 +Dn

2

is the delay suffered by the flow and its distribution is identical for all the flows.

A real scenario for this game may correspond to a web page trying to fingerprint a

specific access so it can distinguish from other user’s accesses to the same web page.

We also assume that the adversary can only delay packets, with the same con-

straint as in the previous game, i.e., ∀i ai < Amax. In this game, chaff traffic is

not considered as it does not give any advantage to the adversary because the non-

fingerprinted flow is known to have n packets, so any modification to the number of

packets would identify it.
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We assume that the first order statistics of D and ∆D are known by both players

and define the hypotheses:

H0 : y
n is a non-fingerprinted version of un

H1 : y
n is a fingerprinted version of un.

We define the flow fingerprinting game for correlated flows as follows:

Definition 2. The FFGC(ATA;AAD; u) is a zero-sum game played by the TA and

the adversary, where

• The set of actions the TA can choose from, ATA, is the duple of possible

fingerprint distributions fWn and acceptance regions Λ1:

ATA = {fWn × Λ1 : 0 ≤ wi ≤ Wmax, i ∈ [1, n]} (7.21)

• The adversary actions are the possible attack distributions with range in [0,

Amax]:

AAD = {fAn : 0 ≤ ai ≤ Amax, i ∈ [1, n]} (7.22)

• We use two different utility functions, that are the same as previously.

7.6.1 Detector

In the detector for the uncorrelated game, we have assumed that both the TA and

the attacker have only knowledge of the first order statistics of the PDV, ∆D. In this

game, we assume that both players know the first order statistics of both the PDV

and the delay, D. Hence, the optimal detector under this condition can be derived

as

Λ1(y
n, xn, un, f̂An|Xn) =

∫ Amax

0
fD(y1 − x1 − a)f̂A1(a)da

maxδL fD(y1 − u1 − δ)

·
n−1∏

i=1

∫

R f∆D(∆yi − xi + z))f̂ai+1−ai|Xn(z|xn)dz

f∆D(∆yi − ui)
(7.23)
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where f̂ai+1−ai|Xn(x) =
∫ Amax

0
f̂Ai+1

(x+ y)f̂Ai
(y)dy.

We assume that both the TA and the attacker do not know the sequence δL, i.e.,

they do not know when non-fingerprinted flows traverse the network. As the TA has

to maximize over the range of possible δ, the term maxδ fD(y1 − u1 − δ) becomes a

constant equal to maxd fD(d) that we can include in the threshold. Hence, the test

becomes:

Λ1(y
n, xn, un, f̂An|Xn) =

∫ Amax

0

fD(y1 − x1 − a)f̂A1(a)da

·
n−1∏

i=1

∫

R f∆D(yi+1 − y1 − xi+1 − xi − z)f̂ai+1−ai|Xn(z|xn)dz

f∆D(∆yi − ui)

(7.24)

7.6.2 Deterministic attack

As in the previous game, we start studying the case when the attack and the fin-

gerprint are deterministic. This means that they do not randomize with the aim of

confusing the other player. Under these conditions fAn|Rn(x) =
∏n

i=1 δ(x − ai) and

fÂn|Xn(x) =
∏n

i=1 δ(x− âi). The test becomes:

Λ1(y
n, xn, un, ân) =fD(y1 − x1 − â1)

n−1∏

i=1

f∆D(∆i(y
n − xn − ân))

f∆D(∆(yn − un))
. (7.25)

The solutions of this game are:

u∗ = max
wn

min
an

Pr

(

fD(d1) ·
n−1∏

i=1

f∆D(∆id
n)

f∆D(∆i(wn + an + dn))
> ǫ

)

(7.26)

u = max
wn,ân

min
an

Pr

(

fD(d1 + a1 − â1) ·
n−1∏

i=1

f∆D(∆i(d
n + an − ân))

f∆D(∆i(wn + an + dn))
> ǫ

)

(7.27)

u = min
an

max
wn

Pr

(

fD(d1) ·
n−1∏

i=1

f∆D(∆id
n)

f∆D(∆i(wn + an + dn))
> ǫ

)

(7.28)

These solutions are obtained from equations (7.1),(7.2) and (7.3) using the test

(7.25).
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Note that an seems to be chosen to minimize ∆(an + wn), hence destroying the

watermark information in the IPD. This can be completely achieved when Amax ≥
Wmax, making the timing of the first packet the only available information for the

test.

Results

We keep the same two scenarios for simulation. As in this game results depend on

the time when identical flows enter the system, i.e., δl, we simulate those instants

using the NASA ’s and World Cup’s logs presented in Chapter 3. Recall from Table

3.3 that the NASA web server received an average of 0.66 requests per second and

the World Cup web server 14.97 requests per second.

We simulate the following situations:

1. No watermark

2. Watermark without attack

3. Watermark with attack Amax < Wmax

4. Watermark with attack Amax = Wmax

5. No attack, but watermark amplitude as Wmax − Amax of the third case.

In this game, we do not consider u since the attack cannot be chosen before the

fingerprint value.

Results are depicted in Figures 7.10 and 7.9 for Scenario 1 (Amazon cloud) and

in Figures 7.12 and 7.11 for Scenario 2 (Tor network). Recall that Scenario 2 has a

much larger delay variance and also its PDV is much more dispersed.

First, we notice that even when no fingerprint is added the fact that δ takes

specific values allows the TA to guess with some confidence when E[∆δ] is smaller



Chapter 7. Flow-Correlation with an adversary 156

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

 

 

uA1
= 0.912636

uA2
= 0.995691

u∗

A3
= 0.971421

uA3
= 0.971421

u∗

A4
= 0.916633

uA4
= 0.910686

uA5
= 0.970577

Figure 7.9: Solution of the constant games for Scenario 1 with World Cup log and
n = 5, with game parameters: A1 : (Amax = 0, Fmax = 0), A2 : (Amax = 0, Fmax =
1ms), A3 : (Amax = 0.75ms, Fmax = 1ms), A4 : (Amax = 1ms, Fmax = 1ms) and
A5 : (Amax = 0ms, Fmax = 0.25ms).

than the standard deviation of the network delay. Second, when Amax ≥ Wmax the

attacker will destroy the watermark and the results are very similar to the non-

fingerprint situation. In Scenario 1, the presence of the attacker makes the perfor-

mance very similar to a fingerprint of amplitude Wmax − Amax but in Scenario 2

the attacker impairs the correlation performance more severely than what would be

obtained with no attack and a fingerprint amplitude of Wmax − Amax.
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uA1
= 0.991543

uA2
= 0.999123

u∗

A3
= 0.996717

uA3
= 0.996717

u∗

A4
= 0.992179

uA4
= 0.991600

uA5
= 0.995953

Figure 7.10: Solution of the constant games for Scenario 1 with NASA’s log and
n = 5, with game parameters: A1 : (Amax = 0, Fmax = 0), A2 : (Amax = 0, Fmax =
1ms), A3 : (Amax = 0.75ms, Fmax = 1ms), A4 : (Amax = 1ms, Fmax = 1ms) and
A5 : (Amax = 0ms, Fmax = 0.25ms).

7.6.3 Truncated-Gaussian Attack

As in the previous game, we study the case when the attack is randomized using a

truncated Gaussian distribution. Afterwards, in the next section, we compare the

results with the other distribution attacks used previously, namely the truncated

Laplacian and the truncated Cauchy distributions. Finally, we study the case of the

attacker chooses a different model than that assumed by the test.

As mentioned, the adversary add delays following a truncated Gaussian in the

allowed interval so as the TA cannot guess its value and compensates it in the

test. Therefore, ai ∼ N(µa,i, σ
2
a|0 ≤ ai ≤ Amax). Recall that this game includes
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uA1
= 0.500000

uA2
= 0.997190

u∗

A3
= 0.921259

uA3
= 0.914644

u∗

A4
= 0.525486

uA4
= 0.500000

uA5
= 0.966079

Figure 7.11: Solution of the constant games for Scenario 2 with World Cup’s log and
n = 10, with game parameters: A1 : (Amax = 0, Fmax = 0), A2 : (Amax = 0, Fmax =
100ms), A3 : (Amax = 75ms, Fmax = 100ms), A4 : (Amax = 100ms, Fmax = 100ms)
and A5 : (Amax = 0ms, Fmax = 25ms).

as extremes cases the deterministic attack seen previously (i.e., σ2 → 0), and a

uniform attack (i.e., σ2 → ∞). In this game, i.e., correlated flows, the TA does not

achieve any advantage by randomizing the fingerprint as the attacker knows un, so

the fingerprint is still created in a deterministic way.

Formally, the actions available to each player are:

ATA = {wn × µ̂n × σ̂2} (7.29)

AAD = {µn × σ2} (7.30)
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= 0.883418
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= 0.998718
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= 0.974567
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= 0.972702
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= 0.908612

uA4
= 0.891541

uA5
= 0.988335

Figure 7.12: Solution of the constant games for Scenario 2 with NASA’s log and
n = 10, with game parameters: A1 : (Amax = 0, Fmax = 0), A2 : (Amax = 0, Fmax =
100ms), A3 : (Amax = 75ms, Fmax = 100ms), A4 : (Amax = 100ms, Fmax = 100ms)
and A5 : (Amax = 0ms, Fmax = 25ms).

and the detector is:

Λ1(y
n, xn, un, ân, σ̂2) =

∫ Amax

0

fD(y1 − x1 − a)fTG(a|â1, σ̂2)da

·
n−1∏

i=1

∫

R f∆D(yi+1 − y1 − xi+1 − xi − z)f̂DTG(z|âi+1, âi, σ̂
2)dz

f∆D(∆yi − ui)
(7.31)

with

fTG(x|a, σ2) =
φ
(
x−a
σ

)

σ
(
Φ
(
Amax−a

σ

)
− Φ

(−a
σ

)) (7.32)

and

fDTG(x|a2, a1, σ2) ==

∫ Amax

0

fTG(y|a2, σ2)f̂TG(y − z|a1, σ2)dy (7.33)
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Table 7.13: u∗
A(σa) for Scenario 1 with WC’s log (n = 5, Amax = 0.75ms and

Wmax = 1ms).
σA/Amax 10−4 10−3 10−2 10−1 1 10

0.9833 0.9834 0.9843 0.9909 0.9977 0.9979

Table 7.14: uA(σa, σ̂a) for Scenario 1 (n = 5, Amax = 0.75ms and Wmax = 1 ms).

σ̂/Amax

σ/Amax 10−4 10−3 10−2 10−1 1 10

10−4 0.9833 0.9833 0.9841 0.9881 0.9842 0.9834
10−3 0.9833 0.9834 0.9841 0.9883 0.9843 0.9831
10−2 0.9835 0.9836 0.9843 0.9886 0.9853 0.9842
10−1 0.9841 0.9842 0.9853 0.9908 0.9915 0.9908
1 0.9708 0.9710 0.9731 0.9861 0.9978 0.9979
10 0.9696 0.9697 0.9714 0.9852 0.9978 0.9980

being φ and Φ respectively the pdf and the cdf of a standard normal distribution.

We simulate this game using the A4 conditions of the previous section, i.e. 0 <

Amax < Wmax, with World Cup’s log (WC) for Scenario 1 and NASA’s log for

Scenario 2. Results of u∗ and u are provided in Tables 7.13 and 7.14 for Scenario

1 and in Tables 7.15 and 7.16 for Scenario 2. We can see that the attacker chooses

σ ∈ [10−4, 10−3]·Amax, this small variance makes the attack virtually deterministic as

in the previous game. When the detector parameters are chosen without knowing the

attack ones, i.e. u, in a low variance delay, (Scenario 1), the TA has to overestimate

the attack variance, 10−1 ·Amax instead of [10−4, 10−3] ·Amax, so the adversary does

not have the chance to choose a higher variance attack to degrade the detector

performance. This does not happen in Scenario 2, as even though the detector is

known to consider a low variance attack the adversary’s best option is to use a small

variance, due to the high variance distributions of D and ∆D.

Table 7.15: u∗
A(σa) for Scenario 2 with NASA’s log (n = 10, Amax = 75ms and

Wmax = 100ms).
σA/Amax 10−4 10−3 10−2 10−1 1 10

0.9930 0.9920 0.9932 0.9945 0.9977 0.9981
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Table 7.16: uA(σa, σ̂a) for Scenario 2 with NASA’s log(n = 10, Amax = 75ms and
Wmax = 100 ms).

σ̂/Amax

σ/Amax 10−4 10−3 10−2 10−1 1 10

10−4 0.9920 0.9921 0.9925 0.9942 0.9939 0.9939
10−3 0.9908 0.9908 0.9913 0.9938 0.9942 0.9941
10−2 0.9919 0.9920 0.9924 0.9943 0.9946 0.9944
10−1 0.9894 0.9895 0.9902 0.9943 0.9968 0.9969
1 0.9644 0.9646 0.9669 0.9838 0.9977 0.9980
10 0.9609 0.9612 0.9638 0.9821 0.9978 0.9981

7.6.4 Other distribution attacks

As in the previous game, we want to analyze if there are significant differences when

instead of choosing a truncated Gaussian the adversary chooses different distribu-

tions. We use the Laplace and Cauchy distributions truncated to [0, Amax]. Their

pdfs are shown in Table 6.3. We solve the game identically to the previous section

and we show the utility and the scale parameter at the SPE for the proposed distri-

butions in Tables 7.17 and 7.18, where we can see that the adversary impact does not

vary significantly depending on the distribution it follows. This fact can be better

seen in Figures 7.13 and 7.14 where we depict the ROC curve at the SPE. We see

that in Scenario 1 the adversary should choose a Gaussian model and in Scenario

2 even the AUC is smaller for a Laplace model, the figure shows that the Gaussian

model gives worse performance for PF < 10−2.

Table 7.17: Comparison of the utility at the SPE for different distribution attacks and
the scale parameters at the SPE in Scenario 1 with WC log (n = 5, Amax = 0.75ms
and Wmax = 1ms).

u∗
A σ∗ uA σ, σ̂

Truncated Gaussian 0.9810 10−4 0.9817 10−4, 10−1

Truncated Laplace 0.9856 10−4 0.9850 10−4, 10−2

Truncated Cauchy 0.9840 10−4 0.9839 10−4, 10−2
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Table 7.18: Comparison of the utility at the SPE for different distribution attacks and
the scale parameters at the SPE in Scenario 2 with NASA’s log (n = 10, Amax = 75ms
and Wmax = 100ms).

u∗
A σ∗ uA σ, σ̂

Truncated Gaussian 0.9928 10−3 0.9926 10−4, 10−4

Truncated Laplace 0.9915 10−3 0.9904 10−4, 10−4

Truncated Cauchy 0.9939 10−3 0.9939 10−4, 10−2
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Figure 7.13: Solution of the truncated Gaussian (blue), truncated Laplace (red) and
truncated Cauchy (green) correlated flow games for Scenario 1 with WC’s log(n = 5,
Amax = 0.75ms and Wmax = 1ms).
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Figure 7.14: Solution of the truncated Gaussian (blue), truncated Laplace (red)
and truncated Cauchy (green) correlated flow games for Scenario 2 with NASA’s
log(n = 10, Amax = 75ms and Wmax = 100ms).

7.6.5 Distribution mismatch between the adversary and the

decoder

Finally, we study the consequences of the adversary choosing a different attack dis-

tribution than that the assumed by the detector. This situation only is possible in

u.

We assume a detector that assumes a truncated Gaussian attack as according to

the previous section the adversary should choose this model as it gives slightly smaller

utility. Given that the adversary knows this fact, we want to study whether the

adversary can choose a different distribution attack to impair the test in a more severe
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Figure 7.15: ROC curves for Gaussian detector (σ̂ = 10−1) for Scenario 1 with WC’s
log(n = 5, Amax = 0.75ms and Wmax = 1ms).

way. We assume that the adversary can choose among the following distributions:

truncated Gaussian, truncated Laplacian and truncated Cauchy.

We simulate the same scenarios with the same parameters as in the previous

section, and we depict the results in Figures 7.15 and 7.16 for Scenarios 1 and 2,

respectively. We can see that even the TA is known to make a truncated Gaussian

assumption the adversary does not improve its utility significantly by selecting a

different distribution attack.



Chapter 7. Flow-Correlation with an adversary 165

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

 

 

Gaussian At., Gaussian Det. (u=0.992033)
Laplacian At., Laplacian Det. (u=0.992068)
Laplacian At., Gaussian Det. (u=0.991982)
Cauchy At., Cauchy Det. (u=0.992276)
Cauchy At., Gaussian Det. (u=0.992141)

Figure 7.16: ROC curves for Gaussian detector (σ̂ = 10−4) for Scenario 2 with
NASA’s log(n = 10, Amax = 75ms and Wmax = 100ms).

7.7 Conclusion

In this chapter, we have analyzed two different flow fingerprinting games. In the first

one, the TA’s goal is to differentiate between a known flow or different flows where

the fingerprint is added to improve the performance. In the second game, the goal of

the TA is to differentiate between a fingerprinted flow and identical flows that have

not been fingerprinted. In both games, we assume a rational adversary who tries to

impair the correlation as much as possible. Results show that for both games, the

TA and the attacker should act in a virtually deterministic way in most of the cases.



166

Chapter 8

Conclusions and Future Work

This section briefly summarizes the conclusions that may be extracted from the

research work undertaken in the present thesis.

We started by proposing a method to leave a fingerprint in a log that stores the

timing of certain events that the fingerprinter can create. The trace is hidden in

the timing information in order to make it hard to be detected by the log owner or

any other party that does not have the creation timing. We applied this technique

to fingerprint Tor’s hidden web servers. We also showed that an optimal decoder,

i.e., a likelihood test, may not be the best solution for all the scenarios, as in some

circumstances a suboptimal decoder can achieve similar results, being much easier

to compute and calculate the theoretical performance.

We have proposed two methods for the forensic problem of tracing flows that are

involved in low-latency anonymous networks. These methods are designed to handle

a large amount of dummy or other users’ traffic without being able to differentiate

them. We use both flow correlation methods to locate Tor’s hidden services, but the

ideas behind these methods can be used in many other contexts such as deciding

whether a flow goes through a certain proxy, tracing VPN flows, etc.
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Afterwards, we addressed the classical flow-correlation problem, showing that a

passive analysis technique can outperform the state-of-the-art watermarking tech-

niques, in the case of non-highly-correlated flows. This is achieved by using an

optimal decoder that includes statistical modelling. This method is designed to be

robust against an adversary that adds chaff traffic, splits the flows or adds random

delays. We also showed the performance of the non-blind watermark extension of

this algorithm.

Finally, we studied the limits of flow watermarking/fingerprinting under an ad-

versary that tries to destroy it. We showed that in most of the possible scenarios the

TA and the attacker should act in a virtually deterministic way making the flow the

most or least unique as possible, respectively, instead of confusing the other player.

We also showed that we need a huge amount of dummy packets in order to impair

the correlation significantly.

8.1 Future Research Lines

Traffic analysis in IP networks has many open hot topics that will be progressively

tackled in the near future. The ones most directly related to the research covered in

this thesis are briey highlighted in the following points:

1. A perfect invisible watermark against an attacker that knows only the first-

order distribution of the PDVs, i.e., ∆D, is feasible. Creating this watermark

and studying the improvement of performance against a passive analysis is a

problem to address. This watermark has to be the optimal watermark among

those which keep DKL(∆D||∆D +∆W ) = 0.

2. Creating a flow fingerprint is indeed the same problem as creating a covert

channel where the information is sent on the timing of packets. Analyzing the
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trade-off of invisibility against the rate of information that can be reliably sent

is an important open problem that has not been addressed yet.
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Appendix A

Theoretical Probabilities for

IPD-based without traffic

modification

A.1 Cauchy Test

Recall from (6.6) that we decide the flows are correlated if the random variable W

defined as

W =
n−1∏

i=1

Vi
︷ ︸︸ ︷

(∆Yi)
α+1

πσαxα
m

(

1 +

(
∆Yi −∆Xi

σ

)2
)

︸ ︷︷ ︸

Ui

(A.1)

is larger than η. Also notice that in (A.1) we have defined the auxiliary random

variables Ui and Vi.

As shown in Section 6.3, when the flows are uncorrelated the ∆Xi and ∆Yi

become independent Pareto-distributed random variables. Nevertheless, under the

Cauchy model assumption, ∆Yi −∆Xi follows a Cauchy distribution when flows are
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correlated. Therefore the distribution of Ui can be obtained through a transformation

of random variables (see [127]) as follows:

fU |H0(u) =

∫ ∞

xm

σ

2
√
u− 1

αxα
m

zα+1

(
αxα

m

(z + σ
√
u− 1)α+1

+
αxα

m

(z − σ
√
u− 1)α+1

)

dz (A.2)

and

fU |H1(u) =
1

πu
√
u− 1

. (A.3)

V can be characterized as follows:

fV (v) =
1

v2πσ

∫ ∞

xm

fU

(
zα+1

vσπαxα
m

)

dz. (A.4)

Lastly, we characterize W , as f(w) = fv1·v2···vn−1(w), where the density of the

product of two independent random variables can be obtained as

fV1·V2(v) =

∫ ∞

−∞

1

z
fV1(

v

z
)fV2(z)dz. (A.5)

So we calculate the value of the threshold, η, as the (1 − PF )th quantile of

fW |H0 and the probability of detection as PD = 1−FW |H1(η), where FW denotes the

cumulative distribution function of fW .

A.2 Laplace Test

Under Laplace assumption, the test (6.7) is

W =
n−1∏

i=1

Ui
︷ ︸︸ ︷

exp

(

−|∆Yi −∆Xi|
σ

)
(∆Yi)

α+1

2σαxα
m

︸ ︷︷ ︸

Vi

(A.6)

in the case that W is larger than η we decided the flows are correlate. Similarly to

the Cauchy case, we have defined the auxiliary random variables Ui and Vi.
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The only difference between the Cauchy model of the previous section is that

∆Yi −∆Xi follows a Laplace distribution when flows are correlated. Using a trans-

formation of random variables the distribution of Ui becomes

fU |H0(u) =

∫ ∞

xm

α2x2α
m

zα+1

(
1

(v − σ log u)α+1
+

1

(v + σ log u)α+1

)

dz (A.7)

and U |H1 becomes a uniform random variable in the interval [0, 1].

V can be characterized as follows:

fV (v) = 2σα2x2α
m

∫ ∞

xm

fU

(
2vσαxα

m

zα+1

)
1

z2(α+1)
dz. (A.8)

As in previous section f(w) = fv1·v2···vn−1(w), where the density of the product

of two independent random variables can be obtained using (A.5). The threshold,

η, is (1 − PF )th quantile of fW |H0 and PD = 1 − FW |H1(η), where FW denotes the

cumulative distribution function of fW .


