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ABSTRACT 

In the western US, relationships between fire, vegetation, climate, and urban 

areas are dynamic and evolving. This work used a forest landscape model, LANDIS-

II, informed by future climate scenarios and projections of urban expansion to 

understand wildfire interactions within projected Wildland Urban Interface (WUI) 

areas. This simulation showed that in both 2050 and 2100 +93% of the WUI in 

southern California experienced fire. Future work needs to be done in parametrizing 

forest biomass to ensure the validity of projections. Additionally, increasing each 

climate scenario model's replicates will create more accurate projections. 
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1.0 Introduction 

In the western United States, there has been a notable increase in stand-

replacing fires as the mean and the maximum fire size and annually burned area 

have dramatically increased since the 1980s (Miller et al. 2009). During 1972 – 

2018, California, U.S. experienced a fivefold increase in annual burned area, this 

increase was primarily supported from an eightfold increase in summer forest-fire 

extent (Williams et al. 2019). Starting in the early 20th century fire suppression has 

created altered fire regimes and has affected forest health in California (Nigro and 

Molinari 2019). Trends of rising regional temperature (Miller et al. 2009) and an 

autumn precipitation reduction of ~30% over the last four decades, aggregate fire 

weather indices have increased by +20% (Goss et al. 2020) indicating a higher fire 

risk in California. Recent estimates suggest that more than 100 million trees have 

died in California since 2010, primarily in the southern and central Sierra Nevada 

areas (Stephens et al. 2018). The magnitude of this level of mortality in the region 

presents such a large and greater potential for “mass fire” to exist in the coming 

decades, driven by the dry, combustible, large woody material that produces severe 

fires (Stephens et al. 2018). As an increasing vapor pressure deficit becomes more 

prominent in southern California, fine fuels and small wood debris will experience 

even lower moisture content, boosting the ability of fire spread (Balch et al. 2022). 

Kramer et al. 2018 found that over three decades the WUI contained 50% of 

buildings destroyed by wildfire. It is vital to understand fire in California and how that 
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relationship interacts with vegetation and climate to accurately project possible 

future fire risks for southern California wildland-urban interface. 

The question this work sought to answer is:  

How will contemporary and future climate scenarios impact the frequency and 

severity of fire intersecting with an expanding wildland-urban interface (WUI) in 

southern California? 

Sub-question: 

How do different climate models impact WUI fire severity and frequency? 

 This research examined how vegetation and fire interact within southern 

California through contemporary climate scenarios and possible futures modeled in 

the Multivariate Adaptive Constructed Analogs (MACA) CMIP5 Statistically 

Downscaled Climate Projections of three global climate models using the future 

Representative Concentration Pathway (RCP 8.5) scenario for 2019-2100. This is a 

large landscape (4,816,319 ha) where fire has the potential to impact millions of 

people. A better understanding of the interactions of climate and fire can influence 

development decisions and has the power to alter fire management regimes through 

the knowledge of where and what treatments are effective.  

 To understand these complex relationships between fire, climate, and 

vegetation a forest landscape model, LANDIS-II, was applied to the area of interest. 

LANDIS-II is capable of simulating forest growth, succession, and natural or human 

disturbances (Krofcheck et al. 2017, Liang et al. 2017, Syphard et al. 2011). The 
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LANDIS-II forests succession extension Net Ecosystem Carbon and Nitrogen 

(NECN), which was designed to provide total ecosystem accounting of carbon and 

nitrogen, allows species to respond dynamically to a changing climate through 

establishment and growth (Scheller et al. 2011). Social-Climate Related Pyrogenic 

Processes and their Landscape Effects (SCRPPLE), is used to simulate fire regime 

change due to climatic and social factors. Climate is represented through a Fire 

Weather Index and social processes are represented through suppression, 

accidental ignitions, and prescribed fire (Scheller et al. 2019). LANDIS-II allows us to 

create vegetation succession projections and project fire under different 

management regimes through manipulation of thinning and prescribed burn 

practices to understand how fire will interact with projected urban growth to the year 

2100. 

2.0 Background 

The following sections will cover the foundational knowledge needed to 

understand fire through relationships among history, climate, current regimes, and 

vegetation within southern California and most importantly understand the feedbacks 

within the context of the region when modeling forest succession and disturbances 

with LANDIS-II. 

2.1 Fire History in Southern California Ecosystems 

Ecosystems in southern California have evolved to coexist with fire to 

maintain species composition (Syphard et al. 2007). However, anthropogenic 

intervention from climate change, fire exclusion, and increased human ignitions in 
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wildland-urban interface zones have resulted in natural ecosystem relationships with 

fire being disturbed, thus creating a mix of more frequent and less frequent fires 

relative to historical regimes (Safford and Stevens 2017). In these fire-adapted 

ecosystems, the changes in fire behavior are altering the ecosystems themselves 

(Syphard et al. 2007, Jacobsen et al. 2004, Van de Water and Safford 2011), 

resulting in a complex interdependency between fire behavior, ecosystem function, 

and anthropogenic activities. 

2.1.1 Historic Fire Return Interval and Severity 

The historic fire return interval in southern California ecosystems has been 

the subject of debate. Previous works held that pre-settlement fires in California 

chaparral environments were small and low intensity (Bonnicksen 1981, Minnich 

1983, 1995) suggesting that lightning-ignited fires only burned small patches of 100-

1000 hectares which would produce a mosaic of fuels to act as a fire spread barrier 

when a patch was burned. This is not likely the case as chaparral shrub landscapes 

in southern California have fuel characteristics that are conducive to high-severity 

fires that commonly reach 10,000 hectares or more (Keeley et al. 1999). These 

large, and historically infrequent high-intensity fires have existed in the area (Keeley 

and Zedler 2009). However, California’s growth in population has also been 

accompanied by greater fire frequency within chaparral shrublands of southern 

California (Lippitt et al. 2012). 

 An increase in chaparral density, human population growth, and urban 

expansion has led to an increase in fire frequency beyond historical levels in some 
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areas (Syphard et al. 2007).  A growing frequency of large high-intensity fires within 

forest ecosystems in California (Westerling et al. 2006) has been, in part, attributed 

to fire suppression and fire exclusion policies in western U.S. forests (Syphard et al. 

2007, Vankat and Major 1978) and a rising in extreme fire weather days (Gross et al. 

2020). Fire suppression and exclusion have resulted in fuel build-ups believed to be 

historically large and ahistoric tree densities (Safford and Stevens 2017, Gray et al. 

2005) within mixed conifer forests leading to a greater likelihood of high-intensity 

crown fires (Gray et al. 2005). Within California shrubland ecosystems, large high-

intensity crown fires are a natural feature aided by drought conditions and strong, 

dry, Santa Ana winds affecting coastal southern California (Keeley and Zedler 2009). 

The landscape in southern California has historically been subjected to high-intensity 

fires (Keeley and Zedler 2009), but the frequency has increased aided by increased 

drought and low humidity conditions due to climatic change in chaparral (Syphard et 

al. 2018).  

Historic fire return intervals vary within California depending on the system. 

California shrublands have a natural fire-return interval of 30-150 years, in S. 

California it is generally closer to 30 years (Halsey and Keeley 2016). Many species 

within this community are pyroendemic, plants whose seedling germination and 

successful seedling recruitment are constrained to postfire environments (Keeley 

and Pausas 2018). Other species trigger germination by smoke (eg, Emmenanthe 

penduliflora and Phacelia brachyloba) creating a unique, endemic, biodiverse 

landscape. Chaparral species within their natural fire return have adapted to become 

resilient to fires, but increased fire frequency due to human-caused ignitions and 
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anthropogenic climate change can lead to the vigor and regeneration of these fire-

adapted species being impacted. A return to a historic fire interval could allow 

species biodiversity to remain rich through seedbank deposits replenishing awaiting 

fire and smoke germination queues and allow keystone non-resprouting shrubs and 

resprouting-dominated chaparral stands to thrive after fire (Halsey and Keeley 

2016). 

 While chaparral has been characterized by natural high-intensity crown fires 

with intervals of 30-150 years, pre-settlement California conifer forests in the Sierra 

Nevada’s had regimes that yielded low-moderate severity fires which were frequent 

with occasional crown fires in mature trees Historical returns in mixed conifer 

systems were characterized by returns of 0 to 35 years with a  heterogeneous pine-

dominated makeup and a lower tree density than their modern counterparts these 

forests experienced more frequent fire invigorating understory fire-stimulated shrub 

species (Safford and Stevens 2017).  

2.1.2 Modern Fire Regimes 

 Southern California has experienced a steady loss of shrub cover. Shrub loss 

has been aided by increased population density in southern California resulting in 

increased fire frequency and nitrogen deposition rates from atmospheric pollution 

(Talluto and Suding 2008) contributing to the loss of coastal shrubs and chaparral 

(CH). One study found that since 1953 woody cover experienced declines with a 

mean loss of 22.5% cover over 311 plots and 28% were fully type converted 

(Syphard et al. 2019). This deadly combination of both fire frequency and nitrogen 
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depositions rates creates an opportunity for non-native herbaceous colonizers, 

particularly annual grasses. Increased fire frequency does not allow resilient native, 

postfire endemic, species’ soil-seed banks time to recharge with at least 15 or more 

years being suggested (Syphard et al. 2019) to gather enough seed numbers for 

recovery. A fire return of even 6 years can affect chaparral environments that recruit 

from seed banks where frequent fires contributed to a loss of 86.8% in non-sprouting 

species in one study (Jacobsen et al. 2004).  

 Mixed conifer systems were not characterized by high severity and intensity 

fires, unlike chaparral. Fire return intervals of 11 – 16 years of low-moderate severity 

(Safford and Stevens 2017) were common lowering fuels build-up and limiting forest 

density and thus intensity. Conifer systems have been impacted by fire exclusion 

policies which have lengthened fire return intervals to 35 to 200 years (Safford and 

Stevens 2017) with many southern California mixed conifer forests experiencing an 

average return of 77.8 years (Nigro and Molinari 2019). This average return, aided 

by a combination of climate change and fire management policies, has led to half of 

southern California mixed conifer forests not experiencing fire in the last 109 years 

(Nigro and Molinari 2019) creating conditions for increased fire severity. Increased 

severity fires in mixed conifer forests have made them vulnerable to stand 

replacement due to large patch mortality via the reduction of regeneration from seed 

dispersal, due to distance from seed source (Nigro and Molinari 2019). These 

forests are adapted to low and moderate-intensity fires. As the severity of fires 

increases, type conversion of forest to chaparral, hardwood forest, or grassland can 
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occur if areas are reburned before conifer species can reestablish (Steel et al. 2018, 

Lauvaux et al. 2016, Paudel et al. 2022).  

 Differences in fire intensity and frequency matter between chaparral and 

mixed conifer systems. Chaparral fires are high-intensity crown fires, and a high 

return interval leads to type conversion for those species. An increased fire 

frequency from a historic return of at least 30 years or more (Van de Water and 

Safford 2011) has been linked to type conversion in chaparral and shrubland 

communities (Lippitt et al. 2012).  In mixed conifer forests, both frequency and 

intensity are drivers of dominant species type conversion. Climate change and fire 

exclusion strategies have led to forests developing hazardous fuel loads which help 

create high-intensity crown fires (Syphard et al. 2007) that lead to stand replacement 

(Miller et al. 2009). In many yellow pine-mixed-conifer systems in California, fire 

suppression policies have led to large, uncommon, fuel build and increased density. 

Fuel build-up and density contribute to high-severity crown fires that were historically 

rare (Syphard et al. 2007). 

2.2 Climate Change in Southern California 

 Climate change is expected to produce increased surface air temperatures in 

California (Li et al. 2014), increased precipitation volatility (Swain et al. 2018), and a 

different seasonality of Santa Ana winds (Guzman-Morales and Gershunov 2019). 

California has seen an estimated 1℃ increase in temperature and an estimated 30% 

decrease in precipitation over the last 4 decades (Keeley et al. 2021). Since the 

1970s, VPD has increased by 25% on burnable lands where vegetation is abundant 
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and ignitions are not limiting, warm-season days warmed by approximately 1.4℃ as 

part of a centennial warming trend, which has significantly increased the 

atmospheric vapor pressure deficit and will continue to into the future (Williams et al. 

2019, Blach et al. 2022). As the climate warms, species compositions and 

productivity may change as higher temperatures affect growing seasons and 

temperature-driven changes to evapotranspiration affect the moisture needed for 

growth (Westerling 2016). 

 Ten-year projections indicate California summers are likely to become 

warmer and longer, with increased variability in precipitation (Swain et al. 2018) and 

little change in the mean (Li et al. 2014). Regional coupled ocean-atmosphere 

models predict an increase of around 2℃ along the coastal ocean area that 

increases progressively inland with anomalies of over 4℃ in summer (Li et al. 2014) 

Increased air temperatures will actively lower fuel moisture levels as warmer 

temperatures increase evapotranspiration as the ability for the atmosphere to hold 

moisture increases with higher temperatures (Flannigan et al. 2016). 

 The projected changes within a coupled model show an estimated summer 

precipitation increase of 0.11 mm/day (Li et al. 2014) Though a marginal increase in 

precipitation is predicted it is unlikely to compensate for increased summer 

temperatures lowering fuels moisture through escalated evapotranspiration. 

California is expected to have 6-14 fewer rainy days per year while projections 

suggest daily precipitation will increase in intensity it is unknown whether an 

increased intensity will offset the drying effects of fewer rainy days (Pierece et al. 

2013). During the winter months, it is projected that southern California will see less 
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rain (~ -0.4 - -1.5 mm/day) (Li et al. 2014). Through the CESM-LENS ensemble, 

southern California is predicted to have a ~0% change in precipitation means (Swain 

et al. 2018), but an increase in precipitation variance of up to 50% (Swain et al. 

2018).  

 Santa Ana winds (SAWs) are to change in the latter half of the century with a 

gradual decrease in early fall and late spring along with southern California 

experiencing a weaker offshore breeze (Li et al. 2014). Santa Ana winds occur when 

air from a high-pressure region over the southwestern United States flows westward 

towards the low-pressure zones located off the California coast. The peak of Santa 

Ana wind fires season in southern California occurs during the fall enabling the dry, 

cold, winds to fan some of California’s greatest fires (Guzman-Morales and 

Gershunov 2019). A decrease Santa Ana winds in activity will be least pronounced 

during the winter peak of the Santa Ana wind season (Guzman-Morales and 

Gershunov 2019). While the strength of winds is expected to decrease, the 

frequency of Santa Ana winds will be more noticeable with the strongest being a 

68% and 30% decrease in winds through September and October during the second 

half of the century. For the late winds, a forecasted decline in frequency of 35% in 

April and 50% in May for the latter half of the 21st century (Guzman-Morales and 

Gershunov 2019).  

2.2.1 Projected Fire Regimes 

 Since the beginning of the Holocene, there has been a correlation between a 

changing environment and fire regimes (Keeley and Syphard 2016). Fire spread and 
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ignition probability are increased with lower moisture content within living or dead 

biomass. As droughts worsen, fuel moisture can be expected to decline accordingly. 

Years of high rainfall followed by drought years increase the variability of fire severity 

due to the increase in understory growth and eventual die-off. This variability in 

precipitation affects fire ignition and spread in ponderosa and shrubland 

environments becoming difficult for fire managers to predict forest fuels and ignition 

risk. In the Western United States, Parks et al. (2016) built a statistical model of fire 

severity as a function of climate that showed a mix of fire severity during the mid-21st 

century where cooler and/or wetter regions may experience higher severity levels 

with climate variability. Large portions of the west will likely experience decreased 

fire severity outside of those wetter regions (Parks et al. 2016). The probability of 

very large fire events defined as greater or equal to 23,234 hectares is suspected to 

increase by at least 30% projected through climate models for representative 

concentration pathway RCP4.5 and 8.5 with more days and months of extreme fire 

weather conditions of hot and moisture limited weather (Stavros et al. 2014). 

 Variability in the vapor pressure deficit (VPD) is the difference between the 

water vapor pressure at saturation and the actual water vapor pressure at a given 

temperature (Yuan et al. 2019) also changes. This is important as vapor pressure 

deficit provides one of the most important predictors of actual fire spread rate as an 

absolute measure of the difference between the air’s water vapor content and its 

saturation value (Balch et al. 2022). VPD is also a strong predictor of fuel moisture, 

especially impacting fine fuels like leaf litter and small-diameter wood debris (Balch 

et al. 2022). A trend of increasing vapor pressure deficit values has been directly 
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connected to observed increases in burned area in Alaska’s boreal forests and the 

western United States as a whole (Balch et al. 2022) indicating the response of 

summer forest-fire area to VPD is exponential. This relationship accounts for the 

fivefold increase in annual burned area within California from 1972-2018 (Williams et 

al. 2019). This trend of the daily minimum VPD increasing has the power to 

drastically increase the intensity of future fires through the creation of very low 

moisture environments and increasing the ability of fire spread. 

 Ponderosa and chaparral environments both share increased risks of fire 

ignition and spread based on herbaceous fuels increasing in density following years 

of high rainfall (Keeley and Syphard 2016). All fires thrive off a low moisture 

environment, but this does not always correlate to precipitation values. Within conifer 

forests, prior precipitation does not contribute to fire frequency as ignition ability and 

spread are largely dependent upon forest litter (Keeley and Syphard 2016). While 

rainfall might not be the large contributing factor to mixed conifer forests ignitions, it 

does play a part in ponderosa environments because of the more open nature of 

ponderosa systems, where understory growth and fuel loads are impacted by 

precipitation levels. Fuel-limited chaparral and shrubland ecosystems of southern 

California may experience reduced fuel abundance as a warmer climate reduces the 

growth of water-limited plants (Stavros et al. 2014). This effect may reduce the 

chance of very large fire events of ~23,234 hectares in chaparral systems. 

 

 



 

 

13 

2.2.2 Projected Vegetation Community Response 

 The climate changes described in section 2.2 will affect many vegetation 

communities in southern California. Despite a native vegetation community that is 

well adapted for California environments, the trend of increased temperatures, 

increased variability in precipitation, raising VPD, changing Santa Ana wind 

frequency, and the increased likelihood of longer droughts may stress and, in many 

cases, alter native environments (Kelly and Goulden 2008, Sykes 2009).  

 An increase in vapor pressure deficit negatively affects vegetative 

communities’ photosynthetic rates through stomatal closure, reducing plant carbon 

uptake, which is a larger influence on plant productivity than changes in precipitation 

(Konings et al. 2017). VPD reduces vegetation growth (Konings et al. 2017) and is a 

primary driver of drought-stress within forest systems (Williams et al. 2012). Soil 

moisture will continue to decrease through evapotranspiration as spring and summer 

VPD increases (Williams et al. 2012). VPD has been projected to steadily increase 

well into 2100 (Yuan et al. 2019), hindering vegetative communities’ ability to 

operate as a carbon sink. 

 The expected effects changes in Santa Ana winds will be a more condensed 

fire season in southern California. Traditionally the peak of wildfire season is 

October, but this peak may change to November-December creating a shorter fall 

and winter fire season. This more tapered Santa Ana winds season could possibly 

result in less frequent large fires during fall and winter as Santa Ana winds tend to 

become the main driver of large wildfires during those months (Guzman-Morales 
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and Gershunov 2019). It must be considered that this shorter season will likely follow 

an even drier summer with winter precipitation forecasted and thus may not make up 

for the summer decrease in precipitation at the tail end of the 21st century. 

 California’s native biodiversity has become threatened and changing climate 

conditions will further promote the spread of non-native species through native 

shrublands and grasslands (Sandel and Dangermond 2011). California’s year-to-

year unpredictability of precipitation patterns and projected increase in dry days 

(Polade et al. 2014) will heavily influence California vegetation, particularly 

endemics. Endemic species in California are in decline. Climate modeling by Battle 

et al. (2008) in southern Californian forests shows a link between increased 

temperatures and stem volume growth declines due to less moisture and a shorter 

growing season due to heightened surface air temperatures. Within Californian 

forests, stress induced by the increased variability of rain will invite pests, such as 

bark beetles, and pathogens to attack weakened trees, leading to increased 

mortality (Safford and Stevens 2017). A year of increased precipitation followed by a 

year of intense drought will result in a dense environment of low-moisture grassland 

fuels ready for conflagration via SAWs. Large fires are historically apart of chaparral 

shrublands in California and burn in stand-replacing fires throughout the California 

Floristic Province (Franklin 2009) and low-to-moderate intensity fires are a historical 

norm in mixed conifers. fire exclusion through forest fire suppression policy and 

increased fire frequency in chaparral have altered vegetation dynamics in these 

systems. In a study by Janet Franklin (2009) vegetation from 38 stands was 

surveyed examining plant invasion following fire. Stand-replacing fires led to shrub 
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cover increase from 3-to-31%, exotic herbaceous cover from 3-to-40%, and native 

annuals dropped from 33-to-15% (Franklin 2009) benefiting non-native species. As 

development continues along wildland-urban interface and intermix areas, where 

houses and vegetation directly intermingle, the interactions between human 

activities and vegetation alter fire regimes and can lead to species displacement 

(Syphard et al. 2007). 

2.3 Wildland-Urban Interface 

 The wildland-urban interface (WUI) is the area where houses and 

undeveloped wildland vegetation meet and intermingle, it is an area where wildfire 

problems are become more pronounced (Radeloff et al. 2018). WUI is defined by the 

Federal Register as areas with a housing density greater than 6.17 houses per km2 

and vegetation cover >50%. The percentage of vegetation cover is derived through 

extracting land cover data from the National Land Cover Database within each 

census block where >50% is intermix and >75% vegetation cover is interface zones 

(Glickman & Babbitt 2001).  WUI expansion in the United States has grown rapidly 

between 1990 to 2010 with an increase from 30.8 to 43.4 million homes and WUI 

classified land areas from 581,000 to 770,000 km2 (Radeloff et al. 2018). Suburban 

development within the WUI creates threats to vegetation as the development of 

these areas introduces habitation loss and fragmentation leading to lower levels of 

biodiversity (Radeloff et al. 2005). In California there are 4.5 million homes within the 

WUI, requiring the use of different fire suppression tactics at increased cost 

compared to remote fires (Schoennagel et al. 2017). Even with the WUI holding one-
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tenth of the land area in the conterminous United States 43% of all new homes were 

built there (Radeloff et al. 2018).  

In southern California when urbanization reaches undeveloped foothills and 

canyons, these areas become highly profitable, but risky, for suburban housing 

(Garrison and Huxman 2020). Further development of vegetated areas into low-

density housing increases the likelihood of fire activity as wildfires do not share a 

correlation to where the population is highest (Syphard et al. 2019). Home 

construction in the WUI increases the risk of wildfires occurring all while increasing 

fuel loads through structures and fire-prone landscaping (Garrison and Huxman 

2020).  If these developments experience fire insurance policies, state and federal 

subsidies, and disaster recovery funds shield homeowners from paying the full price 

of protecting their risky investments (Garrison and Huxman 2020). These policies 

could reinforce the continual development of the WUI. The trend of wildfires 

becoming larger is accelerating in California, this is seen in the WUI as well 

increasing total structure damage over the past four decades where average annual 

loss grew from $0.03 billion between 1979-1988 to almost $1 billion between 2009-

2018 (Buechi et al. 2021). Increased urbanization of southern California is creating 

expanded WUI area where larger parts of the population may be put at risk. In the 

western United States 3.6 million hectares are set to be exposed to moderate to 

large increases in wildfire risk in the next twenty years (Schoennagel et al. 2017). 

           The future of how fire and WUI expansion will interact with one another to the 

mid-21st century and beyond has not been covered in detail. Modelling has been 

done to understand different aspects of fire-WUI relationships in the western United 
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States Safford, Schmidt, and Carlson 2009 had the opportunity to assess how fuel 

treatments effecting wildfire severity in the WUI in response to the Angora Fire, 

which burned into 194 ha of fuel treatments. They found that fuel treatments can 

modify fire behavior and change crown fire to surface fires within 50 meters of 

encountering a fuel treatment (Safford, Schmidt, and Carlson 2009). Work by 

Syphard et al. 2019 modelled the importance of climate and human variables to 

explain fire patterns and structure loss across three regions in California. Their work 

suggested urban areas contributed more to fire ignitions and structure loss while 

climate and other geographic variables were important explanatory variables to a 

fire’s ability to reach larger sizes (Syphard et al. 2019). Work has also been done 

using LANDIS-II to explore interactions of wildfire, succession, and fuels 

management over 50 years in the southern Sierra Nevada, California on a 

landscape of 2.2 x 106 hectares in size and examine how fires responded to fuels 

treatment (Syphard et al. 2011). 

While work has been done to understand the relationship between fire and 

fuel treatment (Syphard et al. 2011), how fire responds to fuel treatment in WUI 

areas (Safford, Schmidt, and Carlson 2009), and how important climate and human 

infrastructure is in modelling structure loss in California (Syphard et al. 2019), there 

remains gap in an understanding of how future fire projections may interact with 

potential future California urban development. It is important to understand the 

conceivable risks of fire intersecting with expanding development as structure loss in 

southern California is significantly correlated with low-to-medium density housing 

(Syphard et al. 2019). 
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2.4 Landscape ecology models 

 Landscape models (Wiens & Milne 1989, Forman & Godron 1981, Steele 

1989) have been in development since the late 1980s and are used from the scale 

small habitats to regional simulations. The broad scales found in early landscape 

ecology modelling found that there are limits on what could be understood 

empirically across dynamic spaces leading to a need for spatial models which can 

use stochastic elements to conduct experiments through simulations. As the 

development of landscape ecology modelling became more advanced and 

computing power increased, there became more advanced ecological questions that 

empirical models could not address, leading to stochastic models or simulators 

(Mladenoff 2004). 

 Spatial models can simulate entities through cells that have coordinates, but 

these models are not always spatially dynamic, meaning they include explicit 

locations of what is being studied, but also processes that create interactions 

amongst the studied landscape that drive change over various time-steps. The 

stochasticity of these models and ability to simulate multiple replicates generates 

trajectories of system change thought of as a simulated version of the natural range 

of variability (Mladenoff 2004). Empirical and analytical models are constrained to 

answer limited questions, while spatially dynamic models like LANDIS can simulate 

possible futures being able to analyze landscape changes through stochastic 

ecosystem simulations. Landscape models are constrained by their extent and the 

degree to which the model incorporates mechanistic detail and spatial dynamics, 
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and cell size (Mladenoff 2004). LANDIS uses rasters due to several advantages, that 

they are both being the faster than vector in general and, if incorporated into the 

design, being capable of representing the greatest range of the resolution/extent 

space (Mladenoff 2004) 

 The goal of LANDIS, which is an abbreviation of ‘landscape disturbance and 

succession’, was to simulate large forest landscapes (100 s ha – 1000 s km2) with 

inclusions of succession, wind, and fire disturbances that operate spatially 

(Mladenoff 2004). LANDIS and LANDIS-II are raster map-based models that operate 

on interactive cells providing a mechanistic detail that is broad enough to be well 

suited over many different landscapes (Mladenoff 2004). The introduction of a shift 

in philosophy from LANDIS centralized model development to a decentralized 

LANDIS-II extension development and moving to variable timesteps creates a model 

that can model various forest landscape effects where disturbance frequency is high 

or successional processes long (Scheller et al. 2007). 

2.4.1 Modeling Vegetation Succession Dynamics with LANDIS-II 

 LANDIS-II is a forest landscape model that can simulate vegetation, including 

forests, shrublands, and grasses. The model can simulate change through a function 

of growth and succession influenced by different disturbances. LANDIS-II has been 

used to model a variety of ecosystem processes such as modeling and forecasting 

forest evolution (Ciceu et al. 2020), modeling potential effects of current biodiversity 

approaches on future habitation modification under diverging climate scenarios 

(Mairota et al. 2013), and modeling how ungulates can alter forest productivity and 
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vegetation succession (De Jager et al. 2017). Furthermore, LANDIS-I has been used 

with the Clark Urban Growth Model to simulate the effects of urban development and 

high fire frequency on the distribution of coastal shrublands (Syphard et al. 2007). 

LANDIS capability to be highly customizable, one can model vegetation succession 

and the different dynamics that take place across a varied landscape.  

LANDIS - II emphasizes species life history attributes of longevity, shade 

tolerance, fire tolerance, and dispersal ability, amongst others to drive succession 

and disturbance over the extent (Scheller et al. 2007). Species are modelled 

individually as species-age cohorts where multiple species can occupy the same 

space allowing species to respond differently to varying environmental drivers 

(Scheller et al. 2007). Each unique species has its own range of ideal temperatures 

and moisture ranges, making every species respond differently to climatic 

projections (Maxwell et al. 2022). 

 To simulate forest succession the Net Ecosystem Carbon and Nitrogen 

(NECN) (Scheller et al. 2022) growth extension was selected for the model. NECN 

was selected as it is an expansion upon the CENTURY model (Parton 1996) 

succession extension that was built into the LANDIS framework that has been used 

prominently (Krofcheck et al. 2017). The expansion of the CENTURY model LANDIS 

extension into NECN included regeneration function for species that can experience 

regeneration (Erikson & Strigul 2019). The purpose of NECN is to estimate 

ecosystem carbon and nitrogen between living and dead matter, and soil pools 

following the CENTURY model (Parton 1996). NECN can calculate how cohorts 

grow, reproduce, age, and die (Krofcheck et al. 2017). Upon death, biomass can be 
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tracked into different pools of surface litter, soil litter, soil wood, and surface wood.  

Being able to account for nitrogen is important when it comes to modelling the 

effects of frequent fire in native coastal shrub environments where increased 

nitrogen deposition rates and strain from urban conversion may increase loss within 

scrub communities (Talluto and Suding 2008). As anthropogenic warming continues 

to affect vegetative species and changing fire regimes, coupled with increased high-

severity fire risk from fire exclusion policies, could destabilize forest carbon and 

reduce the ability of forests to regulate climate through carbon sequestration 

(Krofcheck et al. 2017).   

2.4.2 Modeling Fire Dynamics with LANDIS-II 

 We chose LANDIS-II to capture the amount of variability increases within 

human policies regarding fire, vegetation response, climate, and fire itself over time. 

Within the LANDIS-II framework, Social-Climate Related Pyrogenic Processes and 

their Landscape Effects (SCRPPLE) extension (Scheller et al. 2019) gives the ability 

to simulate these interactions and changes.  

Unlike stand-alone fire models, landscape simulation models can integrate 

human actions, fire, and vegetation, amongst other drivers of landscape 

disturbances and vegetation succession. SCRPPLE’s development has put attention 

on the social dimensions of fire through human ignitions, spatial and temporal 

patterns of prescribed fire, fuel treatment effects, and spatial patterns of fire 

suppression. Considering the model’s focus on the greater determinants of fire 

behavior, SCRPPLE produces an array of outputs portraying information about fire 
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regimes, including predicted wildfire ignitions, fire intensity and spread, annual 

ignitions, burn frequency, simulated fire size distributions, hectares burned, and 

vegetation mortality.  

Fire behavior models are highly capable of modeling ignition, fire spread, and 

at landscape scales which can interact with vegetation patterns, fuel, topography, 

and weather, they are lacking in the ability to incorporate vegetation change or 

feedback from human activities, vegetation, climate, and fire over time (Scheller et 

al. 2019). Modern fire regimes have largely become a product of human interactions 

with their environment.   For some time now there has been a range of fire models 

designed for different purposes. Fire spread has been modeled through cellular 

automata models, empirical and semi-empirical fire behavior, and spread models 

calibrated through field data, or physics-based combustion spread models (Scheller 

et al. 2019). The ability to dynamically map fire is of great importance as models 

such as LANDSUM (Keane et al. 2006) or ALFRESCO (Rupp et al. 2000) are only 

spatially explicit when it comes to fire. SCRPPLE is spatially interactive, meaning 

each cell interacts with another, which allows fire to spread across the landscape. 

Capturing these dynamics is crucial to understanding of future fire in southern 

California from a modelling perspective. There is a gap in research that this work 

could alleviate. LANDIS-II has been used in southern California (Syphard et al. 

2007, Krofcheck et al. 2017) and SCRRPLE has been used to analyze fire regimes 

in the Lake Tahoe Basin (Scheller et al. 2019) but modelling how future fires may 

impact projected urban development has not been done. Being able to assess 

potential fire frequency and severity projections for the future of this region under 
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different climatic projections will give a greater understanding of plausible risks 

intersecting urban growth. Through a combination of knowledge, it has been 

possible to parameterize LANDIS-II with an understanding of vegetation, climate, 

and fire dynamics to efficiently assess fire risk through different climatic lenses. 

Filling in a gap in the current literature will impart the ability to know how often fires 

occur in current WUI areas and how often wildfires intersect the WUI and planned 

future southern California development to the year 2100.  

3.0 Methods 

To understand these complex relationships between fire, climate, and vegetation, 

the model LANDIS-II, a landscape change model, was applied to discern how 

projected fire will interact with future urban growth in southern California to the year 

2100. 
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3.1 Study Area 

 

 

Fig. 1 – Area of Interest in southern California a size of 4,816,319 hectares 

The area of interest (Fig. 1) was chosen as southern California holds 

important biodiverse ecosystems that, with rapid global change, have shifted fire 

regimes and can disrupt ecological function causing ecological services loss 

(Syphard et al. 2022). The study area comprises a large portion of southern 

California’s Mediterranean-type ecosystems characterized by mild wet winters and 

warm dry summers. The study area is a part of the California Floristic Province 

(CFP) is an area of high biodiversity and endemism which has been aided by the 
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geo-climatic setting of the region where 6,927 species are native to CFP with 2,612 

vascular plants being endemic to the area (Burge et al. 2016). 

 

Fig. 2 – California Level III EPA ecoregions over the study area 

The study area consists of various ecoregions described by the United States 

Geological Survey (Omernik 1987) shown in figure 2. In the north-west of the area of 

interest the Central California Foothills and Coastal Mountains (CCFCM) have the 

characteristics of hot dry summers and cool moist winters primarily associated with 

chaparral and oak woodlands, with grasslands at low elevations with small patches 

of pines at high elevations. To the south of the CCFCM is the Southern 

California/Northern Baja Coast (SCNBJ) an area of alluvial plains, marine terraces, 
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and low hills of southern California where coastal sage scrub and chaparral are 

widespread. These low hills also include various oak species leading to the Santa 

Monica and Santa Ana Mountains where some firs and pines inhabit the high range. 

To the east and north of the SCNBJ are the Southern California Mountains (SCM) 

with the ranges of the Sana Ynez, Sierra Madre, San Rafael, San Gabriel, San 

Bernadino, and San Jacinto mountains domination this region characterized by hot 

dry summers and moist cool winters. The SCM ranges have higher elevations with 

cooler temperatures and more precipitation than other regions leading to denser 

vegetation. The Transverse Ranges in this region (all the ranges listed besides 

Santa Jacinto) receive 30-40 inches precipitation a year on the south-facing slope 

and 15-20 on the northern slope. High evaporation rates on the south-facing slopes 

contribute to more chaparral growth and the slower evaporation and lower annual 

temperatures on the northern slope encourage coniferous forests that dissipate to 

desert montane as it approaches the Mojave. The Mojave Basin and Range is 

warmer and drier than the aforementioned regions with the primary vegetative 

bodies being cactus and shrubs. The final major EPA region in the study area is the 

Sonoran Basin and Range, which is similar to the Mojave with scattered low 

mountains and containing shrubs and cactus (Griffith et al. 2016). 

This region of southern California is home to millions of people and some of 

the most dynamic fire conditions on the planet. Along with the prospect of global 

change, a biodiverse region, and rapidly expanding human settlement makes this a 

critical environment in which to understand the state of future forests, and 

subsequently, wildfire conditions.  
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4.0 Modeling with LANDIS – II 

Under the LANDIS–II framework, climate and environmental interactions of 

tracking carbon sequestration, nitrogen limits, and nitrogen deposition were 

simulated to estimate forest conditions and enable parameterization of wildfire 

models in 2050 and 2100. The following sections have been organized to explain the 

parameterization of LANDIS - II NECN (Net Ecosystem Carbon and Nitrogen) 

succession extension. Each section describes the data sources used and pre-

processing applied to parametrize the model. 

 



 

 

28 

 

Fig. 3 – The green boxes represent extensions used within the LANDIS-II model core. The red ovals 
represent data with directional arrows showing generalized interactions with the extensions. The blue 
box shows the outputs that can be received. NECN incorporates the influence of temperature, water, 
nitrogen, and light-based competition to determine species growth and regeneration where SCRPPLE 
simulates the probability of fire, spread, and mortality (Robbins et al. 2022).  

 LANDIS views the landscape as a grid of connected cells simulating 

vegetation and disturbances between andwithin cells as a continuous landscape. 

The Net Ecosystem Carbon and Nitrogen (NECN) succession extension of LANDIS-

II incorporates temperature, water, nitrogen, and competition for light to determine 

species vigor and regeneration. SCRPPLE simulates the probability of fire, spread, 
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and mortality across the landscape on a daily basis based upon climate, topography, 

vegetation, and fine fuels. 

4.1 NECN Model Inputs  

 

Table 1 –NECN model inputs. 

NECN Input Data Needed Data Type Data Source 

Soil properties (pg 36) See Table 2 See Table 4 SSURGO (Soil Survey Staff 
2022), soil carbon estimates 
created by West, T.O. (2014), 
Forest Inventory and Analysis 
data (Gray et al. 2012) 

Ecoregions (pg 31) Annual max/min 
temperature, annual 
max/min 
precipitation, annual 
max/min vapor 
pressure deficit 

CSVs PRISM Climate Group, 
Oregon State University, 
https://prism.oregonstate.edu, 
data created 4 Feb 2014, 
accessed 11 Nov 2021. 

Climate (pg 35) Projected climate 
and historical climate 
with mean, variance, 
and standard 
deviation of 
precipitation, max 
temperature, and min 
temperature 

CSVs USGS geodata portal 
Multivariate Adaptive 
Constructed Analogs (MACA) 
CMIP5 Statistically 
Downscaled Data for 
Coterminous USA (Blodgett 
et al. 2011) 

Initial Communities (pg 
42) 

age and biomass of 
vegetative cohorts 
and map of 
communities 

Text file and 
associated raster 

Map of communities (Riley et 
al. 2019, Comer et al. 2003), 
biomass and carbon from FIA 
(Gray et al. 2012), ages for 
Mountain-Mahogany (475) 
(Brotherson et al. 1980), ages 
for Pinyon species (106, 133, 
134, 140, 141, 143) (Gascho 
Landis and Baily 2006), ages 
for California Laurel (981) 
(Barry 2014), other species in 
house age equation was 
applied based on height and 
site index. 

NECN_Functional_Table, 
NECN_Spp_Table (pg 
51) 

Species life 
parameters 

CSVs (Lucash et al. 2017, Liang et 
al. 2016, Huang et al. 2020, 
Scheller et al. 2011, Syphard 
et al. 2011, Spencer et al. 
2011), (Abrahamson 2014) 
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NECN species properties 
(pg 33) 

Species life 
parameters 

Text file (Lucash et al. 2017, Liang et 
al. 2016, Huang et al. 2020, 
Scheller et al. 2011, Syphard 
et al. 2011, Spencer et al. 
2011), (Abrahamson 2014) 

For the soil input maps, all rasters have been set to 100m resolution; all 

rasters need to have the same resolution and extent. 

Table 2 – Table describing the soil inputs and where the data was originally sourced from along with 
providing the data type needed for the raster maps. 

Soil Map Data Type Data Source 
SoilDepthMapName Float SSURGO (Soil Survey Staff 

2022) 

SoilDrainMapName Float SSURGO (Soil Survey Staff 
2022) 

SoilBaseFlowMapName Float Following Bisquay 2021 and 
Robbins et al. 2022, 
BaseFlow set to .01 

SoilStormFlowMapName Float Following Bisquay 2021 and 
Robbins et al. 2022, 
BaseFlow set to .01 

SoilFieldCapacityMapName Float SSURGO (Soil Survey Staff 
2022) 

SoilWiltingPointMapName Float Following Bisquay 2021, 
WiltingPoint was calculated 
by dividing FieldCap by two 

SoilPercentSandMapName Float SSURGO (Soil Survey Staff 
2022) 

SoilPercentClayMapName Float Calculated based on (West, 
T.O. 2014) 

InitialSOM1CsurfMapName Float Calculated based on (West, 
T.O. 2014)) 

InitialSOM1NsurfMapName Float Calculated based on (West, 
T.O. 2014)) 

InitialSOM1CsoilMapName Float Calculated based on (West, 
T.O. 2014) 

InitialSOM1NsoilMapName Float Calculated based on (West, 
T.O. 2014) 

InitialSOM2CMapName Float Calculated based on (West, 
T.O. 2014) 

InitialSOM2NMapName Float Calculated based on (West, 
T.O. 2014) 

InitialSOM3CMapName Float Calculated based on (West, 
T.O. 2014) 

InitialSOM3NMapName Float Calculated based on (West, 
T.O. 2014) 

InitialDeadWoodSurfaceMapName         Float FIA (Gray et al. 2012)  

InitialDeadCoarseRootsMapName Float FIA (Gray et al. 2012)  
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Ecoregions/Climate_Regions int32 Calculated based on PRISM 
Climate Group, Oregon State 
University, 
https://prism.oregonstate.edu, 
data created 4 Feb 2014, 
accessed 11 Nov 2021. 

Initial_Communties(IC_MAP) int32 Map of communities (Riley et 
al. 2019, Comer et al. 2003) 

 

4.1.1 Ecoregion/Climate Regions 

LANDIS – II NECN uses ecoregions or climate regions to describe areas for 

climate data.  NECN uses climate regions through the NECN-succession-log, a file 

that outputs a snapshot of data at every successional time step. These data are 

averaged by climate region and are most useful for analyzing variation over time and 

across climate regions (Scheller et al. 2022). Climate regions are further used in the 

NECN-prob-establish-log output file containing the data used to calculate the 

probability of seeding establishment for each climate region at each succession time 

step (Scheller et al. 2022). 
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Fig. 4 – Study area ecoregions found for LANDIS – II 

Table 2 – Zonal statistics describing different means of climate variables from study area ecoregions. 

 

  

To obtain ecoregions, a form of k-means clustering analysis was applied to 

vapor pressure deficit, temperature, and precipitation climatic variables to identify 

clusters. The goal of climate regions, or ecoregions, within NECN is to assign 

homogenous climate projections across different regions. With this method, clusters 
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were found within the data in such a way that the sum of the squared distances 

between the data points and the centroid is as small as possible making likewise 

groups. A k-means algorithm clusters data by trying to separate samples in n groups 

of equal variance, minimizing inertia, a measure of how internally coherent clusters 

are, this method scales well over a large number of samples working well within a 

large area of interest. A disadvantage of K-means algorithm is its sensitivity to the 

initialization of centroids or the mean of points. Errors where one centroid is 

initialized as a “far-off” point may end up with no points associated with it or more 

than one cluster may be linked with a single centroid. To overcome this method K-

means++ is used for the study. K-means++ ensures a smarter initialization of 

centroids improving the quality of clustering.   

To prepare the climate data, a geodataframe was created through the 

geopandas Python library dropping Nans (rows where there is no data available), 

creating points from latitude and longitude, then joining each of the climate variables 

based on Shapely, a Python package for set-theoretic analysis and manipulation of 

planar features, geometry to obtain a dataframe on which the clustering could be 

completed. The data is then normalized using the Python package scikit-learn’s 

StandardScalar standardizing features by removing the mean and scaling to unit 

variance. It is important to normalize the climate variables to ensure that the 

distance measure accords equal weight to each variable to prevent the variable with 

the largest scale dominating the clustering pattern ensuring each feature makes an 

equal contribution (Singh and Singh 2020).  
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Figure 4 shows the LANDIS-II ecoregions within the area of study which is 

three more regions than the level 3 EPA California Ecoregions. K-means clustering 

was used to identify ecoregions which found that 10 ecoregions was the point where 

anything after found the diminishing returns where the cost of subsequent centroids 

no longer increase the benefit of minimizing the distance one centroid to another 

(Yock and Kim 2017, Kanungo et al. 2002). Table 2 shows the varied climatic and 

physical variables found across the study area. This table shows the variation 

between the regions with mean low precipitation across the regions. It is important to 

note that while EPA Ecoregions include vegetation, human settlements, soil, air, and 

water while LANDIS-II ecoregions only consider climatic variables. The ecoregion 

shapes for LANDIS-II are built off only climate variables which are fed to a repository 

of climate data (Lucash et al. 2017) that perform climate projections based on these 

homogenous regions.   

To find the ideal number of clusters k-means clustering with elbow was used 

shown in figure 4. The elbow Method is a heuristic used in determining the number 

of clusters in a data set, was employed (Marutho et al. 2018). The elbow method can 

be used to optimize the number of clusters with k-means clustering method finding 

the point where improvement in distortion of k declines the most which determines 

when to halt the dividing of clusters. The max number of clusters was set to be 15 

the elbow method found the knee of the curve to be 10 clusters. 
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Fig. 5 – Showing the fit of k number of clusters found through the k-means++ to the climate data used 
in creating climate region. 

The output of the k-means++ was a point file that was then polygonized to obtain 

the polygons shown in figure 2. The polygons were then rasterized for input into 

LANDIS-II NECN.  

4.1.2 Climate Data 

Climate in NECN is built around a central climate library made for LANDIS-II 

(Lucash et al. 2017). Climate data for LANDIS-II NECN is aggregated to the climate 

unit of ‘climate regions.’ The climate regions shapefile is used as the areal unit in 

which to aggregate climate data. A compressed (*.zip) shapefile was uploaded to the 

USGS GeoData Portal (Blodgett et al. 2011) to obtain climate data based on the 10 

ecoregions. LANDIS-II ingests future and historical for daily precipitation, daily 

maximum, and minimum near-surface air temperature, max and minimum relative 

humidity, wind direction, and wind speed. These variables are static in the model 

and are read at each timestep allowing LANDIS-II to account for climate variability to 

produce realistic results of species composition, disturbance regimes, and 

ecosystem dynamics (Lucash et al. 2017). 
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 Future climate projections for the three model runs were from 2019 to 2099. The 

first was CNRM-CM5.1 (Voldoire et al. 2013) which we characterized as the “Greater 

Precipitation” model having a mean average daily precipitation over 81 years across 

ten ecoregions of 1.5 mm. This model also experienced the lowest max temperature 

mean at 298.95 k. The second climate projection used was GFDL’s ESM2G (Dunne 

et al. 2012), where this data set is characterized as “Mean Precipitation” with the 

mean daily precipitation at 1.22 mm and the max temperature mean at 299.33 k. 

The third global climate model used was MIROC-ESM (Watanabe et al. 2011), 

characterized as “Less Precipitation” with a daily average mean of 1.01 mm and a 

maximum temperature mean of 299.99 k. This data is then read into the climate 

library that will perform all necessary pre-processing for all climate-dependent 

LANDIS-II extensions (Lucash & Scheller 2021). Historical data has the same 

variables but is from the University of Idaho, METDATA (Abatzoglou 2013), covering 

the years 2000-2018.  

4.1.3 Soil 

LANDIS – II NECN uses 18 different soil maps to simulate future landscapes. To 

create the NECN soil input soils data from the Soil Survey Geographic (SSURGO) 

(Soil Survey Staff 2022) containing vector and tabular information about different soil 

properties, deadwood data obtained from the US Forest Inventory and Analysis 

Program (Gray et al. 2012), and total carbon and nitrogen maps were calculated by 

using West, T.O. (2014) CONUS level carbon map. 
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Table 4 – Overview of what maps are needed for NECN and a short description of what the maps do. 

Each map has a superscript associated with it and those maps that share a superscript will be 

referenced, for example, as Maps1 this is to denote that all the maps under superscript 1 share the 

same data source. 

Soil Maps Data Source Description 

Soil Depth1 SSURGO (Soil Survey Staff 

2022) 

The depth of simulated soil. 

Soil Drain1 SSURGO (Soil Survey Staff 

2022) 

Determines the amount of water 

runoff and leaching. The fraction 

of excess water lost by drainage. 

The soil drainage factor 

allows a soil to have differing 

degrees of wetness. 

Field Capacity1 SSURGO (Soil Survey Staff 

2022) 

The amount of soil moisture or 

water content held in the soil after 

excess water has drained away 

Wilting Point1 SSURGO (Soil Survey Staff 

2022) 

The minimum amount of water in 

the soil that the plant requires not 

to wilt. 

Percent Sand1 SSURGO (Soil Survey Staff 

2022) 

Percentage of sand in the soil. 

Percent Clay1 SSURGO (Soil Survey Staff 

2022) 

Percentage of clay in the soil. 

SOM1surfC2 soil carbon estimates created by 

West, T.O. (2014) 

The initial, timestep 0, amount of 

carbon in the soil surface. 

SOM1surfN2 soil carbon estimates created by 

West, T.O. (2014) 

The initial, timestep 0, amount of 

nitrogen in the soil surface. 

SOM1soilC2 soil carbon estimates created by 

West, T.O. (2014) 

The initial, timestep 0, amount of 

carbon in the soil sub-surface. 

SOM1soilN2 soil carbon estimates created by 

West, T.O. (2014) 

The initial, timestep 0, amount of 

nitrogen in the soil sub-surface. 

SOM2C2 soil carbon estimates created by 

West, T.O. (2014) 

The initial, timestep 0, amount of 

carbon in the ‘slow’ soil pool. 

SOM2N2 soil carbon estimates created by 

West, T.O. (2014) 

The initial, timestep 0, amount of 

nitrogen in the ‘slow’ soil pool. 

SOM3C2 soil carbon estimates created by 

West, T.O. (2014) 

The initial, timestep 0, amount of 

carbon in the ‘passive’ soil pool. 

SOM3N2 soil carbon estimates created by 

West, T.O. (2014) 

The initial, timestep 0, amount of 

nitrogen in the ‘passive’ soil pool. 
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Dead Wood on the Surface3 Forest Inventory and Analysis 

data (Gray et al. 2012) 

The initial, timestep 0, amount of 

surficial dead woody material. 

Dead Wood of Coarse Roots3 Forest Inventory and Analysis 

data (Gray et al. 2012) 

The initial, timestep 0, amount of 

belowground dead woody 

material. 

Base Flow4 Stationary variable Determines the amount of water 

runoff and leaching. The fraction 

per month of subsoil water going 

into stream flow. 

Storm Flow4 Stationary variable Determines the amount of water 

runoff and leaching. The fraction 

of the soil water content lost as 

fast stream flow. 

 

Maps1 were obtained from USGS SSURGO California database (Soil Survey 

Staff 2020). SSURGO contains information about soil collected by the National 

Cooperative Soil Survey. SSURGO data uses a component and map key system, 

requiring attribute joins to create a map of a single trait. The four tables that were 

joined were the chorizon, component, conmonth, and corestriction tables.  

The chorizon table, referred to as Horizon, lists the horizon(s) of various 

components of the soil. A horizon is a layer of mineral soil that has a defined soil 

structure. This table holds the attributes of wfifteenbar_r, which is the volumetric 

content of soil water retained at a tension of 15 bars. This attribute was used to 

obtain our wilting point. The wilting point within the model is the point when there is 

no water available to vegetation. Wthirdbar_r is the volumetric content of soil water 

retained at a tension of 1/3 bar. LANDIS-II NECN ingests this as a map of field 

capacity. Field capacity being the water remaining in soil after it has been saturated 

then allowed to drain. The sandtotal_r and claytotal_r are both mineral particles of 

0.05mm to 2.00mm expressed as a percentage within the soil. Clay and sand are 
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both important components to vegetation growth, carbon or nitrogen can leach out of 

sandy soils whereas clay helps secure chemicals and roots in the soil.  

 The component table holds the data needed for drainage. The draingecl 

attribute identifies the natural drainage conditions of the soil. Drainage ensures that 

soil is properly aerated, too much water is capable of choking crops. Soil drainage 

also reduces soil and nutrient loss from runoff.  

 The last table used from the SSURGO dataset is the corestriction table, this 

table lists the root restrictive features or layers. The important attribute from this 

table used in LANDIS-II NECN is the resdept_r attribute. Resdept_r is the distance 

from the soil surface to the upper boundary of the restrictive layer. Soil depth has a 

large impact on soil water-holding capacity within the model (Scheller et al. 2022).  

The following table is a key to the fields used: 

Table 5 – Table showing the key to creating LANDIS maps from SSURGO data. 

LANDIS Map SSURG table name SSURGO column name 

Soil Drain Component Drainagecl 

Wilting Point Chorizon Wfifteenbar_r 

Field capacity Chorizon Wthirdbar_r 

Percent sand  Chorizon Sandtotal_r 

Percent clay Chorizon Claytotal_r 

Soil depth Corestriction Resdept_r 

 

Maps2 were various soil organic carbon and nitrogen maps from the West, T.O. 

(2014) dataset. The initial amount of carbon in the soil maps are divided into 

SOM1surfC, which is carbon in the soil surface, SOM1soilC is carbon in the soil sub-
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surface, SOM2C carbon in the “slow” soil pool, and SOM3C carbon held in the 

“passive” soil pool. 

As a fraction of total carbon each carbon pool is (Robbins et al. 2022): 

1. SOM1surfC = 0.01 

2. SOM1soilC = 0.02 

3. SOM2C = 0.59 

4. SOM3C = 0.38 

From the individual carbon maps an estimation of nitrogen content in the soil is 

calculated. Each nitrogen map in the use of LANDIS-II is assumed to be a fraction of 

each carbon map representing the same pools as carbon. The initial amount of 

nitrogen in the soil maps are divided into SOM1surfN which is nitrogen in the soil 

surface, SOM1soilN nitrogen in the soil sub-surface, SOM2N nitrogen in the “slow” 

soil pool, and SOM3N nitrogen held in the “passive” LANDIS-II soil pool. 

 Nitrogen maps were created by multiplying the carbon in that pool by a fraction 

(described below) while setting a minimum value of 1 to avoid a complete lack of 

nitrogen. 

Each nitrogen map is multiplied by its matching carbon map with the following 

fractions (Robbins et al. 2022): 

1. SOM1surfN = 0.1 

2. SOM1soilN = 0.1 

3. SOM2N = 0.04 

4. SOM3N = 0.118 

An example of workflow of this process would be:  
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𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑟𝑏𝑜𝑛 (𝑊𝑒𝑠𝑡, 𝑇. 𝑂. 2014)  ∗  0.01 =  𝑆𝑂𝑀1𝑠𝑢𝑟𝑓𝐶 

𝑆𝑂𝑀1𝑠𝑢𝑟𝑓𝐶 ∗  0.1 =  𝑆𝑂𝑀1𝑠𝑢𝑟𝑓𝑁 

 Maps3 were obtained from Forest Inventory and Analysis data. After isolating 

each plot in the study area, the total carbon down dead value at each plot, which is 

the carbon in tons per acre of woody material 3 inches or greater in diameter on the 

ground along with their stumps and their roots, was taken and interpolated using 

inverse distance weighting across the study area providing the dead wood on the 

surface map.  The second map, dead wood of coarse roots, calculated from this 

value is assumed to be a third of the carbon down dead value following the work of 

Robbins et al. 2022. 

Maps4 representing base flow to streams and storm flow were set to .01 being 

treated as stationary variables, where they were set without input from outside data 

sources, in this simulation following the work of other projects using LANDIS-II 

NECN (Robbins et al. 2022). These maps determine the amount of water runoff and 

leaching affecting the amount of nitrogen, which then affects the amount of mineral 

nitrogen in the soil. Stream and storm flow were parametrized further with the help of 

Robbins (Personal Communication, 03/18/2023) where too low of flow caused NAs 

in soil temperature calculations.  

Dead wood on the surface and dead wood of coarse roots in tons per acre 

are calculated from Forest Inventory Analysis plots within the area of interest. Taking 

the carbon down dead (tons per acre) from each plot and running an inverse 
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distance weighted interpolation to the whole study area. The dead coarse roots are 

assumed to take a third of that value based on Robbins et al. 2022. 

4.1.4 Initial Communities 

To understand what vegetation species are being simulated within each grid cell, 

a tree list from Riley et al. 2019 was used. The Riley et al. 2019 tree list is a raster 

with each pixel value being correlated to tree species and plot data from the Forest 

Inventory and Analysis (FIA) National Program, which was interpolated across 

multiple states to create a comprehensive tree list for the US.  

From the Riley et al. 2019 tree list, it is possible to understand which species are 

needed to characterize the study area and what plots the species in the study area 

come from. Plots from the Forest Inventory and Analysis (Gray et al. 2012) program 

consist of one field sample site for every 6,000 acres, where field crews collect data 

on forest type, site attributes, species, and size. Within the raster grid, one can 

understand what plots are included in the study area as pixel value equates to FIA 

‘PLOT’ IDs. The unique pixel values within the study area were taken into a list and 

then they are compared to data from Riley et al. 2019 which has information on 

where each ‘PLOT’ ID comes from on a state level. 
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Fig. 6 – The amount of unique FIA plots from each state present in the study area.  

The FIA data that is needed for this study area comes from the states of 

California, Arizona, New Mexico, Nevada, Oregon, Washington, Colorado, Iowa, 

Idaho, Kansas, Montana, Nebraska, Oklahoma, Texas, Utah, and Wyoming. The 

number of unique plots has a high of 19730 from California to 48 from Nebraska (fig. 

6). Through the FIA data from each of these states and the unique plots, the next 

step is obtaining the unique species present over the study area. LANDIS-II NECN 

requires each species’ age and biomass to form cohorts which is a large analytical 

task. Each species fell into one of four model types, using four different model types 

was necessary as FIA data was not always complete and did not have the 

necessary variables for certain species and plots within the study area. 

Model type a (eq. 4) was created through an ordinary least squares (OLS) 

regression where each species’ diameters and heights, provided from FIA data, 
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were regressed to get the coefficients based on diameter x height relations and age 

x height relations. Where the coefficients for each species were found from an OLS 

equation which was then used to inform eq. 4 for each species. Some species did 

not have the needed FIA data of ‘AGEDIA’, tree age at diameter, resulting in the 

need for different allometric equations to estimate tree ages where only biomass and 

diameter were needed. Model type c (eq. 5) was applied for all pinyon species 

using an allometric equation from the work of Gascho et al. 2006 Model type e (eq. 

6), using an allometric equation from Barry 2014 over all California Laurels in the 

study area. The last model type, model type f (eq. 7) was used for Curlleaf 

Mountain-Mahogany applied with an allometric equation Brotherson et al. 1980. 

Table 6 – Overview of each FIA SPCD, species name, and model type used.  

FIA SPCD number Common name Model Type 

106, 133, 134, 140, 141, 
143 pinyon species C  

475 curlleaf mountain-mahogany F  

981 california laurel E  

 All other species A 

To find each species biomass: 

 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 =  ‘𝐶𝐴𝑅𝐵𝑂𝑁_𝐴𝐺’/0.5 ∗  ‘𝑇𝑃𝐴_𝑈𝑁𝐴𝐷𝐽’      eq. 1 – 
  

Where biomass is in lbs/acre, ‘CARBON_AG’ is above ground carbon measured in pounds and 
‘TPA_UNADJ’ is a value that must be multiplied to understand per acre information with both 
variables from the Forest Inventory and Analysis program. ‘TPA_UNADJ’ stands for trees per acre 
unadjusted, which represents the number of trees per acre that the sample tree theoretically 
represents based on the sample design. 

As the model needs biomass in grams per meter2 we converted biomass from 

pounds per acre by: 

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑔/𝑚2 =  𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑙𝑏𝑠/𝑎𝑐𝑟𝑒 ∗  0.112085     eq. 2 -  
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Converting biomass generated by eq. 1 to g/m2.  

Obtaining tree ages is done through fitting an ordinary least squares 

regression formula as a two-parameter model with interactions. The formula of the 

ordinary least squares regression: 

 𝑂𝐿𝑆 =  ‘𝐴𝐺𝐸𝐷𝐼𝐴 ~ 𝐷𝐼𝐴 ∗  𝐻𝑇’       eq. 3–  

OLS equation used to obtain coefficients used to inform age (eq. 4). 

Where ‘AGEDIA’ is the tree age at the point of diameter measurement which 

is either DBH (diameter at breast height) or DRC (diameter at root collar). ‘DIA’ is the 

current diameter at time of measurement in inches done either at DBH or DRC. ‘HT’ 

is a field that holds the total height of a sample tree in feet from the ground to the top 

of the main stem. ‘AGEDIA’, ‘DIA’, and ‘HT’ are fields drawn from FIA SITEREE 

tables. 

 

 

Fig. 7 –AGEDIA x DIA relationship of Jeffrey Pines (SPCD 116) from FIA sitetree tables across the 
study area. Where AGEDIA is the result of the two-parameter linear regression formula and the fitted 
being the estimated response. 
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Then the use of the model form where ages = aX1 + bX2 + cX1X2 + d is 

employed to age species across the study area. This equation is informed by the 

coefficient results of the ordinary least squares (OLS) and FIA diameter and heights 

for each species at plot scales and is described as model type a (eq. 4): 

𝑎𝑔𝑒𝑠 =  𝑂𝐿𝑆_ 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡. 𝐷𝐼𝐴 ∗ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠 +  𝑂𝐿𝑆_ 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡. 𝐻𝑇 ∗ ℎ𝑒𝑖𝑔ℎ𝑡𝑠 +
 𝑂𝐿𝑆_ 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡. 𝐷𝐼𝐴: 𝐻𝑇 ∗ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ∗ ℎ𝑒𝑖𝑔ℎ𝑡𝑠 +  𝑂𝐿𝑆_ 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡. 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  eq. 4 –  

Model type a ages equation used to determine species age informed by variables acquired from eq. 
3. 

 

 

Fig. 8 – Age x Diameter and Age x Height relationship of Jeffrey Pines from FIA tree data across the 
study area. The Jefferey Pines were aged through eq. 5. 
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Fig. 9 – AGE_DIAM (Age) distribution plot of Jeffery Pine (SPCD 116). 

 There are 109 unique species that are modelled under model type a (eq. 4), 

with an example of the distributions of age and diameter and age and height 

relationships being shown in figure 8 and age density distributions being shown in 

figure 9 for Jeffrey pines across the study area. 

There were 6 pinyon species being modelled under model type c (eq. 5) with 

an example of singleleaf pinyon relationships being shown in figure 10 and age 

densities in figure 11. 

𝑎𝑔𝑒 =  (6.69 ∗  𝑥)  +  18.5 (𝐺𝑎𝑠𝑐ℎ𝑜 𝐿𝑎𝑛𝑑𝑖𝑠 𝑎𝑛𝑑 𝐵𝑎𝑖𝑙𝑒𝑦 2006)   eq. 5 – 

Age equation for pinyon species where x is diameter in centimeters. 

 

 

Fig. 10 – Age x Diameter and Age x Height relationship of Singleleaf Pinyons (SPCD 133) from FIA 
tree data across the study area aged through model type c (eq. 6). 
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Fig. 11 – AGE_DIAM (Age) distribution of Singleleaf Pinyons (SPCD). 

 Model type e (eq. 6) has been used for California Laurel. The age and 

diameter and age and height distributions for California laurel are shown in figure 12 

with a distribution of ages shown in figure 13.  

𝑎𝑔𝑒 =  1.5519(𝑥) –  29.819 (𝐵𝑎𝑟𝑟𝑦 2014)     eq. 6 – 

Model type e age equation for California Laurel where x is diameter in centimeters. 

 

 

Fig. 12 - Age x Diameter and Age x Height relationship of California Laurel (SPCD 981) from FIA tree 
data across the study area aged through model type e (eq. 7). 
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Fig. 13 – AGE_DIAM (Age) distributions of California Laurel (SPCD 981). 

The final model type is described as model type f (eq. 7) which was used for 

Curlleaf Mountain Mahogany. Figure 14 shows the age and diameter and age and 

height distributions of curlleaf mountain-mahogany with the age distributions across 

the study area in figure 15. 

𝑎𝑔𝑒 =  (0.4667 ∗  𝑥)  +  31.0326 (𝐵𝑟𝑜𝑡ℎ𝑒𝑟𝑠𝑜𝑛, 𝐷𝑎𝑣𝑖𝑠, 𝑎𝑛𝑑 𝐺𝑟𝑒𝑒𝑛𝑤𝑜𝑜𝑑 1980) eq. 7 – 

Model type f age equation for curlleaf mountain-mahogany where x is diameter in millimeters. 

 

 

 

 



 

 

50 

Fig. 14 - Age x Diameter and Age x Height relationship of Curlleaf Mountain-Mahogany (SPCD 475) 
from FIA tree data across the study area aged through model type f (eq.8). 

 

Fig. 15 – AGE_DIAM (Age) distribution of Curlleaf Mountain-Mahogany (SPCD 475). 

Age and biomass information was used to create a text file containing the 

Initial Communities within the study area. This text file is used by LANDIS-II NECN 

to enable the model to understand every active pixel on the map with each pixel 

value containing species with biomass and age referenced in the Initial Communities 

text file. Each active site on the landscape is assigned to an initial community 

MapCode. The MapCode specifies the tree species that are present along with the 

age ranges and associated biomass ranges that are present for each of those 

species at that site.  

Data from the Gap Analysis Project (Comer et al. 2003) has been used to fill 

in non-tree species to include chaparral species, coastal sage scrub, and other 

grassland species to simulate real world scenarios more with a more accurate fuels 

continuity.  
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4.2 NECN Model Setup 

LANDIS – II reads multiple text files that inform the model of individual 

species properties, life history, shade tolerance, fire tolerance, initial nitrogen in the 

soil, and other soil properties evolving over model time steps. Vegetation 

regeneration was simulated on an annual time step, growth on a monthly time step, 

and fire on a daily timestep following Robbins et al. 2022. For NECN non-climate 

CSVs ‘NECN_Spp_Table’ and ‘NECN_Functional_Groups’ along with the species 

properties text file of ‘species_props’, have been parameterized through following 

the work of other projects using LANDIS-II NECN (Robbins et al. 2022, Bisquay 

2021, Syphard et al. 2011, Liang et al. 2017) and parameterized through the Fire 

Effects Information System (FEIS) database (Abrahamson 2014) when other 

projects did not have species specific data in the study area. LANDIS – II also reads 

in raster maps from table 2 that hold information about initial communities and soil 

attributes. 

4.3 SCRPPLE 

The disturbance extension of SCRRPLE was published in the summer of 

2019, emphasizing climate change and human interactions with the inclusion of 

different ignition sources, variable fire suppression, and prescribed fires (Scheller et 

al. 2019). An essential aspect of SCRRPLE is that the cells are spatially interactive, 

meaning fire spreads across the landscape based on the daily Canadian Fire 

Weather Index (FWI) (Van Wagner 1974), wind speed, and fine fuels in adjacent 
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cells (Robbins et al. 2022). Each ignition type in SCRPPLE has its suppression 

patterns where different levels of fire suppression are determined by the FWI at 

model time step. SCRPPLE assumes that if suppression is constant, lightning and 

accidental fires will behave similarly regarding spread and mortality with the same 

FWI and wind speeds (Scheller et al. 2019).  

4.3.1 SCRRPLE Parameterization  

 SCRPPLE is a fire model that is designed to capture. s climate change and 

landscape-scale changes fire behavior forecasted by climate changeover large study 

areas (Scheller et al. 2019) through an extensive parameterization process. To 

parameterize SCRPPLE accidental and lightning ignition, suppression, slope, and 

uphill slope maps were needed alongside a text file describing ignition coefficients 

for both lightning and accidental fires, fire spread parameters, mortality parameters, 

and a suppression input csv. The SCRRPLE text file also has site-level mortality 

information, probability of daily intercellular spread, and maximum daily spread 

coefficients and intercepts. Other inputs include maps of lightning and accidental 

ignition densities and accidental and lightning suppression maps.  

 Ignition maps are rasters that represent where accidental and lightning 

ignitions occur. Cells with higher values represent where ignitions are more likely to 

occur, while values of 0.0 are unable to experience ignitions. Ignitions occur on any 

day when predicted by a random draw from a Zero-inflated Poisson or Poisson 

Distribution fitted to observed ignitions (Scheller et al. 2022). From ignition, fire can 
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spread into adjacent cells, which relies upon a probability of spread out of four 

nearest neighbors until no more cells are selected to burn. Slope and uphill slope 

maps are used in the calculation of fire spread. specifying raster maps represent 

slope as a percent and the direction of uphill slope, The spread calculation uses the 

coefficients found from a generalized linear model with the dependent variables of 

effective windspeed and fine fuels derived from LANDFIRE (USGS 2022) data. Fire 

severity is the mortality caused by fire at each site varying dependent upon tree 

species and ages present (Scheller et al. 2022), are determined by max bark 

thickness classes. Suppression rasters represent areas where fires are suppressed 

with classes of 0 to 3, indicating no suppression, light, moderate, and maximum 

suppression. That data then relates to the possible suppression scenarios 

represented within the suppression input csv, which defines the effectiveness of 

suppression based on each ignition type across different FWI ranges (Scheller et al. 

2022).  

Table 7 – SCRRPLE parameterization variables needed table. 

SCRPPLE Inputs Source 
Fire spread parameters MTBS fire perimeters 2000-2018 (Nelson 2021). Data was 

used for preprocessing and validation. Perimeter data was 
used to help parameterize spread probabilities as well. 

Fire Weather Index (FWI), Daily Daily FWI is calculated according to the LANDIS Climate 
Library (Lucash et al. 2017). Validation FWI climate data has 
been provided from gridMET (Abatzoglou 2013) downloaded 
by Zachary Robbins. 

Fuel Map Fuel map used to calculate spread parameters based on 
LANDFIRE 2020 Existing Vegetation Cover (USGS 2022) 

Daily wind direction Calculated from historical climate data windspeed, slope, and 
uphill slope azimuth to inform parameterization of fire spread 

Ignition Coefficients Short 2021 fire ignition data used in relation to FWI to fit a 
zero inflated possion model where the coefficients inform a 
scrpple text file 

Elevation, Slope, and Uphill Slope 
Azimuth maps 

2020. 1 Arc-second Digital Elevation Models (DEMs) - USGS 
National Map 3DEP Downloadable Data Collection 

https://landfire.gov/metadata/lf2020/CONUS/LC22_EVC_220.html
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Geospatial_Data_Presentation_Form: raster digital data 

Accidental and Lightning Ignition 
Maps 

Short 2021 fire ignition data used to create density maps of 
accidental and lightning ignitions 

Accidental and Lightning 
Suppression Maps 

Created from current urban areas (Radeloff et al. 2018), 
TIGER/Line 2019 shapefile from the US Census Bureau, and 
wilderness areas from the University of Montana 
(wilderness.net) 

Species bark thickness Species bark thickness was found through FIA data and bark 
thickness equations described below. Was used to 
parameterize cohort level mortality. 

Suppression Input CSV Used to assign suppression effort based on FWI and 
mapcodes from Accidental and Lightning Suppression maps. 

Using SCRPPLE analyzing fire frequency and intensity within the wildland-

urban interface zones for 2050 and 2100 within my study area was possible. The 

first step in the parametrization of this model was preparing a digital elevation model 

(DEM) at 100m so the model would be informed of elevation, slope, and uphill slope. 

Elevation in meters was the direct product of a DEM (USGS 2022), whereas slope 

was found using QGIS (QGIS 2023), and that product was then used in R (R Core 

Team 2022) to compute aspect and then convert to uphill slope aspect. 

The next step in parameterization was to find model ignition coefficients. 

Within SCRPPLE where ignition can occur on any day, the numbers of fires are 

given as a random draw from a Poisson Distribution (Scheller et al. 2022). Ignition 

coefficients are used in the fitting of a four-parameter model by ignition type used 

within SCRRPLE (Scheller et al. 2022). Ignition coefficients were found following the 

work of Robbins et al. 2022 parametrized using Short 2021 ignition database, 

LANDIS-II climate library (Lucash et al. 2017) and gridMET historical weather data 

(Abatzoglou 2013), where a zero-inflated Poisson model of the likelihood of each 

ignition type is fit to the daily fire weather index. Ignition data is taken and 
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segregated into accidental and lightning ignitions. Then, each ignition type data is 

merged based on a unique date id to historical climate data with the included FWI. 

Table 8 – Results of zero inflated model lightning and accidental ignitions. 

Ignition 
Type 

Count 
Model 
B0 
(Poisso
n with 
log link) 

Count 
Model 
B1 
(Poisso
n with 
log link) 

Count 
Model 
B0 
Pr(>|z|) 
(Poisso
n with 
log link) 

Count 
Model 
B1 
Pr(>|z|) 
Poisso
n with 
log 
link) 

Zero-
inflation 
Model 
B0 
(Binomia
l with 
logit link) 

Zero-
inflation 
Model 
B1 
(Binomia
l with 
logit link) 

Zero-
inflation 
Model 
B0 
Pr(>|z|) 
(Binomia
l with 
logit link) 

Zero-
inflation 
Model 
B1 
Pr(>|z|) 
(Binomia
l with 
logit link) 

Accidenta
l 

-1.8555
20 

0.04938
8 

2.23e-1
4 

6.14e-1
1 

3.15083 -0.09067 < 2e-16 1.36e-12 

Lightning -5.7961
6 

0.16850 9.65e-0
7 

6.43e-0
7 

2.63789 0.02036 0.0159 0.5040 

 

 Table 8 shows the results of the zero inflated model with count model family 

of Poisson. The results of the models suggest that within the lightning ignition model 

the coefficients from the count portion and intercept from the zero-inflation portion 

coefficients are statistically significant. While the results from the accidental ignition 

model suggest that the predictors in both count and the inflation portions are 

statistically significant. It was important to use zero-inflated Poisson for the data 

because between the historical climate data and ignition data there are lots of days 

that did not experience ignitions making the fit of models to the data poor when 

using non-zero-inflated models. The coefficients of both the count model and zero-

inflation model were then used to inform SCRPPLE of lightning and accidental 

ignition 𝐵0 and 𝐵1. 

Using the zero-inflated Poisson models it was possible to simulate lightning 

and accidental ignitions within the time frame of the observed data. 
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Fig. 16 – Zero-inflated Poisson lightning simulations compared to lightning observed. 

 

Fig. 17 – Zero-inflated Poisson accidental simulations compared to accidental observed. 

 Over the same year period as observed (1992-2018), the simulated values 

with zero-inflated Poisson model  (R, R Core Team 2022)  informing the simulation 

found 1781 accidental ignitions against the observed period which saw against the 
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observed period which saw 1939 accidental ignitions with the simulated  difference 

of 8.2% simulated lightning ignitions 37 lightning ignitions compared to 122 observed 

which was a +12.3% difference compared to that observed period suggesting that 

the coefficients used were also ready to be input into the SCRPPLE text file 

completing the ignition coefficients. It is important to note that these R simulations 

were stochastic. 

 Fire spread parameters were found by following Robbins (2021). Spread 

parameters are informed by LANDFIRE 2020 (USGS 2022) existing vegetation 

cover fuels data for the study area, uphill slope azimuth in degrees, and slope as a 

percentage where uphill slope and slope are used to calculate the direction of fire 

spread. Historical climate data was combined to date and ecoregions as a data 

frame. A raster stack was created, complied of a wind map, fuel map, uphill slope, 

and slope. Then the historical fires shapefiles are filtered to only include shapes that 

are not just the final burn shape for fire spread to be calculated. Once the shapes 

fires were filtered again on the criteria having more than one day of spread to select 

the fire perimeter from the first day and then select the second to calculate the area 

of expansion to find fire spread on a cellular level. The climate and fuel variables 

from the climate stack were extracted to compile a data frame of every cell within the 

fire perimeters (Robbins et al. 2022). 
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Fig. 18 – Relationship between FWI and cellular probability fire spread. 

 

Fig. 19 – Relationship between wind speed and cellular probability fire spread. 
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Fig. 20 – Relationship between FWI and spread total cellular expansion. 

 

Fig. 21 - Relationship between wind speed and spread total cellular expansion. 

 Spread in the area of interest is characterized by wind speed having more 

impact on fire spread rather than FWI (Fig 18-21). The stronger relationship can be 

easily seen in fig. 22 and 23 when looking at total cellular expansion of historical 



 

 

60 

fires. In the model SCRPPLE text file, since FWI did not impact cellular spread a 

generalized linear model (glm) with the dependent variables of effective windspeed 

and landscape fuels was used to obtain spread coefficients for intercellular fire 

spread. 

 

Fig. 22 – Intercellular spread probability based off glm spread coefficients for different fine fuel 
classes. 

 The results of a glm formed the SCRPPLE text file intercellular spread 

coefficients of 𝐵0 (−0.0719755), 𝐵1 (1.6034705), and 𝐵2 (0.0020485).  The 

coefficients from the glm formed the basis of fig. 22 showing the spread of different 

fuel classes. The last parameter of fire spread for SCRPPLE was maximum daily 

spread coefficients, which were found through a linear model using the historical 

climate FWI and windspeed data over the area of interest as the dependent 

variables providing the coefficients of 𝐵0 (−2224.19), 𝐵1 (82.06), and 𝐵2 (364.25).  
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Once coefficients were found for daily intercellular spread probability, 

maximum daily spread, and accidental and lightning ignitions, finding bark thickness 

per species was needed to inform site-level mortality coefficients in the SCRRPLE 

text file. Specific bark thickness was calculated from a set of equations found in 

different bodies of literature (Rebain et al. 2022, Kozak and Yang 1981, Zeibig-

Kichas et al. 2016, McDonald 1983, Schafer et al. 2015) to produce bark thickness 

in inches of the oldest species of each species type across the study area. Specific 

bark thickness of each species was then used to inform a mortality model (Robbins 

et al. 2022) where each species would be binned into 5 bark thickness classes to 

allow species to respond to fire severity and mortality based on bark thickness. 

Unlike Robbins et al., 2022, field-based data to calculate likelihood of mortality was 

not available. Instead, fire tolerance ratings based on bark thickness and expert 

understanding of fire tolerance was used. 

The first equation was from The Fire and Fuels Extension to the Forest 

Vegetation Simulator (FEE-FVS) using FEE-FVS coefficients (Rebain et al. 2022) 

based on tree species within the study area. With the equation of (eq. 8): 

𝐵𝑎𝑟𝑘 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =  𝑉𝑠𝑝(𝐷)        eq.  8 –  

Where Vsp is the species multiplier provided by FEE-FVS and D is species diameter in inches 
provided from FIA data. 

 Four other equations were used to identify species bark thickness when FEE-

FVS did not have species specific data.  

𝐵𝑎𝑟𝑘 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =  𝐷/2 (1 − 𝑘) (Kozak and Yang 1981)   eq.  9 –  
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Where d is diameter at breast height outside bark (DHOB), and k the regression coefficient 
for the relationship of diameter inside bark (DIB, d) to DOB. 

√𝐵𝑎𝑟𝑘𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝑎 ∗ √𝐷𝐵𝐻  (Zeibig-Kichas et al. 2016)   eq.  10 –  

Where a and b are a species related coefficient and DBH is diameter at breast height.  

𝐵𝑎𝑟𝑘 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = −1.693 + 0.0219𝑥 + 1.2813𝑥−1 (McDonald 1983)  eq.  11 –  

Where Vsp is the species multiplier provided by FEE-FVS and D is species diameter in inches 
provided from FIA data. 

𝐵𝑎𝑟𝑘 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑚𝑚) =   0.835 ∗ 𝑥0.797  (Schafer et al. 2015)   eq. 12 –  

Where x is DIA in centimeters. 

  . Maximum bark thickness for the species in the study area was then binned 

into classes based on an R script (Robbins, personal communications, 03/01/2023). 

This process assigned a bark thickness variable between 3, 2.5, 2, 1.5, and 1 to 

each species depending on the max bark thickness provided from the equations (eq. 

8, 9, 10, 11, 12) used. With a range of 20 – 10cm assigned to class 3, 9 – 7cm 

assigned to class 2.5, 6 - 5cm the class 2, 4 – 2cm the class 1.5, and 1 – 0.1 cm a 

class of 1. These classes create a simple SCRPPLE mortality assuming a 

relationship between ladder fuel (0-1000 g/m2) and fine fuel (0-1, scaled by max 

fuel) and effective windspeed working as a heuristic understanding of mortality. 

Table 9 – Showing each species and what equation calculated bark thickness.  

FIA SPCD number Common name 
Bark Thickness 

Equation 

 All other species 
Eq. 8 FEE-FVS 
(Rebain et al. 2022) 

93, 96, 242, 263, 264, 
312, 313, 321, 322, 351, 
352, 353, 375, 745, 747, 

748, 749 

Assorted spruces, hemlocks, 
maples, alders, paper birch, and 
cottonwoods 

Eq. 9 (Kozak and 
Yang 1981) 

81, 201, 202 
Incense cedar, bigcone douglas-
fir, douglas-fir 

Eq. 10 (Zeibig-Kichas 
et al. 2016) 
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361, 362 Pacific and Arizona madrone 
Eq. 11 (McDonald 
1983) 

823, 826, 827, 829, 834, 
835, 838, 843, 846, 847 Assorted oak species 

Eq. 12 (Schafer et al. 
2015) 

 

Fig. 23 – Plot showing how different bark classes respond to levels of DNBR/severity and mortality. 

 Fig. 23 shows how the different classes of bark thickness respond to varying 

levels of DNBR/burn severity of fire. The y-axis shows mortality of species in each 

category. This relationship assumes that all species put on bark due to age in the 

mortality curves. From these relationships cohort level mortality was found from a 

linear model provided from Robbins et al. 2022 of 𝐵0 of .01, 𝐵1 of -7 fit to the 

relationship between bark thickness and cohort mortality and and 𝐵2 of 0.0095 fit to 

the relationship between site mortality and cohort mortality.  Cohort mortality 

coefficients were provided from Robbins (personal communication, 2023). 

Ignition maps were created from accidental human ignitions and lightning 

ignitions which were interpolated from the fire record of 1992-2018 (Short 2021). 
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Ignition maps for SCRPPLE were created based on historical accidental and 

lightning ignitions, where each pixel is assigned, a density based on a probability 

spatial distribution map in the area under each ignition type. Ignitions are distributed 

spatially using a probability distribution map for each ignition type.  

 To parameterize wildfire suppression, historical burned area between 2000-

2018 for each suppression type was matched within +/-10% from LANDIS simulated 

burned area. SCRPPLE allows variable suppression effort and effectiveness 

dependent on FWI (Robbins et al. 2022) through a suppression input csv. The 

suppression input CSV defines suppression effort when fire is met at a range of FWI, 

to get close to historical recorded burn areas suppression efforts were altered over 

numerous simulations. I defined suppression levels using a combination of wildland-

urban interface maps (Radeloff et al. 2018), maps of roads, topography using 

ridgelines, and wilderness-designated areas provided by the University of Montana 

Wilderness Institute following the work of Deak 2022.  

Table 10 – Suppression input table. 

IgnitionType Mapcode Suppress_Category_0 FWI_Break_1 Suppress_Category_1 FWI_Break_2 Suppress_Category_2

Accidental 0 0 13 0 25 0

Accidental 1 20 13 40 25 60

Accidental 2 35 13 50 25 70

Accidental 3 50 13 70 25 80

Lightning 0 0 13 0 25 0

Lightning 1 0 13 0 25 25

Lightning 2 10 13 10 25 50

Lightning 3 40 13 40 25 80  

 The suppression input table defines suppression effort based on FWI and 

Mapcode. Mapcode is defined from accidental and lightning ignition suppression 
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maps. Mapcode 3 was the wilderness-designed areas, Mapcode 2 was current 

urban areas, and Mapcode 1 was study area ridgelines (Deak 2022). The value 

“Suppress_Category_0” indicates the suppression effort, out of 100, when FWI is 

below “FWI_Break_1”, when FWI is equal or above 13 suppression efforts are 

kicked up to “Suppress_Category_1”, when FWI is then above “FWI_Break_2” 

“Suppress_Category_2” activates where the suppression effort defines how much 

the probability of spread is reduced by suppression efforts (Scheller et al. 2022). 

4.4 WUI Creation 

Our model aims to simulate how fire may interact with urban growth/WUI 

boundaries. Urban growth projections (Sohl et al. 2014) was be used to view the 

study area's urban growth to the year 2100. The wildland-urban interface is an area 

where houses and people mix with undeveloped wildland vegetation (Radeloff et al. 

2005). No WUI projections exist for the year 2050 or 2100. To create a "WUI" from 

projected urban growth, a buffer of 1.5mi on both sides of the urban growth polygon 

will be applied, following roughly Radeloff et al. 2005 assessment of the WUI. This 

"WUI" is an idea of what could be as development projections are not coupled into 

LANDIS-II or SCRPPLE. Planned urban growth will only impact vegetative growth, 

which the lack of accounting for in the modeling process presents a weakness in this 

work. 

The US government has defined the wildland-urban interface definition in 

the Federal Register (USDA 2011) and has been used in the past WUI assessments 
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(Radeloff et al. 2018, Radeloff et al. 2005). WUI has been separated into interface 

and intermix, the intermix where houses and wildland vegetation merge and 

interface where human areas have <50% vegetation but are within 1.5 miles of 

densely vegetated areas (Radeloff et al. 2018). WUI being both intermix and 

interface, for the sake of LANDIS-II WUI-Fire analysis, I have defined the WUI as an 

urban area which lies within 1.5 miles of densely vegetated areas. To understand 

densely vegetated areas, I have used the initial communities map that LANDIS-II 

NECN is running on.  

The WUI is 1.5 miles buffered from US census developed areas using 2019 

TIGER/Line Shapefiles merged to the California Department of Forestry and Fire 

Protection Incorporated Cities shapefile to form a comprehensive urban area. 

Projected urban areas resulted from the work of Sohl et al. 2014 which modeled 

landcover change predictions for the conterminous United States to the year 2100. I 

am using the A1B population growth scenario, which was applied for WUI-Fire 

exchange analysis for the years 2050 and 2100. A1B assumes a population 

increase of 8.7 billion by 2050 and declining to 7 billion by 2100. A1B suggests that 

there will also be higher energy demands and is deemed to be more economically 

focused than other scenarios (Sohl et al. 2014). The increased energy demands and 

more economically focused population growth scenario better-fit climate scenarios 

for RCP 8.5, which is suggested to continue to be the best match out to the 

midcentury under current policies with highly plausible levels of CO2 emissions to 



 

 

67 

2100 (Schwalm, Glendon, and Duffy 2020).

 

Fig. 24 – Map showing where projected 2050 and 2100 wildland urban interface/intermix areas. The 
2100 area includes 2050 plus additional projected expansions. 

5.0 Model Validation 

Each species was run for ten years following an FIA plot species to validate 

biomass and forest growth. Species validation was done over ten years as FIA plots 

have a return interval ~ 10 years if a return was done at all. Below are the results 

from this validation method over the top 5 species: Ponderosa Pine (SPCD 122), 

Douglas-Fir (SPCD 202), White Fir (SPCD 15), Jeffrey Pine (SPCD 116), and 

Canyon Live Oak (SPCD 805) in terms of biomass over the study area. FIA returns 
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to some plots and some species every ten years; using the unique identifiers to 

identify the recurring species of a plot, I match the growth rate of FIA species to an 

NECN-simulated species over a ten-year period to match FIA returns. Species not in 

a plot return interval were matched to a species in the species group or genus.  

Table 11 – Results from validation of the top 5 biomass species. 

PLOT_ID 
(CA) 

Name Initial FIA 
Biomass (g 

m/2) 

Ten Year 
Return FIA 
Biomass (g 

m/2) 

Modeled 
Biomass (g 

m/2) 

Modeled 
Percent 

Difference 

97120 Jeffrey Pine 
(SPCD 116) 

789 1356 1384 2.07% 

84235 Jeffrey Pine 
(SPCD 116) 

417 642 648 0.93% 

87591 Ponderosa 
Pine (122) 

897 1487 1501 0.94% 

95333 Ponderosa 
Pine (122) 

1116 1722 1606 -7.20% 

66134 White Fir 
(SPCD 15) 

527 747 747 0% 

62852 White Fir 
(SPCD 15) 

378 468 499 6.62% 

63757 Canyon Live 
Oak (SPCD 
805) 

432 603 548 10.04% 

81534 Douglas-Fir 
(SPCD 202) 

629 1478 1480 0.52% 

 

The goal was to have the simulated growth be within +/- 10% of recorded 

growth from FIA of a specific plot tree. Only one species’, Canyon Live Oak, 

simulated growth was over 10% recorded at +10.04%. This variation may account 

for not every tree experiencing the same growth rate. Different sites can result in a 

disparity between topographic conditions and different solar and water resource 

distributions, consequently influencing tree growth (Ma et al. 2018). Elevation and 
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stand density can also impact species growth (Yeh and Wensel 2000). Due to the 

interpolated tree map used for initial communities, the site conditions present in the 

real world for plot 95333 and where plot 95333 is on our interpolated tree map may 

not be the same.  

Once all the species in the study area were properly matched to an FIA plot 

species, I ran each species for 100 years, reviewing how they grew and ensuring 

they did not die before reaching their natural longevity. Ensuring “natural” growth 

was achieved required examining the life history parameters of longevity per species 

to validate they did not randomly encounter mortality or unlikely loss of biomass 

outside of disturbance and longevity (Robbins et al. 2022, Bisquay 2021, Syphard et 

al. 2011, Liang et al. 2017, Abrahamson 2014).  

SCRPPLE has been validated by assessing model accuracy by model 

outputs of accidental human-ignited fires will be compared to observed fires from 

2000 -2018 (Short 2021), with the exact comparisons being made for lightning-

ignited fires. The mean total area burned in simulations and from historical record of 

2000 -2018 will then be compared to hectares burned observed by GeoMAC fire 

perimeters (Walter et al. 2011). 
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Fig. 25 – Accidental and Lightning ignitions simulated vs observed from Short 2021 and Walters et al. 
2011. 

Table 12 – Showing the results of validation run accidental and lightning ignitions compared to 
observed. 

Ignition Type Simulated 
Ignitions Amounts 

over 18-yrs 

Observed Ignition 
Amounts over 18-

yrs 

Percentage 
Difference      

(Simulation vs 
Observed) 

Accidental  1367 1157 +15.38% 

Lightning 98 81 +19.51% 
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           Within the validation period (2000 – 2018), the study area experienced 1238 

total fires. Under the validation run, the study area experienced +18.34% simulated 

ignitions compared against historical conditions. When compared to Robbins 

(personal communication, 2023) validation which saw a underestimation of 

accidental ignitions of -14.34% and an overestimation of lightning ignitions of 8.57% 

where my work has overestimated both accidental and lightning the accidental 

simulated results are within a similar range of difference. The burned area increased 

under the simulated validation run at 3,193,662 ha burned. Over the 2000-2018 

period GeoMAC burn perimeters (Walter et al. 2011), and fire ignition data (Short 

2021) show that the study area experienced 2,953,058 total ha burned with the 

simulation predicting a +7.83% higher burned area over 18-year period.  Robbins et 

al. 2022 saw a range of variation between -7.6% to +3.8% across multiple runs 

suggesting that the simulated validation values aren’t far outside of other work.  

6.0 Results 

Table 13 – Climate scenario/model and the global climate model associated with it. 

Climate Scenario/Model Climate Data Used 

Greater Precipitation  cnrm_cm5_rcp85 

Mean Precipitation  gfdl_esm2g_rcp85 

Less Precipitation  miroc-esm-
chem_rcp85 

 

My research question sought to answer how different climate models impact 

WUI fire severity and frequency and in the two landmark years of analysis, 2050 and 

2100, and in all three climate scenarios, the wildland-urban interface was heavily 
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impacted by fire. Within all three 2050 scenarios, the WUI saw 1,194,328 ha burned 

out of 1,279,946 ha of WUI-classified land, which is 93.3% of the WUI experiencing 

fire in 2050 alone. Out of the three climate scenarios, Greater 

Precipitation experienced the highest number of ignitions in 2050 within and out of 

the WUI, with over half of 2050 ignitions (50.5%) originating from WUI-classified 

areas. Mean Precipitation resulted in 59% of ignitions in the WUI in 2050, the 

highest percentage of WUI ignition amongst the models assessed. The final climate 

scenario of Less Precipitation experienced the least number of ignitions within the 

WUI at 42.6%. 

Table 14 – 2050 and 2100 total ignitions and WUI ignitions. 

Climate 
Scenario 

 

2050 WUI 
Ignitions 

 

2050 Total 
Ignitions 

 

2100 WUI 
Ignitions 

 

2100 Total 
Ignitions 

 

Greater 
Precipitation 

48 95 55 89 

Mean 
Precipitation 

39 66 38 75 

Less 
Precipitation 

32 75 52 103 

 

 2100 saw the total WUI area increase in size to 1,568,840 ha across the 

study area. Similar to 2050, the 2100 area burned was very similar across 

scenarios. Greater and Less Precipitation saw the same amount of WUI land burned 

at 1,469,365 ha at 93.6% of the WUI, with only the Mean scenario experiencing 

more burned WUI area at 1,470,234 ha, which was 93.7% of the WUI area during 

2100. Greater Precipitation saw 61.7% of ignitions in the WUI, with Mean at 50.6%, 

and finally Less Precipitation at 50.4%.  
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Fig. 26 –WUI land burned within 2050 across all climate scenarios. 

 

   

Fig. 27 –WUI land burned within 2100 across all climate scenarios. 

 

2050 WUI Burned Area

2100 WUI Burned Area
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6.1 Discussion 

The results from the three climate scenarios regarding NEEC and AGNPP show 

the study area was becoming less productive. Across all three scenarios NEEC starts 

~ –  80 𝑔 𝑐 𝑚/2 –  1 indicating that the environment is taking in 80 g c m/2 -1 of 

atmospheric carbon dioxide. With each climate scenario simulation, it is possible to see 

that NEEC productivity across the landscape was reduced with carbon taken from the 

atmosphere ending around ~ −  30 𝑔 𝑐 𝑚/2 − 1. The reduction in NEEC productivity 

can also been seen reflected through AGNPP where aboveground net primary 

production is a measure of plant carbon and energy capture estimated by annual 

biomass accumulation. NEEC can be understood as the gross primary production of 

carbon minus ecosystem respiration (Lovett, Cole, and Pace 2006) where ultimately, 

the reduction in NEEC effectiveness can be understood, in part, as a byproduct of the 

study area not continuously accumulating biomass and instead seeing a steady 

reduction in biomass across every ecoregion over the course of the simulation. 

Two ecoregions (Fig. 34) comprise most of the biomass across simulation 

ecoregion 10 and 5. These two ecoregions are more forested than the others, almost 

entirely within Los Padres National Forest, Los Angeles National Forest, and San 

Bernardino National Forest. These two regions tend to be within the highest elevation 

zones across the study area and are situated amongst most of the mixed conifer forests 

that are within the area of interest. These two regions also experienced the highest 

SOMC gain over simulation periods, and soil mineral nitrogen held within a range that 

the increasing carbon storage without increasing nitrogen storage reduced species 
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productivity (Cotrufo et al. 2019), possibly reducing biomass growth. In other ecoregions 

with less NEEC productivity and AGNPP, we see less SOMC gain and higher mineral 

nitrogen soil deposition throughout. Compared to ecoregions 5 and 10, I believe these 

nitrogen levels have limited species’ productivity ability. This rapid growth of nitrogen in 

the soil starting from the beginning of the simulation period has caused species to grow 

excessively and not establish root systems, reducing the ability to store nutrients. While 

a relationship between too fast increasing mineral nitrogen and compared to soil carbon 

would reduce soil carbon (Mason-Jones, Schmücker, and Kuzyakov 2018). 
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Fig. 28 – Graphs showing AGNPP and NEEC of all three climate scenarios. 
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Fig. 29 – Graphs showing AGNPP and NEEC of all three climate scenarios. 
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 Figure 28 shows ecosystem processes over the study through each climate 

scenario. Greater Precipitation starts with the highest NEEC, but landscape events 

eventually lead to a less productive study area. NEEC and AGNPP are very similar 

across each climate scenario, with some small differences across landscape runs. 

Figure 29 shows landscape soil organic matter total carbon and mineral nitrogen across 

each ecoregion. This figure shows an increasing mineral nitrogen deposition into 

landscape soils outside of ecoregion 5 and 10 which are also the most productive in 

terms of NEEC and AGNPP. SOMTC figures show a steady incline for ecoregion 5 and 

10 while other regions decline or experience a slow increase over the simulation period. 

Table 15 – mean aboveground net primary production and net ecosystem exchange of carbon. 

Climate Scenario Mean AGNPP (g c m/2 - 
1) 

Mean NEEC (g c m/2 - 1) 

Greater Precipitation 17.04679 -5.913457 

Mean Precipitation 17.2087 -6.331975 

Less Precipitation 16.2953 -5.764938 

 

The results of forest succession across the landscape through each scenario 

suggest that part of the landscape may not be accurately parameterized, which can 

heavily impact the effects of fire interactions around the WUI and ultimately impact the 

results of my research question of how climate scenarios affect WUI burned area and 

frequency. Through the simulation and each climate scenario, the WUI experienced a 

similar or identical amount of fire, with less than 7% of the WUI not being impacted by 

fire in both 2050 and 2100. McKenzie & Littell 2016 and Liu & Wimberly 2016 both 

suggest that wildfire in the West is predicted to increase with global warming, which 

would explain the WUI burned area results. Keeley & Syphard 2016 indicate that in the 

short-term, increases in fire activity will drive decreases in fire due to fuel limitations 
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where this work saw the opposite. This work saw that 2100 WUI experienced more 

ignitions under the Mean and Less Precipitation scenarios with Greater 

Precipitation experiencing nearly the same amount of ignition as 2050 WUI. The greater 

ignitions in 2100 WUI all happened under a landscape with less biomass overall than 

starting conditions and a similar total burned area to 2050 WUI. 

Throughout 2050, over the three scenarios, the WUI only saw fire low fire 

intensity where flame lengths would be < 4 feet and moderate fire intensity of 4- 8 feet 

flame lengths while high severity fires of > 8-foot flame lengths were not present in any 

simulation. A possibility of the WUI only experiencing low to moderate fire intensity 

could be from the lack of biomass or fuels across the landscape, which aligns with the 

suggestions of Keeley & Syphard 2016. One work found that fuels across the landscape 

and VPD were the most significant contributors to high-severity fires in California 

(Safford et al. 2022). The lack of early high severity fires could have resulted from an 

inaccurate, low, starting biomass (Zhao, Guo, and Kelly 2012) while reduction in 

biomass as the scenarios ran could have resulted in less severe wildfires being in line 

with predictions from Keeley & Syphard 2016. 
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Fig. 30 – Graphs showing historical and future scenarios runs FWI. 

 Figure 30 shows one aspect of the historical climate data that was used to 

parameterize ignitions provided by Robbins (Personal Communications, 2022). 

Historical data of FWI was over 38 years (1979 - 2016) per each ecoregion, while the 

future scenarios FWI was calculated within SCRRPLE over the simulation. This figure 

shows the historical FWI and the FWI of the three climate scenarios used within the 

model. When future climate FWI was compared to historical FWI, we see a bimodal 

distribution of FWI, while future scenarios describe a unimodal distribution of FWI. The 

steeper initial incline of future climate scenarios’ FWI could indicate that the suppression 

csv should be revisited to ensure correct parameterization to fit these curves. Looking 

further into climate with the scenario Less Precipitation saw the least number of 

ignitions within the WUI this might be explained as in southern California ignitions were 
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more frequent in areas with warmer temperatures and higher precipitation (Faivre et al. 

2014). 

There were limitations in this work. Throughout this simulation, it was impossible 

to simulate the feedback between projections of urban growth/wildland-urban interface 

areas and forest succession. Feedback between forest succession and urban growth 

will be an essential aspect to capture in future work as land use change is one of the 

most critical anthropogenic factors impacting ecosystems, with habitation loss, species 

changes, and altered fire regimes (Syphard, Clarke, and Franklin 2005) which is vital to 

note when understanding how WUI fires may impact future urban growth and forest 

succession. Another area for improvement in this work could be a misinterpretation of 

biomass across the landscape where starting biomass does not match biomass 

conditions experienced in other works. Spending more time adjusting species biomass 

will be essential to ensure I properly account for carbon across the landscape. One 

study suggests that within 36.1 km2, biomass ranged from 38.6 – 1132.9 mg/ha (Zhao, 

Guo, and Kelly 2012), while my ecoregions ranged at LANDIS-II time 0 .13 mg/ha to 

51.12 mg/ha suggesting that there is still work to do. 

In the future, I would like to adjust biomass to be more accurate to real-world 

scenarios to properly project forest succession and adjust mineral n throughout my 

ecoregions to encourage growth. I will achieve this by going through my source code 

and looking for possible errors while testing different biomass calculations. Mineral n 

can be easily adjusted through the NECN-succession text file, and it would be prudent 

to re-evaluate my mineral nitrogen soil pools. I would also like to see WUI growth under 

a different population growth model, which would be more in line with RCP 4.5, to 
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understand if that would change WUI fire dynamics when compared to the RCP 8.5 

scenarios I ran the model on. This work did not capture the full stochastic nature of 

LANDIS through the power of replicate simulations. In the future I will run multiple runs 

with each scenario to create an average scenario to better understand the results of 

each model. I would like to add WUI interaction to the model as well, this may come in 

the form of where just climate changes, runs where the WUI changes, and runs where 

both changes, and finally where neither change. Then comparing the difference in each 

scenario to see if they are statistically different. I believe these changes would create a 

more holistic and accurate simulation of future fire in the southern Californian WUI. 

6.2 Conclusion 

 This analysis answered my research question and suggested that fires will 

heavily impact the WUI across three different climate scenarios, with less than 7% of 

total WUI area remaining unscathed in both 2050 and 2100. Across all three climate 

scenarios the WUI only experienced low to moderate severity fire with all three 

experiencing nearly identical amounts of burned WUI area across low and moderate 

severity classes. The impact of fire is worryingly high for the region, which holds a large 

portion of California's economic function and population. As urban areas continue to 

expand, it will be increasingly important to assess housing growth in this region to limit 

exposure to WUI fire which has led to California experiencing its most extensive WUI 

fire-related structure loss in recent years (Syphard et al. 2019). It is increasingly 

important to consider how future population growth and land cover change may alter fire 



 

 

83 

regimes even further from the historical norm and what can be done to mitigate damage 

to life and property in this wildland-urban interface and intermix zones.  
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