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Some conceptual issues in the origin of
eusociality
J. W. Stubblefield and
E. L. Charnov

Department of Biology, University of Utah, Salt Lake
City, UT 84112, U.S.A.

Certain issues arising in connection with the evolutionary origins of eusociality are discussed. Previous results about
when natural selection favours helping behaviour are generlised, and the differing viewpoints of both parents and
offspring are considered. Particular attention is given to the evolutionary implications of different patterns of
overlapping generations observed in bivoltine insects. As argued by Seger (1983), these patterns imply different
conditions under which a daughter is selected to help her mother rear additional siblings in haplodiploid populations.
Other factors that can alter the selective advantages of helping behaviour under haplodiploidy are also discussed,
including the possibility of sex ratio manipulation and the novel result that helping behaviour may be locally favoured
in populations that are spatially patchy with respect to sex-specific fitness. A new hypothesis is also presented: The fact
that sisters are selected to aid their mother to parasitise other sisters may have played an important role in the origins
of eusociality. A given offspring benefits from having maternally parasitised siblings because such siblings rear
additional siblings (to which the given offspring is more closely related) instead of nieces and nephews. Finally, the
importance of haploidiploidy in the origins of eusociality is discounted; the virtually unique biology of aculeate
Hymenoptera would seem to be of much greater importance.

Eusocial behaviour such that offspring aid their
parents (or mother) to rear their siblings, is found
in a few vertebrates, termites, and some Hymenop-
tera. Four questions have dominated recent think-
ing on the origin and maintenance of eusociality.
First, what life history conditions (e.g.,seasonality)
favour some individuals to become workers?
Second, what is the special role of haplodiploidy,
if any? Third, did the initial stages of eusociality
reflect the interests of parents or offspring or both?
Fourth, how are parent-offspring conflicts resolved
in existing eusocial societies? Recent reviews by
Brockman (1984) and Andersson (1984) should be
consulted for up to date discussions of earlier work.
This note discusses two important considerations
in the origins of eusocial behavior: life history
conditions and parent versus offspring interests.
Our purpose is to point out some potentially
important factors for the evolution of eusociality.

We first describe a typical life history for a
solitary wasp or bee. Consider a female that emer-
ges in the spring and begins constructing cells. In
each cell, she lays an egg and provides it with
sufficient food to develop into an adult. If some
of her offspring mature while she is still alive and

reproducing, these offspring may be considered to
have two options. In the case of daughters at least,
they can mate and rear their own sons and daugh-
ters, or they can help their mother rear additional
sibs. Subsocial nesting in which mated daughters
return to produce their own offspring in or near
the maternal nest provides a likely starting point
for eusociality to evolve. Subsocial nesting may
arise for a variety of purely selfish reasons includ-
ing reduced losses to parasites and reduced nest
construction costs. In any event, the essential
ingredients are a population with overlapping gen-
erations and the options of personal reproduction
or helping available to offspring produced early in
the year.

As recently noted by Seger (1983), there are
two patterns of overlapping generations observed
in bivoltine wasps and bees, and these have
different implications for the origin of eusociality.
These two patterns, which we shall refer to as the
larval diapause and female hibernation cases, are
illustrated in figs. 1 and 2. In the larval diapause
case, second generation offspring of both sexes
overwinter as virgins (usually as larvae) and do
not mate until the following year. In the female
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Figure 1 The larval diapause pattern of overlapping generations in a bivoltine population. Two generations are produced each
year, a summer generation that matures and reproduces within a single year and a winter generation that does not reproduce
until the following year. Individuals of both sexes overwinter as virgins (usualy as diapausing larvae) and do not mate until
the following year. Winter males mate with females in their own generation and may also survive to mate with summer females
(dotted arrow). When this occurs, selection favours a female-biased sex ratio in the summer generation and a male-biased sex
ratio in the winter generation. In the haplodiploid case, this overlap of generations on the male side also has the effect of raising
the helping threshold for a summer daughter.

Figure 2 The female hibernation pattern of overlapping generations in a bivoltine population. In contrast to the larval diapause
case, the winter generation undergoes direct development and mates in the late summer or fall, and only mated females survive
to the following year. In this case, it is the summer males that may survive to enter a second breeding population (dotted arrow),
and when this occurs selection favours a male-biased sex ratio in the summer generation and a female-biased sex ratio in the
winter generation. In the haplodiploid case, this overlap of generations on the male side also has the effect of lowering the
helping threshold for a summer daughter.
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hibernation case, on the other hand, the second
generation mates in the late summer or fall, and
only mated females survive to the following year.
In both cases, males in the first breeding popula-
tion in a given year may survive to mate again in

the second breeding population, as indicated by
the dotted arrows in the figures, and this is the
critical factor for the selective advantages of
helping behaviour. In the larval diapause case, it
is winter males that enter two breeding popula-
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tions, and this has the effect of making winter
females less valuable relative to winter males. In
the female hibernation case, however, it is summer
males that enter two breeding populations, and
this has the effect of making winter females more
valuable relative to winter males. These shifts in
the relative value of winter males and females alters
the selective value of helping behaviour in
haplodiploid populations, as Seger (1983) was first
to recognise.

From genetic models already present in the
literature together with some we have recently
developed ourselves, it is now possible to present
a fairly detailed picture of the selective tradeoffs
involved in the origin of eusociality, and we pro-
pose to discuss the central results of this formal
modeling here. We shall focus on two complemen-
tary pathways by which sociality may arise, the
willing worker case and the parasitic parent case.
In the case of a willing worker, we are concerned
with the conditions under which a summer
offspring (or potential worker) gains a selective
advantage by helping her mother (a winter female
or potential queen) to rear additional sibs at the
expense of producing fewer offspring of her own.
In the case of a parasitic parent, on the other hand,
we are concerned with the conditions under which
a winter female may gain a selective advantage by
parasitising the efforts of her summer offspring
even if her offspring's fitness is reduced by doing
so. Some authors have emphasised one of these
possibilities to the virtual exclusion of the other,
but it is clear that they are complementary aspects
of the same situation and should both be con-
sidered. The willing worker case emphasises the
offspring point of view, while the parasitic parent
case emphasises the parental point of view.

We assume that females mate only once, and
consider a panmictic bivoltine population which
niay exhibit either the larval diapause or the female
hibernation pattern. For the purposes of this note,
we shall also adopt a few simplifying assumptions
that do not alter the qualitative conclusions we
wish to emphasise. In particular, we assume that
(1) the winter offspring produced by the two kinds
of female share the same sex-specific fitnesses; and
(2) winter females produce no winter offspring
prior to the time when helping behaviour first arises
(i.e., Seger's T= 0). A general treatment that relaxes
these simplifying assumptions is provided in
Stubblefield (1985) which may also be consulted
for mathematical details omitted here.

A convenient way to express the conditions
under which helping behaviour gains a selective
advantage is in terms of the ratio between the

number of offspring by which the reproductive
output of a potential queen is increased and the
number of offspring by which the output of a
daughter is decreased if she becomes a helper. Let
Lflq and be the numbers of offspring gained
and lost in this way and define,

Ln
as the ratio between them. Under haplodiploidy,
the tradeoffs differ between female (f) and male
(m), offspring, and we also define

Hf= and Hm
where (fq, Lmq) is the amount by which the out-
put of the mother is increased and zm) is
the amount by which the output of a helping
daughter is decreased. As noted above, the fact
that early males may enter two breeding popula-
tions has important implications for the selective
advantages of helping behaviour, and we define Z
as the fraction of all males in the second breeding
population that survived from the first. For each
case we may wish to consider, there is some
minimal or threshold value of H (or H1 and Hm)
that must be exceeded if the party under consider-
ation is to gain a fitness benefit from helping
behaviour, and we express these threshold condi-
tions as functions of Z.

Let us first consider the willing worker case
under haplodiploidy. In this case, a summer
daughter that becomes a helper gains (fq, Lmq)
additional sibs to which she is related by (3/4,
1/4) at the expense of producing (zf, zm) fewer
offspring of her own, to which she is related by
(1/2, 1/2), and gains a selective advantage by
becoming a helper if

z
H>1+—--—2+Z

in the larval diapause case, and

zH> 1-—--—2+Z

in the female hibernation case. When Z =0, we
have H> 1 so that a daughter must be able to
increase the output of her mother by more than
she decreases her own in order to gain a selective
advantage from becoming a helper. All models
prior to Seger (1983) considered this case. As noted
by Seger, however, the threshold is raised above
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unity in the larval diapause case and lowered below
unity in the female hibernation case when Z> 0.
Most solitary wasps and bees exhibit the larval
diapause pattern, and we may conclude that they
are unlikely candidates for evolving sociality by
the willing worker route. The only solitary species
known to exhibit the female hibernation pattern
are some halictine bees (Seger, 1983; Brockmann,
1984), and the reduced threshold in this case may
have been a significant factor in the origin of
sociality in this group of bees which is well known
for its diversity of social behaviour. The female
hibernation pattern is the typical situation in tem-
perate social Hymenoptera today, but one can only
speculate whether or not this was true when
sociality first arose in each group.

It should be noted that the thresholds given
here do not require that females employ their
optimal sex ratios but only that summer and winter
females employ the same winter sex ratio whatever
it may be. Females in populations with Z> 0 are
selected to employ biased sex ratios (Seger, 1983;
Stubblefield, 1985), but whether or not they do
employ such sex ratios is not the critical factor for
an altered helping threshold. Instead, the critical
factor is that the expected contributions to future
generations differ between winter females and win-
ter males. If the fitness of winter females is reduced
relative to winter males, as arises in the larval
diapause case, with Z> 0, the helping threshold
is raised above unity, and if the fitness of winter
females is increased relative to winter males, as
arises in the female hibernation case with Z> 0,
the helping threshold is lowered below unity. We
further suggest that any other factor that increases
the fitness of winter females relative to winter males
would also give a reduced helping threshold. One
class of models with the required fitness shifts
assumes a panmictic population that is subdivided
into a number of patches some of which are rela-
tively better for female production and others rela-
tively better for male production (see Charnov,
1979; 1982). In this case, we expect a reduced
threshold in female-preferred patches and an
increased threshold in male-preferred patches.
Using a single locus model with Z = 0, we have
confirmed that gene for helping behaviour spreads
rapidly in a spatially patchy population if it is
expressed mostly in female-preferred patches. We
suggest as a general principle that any local condi-
tions that favour a female-biased sex ratio also have
the effect of reducing the helping threshold below
unity in haplodiploid populations, provided worker
behaviour is expressed mostly in! at female preferred
places or times.

As widely recognised after the seminal papers
of Hamilton (1964; 1972), the asymmetric degrees
of relatedness under haplodiploidy provide a selec-
tive advantage for helping behaviour if daughters
are somehow able to trade daughters for sisters
more than they trade sons for brothers. In par-
ticular, we have

H1>2/3 and Hm>2
for any value of Z. Consequently, the willing
worker threshold is less than unity if the resources
transferred from a helping daughter to her mother
are invested relatively more in sisters than they
would have been in daughters (i.e., zf1/zmq>
&f/m). Since there is no a priori reason for
queens to produce a more female-biased sex ratio,
daughters must be able to alter their mother's sex
ratio in order to benefit from a reduced threshold.
Since sex-biased helping has received a great deal
of attention particularly after Trivers and Hare
(1976) presented data that suggested that workers
might control the sex ratio in social haplodiploids.
We are skeptical about the importance of sex-
biased helping as a factor in the origin of
eusociality for several reasons. In the first place,
it seems unlikely to us that daughters could control
their mother's sex ratio, particularly in the earliest
stages of social evolution (Charnov, 1978). It is
sometimes suggested that workers are in a unique
position to influence investment between the sexes
because it is they who actually care for the develop-
ing repro ductives. The difficulty with this argument
is that, although workers are selected to invest
more of the colony's resources in each female
reproductive and less in each male one than would
be preferred by the queen and are even selected
to kill some of the queen's sons, the queen is
simultaneously selected (given Z = 0) to alter her
sex ratio in such a way as to achieve equal invest-
ment in the two sexes, and we do not see how the
workers could force her to do otherwise. Secondly,
even if we grant workers the ability to control the
queen's sex ratio (which we doubt), the expected
outcome is a situation in which the queen produces
all the females while the workers produce all the
males. To go any further than this, the workers
would be trading sons for brothers, and the thresh-
old Hm>2 comes into play. Iwasa (1981) has
argued that workers have sometimes become so
efficient at rearing the queen's offspring that this
threshold has been surpassed so that it is in the
interest of workers to allow the queen to produce
males. We are skeptical about this argument
because the required doubling of efficiency seems
unlikely and because any efficiency gains that
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might be achieved would seem to apply just as
well to producing the worker's sons as those of the
queen. It is possible that sex-biased helping played
some role in the earliest stages of social evolution,
but in our view its importance has been exagger-
ated by some of authors.

The willing worker case under diploidy is much
simpler. In this case, a helping offspring gains
additional sibs to which it is related by (1/2, 1/2)
at the expense of producing fewer offspring to
which it is also related by (1/2, 1/2), and we have

H, Hf, Hm> 1

for any value of Z None of the special conditions
that serve to reduce the threshold under
haplodiploidy apply under diploidy, and an
offspring must be able to increase the reproductive
output of its mother by more than it reduces its
own in order to gain a selective advantage from
becoming a helper. It is now well known that the
willing worker threshold is H> 1 under both forms
of inheritance when Z =0 and there is no sex-
biased helping (Craig, 1979; Kasuya, 1981), but it
does not appear to be widely recognised that H> 1
is a necessary condition for a sterile worker strategy
to increase to fixation under haplodiploidy even
if the initial threshold is reduced because of one
of the factors discussed above. In the case of sex-
biased helping, helping behaviour spreads under
a reduced threshold only up to the point where
the queen produces all females and the workers
produce all males. In the female hibernation case
with Z> 0, the threshold approaches unity as help-
ing spreads since Z is expected to decrease because
it is more advantageous for a winter female to
produce summer daughters that become helpers
rather than summer sons who do not. Similarly, in
the model of spatial patchiness mentioned above,
helping spreads under a reduced threshold in
female-preferred patches but not male-preferred
patches. Perhaps the most important lesson to be
drawn from available results on the willing worker
threshold is that offspring may often be selectively
indifferent as to whether they become workers or
not (Charnov, 1978) and that we should now turn
our attention away from the most general features
of genetic systems in order to investigate those
biological details that may tip the balance in favour
of sociality.

So far we have considered only the benefits
that may accrue to an offspring by becoming a
helper, and we have yet to consider the situation
from the parental point of view. In what we have
called the parasitic parent case, a mother (or a

diploid father) gains additional offspring to which
she is related by (1/2, 1/2) at the expense of having
fewer grandoffspring to which she is related by
(1/4, 1/4), and hwe have

H>1/2
for both the larval diapause and the female
hibernation cases with any value of Z. This result
applies to both diploidy and haplodiploidy, and
we see that a mother stands to gain a substantial
selective advantage if she can somehow divert
resources from the production of grandoffspring
to the production of additional offspring. This was
first developed in Charnov (1978). In the case of
wasps and bees, a potential queen could do this
by replacing some of her daughter's eggs with some
of her own. In this way, a potential queen
effectively steals the resources that a daughter pro-
vides for her own offspring. Behaviour of this
sort, referred to as cleptoparasitism, has arisen
repeatedly in the aculeate Hymenoptera where it
is typically another species that is parasitised, but
cleptoparasitism may also arise within a single
species. Certainly, a mother is under strong selec-
tion to parasitise her daughters if she has the
opportunity to do so. She may also gain an addi-
tional advantage by eating her daughter's eggs and
thus gain high quality nutrients which may permit
her to lay additional eggs, and we remark that a
female who finds herself in a position to be a
parasitic parent is under strong selection to
increase her longevity and fecundity in order to
exploit the advantages of parasitism. There may
also be an asymmetry of opportunity between para-
sitic parents and resisting offspring in subsocial
nests where parental parasitism seems most likely
to arise. In particular, a reproductive daughter
must often leave her own cells unguarded in order
to make repeated trips away from the nest in order
to forage for food for herself and her offspring and
perhaps also for nesting material, while a parasitic
mother has only to feed herself and search for
opportunities to substitute her eggs for those of
her daughters. Moreover, a daughter has no incen-
tive to resist maternal parasitism unless the willing
worker threshold is raised above unity as arises in
the larval diapause case. The sizeable gains
obtained by parasitic parents combined with asym-
metric opportunity and indifferent offspring makes
the parasitic parent pathway a plausible avenue
by which insect sociality could have arisen.

A further consideration arising in the parasitic
parent case has been suggested by Stubblefield
(1985) and has to do with the benefits that accrue
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to daughters if their sisters are subjected to parental
parasitism. In the haplodiploid case, a daughter
with a parasitised sister gains additional sibs to
which she is related by (3/4, 1/4) at the expense
of having fewer nieces and nephews to which she
is related by (3/8, 3/8), and such a daughter gains
a selective advantage if

H>l-
4 + 2Z

in the larval diapause case, and if

1+2ZH>1-
4 + 2Z

in the female hibernation case. When Z =0, we
have H>3/4 in both cases, and the threshold is
less than unity for any intermediate value of Z
Similarly, in the diploid case, an offspring of either
sex gains additional sibs to which it is related by
(1/2, 1/2) at the expense of having fewer nieces
and nephews to which it is related by (1/4, 1/4),
and an offspring with a parasitised sibling gains a
fitness benefit if

H> 1/2

for any value of Z Several conclusions would seem
to follow from these results. In the first place, we
do not expect daughters to guard each other's eggs
from parental parasitism. Indeed, offspring are
selected to actively encourage parental parasitism
of their siblings. It would be in their interest, for
example, to provide food to their mother if this
resulted in greater parental parasitism of siblings.
This suggests that some form of food transfer from
daughters to mothers may have arisen very early
in the evolution of hymenopteran societies. Instead
of sharing a common interest to resist maternal
parasitism, daughters are divided among them-
selves to the extent that each of them is allied with
the mother against all of the others. This factor
could have played a significant role in the early
stages of social evolution, and helps to explain
why food transfer is a general feature of hymen-
opteran societies.

The purpose of this discussion has been to
provide a concise statement of how we now view
the problem of social origins, and we admit to
having passed over a number of relevant details.
We applaud the trend evident in recent reviews to
explore the diversity of factors that may have con-
tributed to social evolution rather than putting too
much emphasis on only one aspect of the problem.
In our view, some combination of parasitic parents

and willing, or at least indifferent, workers provide
the most likely scenario for the origin of insect
societies, particularly when combined with the
advantages accruing to daughters that aid their
mother to parasitise their sisters. If this view is
largely correct, it remains unexplained why
eusociality has arisen repeatedly in the
haplodiploid Hymenoptera but only once in
diploid insects, a remarkable fact that has done
much to fuel enthusiasm for the idea that
haplodiploidy is particularly favourable for social
evolution. We consider it just as remarkable,
however, that all social haplodiploids belong to
the aculeate Hymenoptera and none to the much
larger number of other haplodiploid insects includ-
ing the vast numbers of parasitic Hymenoptera.
This suggests that we should look to the special
features of aculeate wasps and bees rather than
haplodiploidy in order to find an explanation for
the repeated origins of eusociality. Fortunately, we
do not have to look very far. Aculeate wasps and
bees are, for example, virtually unique among
insects in exhibiting advanced parental care that
involves repeated trips from the nest to bring back
food for the offspring, a way of life that is retained
even in advanced social species. Such a form of
offspring care makes parental parasitism especially
easy; the simple replacement of one egg for another
(mom's egg for her daughter's egg) turns a daugh-
ter into a worker, since the daughter simply feeds
the offspring in her own cell. Aculeates are also
remarkable in possessing a powerful string that
could serve as a potent defence against predators
that might find a tempting target in an unguarded
colony. These and other natural historical factors
may help to account for the repeated origins of
eusociality in the aculeate Hymenoptera have been
ably discussed by Evans (1977). We would go
farther and suggest that if the wasp and bee way
of life had been widely adopted by diploids, we
would see multiple lineages of social diploids.
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