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Abstract 

The inverse kinetics method, is a method to calculate a reactor’s reactivity profile from 

its power profile. In this thesis, the reactivity profile corresponding to pulse operations of the 

Annular Core Research Reactor (ACRR) was sought. Of specific interest was the shutdown 

reactivity of the reactor following the pulse. This required accounting for delayed beryllium 

photoneutrons that are present in the ACRR in addition to U-235 delayed neutron precursors. 

The power profiles of the pulses were experimentally measured using a diamond 

photoconductive detector (PCD). Using the inverse kinetics equation, a computer code was 

written to numerically calculate the reactivity corresponding to the PCD signal. It was found 

that the PCD’s signal was only proportional to the reactor power before and during a pulse. 

Following a pulse, the PCD lost this proportionality because its response became dominated 

by fission product and activation gamma rays. Attempts were made to subtract the unwanted 

gamma ray contribution from the PCD signal. This allowed the reactivity to be roughly 

determined for tens of seconds following the pulse before the signal strength became too low. 
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The reactivity before and during a pulse could accurately be calculated without the need to 

correct the PCD signal. This thesis also provides a detailed derivation of the point kinetics 

equations and inverse kinetics equation, and explores the behavior of the inverse kinetics 

equation in detail.   
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1. Introduction 

The purpose of this thesis was to explore the application of the inverse kinetics method 

to the Annular Core Research Reactor (ACRR). This was done in an effort to calculate the 

reactivity profile during a pulse and multiple hours afterwards, using experimentally gathered 

data. The inverse kinetics method is the method of “inverting” the point reactor kinetics 

equations such that they are solved to give the reactivity at a given time assuming the reactor 

power is known for all previous times. This is of interest for reactor diagnostics because power 

is something that can be experimentally measured, and through the use of the inverse kinetics 

equation this can be converted to reactivity, which is not an easily measured quantity.  

To measure the power profile needed to calculate the reactivity, radiation detectors are 

placed in the core of the ACRR. These detectors need to be able to capture the large changes 

in signal strength experienced between the peak and the tail of the pulse. Capturing this wide 

range of signal strengths requires special consideration, which will be discussed in Chapter 5. 

Another challenge is encountered when the power of the reactor decreases after a pulse. As 

this happens, activation and fission product gamma rays begin to contribute a non-negligible 

amount to the detector signal. This causes the signal to lose its proportionality to the true power 

profile. This requires that the unwanted contribution be identified and subtracted from the 

experimental data before it can be used to calculate the reactivity. When using the inverse 

kinetics method to calculate the shutdown reactivity long after a pulse, it is also important to 

account for all delayed neutron precursors and for any “external” neutron sources. In the case 

of the ACRR, delayed photoneutron precursors, due to the beryllium in the fuel, need to be 

accounted for in addition to the typical U-235 delayed neutron precursors. If an “external” 

neutron source is present and it is not accounted for when the reactor is at low powers, it can 
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cause the calculated reactivity to approach zero (critical), even if the reactor is very subcritical. 

In the case of the ACRR, the magnitude of the contribution from activation and fission product 

gamma rays and the effective neutron source strength were not known, which made it difficult 

to calculate the reactivity when the power signal was low. It was found that the presence of an 

“external” neutron source could be neglected; however, it is necessary to account for the 

contribution from activation and fission product gamma rays. 

Reactivity is a very useful quantity for understanding and operating a nuclear reactor. 

It gives a quantitative value to the amount of deviation of a reactor core from criticality. 

Obtaining the reactivity profile corresponding to a pulse provides information regarding the 

physical changes that happen in the reactor core, such as the movement of control rods, 

reactivity feedback effects, and much more. By obtaining these profiles using experimental 

data, the behavior of the reactor during specific operations can be known. These reactivity 

profiles could potentially be used check the accuracy of reactivity calculations from computer 

simulations. Studying the behavior of the experimentally calculated reactivity profiles also 

gives insight into how accurately a detector captures the reactor’s power profile, and hence the 

time dependent neutron population. As will be seen, the largest challenge faced during this 

project was obtaining a detector signal that was proportional to the reactor power following a 

pulse. 

1.1 ACRR 

 The Annular Core Research Reactor (ACRR) at Sandia National Laboratories gets its 

name from the annular arrangement of the fuel rods in its core. The core is located in an open 

pool filled with water which acts as a neutron moderator and radiation shield and allows the 

core to cool by natural convection.  The fuel rods circle an approximately 9” internal diameter 
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dry irradiation cavity where a variety of different experiments can be exposed to a high neutron 

fluence. This neutron fluence can be achieved by operating the ACRR in either a pulse or 

steady state mode. Figure 1.1 shows the ACRR during a pulse with the associated blue 

Cherenkov radiation. In the figure, the fueled ring external cavity-II (FREC-II) and the 20” dry 

external cavity can also be seen in the decoupled position. FREC-II is a subcritical multiplier 

that can be moved towards the ACRR core so that they become coupled. FREC-II uses 

uranium/zirconium-hydride (U-ZrH) TRIGA fuel [Parma et al., 2015] and provides a larger 

test volume than the ACRR central cavity. All the data used in this project is from pulses with 

FREC-II in the decoupled position. 

 

Figure 1.1: The view inside of the ACRR tank during a pulse with FREC-II in the 

decoupled position. 
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  The ACRR is purposely under-moderated, which gives the neutron spectrum of the 

core and central cavity a large epithermal component. Through the use of “buckets” composed 

of different materials, the radiation environment in the central cavity can be tailored to some 

degree to meet the needs of an experiment. For example, a bucket composed of a moderator 

such as polyethylene, could be placed in the central cavity to produce a softer neutron 

spectrum, or a bucket containing a thermal neutron absorber such as boron, could be used to 

create a harder spectrum. In addition, these buckets can also contain a high atomic number 

materials such as lead, which reduce the gamma radiation in the central cavity. For this thesis, 

data was gathered for pulses with no bucket in the central cavity (free-field) and with a lead-

boron bucket in the central cavity. The lead-boron bucket is referred to as LB44 (it is 44 inches 

tall), and it is designed to filter out gamma rays and thermal neutrons from the internal 

experimental volume, producing an epithermal neutron environment with a high neutron-to-

gamma ray ratio [Parma et al., 2013].   

 A unique and important design characteristic of the ACRR is its fuel. The fuel is a 

homogeneous mix of uranium enriched to 35 weight percent U-235, with 21.5 weight percent 

uranium oxide (UO2) and 78.5 weight percent beryllium oxide (BeO) [Parma et al., 2015]. The 

pellets are segmented to allow the ceramic fuel to tolerate the radial and tangential stresses 

experienced during a pulse. The beryllium oxide in the fuel increases its heat capacity and aids 

in allowing the ACRR to achieve large pulses up to 35,000 MWth. The beryllium in the fuel 

also has the effect of producing neutrons through (γ,n), (n,2n), and (α,n) reactions. It will be 

shown in Chapter 2 that due to time dependent behavior, special consideration of the 

photoneutrons is needed for calculating the late time reactivity of the ACRR.  
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 To operate the ACRR, there are 11 movable rods in the core that can be adjusted to 

produce a desired power profile. There are six control rods, two safety rods, and three transient 

rods.  As can be seen in Figure 1.2, the control rods and safety rods consist of boron carbide 

(B4C) absorbers followed by fuel, and the transient rods are boron carbide followed by void. 

To pulse the ACRR, the safety rods are fully withdrawn and the control rods are adjusted to 

bring the reactor to a steady state power level. Then from a specified location, the transient 

rods are removed from the core using pressurized nitrogen, which results in the insertion of a 

large amount of positive reactivity. The transient rods are then held in the full out position for 

a specified time, after which all 11 of the movable rods are dropped into the core to fully shut 

the reactor down. Typical pulses at the ACRR have reactivity insertions of $1 to $3 and yields 

up to 300MJ.  

 

Figure 1.2: Diagram showing the rods that can be manipulated in the ACRR [Knief, 

2015]. 
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2. Nuclear Reactor Kinetics 

Nuclear reactor kinetics is concerned with predicting the time behavior of a reactor’s 

power due to reactivity/multiplication changes in its core. Exploring this topic will provide 

some background information relevant to the derivation of the inverse kinetics equation and 

its application to the ACRR. Delayed neutrons and the precursor data used for this project will 

be discussed in Section 2.1. A description of reactivity will then be given in Section 2.2. In 

Section 2.3 the point reactor kinetics equations will be derived, which will be used to derive 

the inverse kinetics equation in Chapter 3. 

2.1 Delayed Neutron Precursors 

As a result of the fission of a fissile isotope, such as uranium-235, an average number 

of neutrons (typically 2 to 3) will be released. Of these neutrons, some will be released 

promptly and some will have a delayed release. The delayed neutrons usually account for less 

than 1% of all neutrons resulting from fission in a nuclear reactor; however, they are essential 

for the safe operation of a reactor, and they dictate how quickly the neutron population will 

decrease after the reactor is shut down. In most reactors, the only source of delayed neutrons 

is from fission fragments that occasionally beta decay to a daughter product in a highly excited 

state, which then quickly decays by neutron emission to a stable state. These fission fragments 

are known as delayed neutron precursors, and they are grouped according to similarities in 

their half-lives. Table 2.1 shows the Campbell and Spriggs [2002] eight-group delayed neutron 

data for thermal fission of U-235. This data is derived from the six-group Keepin [1957] data 

while preserving its important characteristics, but takes advantage of improved modern 

understanding of delayed neutron precursors. The Campbell and Spriggs data uses 

standardized half-life values that are independent of isotope or neutron energy, which 
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simplifies kinetics calculations involving mixed fuel systems and increases the ease of 

comparison of delayed neutron data. This standardization means only the relative group 

abundances change from isotope to isotope. 

In Table 2.1, λi is the decay constant of the ith precursor group, αi is the relative group 

abundance, and βi is the delayed neutron fraction per fission of the ith precursor group. The αi 

values are specific to thermal fission of U-235; however, the βi values are specific to the reactor 

under consideration. The βi values in the table were calculated using the total effective delayed 

neutron fraction, βeff, for the ACRR. By multiplying the αi values by βeff the corresponding βi 

values can be determined. The historically used βeff valued for the ACRR is 0.0073 +/- 0.0003 

[Pickard & Odom, 1982]. To check this value a MCNP model of the ACRR (as described in 

[Parma et al., 2015]) was run by Ed Parma using 10 million particles and 2000 cycles, and 

through the use of the kopts card, a βeff value of 0.00723 +/- 0.00001 was obtained. The 

Table 2.1: Eight-group Campbell and Spriggs delayed neutron data for thermal fission of 

U-235. [Campbell, Spriggs, & Vladimir, 2002] 

Group Number Half-Life λi (s
-1) αi βi for ACRR 

1 55.6 s 1.25E-2 0.033 0.23859E-3 

2 24.5 s 2.83E-2 0.154 1.11342E-3 

3 16.3 s 4.25E-2 0.091 0.65793E-3 

4 5.21 s 1.33E-1 0.197 1.42431E-3 

5 2.37 s 2.92E-1 0.331 2.39313E-3 

6 1.04 s 6.66E-1 0.090 0.6507E-3 

7 0.424 s 1.63E-0 0.081 0.58563E-3 

8 0.195 s 3.55E-0 0.023 0.16629E-3 

total -- -- 1.000 7.230E-3 
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effective delayed neutron fraction accounts for the variation in effectiveness that the delayed 

neutrons have in different reactors due to their lower average energy than prompt neutrons. 

Also, through MCNP calculations, it is known that almost all the fissions that occur in the 

ACRR are from thermal fission of U-235. This allows the delayed neutron behavior of the 

ACRR to be closely approximated by the data in Table 2.1 without the need to account for the 

small amount of precursors created by fast fission of U-235 and U-238. 

In addition to delayed neutrons from the neutron decay of fission fragments, delayed 

neutrons are also produced by photoneutron reactions with the beryllium in the fuel of the 

ACRR. This reaction is shown in Eq. (2.1). 

 Be4
9  +  γ0

0  →  ( Be4
9 )∗  →  2 He2

4  +  n0
1  (2.1) 

The reaction has a gamma ray threshold energy of 1.67 MeV [Mobley & Laubenstein, 1950]. 

Prompt and delayed gammas rays that exceed this threshold exist in the ACRR. Of interest to 

the time behavior of the reactor are the photoneutrons produced by the delayed gamma rays, 

which come from the decay of fission fragments. Those fission fragments that produced 

gamma rays with energies greater than 1.67 MeV are described by Keepin [1965] using nine 

precursor groups shown in Table 2.2. We are able to treat these photoneutron groups as 

additional delayed neutron precursors groups because their source is fundamentally the same 

as the eight regular delayed neutron groups, in that they are both created by the decay of fission 

fragments. 
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Most of the time the delayed beryllium photoneutrons can be ignored in calculations 

because as can be seen in Table 2.2, they only contribute 0.015% of the total neutron 

population, which is only 2% of the delayed neutron population. However, it is also important 

to note that for the most part, the half-lives of the delayed photoneutron groups are much longer 

than those of the delayed neutron groups. Because of this, after the reactor is shut down, the 

delayed photoneutron groups will begin to dominate as the delayed groups decay away. In 

Table 2.1 the longest-lived group has a half-life of about one minute, so after about 10 minutes 

the delayed neutron groups will contribute almost no neutrons to the system and the delayed 

photoneutrons will dominate. This means to calculate the reactivity multiple hours after a 

pulse, the delayed photoneutrons need to be accounted for. 

Table 2.2: Nine-group delayed beryllium photoneutron data from Keepin for thermal 

fission of U-235 [Keepin, 1965]. 

Group Number Half-Life λi (s
-1) βi  

1 12.8 d 6.24E-7 0.057E-5 

2 77.7 h 2.48E-6 0.038E-5 

3 12.1 h 1.59E-5 0.260E-5 

4 3.11 h 6.20E-5 3.20E-5 

5 43.2 m 2.67E-4 0.36E-5 

6 15.5 m 7.42E-4 3.68E-5 

7 3.2 m 3.60E-3 1.85E-5 

8 1.3 m 8.85E-3 3.66E-5 

9 30.6 s 2.26E-2 2.07E-5 

total -- -- 15.175E-5 
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To account for the effects that the delayed photoneutrons will have on the ACRR, the 

nine groups in Table 2.2 can be combined with the eight groups in Table 2.1, such that 17 total 

delayed neutrons groups are used for kinetics calculations. However, it needs to be recognized 

that the MCNP and historical βeff values do not include the contribution from the delayed 

photoneutrons. By adding the total delayed photoneutron fraction from Table 2.2 to the MCNP 

value of 0.00723 we can approximate the total effective delayed neutron fraction with 

photoneutrons for the ACRR to be 0.00738. This approximation assumes that the effective 

photoneutron group fractions of the ACRR are the same as the βi values in Table 2.2. The 

values in Table 2.2 were obtained by surrounding irradiated U-235 samples with 9 in. diameter 

beryllium spheres [Bernstein et al., 1956], which would represent the highest fraction of 

photoneutron production per fission. In the ACRR, attenuation and leakage of fission product 

gamma rays before interacting with beryllium would reduce the photoneutron fractions; 

however, due to the lower average energy of beryllium photoneutrons, they have increased 

effectiveness, which would increase the effective photoneutron fractions. Keepin [1965] 

discusses a process to determine the average photoneutron effectiveness from precise rod-drop 

experiments. And non-trivial MCNP calculation could be performed to obtain more accurate 

values of the delayed photoneutron fractions for the ACRR. However, determining the 

effective photoneutron fractions is outside the scope of this thesis, and it is believed that the 

values in Table 2.2 are close enough of an approximation to allow the application of the inverse 

method to experimental data from the ACRR to be adequately investigated. 

Even though delayed neutrons only represent a small amount of the total neutron 

population, they are very important to the time behavior of the reactor. As will be seen in later 

sections, they are an essential component of the point kinetics equations and the inverse 
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kinetics equation. Despite not knowing the effective delayed photoneutron fractions for the 

ACRR, the values mentioned in this section should allow the delayed neutrons to be adequately 

accounted for. Future work could be done using MCNP and experiments to try to determine 

the true effective delayed photoneutron groups of the ACRR. 

2.2 Reactivity 

As already mentioned, this thesis is interested in the use of the inverse method to 

calculate the reactivity profile of ACRR pulses. In this section, reactivity and its units will be 

discussed to allow a better understanding of the inverse kinetics equations and the results from 

its application to the ACRR, which will be discussed in later chapters. In words, reactivity is a 

fractional measurement of the amount of deviation of a reactor’s core from critical (keff = 1), 

which is described by Eq. 2.2. 

 ρ =  
keff − 1

keff
 (2.2) 

keff is the effective multiplication factor, which relates the number of neutrons in one neutron 

generation to the number in the next.  A keff of 1 corresponds to a reactivity of 0 which means 

there is no deviation from criticality and that the neutron population in the reactor is constant 

from one neutron generation to the next. Let’s assume the neutron population in a reactor is 

increasing by 1% each neutron generation. This would correspond to a keff of 1.01 and a 

reactivity of ~0.0099. As can be seen, reactivity is simply a unit-less decimal value as defined 

in Eq. 2.2. A negative decimal corresponds to a decreasing neutron population, zero 

corresponds to a steady state neutron population, and a positive decimal corresponds to an 

increasing neutron population. Simply expressing reactivity as a decimal isn’t commonly used. 

For research reactors, it is often more useful to express reactivity in terms of the effective 
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delayed neutron fraction (βeff) as shown in Eq. 2.3. When reactivity is divided by βeff, it is given 

units of dollars ($) and cents where ρ = βeff is referred to as $1 of reactivity. 

 
ρ

βeff
[$] =  

keff − 1

βeffkeff
 (2.3) 

Expressing reactivity normalized to βeff provides a convenient way to know how a 

reactor will respond at different reactivities. In the previous section it was described that the 

neutron population in a reactor consists of a combination of prompt and delayed neutrons. The 

presence of the delayed neutrons has the effect of slowing down the response of a reactor to 

changes in its reactivity. Over the interval of $0 < ρ < $1 delayed neutrons slow down how 

quickly the neutron population can increase and for ρ < $0 they limit the rate at which the 

neutron population can decrease. Because of the sluggishness introduced by the delayed 

neutrons, it makes it easier and safer to operate a reactor at a critical state than if only prompt 

neutrons were present. If only prompt neutrons were present, changes in a reactor would occur 

on a time scale similar to the prompt neutron lifetime, which for the ACRR is 24 μs (with 

FREC decoupled). This type of behavior is seen when reactivities greater than $1 are inserted 

into a reactor. At that point, the prompt neutrons alone are enough to make the reactor critical, 

and they dominate the time behavior of the reactor. The important reactivity values and their 

influences on a reactor are summarized in Table 2.3. 
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The ACRR is routinely pulsed by quickly inserting reactivity greater than $1 into the 

core. This makes the reactor prompt supercritical and causes its power to increase very rapidly. 

To safely operate in a prompt supercritical state, the reactor must be specially designed to avoid 

Table 2.3: Important reactivity values in dollars. 

Reactivity 
Criticality 

Status 
Description 

Neutron Population 

Behavior with No 

External Source 

ρ < $0 Subcritical 

The combination of 

prompt and delayed 

neutrons can’t make the 

reactor critical 

The neutron population 

will decay away according 

to the half-lives of the 

delayed neutron 

precursors. 

ρ = $0 Delayed Critical 

The combination of 

prompt and delayed 

neutrons is just enough 

to make the reactor 

critical. 

The neutron population 

will remain constant and if 

any minor fluctuations in 

reactivity occur, the 

response will be slow. 

$0 < ρ < $1 
Delayed 

Supercritical 

Prompt neutrons alone 

aren’t enough to make 

the reactor critical; 

however, with delayed 

neutrons the reactor is 

supercritical. 

In this reactivity range the 

neutron population will 

increase exponentially at a 

rate limited by the delayed 

neutrons. 

ρ = $1 Prompt Critical 

Prompt neutrons alone 

would make the reactor 

critical but with the 

presence of the delayed 

neutrons the reactor is 

supercritical. 

The delayed neutrons are 

no longer required to 

make the reactor critical 

so the prompt neutron 

lifetime begins to dictate 

the exponential growth of 

the neutron population.  

ρ > $1 
Prompt 

Supercritical 

Prompt neutrons alone 

would make the reactor 

supercritical and the 

delayed neutrons add to 

the supercriticality. 

Delayed neutrons have 

almost no effect and the 

neutron population will 

increase rapidly according 

to the prompt neutron 

lifetime. 
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damage. As mentioned in Section 1.2, the ACRR utilizes beryllium in the fuel and segmented 

fuel pellets to withstand the rapid increases in temperature experienced by the fuel. In addition, 

the ACRR is designed to stop the supercritical excursion through the use of negative 

temperature feedback. Without the use of a feedback mechanism, it would be impossible to 

mechanically insert control rods fast enough to shut the reactor down before it damaged itself. 

The ACRR’s negative feedback relies on the Doppler broadening of U-238 and on beryllium 

upscatter. Both of these feedback mechanisms contribute to a decreased number of U-235 

fissions as the fuel temperature increases, which effectively reduces the reactivity of the core 

from prompt supercritical. As the fuel cools, the negative reactivity from these effects will 

diminish; however, they provide ample time to insert the safety and control rods to fully shut 

the reactor down. 

2.3 Derivation of the Point Kinetics Equations 

The point-reactor kinetics equations give insight into the time dependent behavior of 

nuclear reactors by accounting for the effects of prompt and delayed neutrons. The equations 

are usually solved to give the power behavior of a reactor corresponding to an inputted 

reactivity profile. In this section, the point-reactor kinetics equations will be derived, which 

will provide the starting point for the derivation of the inverse kinetics equation in Chapter 3. 

The point-reactor kinetics equations can be derived from the one energy group, time- 

and space-dependent neutron diffusion equation shown in Eq. (2.4), where it is assumed D and 

Σa do not depend on position. Eq. (2.4) is simply an equation that balances the production and 

losses of neutrons to give the change in neutron density with time. This can be easily seen by 

subtracting the loss terms from the source term (the leakage term will be subtracted as the 

Laplacian of the flux will be negative). 
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1

v

∂ϕ

∂t
+ (−D∇2ϕ) + Σaϕ(𝐫, t) = Sfisson(𝐫, t) 

[
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛

𝑛𝑒𝑢𝑡𝑟𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑤𝑖𝑡ℎ 𝑡𝑖𝑚𝑒

] + [
𝑛𝑒𝑢𝑡𝑟𝑜𝑛
𝑙𝑒𝑎𝑘𝑎𝑔𝑒
𝑙𝑜𝑠𝑠𝑒𝑠

] + [
𝑛𝑒𝑢𝑡𝑟𝑜𝑛
𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛
𝑙𝑜𝑠𝑠𝑒𝑠

] =  [
𝑛𝑒𝑢𝑡𝑟𝑜𝑛
𝑠𝑜𝑢𝑟𝑐𝑒
𝑡𝑒𝑟𝑚

] 

(2.4) 

Where: 

v → one-group neutron velocity [cm/s] 

ϕ(r,t) → one-group position and time dependent neutron flux [neutrons/cm2/s] 

t → time [s] 

D → one-group diffusion coefficient [cm] 

∇2 → Laplace operator 

Σa → one-group macroscopic absorption cross-section for a homogeneous mix of core 

materials [1/cm] 

Sfission(r,t) → fission neutron source term [neutrons/cm3/s] 

 

Knowing that neutrons resulting from fission are a combination of prompt and delayed 

neutrons, the fission neutron source term can be written as shown in Eq. (2.5). 

 

Sfission(𝐫, t) = (1 − β)νΣfϕ(𝐫, t) +∑λiCi(𝐫, t)

i=1

 

[
𝑓𝑖𝑠𝑠𝑖𝑜𝑛
𝑛𝑒𝑢𝑡𝑟𝑜𝑛
𝑠𝑜𝑢𝑟𝑐𝑒

]   =   [
𝑝𝑟𝑜𝑚𝑝𝑡
𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠

]  +  [
𝑑𝑒𝑙𝑎𝑦𝑒𝑑
𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠

] 

(2.5) 

Where: 

β = βeff → effective delayed neutron fraction,  βeff = ∑ βii  

(1 - β) → fraction of neutrons emitted promptly 

ν → average number of neutrons released per fission (prompt + delayed) 

Σf → one-group macroscopic fission cross-section [cm-1] 

λi → decay constant of the ith neutron precursor group [seconds-1] 
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Ci(r,t) → concentration of the ith delayed neutron precursor group at a time, t, and a point, r, 

[number/cm3] 

 

The prompt neutron term is expressed as a fission reaction rate weighted by ν and the prompt 

neutron fraction. The delayed neutron term is expressed as a sum of the decay rates of each of 

the precursor groups. Including the delayed neutrons in the fission source term is essential 

because of the important role they play in the time behavior of a reactor. For the delayed 

neutron term of the fission source to be of practical use, an equation is needed to describe the 

time behavior of the precursor concentration. We know that in a reactor, the delayed neutron 

precursors are produced through fission and are then lost through radioactive decay. Knowing 

this, we can write Eq. (2.6) to describe the time rate of change of the ith precursor group 

concentration. 

 

∂Ci
∂t
=  βiνΣfϕ(𝐫, t) − λiCi(𝐫, t) 

[
𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝑤𝑖𝑡ℎ 𝑡𝑖𝑚𝑒

] =  [

𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑟𝑎𝑡𝑒

]  −  [

𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟
𝑑𝑒𝑐𝑎𝑦
𝑟𝑎𝑡𝑒

] 

(2.6) 

Now that we have the fission source fully defined we can substitute Eq. (2.5) into Eq. (2.4) 

which gives us Eq. (2.7). 

 
1

v

∂ϕ

∂t
− D∇2ϕ + Σaϕ(𝐫, t) = (1 − β)νΣfϕ(𝐫, t) +∑λiCi(𝐫, t)

i=1

 (2.7) 

To derive the point kinetics equations, the spatial dependence of Eq. (2.6) and Eq. (2.7) 

are eliminated so that the reactor only varies in time, such that it is essentially treated as a point, 

hence the name. This simplification greatly increases the ease at which the time dependence 

of a reactor can be studied.  The spatial dependence is eliminated by assuming the neutron flux 
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in the core takes the shape of the fundamental mode for all time and only varies in magnitude. 

Because the production of the delayed neutron precursors is dependent on the flux, we know 

that the concentration of the neutron precursors will also take the shape of the fundamental 

mode for solid fuel. This allows us to separate the time and space dependence of the neutron 

flux and precursor concentration as follows. 

 ϕ(𝐫, t) = vn(t)ψ1(𝐫) 
(2.8) 

 Ci(𝐫, t) = Ci(t)ψ1(𝐫) (2.9) 

Where vn(t) = ϕ(t) and n(t) is the neutron density [neutrons/cm3] as a function of time. And 

where ψ1(r) is the fundamental mode solution (n=1) to the criticality equation: 

 ∇2ψ𝑛(𝐫) =  −Bg
2ψn(𝐫) (2.10) 

Substituting Eq. (2.8) and Eq. (2.9) into Eq. (2.7) and Eq. (2.6) gives Eq. (2.11) and Eq. (2.12) 

shown below. 

 

v

v

dn(t)

dt
ψ1(𝐫) − D∇

2ψ1(𝐫)vn(t) + Σavn(t)ψ1(𝐫)

= (1 − β)νΣfvn(t)ψ1(𝐫) +∑λiCi(t)ψ1(𝐫)

𝑛

i=1

 

(2.11) 

 dCi(𝑡)

dt
ψ1(𝐫) =  βiνΣfvn(t)ψ1(𝐫) − λiCi(t)ψ1(𝐫)    i = 1,2, … , 𝑛 

(2.12) 

Then by substituting Eq. (2.10) into Eq. (2.11) and canceling out the spatial dependence given 

by ψ1(r), from Eq. (2.11) and Eq. (2.12), we arrive at Eq. (2.13) and Eq. (2.14) which are only 

dependent on time. 
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 dn(t)

dt
+ DBg

2vn(t) + Σavn(t) = (1 − β)νΣfvn(t) +∑λiCi(t)

𝑛

i=1

 
(2.13) 

 dCi(𝑡)

dt
=  βiνΣfvn(t) − λiCi(t)    i = 1,2, … , 𝑛 

(2.14) 

Now all that needs to be done, is to rewrite Eq. (2.13) and Eq. (2.14) in terms of more applicable 

parameters, so that a more useful form of the point kinetics equations is obtained. We will 

begin by moving all the non-differential terms of Eq. (2.13) to the right-hand side, and factoring 

out Σavn(t) to give Eq. (2.15). 

 
dn(t)

dt
= Σavn(t) (−

DBg
2

Σa
− 1 +

(1 − β)νΣf
Σa

) +∑λiCi(t)

i=1

 (2.15) 

Substituting k∞ = νΣf / Σa and L2 = D / Σa into Eq. (2.15) gives Eq. (2.16). 

 
dn(t)

dt
= Σavn(t)(−Bg

2L2 − 1 + (1 − β)𝑘∞) +∑λiCi(t)

i=1

 (2.16) 

Now factoring out (Bg
2 L2 + 1) and substituting 1/l = vΣa(Bg

2 L2 + 1) gives Eq. (2.17). 

 
dn(t)

dt
=
n(t)

𝑙
(−1 +

(1 − β)k∞
Bg2L2 + 1

) +∑λiCi(t)

i=1

 (2.17) 

Substituting keff = k = k∞ / (Bg
2 L2 + 1) gives Eq. (2.18). 

 
dn(t)

dt
=
n(t)

𝑙
((1 − β)k − 1) +∑λiCi(t)

i=1

 (2.18) 

Now to rewrite the precursor balance equation (Eq. (2.14)) in the same parameters as Eq. (2.18) 

we can substitute νΣf v = k∞Σav = kvΣa(Bg
2 L2 + 1) = k/l which gives Eq. (2.19). 
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 dCi(t)

dt
=  
βik

𝑙
n(t) − λiCi(t)     𝑖 = 1,2, … , 𝑛 

(2.19) 

Equations (2.18) and (2.19) represent one way that the point kinetics equations can be 

written. They are a set of n+1 coupled ordinary differential equations that describe the time-

dependence of the neutron population in the reactor, where n is the total number of delayed 

neutron groups. The point kinetics equations are also commonly written in terms of reactivity, 

as defined earlier in Eq. (2.2), and the mean generation time as defined below. 

 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 →   ρ ≡  
k − 1

k
 (2.20) 

 𝑚𝑒𝑎𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒  →  Λ ≡
𝑙

k
 (2.21) 

Solving Eq. (2.20) for k and substituting it along with Eq. (2.21), into Eq. (2.18) and Eq. (2.19), 

gives the following form of the point kinetics equations: 

 
dn(t)

dt
=
ρ − β

Λ
n(t) +∑λiCi(t)

i=1

 (2.22) 

 dCi(t)

dt
=  
βi
Λ
n(t) − λiCi(t)     𝑖 = 1,2, … , 𝑛 

(2.23) 

It is often much more useful to write Eq. (2.22) and Eq. (2.23) in terms of power rather 

than the neutron density. Since the neutron density is assumed to have a fixed spatial 

distribution, it can be regarded as any volume-averaged property that is proportional to the 

instantaneous neutron density at some point in the reactor, such as total number of neutrons, 

fission rate, power, or average power density [Hetrick, 1971]. This means we can replace the 
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neutron density, n(t), with power, P(t), as long as Ci also has units of power. Doing this gives 

equations (2.24) and (2.25), where each term has units of watts/s (or another proportional unit 

of choice). 

 

dP(t)

dt
=
ρ − β

Λ
P(t) +∑λiCi(t)

i=1

 

[
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛
𝑝𝑜𝑤𝑒𝑟 𝑤𝑖𝑡ℎ
𝑡𝑖𝑚𝑒

] =  [
𝑃𝑟𝑜𝑚𝑝𝑡
𝑛𝑒𝑢𝑡𝑟𝑜𝑛

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
] + [

𝐷𝑒𝑙𝑎𝑦𝑒𝑑
𝑛𝑒𝑢𝑡𝑟𝑜𝑛

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
] 

(2.24) 

 dCi(t)

dt
=  
βi
Λ
P(t) − λiCi(t)     𝑖 = 1,2, … , 𝑛 

[

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛
𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝑤𝑖𝑡ℎ 𝑡𝑖𝑚𝑒

] =  [
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑜𝑓 𝑛𝑒𝑢𝑡𝑟𝑜𝑛
𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟𝑠

] − [
𝐷𝑒𝑐𝑎𝑦 𝑜𝑓
𝑛𝑒𝑢𝑡𝑟𝑜𝑛
𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟𝑠

] 

(2.25) 

Equations (2.24) and (2.25) are one of the most common ways to see the point reactor 

kinetics equations written; however, they can be written more thoroughly by expressing Λ in 

terms of ρ. By expressing Λ in terms of ρ, as shown in Eq. (2.26), it allows the variations in Λ 

that would occur due to changes in keff, such as those encountered during a reactor pulse, to be 

accounted for. In addition, expressing Λ in terms of ρ allows the reactivity to be explicitly 

solved for in the inverse kinetics equation as will be seen in the next chapter. 

 

ρ ≡  
keff − 1

keff
= 1 −

1

keff
 

Solving

for keff
⇒      keff =

1

1 − ρ
 

Λ ≡
𝑙

keff
= 𝑙(1 − ρ) 

(2.26) 
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Substituting the equation for Λ in terms of reactivity into the equations (2.24) and (2.25) gives 

the following form of the point kinetics equations. 

 
dP(t)

dt
=
ρ − β

𝑙(1 − ρ)
P(t) +∑λiCi(t)

i=1

 (2.27) 

 dCi(t)

dt
=  

βi
𝑙(1 − ρ)

P(t) − λiCi(t)     𝑖 = 1,2, … , 𝑛 
(2.28) 

By substituting the definition of reactivity into equations (2.27) and (2.28) the point kinetics 

equations can also be expresses in terms of keff, as shown in equations (2.29) and (2.30). 

 
dP(t)

dt
=
keff(1 − β) − 1

𝑙
P(t) +∑λiCi(t)

i=1

 (2.29) 

 dCi(t)

dt
=  
βikeff
𝑙
P(t) − λiCi(t)     𝑖 = 1,2, … , 𝑛 

(2.30) 

If an external neutron source is present, it can be accounted for as an additional term on the 

dP/dt equation, as long as it is properly normalized and expressed in the same units as dP/dt. 

Below, the point reactor kinetics equations in terms of reactivity are shown with a source term. 

 
dP(t)

dt
=
ρ − β

𝑙(1 − ρ)
P(t) +∑λiCi(t)

i=1

+ S(t) (2.31) 

 dCi(t)

dt
=  

βi
𝑙(1 − ρ)

P(t) − λiCi(t)     𝑖 = 1,2, … , 𝑛 
(2.32) 

The point kinetics equations derived in this section provide the starting point for the 

derivation of the inverse kinetics equation in the next chapter. The point kinetics equations can 

be numerically solved using the Euler Method, as will be discussed in Chapter 4. It is important 
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to note that when using the point kinetics equations to model reactor behavior, feedback effects 

caused by changes in temperature and other phenomena need to be accounted for in the 

reactivity variable, which can be expressed as a function of time. To solve the n+1 coupled 

ordinary differential equations, n+1 initial conditions will be needed. It is common to choose 

that the reactor is initially operating at steady state, dP(t0)/dt=0, and that all the precursor 

groups are in equilibrium, dCi(t0)/dt=0. 
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3. The Inverse Kinetics Method 

 In this chapter, the process known as the inverse kinetics method will be used to 

“invert” the point kinetics equations, such that they are solved to give the reactivity profile 

corresponding to a known power profile. The equation resulting from this process will be 

referred to as the inverse kinetics equation, and its behavior will be described in Section 3.2. 

The purpose of this thesis was to investigate the ability of the inverse kinetics equation to 

calculate reactivity profiles using experimentally gathered power profiles obtained during 

pulses at the ACRR. It will be seen that the inverse kinetics equation only requires that the 

relative power be known. As long as the signals from the radiation detectors are proportional 

to the power, they can be used in the inverse equation without having to be scaled; however, 

the detector signals still require preparation before being entered into the inverse kinetics 

equation, which will be described in Chapter 5. 

3.1 Derivation of the Inverse Kinetics Equation 

The following form of the point reactor kinetics equations, given by Eq. (3.1) and Eq. 

(3.2), will be used to begin the inverse method derivation. As shown in Section 2.3, the mean 

neutron generation time, Λ, will be written in terms of reactivity later in the derivation. 

 dP(t)

dt
=  
ρ(t) − β

Λ
P(t) +∑λiCi(t)

i

+ S(t) (3.1) 

 

 
dCi(t)

dt
=  
βi
Λ
P(t) − λiCi(t) (3.2) 

Where: 

P(t) → power as a function of time [Watts or proportional unit] 



24 
 

ρ(t) → reactivity as a function of time, not in dollars or cents, ρ(t) =
keff−1

keff
 

βi → delayed neutron fraction of the ith delayed group 

β = βeff → effective delayed neutron fraction,  βeff = ∑ βii  

Λ→ mean neutron generation time, Λ =
𝑙

keff
 where, l, is the prompt neutron lifetime [seconds] 

λi → decay constant of the ith neutron precursor group [seconds-1] 

Ci(t) → concentration of the ith delayed neutron precursor group at a time, t, [number/cm3] 

S(t) → Neutron source term (if one is present) [same units as dP/dt, e.g. n/s/s] 

 

We begin by solving Eq. (3.2) for Ci(t) in terms of P(t). Rearranging Eq. (3.2) we get: 

 
dCi(t)

dt
+ λiCi(t) =  

βi
Λ
P(t) (3.3) 

Eq. (3.3) is an ordinary differential equation that can be solved using an integrating factor. 

 integrating factor →  μ(t) = e
∫ λidt
t
t0 = eλi(t−t0) (3.4) 

Multiplying both sides of Eq. (3.3) by the integrating factor gives Eq. (3.5). 

 
dCi(t)

dt
(eλi(t−t0)) + λiCi(t)(e

λi(t−t0)) =
βi
Λ
P(t)(eλi(t−t0)) (3.5) 

Recognizing that the left-hand side of Eq. (3.5) is the derivative of a product of two functions 

of time, it can be rewritten as shown in Eq. (3.6). 

 
d

dt
(Ci(t)e

λi(t−t0)) =  
βi
Λ
P(t)(eλi(t−t0)) (3.6) 

Integrating both sides of Eq. (3.6) with respect to time, from the initial time, t0, to some later 

time, t, where t’ is the integration variable, gives Eq. (3.8). 
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 ∫
d

dt′
(Ci(t)e

λi(𝑡
′−t0))dt′ =  ∫

βi
Λ
P(t′)(eλi(𝑡

′−t0))dt′ 

t

t0

 

t

t0

 (3.7) 

 Ci(t)e
λi(t−t0) − Ci(t0) =  ∫

βi
Λ
P(t′)(eλi(𝑡

′−t0))dt′ 

t

t0

  (3.8) 

Solving Eq. (3.8) for Ci(t) gives Eq. (3.9). 

 Ci(t) = e
−λi(t−t0)(Ci(t0) + ∫

βi
Λ
P(t′)(eλi(𝑡

′−t0))dt′ 

t

t0

)  (3.9) 

Rewriting the exponential terms and distributing into the brackets gives Eq. (3.10). 

 Ci(t) = e
−λiteλit0Ci(t0) + e

−λiteλit0 ∫
βi
Λ
P(t′)(eλi𝑡

′
e−λit0)dt′ 

t

t0

  (3.10) 

Because the exponential terms outside the integral are constant relative to the integration 

variable, they can be moved inside the integral and after simplifying we arrive at Eq. (3.11). 

 Ci(t) = e
−λiteλit0Ci(t0) + ∫

βi
Λ
P(t′)(e−λi(𝑡−𝑡

′))dt′ 

t

t0

 (3.11) 

For any physical system, we can assume that the initial precursor concentration, Ci(t0), 

goes to zero as the initial time, t0, goes to -∞. Applying this assumption to Eq. (3.11) gives Eq. 

(3.12). 
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 Ci(t) = ∫
βi
Λ
P(t′)(e−λi(𝑡−𝑡

′))dt′ 

t

−∞

 (3.12) 

If we make the u-substitution that, u = t – t’, then dt’ = -du and the limits of integration become 

∞ to 0, which is shown in Eq. (3.13). 

 Ci(t) = − ∫
βi
Λ
P(t − u)(e−λiu)du 

0

∞

 (3.13) 

By flipping the limits of integration and eliminating the negative sign we arrive at Eq. (3.14). 

 Ci(t) =  ∫
βi
Λ
P(t − u)e−λi udu 

∞

0

 (3.14) 

Substituting Eq. (3.14) into Eq. (3.1) gives Eq. (3.15). 

 
dP(t)

dt
=  
ρ(t) − β

Λ
P(t) + ∫

P(t − u)

Λ
∑λiβie

−λi u du

i

+ S(t)

∞

0

 (3.15) 

Defining the delayed neutron kernel as follows 

 𝐷𝑒𝑙𝑎𝑦𝑒𝑑 𝑛𝑒𝑢𝑡𝑟𝑜𝑛 𝑘𝑒𝑟𝑛𝑒𝑙 →  D(u) ≡∑
λiβi
β
e−λi u

i

 (3.16) 

and substituting it into Eq. (3.15) we arrive at Eq. (3.17), which is an integro-differential 

(contains integrals and derivatives) form of the point reactor kinetics equations. 



27 
 

 
dP(t)

dt
=  
ρ(t) − β

Λ
P(t) +

β

Λ
∫ D(u) P(t − u) du

∞

0

+ 𝑆(t) (3.17) 

We can now solve Eq. (3.17) for reactivity as a function of time for a given power profile. 

Multiplying both sides by Λ and dividing by P(t) gives Eq. (3.18). 

 
dP

dt
(
1

P(t)
) Λ =  ρ(t) − β +

β

P(t)
∫ D(u) P(t − u)du

∞

0

+ (
Λ

P(t)
) S(t) (3.18) 

Solving for ρ(t) gives Eq. (3.19). 

 ρ(t) =  β +
dP

dt
(
1

P(t)
) Λ −

β

P(t)
∫ D(u) P(t − u)du

∞

0

− (
Λ

P(t)
) S(t) (3.19) 

As mentioned in Section 2.3, Λ is dependent on the reactivity, which means reactivity can be 

more explicitly solved for in Eq. (3.19). To do this we can substitute Eq. (2.26) into Eq. (3.19) 

to get Eq. (3.20). 

 Λ =
𝑙

keff
= 𝑙 − 𝑙ρ(t) (2.26) 

ρ(t) = β +
dP

dt
(
1

P(t)
) (𝑙 − 𝑙ρ(t)) −

β

P(t)
∫ D(u) P(t − u)du

∞

0

− (
S(t)

P(t)
) (𝑙 − 𝑙ρ(t)) (3.20) 

Solving Eq. (3.20) for ρ(t) gives Eq. (3.21) which is very similar to Eq. (3.19); however, it 

accounts for the slight variations in Λ due to changes in keff that occur during a pulse.   



28 
 

ρ(t) =
1

1 + 𝑙
dP
dt
(
1
P(t)

) − 𝑙
S(t)
P(t)

[β + 𝑙
dP

dt
(
1

P(t)
) −

β

P(t)
∫ D(u) P(t − u)du

∞

0

− 𝑙
S(t)

P(t)
] (3.21) 

To have the outputted reactivity in units of dollars [$] we can express ρ in terms of β as 

described in Section 2.2. This is done by dividing both sides of Eq. (3.21) by β giving Eq. 

(3.22). 

ρ(t)

β
[$] =

1

1 + 𝑙
dP
dt
(
1
P(t)

) − 𝑙
S(t)
P(t)

[1 +
𝑙

β

dP

dt
(
1

P(t)
) −

1

P(t)
∫ D(u) P(t − u)du

∞

0

−
𝑙

β

S(t)

P(t)
] (3.22) 

Eq. (3.22) is the form of the inverse kinetics equation that will be used for the 

calculations in this thesis. As can be seen in Eq. (3.16), the delayed neutron kernel, D(u), is a 

known function because the delayed neutron data is known. The prompt neutron lifetime, l, is 

also a known quantity for the ACRR, and has been obtained through MCNP calculations. It 

will be assumed that l is constant over the duration of a pulse; however, it does change slightly 

depending on the position of the control, safety, and transient rods. The source is written as a 

function of time in Eq. (3.22) but frequently the source is a constant or nonexistent. The ACRR 

does not use an external neutron source for startup because there are sufficient background 

neutrons from (α,n) and (γ,n) reactions with the beryllium in the fuel. These background 

neutrons were found to be negligible for the pulse sizes and time durations investigated in this 

thesis, which will be further discussed in Section 3.3.  

3.2 Understanding the Inverse Kinetics Equation Solution 

 To develop an understanding of the inverse kinetics equation, we will consider it to be 

made up of four components, each of which will be studied separately. These four components 
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will be referred to as the coefficient, the prompt term, the integral term, and the source term as 

shown below. To assist in understanding the contribution of each component, a pulse power 

profile, generated by numerically solving the point kinetics equations, will be used to provide 

data for P(t) so that the behavior of each component can be visualized. To generate the power 

profile, the prompt neutron lifetime and the delayed neutron data for the ACRR were used 

along with a made-up reactivity profile. In this section, it will be assumed that there is no 

source; in Section 3.3 the effects of a source will be considered. 

 

 Figure 3.1 shows the simulated pulse power profile that will be used to study the 

behavior of the components of the inverse kinetics equation. The figure also shows the 

corresponding reactivity profile that was used to create the power profile. The reactor was 

chosen to be at constant power for the first 2 s and then reactivity was inserted at a constant 

rate between 2 s and 2.05 s such that $3 of total reactivity would be inserted. After this, negative 

reactivity feedback was simulated by reducing the reactivity at a rate proportional to the change 

in energy released. Once the pulse released the specified amount of energy, negative reactivity 

was inserted at a constant rate such that the reactor would be -$5 subcritical after 0.2 s. The 

reactivity was then held at -$5. This pulse does not represent the exact same behavior that we 

would expect to see from the ACRR, but it provides a noise-free pulse power profile that will 

allow us to study the inverse kinetics equation. 

ρ(t)

β
[$] =

1

1 + 𝑙
dP
dt
(
1
P(t)

) − 𝑙
S(t)
P(t)

[
𝑙

β

dP

dt
(
1

P(t)
) + 1 −

1

P(t)
∫ D(u) P(t − u)du

∞

0

−
𝑙

β

S(t)

P(t)
] 

                   
                             Coefficient                Prompt                         Delayed                    Source                   
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First, we will consider the coefficient (without a source) whose values are shown in 

Figure 3.2.  The coefficient results from substituting Eq. (2.26) into Eq. (3.19) to account for 

the variations in Λ experienced during large changes in reactivity. The coefficient only deviates 

slightly from unity during the time of the pulse, so multiplying each of the terms in the brackets 

by the coefficient will have minimal effect on the calculated reactivity. For this reason, the 

substitution of Eq. (2.26) is often neglected. However, the coefficient is accounted for in the 

inverse kinetics calculations used in this thesis.  

 

 
Figure 3.1: Simulated power profile and corresponding reactivity profile, generated using 

the point kinetics equations. This example will be used to study the inverse kinetics 

equation. The right plot is zoomed in, in time, to better show the pulse.  

 

Figure 3.2: The coefficient of the inverse kinetics equation at the time of the pulse.  
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 The prompt term and the product of the prompt term and coefficient are shown in 

Figure 3.3. The coefficient has only a slight effect on the prompt term as shown by the data 

point. It is also easy to see that the coefficient has the same shape as the prompt term but it is 

inverted, shifted up by 1, and scaled differently. The similar shape arises because they are both 

dictated by the normalized derivative of the power which is shown in Figure 3.4. The 

coefficient remains close to unity though, because the derivative is multiplied by the prompt 

neutron lifetime (24μs) which is very small, whereas in the prompt term, the derivative is 

multiplied by l/β (0.0033), which is about 138 times larger. As expected, because of the 

derivative, the prompt term contributes to the reactivity when the power changes rapidly with 

time. These rapid changes in power occur when positive or negative reactivity is quickly 

inserted. When the reactivity is greater than $1, these rapid changes cause the power to increase 

rapidly according to the prompt neutron lifetime. In this example, these rapid changes are the 

insertion of positive reactivity before the peak, the duration at which the total reactivity is 

greater than $1, and the insertion of negative reactivity due to feedback after the peak of the 

pulse. The negative reactivity inserted at a constant rate after the feedback, does not occur at a 

fast-enough rate to be appreciably captured by the prompt term.  
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 The delayed term of the inverse kinetics equation is dependent on the delayed neutron 

data because of the presence of the delayed neutron kernel within the integral. The delayed 

term and the delayed neutron kernel are shown below for convenience.  

𝐷𝑒𝑙𝑎𝑦𝑒𝑑 𝑡𝑒𝑟𝑚 ≡  1 −
1

P(t)
∫ D(u) P(t − u)du

∞

0

 

 
Figure 3.3: Prompt term and the product of the prompt term and the coefficient. The data 

point shows the small effect that the coefficient has at its point of largest deviation from 

unity.  

 

Figure 3.4: The derivative of the power profile, normalized to P(t).  
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𝐷𝑒𝑙𝑎𝑦𝑒𝑑
𝑛𝑒𝑢𝑡𝑟𝑜𝑛 
𝑘𝑒𝑟𝑛𝑒𝑙 

 

→ D(u) ≡∑
λiβi
β
e−λi u

𝑛

𝑖=1

= 
λ1β1
β
e−λ1 u + 

λ2β2
β
e−λ2 u +⋯+

λnβ𝑛
β
e−λ𝑛 u (3.16) 

Where: 

λi → decay constant of the ith neutron precursor group [seconds-1] 

βi → delayed neutron fraction of the ith delayed group 

β = βeff → effective delayed neutron fraction,  βeff = ∑ βii  

u → time after a fission event [seconds] 

n → the number of delayed neutron groups 

The delayed neutron kernel for the 17 groups of delayed neutron data for the ACRR is shown 

in Figure 3.5. It gives the probability of delayed neutron emission within a small time du, about 

a time u, after a fission event. It is defined such that integrating over all time gives a 100% 

probability of delayed neutron emission, as would be expected.   

 

 The integral within the delayed term is the mathematical convolution of the delayed 

neutron kernel and the power history, which gives the total emission rate of delayed neutron at 

a time t by accounting for the production and decay of all precursors created prior to and 

 

Figure 3.5: Delayed neutron kernel generated using the ACRR’s 17 delayed neutron 

groups. 
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including time t. If the integral is less than P(t), the delayed term will give a value between 1 

and 0, and if the integral is greater than P(t), it will give a negative value. Since the delayed 

term can only capture reactivity values up to $1, the prompt term will capture the reactivity 

behavior that exceeds $1, which is expected because the prompt neutrons will be dictating the 

reactor power at that point. When the integral exceeds P(t) it means the delayed neutron 

population is dominating the total neutron population, which means the reactor is subcritical, 

and the degree to which the integral is greater than P(t) quantifies how subcritical the reactor 

is. Figure 3.6 shows the values of the integral evaluated at each t. These values are proportional 

to the delayed neutron emission rate and the total precursor concentration. As can be seen, the 

precursor concentration is initially at a constant value greater than zero when the reactor is at 

constant power, and then during the pulse many precursors are created, which then 

exponentially decay away. Figure 3.7 shows the delayed term and the product of the delayed 

term and the coefficient, and as was the case with the prompt term, the coefficient only has a 

minimal effect on the values even at the point of its maximum deviation from unity, as shown 

by the data point. 



35 
 

 

 

 As can be seen, the integral requires knowing the power history of the reactor infinitely 

far back in time. This accounts for all the precursors created at earlier power levels since there 

is always a small chance they could decay at a much later time, which is evident by the delayed 

neutron kernel always giving a probability greater than zero. To accurately solve the integral 

in real world applications, an initial condition can be assumed or a sufficient amount of power 

data can be gathered before the event of interest to allow for a good approximation of the 

 
Figure 3.6: Integral values of the delayed term. These values are proportional to the 

delayed neutron emission rate and the precursor concentration in the reactor. 

 
Figure 3.7: The delayed term of the inverse kinetics equation and the product of it with 

the coefficient. The data point shows the small effect that the coefficient has at its point of 

largest deviation from unity.  
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precursor concentration by the time of the event. In this example, the initial condition used to 

create the power profile in Figure 3.1 was known, so it was used to analytically solve for the 

contribution to the integral from power levels before t = 0. The initial condition (IC) was simply 

that the power was constant for all times prior to t = 0 and that the precursor groups were in 

equilibrium at t = 0. The integral contribution due to the constant power values before t = 0 is 

given by Eq. (3.23). 

 Integral IC =  P0∫ D(u) du

∞

t

 (3.23) 

Where P0 is the power at t = 0 and where integrating from u = t to u = ∞ corresponds to the 

powers P(t = 0) to P(t = -∞), which is when the power is constant. Substituting the delayed 

neutron kernel gives Eq. (3.24) where αi = βi/β. 

 Integral IC (t) =  P0∫[𝛼1𝜆1e
−λ1 u + 𝛼2𝜆2e

−λ2 u +⋯+ 𝛼𝑛𝜆𝑛e
−λ𝑛 u] du

∞

t

 (3.24) 

Evaluating the definite integral gives the integral IC as a function of t as shown by Eq. (3.25). 

Integral IC (t) =  P0[𝛼1e
−λ1 t + 𝛼2e

−λ2 t + ⋯+ 𝛼𝑛e
−λ𝑛 t] = 𝑃0∑ 𝛼𝑖e

−λi t𝑛
𝑖=1  (3.25) 

For every t at which the reactivity is calculated, Eq. (3.25) evaluated at t, will be added 

to the numerical portion of the integral, calculated from u = 0 to u = t using the power data 

from P(t) to P(0). The integral values shown in Figure 3.6 account for the initial condition. If 

the initial condition isn’t used, the integral will behave as if the precursor concentration at t = 

0 is zero rather than the equilibrium amount. Figure 3.8 shows the calculated reactivity with 

and without accounting for the initial condition. As can be seen, when the IC isn’t specified 
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the inverse kinetics equation assumes the reactor is initially prompt critical ($1) since no 

delayed neutrons are present to help make the reactor critical. As precursors are generated the 

reactivity slowly moves towards $0 at a rate dictated by the decay constants of the precursor 

groups. However, in reality the precursor concentration was initially in equilibrium and the 

reactivity was $0 up until the time of the pulse. In this example, not accounting for the IC has 

little effect on the calculated reactivity after the pulse. This is because the large number of 

precursors created during the pulse dwarf the effects of the relatively small amount of 

precursors created before the pulse.  

 

 The plot of the reactivity accounting for the initial condition in Figure 3.8, was obtained 

by adding the product of the prompt term and the coefficient, and the product of the delayed 

term and the coefficient. Figure 3.9 shows the prompt and the delayed contributions overlaid 

with the calculated reactivity, and Figure 3.10 shows the calculated reactivity compared to the 

actual reactivity used to create the power profile. As can be seen, by numerically solving the 

inverse kinetics equation, the actual reactivity is closely obtained. However, the inverse 

kinetics reactivity begins to deviate from the inputted reactivity as negative reactivity is 

 
Figure 3.8: The left plot shows the errors that occur if the initial condition isn’t accounted 

for and the right plot shows the correct reactivity obtained by accounting for the initial 

condition. 
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linearly inserted and results in the calculated reactivity reaching -$4.77 rather than -$5. The 

cause of this discrepancy is thought to be due to errors in the power profile created by the point 

kinetics code. As will be seen in Chapter 4, the inverse kinetics code accurately calculates the 

reactivity corresponding to pulses simulated in Razorback, so the errors are not in the inverse 

kinetics calculation.  

 

 

 

Figure 3.9: Plot showing the product of the prompt term with the coefficient, the product 

of the delayed term with the coefficient, and the calculated reactivity which is the sum of 

those two profiles. 

 
Figure 3.10: Plots showing the reactivity calculated using the inverse kinetics equation, 

compared to the reactivity inputted into the point kinetics equations. The plot on the right 

is zoomed in, in time. 
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3.3 External Source Considerations 

External neutron sources used in nuclear reactors are usually very small relative to the 

typical operating powers of the reactor. For this reason, the source term of the inverse kinetics 

equation will only have an appreciable effect on the calculated reactivity when the power of 

the reactor is low and similar to that of the source. When at these low powers, if the source 

isn’t accounted for, the calculated reactivity will be close to zero even if in reality the reactor 

is many dollars subcritical, which is described by Hoogenboom and Van Der Sluijs [1988].  

As mentioned earlier, the ACRR does not utilize a dedicated external neutron source 

for reactor start up. Instead, it relies on neutrons from (α,n) and (γ,n) reactions with the 

beryllium in the fuel. This results in a small and relatively constant neutron source that is 

always present in the core; however, the magnitude of the source can vary slightly depending 

on operation history due to buildup of the longer lived photoneutron precursors. It was thought 

that this source was small enough that the source term could be neglected when calculating the 

reactivity corresponding to ACRR pulses. However, when using experimental data, the 

reactivity was found to approach $0 following a pulse, rather than the expected value of about 

-$10. This type of behavior, as shown in Figure 3.11, was similar to what would be expected 

when the presence of a source is not accounted for. However, it was found that a very large 

source would be needed to cause behavior like this. It was known that a source of this 

magnitude did not exist in the reactor so this behavior was attributed to the unwanted detection 

of activation and fission product gamma rays. The detection of these gamma rays distorts the 

proportionality of the detector signal away from the shape of the true power profile. This makes 

it appear after the pulse, that the power is not dropping as fast as it actually is, which causes 
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the calculated reactivity to be less negative than it really is. Attempts to subtract the 

contribution of these gammas from the detector signal will be discussed in Chapter 5. 

 

 The presence of these gamma rays make it difficult to determine if the small (α,n) and 

(γ,n) source that is always present in the ACRR core has a measurable effect on the calculated 

reactivity. Due to the very small size of this source it is thought that if it was to have an effect 

it would not be until hours after a pulse when the power had dropped to a sufficiently low level. 

The large amount of activation and fission products and their associated gamma rays present a 

much greater concern than the possible source effects. For this reason, focus was placed on 

subtracting away the unwanted gamma contribution, and it was chosen to neglect the source 

term during calculations because its exact source strength was unknown and assumed to be 

very small. 

 

Figure 3.11: ACRR reactivity profile calculated using experimental data and not 

accounting for a source. Following the pulse, the reactivity should drop to about -$10 and 

remain there; however, it was found to only drop to a few dollars negative and then 

approached zero because of detection of fission product and activation gamma rays. 
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4. Numerical Solutions to the Inverse Kinetics Equation 

A computer code was written in Fortran 95 to numerically solve the inverse kinetics 

equation. Fortran 95 was used because it provided the author an opportunity to learn a compiled 

language, and it is used in other codes of interest at Sandia National Laboratories. The code 

was written to read in time and power data from a text file and then output the corresponding 

time and reactivity data to another text file. In this chapter, the numerical techniques used and 

the validation of the computer code will be discussed. The processing of experimental data 

before inputting it into the inverse kinetics code was performed using MATLAB, which will 

be discussed in Chapter 5. Appendix A, shows a flow chart of the calculations performed in 

the inverse kinetics code. 

4.1 Numerical Solution 

 The inverse kinetics equation is written below for reference. As previously described, 

l, β, the βi’s, and the λi’s are all known constants for the ACRR. P(t) data is read in to the code 

and placed in to a time and power array that provides P(t) for discrete times.  In the code, S(t) 

can easily be set equal to a constant value, but for ACRR calculations it was set equal to zero. 

ρ(t)

β
[$] =

1

1 + 𝑙
dP
dt
(
1
P(t)

) − 𝑙
S(t)
P(t)

[
𝑙

β

dP

dt
(
1

P(t)
) + 1 −

1

P(t)
∫ D(u) P(t − u)du

∞

0

−
𝑙

β

S(t)

P(t)
] 

(4.1) 

Where,      D(u) = ∑
λiβi

β
e−λi u𝑛

𝑖=1     i = 1, 2, ..., n 

 To calculate the derivative of the power, a forward finite difference method was used 

as shown in Eq. (4.2). As long as the data had a small enough time step, the forward method 
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was found to do a good job approximating the derivative during the rapid increase in power 

during a pulse and also elsewhere when the changes weren’t as rapid. 

 
dP(ti)

dt
=  
P(ti+1) − P(ti)

ti+1 − ti
 (4.2) 

Numerically solving the integral isn’t as straight forward as the derivative. As 

mentioned in Section 3.2, the integral is the mathematical convolution of the delayed neutron 

kernel and the power profile. The convolution essentially takes the delayed neutron kernel from 

Figure 3.5 and reflects it about the y-axis and shifts it over the power profile as t increases. For 

each t the product of the overlapping delayed neutron kernel and the power profile values is 

obtained and integrated. Figure 4.1 gives a graphical representation of the overlapping of the 

delayed neutron kernel and the power profile corresponding to calculating the integral at t =1. 
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 When taking the product of the delayed neutron kernel and the power profile, the time 

at which the reactivity is being calculated (t = 1 in this example), is weighted most heavily by 

the delayed neutron kernel while older power values will be weighted less and less. When the 

curve of the weighted power values is integrated from u = 0 to u = ∞, a value proportional to 

the total emission rate of delayed neutron at time t is obtained. In reality only a finite amount 

of power data is available, so an initial condition is required to determine the contribution of 

the integral from times prior to the known data. When applying the inverse kinetics equation 

to experimental data from ACRR pulses, it was assumed that the reactor had been operating at 

 

Figure 4.1: Example showing how the delayed neutron kernel and the power profile 

would overlap when evaluating the convolution integral for t = 1. A coarse time step is 

shown so that it can be seen that the delayed neutron kernel must be evaluated at times 

corresponding to the power data points previous to t. 
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constant power for infinite time before the pulse and that all the precursor groups were in 

equilibrium. This initial condition was chosen because the ACRR is typically operated at a low 

constant power for several minutes before a pulse, which is long enough for the majority of 

the precursor groups to reach an equilibrium concentration. Accounting for the constant power 

initial condition allowed the reactivity to accurately be calculated during the constant power 

region before a pulse. If the initial condition isn’t accounted for, behavior similar to that shown 

in Figure 3.8 occurs. As described in Section 3.2, the constant power initial condition can be 

analytically solved as a function of t, and is given by Eq. (4.3) [Eq. 3.25 in Ch. 3]. Where P0 is 

usually the first data point, assuming that the data begins during the period of constant power 

before a pulse.  

Integral IC (t) =  P0[𝛼1e
−λ1 t + 𝛼2e

−λ2 t + ⋯+ 𝛼𝑛e
−λ𝑛 t] = 𝑃0∑ 𝛼𝑖e

−λi t𝑛
𝑖=1  (4.3) 

 Eq. (4.3) gives the value of the integral for t < u < ∞. This means that the integral of 

the inverse kinetics equation can be rewritten with different limits of integration as shown in 

Eq. (4.4). 

∫ D(u) P(t − u)du

∞

0

= 𝑃0∑𝛼𝑖e
−λi t

𝑛

𝑖=1

+ ∫D(u) P(t − u)du

t

0

 (4.4) 

By using the analytical initial condition solution, the integral can now be solved numerically 

since it only requires integration over the known data. It is more intuitive to write the numerical 

solution to the integral if we substitute u = t – t’ and du = -dt’, which were replaced when the 

u-substitution was performed during the derivation in Section 3.1. If tN is the Nth data point in 

the array and the time at which the reactivity is wanted, the numerical solution to the integral 

using the trapezoidal rule can be written as shown in Eq. (4.5).  
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∫D(t − t′) P(t′)dt′

0

t

≈ ∑ [(
D (tN − tN−j)PN−j + D(tN − tN−j−1)PN−j−1

2
) (tN−j − tN−j−1)]

N−2

j=0

 

(4.5) 

As can be seen, the neutron kernel will need to be evaluated at every time given by tN – tN-j; 

whereas, the time and power values need to just be pulled from the proper location within their 

arrays. If the time and power data have a constant time step the delayed neutron kernel values 

can easily be pre-calculated and stored in an array that will be the same size as the time and 

power arrays. Doing this eliminates unnecessarily evaluating the neutron kernel at repeated 

values when calculating the entire reactivity profile. However, if the time step of the data is 

not constant, the number of repeated neutron kernel values is greatly reduced, if any at all. This 

occurs because with non-constant time step data, the delayed neutron kernel values will rarely 

line up exactly with the power data as the neutron kernel is shifted to the next time. 

 The experimental power data collected during a pulse at the ACRR typically has a 20 

μs “short” time step within a 2 s window around the pulse and a 20 ms “long” time step 

elsewhere. It was found that parsing the data to a 1 ms time step still gave sufficient resolution 

to accurately calculate the reactivity during the pulse, and it greatly reduced the computational 

time. When looking at data up to 1000 s seconds after the pulse, the short data was typically 

parsed to 1 ms and the long data would be linearly interpolated to also have a 1 ms time step. 

This allowed us to take advantage of pre-calculating the delayed neutron kernel values to 

reduce computational time. However, beyond a 1000 s or so, it became more beneficial to 

sacrifice the ability to pre-calculate the neutron kernel values and to use a variable time step 

instead. When using a variable time step, the data would typically still be parsed to 1 ms during 



46 
 

the pulse but after the pulse the time step would be linearly increased up to about 0.1 s since 

less resolution was needed as the rate of change of the power decreased. The steps used to 

prepare the experimental data will be further discussed in Chapter 5. 

 Computational time could be saved by approximating the integral by only integrating 

backwards over a finite amount of time rather than always integrating back to the first data 

point. In the case of this thesis, this was not a good option because the contribution of the 

relatively long-lived beryllium photoneutron precursors was to be studied. However, in cases 

were only the typical U-235 precursors are relevant, a good approximation could be made by 

only integrating over the last 600 s or so of data. As the half-life of the longest-lived U-235 

precursor is only 55.6 s, precursors from data prior to 600 s of the current time, will have all 

gone through at least 10 half-lives, and will contribute very few delayed neutrons at the current 

time in most situations. If the inverse kinetic equation was used to calculate the reactivity of a 

reactor in real time, it would be necessary to only integrate back over a limited amount of time, 

because integrating over all the gathered data would not be practical. 

4.2 Code Validation  

 Two different codes were used to generate power profiles to validate the ability of the 

inverse kinetics code to calculate the corresponding reactivity. The reactivity profiles 

corresponding to the computer-generated power profiles were known, which allowed them to 

be compared to the results of the inverse kinetics code. In addition, the computer-generated 

power profiles used the same initial condition, delayed neutron data, and prompt neutron 

lifetime as used in the inverse kinetics code. This eliminated the possibility of differences 

between the true and calculated reactivity profiles due to discrepancies in these values. 
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4.2.1 Point Kinetics Code 

 To test and explore the behavior of the inverse kinetics code, a code was written in 

Fortran 95 to solve the point kinetics equations given by Eq. (2.31) and Eq. (2.32) without a 

source. The code used the Euler Method, as shown in equations (4.6) and (4.7), to solve for the 

power profile corresponding to a specified reactivity profile, ρj. 

 

 Pj+1 = [
ρj − β

𝑙(1 − ρj)
Pj +∑λiCi,j

i=1

] (tj+1 − tj) + Pj (4.6) 

 
Ci,j+1 = 

βi

𝑙(1 − ρj)
Pj − λiCi,j 

(4.7) 

Where j is the index location within the array, i is the precursor group number, and reactivity 

is expressed as a decimal rather than in units of dollars. 

The purpose of this code was not to exactly simulate a pulse from the ACRR, but rather 

to produce a general pulse power profile for which the reactivity was known. The reactivity 

was specified such that it changed according to the following sequence: 

1. $0 for a period of time to give constant power before the pulse. 

 

2. Linearly increased up to a specified value. 

 

3. Decreased at a rate proportional to the change in energy released to simulate 

negative temperature feedback. 

 

4. Decreased linearly to represent all the rods being dropped in to the reactor to 

shut it down. 

 

5. Held constant at a negative value. 
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The negative temperature feedback was specified so that the reactivity dropped at a rate 

proportional to the change in energy such that the reactivity would equal $1 when the pulse 

had released half of its specified energy. The point at which the reactivity reaches $1 on its 

way down after a pulse, always corresponds to the point at which the power reaches its peak 

value [Hetrick, 1971]. By requiring that half of the energy be released by this point, a uniform 

pulse shape could be achieved. A pulse power profile generated using the kinetics code and 

the corresponding true reactivity and the reactivity calculated using the inverse kinetics code 

are shown in Figure 4.2. 

 

The profiles shown in Figure 4.2 are the same ones used in Section 3.2 to study the 

inverse kinetics equation. As pointed out in Section 3.2, the calculated and true reactivity 

values agree very closely up until the point at which the negative reactivity is inserted at a 

 

Figure 4.2: Plot showing the reactivity calculated using the inverse kinetics equation 

compared to the true reactivity. As can be seen, the actual reactivity is closely obtained; 

however, the inverse kinetics reactivity begins to deviate from the true reactivity as the 

negative reactivity is linearly inserted. A time step of 10 μs was used. 
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linear rate. At this point the reactivity profiles begin to diverge. The discrepancy is thought to 

be due to numerical errors from the point kinetics code. As will be seen in the next section, 

this type of discrepancy does not occur when applying the inverse kinetics code to a power 

profile generated using Razorback. This gives reason to believe that the cause of the 

discrepancy is due to the power profile outputted by the point kinetics code not being 

representative of the inputted reactivity. Future work could be done to pinpoint the cause of 

this behavior; however, it is of little concern as the code was successfully validated using 

Razorback. 

4.2.2 Razorback Comparison 

 Razorback is a computer code developed by Darren Talley of Sandia National 

Laboratories to simulate the operation of the ACRR, and it has been shown to agree well with 

actual ACRR operations [Talley, 2017]. To test the functionality of the inverse kinetics code, 

an ACRR pulse was simulated using Razorback and the power profile data from the pulse was 

inputted into the inverse kinetics code. The resulting calculated reactivity was then compared 

to the true reactivity provided by Razorback. Figure 4.3 shows the power profile used, along 

with the calculated and true reactivity. As can be seen, the inverse kinetics reactivity agrees 

very well with the Razorback reactivity, and the error between the two was found to decrease 

when using finer time steps, as is expected. 
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 In this section, it has been shown that the inverse kinetics code can accurately calculate 

the reactivity corresponding to a computer-generated power profile, assuming a small enough 

time step and proper constants and initial condition are used. It is important to remember that 

the power data inputted to the inverse kinetics code must be proportional to the power. This is 

 

 

Figure 4.3: Using a power profile from Razorback, good agreement was found between 

the calculated reactivity and the Razorback reactivity. 
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easy to achieve using computer calculated power profiles; however, capturing experimental 

data that is truly proportional to the power is difficult, especially when the reactor power level 

is low. In Chapter 5, the gathering and processing of experimental power profiles from the 

ACRR will be discussed, and in Chapter 6 the inverse kinetics code will be applied to the 

experimental data. 
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5. Experimental Data Collection and Preparation 

 To experimentally measure the power profiles, a photoconductive detector (PCD) was 

used. The PCD has a fast response time that allows it to capture the shape of the pulse, and it 

is also sensitive enough to produce a measurable signal many hours after a pulse. For 

comparison purposes, a self-powered neutron detector (SPND) was also used to capture the 

shape of the pulse; however, due to its low sensitivity, it could not be used for analysis long 

after the pulse. To record the pulse data from the detectors, a Yokogawa high speed data 

acquisition oscilloscope was used. The PCD signal was passed through a logarithmic amplifier 

before going in to the oscilloscope, which allowed the large range of signal strengths 

experienced between the peak of the pulse to many hours after the pulse, to be captured within 

the resolution of the oscilloscope. In addition, the PCD signal was recorded using two different 

sampling intervals that used a fine time step for a few seconds around the time of the pulse and 

a coarser time step before and after the pulse. By using the two sampling intervals, the details 

of the pulse shape could be captured, and the slower changing behavior following the pulse 

could be recorded for hours without generating prohibitively large amounts of data. Because 

the SPND was just used to capture the pulse, only a fine sampling interval was used for it, and 

it was passed through a linear amplifier. To process the PCD data into a suitable power profile 

for input to the inverse kinetics code required smoothing the data, linearizing it, and merging 

the long and short sampling interval signals. It was found that the PCD signal following the 

pulse became dominated by gammas from activation and fission product decay, which 

distorted its proportionality away from that of the true reactor power. This prevented the correct 

reactivity from being calculated following the pulse, so attempts were made to identify and 
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subtract off the unwanted contribution to the signal. The detectors used to measure the pulse, 

and the process of preparing the data will be discussed in this chapter. 

5.1 Detectors Used 

5.1.1 Photoconductive Detector (PCD) 

 A photoconductive detector consists of a sample of semiconducting material fitted with 

two ohmic contacts at opposite surfaces [Knoll, 2010]. The PCDs used at the ACRR, as shown 

in Figure 5.1, have a diamond semiconductor that is usually about 1 x 1 x 1 mm in size, with 

ohmic contacts made primarily of gold. A 750 V bias is applied across the semiconductor that 

establishes an equilibrium current, and when exposed to ionizing radiation, excess charge 

carriers are created in the diamond, resulting in a current in excess of the equilibrium current. 

This current is then passed through a logarithmic amplifier to convert it in to a logarithmic 

voltage signal, which allows many orders of magnitude of variations in the current to be 

captured within the resolution of the oscilloscope.  
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 The PCD is sensitive to both neutrons and gamma rays. Table 5.1 shows the average 

ionizing radiation dose in carbon per fission in the central cavity of the ACRR. As can be seen, 

both the neutron and gamma dose are reduced when the lead-boron (LB44) bucket is in the 

central cavity; however, the ratio of neutron dose to gamma dose increases compared to free-

field (FF), which is what the bucket is designed to do. For the PCD signal to be proportional 

to the power of the reactor, the ionizing dose seen by the diamond semiconductor must be 

proportional to the neutron ionizing dose, which is proportional to the reactor power. Because 

the PCD is also sensitive to gammas, this would require that the ratio of neutron to gamma 

dose remain constant with time for the signal to be proportional to the power. During the 

constant power period before the pulse and during a pulse, prompt gammas and neutrons 

 

Figure 5.1: Cutaway of a PCD showing the 1 x 1 x 1 mm diamond semiconductor 

between the two gold ohmic contacts. 
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dominate (which have a constant ratio), and the neutron to gamma dose ratio remains pretty 

much constant. However, following the pulse, delayed fission product gammas and activation 

gammas begin to dominate the ionizing dose deposited in the diamond. Because the activation 

and delayed gammas decay at different rates than the neutron population, the ratio between 

neutron dose and gamma ionizing dose does not remain constant, and the PCD signal diverges 

from its proportionality to the power. For this reason, when using an unaltered PCD signal, the 

reactivity cannot accurately be calculated following the pulse. However, if the contribution 

from delayed fission product and activation gammas can be subtracted from the PCD signal, 

the reactivity following the pulse can be calculated. Attempts to do this will be discussed later 

in this chapter. 

 The PCD’s gamma response “deviates from the free-field carbon kerma at low energy 

due to photon attenuation by the PCD packing materials and at high energy due to the lack of 

sufficient equilibration for very energetic photons” [ Griffin et al., 2004]. The PCD’s neutron 

energy-dependent response is not known “due to a lack of good monoenergetic neutron 

reference fields” [ Griffin et al., 2004]. Changes in the PCD response were modeled as being 

due only to the changes in the amounts of neutrons and gammas, rather than also including the 

Table 5.1: Average ionizing dose deposited in carbon (diamond) per fission, in the central 

cavity of the ACRR. [Parma et al., 2015] and [Parma et al., 2013] 

 FF 

rad[c]/fission 

LB44 

rad[c]/fission 

Neutron Ionizing Dose in Carbon 7.41E-14 5.49E-14 

Prompt Gamma Ionizing Dose in Carbon 2.32E-13 2.89E-14 

Delayed Gamma Ionizing Dose in Carbon 1.01E-13 1.20E-14 
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spectral dependence. Changes in the PCD’s response due to other factors, such as temperature 

and rate dependence, were also assumed to be negligible. These effects are believed to be 

dominated by the loss of proportionality during the tail of the pulse. 

Despite difficulties in using the PCD to measure the reactor power following a pulse, 

it does a good job of capturing the power profile during the pulse, and it does provide other 

beneficial qualities. The diamond semiconductor has a short charge carrier lifetime that gives 

the PCD a response time of less than one nanosecond. In addition, by exposing the diamonds 

in the PCDs to 1016-1017 n/cm2 they can be pre-damaged so that the PCD’s response will not 

degrade with multiple reactor exposures [Griffin et al., 2004]. Also, the relatively small size of 

the PCD is beneficial, because it allows it to be collocated with experiments in the central 

cavity of the ACRR, as it will only minimally perturb the radiation field. This allows the time 

dependent dose received by the experiment to be more accurately captured.  

5.1.2 Self-Powered Neutron Detector (SPND) 

 A self-powered neutron detector consists of a wire surrounded by a sheath with an 

insulating material between them. The wire is made of a material with a high neutron capture 

cross section that leads to subsequent beta or gamma decay. The beta or gamma decay of the 

wire material results in the emission of electrons, which leave the wire and ideally are collected 

by the sheath. The resulting current that flows between the wire and the sheath is proportional 

to the neutron flux incident on the wire, and hence is proportional to the reactor power. 

 In the case of the ACRR, the wire is made of cadmium, which has a large cross section 

for thermal neutrons. When cadmium captures a neutron it promptly emits a gamma ray. The 

prompt emission of the gamma gives the detector a fast response; however, by relying on the 

gamma to create a secondary electron, the detector has less sensitivity as opposed to using a 
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wire material that uses direct beta decay to create the signal. Because of the low sensitivity of 

the SPNDs used at the ACRR, they are tens of centimeters long, which makes them too large 

to be placed in the central cavity, so instead they are placed around the outside of the core. 

Even with the large size of the SPNDs, their sensitivity is low and they are only able to capture 

a signal above noise during the time of the pulse. 

 Figure 5.2 shows the normalized signals from a SPND and a PCD obtained during an 

ACRR pulse. The main takeaway from the comparison of the signals is that the SPNDs 

sensitivity is too low to resolve the power of the reactor following the pulse. This is evident by 

the plateauing of the signal about 0.5 s after the pulse; whereas, the PCD signal continues to 

decrease. Despite the PCD signal not being proportional to the power following the pulse, it 

still provides a time dependent response that can be used to try to extract the true power profile. 

For this reason, the PCD was chosen to be used to attempt to experimentally calculate the late 

time reactivity behavior of the ACRR. 

 

 

Figure 5.2: Comparison of a PCD and SPND signal from an ACRR pulse. The SPND 

signal quickly goes flat following the pulse because of its low sensitivity. 
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5.2 Experimental Data Preparation 

 Before the raw detector data from the Yokogawa oscilloscopes could be inputted to the 

inverse kinetics code, some preparation was required, which was performed in MATLAB. To 

reduce the noise of the signals, the PCD and SPND data was smoothed using Savitzky-Golay 

filtering. After smoothing, no further preparation was needed for the SPND because it was 

linearly amplified and only used around the time of the pulse. However, as the PCD data was 

logarithmically amplified and gathered using a “short” and a “long” sampling interval, it 

required linearizing and merging of the two sampling intervals. In addition, attempts were 

made to subtract activation and fission product gammas from the PCD signal. To explain the 

process used to prepare the data, experimental PCD data from a 56 MJ free-field pulse will be 

used as an example. 

5.2.1 Smoothing 

 The ACRR is an electrically noisy environment as can be seen by the unsmoothed PCD 

signals in Figure 5.3. To smooth the raw data, Savitzky-Golay filtering was used by using the 

MATLAB built in function sgolayfilt. This type of filtering works by performing a least-

squares fit of a polynomial to a window of a specified number of points. The fitted polynomial 

is then used to calculate the smoothed data point at the center of the window, and the process 

is repeated for all data points. To smooth the PCD and SPND data, different window sizes and 

polynomial orders were used depending on what region of the pulse was being smoothed. In 

general, first-order polynomials with larger time windows were used for smoothing before and 

after the pulse, and third-order polynomials with smaller time windows were used for 

smoothing during the pulse. 
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Figure 5.3: Plots showing the raw log-amp PCD signals, before and after smoothing. The 

signals are inverted as a byproduct of the log-amp. 
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 The long and the short signals were gathered from the same PCD; however, the signal 

was split and recorded on separate oscilloscopes with different sampling intervals. In this 

example, a sampling time of 0.02 s was used for the long data and 10 μs was used for the short 

data. The short signals are typically only gathered for 2 s around the time of the pulse so that 

the rapid changes in power during this time can be resolved.   

5.2.2 Linearizing 

 As can be seen in Figure 5.3, by passing the PCD signal through the logarithmic 

amplifier, the variation in power from 0 W to about 1.5x109 W in this case, was able to be 

captured within a range of a couple volts on the oscilloscope. As a byproduct of the log-amp, 

the signals are also inverted. To linearize and properly invert the signal, predetermined 

conversion data is used. The conversion data provides the linear current corresponding to 

discrete logarithmic voltage values. By interpolating the conversion data, the linear 

equivalence of each of the logarithmic data points can be found, and the linear signals as shown 

in Figure 5.4 are obtained. The linear signals are shown with a linear y-axis scale so that the 

size of the pulse relative to the power before and after the pulse can be visualized. After 

linearizing the data, the long signal was shifted so that the portion of the signal before the 

reactor was turned on would correspond to zero power. The short signal was also shifted by 

the same amount. Properly zeroing the signal is not necessary for calculating the reactivity as 

the inverse kinetics equation is only concerned with the relative changes in power; however, it 

is important when attempting to subtract off the activation and fission product gammas. 
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5.2.3 Merging 

 The final step of preparing the PCD power profile is to merge the short and the long 

signals. This was done by overlaying the two signals and replacing the long data with the short 

data within a specified window. Before overlaying the signals, they were both normalized to 

their value 0.3s before the peak of the pulse. This point was chosen because both signals were 

flat at that time, and points during or immediately after the pulse could not reliably be used 

because they were often not accurately captured due to large time step of the long signal and 

the rapidly changing power. Figure 5.5 shows the overlaid normalized profiles. 

 

 

Figure 5.4: The short and long linear PCD signals, shown with linear and logarithmic y-

axis scales. 
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 After merging the short and the long data, the PCD profile was clipped 1 s before the 

peak of the pulse. This was done because the reactor was at constant power at that point, and 

the constant power initial condition assumed in the inverse kinetics code was applicable. Figure 

5.6 shows the processed PCD signal, normalized to the peak value, before attempting to 

subtract the delayed fission and activation gammas from it. The flat region before the pulse 

shows the reactor at constant power (about 1500 W), the transient rods are then quickly ejected 

from the core making the reactor prompt supercritical, causing the power to quickly rise to 

about 1.5 billion watts in this case, and then negative reactivity feedback turns the pulse around 

causing the power to decrease. The safety, control, and transient rods are then dropped into the 

 

Figure 5.5: Plot showing the overlap of the short and the long PCD signals. The smaller 

sampling interval of the short signal provides greater resolution of the pulse. 
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core further decreasing the power and creating the knee in the power profile, and finally the 

power decreases away according to the delayed neutrons. 

 

5.3 Activation and Fission Product Gamma Ray Subtraction 

When applying the inverse kinetics code to the power profile from Figure 5.6, the 

reactivity profile shown in Figure 5.7 is obtained. It was known from MCNP and Razorback 

calculations that the reactivity following the pulse should drop to and remain at about -$10 for 

free-field pulses. However, as can be seen, the reactivity only drops to about -$2 and then 

approaches $0. After seeing similar behavior with PCD profiles from multiple different pulses, 

and after ruling out that the behavior could be caused by not accounting for a source term, the 

 

Figure 5.6: Processed PCD profile from a 56 MJ FF pulse, ready for input into the inverse 

kinetics code. 
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behavior was attributed to activation and fission product gammas dominating the signal 

following the pulse.  

 

As mentioned earlier, the PCD signal will be proportional to the power of the reactor 

when the ratio of neutron to gamma ionizing dose in the diamond is constant. This condition 

is met when the reactor’s power is sufficiently high, such that activation and delayed fission 

product gammas do not dominate. During the constant power region before the pulse, prompt 

neutrons and gammas dominate the PCD signal, and their ratio is constant, and as a result the 

correct reactivity of $0 is calculated. During the pulse, prompt neutrons and gammas still 

dominate, and even though their concentration is changing their ratio still remains constant, 

and as a result, the calculated peak reactivity agrees with the reactor diagnostics, both of which 

are about $1.5 for this example. However, after the pulse as the power drops, the prompt 

 

Figure 5.7: Reactivity profile corresponding to the PCD power profile in Figure 5.6, 

calculated using the inverse kinetics code. The reactivity is correct before and during the 

pulse, but following the pulse it does not drop to and remain at the expected value of 

about -$10. 
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neutron and gamma dose will be overcome by the dose from delayed neutrons, delayed fission 

product gammas, and activation gammas. Because these three sources of ionizing radiation 

decay at different rates, the signal does not remain proportional to the delayed neutron dose, 

which is proportional to the power. In addition, it was uncertain what fraction of the signal 

following the pulse was due to delayed neutrons, but it was obvious that they did not dominate 

due to the incorrect behavior seen in the calculated reactivity profile. 

Two different techniques were used to try to better understand the activation and 

delayed fission product gamma contribution to the PCD signal. These techniques were then 

used to try to subtract off the unwanted contribution to improve the signal’s proportionality to 

the true reactor power profile, and hence improving the accuracy of the calculated reactivity 

profile. One of the methods used a U-235 fission product decay curve and an aluminum 

activation decay curve, which were iteratively convoluted with the PCD profile in an attempt 

to identify the contribution to the signal due to those sources. The contribution curve that was 

obtained was then subtracted from the PCD signal, and the resulting power profile and 

calculated reactivity profile were compared to Razorback. The other technique, used the 

difference between the PCD signal and a Razorback power profile to identify the half-lives 

and relative abundances of potential contributors to the deviation of the PCD profile from the 

Razorback profile. These identified sources were then compared with those identified from 

other pulses to see if there was consistency. Using the identified half-lives and abundances, 

decay curves were created, which were iteratively convoluted with PCD signals and subtracted, 

and the resulting power profile and calculated reactivity profile were compared to Razorback. 
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5.3.1 U-235 Fission Product and Activated Aluminum Subtraction 

 This technique assumed that the gammas from U-235 fission products and activated 

aluminum and its impurities, were the primary cause of the PCD’s deviation from the true 

power following the pulse. As mentioned in Chapter 2, the majority of the fissions that occur 

in the ACRR, are thermal fissions of U-235. For this reason, U-235 thermal fission product 

decay data, generated by Lane and Parma [2015] using CINDER2008, was used to give the 

shape of the ACRR fission gamma ray decay curve. CINDER2008 is a “transmutation code 

developed at Los Alamos National Laboratory, to model time and energy dependent photon 

characteristics due to fission” [Lane & Parma, 2015]. To attempt to account for the 

contributions from activation gammas, it was assumed that 6061-T6 aluminum was a major 

contributor, because the PCD body and fixture, along with some reactor structural materials, 

were all made of this type of aluminum. In addition, many other sources of activation gammas, 

such as those from steel, exist in the core following a pulse; however for simplicity, only 

aluminum was accounted for. Unlike the fission product gammas, a gamma decay curve was 

not available for 6061-T6 aluminum. For this reason, one was approximated. This was done 

by summing the decay curves of each of the isotopes that would activate within 6061-T6 

aluminum, and weighting each one by the isotopic abundance, thermal neutron cross section, 

and gamma decay fraction. Table 5.2, shows the data used to create the activated 6061-T6 

aluminum decay curve, and Figure 5.8, shows the normalized fission product and activated 

aluminum decay curves.
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Table 5.2: The data used to generate the 6061-T6 Al activation decay curve. The element weight percents were obtained from the 

ACRR MCNP model [Parma et al., 2015]. The decay and cross-section data was obtained from the National Nuclear Data Center 

(NNDC) [2017].  

6061-T6 Al  

Isotopes of  

Interest 

Al-27 Si-30 
Mg-

26 
Cu-63 Cu-65 

Mn-

55 
Fe-58 Ti-50 Cr-50 Cr-54 Zn-64 Zn-68 Zn-70 Ni-58 Ni-64 

Element  

Weight % 
96.7 0.8 1.1 0.3 0.3 0.13 0.56 0.07 0.2 0.2 0.1 0.1 0.1 0.04 0.04 

Isotope Atom 

Fractions 

9.83E

-01 

2.62E

-04 

1.11E

-03 

4.97E

-03 

2.22E

-03 

2.69E

-03 

3.32E

-03 

6.54E

-05 

1.70E

-04 

9.26E

-05 

1.19E

-03 

4.69E

-04 

1.55E

-05 

6.02E

-04 

8.19E

-06 

Thermal Cross 

Sections [barns] 

2.34E

-01 

1.07E

-01 

3.83E

-02 

4.47E

+00 

2.15E

+00 

1.33E

+01 

1.30E

+00 

1.77E

-01 

1.55E

+01 

3.60E

-01 

7.60E

-01 

7.20E

-02 

8.10E

-03 

4.60E

+00 

1.60E

+00 

Gamma Decay 

 Fraction of  

Activated 

Isotope* 

1.00E

+00 

5.54E

-04 

1.00E

+00 

3.57E

-01 

9.50E

-02 

1.41E

+00 

1.00E

+00 

1.00E

+00 

9.91E

-02 

0.00E

+00 

5.57E

-01 

0.00E

+00 

3.88E

-01 

0.00E

+00 

4.38E

-01 

Final Weighted  

Values 

7.82E

-01 

5.29E

-08 

1.45E

-04 

2.70E

-02 

1.54E

-03 

1.72E

-01 

1.47E

-02 

3.94E

-05 

8.91E

-04 

0.00E

+00 

1.72E

-03 

0.00E

+00 

1.67E

-07 

0.00E

+00 

1.96E

-05 

Half Life of 

Activation  

Product [s] 

1.35E

+02 

9.44E

+03 

5.67E

+02 

4.57E

+04 

3.07E

+02 

9.28E

+03 

3.84E

+06 

3.46E

+02 

2.39E

+06 

2.10E

+02 

2.11E

+07 

3.38E

+03 

1.47E

+02 

2.40E

+12 

9.06E

+03 

Decay  

Constant [1/s] 

5.15E

-03 

7.34E

-05 

1.22E

-03 

1.52E

-05 

2.26E

-03 

7.47E

-05 

1.80E

-07 

2.01E

-03 

2.90E

-07 

3.30E

-03 

3.29E

-08 

2.05E

-04 

4.72E

-03 

2.89E

-13 

7.65E

-05 

* Only the dominant gamma rays were considered. 
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 By appropriately scaling the decay curves in Figure 5.8, and iteratively convoluting 

them with the PCD signal, the contribution to the signal from fission products and activated 

aluminum, can theoretically be determined. However, the relative amount that each of these 

sources contribute to the PCD signal is not known as it depends on many factors, such as their 

abundances, location relative to the PCD, gamma-ray energies, and more. For this reason, the 

fractional contributions were parametrically varied from 100% fission product with 0% 

aluminum activation, to 0% fission product with 100% aluminum activation. The resulting 

PCD profile, with the convoluted contribution subtracted off, was then compared to a 

corresponding Razorback power profile, which allowed the fractions that gave the best 

agreement to the Razorback profile to be identified. It is important to note that because the 

PCD profile is not proportional to the power at all times, the decay curves could not be directly 

 

Figure 5.8: Delayed fission product and 6061-T6 aluminum activation, gamma decay 

curves. The aluminum decay is slower because of the longer-lived impurities, such as Mn-

56. The relative contribution from these two sources to the PCD signal, is not known. 
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convoluted with it as their production is proportional to the power. To account for this, the 

decay curves were iteratively convolved, first with the original PCD profile, and then with the 

subsequent updated PCD profiles, until convergence of the convolution profile was observed. 

The resulting convolution profile represents the contribution to PCD signal from the specified 

fission product and activated aluminum combination.   

 Before subtracting the convolution profile from the PCD, it had to be appropriately 

scaled. To do this, the percent difference between the PCD and Razorback profile at the end of 

the data was used. This difference between the two profiles was representative of the unwanted 

contribution to the PCD signal. By normalizing and overlaying the PCD and Razorback 

profiles, as shown in Figure 5.9, the difference between the two signals at 1800 s was found to 

be 99.78% of the PCD signal. It was assumed that all of this was due to fission product and 

activation gammas, so the convolution profile was scaled such that its value at 1800 s was 

equal to 99.78% of the PCD’s value. This convolution profile was scaled such that when it is 

subtracted from the original PCD profile, the “corrected” PCD profile will have the same value 

as Razorback at 1800 s. 
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Figure 5.10, shows the results of assuming three different ratios of the fission product 

and activated aluminum decay curves. “Total DG” is the percentage of the PCD signal at 1800 

seconds that was assumed to be due to delayed gammas (fission product + activation), and in 

this case, it was determined by the percent difference between the PCD and Razorback profiles. 

“Fit” is the L2 norm of the difference between the “corrected” PCD and the Razorback profile, 

and it was used to quantify the agreement between the profiles, where a smaller number 

indicates better agreement.  As can be seen, the scenario that gave the best agreement to 

Razorback, was when it was assumed that 100% of the delayed gammas, at 1800 s, were due 

to fission products. The other scenarios, in which aluminum activation gammas were assumed 

to contribute some percentage of the delayed gammas, gave poorer agreement. This suggests 

that the gammas from fission products are more prevalent than those from activated aluminum 

over this time range. 

 

Figure 5.9: Experimentally measured PCD power profile compared to a corresponding 

computer-generated Razorback power profile. As expected the signals closely match 

during the pulse but the PCD diverges following the pulse.  
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Figure 5.10: Three different combinations of the fission product and activated aluminum 

decay curves. Assuming the delayed gammas were due 100% to the fission products gave 

the best “corrected” PCD profile. 
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 Using the best “corrected” PCD profile, the “corrected” reactivity profile in Figure 5.11 

was obtained. Following the pulse, the “corrected” reactivity gives an improvement over the 

original reactivity. However, even though the corrected profile agrees better, it is still far from 

the expected reactivity, given by Razorback. This is thought to be due to the presence of other 

dominant gamma ray sources that were not accounted for in the decay curves from Figure 5.8. 

To try to better identify and account for these sources, a different approach was taken, as will 

be discussed in the next section. 

 

5.3.2 Razorback and PCD Difference 

 In the previous section, the process of accounting for the unwanted contribution to the 

PCD signal using the U-235 fission product and activated 6061-T6 aluminum gamma decay 

 

Figure 5.11: By subtracting off fission product gammas the calculated reactivity agreed 

better with Razorback; however, other sources still need to be accounted for. 
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curves, was described. The plots in Figure 5.10 show how only limited agreement with 

Razorback can be achieved by only accounting for these two sources. The process described 

in this section utilizes the difference between the PCD signal and the Razorback power profile. 

By definition, the difference between the profiles following the pulse, is the unwanted 

contribution to the PCD signal. This difference could be directly subtracted from the PCD 

signal to exactly give the expected power profile, and hence the expected reactivity profile; 

however, doing this does not tell us anything about the unwanted contribution, and it assumes 

Razorback exactly represents the behavior of the reactor during the experiment. To better 

understand the unwanted contribution to the PCD signal, attempts were made to identify the 

relative abundances and half-lives of the sources that make up the difference profile. These 

sources were expected to be either individual fission products and activated isotopes, or groups 

of fission products and activated isotopes with similar half-lives. Using the determined half-

lives and abundances, a decay curve was constructed which could be iteratively convoluted 

with the PCD signal and subtracted, as done in the previous section. By subtracting the 

convoluted profile, it was hoped that only the unwanted contribution could be subtracted, 

leaving behind the portion that is proportional to the reactor power. In the next chapter, the 

half-lives and relative abundance from different pulses will be compared. 

The difference profiles used, were clipped so that they would begin at the tail of the 

pulse, which was when the PCD and Razorback profiles began to noticeably diverge, and at 

this point the production of activation and fission products were very low. Figure 5.12, shows 

the difference profile corresponding to the PCD and Razorback profiles that have been used 

throughout this chapter. As can be seen, the difference profile is responsible for the majority 

of the PCD’s signal (99.78% at 1800 s).  
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 To identify the sources, the difference profile is plotted with a logarithmic y-axis, which 

allows the exponential decay of the longest-lived source to be identified as the linear portion 

at the end of the profile. This works because by taking the natural log of the radioactive decay 

equation, it can be expressed in the form of a linear polynomial as shown in Eq. (5.1).  

 𝑁(𝑡) =  𝑁0𝑒
−𝜆𝑡  

𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑙𝑜𝑔
→         ln(𝑁(𝑡)) = −𝜆𝑡 + ln (𝑁0) (5.1) 

Where, λ is the decay constant, and N(t) is the relative amount of the source at time t (given 

by the difference profile), and N0 is the initial amount. By finding the slope of the linear region 

of the difference profile, λ can be obtained, from which the half-life can be calculated using 

Eq. (5.2). 

 

Figure 5.12: Plot showing the difference between the PCD and Razorback profiles during 

the tail of the 56 MJ FF pulse.  
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𝑡1
2
= 
ln (2)

𝜆
 (5.2) 

To find the slope, two points within the linear region are visually chosen. A line is then fitted 

to these points, which gives the contribution from the source over the length of the difference 

profile. This contribution is then subtracted, revealing the linear region corresponding to the 

next longest-lived source, and the process is repeated until all distinct sources are subtracted. 

The y-intercepts of the sources are used to determine their relative abundances. Using this 

process, seven sources were identified using the difference profile in Figure 5.12. Figure 5.13 

shows each of the seven linear regions that were identified, and Table 5.3 shows the 

corresponding relative abundances and half-lives. 

Table 5.3: The seven identified sources from the 1800 s long difference profile from the 

56 MJ free-field pulse. 

 Decay Constant [s-1] Half-life [s] Relative Abundance 

Source A 6.43E-4 1078 0.005 

Source B 3.99E-3 173.7 0.0138 

Source C 1.64E-2 42.2 0.0617 

Source D 5.01E-2 13.8 0.0943 

Source E 1.67E-1 4.16 0.2956 

Source F 7.18E-1 0.966 0.3528 

Source G 1.59E+0 0.435 0.1768 
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Figure 5.13: The seven linear regions that were identified using the difference profile 

from Figure 5.12. For each plot, the source contributions from all longer-lived sources 

were subtracted from the difference profile.  
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 Using the half-life and relative abundance information obtained from the difference 

profile, the “7 Identified Sources” decay curve, shown in Figure 5.14, was created. This decay 

curve was then convoluted with the PCD profile, assuming that it was responsible for 99.78% 

of the PCD’s signal at 1800 s. The convoluted profile was then subtracted from the PCD signal, 

to obtain a “corrected” PCD profile, as shown in Figure 5.15. 

 

 

 

Figure 5.14: The decay curve created from the seven identified sources, compared with 

the activated aluminum and fission product decay curves.  
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Using the decay curve created from the difference profile, it can be seen in Figure 5.15 

that the “correct” PCD profile agrees better with Razorback than was achieved with the fission 

product and aluminum activation decay curves. However, the “corrected” profile begins to get 

very noisy around 90 s. This occurs because according to the convoluted gamma profile, the 

contribution due to the seven identified sources, is responsible for such a large fraction of the 

PCD signal that when it is subtracted only the noise of the PCD signal remains. This indicates 

that the portion of the PCD signal proportional to the reactor power after 90 s, is so small that 

it is difficult to resolve. This issue will be further explored in the next chapter to see if this 

same behavior is observed with data from other pulses. It is also important to note that errors 

 

Figure 5.15: The results of convoluting the decay curve, created with the seven identified 

sources, with the original PCD signal. The corrected profile gives better agreement with 

Razorback than was achieved with the fission product and activated aluminum decay 

curves. 
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in calculating the half-lives and relative abundances of the decay curve, could be responsible 

for some of the discrepancies between the corrected profile and Razorback. 

To reduce the noise of the “corrected” profile beyond 90 s, it can be assumed that the 

unwanted contribution to the PCD signal is smaller than 99.78% at 1800 s. However, by doing 

this the agreement with Razorback is reduced. For example, Figure 5.16 shows the results of 

assuming that delayed gammas are responsible for 97.5% of the PCD signal at 1800 s. As can 

be seen, the “corrected” profile isn’t nearly as noisy as in Figure 5.15; however, the agreement 

with Razorback is poorer. Figures 5.17 and 5.18 show the reactivity profiles corresponding to 

the “corrected” PCD profiles from Figures 5.15 and 5.16, respectively. 

 

 

Figure 5.16: Assuming that the delayed gammas are only responsible for 97.5% of the 

signal at 1800 s rather than 99.78%. This reduces the noise in the “corrected” profile, but 

also gives it poorer agreement with Razorback. 
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Figure 5.17: The reactivity profile shown here is the best that could be achieved using the 

methods described in this chapter. It most closely gives the expected shutdown reactivity. 

 

Figure 5.18: By assuming the delayed gammas contribute less than 99.78%, the reactivity 

doesn’t drop quite as low as expected, but the noise is lower and it is still better than what 

was achieved with the fission product and activated aluminum decay curves. 
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As can be seen, the corrected reactivity in Figures 5.17 and 5.18, is much closer to what 

we would expect, than what was found in Figure 5.11. Specifically, in Figure 5.17, the 

corrected profile approaches the correct shutdown reactivity and doesn’t begin returning to $0; 

however, the reactivity beyond 90 s becomes undistinguishable. It is worth mentioning that the 

increase in Razorback reactivity following the pulse from about -$9 to -$8 is due to the reactor 

core cooling; whereas, the reason the original PCD reactivity returns to $0 is due to the signal 

not dropping as fast as it should, which is interpreted by the inverse kinetics code as the reactor 

being just short of critical. 

In this chapter, the process of gathering and preparing experimental power profile data 

was explained. Unfortunately, the PCD’s sensitivity to gamma rays makes it difficult to extract 

the true reactor power from its signal. Because the true reactor power is what is needed for 

input into the inverse kinetics code, this also makes it difficult to accurately calculate the true 

reactivity. The PCD signal was found to be proportional to the true power before and during a 

pulse, but after the pulse this proportionality disappears due to the large number of activation 

and fission product gammas. Razorback was found to be a valuable tool for estimating the 

percentage of the signal that was believed to be due to delayed gammas, and it provided a way 

to help identify potential sources that could be responsible for the unwanted contribution to the 

PCD. The analysis done in this chapter utilized data from a 56 MJ free-field pulse. In the next 

chapter, data from pulses of different sizes and with the addition of the lead-boron bucket will 

be studied. 
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6. Results 

 In the previous chapter, by comparing the PCD signal to a Razorback simulation of the 

pulse, sources were identified that described the difference between the profiles. By iteratively 

convoluting these sources with the PCD signal, their contribution could be determined and 

subtracted, ideally leaving behind the portion of the PCD signal that is proportional to the 

reactor power. This process seemed to be the most promising way, within the scope of this 

project, to extract the true power profile of the reactor. Future work could seek improved ways 

of experimentally measuring the power profile of the reactor. 

The results of applying this method to PCD signals from four different pulses are 

described in this chapter. Two of the pulses were done with the free-field environment, and 

two were done with the lead-boron bucket in the central cavity. It was uncertain what effect 

the LB44 bucket would have on the proportionality of the PCD signal to the true power. 

Because of the lead, it was thought the delayed gamma fraction would be lower, but due to the 

boron, the thermal neutron contribution would also be lower. No improvement was seen with 

the signal from the LB44 bucket compared to FF; however, the half-lives of its identified 

sources were distinctly different than those of the FF sources. Using the inverse kinetics code, 

the corrected PCD profiles were used to calculate the reactivity, and the results were compared 

to Razorback. 

6.1 Source Identification and Subtraction 

 Razorback simulations were run for each of the four pulses, and the differences 

between the simulated profiles and the experimental PCD profiles were used to identify the 

unwanted sources in the same way as described in Section 5.3.2. For each pulse, 30 minutes’ 

worth of data was considered, and the delayed gamma fraction at the end of the data was used 
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to scale the convolved gamma profile. Depending on the pulse, different numbers of sources 

were identified. This could be due to variations in how well the PCD signals were smoothed 

and how well the pulse was replicated using Razorback. Despite this, some similarities in half-

lives were noticed, and they appeared to be dependent on whether the pulse was FF or with the 

LB44 bucket. The identified sources for each pulse will be discussed in Section 6.1.5. 

6.1.1 56 MJ Free-Field Pulse 

The 56 MJ FF pulse, was used for the examples throughout Chapter 5. The data from 

this pulse smoothed particularly well, and seven sources were identified. Figure 6.1 shows a 

comparison of the power profiles and the reactivity profiles. As can be seen, the corrected 

profile could not be resolved well beyond 90 s, because the convoluted gamma profile 

represented such a large percentage of the PCD signal that when it was subtracted only noise 

was left. Both the original and corrected reactivity profiles agree well with what the reactivity 

is expected to be during and before the pulse; however, the corrected reactivity does much 

better at predicting the shutdown reactivity, even though it takes longer to get there and is 

noisy.  
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Figure 6.1: The results of correcting the 56 MJ FF PCD signal using the seven identified 

sources, and the reactivity calculated using the inverse kinetics code.  



85 
 

6.1.2 140 MJ Free-Field Pulse 

For this free-field pulse only five sources were identified. In this case, the convoluted 

gamma profile was found to slightly overlap the original PCD signal, which cause the corrected 

signal to be negative at late times. For this reason, the corrected profile was only useful for 

about the first 40 s. This effect could have probably been reduced if a smaller delayed gamma 

percentage was assumed; however, this would have most likely resulted in poorer agreement 

with Razorback during earlier times. It can be seen that obtaining the corrected power profiles 

is very sensitive to noise in the PCD signal, and to how well the identified sources describe the 

unwanted sources. Figure 6.2 shows a comparison of the power profiles and the reactivity 

profiles for this pulse. The expected shutdown reactivity immediately following the pulse, for 

the 140 MJ pulse, is about -$10 as opposed to about -$9 for the 56 MJ pulse. This is due to the 

reactor being hotter in the 140 MJ pulse than in the 56 MJ pulse; however, in both cases, as 

the reactor cools they both approach about -$8.  
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Figure 6.2: The results of correcting the 140 MJ FF PCD signal using the five identified 

sources, and the reactivity calculated using the inverse kinetics code.   
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6.1.3 127 MJ Lead-Boron Pulse 

 The expected reactivity profiles for pulses with the LB44 bucket differ slightly from 

the FF pulses. This is because the LB44 bucket has a reactivity worth of about -$6 [Parma et 

al., 2013]. This results in the shutdown reactivity being about $6 lower than the same sized FF 

pulse. Figure 6.3 shows the results for a 127 MJ LB44 pulse, for which six sources were 

identified. It was unclear how the LB44 bucket would affect the PCD response, since it reduces 

the gamma and thermal neutron dose in the central cavity. It was found that the delayed gamma 

fraction at 1800 s was about 0.1% greater for the LB44 pulses than the FF pulses. This suggests 

that PCD’s signal following the pulse is no more proportional to the true reactor power than a 

FF pulse, if anything, it is slightly worse. The convoluted gamma profile for this pulse slightly 

overlapped the PCD signal and was within its noise during late times, resulting in about 70 s 

worth of useful corrected data. As expected, the correct reactivity was calculated before and 

during the pulse; however, it did not go as negative as expected following the pulse, but on 

average, it was clearly more negative than the FF pulses. 
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Figure 6.3: The results of correcting the 127 MJ LB44 PCD signal using the six identified 

sources, and the reactivity calculated using the inverse kinetics code.   
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6.1.4 270 MJ Lead-Boron Pulse 

For the 270 MJ LB44 pulse, seven sources were identified. As can be seen in Figure 

6.4, the “corrected” power profile stays consistently above the Razorback power profile and 

has less noise at late times than has been seen with the previous three pulses. This is because 

the convoluted gamma profile in this case isn’t as close to the original PCD profile as in the 

previous cases. This could be because the delayed gamma fraction at 1800 s is greater than the 

calculated value of 99.8631%, or it could be due to errors in the half-lives and relative 

abundances of the identified sources. Because of the overestimation of the power during the 

tail of the pulse, the corrected reactivity doesn’t drop nearly as negative as expected and it 

begins to approach $0 at late times.  
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Figure 6.4: The results of correcting the 270 MJ LB44 PCD signal using the seven 

identified sources, and the reactivity calculated using the inverse kinetics code.    
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6.1.5 Comparison of Identified Half-Lives 

 The half-lives and relative abundances of the identified sources are listed in Table 6.1. 

Similarities in the half-lives are observed between the two FF pulses and between the two 

LB44 pulses; however, not much similarity is seen between the FF and LB44 half-lives. This 

implies that following the pulse, the gamma sources that dominate in the FF environment are 

different than those dominate in the LB44 environment. In the LB44 environment, we would 

expect that fission product gammas play a smaller role than in the FF environment, since the 

lead shields the PCD from some of the gammas coming from the fuel. Future work could 

involve trying to identify the isotopes responsible for the different sources.  

 The similarities observed in the half-lives for FF and the LB44 bucket, suggest that it 

might be possible to determine a general decay curve for each environment. If these decay 

curves were known they could be used to correct the PCD signals, assuming the delayed 

gamma fraction is known at a time. However, more data would need to be analyzed to see if 

the same half-lives are consistently observed. Being able to obtain a profile proportional to the 

reactor power would not only allow the reactivity profile to be calculated, but it would also 

allow the time dependent neutron dose seen by an experiment to be determined. 

 As seen in this chapter, the portion of the PCD signal proportional to the reactor power 

during the tail of the pulse is small. For this reason, it was difficult to resolve the true power 

profile beyond about 100 s. In addition, correcting the power profiles using the method 

described, was found to be sensitive to how well the data was smoothed and how well the 

unwanted sources were identified. Despite this, by attempting to subtract the gamma sources 

that weren’t proportional to the reactor power, the accuracy of the calculated reactivity profiles 

was greatly improved.
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Table 6.1: The identified sources responsible for the excess contribution to the PCD signal during the tail of the pulse. The same 

number of sources were not identified for each pulse, which needs to be considered when comparing relative abundances. 

FF 56 MJ 

Half-Life [s] 1078 173.7 42.2 13.8 4.16 0.967 0.513 

Relative Abundance 0.005 0.0138 0.0618 0.0944 0.2957 0.3521 0.1772 

FF 140 MJ 

Half-Life [s] 905.3 150.0 43.4 13.9 2.37 NA NA 

Relative Abundance 0.0098 0.0314 0.0854 0.1343 0.7391 NA NA 

LB44 127 MJ 

Half-Life [s] 2014 222.8 51.8 NA 7.87 1.97 0.517 

Relative Abundance 0.0054 0.0125 0.0724 NA 0.1978 0.5863 0.1256 

LB44 270 MJ 

Half-Life [s] 1776 218.6 57.1 20.8 6.75 2.17 0.391 

Relative Abundance 0.0074 0.0197 0.0778 0.0784 0.1725 0.5104 0.1338 
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7. Conclusion 

 The purpose of this project was to use the inverse kinetics method and experimentally 

gathered data to calculate the reactivity profile of the ACRR during and following pulses. To 

measure the reactor’s power profile, a diamond photoconductive detector was used, which was 

the best diagnostic currently available at the ACRR for this application. The PCD provided a 

fast response that could capture the details of the pulse, and when used with a logarithmic 

amplifier, its signal could capture the large changes in signal strength experienced between the 

peak of the pulse and the tail of the pulse.  However, as has been shown, the PCD begins to 

lose its proportionality to the true reactor power, very soon after the knee of the pulse. This 

behavior was attributed to the detection of delayed fission product and activation gamma rays, 

which dominated the relatively small contribution from delayed neutrons.  

 To obtain a profile that better represented the true power of the reactor, attempts were 

made to subtract the delayed gammas from the PCD signal. Within the scope of this project, 

the most promising way of doing this utilized Razorback simulations of the pulses. By 

comparing to the Razorback power profiles, the sources responsible for the unwanted 

contribution to the PCD profile could be identified. These sources were then iteratively 

convoluted with the PCD signal and subtracted, ideally leaving behind the portion of the signal 

proportional to the reactor power. The corrected PCD profiles showed better agreement with 

Razorback; however, the profiles became very noisy beyond about 100 s. This suggested that 

the delayed neutron contribution would be hard to resolve beyond this point, but with more 

exact smoothing and source identification it might be possible to resolve it beyond 100 s. The 

sources identified from this method were found to have similarities depending on whether they 

came from a FF or LB44 pulse, regardless of the pulse size. This suggest that it might be 
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possible to create a general decay curve for FF and LB44 pulses that could be used to correct 

the profiles without needing to identify the sources each time, but this requires further 

investigation. Of the sources identified, none of them could definitively be attributed to a 

specific fission product or activation isotope, but with further investigation it might be possible 

to identify the isotopes.  

 To perform the reactivity calculations, a computer code was written that numerically 

solved the inverse kinetics equation. A constant power analytical initial condition was derived 

and implemented in the inverse kinetics code. The code utilized both the standard eight-group 

U-235 precursors and the nine beryllium photoneutron precursors; however, over the time 

range that could be resolved with the “corrected” PCD profile, the U-235 precursors dominate. 

The functionality of the code was validated using Razorback. In addition, a point kinetics code 

was written to assist in exploring the behavior of the inverse kinetics code. Many other codes 

were also written to prepare the experimental data, and to identify and subtract the unwanted 

sources. 

  Even though the correct reactivity was not able to be exactly calculated following the 

pulse, it was accurately calculated during the constant power region before the pulse and during 

the pulse. This project made it very apparent that the PCD does not accurately capture the 

power profile, and hence the neutron population, following the pulse.   

7.1 Future Work 

The primary focus of future work related to this project, would be to explore alternative 

detector options that could better capture the neutron population behavior during the tail of the 

pulse. One idea is to operate a fission chamber in a pulse counting mode during the tail of the 
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pulse, and discriminate the gamma contribution. A BF3 or other similar neutron detectors could 

also be investigated for this application. Rod drop experiments using detectors in a pulse 

counting mode could be performed to measure the cold shutdown reactivity of the reactor. 

Modeling could also be done using MCNP to better characterize the radiation response of the 

PCD, so that better attempts can be made to subtract the gamma contribution. If the late time 

power of the ACRR is able to accurately be captured, the applicability of the nine beryllium 

photoneutron groups could be studied.  
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Appendix A – Inverse Kinetics Code Flow Chart for Fortran 95 
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