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Abstract

Statistical flowgraphs represent multistate semi-Markov processes using integral trans-

forms of transition time distributions between adjacent states; these are combined

algebraically and inverted to derive parametric estimates for first passage time dis-

tributions between nonadjacent states. This dissertation extends previous work in

the field by developing estimation methods for flowgraphs using empirical transforms

based on sample data, with no assumption of specific parametric probability models

for transition times. We prove strong convergence of empirical flowgraph results to

the exact parametric results; develop alternatives for numerical inversion of empir-

ical transforms and compare them in terms of computational complexity, accuracy,

and ability to determine error bounds; discuss (with examples) the difficulties of de-

termining confidence bands for distribution estimates obtained in this way; develop

confidence intervals for moment-based quantities such as the mean; and show how
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methods based on empirical transforms can be modified to accommodate censored

data. Several applications of the nonparametric method, based on reliability and

survival data, are presented in detail.
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Preface

To a certain extent this dissertation represents a log of the author’s exploration in

the fascinating world of flowgraphs, and every entry may not be of interest to every

reader. In particular, Section 1.3 is a review of parametric flowgraphs that may be

skipped by the reader already familiar with them, and Section 1.4 sketches proofs of

parametric flowgraph results that are important, but that the reader may be willing

to take on faith. In addition, in some places (e.g., Section 2.2.4, on possible Bayesian

approaches to nonparametric flowgraphs) we have described things which are part

of a future research agenda rather than completed work.

Flowgraph models offer a particularly attractive combination of conceptual trans-

parency, mathematical elegance, interesting statistics, and practical applications

which, it is hoped, the dissertation conveys.

Where it does not conflict with precision, for readability we have avoided abstrac-

tion and adopted a style in the vein of applied mathematics and engineering. For

example, the stochastic process variable t is treated as “time,” which is appropriate

for most applications.

Definitions and an index for abbreviations, special functions, and other notation

are provided in the Glossary at the end of this document. The symbol is used to

mark the end of a proof.

xix



Chapter 1

Introduction

This chapter defines the problem space addressed in the dissertation and provides

necessary background information.

A common situation in reliability analysis is to have data on component failure

times (e.g., from unit testing), and to seek a statistical model for predicting the

reliability of a system composed of multiple components, perhaps including redun-

dancy and the possibility of repair or replacement of failed components. With the

appropriate changes in terminology, similar situations arise in biomedical survival

analysis, e.g., substituting states of disease progression for component failures and

remission or successful treatment for repair. In contrast to simple two-state models

for reliability of nonrepairable components or survival models where disease onset

invariably results in fatality, multistate statistical models facilitate more realistic

modeling, but raise issues of available theory as well as computational tractability

(Hougaard 1999). Section 1.1 presents a simple example of such a multistate model.

Statistical flowgraphs (Huzurbazar 2005a) encompass a body of theory and com-

putational algorithms that has proven successful in modeling complex multistate

systems, with applications ranging from reliability and risk analysis (Huzurbazar

2005c; Huzurbazar & Williams 2005) to biomedical survival analysis (Yau & Huzur-

1



Chapter 1. Introduction

bazar 2002). Prior work in flowgraphs has been largely based on the assumption of

parametric probability models for transitions between states, which are incorporated

into flowgraph models in the form of integral transforms of their density functions.

In this dissertation we present and analyze a nonparametric approach to using sta-

tistical flowgraphs in the analysis of multistate models, which makes no assumptions

about the underlying probability models or existence of densities. This approach

also allows for semiparametric analysis, with assumed parametric models for some,

but not all, of the transitions in a multistate system.

Section 1.2 of this Introduction specifies in more detail the problem domain, and

the general problem of estimation (parametric and nonparametric) for multistate

semi-Markov models. Sections 1.3 and 1.4 review “classical” (parametric) statistical

flowgraphs and their mathematical foundations. Section 1.5 briefly overviews the

nonparametric methodology, which uses empirical transforms derived from sample

data for solving flowgraphs.

Chapter 2, the core of the dissertation, presents the nonparametric methodology

in detail. Chapter 3 illustrates use of the nonparametric methodology through several

examples.

1.1 Introductory example

Figure 1.1 shows an example of the type of problem addressed here, a model of a

repairable system with redundancy: two units operate in tandem, with the possibility

of repair if one fails; system failure (state 3, an absorbing state) occurs if both

fail simultaneously, or if the backup unit fails while the primary is being repaired.

Assuming the process starts in state 1, interest lies in estimating the probability

distribution, or moments of the distribution, for the time of first passage from state

1 to state 3. With obvious differences in terminology, this model also arises in

2



Chapter 1. Introduction

survival analysis as the reversible illness-death model (Andersen 2002). Transitions

are labeled with transition probabilities and integral transforms of the transition

time distributions—this is explained in detail in Section 1.3.

Figure 1.1: Three-state repairable redundant system model

Chapter 3 contains other examples from reliability and survival analysis that

illustrate the problem space and show its importance.

1.2 Problem specification and notation

We consider finite-state time-homogeneous semi-Markov processes (Howard 1971b;

Çinlar 1975; Ross 1996) represented as graphs (flowgraphs of the processes) whose

vertices represent states 1, 2, . . . , n and whose edges represent transitions between

states. These are quite general, since a large number of stochastic process models

used in applications are specializations of semi-Markov processes: renewal processes,

including homogeneous Poisson processes; Markov processes (where transition time

distributions are restricted to be exponential), including birth-death processes and

Markovian queueing models; and Markov chains (where transition times are identi-

cally 1), with the important special cases of discrete random walks and branching

3



Chapter 1. Introduction

processes. Recurrent-event models, much used in biomedical applications, can of-

ten be formulated as semi-Markov models and represented as flowgraphs (Hougaard

1999).

States of a semi-Markov process, considered at transition times, form an embed-

ded Markov chain with transition probabilities pij. Given a transition from i to j,

the holding time in i (transition time from i to j) has distribution function Fij(t; θij),

where θij is a scalar or vector parameter. When dependence on θij is understood and

we are not interested in the particular parameter value, we omit it from the notation

and simply write Fij(t).

The only observable of the process is the state at a given time, so we assume

there are no self-transitions (transitions from a state to itself), since these would

be unobservable. (However, self-transitions may be introduced by the process of

flowgraph reduction; see Section 1.3.) This is without loss of generality since a

process with self-transitions can be redefined as one without such transitions, by

incorporating the self-transition holding time for each state into the holding time

distributions for non-self transitions from that state (Pyke 1961a, Lemma 2).

Define Qij(t) = pijFij(t); the matrix Q(t) with elements Qij(t) is called the semi-

Markov kernel. Hi(t) =
∑n

j=1Qij(t) is the holding time distribution in i, independent

of the state to which a transition is made. Alternatively but equivalently, semi-

Markov processes can be viewed as vectors of counting processes [N1(τ) . . . Nn(τ)],

where Ni(τ) is the number of visits to state i at time τ ; these are called Markov

renewal processes (Pyke 1961a; Ross 1970; Çinlar 1975). We assume that all of our

processes are nonexplosive, i.e., that Ni(τ) is finite for τ <∞.

To avoid ambiguity, we use the variable t to designate time elapsed since entry to

a given state, and τ to designate “calendar time,” the time elapsed since the process

was started. These times will always be nonnegative.
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Where Z(τ) ∈ {1, 2, . . . , n} is the state of the process at time τ ≥ 0, define the

distribution function for first passage time (or hitting time) from i to j as

Gij(τ) = Pr{Nj(τ) > 0 | Z(0) = i},

i.e., Gij(τ) gives the probability that starting in state i, the first visit to state j occurs

at or before τ . The corresponding matrix is G(τ). For all first passages of interest,

we assume that for any ε > 0 there exists τ such that 1 −Gij(τ) < ε, i.e., that with

probability 1, first passages occur in finite time. In a situation (as described in the

next paragraph) where a process contains an absorbing state that is irrelevant to the

first passage to the state of interest, this is equivalent to redefining Gij as

Gij(τ) = Pr{Nj(τ) > 0 | Z(0) = i, τ <∞},

the distribution conditional on reaching j in finite time.

We assume there are no irrelevant states, states that appear on no path with

nonzero probability from i to j, if i→ j is the passage of interest. Figure 1.2 shows

an example where state 5 is irrelevant to the 1 → 4 passage. Assuming there are

no such states is without loss of generality, given the assumption that first passages

occur in finite time. Irrelevant states can be eliminated by removing transitions to

them and renormalizing probabilities for the remaining transitions; e.g., in Figure 1.2

we would remove the 3 → 5 transition and set p′32 =
p32

p32 + p34

, p′34 =
p34

p32 + p34

, where

the primed probabilities are normalized. Remaining holding time distributions, being

determined by the origin and destination states, do not change.

In the language of Markov chains, we are assuming that our processes have a set

of communicating transient states, and a single absorbing state reachable in finite

time from any transient state.

The main problem dealt with in this dissertation is the estimation of Gij(t) or its

density, given a nonparametric estimate of Q(t) based on observation of the process.
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Figure 1.2: Flowgraph of a process with an irrelevant state

1.2.1 Estimation based on observed transition data

The basis for estimating Q is sample data on transitions between states. The topolog-

ical structure of the model (states and possible transitions) may be given or derived

from the data. Parametric distribution families for holding times may be given a

priori (e.g., from the science of the subject domain), inferred from examination of

the data, or not used, as in the nonparametric method.

In terms of the information given or assumed about holding times, there is a

distinction between having data on transitions between adjacent states only, and

having complete event histories. In the former case we may have, say, sample data

for the i→ j and j → k transitions separately, but cannot correlate these into data

for the i→ j → k path. In the latter case the data are given in the form of complete

sample paths between states of interest for different subjects or process realizations.

(Actually, there is a range of situations between these two cases, where sample paths

may be given in various forms of incompleteness; see (Williams & Huzurbazar 2006)

for examples. In this dissertation we consider only situations where the given data

pertains to transitions between adjacent states.)

When complete event histories are observed for N subjects, a sample of first
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passage times {τ1, τ2, . . . , τN} from i to k is available and the standard nonparametric

estimate of Gik is the empirical distribution function (EDF)

Ĝik(τ) =
1

N

N
∑

m=1

I[0,τ ](τm)

where I is the indicator function, for which large sample properties such as confidence

bands are well known. If a parametric distribution family is assumed for Gik, the

method of maximum likelihood provides estimates for the parameter(s) with known

large sample properties. These are classical methods which do not require flowgraphs

or other techniques specific to stochastic processes.

The more interesting and important case (which we assume hereafter) is where

data are available only for adjacent-state transitions. Situations where this arises

include:

1. Transition probabilities and holding time distributions can be postulated based

on physical models from the application domain, which are in a sense indepen-

dent of the stochastic model under analysis. An example of this is a model

for cumulative seismic damage developed by Gusella (1998) and described in

(Collins and Huzurbazar 2008) and in Section 3.3 of this dissertation, where

transition probabilities between adjacent states are based on a model for struc-

tural damage under shocks, and holding time distributions are given by a sep-

arate model for earthquake interarrival times.

2. Data are available from unit testing of components or some equivalent scenario,

and in the system context component failures initiate transitions to adjacent

states. If more than one transition is possible from a given state, transition

probabilities may not be estimatable directly from the data, and holding time

distributions may only be estimatable conditionally on the absence of other

transitions. However, pij and Fij can be derived by a competing risks analysis—

see Section 1.2.2 below.
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3. Transitions between pairs of adjacent states have been studied separately; ei-

ther different test cases were used for each state pair, or for some other reason

data are not available to correlate the adjacent state transitions into complete

sample paths. E.g., different failure modes of a complex system have been

evaluated in separate tests, individual workstations in a manufacturing process

are studied separately, or separate studies have been done on specific stages

in the progression of a disease. Examples of this and (2) include risk analyses

for large, complex systems that seldom fail, such as nuclear power plants (Mc-

Cormick 1981; Bedford & Cooke 2001). In the medical field, many studies of

HIV-AIDS have focused on transitions between adjacent states in the CDC and

WHO classifications; e.g., see (Guihenneuc-Jouyaux et al. 2000) and references

therein.

Case (1) is inherently parametric, but nonparametric analysis may be used for

validation; (2) and (3) may be bases for nonparametric analysis, or used as starting

points for parametric analysis by hypothesizing a model using a histogram or other

density estimate, which is then fitted using maximum likelihood. Here our main

interest is in nonparametric analysis.

If complete event histories are observed for an interval [0, τ ], with N̂ij(τ) the

observed number of i → j transitions and N̂i(τ) the observed number of visits to i,

the semi-Markov kernel is estimated as (Moore & Pyke 1968)

p̂ij =
N̂ij(τ)

N̂i(τ)
, F̂ij(t) =

1

N̂ij(τ)

N̂ij(τ)
∑

k=1

I[0,t](kth i→ j transition time),

Q̂ij(t) = p̂ijF̂ij(t). (1.1)

If the observed holding times for the transition i → j are t1, . . . , tN̂ij(τ), then the

8



Chapter 1. Introduction

empirical mass function corresponding to F̂ij is

f̂ij(t) =
1

N̂ij(τ)
I{t1,...,t

N̂ij(τ)}(t).

Under the assumption that we do not observe complete event histories, N̂ij(τ)

is the number of subjects or test units, but N̂i(τ) is not observed. In some cases of

incomplete observation N̂i(τ) is unnecessary, since what is really needed is the ratio

N̂ij(τ)/N̂i(τ) = p̂ij; e.g., where transitions from i occur only to a single state j, we

know that pij = 1. If there are parallel transitions from state i to j, k, . . ., we must

infer p̂ij and F̂ij from a competing risks analysis as described below.

Moore and Pyke’s estimator (1.1) assumes the data are uncensored; analogously

Gill (1980a) uses the Kaplan-Meier estimator of the survival function (Kaplan &

Meier 1958) to develop an estimator for Q̂ij when the sample data are randomly

right-censored.

1.2.2 Competing risks analysis

In cases (2) and (3) above, where state transitions are studied individually, It is not

possible in general to calculate all the quantities in (1.1) directly. For example, in the

repairable system portrayed in Figure 1.1, unit testing would typically provide data

on the 2 → 3 failure transition but not on the 2 → 1 repair transition. A separate

study might provide sample data from the distribution of repair times.

This is a competing risks scenario (Crowder 2001), illustrated in the general

case by Figure 1.3. Define Ti1, . . . , Tij, . . . as the latent holding times, Tij being

the i → j holding time when all other transitions have been removed. What we

actually observe is Tij conditional on Tij = mink(Tik) (called the “crude” lifetimes

in actuarial terminology). The Tij have a joint distribution function Fi(. . . , tij, . . .)

whose marginals F j
i (tij) are the latent (or “net”) holding time distributions.
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Figure 1.3: Transitions in parallel as competing risks

In the example of state 2 in Figure 1.1, from the testing data we can produce

estimates of F 3
2 (t23) and F 1

2 (t21); what we need are estimates of

p23 = P{2 → 3 | 2} = P{T23 < T21} and

F23(t) = P{T23 ≤ t | 2 → 3} = P{T23 ≤ t | T23 < T21},

and likewise for p21 and F21.

In the parametric case, suppose f2(t21, t23) is the joint density of T21 and T23.

Then p23 is calculated by integrating f2(·, ·) over the region where T23 < T21:

p23 =

∫ ∞

0

∫ t21

0

f2(t21, t23)dt23dt21.

The distribution function of T23 is obtained by integrating over the region where

T23 < T21 and T23 ≤ t, and normalizing:

F23(t) =
1

p23

∫ t

0

∫ t21

0

f2(t21, t23)dt23dt21.

F21 and p21 are calculated similarly, and the same idea extends to states with more

than two outbound transitions. See Section 2.2 of (Huzurbazar 2005a) for further

examples of parametric competing risks analysis.

Nonparametric estimators for pij and Fij can be derived by bootstrapping: resam-

ple the samples of Ti1, . . . , Tij, . . . to get bootstrap samples {t∗i1, . . . , t∗ij, . . .}, select
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those t∗ij which are minima of their respective bootstrap samples (say n of them),

then estimate Fij(t) as

F̂ij(t) =
1

n

∑

t∗ij

I[0,t](t
∗
ij),

and p̂ij as the proportion of samples in which t∗ij is the minimum. This assumes there

are no samples with tied observations. A simple way of breaking ties is to jitter the

data by adding iid perturbation terms, distributed uniformly over (−ε, ε) for small

ε, to the observations (Owen 2001, Section 3.7). An alternative is the smoothed

bootstrap (Davison & Hinkley 1997, Section 3.4), which resamples from smoothed

approximations of the empirical distribution functions based on the samples.

For censored data, the bootstrapping procedure above can be carried out using

the Kaplan-Meier estimates of the EDFs. Alternative methods are described in

(Davison & Hinkley 1997, Section 3.5).

1.3 Parametric statistical flowgraph models

This Section and the next provide a review of flowgraphs as they have been used to

model stochastic processes using parametric distribution families. For more infor-

mation see (Huzurbazar 2005a) and references therein.

Statistical flowgraphs are graphical representations of the states and transitions

of semi-Markov processes characterized by interstate transition probabilities pij and

holding time distribution functions Fij(t; θij), assumed to be members of parametric

families such as gamma or Weibull. We usually omit the parameter and write Fij(t).

The holding time distribution between states i and j is represented by its trans-

form, typically either the Laplace transform (LT) Lij(s) =
∫∞
0
e−stdFij(t) or the

moment generating function (MGF) Mij(s) =
∫∞
0
estdFij(t). The Fourier transform

(characteristic function or CF) ϕij(s) =
∫∞

0
eistdFij(t) is also useful since it always

11
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exists, whereas the LT and MGF fail to converge for some probability densities such

as the lognormal. (The lower limit of 0 for the CF reflects the assumption that all

the random variables we study are non-negative. Mathematicians usually write the

Fourier transform with a negative sign on the exponent, and may also have a multi-

plier of 1/2π or 1/
√

2π; these differences affect the relationship between the formulas

for the transform and its inverse, and will not concern us.)

We use Tij(s) to designate a general integral transform (as in the labeling of

Figure 1.1). Thus a flowgraph consists of a vertex set {i} representing states, and

an edge set of pairs {(pij,Tij)} representing transitions. In this dissertation, unless

stated otherwise, Tij(s) will be either the LT or MGF.

In the literature on flowgraphs it is standard to assume that holding time distri-

butions have continuous probability densities (pdfs), i.e., that the distributions are

absolutely continuous with respect to Lebesgue measure. Thus if the pdf is fij(t)

and the transform has a continuous kernel ψ, Tij(s) =
∫∞

0
ψ(t, s)fij(t)dt, where the

integral is the usual Riemann integral. Solving flowgraphs involves computations on

the transforms, which motivates this simplifying assumption, particularly in the engi-

neering literature. We will stick with the assumption for the moment; in Section 1.4.5

we show that it involves no real loss of generality, since all the computations work

the same way when we base the transforms on (cumulative) distribution functions

(CDFs) and use more general types of integral.

Flowgraph models first appear in the literature of electrical engineering as “signal

flow graphs” (Mason 1953) in which vertices represent points at which a signal can

be measured, and each edge represents an active element with transmittance char-

acterized by a transfer function, the Laplace transform of the element’s response to

an input signal.
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1.3.1 Transforms, transmittances and Mason’s rule

In a statistical flowgraph the transmittance between adjacent states i and j is the

product of the transition probability pij and the transform Tij(s) of the holding time

distribution; in the notation of Section 1.2, pijTij(s) is the transform of Qij(t) =

pijFij(t).

Mathematically, this transmittance is a transform; if T(s) =
∫∞
0
ψ(t, s)dF (t) is a

transform of F , then for λ ∈ R, λT(s) =
∫∞

0
ψ(t, s)d[λF ](t) is the same transform

of λF . Transmittances between non-adjacent states are also transforms; the general

equivalence of transmittances and transforms will be shown later (see Section 2.1.2).

Where it is desirable to make a distinction between transforms and transmittances,

usually because we wish to differentiate between simple transforms of distributions

and transmittances compounded from multiple transforms, we will symbolize trans-

mittances as T(s).

All transforms T(s) used here within the scope of a proof or computation will

be the same type (normally either LTs or MGFs). For nonparametric flowgraph

methods, as shown in Chapter 2 the empirical versions of the LT and MGF will

always converge, so the advantage mentioned above for the CF is only important

when using parametric flowgraph methods. The disadvantage of the CF is the fact

that it is in general complex-valued, which makes proofs more difficult; see, e.g.,

(Lukacs 1960).

Supposing we have transition times with CDFs F,G, . . . , for the computations

used in solving for first passage distributions we require the following properties of

the transforms:

Linearity: TαF+βG(s) = αTF (s) + βTG(s), where TF is the transform of F and

α, β are scalars.
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Figure 1.4: Basic elements for flowgraph analysis: convolution, mixture

Figure 1.5: Basic elements for flowgraph analysis: loop, reduced loop

Convolution: TF?G(s) = TF (s)TG(s), where F ? G(t) =
∫

G(t− u)dF (u).

Uniqueness: If T(s) converges in a neighborhood −δ < s < δ, δ > 0, it

defines a probability distribution uniquely up to sets of measure zero. Thus if

T1(s) = T2(s) for s in the interval of convergence, they are transforms of the

same distribution.

These are satisfied by the LT, MGF, and CF, and by the empirical transforms de-

fined in Chapter 2. In fact, it can be shown (Lukacs 1960, Theorem 4.4.1) that

for any transform with a kernel ψ(t, s) satisfying these properties with s, t ∈ R,

ψ(t, s) = etA(s), where A(s) is dense in (0,∞) and real-valued if ψ(t, s) is real-valued,

imaginary-valued if ψ(t, s) is complex-valued. Thus it is fair to say that the LT,

MGF, and CF exhaust the possibilities for the general form of transform kernels

useful for flowgraph modeling.

A flowgraph is solved by computing transmittances between arbitrary pairs of

states, then inverting the transforms to recover densities or distribution functions.
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Typically interest lies in determining the distribution of the first passage time be-

tween an initial state and an absorbing final state. (These are called the source and

sink nodes in the electrical engineering literature.) The method consists of recursive

application of three rules that reduce transmittances over complex paths constructed

from the building blocks shown in Figures 1.4 and 1.5, to a single equivalent trans-

mittance:

1. The transmittance of edges in series is the product (convolution) of the edge

transmittances. This is the standard convolution theorem for sums of random

variables (Casella & Berger 2002, Theorem 5.2.9). E.g., on the left in Figure

1.4, since p12 = p23 = 1, the edge transmittances are just the transforms and

T13(s) = T12(s)T23(s).

2. The transmittance of edges in parallel is the sum (mixture) of the edge trans-

mittances. This follows from the linearity of the transform. E.g., on the right

in Figure 1.4,

T14(s) = p12T12(s)T24(s) + p13T13(s)T34(s).

3. Rule 1 reduces the graph on the left in figure 1.5 to the one on the right, where

the loop transmittance TL(s) = p12T12(s)T21(s). (As mentioned in Section 1.2,

this reduction introduces a self-transition which did not exist in the original

flowgraph.) Now let T(s) be the 1 → 3 first passage transmittance (versus the

one-step transmittance T13(s)). By the Markov property, T(s) is unchanged by

any number of traversals of the loop, so by this and Rules 1 and 2,

T(s) = TL(s)T(s) + p13T13(s)

=
p13T13(s)

1 − TL(s)
.
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Alternatively, this can be seen by enumerating and summing all possible par-

allel transition paths from 1 to 3:

T(s) = p13T13(s) + TL(s)p13T13(s) + TL(s)2p13T13(s) + TL(s)3p13T13(s) + . . .

=
p13T13(s)

1 − TL(s)
.

Summing this as a convergent geometric series depends on the fact that for the

transform parameter s in some open neighborhood of 0, 0 < |TL(s)| < 1. This

is true because p12 < 1 (otherwise the loop would never be exited), T12(0) =

T21(0) = 1, and both transforms are continuous functions of s.

The reduced transmittance is the transform of the time distribution for first

passage between the states of interest. As an illustration, consider the model in

Figure 1.1 and let T(s) be the transmittance for first passage from state 1 to state

3, independent of the path. Using the rules above,

T(s) = [p12T12(s)p21T21(s)]T(s) + p12T12(s)p23T23(s) + p13T13(s)

Solving for T(s) yields

T(s) =
p12T12(s)p23T23(s) + p13T13(s)

1 − p12T12(s)p21T21(s)
. (1.2)

From these rules a formal algorithm known as Mason’s rule can be derived:

T(s) =

∑

k

{

Tk(s)
[

1 +
∑

m(−1)mLk
m(s)

]}

1 +
∑

m(−1)mLm(s)
. (1.3)

In this formula T(s) is the transmittance between the states of interest, say i and

j. Tk(s) is the transmittance of the kth direct path (path with no loops) from i to

j. Lk
m(s) in the numerator is the sum of transmittances of all mth-order loops with

no states in common with the kth direct path. (A first-order loop is a closed path
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with the same start and end states that does not pass through any state more than

once. An mth-order loop consists of m first-order loops with no points in common;

the transmittance of an mth-order loop is the product of the transmittances of the

first-order loops.) Lm(s) in the denominator is the sum of transmittance over all

mth-order loops.

If the flowgraph has loops, T(s) has one or more singularities (simple poles)

at values of s where the denominator vanishes. As mentioned in (3) above, from

continuity of the transforms and the fact that loop probabilities must be strictly less

than 1, it follows that there are no singularities in some open neighborhood of 0.

Based on what was said at the beginning of this section, T(s) is in fact a transform,

the transform of the first passage distribution from i to j. This will be shown more

rigorously in Sections 1.4 and 2.1.2.

There are various derivations of the rather cryptic formula (1.3); the most straight-

forward, an application of Cramer’s rule to a certain set of linear equations, is

sketched in the next section. Mason’s rule provides a solution for first passage trans-

forms in arbitrarily complex flowgraphs. For examples of its use with statistical

flowgraphs, see (Huzurbazar 2005a).

The flowgraph reduction rules can be viewed more generally as operations on

directed graphs with edge weights. Thus it is not surprising to find essentially the

same rules used in diverse fields such as finite automata theory (Csenki 2008) and

complexity analysis of computer programs (McCabe 1976). We will not pursue the

graph-theoretic aspects of these rules except in an informal way via diagrams.

The steps in parametric flowgraph modeling can be summarized as follows:

1. Determine the topology of the directed state graph.

2. Posit a parametric family for each holding time distribution.
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3. Estimate parameters of the probability distributions from sample data using

maximum likelihood.

4. Estimate transition probabilities based on data or competing risks analysis.

5. Compute a closed-form expression for the transform of each holding time pdf.

6. Use Mason’s rule to compute transforms for transitions of interest.

7. Invert these transforms to obtain pdfs. In some cases this can be done analyt-

ically; in general, numerical methods must be used.

If holding time data are subject to censoring, appropriate modifications are made

for maximum likelihood estimation (Klein and Moeschberger 2003, Chapter 3). Cen-

sored data histograms (Huzurbazar 2005b) can be used as an aid in determining para-

metric models for distributions. For further details on the steps described above, see

(Huzurbazar 2005a).

1.4 A rigorous basis for statistical flowgraphs

Mason’s (1953, 1956) derivation of his eponymous rule has been characterized as “the

most advanced form of graphic algebra” (Robichaud et al. 1962, p. viii). Though

offering a certain conceptual transparency, Mason’s derivation is lengthy, less than

rigorous by modern standards, and uses an engineering vocabulary that is unfamiliar

to most mathematicians and statisticians. The use of flowgraph methods for analysis

of stochastic processes is based on Mason’s and other earlier work in the theory

of linear time-invariant systems, originating in electrical and control engineering;

e.g., see (Howard 1971b) and references therein. The same basis has been used to

justify “transform methods” generally for analysis of stochastic processes; e.g., see

(Kleinrock 1975).
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Many modern texts show a certain distaste for transform methods, called by one

author “the oft-lamented Laplacian curtain, which covers the solution and hides the

structural properties of many interesting stochastic models” (Neuts 1981, p. x).

Such aversion may be partly accounted for by the perceived difficulty of transform

inversion (Davies & Martin 1979). This however, is no longer a valid objection, since

fast and accurate algorithms for numerical inversion of transforms of distribution

functions now exist (Abate & Whitt 1992; Strawderman 2004). In addition, we

have found that the graphical approach which is enabled by using transforms often

illuminates the structure of a stochastic process in ways that purely matrix-based

approaches do not.

In this section we sketch a rigorous basis for statistical flowgraph analysis based

on the large body of flowgraph literature, both in statistics and engineering. To fill

in the details of the sketch, the reader is referred to the literature cited at the end

of the section.

The key results are:

1. Determining the transform for a first passage time is equivalent to solving a

system of linear equations.

2. The solution of these equations by Cramer’s rule is equivalent to Mason’s rule.

3. The solution is equivalent to Pyke’s (1961b) solution based on Markov renewal

theory.

1.4.1 Flowgraphs as systems of linear equations

We consider the simple problem of finding the first-passage transmittance from state

i to j; later we will show how this can be generalized to find the first passage

transmittance between two disjoint sets of states. The setup is as follows:
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1. Renumber the states so that i becomes 1, j becomes n, and the remainder are

arbitrary; this simplifies the notation.

2. Remove all outgoing transitions (if any) from state n.

3. Add a fictitious state 0 which transitions to state 1 in zero time with probability

1. The 0 → 1 transmittance using the LT is
∫

e−stδ(t)dt = 1, where δ(t)dt

is Dirac measure. The transmittance is also 1 using the CF or MGF. This

captures the fact that the process starts in state 1 at τ = 0.

With this setup, let xk be the transmittance for passage from 0 → k (not neces-

sarily the first passage), i.e., the transmittance for some feasible sequence of states

0 → . . .→ . . .→ k. (This is an abuse of notation, used for consistency with the usual

way of writing linear equations and with most of the flowgraph literature; we should

say xk(s), since xk is a transform expression parameterized by s.) The transmittance

to k given that m was the previous state is Tmkxm, so allowing for the transition

from state 0,

x1 = 1 + T11x1 + T21x2 + . . .+ Tn1xn

and for k 6= 1,

xk = T1kx1 + T2kx2 + . . .+ Tnkxn.
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Rearranging,

(1 − T11)x1 − T21x2 − . . .− Tn1xn = 1 (1.4)

−T11x1 + (1 − T22)x2 − . . .− Tn2xn = 0

...

−T1kx1 − T2kx2 − . . .+ (1 − Tkk)xk − . . .− Tnkxn = 0

...

−T1nx1 − T2nx2 − . . .+ (1 − Tnn)xn = 0.

Note that all the Tni are actually zero because transitions out of state n were removed.

Now let T(s) =





















0 T12(s) . . . T1,n−1(s) T1n(s)

T21(s) 0 . . . T2,n−1(s) T2n(s)
...

...

Tn−1,1(s) Tn−1,2(s) . . . 0 Tn−1,n(s)

0 0 0 0 0





















,

the matrix of one-step transmittances for the flowgraph. The diagonal elements are

zero since by assumption there are no self-transitions. The last row is zero because

transitions out of state n were removed. With this definition, the equations (1.4) can

be expressed as

Ax = b (1.5)

where

A =

















1 −T21(s) . . . −Tn−1,1(s) 0

−T12(s) 1 . . . −Tn−1,2(s) 0
...

...

−T1n(s) −T2n(s) . . . −Tn−1,n(s) 1

















, x =

















x1

x2

...

xn

















, b =

















1

0
...

0

















.
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Note that A =
[

I − T(s)T
]

.

Since all outgoing transitions were removed from state n, the only possible tran-

sition into n is the first, thus the solution of the system for xn yields the 1 → n first

passage transmittance.

This approach can be generalized to solve for first passage times from each of a

set of transient states U = {i1, i2, . . .} (renumbered as {1, 2, . . .}) by replacing the

vector b with [π1, π2, ..., 0]T, where πi is the probability of starting in the ith state

and
∑n

i=1 πi = 1. It can also be generalized to a process with a set of absorbing

states D = {j1, j2, . . .} (renumbered as {. . . , n − 1, n}). This is done by removing

the states D from the flowgraph along with their outgoing transitions, and adding

a new state δ which becomes the destination for all transitions into states in D.

I.e., all the states in D are aggregated into the single absorbing state δ, so solving

the linear equations for xδ gives the first passage transmittance into any state in D.

(See (Limnios & Oprişan 2001, Section 5.4) for a similar approach based on Markov

renewal processes.)

1.4.2 Existence of solutions

Existence of a unique solution depends on invertibility of A or equivalently, detA 6=
0. Since detA = detAT, it suffices to show that det [I − T(s)] 6= 0. Expanding the

determinant about the last row,

det [I − T(s)] = (−1)n+n det [I − T(s)]nn = det [I − T(s)]nn

where [I − T(s)]nn is I − T(s) with the nth row and nth column removed.

Now note that [T(s)]nn is the transmittance matrix for states 1, . . . , n− 1. Since

the 2-step transmittance from i to j is
∑n−1

k=1 Tik(s)Tkj(s), clearly the matrix of 2-

step transmittances is [T(s)]2nn, and by induction the m-step transmittance matrix
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is [T(s)]mnn. By assumption, states 1, . . . , n − 1 are transient, so [T(s)]m → 0 ele-

mentwise as m → ∞ (Çinlar 1975, Theorem 5.3.2). Then by a standard result in

matrix analysis (Kemeny & Snell 1960, Theorem 1.11.1), [I − T(s)]nn is invertible

and [I − T(s)]−1
nn =

∑∞
m=0 [T(s)]mnn. So det [T(s)]nn = detA 6= 0 and a solution of

equation (1.5) exists.

1.4.3 Equivalence to Mason’s rule

Given the existence of a solution, we have by Cramer’s rule

xn =
det [A1 . . .An−1 b]

detA
(1.6)

where the numerator is the determinant of A with the nth column replaced by b.

By definition,

detA =
∑

σ

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n) (1.7)

where the sum is over the n! permutations σ of 1, . . . , n and sgn(σ) is the sign of the

permutation, positive for an even number of transpositions of the second subscripts,

negative for an odd number.

Considering the denominator first, we transpose to simplify the notation, so the

ijth element of AT is 1 if i = j and −Tij (possibly 0) if not:

detAT = det [I − T(s)] = det





















1 −T12(s) . . . −T1,n(s)

−T21(s) 1 . . . −T2,n(s)
...

...

−Tn−1,1(s) −Tn−1,2(s) . . . −Tn−1,n(s)

0 0 . . . 1





















. (1.8)
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There is one term in the determinant consisting of all the diagonal factors, with

a value of +1. In the remaining terms we may ignore the diagonal factors, since

their contribution of +1 does not change the value of the term. Every integer in

{1, . . . , n} occurs once in some term as first subscript and once as second subscript,

so given a factor ak1σ(k1) with k1 6= σ(k1) there must be another factor aσ(k1)k2 , where

k2 = σ(σ(k1)) and σ(k1) 6= k2. Continuing this process we must eventually come to

a term akqk1 where k1 = σ(kq). If any off-diagonal factors remain, the process can

be repeated, leading to a decomposition of the off-diagonal factors in each term into

disjoint (non-touching) loops. (It is clear that if there are non-diagonal factors in a

term, there must be at least two.)

All the off-diagonal elements in A have negative signs, so if a loop has an even

number of factors their signs contribute a net positive sign to the determinant term,

and a loop with an odd number of factors contributes a net negative sign. A loop

with an even number of factors requires an odd number of transpositions to order

the second subscripts, and vice versa, so a loop with an even number of factors

contributes a net negative sign to sgn(σ), and a loop with an odd number of factors

contributes a net positive sign. Multiplying these two contributions, a single loop

always contributes a negative sign to its determinant term. The sign contributions

of disjoint loops in the same term multiply each other, so the final result is that a

term with an odd number of loops is negative, and a term with an even number of

loops is positive.

Recalling that an mth-order loop in the flowgraph is a set of m non-touching

(disjoint) first order loops, it is now clear that (1.7), the Cramer’s rule denominator

in (1.6), is exactly equivalent to 1 +
∑

m(−1)mLm(s), the denominator in Mason’s

rule (1.3).
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After transposing, the numerator in (1.6) is

det [A1 . . .An−1 b]T = det





















1 −T12(s) . . . −T1,n(s)

−T21(s) 1 . . . −T2,n(s)
...

...

−Tn−1,1(s) −Tn−1,2(s) . . . −Tn−1,n(s)

1 0 . . . 0





















(1.9)

Note the contrast with the denominator determinant—there the only possible

factor akn in a nonzero term was ann = 1, so no path or loop could include the

nth state. Here (using α to denote elements of this matrix) every nonzero term

must have as a factor αn1 = 1; thus no other factor αk1 appears, so there are no

real loops including state 1 in any term (the factor αn1 might be said to create a

pseudo-loop in any 1 → n path). In addition, every nonzero term must include α1σ(1)

for σ(1) ∈ {2, . . . , n} and (since σ(1) cannot occur as second subscript in any other

factor in the same term) there must be a factor ασ(1)k2 with k2 = σ(σ(1)) 6= σ(1).

Since n is reachable from every state and α1σ(1)ασ(1)k2 . . . includes no loops, this

process must continue to result in α1σ(1)ασ(1)k2 . . . αkmn (after reordering the factors),

i.e., there must be a path from 1 to n. Suppose this path includes an odd number

of factors. Adding the pseudo-loop factor αn1 makes the number of factors even;

since all the factors are off-diagonal, ordering the second subscripts requires an odd

number of transpositions so the 1 → n path contributes a negative sign to sgn(σ).

Since αn1 is +1, the path contains an odd number of factors −Tij(s), with a negative

product, and the net contribution to the term is positive. Similarly, it is easy to

show that the contribution of a 1 → n path with an even number of factors is always

positive; thus every term in the numerator determinant contains the transmittance

for some 1 → n path, with a positive sign.

It may be that there is exactly one 1 → n path that includes every state in
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{1, . . . , n}, with transmittance T(s), in which case the numerator in (1.6) is just

T(s). Suppose there are m 1 → n paths where, say, the kth path consists of states

{1, k1, k2, . . . , n} with transmittance Tk(s). There will be a term in the determi-

nant expansion which contains, for every j /∈ {1, k1, k2, . . . , n}, the factor αjj ; thus

the value of that term will be Tk(s). Since 1 must occur as first subscript in ex-

actly one factor, and the same for n as second subscript, there cannot be more

than one 1 → n path in a single term; however, if the remaining states do not oc-

cur in diagonal factors αjj they may form loops (disjoint from the 1 → n path),

in which case the same reasoning used in evaluating the signs of loops in the de-

nominator applies. It follows that the value of the numerator determinant in (1.6)

is
∑

k

{

Tk(s)
[

1 +
∑

m(−1)mLk
m(s)

]}

, Where Tk(s) is the transmittance of the kth

1 → n path and Lk
m(s) is the sum of transmittances of all mth-order loops disjoint

from the kth path. This is identical with the numerator in Mason’s rule (1.3).

Thus we have shown that the solution to (1.5) yields a value for xn, the 1 → n

first passage transmittance, that is the same as the result from Mason’s rule.

For a clear explanation of the terms in Mason’s rule, with examples, see (Phillips

& Harbor 1991, Section 2.4). Mason’s graphical derivation is in (Mason 1956).

Engineering-oriented algebraic derivations are found in many sources, particularly

(Lorens 1964, Chapter 3) and (Chen 1967). More modern (and rigorous) statistically-

oriented derivations are in (Butler & Huzurbazar 2000, Section 6), (Butler 2000,

Section 9), and (Butler 2001, Section 5). (Huzurbazar 2005a) has many examples of

the use of Mason’s rule in solving statistical flowgraphs. Linear algebra results used

here can be found in any standard text, e.g., (Meyer 2000).
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1.4.4 Equivalence to Pyke’s solution

Pyke (1961b, Theorem 4.2) provided the following solution for first passage distrib-

utions in a Markov renewal (semi-Markov) process:

G(s) = T(s) [I − T(s)]−1 {([I − T(s)]−1)

d

}−1
(1.10)

where G(s) is the elementwise transform of G(τ), the matrix of first passage distri-

butions, and Md is the matrix with diagonal elements equal to the corresponding

elements of M and off-diagonal elements zero.

We show that the Cramer’s rule solution (1.6) for xn, defined in Section 1.4.1 as

the transform of the 1 → n first passage, is equal to G(s)1n = G1n(s) as determined

by (1.10). The proof is based on (Butler & Huzurbazar 2000, Section 6) and (Butler

2001, Section 5).

For brevity, let ∆(s) = det [I − T(s)] and ∆ij(s) = (−1)i+j det [I − T(s)]ij, the

ijth cofactor of [I − T(s)], where [M]ij is M with the ith row and jth column

removed.

As was shown in Section 1.4.2, the denominator in (1.6) is equal to ∆nn(s). By

expanding the determinant of the transposed Cramer’s rule numerator (1.9) about

the last row, it is easy to see that the result is ∆n1(s). Thus the Cramer’s rule

solution is

xn =
∆n1(s)

∆nn(s)
. (1.11)

Now using the adjugate formula for matrix inversion (Meyer 2000, Section 6.2),

[I − T(s)]−1 =
[∆ij(s)]

∆(s)
, (1.12)
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where [∆ij(s)] is the adjugate, the matrix of cofactors. Then

(

[I − T(s)]−1)

d
=

1

∆(s)











∆11(s) 0
. . .

0 ∆nn(s)











(1.13)

so

{(

[I − T(s)]−1)

d

}−1
= ∆(s)











1
∆11(s)

0
. . .

0 1
∆nn(s)











. (1.14)

Now substituting (1.12) and (1.14) into (1.10) and using the fact that ∆(s) =

∆nn(s),

G(s) = T(s) [∆ij(s)]











1
∆11(s)

0
. . .

0 1
∆nn(s)











= T(s)

















∆11(s)
∆11(s)

∆12(s)
∆22(s)

. . . ∆1n(s)
∆nn(s)

∆21(s)
∆11(s)

∆22(s)
∆22(s)

. . . ∆2n(s)
∆nn(s)

...
...

∆n1(s)
∆11(s)

∆n2(s)
∆22(s)

. . . ∆nn(s)
∆nn(s)

















. (1.15)

The 1nth element of (1.15) is the inner product of the first row of T(s) and the nth

column of the second matrix factor:

G1n(s) = [0 T12(s) . . .T1n(s)]











∆1n(s)
∆nn(s)

...

∆n−1,n(s)

∆nn(s)











=
1

∆nn(s)

n
∑

k=2

T1k(s)∆kn(s). (1.16)
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Let [I − T(s)]′ be [I − T(s)] (see equation 1.8) with the nth row replaced by a

copy of the first row; thus det[I − T(s)]′ = 0. Then expanding the determinant about

the nth row,

det [I − T(s)]′ = 0 = 1∆n1(s) − T12(s)∆n2(s) − . . .− T1n(s)∆nn(s)

so ∆n1(s) =
n
∑

k=2

T1k(s)∆nk. (1.17)

It follows from the identity of the sums in 1.16 and 1.17 that

G1n(s) =
∆n1(s)

∆nn(s)
,

proving the equivalence of Pyke’s solution to the solution (1.11) given by Cramer’s

rule, and therefore to the Mason’s rule solution.

1.4.5 Basing transforms on the distribution function

In some situations, the assumption that a continuous density exists is unrealistic—

for example, suppose a transition represents failure of a component, and there is a

nonzero probability that the component fails immediately when it is installed, or

when the system is started; conditional on the component not failing immediately, it

has an exponential(λ) failure distribution. Thus the holding time distribution (time

to failure) has a continuous component and a point mass at 0, and the usual Lebesgue

density does not exist.

In addition, the assumption of continuous densities is obviously incompatible

with solving flowgraphs nonparametrically. In that case, we are given empirical

distribution functions based on samples; these EDFs do have densities, but with

respect to counting measure, not Lebesgue measure.

To say we can “solve” a flowgraph, i.e., find the transform of the first passage

distribution between given states, asserts the existence of solutions for the system of
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linear equations (1.5) presented in Section 1.4.1. The definition of the linear equa-

tions, in turn, depends on the reduction rules for series and parallel transitions given

in Section 1.3. These rules are immediate consequences of properties of “transforms

of distributions,” which we now define.

Let ψ(t, s), s, t ∈ R, be a continuous kernel function, either e−st (LT), est (MGF),

or eist (CF). Then if h1(t) and h2(t) are arbitrary functions (not necessarily pdfs or

CDFs) supported on [0,∞], by the standard mathematical definitions of transform

and convolution (Rudin 1987, Section 8.13), the transform of h1 is

Th1(s) =

∫ ∞

0

ψ(t, s)h1(t)dt

and the convolution of h1 and h2 is

h1 ? h2(x) =

∫ ∞

0

h1(x− t)h2(t)dt,

assuming the integrals exist. A consequence of these definitions is that

Th1?h2(s) = Th1(s)Th2(s).

Now let X and Y be non-negative independent random variables with probability

measures µ, ν, respectively, which determine distribution functions F , G, and (pos-

sibly) densities f , g. Naively applying the definitions above would lead to different

expressions for the transforms of the pdf and CDF:

Tf (s) =

∫ ∞

0

ψ(t, s)f(t)dt versus TF (s) =

∫ ∞

0

ψ(t, s)F (t)dt.

However, the second integral does not have the necessary convergence properties or

support the properties we need for probability distributions.

The correct form for the transform of the distribution is obtained by defining the

transform as an expected value:

TX(s) = E [ψ(X, s)] =

∫

ψ(x, s)dµ =

∫ ∞

0

ψ(x, s)dF (t) =

∫ ∞

0

ψ(t, s)f(t)dt, (1.18)
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where only the last integral depends on existence of a Lebesgue density. Since a

distribution function is nondecreasing and bounded above by 1, it has at worst a

countable number of jump discontinuities (Rudin 1976, Theorem 4.30); it follows

that the next-to-last (Riemann-Stieltjes) integral always exists for some value of the

parameter s (Widder 1946, Chapter I). Thus the transform of the distribution is the

same whether based on the pdf or CDF.

If the transform converges in a neighborhood −δ < s < δ, δ > 0 it defines a

probability distribution uniquely up to sets of measure zero (Billingsley 1979, Section

30). The CF converges for s ∈ (−∞,∞) because | exp(ist)| ≤ 1. The MGF (and

therefore the LT) may or may not converge for s in an open neighborhood of 0

(e.g., it does not for the lognormal distribution). We will see in Section 2.1 that the

condition always holds for transforms of EDFs.

Given this definition of the transform, the appropriate convolution operator for

CDFs (based on having the required mathematical and probabilistic properties) is

F ? G(z) =

∫ ∞

0

F (z − y)dG(y) =

∫ ∞

0

G(z − x)dF (x).

See (Rosenthal 2000, Section 9.4) for a careful derivation and proof of the fact that

F ?G is the CDF of Z = X + Y . In general, the integral must be taken in the sense

of Lebesgue-Stieltjes, since the Riemann-Stieltjes integral does not exist if for some

x and t, F has a discontinuity at x − t and G has a discontinuity at t. If densities

exist, it is easy to show that, as expected,

d

dx
F ? G(x) = f ? g(x) =

∫ ∞

0

f(z − y)g(y)dy.

Also assuming densities exist, using Fubini’s theorem and the change of variable
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z = x+ y it can be shown fairly easily that

TF?G(s) =

∫ ∞

0

e−sz d

dz

[
∫ ∞

0

F (z − y)g(y)dy

]

dz

=

[
∫ ∞

0

e−sxf(x)dx

] [
∫ ∞

0

e−syg(y)dy

]

= TF (s)TG(s). (1.19)

Using a more abstract version of Fubini’s theorem (Saks 1937, Theorem 8.1) this can

be shown (less easily) without the assumption of densities.

From (1.18), (1.19) and properties of the integral we see that transforms of CDFs

satisfy

Linearity : TαF+βG = αTF + βTG.

Convolution: TF?G = TF TG.

From (Billingsley 1979, Section 30), they also satisfy

Uniqueness: If T(s) converges in a neighborhood −δ < s < δ, δ > 0, it defines

a probability distribution uniquely up to sets of measure zero.

These are sufficient to show that these transforms satisfy the reduction rules in

Section 1.3. Thus the assumption of densities in Section 1.3 entails no real loss of

generality—we can operate with transforms of distributions as if they were the trans-

forms of pdfs, though they may actually be transforms with respect to a Lebesgue-

Stieltjes measure.

More detailed proofs of transform properties can be found in many texts on

measure-theoretic probability; e.g., (Billingsley 1979), (Chung 2001) or (Rosenthal

32



Chapter 1. Introduction

2000). Proofs and discussion of properties of the Riemann-Stieltjes and Lebesgue-

Stieltjes integrals can be found in (Saks 1937), (Widder 1946), or in a more expository

fashion in (Burk 2007).

Though the theory above is palatable, operating with transforms of non-smooth

functions can create computational difficulties; in particular, as we will see in Section

2.2.2, it complicates numerical transform inversion. An alternative is to develop

smooth approximations to distributions with point masses. It is easy to see that a

scalar multiple of the pdf of a Normal(µ, 1
n
) density, α

√

n
2π

exp
[

(t−µ)2

2n

]

, converges to

a point with probability mass α at µ as n→ ∞; by using such functions a distribution

with continuous and discrete components (or only discrete components, such as an

EDF) that is supported on (−∞,∞) can be approximated with arbitrary precision

by a continuous distribution. (For distributions supported on [0,∞), a function that

is zero to the left of the origin must be used.) This is similar to the operation of

kernel smoothing (Silverman 1986) applied to a set of sample points, and will be

revisited in Section 2.2 when we discuss empirical mass functions.

1.5 Overview of nonparametric flowgraph models

Approximate solutions for the flowgraph models discussed in Section 1.3 can be found

without assuming parametric families for holding time distributions. This is done

by replacing parametric transforms, which are exact expectations of the transform

kernel with respect to parametric distributions, with empirical versions, which are

sample averages of the transform kernel. Empirical transforms can also be viewed

as integral transforms with respect to the EDF; by substituting the Kaplan-Meier

estimator for the EDF, empirical transforms can then be based on sample data

subject to censoring.
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Having developed empirical versions of the transforms, the remainder of the

methodology is essentially unchanged, since empirical transforms can be combined

using Mason’s rule and the resulting transform inverted numerically (though the

details of the inversion present added difficulties).

Figure 1.6 shows an overview comparing the parametric and nonparametric ap-

proaches.

Figure 1.6: Comparison of parametric and nonparametric flowgraph modeling

A variation on this theme is semiparametric analysis. If we assume paramet-

ric distributions for some transitions and not others, the flow of the nonparametric

method allows the two types of transforms to be mixed in the Mason’s rule com-

putation. This may produce a more accurate result and reduce the computation

time.

There are several difficulties with the nonparametric method. One is computa-

tional: the complexity of the computation to invert the first-passage transform may
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be several orders of magnitude greater than in the parametric case. Another is the

accuracy of numerical estimates based on small samples. There are also a number of

inferential issues such as consistency of the nonparametric estimate and the ability

to develop confidence bounds for the estimate. These are all explored in Chapter 2.
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Methods and Analysis

This Chapter is the core of the dissertation, containing descriptions of methods we

developed for nonparametric flowgraphs, analysis of results, and proofs supporting

the methods. Computer code used for these methods is described in Appendix A.

2.1 Empirical transforms

Empirical transforms were briefly mentioned in Section 1.5. Their properties will

be explored in detail here, and some new results proved that are important for the

problem at hand.

We will call a transform defined as in (1.18), based on a member of a parametric

family of distribution or density functions expressed in closed form, an exact or

parametric transform. Given a random sample (the basis sample) T1, . . . , Tn with Ti

distributed according to F , the empirical (or sample) transform corresponding to

the exact transform T with kernel ψ is

T̃F (s) = En [ψ(T, s)] =

∫

[0,∞)

ψ(t, s) dFn(t) =
1

n

n
∑

i=1

ψ(Ti, s), (2.1)
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where Fn is the empirical distribution function (EDF) of the basis sample. We will

show below that T̃F has the linearity, convergence and convolution properties that

one expects of an integral transform. Note that T̃F is the exact transform of the

EDF of its basis sample.

As an example, corresponding to the Laplace transform

L(s) = E[e−sT ] =

∫

[0,∞)

e−st dF (t)

is the empirical Laplace transform (ELT)

L̃(s) = En[e−sT ] =

∫

[0,∞)

e−st dFn(t) =
1

n

n
∑

i=1

e−sti .

An absolutely precise notation would include n as a subscript or argument in expres-

sions like T̃(s) to indicate the sample size on which the empirical transform is based.

To avoid a confusing plethora of symbols attached to T̃ we usually leave it out where

the sample size is unimportant or evident from the context.

Empirical versions of the CF (Parzen 1962; Feuerverger & Mureika 1977), MGF

(Csörgő 1982) and LT (Csörgő 1990) have been studied. An important point in

the literature is that by the strong law of large numbers, the empirical transforms

converge uniformly (in s) and almost surely to the transforms of the sampled dis-

tribution as n → ∞. The literature also provides large sample results for the error

in approximation, but only for samples drawn directly from a distribution; these are

not useful for flowgraphs, where the resultant empirical transform is a complicated

function of samples from several holding time distributions.

The tradeoff between parametric and empirical transforms is illustrated by an

evaluation of two scenarios for estimating the MGF based on sample data (Gbur

and Collins 1989): hypothesize a parametric density model f(t; θ), estimate θ as

θ̂ using maximum likelihood, then estimate the MGF as M̂(s) =
∫

estf(t; θ̂) dt; or

estimate the MGF as the empirical moment generating function (EMGF) M̃(s) =
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n−1
∑n

i=1 e
sti . The first method (measured by mean squared error) was superior

where the correct parametric family was used—not surprising given that this specifi-

cation adds significant information. In the case where an incorrect parametric family

was used, performance was significantly improved using the EMGF. Basically, meth-

ods using empirical transforms are immune from model specification errors. (A prac-

tical example of avoiding a model error by using nonparametric flowgraph modeling

is presented in Section 3.3.1.)

The next section shows that empirical transforms have the linearity, convolution,

and uniqueness properties described in Section 1.4.5. The following two sections

address two questions that must be answered in order to fully justify the use of

empirical transforms in the solution of flowgraph models:

• Suppose we compute an exact transform T(s) according to Mason’s rule (1.3)

from the exact transforms of known holding time distributions. As shown in

Section 1.4, this is the transform of the first passage distribution functionGij(t).

Let T̃(s) be the corresponding transform computed from empirical transforms

based on holding time samples. How does T̃(s) relate to a hypothetical empir-

ical transform whose basis is a sample of times from Gij(t)?

• Is T̃(s) a consistent and unbiased estimator of T(s)?

Section 2.1.4 then extends empirical transforms to allow basis samples that are cen-

sored.

2.1.1 Existence and convolution of empirical transforms

We always make the following assumptions regarding the transform kernel: ψ(t, s) is

continuous in both of its arguments for real t ∈ [0,∞) and s ∈ (−∞,∞), ψ(t, 0) = 1

for all 0 ≤ t < ∞, and ψ(t1, s)ψ(t2, s) = ψ(t1 + t2, s). All of these conditions
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are satisfied by the Fourier kernel eist, the Laplace kernel e−st, and the moment

generating kernel est. (In fact, if we add that ψ is differentiable in t, these conditions

determine that the kernel must have the form e ξt for ξ ∈ C—see Hardy (1952)

Section IX.213. See also the theorem cited from Lukacs on page 14.)

It follows from the kernel properties that for 0 ≤ t < ∞, ψ(t, s) is bounded

for s in any closed interval [−M,M ], 0 < M < ∞. Thus since T̃F (s) is a finite

sum, it converges on every closed interval and defines a probability distribution

uniquely up to sets of measure zero, namely the EDF for the given sample (Billingsley

1979, Section 30). The required linearity properties also follow immediately from the

properties of finite sums.

The next result is well-known in the sense that, as mentioned in Section 1.4.5, con-

volution properties of transforms based on distribution functions (including EDFs)

may be shown using Lebesgue integration and Fubini’s theorem. However, the fol-

lowing proof is direct and computational, and provides more insight into the behavior

of empirical transforms.

Lemma 2.1.1 (Convolution) Given non-negative RVsX and Y with CDFs F and

G, and Z = X+Y , suppose {x1, . . . , xn} is a random sample from F and {y1, . . . , ym}
is a random sample from G, with corresponding EDFs

Fn(x) =
1

n

n
∑

i=1

I[0,x](xi), Gm(y) =
1

m

m
∑

j=1

I[0,y](yi).

Let T̃F (s) and T̃G(s) be the corresponding empirical transforms, and T̃F?G(s) the

transform of the convolution Fn ? Gm(z). Then T̃F?G(s) = T̃F (s)T̃G(s).
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Proof: The convolution of the EDFs is

Fn ? Gm(z) =

∫

[0,∞)

Fn(z − y)dGm(y)

=

∫

[0,z)

Fn(z − y)dGm(y) because Fn(z − y) = 0 for z − y < 0

=
1

nm

∫

[0,z)

[

n
∑

i=1

I[0,z−y](xi)

]

I{y1,...,ym}(y)

=
1

nm

n
∑

i=1

∫

[0,z)

I[0,z−y](xi)I{y1,...,ym}(y)

=
1

nm

n
∑

i=1

m
∑

j=1

I[0,z−yj ](xi)

=
1

nm

n
∑

i=1

m
∑

j=1

I[0,z](xi + yj).

The interchange of summation and integration is justified by the finiteness of the

sums. The last line, as expected, is the EDF for Z = X + Y based on the set of all

possible sums xi + yj.

Now since the Lebesgue-Stieltjes measure associated with Fn?Gm is a point mass

of 1/nm at every point xi + yj, the transform of the convolution is

T̃F?G(s) = TFn?Gm
(s)

=

∫

[0,∞)

ψ(z, s)d [Fn ? Gm(z)]

=

∫

[0,∞)

ψ(z, s)
1

nm
I{xi+yj}(z)

where {xi + yj} ≡ {x1 + y1, . . . , x1 + ym, . . . , xn + ym}

=
1

nm

n
∑

i=1

m
∑

j=1

ψ(xi + yj, s)

=
1

nm

n
∑

i=1

m
∑

j=1

ψ(xi, s)ψ(yj, s)
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=

(

1

n

n
∑

i=1

ψ(xi, s)

)(

1

m

m
∑

j=1

ψ(yj, s)

)

= T̃F (s)T̃G(s)

thus proving that the transform of a convolution of EDFs is the product of the trans-

forms of the EDFs.

Lemma 2.1.5 in the next section proves a related result, that any finite product

of empirical transforms T̃i(s) is the empirical transform of the convolution of the

basis samples for the T̃i(s).

2.1.2 First passage sample theorem

In this section we prove an important theorem regarding the construction of sample

paths for first passages in flowgraphs. Despite the length of the proof its conclusion

is intuitively plausible, so we provide an overview here.

Suppose we are interested in the first passage from i to j. Let Rij be the set

of relevant states for the passage; i.e., i, j ∈ Rij, and k ∈ Rij if there exists a path

i → · · · → k → · · · → j of nonzero probability. If the flowgraph has feedback loops,

the set Rij of all such paths will contain paths in which transitions that are part

of loops may occur an arbitrary number of times; thus in general Rij is countably

infinite. For example, for the repairable system flowgraph in Figure 1.1 (page 3),

R1 3 contains paths 1 → 3, 1 → 2 → 3, 1 → 2 → 1 → 2 → 3, 1 → 2 → 1 → 2 →
1 → 2 → 3, etc.

Further suppose we have a sample of holding times for every adjacent-state tran-

sition in any path in Rij. A first passage sample path corresponding to a path in

Rij is an ordered collection {tik1 , . . . , tknj} with each tkmkm+1 being a sample holding
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time for the corresponding km → km+1 transition in the relevant path (again, this

collection may be arbitrarily large). Then tij =
∑

km
tkmkm+1 is a sample first passage

time from i to j. In principle, we could sample from Rij according to the distribution

of path probabilities, then sample the tkmkm+1 from the adjacent-state holding time

samples, in order to construct a bootstrap sample of first passage times.

Now given that we can plug empirical transforms into Mason’s rule to compute a

first-passage transmittance, is this transmittance also an empirical transform? The

theorem answers this question affirmatively: it is an empirical transform based on

a bootstrap sample like the one just described. Aside from providing a nice logical

consistency, this bears on the question of what kind of statistical inferences we can

make using nonparametric flowgraph solutions.

Proving the theorem involves several steps:

• Lemma 2.1.2: Sums and products of transforms, and quotients of the form

1/[1 − T(s)], are transforms.

• Lemma 2.1.3: Any Mason’s rule expression based on transforms of distributions

is equal to the transform of a distribution. From the proof in Section 1.4.3,

we know that if the base transforms are transforms of distributions for holding

times between adjacent states in all paths from i to j, then the result is the

transform of the first passage time distribution Gij(t).

• Lemma 2.1.4 and Corollary 2.1.1: A mixture of empirical transforms (corre-

sponding to transitions in parallel) can be approximated with arbitrary pre-

cision by a single empirical transform based on a sample constructed from

holding time samples for the parallel transitions. The same conclusion holds

for any linear combination of empirical transforms with positive coefficients.

• Lemma 2.1.5: A product of empirical transforms (corresponding to transitions
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in series) is exactly equal to a single empirical transform based on a sample

constructed from holding time samples for the serial transitions.

• Lemma 2.1.6: A quotient of the form 1/[1− T̃(s)] representing a flowgraph loop

can be approximated with arbitrary precision by a single empirical transform

based on a sample constructed from samples of holding times for the loop

transitions.

• Theorem 2.1.1: The result of any Mason’s rule computation on empirical trans-

forms can be approximated with arbitrary precision by an empirical transform

based on a bootstrap sample constructed from the holding time samples on

which the individual transforms are based.

Note that Lemmas 2.1.2 and 2.1.3 are true for exact as well as empirical transforms;

the remaining results are applicable only to empirical transforms.

For all these results “transform” unqualified will mean “transform of the same

type as the component transforms.” “Transform” unqualified will also be the trans-

form of any function, versus “transform of a distribution,” which will mean the

transform of a distribution function or its density.

Recall from Section 2.1.1 (p. 38) that we assume the following properties of the

transform kernel: ψ(t, s) is continuous in both of its arguments for real t ∈ [0,∞)

and s ∈ (−∞,∞), ψ(t, 0) = 1 for all 0 ≤ t < ∞, and ψ(t1, s)ψ(t2, s) = ψ(t1 + t2, s).

As a consequence, the transforms possess the linearity and convolution properties.

It is also assumed throughout that the argument s is, first of all, restricted to

an interval (γ1, γ2), γ1 < 0 < γ2, in which all the transforms of interest converge.

It is shown below that the interval can be further restricted so that for 0 ≤ p < 1,

|pT(s)| < 1 for s ∈ (γ1, γ2). As will be seen in Section 2.2, for practical purposes

this restriction on s is without consequence, since the values of the transform that
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we need for numerical inversion lie within the restricted interval.

A typical example for a term 1/[1 − pT(s)], which occurs in Mason’s rule com-

putations, is shown in Figure 2.1; p = .5 and T(s) = 1/(1 + 3s)2, s > −1/3, is the

LT of a gamma(2,3) distribution. On the left is a plot of pT(s), which reaches 1

at approximately −0.0976. On the right is a plot of 1/[1 − pT(s)], with a pole at

approximately −0.0976. In this case, we can take (γ1, γ2) to be, e.g., (−.0975,∞).

This is a typical interval for the LT; for the MGF, the plot is reflected in the ordinate,

the pole is to the right of the origin, and γ1 = −∞.
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Figure 2.1: Convergence intervals

Lemma 2.1.2 (Transform properties) Suppose T1(s),T2(s), . . . ,Tn(s), n < ∞,

are transforms of distributions. Then for s ∈ (γ1, γ2) as defined in part (1),

1. There is an interval (γ1, γ2), γ1 < 0 < γ2, where for all of the i, if 0 ≤ p < 1,

then |pTi(s)| < 1 for s ∈ (γ1, γ2).

2. For αi ∈ R,
∑

i αiTi(s) is a transform.

3.
∏

i Ti(s) is the transform of a distribution.

4. The constant 1 is the transform of a distribution.

5. For 0 < p < 1, 1/[1 − pTi(s)] is a transform.
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This Lemma holds for the CF, the LT and the MGF, as well as their empirical

versions.

Proof:

1. |Ti(0)| ≤
∫

[0,∞)
|ψ(t, 0)|dF (t) = 1 since |ψ(t, 0)| = 1 by assumption, so |pTi(0)| <

1; the result for each i and an interval (γi1 , γi2), γi1 < 0 < γi2 follows by conti-

nuity. Then take (γ1, γ2) = ∩n
i=1(γi1 , γi2), which is an interval with length > 0

by the finiteness of n.

2. For each αi, if Ti is the transform of fi then αiTi(s) is the transform of αifi;

the result then follows from the linearity of the transform.

3. This follows by recursive application of the convolution property, and the convo-

lution theorem for sums of random variables (Casella & Berger 2002, Theorem

5.2.9).

4.
∫

ψ(t, s)δ(t)dt = 1, where δ(t)dt is Dirac measure at 0, so 1 is the transform

of the distribution P0 with a point mass of 1 at the origin. In particular,

since a sample from P0 must be {0, 0, . . . , 0}, the empirical transform is T̃(s) =

n−1
∑n

i=1 ψ(0, s) = 1.

5. By (1) |pTi(s)| < 1 for s ∈ (γ1, γ2), therefore 1/[1−pTi(s)] can be expanded in

a uniformly and absolutely convergent geometric series
∑∞

i=0[pTi(s)]
i. Let the

partial sums be fn(s) =
∑n

i=0[pTi(s)]
i. By (2) and (3), each fn is a transform;

since the series converges uniformly, fn(s) → f(s), a continuous function, as

n → ∞. Then for the CF it follows by the well-known continuity theorem

(Lukacs 1960, Theorem 3.6.1) that f(s) is a CF; for the LT and MGF, the result

follows by the analogous continuity theorem for Laplace-Stieltjes transforms

(Feller 1971, Chapter XIII, Theorem 2a).
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Henceforth we always implicitly assume s ∈ (γ1, γ2), as defined in part (1); e.g.,

if an inequality is asserted for an expression depending on s, it is asserted for all

s ∈ (γ1, γ2).

Lemma 2.1.3 (Mason’s rule equals a transform) Any Mason’s rule expression

is equal to the transform of a distribution function.

Proof: From Section 1.3 we recall Mason’s rule:

T(s) =

∑

k

{

Tk(s)
[

1 +
∑

m(−1)mLk̄
m(s)

]}

1 +
∑

m(−1)mLm(s)
. (2.2)

T(s) is the first-passage transmittance between i and j, the states of interest. Tk(s)

is the transmittance of the kth direct path (path with no loops) from i to j. Lk̄
m(s)

in the numerator is the sum of transmittances of all mth-order loops not touching

the kth direct path (i.e., having no states in common with it). A first-order loop is a

closed path with the same start and end states that does not pass through any state

more than once. An mth-order loop consists of m first-order loops with no points in

common; the transmittance of anmth-order loop is the product of the transmittances

of the first-order loops. Lm(s) in the denominator is the sum of transmittance over

all mth-order loops. Note that every Lk̄
m(s) in the numerator also occurs in the

denominator, since Lm(s) includes every mth-order loop.

Dropping the argument s for brevity and letting TLj be the transmittance of the

jth first-order loop, the denominator can be expanded as

1−(TL1+TL2+TL3+· · · )+(TL1TL2+TL1TL3+TL2TL3+· · · )−(TL1TL2TL3+· · · )+· · ·

which factors into

(1 − TL1)(1 − TL2)(1 − TL3) · · ·
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Letting Tk̄
Lj be the transmittance of the jth first-order loop not touching the kth

path, the kth term in the Mason’s rule numerator summation can be expanded as

Tk[1 − (Tk̄
L1 + Tk̄

L2 + Tk̄
L3 + · · · ) + (Tk̄

L1T
k̄
L2 + Tk̄

L1T
k̄
L3 + Tk̄

L2T
k̄
L3 + · · · )

−(Tk̄
L1T

k̄
L2T

k̄
L3 + · · · ) + · · · ]

= Tk(1 − Tk̄
L1)(1 − Tk̄

L2)(1 − Tk̄
L3) · · ·

Since every factor 1−Tk̄
Lj in the numerator occurs also as a factor in the denominator,

it can be canceled, and (2.2) reduces to a sum of the form

T(s) =
∑

k

Tk(s)
∏

j[1 − Tk
Lj(s)]

. (2.3)

where Tk
Lj(s) is the the transmittance of the jth first-order loop that does touch the

kth path.

Since a loop does not pass through any state more than once, it consists of

transitions in series and its transmittance is a product of transforms of distributions

multiplied by probabilities 0 ≤ pi ≤ 1, thus by Lemma 2.1.2 every Tk
Lj(s) is pT(s), the

transform of a distribution multiplied by a number p =
∏

i pi ≤ 1. By assumption,

the probability of exiting the loop is nonzero so at least one of the pi < 1. Then

p < 1, and by (5) of Lemma 2.1.2 the factors 1/[1 − Tk
Lj(s)] in (2.3) are transforms

pk
LjT

k
Lj(s), thus (2.3) becomes

T(s) =
∑

k

Tk(s)
∏

j

pk
LjT

k
Lj(s). (2.4)

A path consists of transitions in series, so its transmittance is also the product

of transforms of distributions and probabilities pi ≤ 1, thus by Lemma 2.1.2 each

Tk(s) is the transform of a distribution multiplied by a number ≤ 1. Then applying

Lemma 2.1.2 from the inside out to (2.4), it is clear that every term in the product
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is the transform of a distribution multiplied by a number ≤ 1, and likewise for the

outer summation, so T(s) is the transform of a distribution multiplied by a number

α ≤ 1.

To prove the Lemma it suffices to show that α = 1. Since (2.4) holds for s ∈
(γ1, γ2) it holds for s = 0 and we have

α =
∑

k

pk

∏

j

pk
Lj (2.5)

where pk is the probability of entering the kth path from i to j and pk
Lj is the prob-

ability of traversing the jth loop touching the kth path. This reduces the problem

to the simpler but equivalent problem of computing probabilities in the embedded

Markov chain of the semi-Markov process (Çinlar 1975, Chapter 10). By the way

the first passage problem is set up (see Section 1.4.1) j is an absorbing state and

every other state in Rij is transient. Since (2.5) accounts for all paths from i to j,

it follows by a standard result in Markov chains (Kemeny & Snell 1960, Theorem

3.1.1) that the total probability over all the paths is α = 1.

Lemma 2.1.4 (Mixtures of empirical transforms) A finite mixture of empiri-

cal transforms based on independent samples can be approximated with arbitrary

precision by an empirical transform based on a single sample from the correspond-

ing mixture distribution. More precisely, suppose S1 = {t11, . . . , t1n1
}, . . . , Sk =

{tk1, . . . , tknk
} are random samples from distributions F 1, . . . , F k. Based on each sam-

ple construct the empirical transform with kernel ψ(t, s)

T̃j(s) =

∫

[0,∞)

ψ(t, s) dF j
nj

(t) =
1

nj

nj
∑

i=1

ψ(tji , s), j = 1, . . . , k

where F j
nj

is the EDF based on the jth sample. Let

T̃(s) =
k
∑

i=1

pi T̃i(s) 0 < pi < 1,
∑

i

pi = 1.
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(If pi = 0 it can be dropped from the summation, and the Lemma is trivially true

if any pi = 1.) Then given ε > 0 there exists a single sample S∗
ε = {t∗1, . . . , t∗nε

},
constructed from the Si, such that

∣

∣

∣
T̃(s) − T̃∗(s)

∣

∣

∣
=

∣

∣

∣

∣

∣

T̃(s) − 1

nε

nε
∑

i=1

ψ(t∗i , s)

∣

∣

∣

∣

∣

< ε. (2.6)

Furthermore, S∗
ε is a sample (but not a random sample) from the mixture distribution

∑k
i=1 piF

k.

Proof: By the linearity properties of the Riemann-Stieltjes integral (Widder 1946,

Theorem 5a)

k
∑

i=1

pi T̃i(s) =
k
∑

i=1

∫

[0,∞)

ψ(t, s) d
[

piF
i
ni

(t)
]

=

∫

[0,∞)

ψ(t, s) d

[

k
∑

i=1

piF
i
ni

(t)

]

. (2.7)

By definition of a mixture distribution, a sample from F (t) =
∑k

i=1 piF
i(t) con-

sists of elements ti sampled from F 1, . . . , F k with probability p1, . . . , pk. F̃ (t) =
∑k

i=1 piF
i
ni

(t) is also a mixture distribution (based on EDFs), so a sample from

it consists of elements t∗i resampled from the samples S1, . . . , Sk with probability

p1, . . . , pk. If we could construct a sample S∗ with the property that a random el-

ement t∗i had exactly the probability pj of being drawn from Sj, then the lemma

would be proved with a zero approximation error in (2.6). We will show instead that

the approximation error can be made arbitrarily small by making the errors in the

sampling probabilities arbitrarily small.

To construct S∗
ε we seek integers Ni with the property that by combining Ni

copies of each Si,

N1n1
∑k

i=1Nini

≈ p1, . . . ,
Nknk

∑k
i=1Nini

≈ pk. (2.8)
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By assuming equality in (2.8) a system of linear equations is obtained for for the Nj:

Njnj = pj

k
∑

i=1

Nini j = 1, . . . , k

0 = N1n1p1 + . . .−Njnj(1 − pj) + . . . Nknkpk (2.9)

with coefficient matrix

M =

















−n1(1 − p1) n2p2 . . . nkpk

n1p1 −n2(1 − p2) . . . nkpk

...
...

n1p1 n2p2 . . . −nk(1 − pk)

















.

By a standard property of determinants,

det(M) = n1n2 · · ·nk det

















−(1 − p1) p2 . . . pk

p1 −(1 − p2) . . . pk

...
...

p1 p2 . . . −(1 − pk)

















.

By applying elementary row operations and using the fact that
∑

i pi = 1, this

last matrix can be transformed to one whose last row is all zeros, so det(M) = 0.

Since the system (2.9) is homogeneous and rank(M) < k, it possesses infinitely

many solutions for the Nj. In particular, given any solution N1 = ν1, . . . , Nk = νk,

N1 = λν1, . . . , Nk = λνk is also a solution for any λ ∈ R.

Of course, there is no guarantee that (2.9) has any solution in integers, so in

general ν1, . . . , νk is not a feasible set of replication factors for the samples Si. To

obtain integer replication factors, we use bλν1c, . . . , bλνkc, where bλνic is the greatest

integer less than or equal to λνi and λ is an integer large enough to make the error
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small in the approximation

pj ≈ p̃j =
bλνjcnj

∑k
i=1bλνicni

. (2.10)

Using the fact that λνjnj−nj ≤ bλνjcnj ≤ λνjnj, so
∑

i λνini−k nmax ≤
∑

ibλνicni ≤
∑

i λνini, where nmax = maxi(ni), the approximation is bounded by

λνjnj − nj
∑

i λνini

≤ p̃j ≤ λνjnj
∑

i λνini − k nmax

λνjnj
∑

i λνini

− nj
∑

i λνini

≤ p̃j ≤ λνjnj
∑

i λνini

+
k nmaxλνjnj

(
∑

i λνini) (
∑

i λνini − k nmax)

pj −
nj

∑

i λνini

≤ p̃j ≤ pj +
k nmaxpj

∑

i λνini − k nmax

.

It is clear that the fractions on the left and right of the last line go to 0 as λ → ∞,

so the error |pj − p̃j| can be made as small as desired by taking λ large enough.

Now let Ni = bλνic and construct the sample S∗
ε of points t∗i as described above,

leaving aside for the moment the question of a lower bound on λ that will satisfy

(2.6) for a given ε. By construction we can partition S∗
ε , which is a sample from

the distribution
∑k

i=1 p̃iF
i
ni

(t), into subsamples S1∗
ε , . . . , S

k∗
ε , where Sj∗

ε has points tj∗i

and consists of Ni replications of Sj, so S∗
ε = ∪N1S1∪· · ·∪Nk

Sk. Let nε =
∑k

i=1Nini,
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then the empirical transform based on S∗
ε is

T̃∗(s) =
1

nε

nε
∑

i=1

ψ(t∗i , s)

=
1

nε

{

N1n1
∑

i=1

ψ(t1∗i , s) + . . . +

Nknk
∑

i=1

ψ(tk∗i , s)

}

(2.11)

=
N1n1

nε

1

N1n1

N1n1
∑

i=1

ψ(t1∗i , s) + . . . +
Nknk

nε

1

Nknk

Nknk
∑

i=1

ψ(tk∗i , s)

= p̃1
1

N1n1

N1n1
∑

i=1

ψ(t1∗i , s) + . . . + p̃k
1

Nknk

Nknk
∑

i=1

ψ(tk∗i , s)

= p̃1
1

N1n1

N1

n1
∑

i=1

ψ(t1i , s) + . . . + p̃k
1

Nknk

Nk

nk
∑

i=1

ψ(tki , s) (2.12)

= p̃1
1

n1

n1
∑

i=1

ψ(t1i , s) + . . . + p̃k
1

nk

nk
∑

i=1

ψ(tki , s)

= p̃1T̃1(s) + . . . + p̃kT̃k(s). (2.13)

In this series of equations (2.11) follows from the decomposition of S∗
ε into S1∗

ε , . . . , S
k∗
ε ;

(2.12) follows from the decomposition of each Sj
ε into Nj copies of Sj, assuming that

the ordering of sample points has been preserved. We now determine the error in

(2.13) relative to T̃(s).

By assumption |T̃∗
i (s)| < 1 for s ∈ (γ1, γ2), for i = 1, . . . , k. Now given ε > 0,
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choose λ in (2.10) such that maxi |pi − p̃i| < ε/k. Then from (2.13),

∣

∣

∣
T̃∗(s) − T̃(s)

∣

∣

∣
=

∣

∣

∣

∣

∣

k
∑

i=1

p̃iT̃i(s) −
k
∑

i=1

piT̃i(s)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
∑

i=1

(p̃i − pi)T̃i(s)

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

k
∑

i=1

(p̃i − pi)

∣

∣

∣

∣

∣

≤ kmax
i

|p̃i − pi|

< ε

which completes the proof.

Of course, the construction of the sample S∗
ε by arbitrarily large replications of the

original samples is merely an artifice to facilitate the proof. In practice, construction

of a synthetic sample from a mixture distribution would be done using the standard

algorithmic methods of computational statistics. E.g., given the mixture distrib-

ution function
∑k

i=1 piF
i(t) with corresponding component samples S1, . . . , Sk,

generate a uniform(0, 1) random variate u; if 0 < u ≤ p1, resample S1 into S∗, if

p1 < u ≤ p1 + p2, resample S2 into S∗, and so forth.

S∗
ε is a sample, but not a random sample, from the mixture distribution

∑k
i=1 piF

k,

since the only values that can occur are those that are sums of the finite sets of values

in S1, . . . , Sk. In addition, in practical situations the pi are estimated from data or

elicited from subject-matter experts, so in general
∑k

i=1 piF
k is not the “true” mix-

ture distribution. The theorem only asserts a bound for the approximation based on

the given pi.

Corollary 2.1.1 (Linear combinations of empirical transforms) Up to a con-

stant multiple, the conclusion of Lemma 2.1.4 remains true for finite linear combi-
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nations of empirical transforms with positive coefficients.. I.e., suppose

T̃(s) =
k
∑

i=1

αi T̃i(s) α ∈ R, α > 0, η =
k
∑

i=1

αi.

Then given ε > 0 there exists a single sample S∗
ε = {t∗1, . . . , t∗nε

}, constructed from

the Si, such that

∣

∣

∣
T̃(s) − η T̃∗(s)

∣

∣

∣
=

∣

∣

∣

∣

∣

T̃(s) − η

nε

nε
∑

i=1

ψ(t∗i , s)

∣

∣

∣

∣

∣

< ε.

Proof:

T̃(s) =
k
∑

i=1

αi T̃i(s)

= η
k
∑

i=1

αi

η
T̃i(s)

1

η
T(s) =

k
∑

i=1

αi

η
T̃i(s)

since αi/η ≤ 1 and
∑

i αi/η = 1, it follows by Lemma 2.1.4 that there exists T̃∗(s),

based on S∗
ε , such that

∣

∣

∣

∣

1

η
T̃(s) − T̃∗(s)

∣

∣

∣

∣

< ε

and the conclusion of the corollary follows.

The next lemma proves a similar result for finite products of empirical transforms.

Note that Lemma 2.1.5 provides an exact result, rather than an approximation.

Lemma 2.1.5 (Products of empirical transforms) Suppose, as in Lemma 2.1.4,

that T̃j(s), j = 1, . . . , k are empirical transforms with kernel ψ(t, s), based on random

samples S1 = {t11, . . . , t1n1
}, . . . , Sk = {tk1, . . . , tknk

} from distributions F 1, . . . , F k. Let
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T̃(s) =
∏k

i=1 T̃i(s). Then there exists a single sample S∗ = {t∗1, . . . , t∗n}, constructed

from the Si, such that

T̃∗(s) =
1

n

n
∑

i=1

ψ(t∗i , s) = T̃(s).

Proof:

k
∏

i=1

T̃i(s) =

(

1

n1

n1
∑

i=1

ψ(t1i , s)

)

· · ·
(

1

nk

nk
∑

i=1

ψ(tki , s)

)

=
1

n1 · · ·nk

n1
∑

ii=1

· · ·
nk
∑

ik=1

ψ(tii1 + · · · + tkik , s)

= T̃∗(s)

where T̃∗(s) is the empirical transform based on S∗, n = n1 · · ·nk and S∗ contains

all possible sums tii1 + · · · + tkik of one element from each of S1, . . . , Sk.

For every loop such as the 1 → 1 loop in Figure 2.2 there will be a loop factor

1/[1 − T̃L(s)] in the simplified Mason’s rule expression (2.3) of Lemma 2.1.3. The

next lemma shows the approximation of a loop factor by an empirical transform

based on a single sample of holding times in the loop. T̃L(s) = p T̃L(s) where p is

the probability of traversing the loop and T̃L(s) is an empirical transform based on

a sample of holding times in the loop (and in general, T̃L(s) is the product of several

transforms over adjacent-state transitions in the loop).

Figure 2.2: Loop transmittance
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Lemma 2.1.6 (Empirical transform loop factors) Suppose that T̃(s) is an em-

pirical transform based on a random sample S = {t1, . . . , tn} from a distribution F ,

and 0 < p < 1. Then given ε > 0 there exists a positive number η ∈ R and an

empirical transform T̃∗(s) based on a single sample S∗ = {t∗1, . . . , t∗N} constructed

from S such that

∣

∣

∣

∣

η T̃∗(s) − 1

1 − p T̃(s)

∣

∣

∣

∣

< ε.

Proof: As in part (5) of Lemma 2.1.2 the loop factor can be expanded in a convergent

geometric series:

1

1 − p T̃(s)
= 1 + p T̃(s) + p2 T̃(s)2 + · · · =

∞
∑

i=0

pi T̃(s)i.

Let S0 = {0, 0, . . . , 0} (n replications of 0), S1 = S, and Sn = S × S × · · · × S (n-

fold Cartesian product). By part (4) of Lemma 2.1.2 the constant 1 is an empirical

transform based on S0. By hypothesis T̃(s) is an empirical transform based on S1.

For i > 1, by Lemma 2.1.5 T̃(s)i is exactly equal to an empirical transform T̃∗
i (s),

which can readily be seen to be based on a sample S∗
i consisting of sums over the

elements of Si. I.e., each element of Si is an ordered set of holding times for single

traversals of the loop, so a sum over it is a sample holding time for i traversals of

the loop. For i ≥ 1, pi is the probability of traversing the loop i times. Thus

1

1 − p T̃(s)
= 1 + p T̃∗

1(s) + p2 T̃2 ∗ (s) + · · · =
∞
∑

i=0

pi T̃∗
i (s).

Since the infinite sum converges absolutely there is an N such that for any ε > 0,

∣

∣

∣

∣

∣

∞
∑

i=0

pi T̃∗
i (s) −

N
∑

i=0

pi T̃∗
i (s)

∣

∣

∣

∣

∣

<
ε

2
.
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By Corollary 2.1.1 there exists a number η and an empirical transform T̃∗(s) based

on a single sample S∗
ε = {t∗1, . . . , t∗nε

} constructed from the Si, such that

∣

∣

∣

∣

∣

N
∑

i=0

pi T̃∗
i (s) − η T̃∗(s)

∣

∣

∣

∣

∣

<
ε

2
,

Then by the triangle inequality

∣

∣

∣

∣

∣

∞
∑

i=0

pi T̃∗
i (s) − η T̃∗(s)

∣

∣

∣

∣

∣

< ε, (2.14)

which proves the theorem.

To estimate the value of η, set s = 0 in (2.14):

∣

∣

∣

∣

∣

∞
∑

i=0

pi − η

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1

1 − p
− η

∣

∣

∣

∣

< ε

so η ≈ 1/(1 − p).

Since empirical transforms are genuine transforms (of their respective EDFs), we

know from Lemma 2.1.3 that if they are plugged into Mason’s rule, the result is the

transform of a distribution. The next Theorem shows that this is the transform of

an EDF constructed from a sample of first-passage times from Gij.

Theorem 2.1.1 (First passage sample theorem) Let Rij be the set of relevant

states for the passage i→ j. Let {T̃km(s)} be empirical transforms based on random

samples Skm = {tkm
1 , tkm

2 , . . . , tkm
nkm

} from transition time distributions Fkm between

adjacent states k,m ∈ Rij. Let T̃(s) be the transmittance for first passage from state

i to state j constructed according to Mason’s rule from the empirical adjacent-state

transmittances pkmT̃km(s), and let Gij be the true i → j first-passage distribution

function. Then T̃(s) = T̃(s) is the transform of a distribution, and given ε > 0 there
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exists an empirical transform T̃∗(s) based on a sample tij1 , t
ij
2 , . . . , t

h
N from Gij such

that |T̃(s) − T̃∗(s)| < ε.

Proof: The fact that T̃(s) = T̃(s) is the transform of a distribution follows imme-

diately from Lemma 2.1.3. From equation (2.3) in the proof of Lemma 2.1.3 we

have:

T̃(s) =
∑

k

T̃k(s)
∏

j[1 − T̃k
Lj(s)]

=
∑

k

T̃k(s)
∏

j

1

1 − T̃k
Lj(s)

.

Each loop transmittance T̃k
Lj(s) is a product of empirical transforms multiplied

by probabilities, so by Lemma 2.1.5 it is exactly equal to pk
LjT̃

k∗
Lj, where pk

Lj is the

product of the loop probabilities and T̃k∗
Lj is an empirical transform based on a sample

of sums of holding times over the loop. It then follows by Lemma 2.1.6 that for ε1 > 0,

there is an empirical transform T̃k∗
j (s) and a positive number ηk

j ∈ R such that

∣

∣

∣

∣

∣

1

1 − T̃k
Lj(s)

− ηk
j T̃

k∗
j (s)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

1 − pk
LjT̃

k∗
Lj

− ηk
j T̃

k∗
j (s)

∣

∣

∣

∣

∣

<
ε1
2
. (2.15)

The η’s depend only on the loop probabilities, which are constant for a given flow-

graph, and on ε1.

Now suppose |a1|, |a2| > ε > 0 and a∗1, a
∗
2 each differ from a1, a2, respectively, by

ε. Then

|a1a2 − a∗1a
∗
2| = |a1a2 − (a1 ± ε)(a2 ± ε)|

≤ |a1ε| + |a2ε| + ε2

≤ 3 max(a1, a2)ε

and a fortiori this holds if the difference is less than ε. It can be readily shown by

induction that under the same conditions on a1, a2, . . . , an,

|a1a2 · · · an − a∗1a
∗
2 · · · a∗n| ≤ (2n − 1) max

i
(ai)ε.
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It follows from this and (2.15) that if the range of the product over j is J ,

∣

∣

∣

∣

∣

J
∏

j=1

1

1 − T̃k
Lj(s)

−
J
∏

j=1

ηk
j T̃

k∗
j (s)

∣

∣

∣

∣

∣

< (2J − 1) max
j

(ηk
j )ε1. (2.16)

From Lemma 2.1.5 there is a transform T̃k∗(s) such that exact equality holds in

ηkT̃k∗(s) =
J
∏

j=1

ηk
j T̃

k∗
j (s)

where ηk =
∏

j η
k
j .

Each path transmittance T̃(s) is a product of empirical transforms multiplied by

probabilities, so by Lemma 2.1.5 it is exactly equal to pkT̃
∗
k, where pk is the product

of the path probabilities and T̃∗
k is an empirical transform based on a sample of sums

of holding times over the path. Then from (2.16), since |pkT̃
∗
k| < 1, if the range of

the sum over k is K,

∣

∣

∣

∣

∣

∑

k

T̃k(s)
∏

j

1

1 − T̃k
Lj(s)

−
K
∑

k=1

pkT̃
∗
k(s)η

kT̃k∗(s)

∣

∣

∣

∣

∣

< K(2J − 1) max
j, k

(ηk
j )ε1.(2.17)

Now set ε1 = ε/2K(2J − 1) maxj, k(η
k
j ) so the righthand side of the inequality (2.17)

becomes ε/2. By Lemmas 2.1.5 and 2.1.4 there is an empirical transform T̃∗(s) (the

lack of a constant multiplier follows from Lemma 2.1.3) such that

∣

∣

∣

∣

∣

K
∑

k=1

pkT̃
∗
k(s)η

kT̃k∗(s) − T̃∗(s)

∣

∣

∣

∣

∣

<
ε

2

so by the triangle inequality

∣

∣

∣

∣

∣

∑

k

T̃k(s)
∏

j

1

1 − T̃k
Lj(s)

− T̃∗(s)

∣

∣

∣

∣

∣

< ε

and the precision claim of the theorem is proved.
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To show that the sample on which T̃∗(s) is based is a sample from Gij, we unwind

the result as follows. From Lemma 2.1.6, the approximation to each term 1/[1 −
T̃k

Lj(s)] is based on a sample of holding times for 0, 1, 2, . . . traversals of the jth

loop touching the kth path. From Lemma 2.1.5, the convolution represented by

the product is based on the sums of all possible combinations of holding times for

traversal of all the loops as the kth path is traversed. By Lemma 2.1.4, the transform

of the sum is based on a sample from the mixture of holding times across all the K

paths. This is T̃∗(s), which is therefore based on a sample of holding times for first

passage through all possible paths from the start state i to the end (absorbing) state

j, i.e., a sample from Gij.

Note that for the reasons stated after Lemma 2.1.4 the sample is not a random

sample from Gij; we can only assert that it is a possible sample, since it is constructed

based on feasible paths and actually observed holding times for adjacent-state tran-

sitions on the paths.

2.1.3 Convergence to exact transforms

A large part of the justification for the use of empirical transforms in flowgraph

modeling follows from the Lemma and Theorem below, which show that Mason’s

rule applied to empirical transforms provides a consistent estimator of the Mason’s

rule expression based on the corresponding exact transforms.

Lemma 2.1.7 (Consistency and unbiasedness of empirical transforms) Let

T(s), with transform kernel ψ(t, s), be the LT, MGF, or CF of a distribution func-

tion F (t), and suppose the transform exists (converges) for s ∈ [γ1, γ2], γ1 < 0 < γ2.

Let S = {T1, T2, . . . , tn} be a random sample of size n drawn from F , and T̃(s) the

empirical transform based on S. Then T̃(s) is an unbiased and uniformly strongly

consistent estimator of T(s).
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Proof: Where the expectation is taken with respect to F ,

E[T̃(s)] = E

[

1

n

n
∑

i=1

ψ(Ti, s)

]

=
1

n

n
∑

i=1

E[ψ(Ti, s)]

= T(s)

by definition of the transform and because the ti are iid F -distributed, so T̃(s) is an

unbiased estimator of T(s).

Uniform strong consistency is equivalently stated as n−1
∑n

i=1 ψ(ti, s) → T(s)

almost surely as n → ∞, with the convergence being uniform over s ∈ [γ1, γ2]. For

the LT, this is proved in Proposition 1 of (Csörgő 1990); for the MGF, in Proposition

1 of (Csörgő 1982); and for the CF, in Theorem 2.1 of (Feuerverger & Mureika 1977).

Theorem 2.1.2 (Consistency of rational functions of empirical transforms)

Let T1(s),T2(s), . . . ,Tk(s) be LTs, MGFs, or CFs (all the same type) of distribution

functions F1, F2, . . . , Fk, with (Ωj,Fj, Pj) the probability space underlying infinite

sequences of iid Fj-distributed RVs Tj. Suppose the Tj are mutually independent

and {tj 1, tj 2 . . . , tj nj
} is a random sample of size nj drawn from the jth distribution.

Let T̃1(s), T̃2(s), . . . , T̃k(s) be the corresponding empirical transforms based on the

samples and suppose all the transforms exist for s ∈ [γ1, γ2], γ1 < 0 < γ2.

If Q(T1(s), . . . ,Tk(s)) is a rational function of the Tj(s), then with respect to

the product measure P1P2 · · ·Pk, Q(T̃1(s), . . . , T̃k(s)) → Q(T1(s), . . . ,Tk(s)) almost

surely for s ∈ [γ1, γ2] as minj(nj) → ∞. In particular, a Mason’s rule solution based

on empirical transforms converges a.s. to the Mason’s rule solution based on the

corresponding exact transforms as the minimum sample size goes to infinity.
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Proof: By the mutual independence of the Tj, P = P1P2 · · ·Pk is a probability

measure on the space Ω = Ω1 × Ω2 × · · · × Ωk of collections of size k of infinite

sequences, the jth sequence being iid Fj-distributed. For each j let Nj ⊂ Ωj be the

set of sequences on which T̃j(s) does not converge to Tj(s), and Nj = Ω1×· · ·×Nj ×
· · · × Ωk; by Lemma 2.1.7, Pj(Nj) = 0, so by construction P (Nj) = 0. N = ∪k

i=1Nj

is then the set in Ω on which at least one T̃j(s) fails to converge to Tj(s), and N

also has P -measure 0 since k is finite. It follows that Nc = Ω\N, the set on which

T̃j(s) → Tj(s) for all j = 1, . . . , k, has P -measure 1.

Now if we consider only collections of sequences in Nc, T̃j(s) → Tj(s) for all j =

1, . . . , k in the ordinary pointwise sense. It follows by standard theorems of analysis

that for i, j ∈ {1, . . . , k}, T̃i(s) + T̃j(s) → Ti(s) + Tj(s) pointwise, T̃i(s)T̃j(s) →
Ti(s)Tj(s) pointwise, and T̃i(s)/ T̃j(s) → Ti(s)/Tj(s) pointwise (since the denomina-

tor is never zero). By applying these results recursively, it follows that any rational

function Q(T̃1(s), T̃2(s), . . . , T̃k(s)) converges pointwise to Q(T1(s),T2(s), . . . ,Tk(s))

on Nc, provided the denominator is nonzero, for every s ∈ [γ1, γ2]. Since Nc has

P -measure 1, the general convergence result on Ω is P -almost sure.

By the Markov property, the mutual independence condition of the theorem is

always satisfied for holding time distributions and their transforms in semi-Markov

processes.

The next logical step would be to show, using the terminology of Theorem 2.1.2,

that Q̃ = Q(T̃1(s), . . . , T̃k(s)) is an unbiased estimator of Q = Q(T1(s), . . . ,Tk(s))

for finite samples (it follows from consistency that it is asymptotically unbiased).

We conjecture that this is true, but have not been able to prove it. Since the val-

ues of the transforms for fixed values of s are independent, it immediately follows

from properties of sums and products of random variables that the numerator of

Q̃ is an unbiased estimate of the numerator of Q, and similarly for the denomina-
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tor. However, if Q = φ/γ, it does not follow from E(φ) = f and E(γ) = g that

E(φ/γ) = f/g. It is true that E(φ/γ) = E(φ)E(1/γ), so proving unbiasedness re-

quires a knowledge of the distribution of 1/γ. Even in special cases the distribution

of quotients of RVs is non-trivial, and although in principle a solution can be found

(using Mellin transforms) for the general case (Springer 1979), in practical terms this

may be intractable. Thus we leave this problem on the agenda for future research.

2.1.4 Empirical transforms based on censored data

In many reliability and survival applications only part of a component lifetime is ob-

served. Dealing with such censored data is well understood for parametric flowgraph

modeling, affecting the likelihood function for an assumed family of distributions

(Huzurbazar 2005a; Klein and Moeschberger 2003).

For nonparametric modeling we adjust the transforms to account for censoring.

We consider only random right censoring; in terms of multistate models this means

that the time of entry to state i is observed, but at random, the time of transition from

i to j is not observed, but rather the time of “loss to observation.” More precisely,

there is a competing risk between the holding time Tij distributed according to

Fij(t) and an independent censoring time TC
ij distributed according to Cij(t); what

is observed is Zij = min(Tij, T
C
ij ) and the value of the indicator I{Tij≤TC

ij}. If the

indicator is 0 we know only that Tij > Zij. Random right censoring is the type most

commonly seen in practice. For example, in reliability testing a unit under test is

accidentally broken by the experimenter before it fails; or in a clinical trial a subject

moves away before experiencing the event of interest.

The method described below relies on an estimate of the EDF (or the empirical

survival function, 1 minus the EDF). The standard for right-censored data is the

product limit (PL) estimator of the survival function Ŝ(t) due to Kaplan and Meier
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(1958), but variations on the PL estimator exist for other types of censoring (Klein

and Moeschberger 2003, Chapters 4-5). Suffice it to say that if an estimate of the

EDF is available, we can estimate empirical transforms; however, the specific results

given here apply only to random right censoring and the PL estimator.

In place of the the standard product limit calculation used by Kaplan and Meier,

it is more convenient for the present purposes to use an algorithm developed and

shown to be equivalent to K-M by Efron (1967). This is called “redistribute to

the right” and works as follows: for a censored sample of size n, initially assign

a probability mass of 1/n to each of the ordered sample points z(1), z(2), . . . , z(n),

then scan the points from left to right. If z(i) is an uncensored observation leave it

unaltered; if it is censored, remove it from the sample and distribute its mass evenly

over the remaining points to its right (if the last point in the sample is censored,

it it kept). The result is an estimate {α1, . . . , αm} of the empirical mass function

(EMF), where m ≤ n is the number of failure (uncensored) points, 0 ≤ αi ≤ 1, and
∑

i αi = 1.

Efron then summed over the EMF to estimate the EDF or survival function; we

use it directly to estimate the empirical transform as

T̃∗(s) =

∫

[0,∞)

ψ(t, s) dF̂n(t) =
m
∑

i=1

αiψ(t∗i , s) (2.18)

where the t∗i are failure points from the original sample.

Kaplan and Meier (1958, Section 5) showed that for right-censored data, F̂n(t) =

1 − Ŝn(t) is the nonparametric maximum likelihood estimator (NPMLE) of the dis-

tribution function. Stute and Wang (1993, Theorem 1.1) showed that under right

censoring and mild regularity conditions on the censoring mechanism, functionals
∫

[0,∞]
ϕ(u)dF̂n(u) of F̂n, where ϕ is Borel-measurable, are strongly consistent esti-

mators of the corresponding functionals of F . In particular, by taking ϕ(u) = I[0,t],
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F̂n(t) itself is a strongly consistent estimator of F (t). Gill (1980, Theorem 4.1.1)

showed that in fact F̂n(t) is uniformly strongly consistent. By taking ϕ(u) = ψ(u, s),

lim
n→∞

T̃∗
n(s) = lim

n→∞

∫

[0,∞]

ψ(u, s)dF̂n(u) =

∫

[0,∞]

ψ(u, s)dF (u) = T(s) almost surely,

so the empirical transform based on the Kaplan-Meier estimator is a strongly con-

sistent estimator of the exact transform.

Though the Kaplan-Meier estimator of the distribution function is consistent (and

therefore asymptotically unbiased), it is biased downward for finite samples (Meier

1975, Section 2.2), i.e., E[F̂n(t)] ≤ F (t). This is intuitively plausible, since the failure

points {t∗1, . . . , t∗m} in a sample subject to censoring are not sampled from F (t), but

from the conditional distribution F (t)|F (t) ≤ C(t), where C(t) is the censoring

distribution. Both (Meier 1975) and (Gill 1980b) provide bounds on the bias of F̂n(t);

(Stute 1994) proves a bound for the bias of functionals
∫

[0,∞]
ϕ(u)dF̂n(u), which is

sufficient to conclude that empirical transforms based on samples with censoring also

have negative bias, i.e., E[T̃∗(s)] ≤ T(s). The quantitative bounds are not very useful

for actual data analysis, since they require knowledge of the censoring distribution

that is seldom available.

By the invariance of the NPMLE (Owen 2001), it follows that T̃∗(s) as computed

above in (2.18) is the NPMLE of T(s). From the strong consistency of empirical

transforms based on the Kaplan-Meier estimator, we have the following corollary to

Theorem 2.1.2 (p. 61):

Corollary 2.1.2 (Consistency of censored data empirical transforms) If

T̃∗
1(s), T̃

∗
2(s), . . . , T̃

∗
k(s) are computed from censored samples as in (2.18), the conclu-

sion of Theorem 2.1.2 remains valid.

The empirical transform constructed as in (2.18) from censored data cannot be

construed as being directly based on the sample failure points {t∗1, . . . , t∗m}, since the
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probability mass attached to each point is not identically 1/m. In order to be able

to treat empirical transforms without regard for censoring, we would like to say that

any T̃∗(s) constructed from a censored sample can be approximated with arbitrary

precision by an empirical transform T̃(s) = N−1
∑N

i=1 ti based on an uncensored

sample {t1, . . . , tN}. This is shown by the following

Theorem 2.1.3 (First passage sample theorem for censored data) Suppose

T̃∗(s) =
∑m

i=1 αiψ(t∗i , s) is an empirical transform based on a censored sample with

failure points {t∗1, . . . , t∗m}. Then for any ε > 0 there exists a sample {t1, . . . , tN} such

that

∣

∣

∣
T̃∗(s) − T̃(s)

∣

∣

∣
=

∣

∣

∣

∣

∣

T̃∗(s) − 1

N

N
∑

i=1

ti

∣

∣

∣

∣

∣

≤ ε.

Proof: We merely sketch the proof, since the details are essentially the same as

in Lemma 2.1.4 (p. 48). Pick k1, . . . , km such that
∑m

i=1 ki = N and ki/N ≈ αi;

construct a sample S from ki copies of t∗i , so S = {t∗1, . . . , t∗1, . . . , t∗m, . . . , t∗m} where

each ti occurs ki times. Then

T̃(s) =
1

N

m
∑

i=1

ki
∑

j=1

t∗ij ≈
m
∑

i=1

αit
∗
i = T̃∗(s). (2.19)

See Lemma 2.1.4 for the details of bounding the approximation for αi so that the

absolute error in (2.19) is smaller than ε.

Section 3.1.2 presents an example of empirical flowgraph analysis using censored

data.

66



Chapter 2. Methods and Analysis

2.2 Numerical inversion of empirical transforms

Having constructed from adjacent-state holding time samples an estimate T̃(s) for the

transform of the first passage distribution Gij(τ), we now need to recover information

about Gij(τ) itself. Our strategy, following the parametric flowgraph methodology,

is to numerically invert T̃(s) to obtain an approximation of the first passage density

gij(τ), from which percentiles and approximations to other functions of interest such

as the CDF and hazard rate can be computed.

Consistent with advice frequently given by experts on numerical methods, we

validate results by using two different inversion methods: numerical Laplace trans-

form inversion, and the saddlepoint approximation. Aside from validation, it will be

seen that each method has advantages and disadvantages in terms of computational

overhead and accuracy for various types of distribution.

After some general remarks we describe and provide examples for the methods

we have focused on: a Fourier series approximation to the standard inversion integral

for the Laplace transform, and an empirical version of the well-known saddlepoint

approximation based on the moment generating function. These methods were cho-

sen based on experience and heuristics, and there are many roads not taken in this

dissertation. In the literature on transform inversion and nonparametric density

estimation one will find methods and variations almost beyond counting, much of

the justification for which is empirical results within the constraint of acceptable

computational overhead.

Our test cases for inversion methods use simulated data, which allows comparison

of density estimates to true densities. The primary global comparison will be the

integrated absolute error in the density, or L1 distance: if f̂ is an estimate of f , the

IAE is
∫∞
0

|f̂(t)− f(t)| dt. A more common measure is the L2 distance or integrated

square error
∫∞

0
[f̂(t)−f(t)]2dt, because of its more desirable mathematical properties
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(Silverman 1986); but see (Devroye & Györfi 1985) for a contrary view. Here we only

need a numerical measure of the error, and IAE is somewhat more convenient for

that purpose.

For comparison of CDF approximations, we use the Kolmogorov-Smirnov (K-S)

distance (or statistic) supt |F̂ (t) − F (t)|. The K-S statistic can be used for a formal

test of goodness-of-fit to the true distribution; we have not presented results of this

test, but in all our examples the K-S statistic for the best inversion method is smaller

than the critical value for a test at the 1% significance level (usually much smaller),

indicating a good fit. In some cases a more localized comparison is helpful, and we

use the relative error of specific percentiles of the distribution.

In addition, we place an informal value on smooth estimates, since one of the

purposes of nonparametric estimation of the pdf or CDF is to allow visual assessment

of fit to a known family of distributions.

Further details on the algorithms used, with computer code listings, will be found

in Appendix A.

2.2.1 The general problem

Based on the first passage sample theorem (Theorem 2.1.1, p. 57) it is reasonable

to begin a discussion of the general problem of density estimation as if we had the

empirical transform of a single sample from a given distribution, so we consider an

empirical transform T̃(s) = n−1
∑n

i=1 ψ(ti, s).

The time-to-event distributions of interest in reliability and survival analysis are

almost without exception of the absolutely continuous type, so we assume henceforth

that we are dealing with empirical transforms based on samples from distributions

having densities with respect to Lebesgue measure. In fact, even the space of dis-
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tributions with rational Laplace transforms, a subset of the absolutely continuous

distributions, is dense (in the sense of convergence in law) in the space of all proba-

bility distributions (Asmussen 2003, Theorem 4.2), so there is little loss of generality

in this assumption. However, the assumption of a continuous density creates a mis-

match with the raw material, the transform of a discrete EMF with a probability

mass of 1/n at each sample point ti. Thus any reasonable inversion method must

either smooth the density in some way, or reproduce the sample points exactly so

that something like kernel smoothing (Silverman 1986) may be applied. In practice,

computational considerations mainly dictate the first alternative, though we use a

variant on the second in one place (p. 83 ff.).

An alternative to the measure-theoretic treatment of point masses is the engi-

neer’s Dirac delta “function” defined by δ(x) = 0 for x 6= 0 and
∫∞
−∞ δ(x)dx = 1.

Thus a point mass of 1/n at ti is formally equal to n−1 δ(x− ti). The delta function

can be handled rigorously as a measure (Bauer 2001, Section 1.3, Example 5), as a

“generalized function” (Zemanian 1987, Section 1.3), or as a sequence of functions

whose limit is the Dirac delta (Lang 1997, Section XI.1). The latter is the most

useful here, since in numerical work the sequence must be truncated at some finite

limit, which (assuming the approximating functions are smooth) results in a smooth

approximation to the delta.

One possible approximation is developed as follows. Reproduce a point mass at a

periodically at intervals of 2π; then, since δ(x) is integrable, we can represent it by its

Fourier series; by truncating the series at a finite number k of terms and restricting

the argument to [a− π, a+ π], we get an approximation to the delta:

δ(x− a) ≈ dk(x− a) =







1
2π

+ 1
π

∑k
i=1 cos(x− a) a− π ≤ x ≤ a+ π

0 otherwise.
(2.20)

This is plotted in Figure 2.3 for a = 5, k = 30.
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Figure 2.3: Fourier series approximation of a Dirac delta (point mass)

Though dk(x) → δ(x) as k → ∞ and
∫∞
−∞ dk(x)dx = 1, it has the disadvantages

of not being nonnegative, and for a < π, having support extending beyond the origin

on the left. By using a Gaussian density function with variance k−1 instead of dk the

first disadvantage is avoided, and by using a gamma density with variance k−1 both

are avoided. However, we will continue with dk as defined above because it provides

some insight into the behavior of the Fourier series approximation for inversion of

the Laplace transform, to be discussed below in Section 2.2.2.

A single term ψ(ti, s) of the empirical transform T̃ is the transform of a Dirac

delta at ti, since
∫∞
0
ψ(t, s)δ(x−ti)dt = ψ(ti, s), so trivially the transform is invertible

exactly, and the inversion recovers the sample points. In this simple case, it would

be appropriate to apply methods such as kernel smoothing to estimate the density

f(t), since the statistical properties of these methods are better understood than the

properties of numerical transform inversion.

In practice, exact inversion of empirical transforms is possible only for the simplest
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flowgraphs. For more complex flowgraphs such as the one illustrated in Figure 1.1

(p. 3), this is not feasible. Though in principle (by Theorem 2.1.1) the first passage

transform can be approximated to arbitrary precision using a single sample, in the

actual case we have only the Mason’s rule solution (1.2) (p. 16), which for empirical

transforms may contains tens of thousands of terms; even using a powerful computer

algebra system it is not feasible to reduce this expression to something that looks

like an empirical transform with a single basis sample. However, as described in

the next two sections there are inversion methods that will compute a result that

approximates what we would obtain from the single-sample transform.

For the sake of a simple illustration we revert to T̃(s) based on a sample {t1, . . . , tn}.
Using (2.20) the approximate inversion of T̃(s) is n−1

∑

i=1 dk(x − ti), for suitably

chosen k. Figure 2.4 shows an example based on a sample of size 1,000 from a

gamma(2,5) density. A sample histogram is plotted along with the true density

(dotted line) and the approximation with k = 5 (solid line).

In keeping with the assumption (which we know to be true in this case) that the

density to be estimated is from the class of those typically encountered, the plethora

of modes is a problem. In signal processing terms (Mallat 1999, Section 3.1.2),

these reflect noise introduced by the sampling process. A simple solution under the

assumption of fewer modes is to filter out high-frequency noise using a low-pass filter,

which is accomplished by reducing the number k of terms in the truncated Fourier

series. This is shown for varying k in Figure 2.5, where a scaled dk(0) is shown

with each approximation. (In the actual computation, the height of dk(0) gets larger

with increasing k, since it always integrates to 1.) The approximation is better with

smaller k, a fact often noted in the literature of curve estimation using Fourier series

(Tarter & Lock 1993; Efromovich 1999)—though of course “better” depends on the

a priori assumption of a smooth curve without too many bumps.

As mentioned above, we may also approximate the Dirac delta at a with a
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Figure 2.4: Approximation of a gamma(2,5) density using d5

Gaussian density function 1
σ
√

2π
exp

[

− (x−a)2

2σ2

]

, where σ controls the spread of the

delta. The density estimate is then

1

n

n
∑

i=1

1

σ
√

2π
exp

[

−(x− ti)
2

2σ2

]

, (2.21)

which is exactly equivalent to kernel smoothing with a Gaussian kernel and band-

width σ. Figure 2.6 shows this approximation for the same gamma sample as above,

with various bandwidths.

By a well-known result for normal mixtures of normal distributions, if the ti

are iid N(µ, η2), then in the limit as n → ∞ the mixture density 2.21 is a normal

(Gaussian) density, N(µ, η2 + σ2). If the ti have a non-normal distribution function

F , the limit distribution still has mean µ, but rather than being normal, it is the

convolution of F with the Gaussian kernel. For large σ the Gaussian component
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Figure 2.5: Approximation by sums of dk (inset) with various k

dominates and the result is pulled toward a central-limit approximation, as illustrated

in Figure 2.6 for σ = 5. A similar phenomenon (for a different but related reason)

occurs in the saddlepoint approximation, to be discussed in Section 2.2.3. In general,

Fourier-based estimates tend to be undersmoothed and oscillatory; Gaussian-based

estimates are oversmoothed toward the central-limit approximation as the kernel

variance increases.

Why densities?

Given an iid sample, the empirical distribution function has well-defined asymptotic

properties such as convergence to the true CDF, confidence intervals for point esti-

mates, etc. (Serfling 1980, Section 2.1). Proofs are relatively straightforward, and
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Figure 2.6: Approximation by sums of Gaussian kernels with various values of σ (the
true density is the dotted plot).

rely on weak conditions. On the other hand, the vast literature on density esti-

mation is filled with clever and difficult proofs of results that are generally weaker,

method-specific (e.g., a proof of consistency only for kernel smoothing), and in some

cases dependent on conditions that are impossible to verify from a sample, such as

existence of higher-order derivatives of the true density; see, e.g., (Devroye & Györfi

1985; Silverman 1986; Tarter & Lock 1993; Wand & Jones 1995; Efromovich 1999).

However, for several reasons the theoretical advantages of distribution functions

are hard to realize in the present context. The basis for our approximations is a

Mason’s rule expression which in a certain sense is based on a sample of first passage

times, but not an iid sample. In addition, as will be discussed in the next several

sections, no exact analysis exists for the error introduced by the inversion methods.
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The tools at hand readily provide density approximations, and there is no evidence

that direct inversion to a CDF approximation is more accurate; numeric integration

to derive a CDF approximation from a density approximation is numerically stable,

whereas the reverse process (numeric approximation of derivatives) is not. Finally, in

practical multistate problems interest often centers on identification of distribution

families. The popularity of density estimates such as histograms, stem-and-leaf plots,

etc., suggests that there are reasons based in human perception and cognition why

such devices facilitate generating and visual checking of hypotheses regarding the

distribution type, more so than plots of the CDF.

The business of density estimation, by any method, can sound rather distress-

ingly heuristic. As two experts say, “It does not seem possible to provide effective

methods with simple general error bounds . . . we propose using two different meth-

ods . . . Assuming that the two methods agree to within desired precision, we can be

confident of the computation” (Abate & Whitt 1995, p. 36). Confidence is a rela-

tive thing, but sometimes we can only make progress through heuristics, and hope

that subsequent replication and analysis leads to a more rigorous foundation for our

conclusions.

When we do need an estimate of the distribution function (or the survival func-

tion, or the hazard function), it can be readily computed from a density estimate;

examples are shown in the next two sections.

2.2.2 Fourier series approximation

Here we discuss a method of inverting the Laplace transform which is “classical” in

the sense of using no special statistical properties of functions, except insofar as they

manifest themselves as straightforward mathematical properties. Laplace transform

inversion is generally considered a difficult problem—see (Davies & Martin 1979;
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Abate & Whitt 1992; Duffy 1993) and references therein. In a formal sense, it is

intractable, since exact Laplace transform inversion L−1 is an unbounded operator

(Bellman et al. 1966, Section 2.9); i.e., if f ∗(s) = L[f(t)], for any ε > 0 and M � 0

there exists a function ψ(t) such that for s in an arbitrary neighborhood (γ1, γ2)

where the transform converges, sups |ψ∗(s)| < ε but

sup
s

∣

∣L−1[f ∗(s) + ψ∗(s)] − L−1[f ∗(s)]
∣

∣ > M.

In the context of numerical work this means that arbitrarily small errors in the trans-

form can lead to arbitrarily large errors in the inverse. (For a different reason, the

same problem of intractability will be seen in Section 2.2.3 to arise for the saddlepoint

inversion.)

In principle, the situation might be even worse in the context of empirical trans-

forms because our desideratum is not to produce a result which is the inverse of the

transform, but rather a smooth approximation of (we hope) the unknown density

from which the transform is sampled. However, in practice, for the functions of

interest, namely bounded absolutely continuous probability densities with a limited

number of modes (local maxima of the density), the problem becomes much more

tractable than in the general case.

The method under discussion here, due to Abate and Whitt (1992, 1995), uses a

Fourier series to approximate the inversion integral for the Laplace transform. Fol-

lowing Abate and Whitt, we refer to it as the EULER algorithm. It is optimized for

inversion of pdfs of nonnegative random variables with absolutely continuous distri-

butions, which are functions with special characteristics: supported on the positive

half-line, nonnegative, bounded, continuous, and in the cases we are interested in,

decaying rapidly at infinity.

The algorithm is remarkably accurate in the inversion of exact Laplace transforms

of continuous densities; so good, in fact, that we do not show any examples—on a
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Figure 2.7: EULER inversion (solid line) of an empirical Laplace transform (left:
small sample; right: large sample). The dashed line is the true density.

plot, the EULER inversion result is visually indistinguishable from the exact density

in every case we have tested. For both exact and empirical transforms, our results

with EULER are superior to those with other well-known algorithms we have tried,

such as the Weeks method, which approximates the transformed function using a

Laguerre series (Weideman 1999).

EULER will be described in more detail below, but first we display examples

of its application to empirical transforms. Figure 2.7 shows on the left the inver-

sion of an empirical transform whose basis sample is the same gamma(2,5) sample

of size 1,000 shown in Figure 2.4. On the right is the inversion of the transform

based on a sample of size 10,000 from the same distribution. Even with the larger

sample size, the inversion is quite noisy; some methods for producing a smoother

result will be discussed below. The underlying accuracy of the approximation can

be seen from the distribution function approximations in Figure 2.8, computed by

numeric integration of the density approximations shown in Figure 2.7; Kolmogorov-

Smirnov statistics for the small and large sample CDF approximations are 0.02554

and 0.01573, respectively.
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Figure 2.8: Distribution function computed from the EULER approximation of a
gamma pdf (left: small sample; right: large sample). The dashed line is the true
CDF.

Sample sizes on the order of 104, or even 103, are completely out of the question

in most practical applications of flowgraphs. But recalling the results of Section 2.1.2

regarding the construction of sample paths in flowgraphs, the effective sample size

for the first passage distribution in a flowgraph with loops and series of transitions

is on the order of the product of the sizes of individual transition samples. Thus an

effective sample size of 104 or larger for the distribution of interest is not unusual,

and this is reflected in the results for flowgraphs such as the repairable system of

Figure 1.1 (p. 3)—see Figure 3.3 (p. 125).

The exact transform for the gamma(2,5) density is plotted in figure 2.9 along with

the empirical transform based on the sample of size 1,000, for real s in a neighbor-

hood of the origin. Given the apparent accuracy of the empirical approximation, at

first sight one might wonder “where the noise comes from” in Figure 2.7. The expla-

nation is in Figure 2.10, which plots the empirical transform along the contour in the

complex plane which is the path of integration for the Laplace transform inversion

integral; on paths parallel to the imaginary axis, the empirical transform is a sum of

trigonometric functions and is highly oscillatory. As will be seen in the next section,
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the saddlepoint approximation uses only real arguments in the empirical transform,

and has quite a different behavior.

0.05 0.10 0.15

0.6

0.8

1.0

Figure 2.9: Exact transform of the gamma(2,5) density (solid line) versus empirical
transform from a sample of size 1,000 (dashed line) for real s near the origin.
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Figure 2.10: Exact transform of the gamma(2,5) density (left) versus empirical trans-
form from a sample of size 1,000 (right) for s on the complex contour of integration
used by EULER.

79



Chapter 2. Methods and Analysis

Derivation of the EULER algorithm

To provide some background on the Fourier series approximation and to understand

how it might be improved to deal with empirical transforms, we sketch out the

derivation of the EULER algorithm. The details can be found in Sections 3-6 of

(Abate & Whitt 1992); (Doetsch 1974) presents the theory behind inversion using

the Bromwich integral, which is what EULER approximates, and (Dubner & Abate

1968) is helpful in understanding the reduction of the approximation to a cosine

series.

Where f ∗(s) is the Laplace transform of the pdf f(t) of a nonnegative random

variable, we start with the standard inversion integral (Doetsch 1974, Chapter 24);

a is a point on the real axis such that f ∗(s) has no singularities in the complex plane

on or to the right of the line s = a:

f(t) =
1

2πi

∫ a+i∞

a−i∞
estf ∗(s)ds

=
1

2π

∫ ∞

−∞
e(a+iu)tf ∗(a+ iu)du changing the variable s→ a+ iu

=
2eat

π

∫ ∞

0

Re{f ∗(a+ iu) cosut}du. (2.22)

The last line follows by using ex = cosx + i sin x, the fact that f(t) is real and

vanishes for t < 0, and the fact that cosine is an even function.

Now the integral (2.22) is approximated using the trapezoidal rule with a subin-

terval size of h:

f(t) ≈ fh(t)

=
heat

π
Re{f ∗(a)} +

2heat

π

∞
∑

k=1

Re {f ∗(a+ ikh) cos(kht)} ,
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which is a Fourier cosine series. The trapezoidal rule works as well as other methods

of quadrature here because of the oscillatory integrand. For given t, using h = π/2t

makes the cosine 0 for odd k and (−1)k/2 for even k; then reindexing,

fh(t) =
eat

2t
Re{f ∗(a)} +

eat

t

∞
∑

k=1

(−1)kRe

{

f ∗
(

a+
ikπ

t

)}

. (2.23)

Subject to the condition that there are no singularities to its right (and note that

the empirical Laplace transform has no singularities to the right of 0), a may be an

arbitrary positive number. For A > 0 chosen based on a tradeoff between accuracy

and ease of computation (Abate & Whitt 1992, p. 30), set a = A/2t in (2.23), then

fh(t) =
eA/2

2t
Re

{

f ∗
(

A

2t

)}

+
eA/2

t

∞
∑

k=1

(−1)kRe

{

f ∗
(

A

2t
+
ikπ

t

)}

. (2.24)

Let sN(t) be (2.24) with the sum truncated after the Nth term. This partial

sum approximates f(t), but as a final step the algorithm applies Euler summation

to accelerate convergence:

f(t) ≈
M
∑

m=0

(

M

m

)

2−msN+m(t). (2.25)

(

M
m

)

are binomial coefficients, and N and M are chosen heuristically to bound

the error of approximation. Our tests indicate that the Euler summation, for the

same error, reduces the number of terms computed by as much as a factor of 10.

Abate and Whitt provide a partial error analysis for their algorithm, but only

for functions without point masses, whereas our functions are entirely composed of

point masses. Furthermore, we are not trying to recover the transformed function,

but rather the function from which the point masses were sampled. The issue of

error analysis is discussed further in Section 2.3.
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EULER is attractive for two reasons: experience in using it for parametric flow-

graphs, which result in exact transforms, indicates that it is remarkably accurate even

in cases where the saddlepoint approximation performs poorly (cf. Section 2.2.3, p.

95 ff.); and for nonparametric flowgraphs, its computational overhead is significantly

less than that of the empirical saddlepoint approximation.

Smoothing the Fourier series approximation

We have evaluated various alternatives for smoothing the results of inversion using

EULER, of which three appear worthy of further analysis:

• Presmoothing the sample points for each transition using a standard kernel

smoothing method, then transforming the results and using them as input to

Mason’s rule, with the final result as input to EULER.

• Exponentially smoothing the density approximation output from EULER.

• Using a modified EULER algorithm with fewer terms in the summation.

Presmoothing applies a standard kernel smoothing method to the sample points

to produce a preliminary density estimate, which is then (in the flowgraph context)

transformed and input to Mason’s rule, or for our test cases below, used as direct

input to EULER. This results in a smoother output since the input is now the trans-

form of a continuous (though not necessarily smooth) density. Following Silverman

(1986, Section 3.5), since kernel smoothing is equivalent to convolution of the data

with the kernel function, this can be effected by simply multiplying the empirical

transform by the Laplace transform of the kernel. (Silverman developed the method

to speed up the computation of kernel density estimates by discretizing and using

the fast Fourier transform.)
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To make this method work effectively and efficiently for our samples ideally re-

quires a kernel that smooths well, has a simple Laplace transform, and puts no mass

to the left of the origin. The Gaussian kernel satisfies the first two conditions, but

not the third. Failure to satisfy the third condition causes problems for EULER, so

we have compromised on an asymmetric rectangular kernel, i.e., for bandwidth h,

the kernel is a uniform(0, h) density with Laplace transform (1 − e−hs)/hs. This is

applied to the sample after left shifting by h/2 and reflection of negative points to

avoid bias; see Appendix A.3.2 for details. For smoothing a single sample there are

much better kernels. For example, (Chen 2000) describes an adaptive gamma kernel

which works very well for the types of density we deal with in reliability and survival

analysis, but is difficult to use in a flowgraph context since its Laplace transform

must be recomputed for each sample point. The rectangular kernel is not a very

good smoother per se, but does significantly improve the performance of EULER.

The top row of Figure 2.11 shows the results for the gamma(2,5) sample of 1,000

points. On the left is the histogram and the direct kernel-smoothed estimate; on

the right is the output of EULER after convolving the kernel with the empirical

transform of the sample points. The bottom row shows the same plots based on a

presmoothed sample of 10,000 points.

Of course, given a single sample there is no point in going through the extra steps

of transforming and inverting the presmoothed result (unless we use Silverman’s

fast-Fourier method). Kernel smoothing alone can produce a better result with less

overhead using a kernel superior to the rectangular, which was adopted here only for

ease of computation. In a real flowgraph problem, though, it might make sense to

presmooth and transform each transition sample, combine the results using Mason’s

rule, and then invert.

The second alternative for improving the Fourier series inversion result is post-

smoothing of the approximation, i.e., applying a smoothing algorithm to the set of
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Figure 2.11: EULER inversion of the transform of a presmoothed gamma(2,5) sample
(top left: histogram and kernel smoothing; top right: EULER output, n = 1,000;
bottom: same plots for n = 10,000). The dashed line is the true density.

points computed as a density approximation. We have achieved our best result with

an exponentially weighted moving average, which assumes that the true density at

a point t is a weighted average of point approximations computed by the inversion

in a neighborhood of t, with the weights falling off exponentially with distance from

t. Specifically, for uniformly spaced points ti, i = 1, . . . , N , let yi = f̂(ti) be the

corresponding density values computed by EULER; then the smoothed points are

given by ỹi = α
2

∑n
k=−n(1 − α)|k|yi+k, where 0 < α < 1, n is large enough that the

weights sum approximately to 1, and the sums are truncated at 0 and N .

Figure 2.12 shows an example set of weights for α = .2; by the well-known

convergence of the geometric density to the exponential, as the number of points
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goes to infinity the weighting converges to a Laplace (double exponential) density

α
2
e−α|t|, shown as a solid line in the figure.
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Figure 2.12: Exponential smoothing weights for α = .2, with Laplace density (solid
line).

Exponential smoothing has been extensively treated in the time series literature;

see (Chatfield 2004) for references. In that context it is asymmetric and used for

forecasting, whereas centered exponential smoothing is symmetric, a combination of

forecasting and “backcasting;” however, the theory is essentially the same when each

direction is considered separately. It is shown in (Gijbels et al. 1999) that exponential

smoothing is equivalent to nonparametric kernel regression, which is more intuitive

in this context—we base the density at each point on a weighted regression on nearby

points.

Figure 2.13 shows the result of applying symmetric exponential smoothing to the

Fourier inversion plot points from gamma(2,5) samples, with α = .04. The choice

of α is based on visual smoothness and the constraint that the smoothed density

integrate approximately to one; the α that meets these criteria will be smaller as the

mesh of points over which the density is approximated becomes finer. Typically we

use several thousand plot points and α in the range .02–.05.
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Figure 2.13: Exponentially smoothed EULER inversion of the transform of a
gamma(2,5) sample. Left: n = 1,000; right: n = 10,000. The true pdf is the
dashed line.

The third alternative we have examined is smoothing by reducing the number of

terms in the partial Fourier sums used by EULER. In Equation (2.25) we take N =

0 (versus 15 in EULER) and M = 12 (versus 11 in EULER); this reduces the total

number of terms computed for each approximated point from 27 to 14. Again, it

is a heuristic procedure to determine the optimum number of terms, based on the

criteria of smoothness, nonnegativity of the density (which is an issue because of

the approximation by cosines), and integration to approximately 1. (In this case,

because of the amount of computation, we have made the choices once and for all,

whereas the exponential smoothing parameter α can be easily adjusted for each case.)

Results using the modified algorithm for samples from the gamma(2,5) distribution

are shown in Figure 2.14.

Table 2.1 compares the integrated absolute errors for approximating the gamma(2,5)

density by these three methods.

We now consider another example, a mixture distribution; specifically f(t) =

.5f1(t)+.5f2(t) where f1 is a gamma(10,0.5) density and f2 is a gamma(50,3) density.

As we will see in the next section, this density and others of its type are approximated
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Figure 2.14: Modified EULER inversion of empirical transforms of gamma(2,5) sam-
ples (solid lines) (left: small sample; right: large sample). The dashed line is the
true density.

Method IAE
n = 1,000 n = 10,000

EULER 0.29167 0.09370
EULER (kernel presmoothing) 0.10899 0.05841
EULER (exponential smoothing) 0.07871 0.05076
EULER (modified algorithm) 0.12153 0.05202

Table 2.1: Integrated absolute errors (IAE) for EULER variations, gamma(2,5) sam-
ples.

much better by EULER than by the saddlepoint approximation. Figure 2.15 shows a

sample from the mixture (500 observations from each distribution), and the EULER

inversion of the empirical transform based on the sample. Figure 2.16 shows the

result of presmoothing, and Figure 2.17 shows results from exponential smoothing

and the modified EULER algorithm. Table 2.2 compares the results of the three

methods in terms of IAE.

Ideally we would like a more principled approach to determining the parameters

of these methods, such as α, but this may not be possible given that we are seeking an

approximation based on a prior belief in smoothness and unimodality. In any case,
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Figure 2.15: Histogram of the gamma mixture sample (left) and EULER inversion.
The dashed line is the true density.
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Figure 2.16: Histogram and kernel smoothing of the gamma mixture sample (left)
and EULER inversion of the presmoothed sample. The dashed line is the true density.

this is a time-honored approach; the authors of a classic text on density estimation

(Tapia & Thompson 1978) state: “We highly recommend the aforementioned inter-

active approach, where the user starts off with hn [kernel bandwidth] values that are

too large and then sequentially decreases hn until overly noisy probability densities

are obtained.” “Overly noisy,” of course, being in the eye of the beholder, though

the condition is fairly obvious under the assumption of smoothness.
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Figure 2.17: Modified EULER inversion (left) and exponential smoothing (right) of
the gamma mixture sample. The dashed line is the true density.

Method IAE
EULER 0.21659
EULER (kernel presmoothing) 0.19587
EULER (exponential smoothing) 0.07212
EULER (modified algorithm) 0.05986

Table 2.2: Integrated absolute errors (IAE) for EULER variations, gamma mixture
sample.

It is possible to formalize the notion of a compromise between fit to the sample

points and smoothness, using penalized maximum likelihood (Silverman 1986, Sec-

tion 5.4). The penalty function is typically based on integrated derivatives of the

estimated density curve (e.g., the second, which penalizes local curvature). However,

this adds a nonlinear optimization problem to the computational burden, so we have

not pursued it.

For approximating the distribution function, Figure 2.8 (p. 78) and the accom-

panying statistics illustrate the fact the numerically integrating the EULER density

approximation produces a very accurate result; for that distribution, more accurate

than numerical integration of the smoothed approximations. We illustrate this again
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Figure 2.18: Distribution function approximations for the gamma mixture sample;
clockwise from top left: EULER, kernel presmoothing, exponential smoothing, mod-
ified EULER. The dashed line is the true CDF.

with the CDF of the gamma mixture distribution. Figure 2.18 shows approxima-

tions by numerical integration of the EULER output and its smoothed versions;

Table 2.3 gives the corresponding Kolmogorov-Smirnov statistics. In this case the

presmoothed result is slightly better than EULER, which is better than modified

EULER and exponential smoothing.
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Method K-S
EULER 0.01754
EULER (kernel presmoothing) 0.01682
EULER (exponential smoothing) 0.03742
EULER (modified algorithm) 0.03135

Table 2.3: Kolmogorov-Smirnov (K-S) statistics for gamma mixture CDF approxi-
mations.

Discussion

Based on the results shown here and other testing we have done, the best candidates

for producing a smooth density estimate seem to be exponential smoothing and

the modified EULER algorithm. Exponential smoothing is somewhat superior in

terms of IAE and visual appearance, but modified EULER has the advantages of

simplicity and reduced computational overhead. In addition, exponential smoothing

and presmoothing add an additional layer of approximation, thus increasing the

probability of adding error as an artifact of the smoothing process.

Computation of the distribution function by numeric integration is inherently a

smoothing operation, and over a variety of distributions, integrating the output from

the unmodified EULER algorithm works about as well as any of the other methods.

This is to be expected, since the three smoothing methods are all, in some sense,

summing the local density over intervals. For computational convenience, we use

the pdf approximation plot points for approximating the CDF, so in each case both

approximations are based on the same method. For the applications in Chapter 3

we will use both modified EULER and exponential smoothing.
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2.2.3 Saddlepoint approximation

Given a closed form for the MGF M(s), the saddlepoint approximation f̂(t) for the

density is given by

f̂(t) =
1

√

2πK′′(ŝ)
exp[K(ŝ) − ŝt] (2.26)

where K(s) = log[M(s)] is the cumulant generating function (CGF) and ŝ is the so-

lution to the saddlepoint equation K′(ŝ) = t. Accuracy is improved by renormalizing

the density (dividing by
∫

f̂(t) dt so the pdf integrates to 1). Since (2.26) relies only

on numerical computations based on the MGF, the EMGF M̃(s) may be substituted

to obtain an empirical version of the saddlepoint approximation. We use the term

“parametric saddlepoint approximation” to refer to the saddlepoint approximation

based on an exact parametric MGF, to differentiate it from the empirical version,

which is an approximation of an approximation.

Derivation of the approximation

The saddlepoint approximation was introduced to statisticians by Daniels (1954),

who proved its validity using an argument based on approximating the inversion

integral for the characteristic function, essentially a Laplace approximation (Cop-

son 1965). He also presented an alternative proof based on Edgeworth expansions

which we outline here, because it is more instructive in seeing how the saddlepoint

method produces a smooth approximation, and in comparing it to the Fourier series

approximation discussed in Section 2.2.2.

If φ(z) is the standard Gaussian density (1/
√

2π)ez2/2, under certain regularity

conditions the density g(z) of a random variable Z with mean 0 and variance 1 can
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be expanded in a convergent series

g(z) = c0φ(z) +
c1
1!
φ′(z) +

c2
2!
φ′′(z) + · · ·

where cn = (−1)n
∫∞
−∞Hn(z)f(z)dz,Hn(z) being the nth Hermite polynomial (Cramèr

1946, Section 17.6); this is the Gram-Charlier type A series. Where µi is the ith mo-

ment of the distribution of Z, the first few coefficients are c0 = 1, c1 = c2 = 0,

c3 = −µ3 (up to sign, the skewness of g), and c4 = µ4 −3 (the excess of kurtosis over

the normal distribution). After computing the derivatives the series becomes

g(z) = φ(z)

{

1 +
1

6
µ3(z

3 − 3z) +
1

24
(µ4 − 3) (z4 − 6z2 + 3) + · · ·

}

(2.27)

Since the first term, φ(z), is the approximation given by the central limit theorem, the

remaining terms can be seen as corrections to the CLT based on skewness, kurtosis,

and higher-order moments of g(z).

Now let Y be a random variable with mean µ, variance σ2 and density f(y), and

let Z = (Y − µ)/σ. For a zero-mean RV the cumulants κi = K(i)(0) are equal to the

moments; except for the first, the cumulants of Z are the standardized cumulants of

Y :

ρi =
κi

σi
=

κi

κ
i/2
2

=
K(i)(0)

K′′(0)i/2
.

Using this, (2.27), and a standard transformation result for densities,

f(y) =
1

σ
φ(z)

{

1 +
1

6
ρ3(z

3 − 3z) +
1

24
ρ4(z

4 − 6z2 + 3) + · · ·
}

, (2.28)

the Edgeworth expansion for f(y). The standard use of the expansion is to approxi-

mate the sampling distribution of the mean, i.e., z = (x̄−µ)/σX

√
n for an iid sample

{x1, . . . , xn} where Xi has mean µ and variance σ2
X , in which case a truncated Edge-

worth expansion is a good asymptotic approximation under much milder conditions
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than are required for the convergence of (2.27). Since the polynomials are unbounded

for large z, the Edgeworth approximation is most accurate for z close to the mean.

The RV Y has MGF

M(s) =

∫ ∞

−∞
esyf(y)dy = eK(s) so

1 =

∫ ∞

−∞
esy−K(s)f(y)dy,

thus f(y; s) = esy−K(s)f(y) is a density, the exponential tilting of f(y). Let Ys be

an RV with density f(y; s); it follows by direct computations that E(Ys) = K′(s),

Var(Ys) = K′′(s), and Ys has the same standardized cumulants as Y .

Since f(y) = eK(s)−syf(y; s), an approximation for f(y) can be computed from

an Edgeworth expansion for f(y; s). The point of this indirection is that it allows

the Edgeworth expansion to be done around the mean of f(y; s), where it is most

accurate, for any value of y. This follows from the fact that K′(ŝ) = y has a solution

ŝ for y over the support of its distribution under mild conditions that are easily

checked in practice (Daniels 1954, Section 6). Thus applying (2.28) to f(y; ŝ), z =

(y − µ)/σ = [y −K′(ŝ)]/
√

K′′(ŝ) = 0 and

f(y; ŝ) =
1

√

2πK′′(ŝ)

{

1 +
1

8
ρ4 + · · ·

}

.

The first-order saddlepoint approximation is then

f(y) ≈ f̂(y) =
1

√

2πK′′(ŝ)
exp[K(ŝ) − ŝy]

as in (2.26), where all but the first term of the Edgeworth expansion have been

dropped. By including higher-order terms we get the second-order saddlepoint ap-

proximation (Daniels 1954, Equation 2.6)

f̂(y) =
1

√

2πK′′(ŝ)
exp[K(ŝ) − ŝy]

{

1 +
1

8

K(4)(ŝ)

[K′′(ŝ)]2
− 5

24

[K(3)(ŝ)]2

[K′′(ŝ)]3

}

(2.29)
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Higher-order approximations are also possible, but difficult because of the derivative

computations; for empirical transforms, use of derivatives higher than the fourth

renders the problem virtually intractable.

Details of the derivations can be found in (Daniels 1954), (Jensen 1995), or (Butler

2007); (Goutis & Casella 1999) is a good brief overview. (Cramèr 1946) has a rigorous

treatment of the Gram-Charlier and Edgeworth expansions. (Reid 1988) reviews

saddlepoint literature and applications, and (Huzurbazar 2005a) has many detailed

examples of the saddlepoint approximation for parametric flowgraphs.

The saddlepoint density approximation

The saddlepoint method in statistics was developed to provide an asymptotically

accurate approximation for the sampling density of the mean x̄ of a sample of size

n, in which case the approximation is

f̂n(x̄) =
n

√

2πK′′(ŝ)
exp(nK(ŝ) − ŝx̄). (2.30)

The error |f̂n(x̄)− fn(x̄)| in (2.30) is O(n−1), which is consistent with the view that

it is an “improved central limit theorem”; the error in the CLT is O(n−1/2). The

saddlepoint density approximation (2.26) substitutes 1 for n in (2.30). Though the

error estimate for n = 1 is meaningless, considerable experience validates its use

to approximate f(x) (Daniels 1982; Field and Ronchetti 1990; Huzurbazar 2005a;

Butler 2007).

In certain cases, the saddlepoint density approximation is exact, as the following

example shows. Suppose X ∼ exp(λ) with density f(x) = λe−λx. Then M(s) =

λ/(λ− s), K(s) = log λ− log(λ− s), K′(s) = 1/(λ− s), and K′′(s) = 1/(λ− s)2. The

solution to the saddlepoint equation at x is ŝ = λ− 1/x, and clearly K′(ŝ) = x and
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K′′(ŝ) = x2. Substituting these into (2.26) and simplifying yields

f̂(x) =
e√
2π
λe−λx.

Since e/
√

2π is independent of x, the result is exact after renormalization.

Daniels (1980) showed that the saddlepoint density approximation is exact for

the Gaussian, inverse Gaussian, and gamma distributions (the exponential is a spe-

cial case of the gamma), and only for those. He also conjectured (Daniels 1982) that

the saddlepoint method provides a good approximation to the density for distribu-

tions that approximate the exact ones; the authors cited above provide confirmatory

examples. This conjecture, which we take as a working heuristic, means that the

approximation is accurate for the unimodal densities commonly encountered in re-

liability and survival analysis, such as gamma and Weibull. (Figure 2.19 shows an

example for the Weibull density.) Nevertheless, there is no general error bound for

the saddlepoint density approximation, which impacts the ability to develop confi-

dence bands for the density, as will be discussed in Section 2.3.
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Figure 2.19: Weibull(2,7) density: parametric saddlepoint approximation (left); em-
pirical saddlepoint approximation, n = 1,000, (right); true density is the dashed
line.
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To illustrate the potential problem, consider the density

f(t) =
λπ

2 − 2e−λπ

(

e−λπt + eλπ(t−1)
)

I[0,1](t).

This resembles a beta density, but has a more tractable MGF. The density for λ = 2.5

and its parametric saddlepoint approximation are plotted in Figure 2.20; the IAE of

the saddlepoint approximation is 0.7336, and the approximation has little use other

than giving an indication of the general shape of the density. Section 7.2 of (Field

and Ronchetti 1990) has other examples like this.
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Figure 2.20: Saddlepoint density approximation; the true density is the dashed line.

As a more practical example, consider the gamma mixture that was used as

an example in the previous section (p. 86). This is the sort of distribution that

appears in reliability and survival analysis when there are competing risks from

multiple failure causes or diseases; a real example will be described in detail in

Section 3.2. Figure 2.21 shows first and second-order parametric saddlepoint density

approximations; the first-order, in particular, is quite misleading as to the shape of

the density. (Note the formation of a mode at t = 100, the mean of the distribution;

this is a consequence of the central limit basis for the approximation.) Comparison
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Figure 2.21: First-order (left) and second-order saddlepoint approximations of the
gamma mixture density; the true density is the dashed line.

of this to Figure 2.17 (p. 89) shows that the empirical EULER inversion is superior

to the parametric saddlepoint approximation, and a fortiori will be superior to the

empirical saddlepoint approximation.

How large can the error be in the saddlepoint density approximation? The fol-

lowing theorem gives a pessimistic answer:

Theorem 2.2.1 (Possible error in the saddlepoint density approximation)

There exists f(t), a continuous pdf with first-order saddlepoint density approxima-

tion f̂(t), and I = (t0 − ε, t0 + ε), an interval in the support of f with finite measure,

such that |f(t) − f̂(t)| is greater than any positive number M for all t ∈ I.

Proof: We prove the result by demonstrating the existence of such a density function.

Let X ∼ exponential(1) and Y ∼ gamma(1/δ, δ) with pdfs

fX(t) = e−t, fY (t) =
1

Γ(1/δ)δ1/δ
t1/δ−1e−t/δ (2.31)

where δ > 0 is a small undetermined constant. Let Z be a mixture of X and Y

with pdf fZ(t) = .5fX(t) + .5fY (t). Figure 2.22 shows fZ(t) and its saddlepoint
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approxmation for δ = .001. We will will show that as δ → 0 the saddlepoint approx-

imation at the mean remains less then 1, while the actual density (the sharp peak)

is unbounded.
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Figure 2.22: First-order saddlepoint approximation to an exponential-gamma mix-
ture density; the true density is the dotted line.

The MGFs for X and Y and their derivatives are

MX(s) =
1

1 − s
, M′

X(s) =
1

(1 − s)2
, M′′

X(s) =
2

(1 − s)3
,

MY (s) =
1

(1 − δs)1/δ
, M′

Y (s) =
1

(1 − δs)1/δ+1
, M′′

Y (s) =
1 + δ

(1 − δs)1/δ+2
.
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The CGF for Z and its derivatives are (dropping the argument s for brevity)

KZ = log(.5MX + .5MY ) , K′
Z =

M′
X + M′

Y

MX + MY

,

K′′
Z =

(MX + MY )(M′′
X + M′′

Y ) − (M′
X + M′

Y )2

(MX + MY )2
.

The common mean of X, Y , and Z is 1, and we now consider the values of fZ(t)

and its saddlepoint approximation at the mean. MX(0) = MY (0) = M′
X(0) =

M′
Y (0) = 1, so by inspection the solution of the saddlepoint equation K′

Z(ŝ) = 1 is

ŝ = 0. By simple computations

M′′
X(0) = 2, M′′

Y (0) = 1 + δ, K′′
Z(0) =

2 + δ

4
.

Substituting these values in the first-order saddlepoint formula (2.26), the density

approximation is

f̂Z(1) =
1

√

2πK′′
Z(0)

eKZ(0)

=
e

√

π(1 + δ/2)

This increases continuously as δ → 0, so its supremum is

lim
δ→0

f̂Z(1, δ) =
e√
π
≈ .8652.

From the definition of Z, fZ(t) ≥ .5 fY (t), so if fY (1) is unbounded as δ → 0, so

is fZ(1). Since fY is continuous in δ, to determine its limit at t = 1 when δ → 0 it

suffices to consider only values of δ such that 1/δ = k ∈ N, thus

lim
δ→0

fY (1, δ) = lim
δ→0

1

Γ(1/δ)δ1/δ
e−1/δ

= lim
k→∞

1

Γ(k)(1/k)k
e−k

= lim
k→∞

1

(k − 1)!(1/k)k
e−k.
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Now using Stirling’s approximation, (k − 1)! ∼ (k − 1)k−1/2
√

2π e−(k−1),

lim
δ→0

fY (1, δ) = lim
k→∞

e−k

(k − 1)k−1/2
√

2π e−(k−1)(1/k)k

= lim
k→∞

e−1

(k − 1)−1/2(1 − 1/k)k
√

2π

= lim
k→∞

√

k − 1

2π
using the fact that (1 − 1/k)k → e−1

= ∞.

So fY (1), and therefore fZ(1), is unbounded as δ → 0. Since f̂Z(1) is bounded by 1,

given any M > 0, there is a value δ0 such that if δ < δ0, then |f̂Z(1) − fZ(1)| > M .

By the continuity of fZ , this condition can be satisfied for t close enough to 1, i.e.,

|f̂Z(1 ± ε) − fZ(1 ± ε)| > M for small ε. Thus for any M > 0 there is an interval

I = (1 − ε, 1 + ε) within which the error in the saddlepoint density approximation

exceeds M .

The empirical saddlepoint approximation

To compute f̃(t), the empirical saddlepoint density, we follow the same procedure

using empirical versions of K(s) and its derivatives. In the simplest case, given

sample data t1, . . . , tn from a single transition j → k, we define the empirical CGF

in the obvious way as (Davison & Hinkley 1988):

K̃(s) = log[M̃(s)] = log

[

1

n

n
∑

i=1

esti

]

from which the derivatives are calculated as

K̃′(s) =

∑

i tie
sti

∑

i e
sti

(2.32)

K̃′′(s) =
[
∑

i e
sti ] [

∑

i t
2
i e

sti ] − [
∑

i tie
sti ]

2

[
∑

i e
sti ]2

.
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From the convergence of M̃(s) to M(s) (see Section 2.1.3) and from standard the-

orems of analysis, it follows that the same convergence holds for derivatives M̃(k)(s),

for K̃(s) and its derivatives, and for the empirical saddlepoint approximation itself;

i.e., if f̃n(t) is the empirical saddlepoint approximation based on samples with a min-

imum size of n, and f̂(t) is the parametric saddlepoint approximation, f̃n(t) → f̂(t)

almost surely as n→ ∞. Proofs can be found in (Feuerverger 1989).

Unlike the parametric case, here it cannot be guaranteed that the saddlepoint

equation has a solution over the entire support of the true density. The following

theorem, which is alluded to but not proved in (Davison & Hinkley 1988), makes

this more precise.

Theorem 2.2.2 (Empirical saddlepoint solution) Suppose K̃(s) is an empirical

CGF with basis sample t1, . . . , tn; assume that the ti do not all have the same value.

Then the empirical saddlepoint equation K̃′(ŝ) = t has a unique real solution ŝ if

and only if t(1) < t < t(n), where the t(i) are the order statistics of the sample.

Proof: From (2.32), a solution exists iff

n
∑

i=1

(ti − t)esti = 0 for some s ∈ R. (2.33)

If t ≤ t(1) then every term on the left in (2.33) is positive or zero, with at least one

nonzero (since the ti are not identically equal); if t ≥ t(n) then every term is negative

or zero, with at least one nonzero; in either case there is no real solution. So it

remains to prove that there is a unique real solution for t(1) < t < t(n).

Multiply both sides of (2.33) by e−t; then a solution exists iff

n
∑

i=1

(ti − t)es(ti−t) = 0 for some s ∈ R. (2.34)
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s

ϕ−(s)

ϕ+(s)

Figure 2.23: Solution of the empirical saddlepoint equation

Let ϕ+(s) =
∑

{i: ti−t≥0}(ti − t)es(ti−t), ϕ−(s) =
∑

{i: ti−t<0}(ti − t)es(ti−t). Figure 2.23

shows, for real s, the general shape of ϕ+(s), which is convex and always positive,

and ϕ−(s), which is concave and always negative. Both functions are continuous.

By (2.34) a solution ŝ exists iff |ϕ+(ŝ)| = |ϕ−(ŝ)|. Consider three cases: if |ϕ+(0)| =

|ϕ−(0)|, then ŝ = 0; if |ϕ+(0)| > |ϕ−(0)|, then since |ϕ−(s)| is increasing to the left

of the origin and |ϕ+(s)| is decreasing to the left of the origin, by continuity there

must be a point ŝ < 0 where they are equal; similarly, if |ϕ+(0)| < |ϕ−(0)|, there

must be a point ŝ > 0 where they are equal, so in any case a solution exists.

To show uniqueness, consider (2.34) and let ϕ(s) =
∑

i(ti− t)es(ti−t). By assump-

tion ti − t is not identically 0, so ϕ′(s) =
∑

i(ti − t)2es(ti−t) > 0 for s ∈ R; thus ϕ(s)

is a strictly increasing function and cannot have more than one zero on R.

As a corollary of the first passage sample theorem (Theorem 2.1.1, p. 57), a

similar restriction of the domain applies in the general case where M̃(s) is an alge-

braic combination of transition EMGFs M̃ij(s). In that case t(1) will be the smallest

possible first passage time computed from the basis samples for the EMGFs, and

t(n) will be the largest possible first passage time. For flowgraphs with loops, t(n) is
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effectively infinite (see p. 44, part (5) of Lemma 2.1.2).

In practice, determining the exact limits for solving the empirical saddlepoint

equation is not generally feasible, so we determine the limits numerically. This is

illustrated in Figure 2.24. K′(s), the exact derivative of the CGF for a gamma(2,5)

distribution, is asymptotic to 0 at −∞ and has a simple pole at .2, so ŝ exists for

any value of t. K̃′(s) is asymptotic to .212204 (the smallest value in this particular

sample) on the left and to 41.0824 on the right (the largest value in the sample), so

ŝ exists only for t ∈ (.212204, 41.0824). This sort of graphical determination can be

done for any empirical flowgraph problem, and is used to set the root-finding limits

in the saddlepoint approximation code (see Appendix A.4). The output from the

saddlepoint approximation code is an interpolating function (see Appendix A.1.2)

which extrapolates linearly to compute values of the approximation outside the sam-

ple limits.

One problem that might be introduced by linear extrapolation would be missing

a mode of the density; however, by definition of a mode, it is likely that there would

be sample points on both sides of it, so the problem should rarely occur. More

generally, the lack of information beyond the sample limits makes the approximation

less accurate in the tails, which will be seen in the examples in Chapter 3.

Saddlepoint CDF estimation

There is also a saddlepoint formula based on the CGF for directly approximating

points of the distribution function, due to Lugannani and Rice (1980) . This method

is not claimed to be more accurate (ibid., p. 480), but is more convenient if only a

few percentiles of the distribution are needed. The Lugannani and Rice method is

not immune to the sort of accuracy problems described for the density approximation

(Booth & Wood 1995), and exhibits certain numerical instabilities (Huzurbazar &
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Figure 2.24: K̃′(s) (solid line) and K′(s) (dotted line) for real values of s; gamma(2,5),
sample size 1,000.

Huzurbazar 1999).

Our preferred alternative is to numerically integrate the saddlepoint density ap-

proximation, since it is more convenient given that we want to plot the entire CDF,

compute the hazard function, and compute various statistics such as the Kolmogorov-

Smirnov distance. Numerical integration is also consistent with the computation of

the EULER CDF approximation. Figure 2.25 shows CDF approximations for the

Weibull(2,7) distribution, computed by numerically integrating the saddlepoint den-

sity approximations (shown in Figure 2.19.) The empirical result is actually better

then the parametric result in the left tail—this is because the Weibull MGF is com-

plicated and numerically unstable for negative s, causing a problem for values of t

near the origin. Table 2.4 shows error statistics for the approximations.

105



Chapter 2. Methods and Analysis

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

Figure 2.25: Weibull(2,7) CDF—parametric saddlepoint approximation, (left); em-
pirical saddlepoint approximation, n = 1,000; true CDF is the dashed line.

Method IAE (pdf) K-S
Parametric saddlepoint 0.04713 0.07565
Empirical saddlepoint 0.05253 0.03914

Table 2.4: Integrated absolute errors (IAE) for pdf and Kolmogorov-Smirnov (K-S)
statistics for Weibull(2,7) approximations.

Discussion

The saddlepoint density approximation is smooth, and remarkably accurate for a

certain class of densities. For others, particularly mixture densities resulting from

competing risks, it can have serious errors because it is pulled towards a central limit

approximation. EULER is accurate over a broader class or densities, but only in a

certain average sense, due to its approximation using an oscillatory integrand. In

some cases, but not all, the oscillations can be smoothed out for an accurate result.

By using both methods we usually achieve a result in which we can have some

confidence, at least to the extent of validating (or falsifying) proposed parametric

models.
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2.2.4 Potential Bayesian approaches

In the literature on nonparametric density or curve estimation one often finds state-

ments like “Methods of nonparametric curve estimation allow one to analyze . . .

data at hand without any prior opinion about the data” (Efromovich 1999, p. 1); yet

in the same text we find this: “Thus, the last step is to remove bumps that we be-

lieve are due solely to the oscillatory approximation of the flat parts of an underlying

density” (ibid., p. 64, emphasis added). Even the innocent histogram embodies as-

sumptions about the “graininess” of the distribution (e.g., whether it is multimodal)

in the choice of bin sizes and placements; kernel smoothing uses the assumption of

a continuous density, as well as assumptions about the modality of the distribution

which influence the choice of kernel bandwidth. And of course, in the present work

we are explicitly basing our inversion methods on an assumption of continuous den-

sities. Arguably the only completely “frequentist” nonparametric density estimate

is the nonparametric maximum likelihood estimate (NPMLE), which for a sample of

size n is a discrete distribution placing probability 1/n at each sample point (Owen

2001). Any other method is at least philosophically Bayesian, in that it uses some

prior belief about properties of the distribution.

Philosophy aside, there are technical Bayesian approaches to density estimation

which are nonparametric or semiparametric, in the sense of using priors over families

of distributions that are extremely large—e.g., all continuous distributions, or all

distributions constructed piecewise or as mixtures from members of a given family.

(Hjort 1996) and (Ghosh & Ramamoorthi 2003, Chapter 5) provide overviews of

such “nonparametric Bayesian” density estimation.

In the parametric flowgraph context, parametric Bayesian methods have been

applied by specifying a prior for each holding time distribution and transition prob-

ability in the model, then using the standard Bayesian machinery to compute a pos-
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terior distribution for the model parameters. In general, numerical methods must be

used to sample from the posterior, compute the saddlepoint approximation f̂(t|θi)

at a point t for each sampled parameter vector θi, then average over the f̂(t|θi)

to get an approximation to the posterior predictive density at t. See (Huzurbazar

2005c; Huzurbazar 2005a, Chapter 5) for details and examples. In the context of a

semiparametric or mixed flowgraph model (see Section 2.4), these standard Bayesian

methods may be applied to the transitions that are modeled parametrically.

In a fully nonparametric context, there are several ways we might proceed. Us-

ing a Bayesian nonparametric method we could obtain a posterior predictive density

for each holding time distribution, sample it, and compute the empirical transforms

from the posterior samples. Or, we could work through the nonparametric flowgraph

method in the standard way, then sample from the first passage density approxima-

tion and apply a Bayesian nonparametric density estimation method to the sample.

The latter method might be appropriate if there were a reasonable prior belief in

some property of the first passage distribution, without prior beliefs in the details

of individual transitions. A third possibility, described below, is to use priors on the

coefficients of a series expansion approximating the first passage density.

As an example, (Escobar & West 1995) describes density estimation using a

Dirichlet mixture of normals. In a simple variant, the sample data points are assumed

to be independently distributed as Xi ∼ N(µi, σ
2) with common variance σ2 and µi

drawn from a distribution F , with the prior distribution on F a Dirichlet process

(Ferguson 1973). The use of the normal distribution introduces a parametric element,

but note that if the µi are drawn from a Dirichlet distribution with mass concentrated

at the observed sample points and the mixing parameter is identically 1/n, this yields

essentially the density approximation by a mixture of Gaussians that was described

earlier in this section (p. 72). Thus Bayesian density estimation with Dirichlet

mixtures can be seen as a flexible generalization of kernel smoothing.
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A conceptually related idea is the mixture of finite Pólya trees (Hanson 2006),

which generalizes an underlying parametric density by recursively dividing its sup-

port into dyadic subintervals and scaling the height of the density in each subinterval

by an additional parameter representing the probability that it contains the value of

the random variable; this recursive division can be carried out an arbitrary number

of times. See (Christensen et al. 2008) for computational details and examples.

Neither this method nor the Dirichlet mixture is restricted to using the Gaussian as

the base distribution; in the context of reliability and survival analysis a distribution

on nonnegative random variables such as the gamma, inverse Gaussian or Weibull

might be more appropriate.

Since both the Fourier series and saddlepoint inversions are based on expansions

in orthogonal functions (the latter via the Edgeworth series), one might consider, as

suggested by Hjort (1996, Section 4), placing a prior on the series coefficients. To

do so in a principled way the coefficients should be interpretable as properties about

which one could have prior beliefs. This seems difficult in the case of the Fourier

series, but is possible for the saddlepoint approximation, since the coefficients in

the Edgeworth series can be interpreted as corrections to a normal approximation

based on moments of the sampled distribution. Using a higher-order saddlepoint

approximation would allow exploitation of prior beliefs about moments, but also

requires computation of the higher-order derivatives of the empirical CGF, which

can be quite complicated.

Bayesian methods of the sort just described are promising because in applications

one can often elicit quantitative prior beliefs regarding holding time distributions;

these may be based on scientific theory or prior experience with similar systems.

The added computational burden associated with these methods has so far deterred

us from using them. However, with anticipated improvements in the inversion algo-

rithms for empirical transforms they may become feasible, so we mention them in
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the interest of completeness and pointing out directions for future research.

2.3 Confidence bounds

Having an estimate g̃ij of the first-passage density gij, or by numerical integration

an estimate G̃ij of the first-passage distribution function Gij, an obvious further

question is whether we can obtain confidence bounds of various sorts. E.g., for a

particular τ0 and 0 < α < 1 , can we find dl and du such that

P{G̃ij(τ0) − dl ≤ Gij(τ0) ≤ G̃ij(τ0) + du} ≥ 1 − α, (2.35)

or can we construct a confidence band, say, around the estimate of Gij so that

(2.35) holds pointwise for all τ in the support of Gij? (Statements like this are to

be interpreted in a frequentist sense— Gij(τ0) is taken to be an unknown constant,

G̃ij(τ0) to be random, dependent on the basis samples, and (2.35) asserts that the

probability of Gij(τ0) lying in the random interval [G̃ij(τ0) − dl, G̃ij(τ0) + du] is at

least 1 − α.)

Unfortunately the answer to these questions is largely negative, due to the meth-

ods we use for estimating the density (and subsequently the CDF). This is somewhat

surprising, since if we had an iid sample τ1, τ2, . . . , τn of first passage times, the stan-

dard nonparametric estimate of Gij would be the empirical distribution function

Ĝij, n(τ) = n−1
∑n

m=1 I[0,τ ](τm), for which large sample properties such as confidence

bands are well known; see, e.g., (Serfling 1980, Chapter 2). However, since our distri-

bution estimates are not constructed directly from an iid sample, the usual confidence

bands or intervals based on properties of the EDF are not applicable.

Even with an iid sample of first passage times, confidence bands for the pdf are

more problematic, depending in general on properties of the true density (Silverman
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1986). This leads into an explanation of problems with the methods we use for

estimating the first passage density. Silverman (1986, p. 37) says about the general

problem that “It is characteristic of almost all density estimation methods that the

estimate is of the form

smoothed version of true density + random error

where the ‘smoothed version of the true density’ depends deterministically on the

precise choice of parameters in the method, but not directly on the sample size.”

I.e., understanding the small or large sample distribution for the random error due

to sampling is not sufficient for determining confidence bands; it is also necessary to

quantify the “structural bias” introduced by the estimation method.

In the case of the EDF, there is no bias— E[Ĝij, n(τ)] = Gij(τ), and the error is

entirely due to sampling. For estimation of the sort we do, the situation is more com-

plex, as shown by consideration of an identity based on Equation 3.6 in (Feuerverger

1989), which is similar to Silverman’s above. Let f(x) be the pdf of a random vari-

able X, f̂app(x) either the saddlepoint or EULER approximation based the exact

parametric transform of f , and f̂emp(x) the empirical version of the approximation

based on a sample x1, . . . , xn. Then the error in the empirical estimate at x is

f̂emp(x) − f(x) = {f̂emp(x) − f̂app(x)} + {f̂app(x) − f(x)}. (2.36)

Both bracketed terms on the right-hand side are problematic. Since the empirical

transform is a strongly consistent estimator, the first term includes a randomization

error whose large sample properties can be found in the literature cited in Section

2.1.3. However, if f is the first passage density for a complex flowgraph, the empirical

transform is given by a Mason’s rule expression; while still being a strongly consistent

estimator (Theorem 2.1.2), it is a rational function of RVs, whose large sample

properties are, in practice, intractable (Springer 1979). The second term on the

right-hand side of (2.36) is even more problematic. As shown in Section 2.2.3, the
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saddlepoint density estimate does not have an error bound. Approximate bounds

for the EULER approximation exist only for transforms of distributions that are

absolutely continuous or lattice (Abate & Whitt 1992; Strawderman 2004). These

problems preclude developing a distribution or confidence bounds for the left-hand

side of (2.36).

Davison and Hinkley (1997, p. 421) make a similar point regarding the empirical

saddlepoint approximation for the sampling density of the mean, concluding “There

is no exact general nonparametric confidence limit procedure for the mean,” because

the parametric saddlepoint approximation for the sampling distribution of the mean

is used in place of the true distribution, thus adding the error in the second term in

the right-hand side of (2.36). A fortiori, their conclusion applies to the saddlepoint

density approximation. As mentioned in Section 2.2.3, the same conclusion can be

drawn regarding the Lugannani and Rice (1980) saddlepoint approximation for the

distribution function.

Ouhbi and Limnios (2001) showed that a nonparametric solution for the renewal

equation giving system reliability (equivalent to the first passage distribution to

a failing state), is asymptotically normal. However, the variance depends on the

unknown true value of Q, so it cannot be used directly to compute confidence bands.

One might substitute an empirical estimate of Q, or use the reliability estimator

to compute bootstrap confidence bands; but these would require some numerical

technique with a known error bound for solving the empirical version of the renewal

equation. We are not aware of such a method, so this runs into the problems described

above (cf. Section 2.5, p. 118)

It is possible, however, to derive confidence intervals for quantities based on

moments of the first passage time distribution, since for M the MGF, M′(0),

M′′(0), . . . , M(r)(0), . . . give the (noncentral) moments E(τ ), E(τ 2), . . . , E(τ r).

From Theorem 2.1.2 the EMGF is a strongly consistent pointwise estimator for val-
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ues of the true MGF, so approximate moments can be gotten by substituting the

empirical MGF, i.e., M̃(r)(0) ≈ M(r)(0). (We assume here that the moments of

the true distribution exist; otherwise the approximate moments will be unbounded

rather than converging to a finite value.) As discussed above, we have no distrib-

utional results for empirical transforms given by a Mason’s rule expression, but we

can derive a bootstrap approximation for confidence intervals around the moments.

Taking the mean as an example, and assuming G(τ) is the first passage distri-

bution and τ̄ is the average of a sample τ1, . . . , τn, a (1 − α)100% CI is an interval

(L,U) = (τ̄ − dl, τ̄ + du) such that dl, du > 0 and

P{EG(τ ) ∈ (L,U)} = P{M′
G(0) ∈ (L,U)} ≥ 1 − α

where dl and du are selected based on the sampling distribution of the mean of G. If

the true G is unknown, the EDF Ĝn can be used as a plug-in estimate to construct

d∗l and d∗u, leading to an asymptotically correct CI (L∗, U∗) = (τ̄ − d∗l , τ̄ + d∗u).

In cases where the exact distribution needed for deriving the CI is difficult or

impossible to compute, conventional bootstrapping approximates (L∗, U∗) by re-

peatedly drawing samples of size n (with replacement) from {τ1, . . . , τn}, computing

M̂′
Ĝn

(0) ≈ M′
G(0) = EG(τ ), and determining the (L∗, U∗) that covers (1 − α)100%

of the values of M̂′
Ĝn

(0). Asymptotically (as n → ∞), this procedure converges to

the exact CI (Davison & Hinkley 1997).

Here we do not have a sample from G, but since the empirical MGF M̃′
Ĝn

(0)

derived using Mason’s rule is a consistent estimate of M′
G(0), it can be used in

the same way to derive an asymptotically correct CI. The bootstrapping is done by

resampling each of the holding time samples and recomputing the EMGF M̃′
Ĝn

(0).

The same procedure can be used to obtain bootstrap CIs for any moment E(τ r) =

M(r)
G (0). Typically the mean and variance are the quantities of interest.

Though this bootstrap CI is asymptotically (in the size of the basis samples)
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correct, the speed of convergence depends on the particular problem; in addition,

the particular samples we happen to have will influence the accuracy of the result.

For sample sizes we can reasonably expect to encounter, the actual coverage of the

bootstrap CI will usually be less than the nominal coverage. For example, in the

repairable system example (Section 3.1), we use a 99% bootstrap CI to obtain actual

coverage of about 95%.

If we hypothesize, based on prior knowledge, that the first passage distribution

is a particular one of the types commonly encountered in reliability and survival

analysis, estimates and confidence intervals for the first few moments can be used to

develop distribution estimates by the method of moments (MOM). Though generally

not as good as maximum likelihood estimates, unbiased and reasonably efficient

MOM techniques exist for distributions such as the exponential (where the MOME

is identical to the MLE), gamma (Wiens et al. 2003), Weibull (Singh et al. 1990),

and inverse Gaussian (Padgett & Wei 1979). By computing MOM estimates of the

pdf or CDF using moment values at the limits of the confidence intervals described

above, approximate confidence bands can be constructed.

The general paucity of results for confidence bounds is a consequence of the

several layers of estimation and approximation between the basis samples and a first

passage density or distribution function; each layer has potential randomization and

numerical errors. Currently, reasonable confidence bounds for the first passage pdf

or CDF appear to be intractable. This is unfortunate, since in practical applications

having such bounds is very desirable. We hope to improve on this in future research.
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2.4 Mixed or semiparametric flowgraph models

Mason’s rule operates on transforms, and nonparametric analysis can be viewed

as substituting transforms with respect to EDFs (based on observed samples) for

transforms with respect to parametric distributions. Since the algebra is indifferent

to the type of transform it operates on, there is no reason why we cannot “mix

and match” parametric and empirical transforms. This mixed or semiparametric

analysis is potentially valuable in situations where, based on scientific theory or

prior experience, we are willing to assume parametric distributions for some of the

transitions, but for others we prefer to let the data speak for themselves. In some

cases we may even have no data for some transitions, but are willing to assume

particular parametric distributions based on expert opinion (perhaps with a range

of parameter values, yielding a range of estimates for the first passage distribution).

For example, in open queueing systems with random arrivals, the interarrival

time distribution is often very close to exponential(λ), with λ the mean arrival rate,

and it is standard to use this assumption (Kleinrock 1975); whereas the service

time distribution is typically unknown and not well approximated by an exponential

distribution. Thus it makes sense to use the exponential arrival assumption, while

dealing with the service time distribution nonparametrically.

Little more needs to be said, since the computational details are perfectly straight-

forward. By viewing a parametric distribution function as the limit of EDFs from

arbitrarily large samples, all the results associated with the first passage sample the-

orem (Section 2.1.2) continue to hold. Likewise, since an exact transform is trivially

a strongly consistent estimator of itself, the convergence results of Section 2.1.3 also

hold.

The additional computational overhead for nonparametric flowgraphs stems from

the complexity of empirical transforms; the first derivative may have tens of thou-
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sands of exponential terms, and for any inversion method either the transform or

its derivatives must be evaluated many times for each plot point. In contrast, ex-

act transforms for most of the commonly encountered distributions are quite simple,

thus the overhead is significantly reduced for each empirical transform replaced by

an exact transform. Accuracy is improved, assuming the hypothesized distribution

family is correct.

One important use of nonparametric methods is to act as a check on the validity

of results from a parametric model. In the flowgraph context, a mismatch between

the parametric and nonparametric results may be analyzed further by a stepwise

process. Starting from the fully parametric model, as each transition transmittance

is replaced by an empirical version the result is examined in order to isolate the

transition or transitions where the assumed parametric model is in error.

Section 3.1.4 provides an example, where parametric distributions are assumed

for two out of the four transitions in the repairable redundant system example that is

analyzed in a fully nonparametric way in Section 3.1. It illustrates both the improved

accuracy and reduced overhead that semiparametric analysis may provide.

Some possible Bayesian semiparametric approaches to flowgraphs were discussed

very briefly in Section 2.2.1 (p. 107). We have not pursued these in the current work.

2.5 Prior work and related methods

As noted in Section 2.1, there is considerable literature on empirical transforms.

Except for one empirical saddlepoint paper discussed below, this prior work deals

only with transforms of a single distribution, and focuses primarily on convergence

results and the asymptotic distribution of the error introduced by the sample average

process, not on inversion of the transforms. In a few cases, e.g., (Parzen 1962,
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p. 1070) and (Silverman 1986, Section 3.5), the empirical CF is used to facilitate

kernel smoothing for single-sample density estimation. Parzen uses the ECF only for

theoretical purposes, Silverman inverts it using the fast Fourier inverse in order to

reduce the computation required by kernel smoothing.

The first use of the empirical saddlepoint approxmation was in (Davison & Hink-

ley 1988). They considered an iid sample {x1, . . . , xn} from a distribution F , which

we will assume here has density f . As opposed to our use so far of the saddle-

point approximation for the the density of Xi, they used it as originally intended, to

approximate the sampling density fn of the mean n−1
∑

i xi. For this purpose the ap-

proximation formula is (2.30) (p. 95), in which they substituted the empirical CGF

K̃ for K. Their motivation was to use f̃n to compute, e.g., a confidence interval for

the mean, which they showed is a good approximation to the bootstrap confidence

interval obtained by resampling {x1, . . . , xn}. The empirical saddlepoint method

is advantageous in this case because it is simpler to compute than the bootstrap

estimate.

Davison and Hinkley pointed out but did not prove the fact that using the ECGF,

no solution for the saddlepoint equation exists for ŝ < x(1) or ŝ > x(n) (cf. Theorem

2.2.2), though they asserted “this is of no practical import” for the applications they

had in mind. In density estimation for reliability and survival analysis, of course, it

may be of great practical import, since it is often the tail behavior of distributions

that is of greatest interest.

Though they did not conceptualize it this way, estimating the distribution of the

mean (or equivalently the sum
∑n

i=1Xi) can be represented as a flowgraph prob-

lem, as shown in Figure 2.26 where M(s) is the common MGF of the Xi. The

1 → n + 1 first passage distribution is the distribution of
∑n

i=1Xi. The equivalent

bootstrap procedure would be to iterate summing sample holding times from the

individual transitions and develop estimates based on the samples. (In this case,
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because the holding time distributions are identical it would suffice to resample the

original sample, with replacement, n times for each first passage sample.)

Figure 2.26: Flowgraph representing the sum of n iid random variables

Butler and Bronson (2002) adopted a similar approach to complex flowgraphs

with feedback loops, using empirical MGFs and the saddlepoint approximation to

achieve a result equivalent to bootstrapping from a sample of first passage times in a

general semi-Markov process. In contrast to Davison and Hinkley, they used the sad-

dlepoint density approximation (2.26) since the various transition distributions were

not identical. They provided no proofs of convergence results like those of Sections

2.1.2 and 2.1.3 here, which must be assumed for the validity of the approximations

they used. They also did not address the question of the range over which the empir-

ical saddlepoint equation can be solved (Theorem 2.2.2), perhaps because they were

primarily interested in specific percentiles of the distribution which may not have

required going outside this range. Most importantly, their examples were restricted

to distributions for which the saddlepoint density approximation is reasonable accu-

rate; in general, as shown by Theorem 2.2.1, one cannot assume this accuracy for

either parametric or nonparametric methods.

With the exception of (Butler & Bronson 2002), prior work in flowgraphs and

semi-Markov processes generally has used parametric models for transforms. This

dissertation goes beyond the previous work in the respects mentioned above, in

handling censored data, in using the Fourier series inversion, and in recognizing the

need for a systematic investigation of errors in the approximations.

For a system with transient operational states and a set of absorbing failure states,

Limnios and Oprişan (2001, Proposition 5.3) derived a renewal equation giving the
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reliability function Ri(τ) starting in a given state i. If we define j as the single failure

state, then 1 − Ri(τ) is the first passage distribution function Gij(τ). Ouhbi and

Limnios (1999) showed (Theorem 7) that this equation gives a consistent estimator of

reliability when Pyke’s nonparametric estimator Q̂ (Equation 1.1, p. 8) is substituted

for Q. They also proved (Theorem 8) a large-sample distributional result which

depends on the unknown Q, which one would guess might hold asymptotically after

substituting Q̂. Their results may be used with an estimator for Q developed by Gill

(1980a) for randomly right-censored data. However, the computational tractability

of these methods is questionable. Solving Markov renewal equations is nontrivial,

and may be very difficult for large numbers of states even when an exact parametric

Q is known (Elkins & Wortman 2002; Kulkarni 1996, Chapt. 9). Typically transform

methods are used, requiring numerical inversion, which is confronted by all the issues

discussed so far. Even in the parametric case, we feel that flowgraphs provide a

more manageable technique which is equivalent to solving the renewal equations (see

Section 1.4.4, p. 27), and is both conceptually clear and computationally efficient.

In the nonparametric case, we have found no prior work on solving the renewal

equations that arise from semi-Markov processes.
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Example applications

This chapter contains examples that illustrate and evaluate the nonparametric flow-

graph methodology. The scenarios used are realistic; data are generated by sim-

ulation to permit comparison with the true distributions. Each scenario will be

described in enough detail to relate it to real-world problems where these methods

could be applied.

In each case, results using different inversion methods are compared with each

other and with results based on the true parametric distributions.

3.1 Repairable redundant system

In this section we revisit the reliability analysis example that was briefly discussed

in Section 1.1. The first version of the analysis uses fairly large samples of transition

data, consistent with study periods of a year or more in a well controlled field envi-

ronment. The example is worked with both uncensored and censored data. Section

3.1.3 contains a version of the analysis based on small uncensored samples (with
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sizes about 10% of the original sample sizes). Section 3.1.4 presents a semiparamet-

ric analysis (see Section 2.4) where we assume parametric exponential distributions

for the 1 → 3 and 2 → 3 transitions and estimate the parameter using maximum

likelihood, while using only the data for the 1 → 2 and 2 → 1 transitions.

Figure 3.1 shows the states of the system under study. Edges i → j are labeled

with their transmittances pijTij(s) where T can be the LT or MGF. The system is

composed of two units operating in parallel, and is functional if at least one of the

units has not failed. A failing unit can be repaired; system failure occurs if both fail

simultaneously, or if the second unit fails while the first is being repaired. Interest

lies in estimating the probability distribution, or moments of the distribution, for

the time of first passage from state 1 to state 3.

Figure 3.1: Three-state repairable redundant system model

It is assumed that each machine is independently capable of supporting what-

ever “load” is required for full system operation, and that the capability of each

machine is independent of the number of failures that have occurred (perfect repair).

Situations where the load is redistributed after a failure (Kvam & Peña 2005) can,

in principle, be modeled with flowgraphs by adding a state to represent each post-

failure redistribution; likewise we can handle imperfect repair and other departures
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from time-homogeneity (Peña 2006) by proliferating states. However, for empirical

flowgraphs the computational burden becomes excessive for “dynamic” problems of

significant size, and one seldom has enough data in such cases to support a completely

empirical analysis. In practice, systems often do (at least to a first approximation)

satisfy independence and time-homogeneity with a reasonable number of states, and

the method described here is applicable.

The 1 → 2 and 2 → 1 links each aggregate two transitions: primary fail/repair,

and backup fail/repair; state 2 summarizes two states, primary failed and backup

failed. The primary and backup units are considered identical, so the 1 → 2 transition

occurs if either one fails, and the 2 → 1 transition occurs when the failed unit is

repaired.

Both units are assumed to have independent exponential(λ1) failure distributions,

so with failure times T1 and T2 for the first and second unit, the distribution for T ,

the time for the 1 → 2 transition, is given by

P (T ≤ t) = 1 − P (T > t) = 1 − P (T1 > t, T2 > t)

= 1 − exp(−λ1t) exp(−λ1t) = 1 − exp(−2λ1t).

Thus the distribution of T is exponential(2λ1). The 1 → 2 transition includes the

case of simultaneous random failures in both units, which should take the system to

state 3; however, the probability of this is negligible and we ignore it. The direct

1 → 3 transition is presumed to result from common-cause failures, e.g., power

outages, not from simultaneous random failures. The distribution for the 1 → 3

transition is modeled as exponential(λ2). The repair time distribution is modeled

as gamma(α, β), independently of which machine has failed. Specifically, taking

the time unit as minutes, λ1 = 0.0002778, corresponding to a mean time to failure

(MTTF) of either unit of 30 hours (1.25 days); λ2 = 0.00002315, MTTF of 30 days;

α = 2, β = 180 for a mean time to repair (MTTR) of 6 hours. Transition probabilities
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are p12 = .96, p13 = .04, p21 = .907, and p23 = .093 (these were computed from the

true distributions using competing risk ananysis, and for the sake of simplicity are

assumed to be accurately estimated from the observed data).

The Mason’s rule solution for the flowgraph in Figure 3.1 was derived in Section

1.3.1 (Equation 1.2, p. 16) as

T(s) =
p01T01(s)p12T12(s) + p02T02(s)

1 − p01T01(s)p10T10(s)
. (3.1)

T in this case will be the Laplace transform for the EULER inversion and the MGF

for the saddlepoint inversion. For comparison with nonparametric estimates, the

true density for the 1 → 3 first passage distribution was computed in Mathematica

by analytic inversion of the exact Laplace transform.

3.1.1 Results for uncensored Data

The model was analyzed using uncensored samples with 270, 25, 247, and 23 ob-

servations sampled from the 1 → 2, 1 → 3, 2 → 1, and 2 → 3 transition time

distributions, respectively. Plots of the sample histograms and true holding time

pdfs are shown in Figure 3.2.

EULER approximations for the density and CDF of the 1 → 3 first passage

distribution are shown in Figure 3.3. Error statistics for these and the empirical

saddlepoint approximation are displayed in Tables 3.1 and 3.2. The exponentially

smoothed EULER result is better than the result from the modified EULER algo-

rithm, but takes quite a bit longer to compute; on a 700 MHz processor, generating

the plot points took 304 seconds for EULER, versus 89 seconds for modified EULER.

The first passage density is quite close in shape to a gamma density, so by Daniels’

Conjecture (p. 96) we would expect a good result for the saddlepoint method, and
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Figure 3.2: True pdfs and sample histograms for transitions in the repairable system
example.

it does not disappoint. Figure 3.4 shows the empirical saddlepoint approximations

to the pdf and CDF; Tables 3.1 and 3.2 display the error statistics.

The empirical saddlepoint is much slower than the Fourier series inversion: gen-

erating 1,000 plot points takes about 12 minutes. An adaptive algorithm would

improve this significantly; because the saddlepoint result is fairly smooth, in princi-

ple it is possible to approximate the curvature (using the second derivative) and plot

fewer points where the density is nearly linear. Looking at this and other potential

performance improvements is a future research objective.

Table 3.1 shows the global error statistics, and Table 3.2 compares percentiles

of the distribution for the approximations. Only smoothed EULER, not modified

EULER, is shown in Table 3.2. The parametric saddlepoint result is shown for
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Figure 3.3: Approximations for the 1 → 3 first passage, uncensored data. Top row:
pdf, smoothed EULER (left) and modified EULER; bottom row, EULER (left) and
modified EULER CDF approximations; true curves are dashed.

comparison to the empirical saddlepoint. “Rel. error” is the error in the percentile

relative to the true value. The poor results in the right tail of the distribution for

EULER and the empirical saddlepoint are most likely a consequence of sampling,

Method IAE (pdf) K-S (CDF)
Smoothed EULER 0.06542 0.06456
Modified EULER 0.08216 0.06829
Empirical saddlepoint 0.07273 0.11580

Table 3.1: 1 → 3 first passage distribution, uncensored data: integrated absolute
errors (IAE) for pdf and Kolmogorov-Smirnov (K-S) statistics for CDF.
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Figure 3.4: Empirical saddlepoint approximations for the 1 → 3 first passage, un-
censored data. Left: pdf, right: CDF; true curves are dashed.

Percen- Exact Smoothed Rel. Parametric Rel. Empirical Rel.
tile EULER error saddlepoint error saddlepoint error
5 3,295 3,313 .006 3,312 .005 3,423 .039
25 10,177 9,643 .052 10,366 .019 10,352 .022
50 20,554 19,345 .059 21,487 .046 21,478 .045
75 40,176 36,356 .095 43,805 .090 42,715 .063
95 98,975 83,325 .158 105,859 .070 90,057 .090
99 167,090 138,867 .169 172,461 .032 126,565 .225

Table 3.2: 1 → 3 first passage distribution percentile results for uncensored data.

which is unlikely to produce points in the extreme tail. This loss of information in

the tails is a general problem with nonparametric methods based on samples.

Using the procedure described in Section 2.3, an approximate 95% bootstrap

confidence interval for the mean (MTTF) is (24,140, 34,699), and for the standard

deviation, (20,387, 35,999) (values are in minutes). Exact values, computed from

the analytic transform inversion, are µ = 31,650, σ = 34,052.

The hazard rate h(τ) (sometimes called the failure rate), much used in reliability

and survival analysis, is the instantaneous failure rate at time τ , conditional on
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Figure 3.5: Hazard rate approximations for the 1 → 3 first passage, uncensored data.
Left: EULER, right: empirical saddlepoint; true hazard rate is dashed.

survival to that point. Where f(τ) is the pdf of the failure distribution, F (τ) is the

CDF, and S(τ) = 1 − F (τ) is the survival function,

h(τ) = lim
∆τ→0

S(τ) − S(τ + ∆τ)

∆τS(τ)
=
f(τ)

S(τ)
. (3.2)

The hazard rate is particularly sensitive to errors in density approximation, since

the approximation is used both in the numerator and denominator of (3.2). This

is clearly shown in Figure 3.5. Both approximations represent h(τ) with reasonable

accuracy only up to about 30,000 minutes (close to the mean). The EULER approx-

imation, though noisy, is qualitatively more accurate in that it correctly indicates

that the hazard rate is decreasing after 30,000 minutes, whereas the saddlepoint ap-

proximation incorrectly shows it increasing. Past about 60,000 minutes the EULER

approximation ceases to give any meaningful information.

3.1.2 Results for censored Data

This scenario is identical to that of Section 3.1.1 except for censoring. The assump-

tion here is that all transitions leading to “both units failed” (state 2) are com-
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Figure 3.6: True pdfs and sample histograms for censored samples in the repairable
system example.

pletely observed, but observations for the 1 → 2 and 2 → 1 transitions may be right

censored (in the sample for this case 35% were censored for each transition). Inde-

pendent exponential(λC) distributions were used to determine the censoring times.

(This process is described in Appendix A.2.1, p. 170.) Histograms of the samples

are plotted against the true holding time distributions in Figure 3.6; censoring of the

longer times for the 1 → 2 and 2 → 1 transitions is evident.

Adjusted transforms were computed from the censored data as described in Sec-

tion 2.1.4 (p. 2.1.4), and the remainder of the empirical flowgraph method was

unchanged.

Visually, the density and distribution function approximations are very similar

to the uncensored case and are not shown. Table 3.3 shows error statistics, Table
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Method IAE (pdf) K-S (CDF)
Smoothed EULER 0.09523 0.03226
Modified EULER 0.11698 0.15515
Empirical saddlepoint 0.15945 0.13716

Table 3.3: 1 → 3 first passage distribution, censored data: integrated absolute errors
(IAE) for pdf and Kolmogorov-Smirnov (K-S) statistics for CDF.

Percentile Exact Smoothed Rel. Empirical Rel.
EULER error saddlepoint error

5 3,295 3,284 .003 2,646 .197
25 10,177 9,763 .041 8,045 .201
50 20,554 18,863 .083 16,743 .185
75 40,176 34,880 .132 36,438 .093
95 98,975 82,490 .167 83,827 .153
99 167,090 141,993 .150 124,418 .255

Table 3.4: 1 → 3 first passage distribution percentile results for censored data.

3.4 compares percentiles of the distribution for smoothed EULER and the empirical

saddlepoint approximations with the exact percentiles. EULER results are close to

the uncensored case, the saddlepoint result is somewhat worse.

3.1.3 Small sample results

The model was reanalyzed using uncensored samples with 30, 10, 30, and 10 ob-

servations sampled from the 1 → 2, 1 → 3, 2 → 1, and 2 → 3 transition time

distributions, respectively. Plots of the sample histograms and true holding time

pdfs are shown in Figure 3.7. It turns out that the information obtainable from the

nonparametric analysis is not very accurate, but consider the parametric alternative:

is it obvious from these samples that the 1 → 2 transition has an exponential holding

time distribution? Or that the 2 → 1 transition distribution is gamma? Or even
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Figure 3.7: True pdfs and sample histograms for small samples in the repairable
system example.

that they are both unimodal?

Processing time is reduced proportional to the smaller samples; generating the

EULER plot points took 57 seconds with the small samples, versus 304 seconds with

the large samples. Because the main advantage of the modified EULER algorithm

is its faster processing, it was not used in this case.

Plots of the pdf and CDF approximations are shown for EULER in Figure 3.8,

and for the empirical saddlepoint in Figure 3.9. Table 3.5 shows error statistics,

and Table 3.6 compares percentiles of the distribution for smoothed EULER and the

empirical saddlepoint approximations with the exact percentiles.

Although these results are not very accurate, they do provide a good general

idea of the shape and scale of the distribution, which would certainly be helpful in
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Figure 3.8: 1 → 3 first passage, small samples: smoothed EULER pdf approximation
(left) and CDF approximation (right); true curves are dashed.
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Figure 3.9: 1 → 3 first passage, small samples: empirical saddlepoint pdf approxi-
mation (left)and CDF approximation (right); true curves are dashed.

validating any alternative analysis, such as a parametric flowgraph model.

Method IAE (pdf) K-S (CDF)
Smoothed EULER 0.22866 0.05060
Empirical saddlepoint 0.21030 0.13195

Table 3.5: Repairable system example, small samples: integrated absolute errors
(IAE) for pdf and Kolmogorov-Smirnov (K-S) statistics for CDF.
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Percentile Exact Smoothed Rel. Empirical Rel.
EULER error saddlepoint error

5 3,295 1,962 .406 2,281 .301
25 10,177 10,378 .020 10,578 .039
50 20,554 22,448 .092 23,372 .137
75 40,176 44,006 .095 41,365 .030
95 98,975 78,254 .209 74,751 .245
99 167,090 104,773 .373 104,239 .376

Table 3.6: 1 → 3 first passage distribution percentile results for small samples.

3.1.4 Semiparametric analysis

Here we reanalyze the small sample case of Section 3.1.3 using the semiparametric

technique described in Section 2.4 (p. 115). We model the 1 → 2 and 2 → 1

transitions nonparametrically, but assume parametric exponential(λij) models for

the 1 → 3 and 2 → 3 transitions. The λij are estimated using the MLE 1/t̄ij, where

t̄ij is the sample mean. This yields λ13 = 3.36695 × 10−5 (versus the true value

2.31481 × 10−5), and λ23 = 1.58113 × 10−4 (versus the true value 2.77778 × 10−4).

Processing time is reduced further here, because evaluating the parametric trans-

forms is much faster than evaluating the corresponding empirical transforms. Gener-

ating the EULER plot points took 18 seconds, versus 57 seconds with the empirical

small samples and 304 seconds with the large samples.

Plots of the pdf and CDF approximations are shown for EULER in Figure 3.10,

and for the empirical saddlepoint in Figure 3.11. Table 3.7 shows error statistics,

and Table 3.8 compares percentiles of the distribution for smoothed EULER and

the empirical saddlepoint approximations with the exact percentiles. As we would

expect, these results are significantly better than the comparable results for the

pure nonparametric analysis with small samples. They are not as good as the pure

nonparametric analysis with large samples.
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Figure 3.10: 1 → 3 first passage, semiparametric: smoothed EULER pdf approxi-
mation (left) and CDF approximation (right); true curves are dashed.
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Figure 3.11: 1 → 3 first passage, semiparametric: empirical saddlepoint pdf approx-
imation (left)and CDF approximation (right); true curves are dashed.

3.2 Mixture of wearout and random failures

This example is drawn from (Briand et al. 2008). A complex component is subject

to two types of failures: random failure with exponential(λ) distribution (e.g., failure

Method IAE (pdf) K-S (CDF)
Smoothed EULER 0.18855 0.04595
Empirical saddlepoint 0.12816 0.05595

Table 3.7: Repairable system example, semiparametric analysis: integrated absolute
errors (IAE) for pdf and Kolmogorov-Smirnov (K-S) statistics for CDF.
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Percentile Exact Smoothed Rel. Empirical Rel.
EULER error saddlepoint error

5 3,295 3,680 .117 3,601 .093
25 10,177 11,708 .150 11,701 .150
50 20,554 20,337 .011 22,401 .090
75 40,176 37,385 .069 40,301 .003
95 98,975 81,703 .175 83,901 .152
99 167,090 126,403 .243 127,800 .235

Table 3.8: 1 → 3 first passage distribution percentile semiparametric results.

of an electronic subcomponent), and wearout of a mechanical part centered at a time

µ after being placed in service. Briand et al. used a normal(µ, σ2) distribution for

wearout, which in principle could lead to negative failure times; to avoid this and

for analytic tractability we use as a wearout failure distribution gamma(α, β) with

αβ = µ and αβ2 = σ2. For this example the parameter values are λ = 0.00333333,

α = 100, and β = 3, thus µ = 300 and σ = 30. The mixing probabilities are .4 for the

gamma and .6 for the exponential. The flowgraph for this model is shown in Figure

3.12; the 2 → 4 and 3 → 4 transitions are added just to provide a common endpoint,

so p24 = p34 = 1 and T24(s) = T34(s) ≡ 1. Then the Mason’s rule expression for the

1 → 4 first passage transmittance is

T(s) = p12T12 + p13T13.

Analysis of a simple mixture such as this can be done without flowgraphs, using clas-

sical statistical methods (Lindsay 1995). However, it is instructive to do a flowgraph

analysis because it exposes some interesting issues. A more complex variant of this

example, which does benefit from flowgraphs, is presented in Subsection 3.2.1.

Figure 3.13, on the left, plots the two failure densities and the resultant mixture.

As discussed in Section 2.2.3 (p. 95 ff.), this is the sort of density that is poorly

approximated by the saddlepoint method. The right side of Figure 3.13 illustrates
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Figure 3.12: Flowgraph for wearout and random failure modes
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Figure 3.13: Left: Wearout failure density (dashed), random failure density (dotted),
mixture density (solid line). Right: mixture density plotted with first-order (dashed)
and second-order (dotted) parametric saddlepoint approximations.

this—even the second-order parametric saddlepoint (Equation 2.29, p. 94) is not a

very good approximation. In contrast, the EULER inversion of the exact transform

(not shown) is visually nearly perfect, with IAE = 0.0020.

For both the saddlepoint and Fourier series inversions, there is a second issue

besides the accuracy of the saddlepoint for mixture densities. The sample sizes for
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Figure 3.14: True pdfs and sample histograms for random (left) and wearout (right)
failures.

this example are not large— 50 for the 1 → 2 transition, 25 for the 1 → 3 transition

(samples are plotted in Figure 3.14). Recall from Section 2.2.2, p. 78, that in a

flowgraph with loops and series of transitions the effective sample size is proportional

to the product of the actual sample sizes. In this flowgraph, there are only parallel

transitions, so the effective sample size is merely additive. This significantly reduces

the potential accuracy of the inversions. In addition, the lack of feedback loops

means that the saddlepoint equation cannot be solved for any value of s greater than

the maximum failure time in either the 1 → 2 or 1 → 3 sample (see Theorem 2.2.2,

p. 102), which is 1,264 in this case. This is near the limit of the effective support of

the mixture density, so the pdf is set to zero past this point.

Figure 3.15 shows the pdf and CDF approximations computed by smoothed

EULER and the empirical saddlepoint method, and Table 3.9 displays the error

statistics. These results illustrate the value of looking at both approximations. The

saddlepoint result correctly indicates that the mixture density has two modes, one

at the origin, but in all other respects it is less accurate than EULER. EULER cor-

rectly places the larger mode of the density, and one can infer that there is a second

mode at the origin, but the plot has too much noise to assess exactly how many
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Figure 3.15: Top left: smoothed EULER approximation to wearout/random mix-
ture density; top right: empirical saddlepoint approximation; bottom row shows
corresponding CDF approximations; true curves are dashed.

modes there are. The EULER CDF approximation is clearly much more useful than

the saddlepoint CDF. Comparing Figure 3.15 with Figure 3.13, it is obvious that

the error in the empirical saddlepoint approximation is endemic to the saddlepoint

density approximation, and not simply a consequence of sampling error.

3.2.1 A more complex mixture example

Figure 3.16 shows a variation on the wearout/random mixture example. In this

case, we assume that a worn-out part can be instantly replaced with probability p31,

avoiding a failure; with probability p34 = 1 − p31 there is no replacement available,
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Method IAE (pdf) K-S (CDF)
Smoothed EULER 0.32772 0.06439
Empirical saddlepoint 0.62240 0.24546

Table 3.9: Wearout/random mixture example: integrated absolute errors (IAE) for
pdf and Kolmogorov-Smirnov (K-S) statistics for CDF.

Figure 3.16: Flowgraph for wearout and random failure modes, with probabilistic
immediate replacement after wearout.

resulting in failure. An example is the common classroom overhead projector: ideally,

there is a spare bulb that can be swapped for a burned-out bulb almost instantly by

moving a lever. However, it may be that the last user who experienced a burn-out

did not get the bulb replaced, in which case the “spare” is also burned-out and the

projector has failed. Because there is a feedback loop 1 → 3 → 1, this is no longer a

classic mixture problem, and we need a flowgraph model or some equivalent to solve

it. The Mason’s rule expression for the 1 → 4 first passage transmittance is

T(s) =
p12T12(s) + p13T13(s)p34

1 − p13T13(s)p31

.

We assume here that p31 = p34 = .5; otherwise all the parameters and the samples
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Figure 3.17: Left: wearout (dashed), random (dotted), and 1 → 4 first passage
(solid) densities; right: enlarged view of 1 → 4 first passage density.

are the same as in the simple mixture case. What was the 1 → 3 sample for wearout

failure now includes cases of successful replacement, as well as wearout resulting in

system failure. Figure 3.17 shows the component failure densities and the 1 → 4

first passage density. At least four modes are visible in the 1 → 4 first passage

density; there are actually an infinite number of modes, corresponding to failure

after 0, 1, 2, . . . successful replacements.

Figure 3.18 shows the pdf and CDF approximations computed by smoothed

EULER and the empirical saddlepoint method; Table 3.9 displays the error sta-

tistics. The saddlepoint density result is worse than in the simple case, smoothing

away all but the first two modes, and almost losing the second. Unlike in the simple

case, because of the feedback loop the saddlepoint equation can be solved over the

full support of the density on the right. The slight glitch on the left is because the

minimum sample value is 1 > 0. EULER does catch the third mode, but this is

visible only because the true density is displayed; in practice, it’s unlikely that it

could be differentiated from the noise.
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Figure 3.18: Top left: smoothed EULER approximation to wearout/random complex
mixture density; top right: empirical saddlepoint approximation; bottom row shows
corresponding CDF approximations; true curves are dashed.

Complex mixture with additional feedback loops

To amplify the point made in Section 2.2.2, that added complexity in a flowgraph

may improve accuracy, we modified the complex mixture flowgraph (Figure 3.16) by

Method IAE (pdf) K-S (CDF)
Smoothed EULER 0.28566 0.04423
Empirical saddlepoint 0.34366 0.14603

Table 3.10: Wearout/random complex mixture example: integrated absolute errors
(IAE) for pdf and Kolmogorov-Smirnov (K-S) statistics for CDF.
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Figure 3.19: Smoothed EULER (left) and empirical saddlepoint (right) approxima-
tions for the complex mixture with additional loops; true curves are dashed. Compare
Figure 3.18.

increasing p13, the probability of wearout (as opposed to random failure) from .4 to

.9, and increasing p31, the probability of successful replacement, from .5 to .7. This

causes the loop 1 → 3 → 1 to be traversed many more times, and accentuates the

later modes of the density.

Figure 3.19 shows the results. The EULER approximations are clearly improved,

as expected. The saddlepoint results are not, but that is also expected, on account of

the poor performance of saddlepoint methods generally for multimodal densities. For

first passage densities of the type for which the saddlepoint density approximation

tends to be accurate, accuracy would be improved by more loop traversals in the
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flowgraph.

Summarizing, the flowgraphs discussed in this section are challenging because

the samples are relatively small, they are not (except in the last example) effec-

tively increased by loop traversal, and the density to be approximated is multimodal.

(The problem of multimodal densities affects nonparametric estimation methods in

general, not just flowgraphs.) Nevertheless, nonparametric flowgraph analysis still

produces useful results.
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3.3 Cumulative earthquake damage to structures

Cumulative damage is a process observed in many engineering applications; examples

include fatigue cracking in metals and damage to structures as a result of repeated

mechanical shocks. Markov process models are widely used for understanding and

prediction of cumulative damage (Bogdanoff & Kozin 1985), as they have been found

to offer a reasonable compromise between fidelity and mathematical tractability. The

simplest such model is the finite or countable-state Markov chain, in which both

states and transition times are discrete. This is not as limiting as it may seem, since

even obviously continuous state variables such as the length of fatigue cracks can be

usefully represented as sequences of discrete magnitudes (Bogdanoff & Kozin 1985;

Pappas et al. 2001). In looking at structures and other complex mechanical systems,

time is often naturally discretised by scheduled inspection intervals (Morcous 2006).

As a consequence of the Markov property, probability distributions for holding

times between states in Markov process models are limited to be of “memoryless”

type—geometric in discrete time, or exponential in continuous time. The greater

generality of semi-Markov process models allows holding times to be arbitrarily dis-

tributed, but introduces conceptual and computational complexity that has limited

their use in engineering applications.

The example presented here, a four-state model of cumulative damage to struc-

tures as a result of repeated seismic shocks, is from (Gusella 1998, 2000). We use

it to illustrate the added power of semi-Markov models generally and flowgraphs in

particular, and to show how the nonparametric flowgraph method can be used to

detect a model specification error.

The flowgraph for the model is shown in Figure 3.20. States represent discrete

damage categories, with state 4, collapse of the structure, being an absorbing state.

From states 1-3 there is a probability of progressing to any state with a higher level
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of damage, with transitions triggered by seismic events of a given intensity. The

main engineering interest lies in being able to predict (in a probabilistic sense) the

time elapsed from having an undamaged structure to collapse, or equivalently the

probability of collapse within a given time interval. These results follow from an

estimate of the 1 → 4 first passage distribution. Note that this flowgraph has self-

transitions, which we normally avoid (see Section 1.2, p. 3); here we use them in

order to be faithful to Gusella’s presentation of the model.

Figure 3.20: States and transitions for earthquake damage model

Gusella’s model is hierarchical: seismic events (earthquakes of given intensity) are

outcomes of a Poisson process with stationary parameter λ; given a seismic event,

transition of a structure to a new damage state is given by a Markov chain with

transition probability matrix P . In a Poisson process with mean λt events in time

t the interarrival times are exponentially distributed with rate λ, so alternatively

the model can be described as a semi-Markov process with the transition proba-

bility matrix of the embedded chain being P , and the holding time distributions

being identically exponential(λ). Thinking of the process as semi-Markov facilitates

generalization to non-identical, non-exponential holding times.

The process by which seismic events are propagated through the earth is enor-

mously complicated (Richter 1958); thus any simple probabilistic model for earth-
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quake occurrences and intensities will not be completely realistic. In particular,

the adequacy of modeling series of seismic events as Poisson processes has been a

subject of debate in the seismology literature (Vere-Jones 1970). Flowgraphs (and

semi-Markov process models generally), as opposed to Markov process models such as

Gusella’s, offer the flexibility to accommodate arbitrary time distributions between

seismic events.

The transition probability values in (Gusella 1998) are based on a physical model

for the effect of ground acceleration on masonry structures, which is another very

complicated process (Kanai 1983). We take the physical model at face value, since

we are mainly interested in general methodological features of the model.

Let Tij be the adjacent-state transition transforms, and U34 the transform of the

3 → 4 first passage distribution; then

U34(s) = p33T33(s)U34(s) + p34T34(s)

=
p34T34(s)

1 − p33T33(s)
.

By continuing this recursion back to state 1 or by applying Mason’s rule directly,

and using the fact that every transition in this flowgraph has the identical transform

T(s), the transform for the 1 → 4 first passage is given by

U14(s) =
p12p23p34T(s)3

(1 − p11T(s)) (1 − p22T(s)) (1 − p33T(s))
+

p12p24T(s)2

(1 − p11T(s)) (1 − p22T(s))
+

p13p34T(s)2

(1 − p11T(s)) (1 − p33T(s))
+

p14T(s)

1 − p11T(s)
. (3.3)

Gusella models four different categories of seismic events, characterized by their

maximum ground acceleration. These are combined probabilistically to get an overall

model for cumulative structural damage. For the purpose of illustration, only one
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Method IAE (pdf) K-S (CDF)
Smoothed EULER 0.06272 0.03316
Empirical saddlepoint 0.13991 0.10767

Table 3.11: Cumulative damage example: integrated absolute errors (IAE) for pdf
and Kolmogorov-Smirnov (K-S) statistics for CDF.

of the ground acceleration models is considered here (Gusella’s Ap4) with parameter

λ = .0019 for the Poisson arrival process and transition probability matrix
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Sample data for the one holding time distribution were generated by simulation

from an exponential(.0019) distribution. The sample size is n = 100, which is not un-

realistic considering that thousands of seismogram records exist for most seismically

active regions (Lee et al. 1988).

Approximation results for the 1 → 4 first passage distribution are shown in Figure

3.21, and the error statistics are in Table 3.11. As usual, the true pdf was determined

by analytic inversion. Although not quite as smooth, the smoothed EULER result

is clearly superior to the empirical saddlepoint in accuracy. This density, which is

close in shape to a gamma, is the type that is approximated well by the saddlepoint

method. The parametric saddlepoint approximation has an IAE of 0.011148 relative

to the true distribution, and the parametric EULER result has IAE 2.3687 × 10−8.
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Figure 3.21: Top left: smoothed EULER approximation to 1 → 4 first passage
density; top right: empirical saddlepoint approximation; bottom row shows corre-
sponding CDF approximations; true curves are dashed.

3.3.1 Detecting a model error

Suppose that the assumption of a homogeneous Poisson arrival process (equivalent

to an exponential distribution for arrival intervals) for seismic events is not valid. For

example, suppose that the actual distribution of interarrival times is gamma(α, β)

with α = 2.5, β = 211. These values were chosen so that the mean interarrival

interval is close to that of the hypothesized Poisson process in the Gusella model.

(For a discussion of the plausibility of gamma-distributed arrivals, see (Takahashi et

al. 2004), Section 3.2.) Figure 3.22 plots the gamma and exponential interarrival

densities, and the densities for the 1 → 4 first passage distribution in the earthquake
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damage model under the gamma and Poisson assumptions.
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Figure 3.22: Left: Gamma pdf (solid) and exponential pdf (dashed) for seismic
events. Right: 1 → 4 first passage density under the gamma model (solid) and
exponential model (dashed).

To illustrate how the nonparametric method can detect the bad assumption in

this parametric model, we use the following scenario. A sample of size 100, with

sample mean t̄ = 525.99, was drawn from the gamma distribution. Applying the

parametric flowgraph method with the assumption of exponential(λ) interarrival

times, λ is estimated using maximum likelihood as 1/t̄ ≈ .0019 (the value in the

Gusella model); the transform T(s) is computed accordingly, then Mason’s rule is

used to derive the 1 → 4 first passage transmittance (Equation 3.3, p. 145), which

is inverted. For comparison, the 1 → 4 first passage density is estimated using

the nonparametric method. The results shown below underscore the conclusion of

(Gbur and Collins 1989), discussed on p. 37—the superiority of parametric methods

is critically dependent on assuming the correct model.

Figure 3.23 plots nonparametric and parametric estimates of the first pasage

density using EULER and saddlepoint inversions, along with the true pdf. Table 3.12

shows integrated absolute errors for the methods. IAE for the parametric saddlepoint

and EULER are identical, since both methods estimate the parametric density almost
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IAE IAE
Method (nonparametric) (parametric)

EULER 0.10561 0.27545
Saddlepoint 0.07449 0.27545

Table 3.12: Cumulative damage example: integrated absolute errors (IAE) relative
to the true pdf of nonparametric and parametric density estimates.

exactly. However, both estimates, made under the Poisson assumption, are incorrect,

and considerably worse than the nonparametric estimates, as shown by comparison

of the IAEs.
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Figure 3.23: Cumulative damage 1 → 4 first passage density estimates. Left:
Smoothed empirical EULER (solid), parametric EULER (dotted), true density
(dashed). Right: Empirical saddlepoint (solid), parametric saddlepoint (dotted),
true density (dashed).

Though it is not the main point here, this example also shows the advantage of

using methods that are not restricted to Markov processes, where the assumption

of exponential holding times is built into the model. Semi-Markov models are more

general, and quite tractable using flowgraph methods.
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Discussion

4.1 Summary of results

In this dissertation we have provided background on statistical flowgraphs and showed

how previous work can be significantly extended in the direction of nonparametric

and semiparametric flowgraphs.

We began in Chapter 1 by carefully formulating a class of problems that can

be readily solved using flowgraph methods, and can only be solved with greater

difficulty, or not at all, using other methods. The crux of these problems, with many

examples in reliability and survival analysis, is to estimate the distribution of first

passage times between two arbitrary states in a multistate system, when only data

on transitions between adjacent states are assumed known.

Chapter 1 continued with a review of parametric flowgraphs, where we assume

a known family of distributions Fij(t; θij), parameterized by θij, that determines the

conditional holding time in state i given a transition to j. We then reviewed the

transforms used in flowgraph analysis at the highest level of generality, namely as
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Lebesgue-Stieltjes integrals, while providing a coherent exposition of results scat-

tered in the literature that form a rigorous basis for the flowgraph methodology. In

particular we showed the validity of Mason’s rule, a general procedure for solving

flowgraphs of arbitrary complexity. Since the empirical transforms used in Chapter

2 are also Lebesgue-Stieltjes integrals, this rigorous basis carries over to the nonpara-

metric flowgraph methodology.

Chapter 2 is the core of the dissertation, presenting a set of original results and

algorithms, based on limited prior work, that demonstrate the existence of effective

and useful techniques for solving flowgraph problems nonparametrically (with no

distributional assumptions) or semiparametrically (with assumed models for holding

times on some, but not all, of the transitions in a multistate system). After reviewing

empirical transforms (integral transforms based on a sample average), the following

key results were presented in Chapter 2:

• Showing that empirical transforms for individual transitions combine using Ma-

son’s rule to yield an empirical transform for the desired first passage distrib-

ution, that it is essentially equivalent to an empirical transform based directly

on a sample of first passage times, and that it is a strongly consistent estimator

of the exact transform of the true parametric first passage distribution.

• Showing that the same results hold when transition samples are randomly right

censored.

• Developing and evaluating in depth several algorithms for numerical inversion

of empirical transforms, using Fourier series approximation and the saddlepoint

method.

• Proving the nonexistence of any bound on the error of the saddlepoint density

approximation; this result is important because, while known heuristically, it

is widely ignored in the saddlepoint literature.
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• Quantifying bounds for the domain over which the empirical saddlepoint equa-

tion can be solved, thus setting upper and lower bounds on the domain for an

empirical saddlepoint approximation. These bounds were known for transforms

directly based on a single sample, but not for complex transforms computed

using Mason’s rule.

• Showing the nonexistence of exact confidence bounds for the pdf and CDF of

the first passage distribution, using the estimation methods we developed or

anything similar; and developing a bootstrap procedure for confidence bounds

on moments of the first passage distribution.

• Showing that due to the generality of the results on transforms and Mason’s

rule, we can freely mix parametric and empirical transforms in a single com-

putation, leading to a flexible semiparametric flowgraph method.

• Developing computer code using Mathematica to implement all the parametric

and nonparametric methods described here. (Appendix A to the dissertation

contains algorithm descriptions and annotated code listings for programs writ-

ten to support the research.)

Methods were analyzed in terms of accuracy and computational complexity, and

important points were illustrated with examples. We also discussed how the results

developed here relate to other work in the field.

Chapter 3 presented three detailed examples, with variants on each, to illustrate

our methods in the context of realistic problems in reliability analysis and structural

engineering. By using simulated data, we were able to quantify the accuracy of

the methods using standard statistics, besides using plots for visual comparison of

estimates to the true distributions.

This chapter, besides summarizing, presents some general thoughts on parametric

and nonparametric methods in the broader scientific context, leading into a discussion
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of where our particular nonparametric methods fit into a general methodology for

analyzing stochastic multistate systems. Finally, we list an agenda of future research

objectives for the purpose of extending these methods and making them more useful,

and easier to use.

4.2 Theory-based versus data-driven models

While probability theory is easily categorized as a purely deductive mathematical

discipline (Kolmogorov 1956), statistics, like science in general, is a dynamic balanc-

ing act between discovering theory through induction and validating theory through

prediction and experiment (Sprenger 2009). Statistics serves science, but can also

be taken as a science in itself if we “abstract away” the subject-matter content from

statistical theories.

Rather than try to define “science,” we take physics as the paradigm of a mature

science. As an example of historical progress in physics, consider Snell’s law of

refraction (Holton & Brush 2001, Section 3.4, 23.1): if θ1 is the angle of incidence

of a light ray at the interface between two different transparent media (e.g., air

and glass), it is related to θ2, the angle of refraction, by sin θ1/sin θ2 = c, where

c is a constant determined by the two substances. The stages leading to a full

understanding of this law are illustrative of progress in science generally.

At the most primitive stage that can be called real science, we see pure empirical

(“nonparametric”) laws. In the case of refraction, this goes back at least to Claudius

Ptolemy, who posited a proportionality between the angles of incidence and refrac-

tion (not their sines) based on experimental observations of refraction between air

and water; this law was valid only for small angles, and there was no good reason

to suppose that the same law would be applicable to other substances. Eventually,
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a “parametric” mathematical law was discovered (c being the parameter) indepen-

dently by several scientists, one of whom was Snell in 1621. This is what statisticians

would call a model. The final stage is a parametric law derived from more basic ex-

planatory principles of the science; the explanatory principles constitute what physi-

cists call a model (we will call it a “theory”). In the case of Snell’s law, this was

done, incorrectly, by both Descartes and Newton, based on a particle theory of light;

it was later done “correctly” by Fresnel based on a wave theory of light. The theory

is not mere cognitive icing on the cake, but leads to genuine insight—in this case,

that the constant c is the ratio of the velocities of light in the two media. “Cor-

rectly” appears in quotes because such theories are subject to change, even when the

form of the mathematical law remains the same; though Fresnel’s explanation is still

taught, a different and more “correct” version is provided by the theory of quantum

electrodynamics (Feynman 2006).

Using models that are “parametric” in the statistical sense does not necessar-

ily imply a motivation towards theory-based understanding of a problem. One of

the authors of a leading textbook on simulation has developed a software package

that automates the process of selecting parametric models for data sets, based on

maximum likelihood estimation of the parameters and goodness-of-fit testing: “Per-

forming the statistical procedures discussed in this chapter can . . . be difficult,

time-consuming, and prone to error . . . ExpertFit1 will automatically and accu-

rately determine which of 39 probability distributions best represents a data set”

(Law & Kelton 2000, p. 370). An instructive example of the merits of this approach

is found in (Wolstenholme 1999), Example 3.5; a much-analyzed data set of failure

times for ball bearings is found (by Wolstenholme and others) to be a reasonable

fit to several distributions commonly used in reliability analysis, e.g., lognormal,

gamma, and Weibull. None of these analyses has been based on physical properties

of the bearings (i.e., on a theory), and none has contributed anything to a scientific

1Trademark of Averill M. Law & Associates
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understanding of why ball bearings fail—even though they may have some predictive

value for bearings with the same characteristics as those analyzed.

A statistical example more suggestive of theory is the derivation of the Weibull

distribution from the weakest-link property, i.e., based on the distribution of the

smallest failure times for components in series (Wolstenholme 1995; Mann et al.

1974, Section 3.4). A similar example is Daniels’ (1945) analysis of cumulative dam-

age to bundles of threads. From the standpoint of our paradigm mature science,

these examples are important because they may point the way to correct theoretical

understanding of important phenomena. Such results may also generalize to power-

ful theories in statistical science, as in the case of the central limit theorem, which

evolved out of solutions to scientific problems investigated by De Moivre, Laplace,

and Gauss (Stigler 1986).

From the point of view of science, nonparametric statistical results (and “para-

metric” results derived from blindly fitting data against a panoply of distributions)

may be steps on the way to theory, and may enable prediction within a limited range,

but cannot be ends in themselves. (Here we are not considering statistical methods

such as hypothesis testing for the validation of theories, but rather statistics as a

tool for discovering theories.)

Breiman (2001) views natural phenomena as “black boxes” whose inputs and

outputs can be observed, and he talks about two statistical cultures: one that looks

for parametric models that are “good fits” for the data, another that “considers the

inside of the box complex and unknown. Their approach is to find a function f(x)—

an algorithm that operates on x to predict the responses y” (ibid., p. 199). Breiman

sees accurate prediction as the raison d’être of statistics, and certainly this is true

as far as it goes. But consider, e.g., perhaps the most widely used tool of prediction,

the linear statistical model. Even within the range of observed data, valid use of the

model depends on assumptions of linearity and inclusion of all significantly relevant
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predictor variables (Christensen 1998, Section 13.5). These assumptions amount

to an unstated theory that the underlying causal phenomena are known, and have

a linear effect (at least approximately) on the observed response, and that future

predictor values will be similar to those used to build the model.

By adding enough predictor variables, we may create a model with good fit to

the data at hand, but little ability to predict future data. Disparaging such models,

John von Neumann is quoted as saying “with four parameters I can fit an elephant,

and with five I can make him wiggle his trunk” (Dyson 2004). Even where such a

model is consistently good at prediction, it may not provide any insight into a causal

mechanism that explains events. Taking relativity as an example, the physicist David

Deutsch says (1998, p. 3)

What makes the general theory of relativity so important is not that it can

predict planetary motions a shade more accurately than Newton’s theory

can, but that it reveals and explains previously unsuspected aspects of

reality, such as the curvature of space and time.

Thus when a model rises to the level of theory, it may enable prediction of phenomena

far beyond the range of what the original data suggested.

We would argue for a third statistical culture in addition to Breiman’s two: sta-

tisticians who believe that developing theories of causal mechanisms underlying their

models may result in better predictions, and provide additional insight into the pre-

diction process. This viewpoint is implicit in much of the literature on applied

stochastic processes, and has emerged recently as a trend in survival analysis. The

following quote, from (Aalen & Gjessing 2001), nicely summarizes the general idea:

In survival analysis one studies the time to occurrence of some event . . .

one wishes to analyze the probability distribution of the time to the event
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by means of survival curves and hazard rates. What is, however, usually

disregarded in the standard approach . . . is that the event is the end

point of some process . . . the underlying process leading to the event

is largely unknown. This, however, does not imply that it should be

ignored. Considering the underlying process, even in a speculative way,

may improve our understanding of the hazard rate and give alternative

regression models.

This view is supported by Künsch (2008) , whose experience with scientists as

consumers of statistical models leads him to a list of desiderata for such models.

Paraphrasing Künsch, a model should:

• Take as much knowledge of the underlying process as possible into account;

• contribute to understanding the process;

• be applicable to similar processes;

• allow prediction of the process under conditions not yet observed;

• have parameters with a clear interpretation in the scientific domain.

This is a far cry from Breiman’s (2001) statistical cultures, where

. . . the models that best emulate nature in terms of predictive accuracy

are also the most complex and inscrutable . . . The point of a model is

to get useful information about the relation between the response and

predictor variables . . . The goal is not interpretability, but accurate infor-

mation.

“Accurate information” is a necessary, but not sufficient, criterion for a scientific

model, and this opinion leads to our position on appropriate uses of the nonpara-

metric methods developed in this dissertation.
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4.3 Uses of nonparametric flowgraph methods

Analysis of a process tending towards some end state such as death or failure of a

system is more informative if it takes into account the finer details of the process, as

recommended by Aalen and Gjessing. This typically means decomposing the process

into a series of intermediate states traversed en route to the end state. Ideally, we

have, or hope to discover, some basis in theory for choosing parametric probability

models for transitions between adjacent states. Queueing theory provides examples,

where, e.g., there are often sound reasons for postulating a Poisson arrival process

driving state transitions (Kleinrock 1975).

There is a danger in using established statistical theory, since it tends to be

codified into simplistic rules of thumb; for example, many reliability engineers auto-

matically assume a Weibull failure distribution unless there is compelling evidence

to the contrary. As another example, a well-known methodology used for decades in

reliability prediction of complex military electronic systems (DoD 1995) assumes ex-

ponential failure distributions, mostly on account of mathematical tractability. (This

is comparable to the over-assumption of normality in other branches of statistics.)

Where no theoretical basis exists, the typical advice to practicioners is to select mod-

els based on visual inspection of a histogram or other density estimate derived from

sample data (Huzurbazar 2005a; Law & Kelton 2000, Chapter 6). The discussion in

the previous section regarding the ball bearing failure data shows the risk in either

of these procedures. Typically more than one model will fit the data, and competing

models can only be discriminated based on information, such as tail behavior, that

cannot be inferred from the sample unless it is very large.

This problem becomes more significant in multistate models with many transi-

tions, where there are many models to be hypothesized and incorrect choices can

cascade in estimates for first passage times between the states of interest. Where
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evidence for particular parametric families is not compelling (and it rarely is), non-

parametric methods are appropriate as an adjunct to the use of parametric models.

Unlike Breiman (2001), we do not believe that nonparametric methods can supplant

parametric models, either in general or in any particular problem. We feel that the

goal, reflecting the collaboration between statistics and other sciences, should always

be a theoretically grounded parametric model.

In the present context of multistate flowgraph models, the methods described

in this dissertation can advance us towards that goal by supplementing parametric

flowgraphs in various ways:

• Where the evidence for a particular parametric family is not compelling, where

there is controversy over the “correct” model to be used, or where for any other

reason the researcher wishes to minimize a priori assumptions, the methods

described here will lead to a result. The error of the result is limited by the data,

assuming the use of both saddlepoint and Fourier series methods to validate

the first passage transform inversion. We can then hope that replications of the

sampling process will yield information on the stability of the nonparametric

result, and ideally will lead to a better understanding of the process as a whole,

ultimately contributing to a theoretically grounded understanding.

• Where the researcher feels that the hypotheses implied by a parametric model

are justified, The methods described here are valuable for comparison and

validation—if the nonparametric result is confirmatory, it strengthens the case

for a particular parametric model; if not, it alerts the researcher that further

analysis or more data are needed.

• Studying a particular stochastic model through many examples may lead to a

gradual unfolding of insight into the mechanisms underlying the various transi-

tions. Using the semiparametric approach described in Section 2.4, transition
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mechanisms can be incorporated into the model as parametric distributions

in a stepwise fashion, leaving the less well understood transition distributions

in nonparametric form. Each step (if justified) increases the accuracy of the

results.

• Though the nonparametric results are not very informative for small samples,

they are honest in the sense of relying only on the data, whereas basing a

parametric model on small samples can lead to unjustified confidence in a

model with little real support. A false level of certainty may inhibit further

research and delay obtaining a better theoretical understanding of the process.

Based on the results reported in this dissertation, nonparametric methods for

statistical flowgraphs are valuable adjuncts to existing parametric methods. Further

research into issues raised by this study, which may make these methods more useful,

is described in the next section.

4.4 Future directions

• Accuracy of the saddlepoint density approximation: As discussed in Section

2.2.3, Daniels (1980) showed that the saddlepoint density approximation is

exact for certain families of distribution; on the other hand, Theorem 2.2.1

demonstrates that, in general, the error in the approximation may be arbi-

trarily large. The usefulness of the saddlepoint method for densities would be

increased if we could predict, from characteristics of the MGF or CGF, some

bound on the possible error. This might also allow construction of confidence

bounds for points of the approximation.

• Use of Bayesian methods: Scientists and engineers often have prior beliefs

about transition probabilities and holding time distributions in multistate ap-

160



Chapter 4. Discussion

plications; incorporating expert opinion into nonparametric flowgraph model-

ing, using methods such as those mentioned in Section 2.2.4, may prove fruitful.

• Confidence bounds: Pointwise confidence intervals or confidence bands for the

first passage distribution function would be very desirable. Though it is not

clear how to improve the current situation (see Section 2.3), the importance

of the problem makes it a topic for future research. A related problem is to

extend Theorem 2.1.2 to show that a Mason’s rule expression based on empirical

transforms is unbiased for finite samples, as well as consistent.

• Software improvements: The algorithms and coding need to be improved in

two areas: performance and ease of use. Currently, producing the EULER and

saddlepoint approximations takes minutes, even for fairly simple flowgraphs.

To be usable for a range of practical problems, this needs to be speeded up.

In addition, solving a problem now is done with Mathematica code that needs

a significant amount of customization for the particular flowgraph being ana-

lyzed. Ideally, we would like to generalize all the functions to the point where

a user could enter the problem data, push a botton, and see the results.
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Appendix: Mathematica code

Mathematica (Wolfram 2003; Hilbe 2006) was used for all numeric and symbolic

computations done in support of this dissertation. Mathematica is typically regarded

as “computer algebra” software, but also has powerful numeric capabilities and a very

large library of functions for general mathematics, probability and statistics. This

appendix contains algorithm descriptions and annotated code listings for programs

written to support the research. Routine coding to produce graphic plots is not

included.

Mathematica supports various programming styles, including functional and pro-

cedural, and can also be written in a style resembling conventional mathematical

notation. Mathematica comments are enclosed by (* . . . *). In this document com-

puter code and output is shown in a typewriter font:

(* This is Mathematica code *)

y = Sum[(x/2)^2, {x, 1, 10}]
(* Or it can be written in a more math-like format *)

y =
∑10

x=1

(

x

2

)2
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The next page shows an example of an interactive Mathematica session. A sample

is generated from a gamma distribution, the empirical transform is computed, and

the EULER inversion is plotted against the true density.

163



In[39]:= H∗ Define gammaH2,5L distribution, generate 1,000 sample points ∗L
gammaDist = GammaDistribution@2., 5.D;

gammaPdf@t_D = PDF@gammaDist, tD;

gammaSamp = RandomReal@gammaDist, 1000D;H∗ Plot the sample histogram against the density ∗L
Show@
Histogram@gammaSamp, HistogramScale → 1,

BarStyle → GrayLevel@0.8D, HistogramCategories → 20, HistogramRange → 80, 50<D,

Plot@gammaPdf@tD, 8t, 0,50 <DD

Out[42]=

10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

In[43]:= H∗ Compile the computation of the empirical Laplace transform ∗L
ceGammaL = Compile@88s, _Complex<<, Hemplt@gammaSampDL@sDD;H∗ Plot EULER inversion against true density ∗L
ψ@s_D := Re@ceGammaL@sDD;

In[45]:= Plot@8euler@ψ, tD, gammaPdf@tD<, 8t, 0, 50<, PlotRange → All,

PlotStyle → 88Black, AbsoluteThickness@2D<, 8Black, AbsoluteThickness@2D, Dashing@MediumD<<D

Out[45]=

10 20 30 40 50

0.05

0.10

dcollins
Stamp
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A.1 General functions

We describe here some general functions used in various places.

A.1.1 Function compilation

Mathematica is normally an interpreted language. In some cases, functions can be

compiled into machine code, which reduces the execution time by about a factor of

10. In order to be compilable functions must conform to certain restrictions, such

as taking only simple arguments (real, complex, integer, boolean, or arrays of simple

arguments), and using machine precision (in general, Mathematica allows arbitrary

precision). Here is an example of normal function definition followed by a compiled

function definition:

uniPdfLT[s ] := 1− e−hs/(hs);

uniPdfLT := Compile[s, Complex, 1− e−hs/(hs)];

Where possible, we use compiled functions for reduced overhead; however in the code

listings in this appendix, for simplicity we usually do not show the compilation.

A.1.2 Mathematica’s InterpolatingFunction

The Mathematica function Interpolation takes a list of (x, y) coordinates and re-

turns an InterpolatingFunction object, a continuous function that interpolates

between the values of the given points (or extrapolates for values outside the range

of the points). The interpolation is linear, quadratic, etc. depending on the value

of the parameter InterpolationOrder. The default cubic interpolation is highly

accurate for smooth functions (e.g., probability densities) when the set of points on

which the interpolation is based is sufficiently dense. For inversions based on sam-
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ples, we use linear interpolation, which preserves monotonicity; this is important for

CDF approximations, and also for densities, which are locally monotonic. Polyno-

mial interpolation may produce small bumps in the approximations. In practice, an

interpolation of 500 points computed over the effective support of a smooth density

is sufficient to provide an IAE on the order of 10−5 (assuming the points represent

the exact values—for approximations, we use a finer mesh of points).

Our main motivation for using these functions is that producing evaluation points

of the inversion algorithms is costly, and interpolating functions allow sets of points

to be efficiently reused for plotting and numeric integration.

The following example shows that approximating a gamma density with 500

points over the range [0, 60] produces a very small error, as measured by IAE:

gamPdf[t ] := PDF[GammaDistribution[2, 5], t];

∆ = 60/500.;

gamApprox = Interpolation[Table[{t, gamPdf[t]}, {t, 0, 60, ∆}],
InterpolationOrder -> 1];

NIntegrate[Abs[gamApprox[t] - gamPdf[t]], {t, 0, 60}]
0.0000609578

(With the default cubic interpolation, the IAE in this example would be 1.58294 ×
10−8.)

Other examples appear in the the following sections, e.g., in the estcdf function

in the next section.

A.1.3 Estimating the distribution function

The function estCdfPoints takes a set of points of the form (t, f̂(t)), where f̂ is

a density estimate, and returns a set of points (t, F̂ (t)), where F̂ is an estimate
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of the CDF computed by trapezoidal-rule integration. The function estCdf takes

the same set of points as input and returns an interpolating function, which uses

linear interpolation (to insure that the approximate CDF is monotonic) to provide

a continuous approximation to the CDF.

estCdfPoints[points ] := Module[

{∆x, summands, ySum},
∆x = Differences[Table[points[[i,1]], {i,1, Length[points]}]];
summands =

Table[((points[[i,2]] + points[[i + 1,2]])/2)∆x[[i]],

{i,1,Length[points] - 1}];
ySum = Accumulate[summands];

Table[points[[i,1]], ySum[[i]], {i,1, Length[points] - 1}]
];

estCdf[points ] :=

Interpolation[estCdfPoints[points], InterpolationOrder -> 1];

For plotting the CDF or calculating the IAE relative to the true CDF we use

estCdf; estCdfPoints is used to calculate the Kolmogorov-Smirnov statistic. The

K-S statistic, commonly used to assess the fit of two distribution functions, is the

maximum absolute difference between the CDFs. The function statisticKS returns

the Kolmogorov-Smirnov statistic, given a set of (x, y) points representing a density

approximation, and a closed-form CDF function.

statisticKS[points , cdf ] := Module[

{eCdfPoints},
eCdfPoints = estCdfPoints[points];

Max[

Table[Abs[eCdfPoints[[i, 2]] - cdf[eCdfPoints[[i, 1]]]],

i, 1, Length[eCdfPoints]]

167



Appendix A. Appendix: Mathematica code

]

]

A.1.4 Root finding

Solving the empirical saddlepoint equation (see Section 2.2.3) requires finding a zero

of K̃ ′(ŝ)− t, where K̃ is the empirical CGF. Because of the complexity of the ECGF

we have found that conventional root-finding algorithms such as Newton-Raphson

and others used by Mathematica’s FindRoot are not very robust. To avoid having

to do extensive error checking, we use bisection to solve the saddlepoint equation.

This is implemented in the function bisection; f is the function for which a zero is

to be found, (x0, x1) is the starting interval, maxIter is the maximum number of

bisections to perform, and tolerance is used to determine when a solution has been

found.

bisection[f , x0 , x1 , maxIter , tolerance ] := Module[

{mid, val, k = 0, a = N[x0], b = N[x1]},
mid = (a + b)/2;

val = f[mid];

While[(k < maxIter && Abs[val] > tolerance),

If[ Sign[f[a]] == Sign[f[mid]], a = mid, b = mid];

mid = (a + b)/2;

val = f[mid];

k = k + 1];

mid

]
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A.2 Computing exact and empirical transforms

For exact transforms, Mathematica has a variety of functions relating to Laplace and

Fourier transforms. We illustrate using Laplace transforms. The MGF is handled by

simply reversing the sign of the argument to the Laplace transform.

This example defines a gamma pdf, takes its Laplace transform, then inverts the

transform to recover the pdf (Mathematica outputs are indented):

gammaDist = GammaDistribution[3, 5];

gammaPdf[t ] = PDF[gammaDist, t]
1

250
e−t/5t2

L[s] = LaplaceTransform[gammaPdf[t], t, s]
1

(1 + 5s)3

InverseLaplaceTransform[L[s], s, t]
1

250
e−t/5t2

Mathematica’s inversion capability is quite powerful, certainly beyond what one

could easily accomplish manually. Exact inversion of empirical transforms is pos-

sible in principle, but computationally intractable for practical problems.

The function emplt implements the empirical Laplace transform; samp is the

basis sample, & at the end of the definition indicates that an anonymous function is

being returned, and #1 is the argument to the anonymous function.

emplt[samp ]:=
Total

[

e−samp#1
]

Length[samp]
&;

Since this function involves only simple arguments (complex numbers) we compile

it for use, e.g., where gammaSamp is a basis sample, this code produces the compiled

empirical transform ceGammaL, taking one argument s ∈ C:

ceGammaL = Compile[{{s, Complex}}, (emplt[gammaSamp])[s]];
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A.2.1 Empirical transforms of censored data

The function simulateCensoredData is used to generate simulated censored data.

Given an uncensored sample of failure times and a censoring distribution, it returns a

table with the minimum of (censoring time, failure time) plus a censoring indicator.

The returned value is a list of pairs (minimum of the two times, censoring indicator).

The censoring indicator is 1 = uncensored observation, 0 = censored observation.

The list is sorted by failure or censoring time.

simulateCensoredData[cDist , fSample ] := Module[

{cens, ret, n},
n = Length[fSample];

cens = Round[RandomReal[cDist, n]]; (* Generate censoring times *)

ret =

Table[Min[cens[[i]], fSample[[i]]],

If[fSample[[i]] <= cens[[i]], 1, 0], i, 1, n];

Sort[ret, #1[[1]] <= #2[[1]]&]

];

Typically we use an exponential(λ) distribution for the censoring distribution, and

adjust λ to provide the desired percentage of censoring (which is determined by the

proportion of 0s in the output from simulateCensoredData).

The function empltCensored implements the empirical Laplace transform for a

censored sample. Its argument samp has pairs (t, c) where t is a sample time and c is

1 if t is a failure time, 0 if it is a censoring time. Efron’s “redistribute to the right”

algorithm is used to weight the points (see Section 2.1.4). It returns an anonymous

function taking one argument, like emplt.

empltCensored[samp ] := Module[

{n = Length[samp], initialMass, probs, massToRedistribute, points,
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portion, empiricalMass},
initialMass = N[1/n];

probs = Table[initialMass, i, 1, n];

points = Table[0, 0, i, 1, n];

Do[(

If[samp[[i]][[2]] == 0,

(massToRedistribute = probs[[i]];

probs[[i]] = 0;),

massToRedistribute = 0

];

portion = massToRedistribute/(n - i);

Do[probs[[j]] = probs[[j]] + portion, j, i + 1, n];

), i, 1, n - 1

];

Do[(

If[probs[[i]] == 0, ,

points[[i]] = probs[[i]], samp[[i]][[1]]

];

), i, 1, n

];

empiricalMass = Select[points, #[[1]] != 0 &];

Sum[empiricalMass[[i]][[1]] Exp[-# * empiricalMass[[i,2]]],

i, 1, Length[empiricalMass]] &

];

Code for inversion of empirical transforms is presented in the following sections.
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A.3 Fourier series approximation

This section presents Mathematica code for implementing the methods described in

Section 2.2.2.

A.3.1 The EULER algorithm

The function euler implements Abate and Whitt’s EULER algorithm. The Mathe-

matica code is a fairly direct translation from the UBASIC code given on pages 7-8

of (Abate & Whitt 1992), with roughly the same variable names. The last line is

the Euler summation in Equation (2.25) (p. 81). the function takes as arguments a

function fn which implements Re[L(f)], the real part of the Laplace transform to be

inverted, and the point t at which the inversion is to be computed; it returns f(t).

euler[fn ,t ]:= Module[

{Su,y,x,h,U,A=18.4,Ntr=15,
C=Table[Binomial[11,i],{i,0,11}]}

x =
A

2t
; h =

π

t
; U =

eA/2

t
;

Su[1] =
fn[x]

2
+

Ntr
∑

n=1

(y = nh; (−1)nfn[x + iy]);

Do[

y = (Ntr + k)h;

Su[k + 1] = Su[k] + (−1)Ntr+kfn[x + iy],

{k,12}
];

U
∑12

j=1
C[[j]]Su[j + 1]

2048
]

This is an example of an input fn to euler:
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ceGammaL = Compile[{{s, Complex}}, (emplt[gammaSamp])[s]];

ψ[s ] := Re[ceGammaL[s]];

The eulerNew function is a modification of Euler. The binomial table is taken

outside the module definition to avoid recalculating it every time the function is

called, the number of terms in the partial Fourier sum is reduced, and the location of

the contour of integration is shifted towards the origin by changing the variable A. In

terms of Equation (2.25), we reduce N from 15 to 0 and increase M from 11 to 12.

This reduces the number of terms actually computed from 27 to 14, which smooths

the result and reduces the computation time. The modifications were heuristically

derived.

$C=Table[Binomial[12,i],{i,0,12}];
eulerNew[fn ,t ]:= Module[

{A=4,n=13,Su,y,x,h,U},
x =

A

2t
; h =

π

t
; U =

eA/2

t
;

Su[1] =
fn[x]

2
;

Do[

y=kh; Su[k+1]=Su[k]+(−1)kfn[x+i y],

{k,n}
];

U
∑n

j=1
$C[[j]]Su[j + 1]

2n−1

]

A.3.2 Kernel presmoothing

First we provide a little more detail on the kernel presmoothing discussed in Section

2.2.2 (p. 82). To avoid bias, a kernel should distribute the mass of each sample
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point symmetrically. Figure A.1 shows an example for a symmetrical rectangular

kernel, with the sample points indicated by “×.” For a bandwidth h, this kernel is a

uniform(−h/2, h/2) density.

¥ ¥ ¥ ¥ ¥

1 ⁄⁄⁄⁄ h

Figure A.1: Symmetric rectangular kernels over sample points

It is obvious from the figure that shifting all the sample points left by h/2, then

using a uniform(0, h) density as a kernel is equivalent, and computationally more

convenient. However, either shifting or using a symmetric kernel will put probability

mass to the left of the origin for sample points in [0, h/2). If the density estimate

is truncated at 0, this results in bias near the origin. We compensate by reflecting

the negative points in the ordinate after shifting, thus moving the mass back to its

approximately correct location. This is effected by simply taking the absolute value

of the shifted sample points.

One might think that a smoother kernel would produce superior results, but our

test cases indicate that the rectangular kernel works just as well as an exponential

or gamma kernel, as measured by IAE. This is consistent with the literature on

density estimation; e.g., Table 3.1 in (Silverman 1986) shows that the efficiency of

the rectangular kernel is within 10% of the optimal Epanechnikov kernel (where

efficiency measures the relative sample size needed for the same accuracy).
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This is the code used to generate the presmoothed estimate for the small sam-

ple from the gamma(2,5) distribution shown in Figure 2.11 (p. 84). The sample

points are in gammaSampSmall. Here the rectangular kernel function is developed for

conventional kernel smoothing:

h = 1.5; (* Bandwidth *)

uni = UniformDistribution[{0, h}];
uniPdf[t ] := PDF[uni, t];

gammaSampSmallShifted = Abs[gammaSampSmall - h/2];

nS = Length[gammaSampSmallShifted];

uniKerSmall[x ] := (1/(nS*h))*

Sum[uniPdf[(x - gammaSampSmallShifted[[i]])/h], {i, 1, nS}];

This is used only to produce a plot showing the kernel estimate (e.g., the plots on

the left in Figure 2.11).

Here the smoothed empirical transform function is defined; samp is the basis

sample, & at the end of the definition indicates that an anonymous function is being

returned, and #1 is the argument to the anonymous function.

uniPdfLT[s] := (1 - e−hs/(hs); (* Laplace transform of uniPdf *)

smoothedEmplt[samp ] :=

uniPdfLT[#1](Total[e−samp#1]/ Length[samp])&;

The smoothed empirical transform then becomes the input to EULER, either directly

or after being combined with other transforms via Mason’s rule.

A.3.3 Exponential smoothing

The function expSmoothed implements exponential smoothing as described on page

84, using the Mathematica function ExponentialMovingAverage in the forward and
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reverse directions. The inputs to expSmoothed are a list of plot points produced by

EULER, and the smoothing parameter α.

expSmoothed[points , α ] := Module[

{n, xTable, yTable, left, right},
n = Length[points];

xTable = Table[points[[i, 1]], {i, 1, n}];
yTable = Table[points[[i, 2]], {i, 1, n}];
left = ExponentialMovingAverage[yTable, α];

right = Reverse[ExponentialMovingAverage[Reverse[yTable], α]];

Interpolation[

Table[xTable[[i]], (left[[i]] + right[[i]])/2, i, 1, n],

InterpolationOrder -> 1]

]

The output of expSmoothed is an interpolating function (see Section A.1.2) which is

a smoother approximation of the EULER output.

A.4 Saddlepoint approximation

First, here is the computation for the exact (parametric) saddlepoint approximation

of a gamma(2,5) density. The pdf is gammaPdf, and the subsequent lines define the

LT, CGF, and derivatives of the CGF:

L[s ] = LaplaceTransform[gammaPdf[t], t, s];

M[s ] = L[-s]; (* Moment generating function *)

K[s ] = Log[M[s]]; (* Cumulant generating function *)

dK[s ] = FullSimplify[K′[s]]; (* 1st derivative of CGF *)

ddK[s ] = FullSimplify[K′′[s]]; (* 2nd derivative of CGF *)
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dddK[s ] = FullSimplify[K′′′[s]]; (* 3rd derivative of CGF *)

ddddK[s ] = FullSimplify[K′′′′[s]]; (* 4th derivative of CGF *)

FullSimplify applies a wide range of algebraic and other transformations to produce

the simplest expression of the derivatives.

The function saddleInv computes the first-order saddlepoint density approxima-

tion for its argument:

saddleInv[t ] := (

sp = Bisection[(dK[#] - t)&, −10 .4, 100, 10−5];

(1./Sqrt[2*Pi*ddK[sp]]) Exp[K[sp] - sp*t]

)

The first line of the function finds the saddlepoint ŝ (see Section 2.2.3); the second

line implements the actual approximation (Equation 2.26, p. 92).

The function saddleInvSecondOrder computes the second-order saddlepoint den-

sity approximation for its argument (Equation 2.29, p. 94). Finding the saddlepoint

is the same as in the first-order approximation:

saddleInvSecondOrder[t ]:= (

sp = Bisection[(dK[#] - t)&, −10 .4, 100, 10−8];

firstOrder = Exp[K[sp]- sp*t]/
√

2π ddK[sp];

secondOrder = 1 + ddddK[sp]/(8 ddK[sp]2) − (5dddK[sp]2)/(24ddK[sp]3);

firstOrder * secondOrder)

The empirical saddlepoint computation is essentially the same. First the empirical

CGF and its derivatives are computed:

eK[s ] = Log[ceGammaL[-s]]; (* Empirical CGF *)

edK[s ] = FullSimplify[eK′[s]];
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eddK[s ] = FullSimplify[eK′′[s]];

The first-order saddlepoint computation is then

saddleInv[t ] := (

sp = Bisection[(edK[#] - t)&, −10 .4, 100, 10−5];

(1./Sqrt[2*Pi*eddK[sp]]) Exp[K[sp] - sp*t]

)

which is the same as the parametric approximation except for substitution of the

empirical CGF. We do not use the second-order empirical saddlepoint because of the

complexity of the third and fourth derivatives of empirical transforms, and because

there is no great increase in accuracy for cases where the saddlepoint method is

effective.

A.5 Bootstrap confidence intervals

Section 2.3 describes a method for obtaining confidence intervals for moments by

bootstrap resampling and recomputing the MGF and its derivatives. We illustrate

by an example, computing confidence intervals for the mean and standard deviation

of the 1 → 3 first passage distribution in the repairable redundant system (Section

3.1).

This function takes a set of points as argument and returns a sample (with re-

placement) of the same length:

resample[samp ] := RandomChoice[samp, Length[samp]];

This code resamples each basis sample n times (1,000 in this example), recom-

putes the EMGF, and computes the mean and standard deviation. The collection of
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n means and standard deviations is then used to derive the confidence interval, 95%

in this case. The function empMGF returns the EMGF for the first passage of interest,

given a set of basis samples; it is specific to the particular problem.

n = 1 000;

means = Table[Null, n]; standardDeviations = Table[Null, n];

Do[

(s01 = resample[samp01]; s02 = resample[samp02];

s10 = resample[samp10]; s12 = resample[samp12];

eMGF[s ] = empMGF[s01, s02, s10, s12, s];

means[[i]] = eMGF′[0];

standardDeviations[[i]] = Sqrt[eMGF′′[0] - means[[i]]^2]),

{i, n}
]

{Quantile[means, .05], Quantile[means, .95]}
{Quantile[standardDeviations, .05], Quantile[standardDeviations, .95]}

For 1,000 resamples, the calculation takes about 1 minute on a 700 MHz processor.
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Glossary

If applicable, each entry is followed by a parenthesized page number indicating

where it is defined or first used.

CDF Cumulative distribution function, same as DF (12).

CF Characteristic function; the Fourier transform of a probability den-

sity. (11).

CGF Cumulant generating function; the log of the MGF (92).

DF Distribution function (12).

EDF Empirical (or sample) distribution function (7).

ELT Empirical Laplace transform (37).

EMF Empirical mass function (64).

EMGF Empirical moment generating function (37).

Exact transform A transform based on a member of a parametric family of distri-

bution or density functions (36).

G(τ) Matrix of first passage distributions Gij(τ) (5).

I Indicator function; where S is the specification of a set, IS(x) = 1

if x ∈ S, 0 if not.
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iid Independent and identically distributed.

Kolmogorov-Smirnov statistic The maximum absolute difference between two dis-

tribution functions.

LT Laplace transform (11).

MGF Moment generating function (11).

NPMLE Nonparametric maximum likelihood estimate (107).

Parametric transform Exact transform.

PL Product limit estimator (63).

Q(t) Semi-Markov kernel (4).

RV Random variable (unless otherwise stated, assumed to be non-negative).

τ Calendar time, the time elapsed since a stochastic process was started

(4).

T(s) A general integral transform (12).

T(s) A general transmittance (13).
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Cramèr, H. (1946), Mathematical Methods of Statistics, Princeton, NJ: Princeton

University Press.

184



REFERENCES

Crowder, M. (2001), Classical Competing Risks, Boca Raton, FL: Chapman &

Hall/CRC.

Csenki, A. (2008), “Flowgraph models in reliability and finite automata,” IEEE

Transactions on Reliability 57, 355–359.
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