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Abstract

Both frequentist and Bayesian approaches have been used to characterize population phar-

macokinetics and pharmacodynamics(PK/PD) models. These methods focus on estimat-

ing the population parameters and assessing the association between the characteristics of

PK/PD and the subject covariates. In this work, we propose a Dirichlet process mixture

model to classify the patients based on their individualized pharmacokinetic and phar-

macodynamic profiles. Then we can predict the new patients’ dose-response curves given

their concentration-time profiles. Additionally, we implement a modern Markov Chain

Monte Carlo algorithm for sampling inference of parameters. The detailed sampling pro-

cedures as well as the results are discussed in a simulation data and a real data example.

We also evaluate an approximate solution of a system of nonlinear differential equations

from Euler’s method and compare the results with a general numerical solver, ode from R

package, deSolve.
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Chapter 1

Introduction

The development of drugs is time-consuming and costly. DiMasi (2003, 2001) reports that

it takes about 10 − 15 years to develop one new medicine from the time it is discovered

to when it is available for treating patients. The average cost to research and develop

each successful drug is estimated to be $80 million to $1 billion. This amount of money

includes the cost of thousands of failed compounds. For every 5000− 10, 000 compounds

that enter the research and development pipeline, only one receives approval. For many

years, the U.S. Food and Drug Administration (FDA) has encouraged the development of

computational modeling and simulation to improve the efficiency in developing safe and

effective drugs. Therefore the technological advances in different fields related to drug

development is largely demanding to optimise current drug development practices.

The drug development consists of a preclinical and clinical component. The preclinical

process includes all early research on a large number of different compounds tested in

animals to gather safety and efficacy information. The process takes approximately 3− 6

years. By the end, the researchers hope to have a promising candidate drug test in people.

The clinical study component is divided into three phases. In phase I, the drug is tested

in healthy humans (20− 80 participants) for physiological compatibility. The goal in this
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Chapter 1. Introduction

phase is to determine the drug’s most frequent side effects and, often, how the drug is

metabolized and excreted. In phase II, the drug’s therapeutic effects are investigated and

the goal is to obtain preliminary data on whether the drug works in human who present

a certain disease or condition. Phase II trials sometimes involve hundreds of patients. In

phase III, the drug is tested in a larger sample of the population. The researchers gather

more information about safety and drug efficacy. They try to further understand the drug

behavior from different groups of patients and dosing regimens.

Pharmacokinetic and pharmacodynamic properties of a drug are of utmost importance

in clinical trials. Simply stated, pharmacokinetics (PK) describes the time course of a drug

in the body, whereas pharmacodynamics (PD) describes the study of the pharmacological

effects of a drug. If we are able to better understand the relationship between PK and

PD, we can expect to improve our knowledge of the underlying background mechanisms,

and eventually optimize the dosing regimen of a treatment to develop a personalized drug

therapy.

In this work, we propose to use the clustering property of Bayesian nonparametric in-

finite mixture models to borrow strength in the estimation of a semi-mechanistic PK/PD

model. First, we establish a coherent probabilistic model which connects the individual-

ized PK and PD model. Second, we classify the patients into several homogeneous groups

on the basis of PK and PD profiles. More importantly, we can predict a new patient’s PD

profile based on its PK profile. The classification, estimation and prediction are achieved

in a single model framework. We also review two traditional approaches for PK and PD

model, nonlinear mixed effect model and the simple Bayesian hierarchical model. The

estimation of the nonlinear mixed effect model depends on the likelihood function. The

second one has been used to incorporate prior information in the model fitting. We discuss

a modern Markov Chain Monte Carlo sampling algorithm for posterior inference in our

model. In the end, we evaluate our model in a simulation data and a published clinical
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Chapter 1. Introduction

trial data. In the simulation data, we also use Euler’s method to linearize the system of

nonlinear ordinary differential equations (ODEs) and compare its results with a general

numerical ODE solver, ode, from an R package (deSolve).

The structure of the thesis is as follows. In chapter 2 we introduce PK and PD as

well as the models describing PK/PD process. Chapter 3 presents two existing statistical

approaches for fitting PK/PD models: nonlinear mixed effect models and Bayesian mod-

els. In chapter 4 we present the nonparametric Bayesian framework and discuss a modern

Markov chain Monte Carlo algorithm that we will use later. In chapter 5 we discuss our

proposed approach and provide a detailed MCMC sampling algorithm. The relevant res-

ults from the simulation data and a real data are also presented. In chapter 6 we present

the conclusions and discuss future research work.
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Chapter 2

Population pharmacokinetic and

Pharmacodynamic (PK/PD) Models

The whole PK/PD modeling process includes careful data management (import, process,

visualization of the time-course data), development of a PK/PD model, estimation of para-

meters using statistical methods, prediction and extrapolation beyond the existing data.

Population pharmacokinetics studies the variability of plasma drug concentrations in a

certain population after a standard dosage administered (Aarons 1991). The aim of PK is

quantifying the variability within the population and accounting for it in terms of patient

covariates, such as age, sex, disease state. Population pharmacokinetics can identify the

measurable factors that cause changes in the dose-concentration relationship and the ex-

tent of these changes. It helps us better understand how these factors affect the absorption,

distribution and elimination of the drug.

Population pharmacokinetics and pharmacodynamics describes the relationship

between drug response and concentration of a drug and the variability of inter- and intra-

subjects in a population. The population PK/PD models consist of two parts. The first
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Chapter 2. Population pharmacokinetic and Pharmacodynamic (PK/PD) Models

part describes a population PK model and we can obtain the PK parameter estimates for

each individual. The second part is the corresponding PD model. There are primarily

two ways to perform the population PK/PD modeling: simultaneous and sequential. In

the simultaneous modeling, both PK an PD estimates are obtained at the same time. In

the sequential approach, PK parameters are estimated for each individual first and then

PD parameters are estimated based on PK information as a known covariate in the PD

modeling. In our approach, we use the simultaneous approach to estimate the PK and

PD parameters. In this chapter, we introduce the data-based non-compartmental model,

compartmental model and physiology-based model for PK, steady-state and non steady-

state PD models.

2.1 Pharmacokinetic models

Pharmacokinetics studies how the body affects a specific drug over time. It attempts to

discover the fate of a drug from the moment that it is administered till it is completely

eliminated from the body. The whole process includes the mechanism of absorption, dis-

tribution as well as the chemical changes of the drug, i.e. metabolic enzymes. Absorption

is the process that involves drug movement from site of entry into bloodstream. After ad-

minstration, a drug will be distributed itself into all of body’s compartments and tissues

that it is able to. The time it takes for this to occur is called distribution phase. Volume

of distribution can be estimated based on sampling blood concentration after dosing with

the assumption that the drug uniformly distributed throughout the body. Metabolism is the

process by which a drug is chemically inactivated, i.e. broken down by enzymes, so that

it can be excreted from the body. The excretion is the process that a drug is removed from

the site of action and eliminated from the body. After a dose of drug is administered, the

body begins to eliminate the drug by hepatic metabolism, renal excretion or both. The aim
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Chapter 2. Population pharmacokinetic and Pharmacodynamic (PK/PD) Models

of PK modeling is to explain and characterize the variability of these processes based on

the observations over time. Next we review three different pharmacokinetic models, data-

based non-compartmental model, compartmental model and the physiology-based model.

2.1.1 Data-based non-compartmental models

The data-based non-compartmental model is the simplest approach to measure the drug

exposure and explain the variability across doses and subjects. The parameters include

maximum plasma concentration, Cmax, time to reach Cmax, Tmax, area under the plasma

concentration-time curve AUC which determines the drug exposure over a period of time,

total clearance CL which describes how quickly drugs are eliminated, metabolized or dis-

tributed throughout the body, total volume of distribution Vc etc. The non-compartmental

model is highly dependent on the estimation of the AUC, calculated by numerical integ-

ration e.g. a trapezoidal rule. If we have a smooth line for concentration versus time or

an equation for Ct from a pharmacokinetic model we could slice the area into vertical

segments. The total area AUC is the sum of all the segments. In calculus, the total area is

given by 2.1,

AUC =

∫ ∞
0

Ctdt (2.1)

The thinner the segments are, the closer the trapezoids reflect the actual shape of the

concentration-time curve. A sum of exponential terms are often used to describe the drug

concentration-time profiles as follows,

Ct = A ·
∑

exp−λit (2.2)

where Ct, A, λi are drug concentration over time, coefficient constant and terminal rate

respectively (more explanations in 2.5 and 2.7).

In summary, the non-compartmental models are widely useful for data description and

interpolation, Gabrielsson (2012). They can also be used to show that two formulations are
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Chapter 2. Population pharmacokinetic and Pharmacodynamic (PK/PD) Models

the same in the development of new drugs by calculatingAUC andCmax. For example, the

manufacturer may study the drug initially with capsules but may wish to market a tablet to

patients as the latter trend to have greater stability. To do so, the manufacturer has to show

that the two formulations are bio-equivalent which means that the two formulations have

the same concentration-time profile within an acceptable tolerance region. In this case,

calculate the Cmax and AUC under both formulations for n patients. Bio-equivalence is

declared if the confidence interval for the ratio of means of test/reference for both AUC

and Cmax are entirely within the interval (80%, 125%), US Food and Drug Administra-

tion, Bioavailability (2000). In addition, they are often implemented in physiologically-

based pharmacokinetics and pharmacodynamic models Gillespie (1991). However, they

are difficult to do extrapolation, Aarons (2005). Because their parameters do not have

the physiological interpretations. Thus it is difficult to predict how the concentration-time

profiles change when the underlying physiology changes. This problem can partly be

addressed by adopting the compartmental models.

2.1.2 Classical compartmental models

In order to obtain insight from a certain study, (e.g. biological systems), scientists divide

the objects of scientific interest into smaller conceptual units until the underlying mech-

anisms become apparent (a basic logic in science). This basic principle also works for

the pharmacological phenomena. A class of small conceptual units have been developed,

known as compartments. The organism where the drug goes is thought of as a system of

interconnected pools, compartments. In order to understand the whole mechanism, the re-

searchers need to study the single compartment and the passage of the drug between them.

For simplicity, we will describe the one- and two-compartmental models and discuss ad-

vantages and limitations of using compartmental modeling approach.

One-compartmental model is assumed to comprise only a single compartment repres-

7
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                                                                                            (c)  

Figure 2.1: Examples of one and two compartment models modified from Holz et al.
(2001) (a) Bolus/pill administration (b) First order absorption (c) Two compartment model

enting the systemic circulation. Figure 2.1.2 shows an one-compartmental model for a

single input pathway and single elimination pathway, a with bolus/pill administration and

b IV administration with first-order absorption. The uptake source and the place of elimin-

ation process are usually displayed as circles while the compartments of the organism are

symbolized by squares or rectangles. where kabs and keli are constants indicating the rate

of absorption and elimination respectively. The main interest is the drug concentration as

a function of the time after administration. The “into” and “out” flow of the process in the

compartment can be described mathematically. The ”into” process can be described by

dA(t)

dt
= −kabs · A(t), (2.3)
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and the “out” process can be expressed by

dC(t)

dt
= kabs · F · A(t)− keli · C(t), (2.4)

where A(t) is the amount of drug still remaining to be absorbed and F is the absolute

bio-availability (describing how much drug reaches the circulation system after admin-

istration, i.e. the bio-availability of an intravenous drug dose is assumed to be 100%).

The mathematical solution of the differential equations 2.3 and 2.4, with the initial value

A(0) = Dose and C(0) = 0 is

C(t) =
F ·Dose · kabs
Vd · (kabs − keli)

(
e−kelit − e−kabst

)
, (2.5)

where VD is the volume of circulation compartment. Given the values of Dose, VD, kabs,

keli and F , the drug concentration in the blood over time can be easily obtained.

The two-compartmental models resolve the body into a central compartment and a

peripheral compartment (see Figure 2.1.2 (C)). They are assumed that the central com-

partment includes the tissues that are highly perfused such as blood, heart, lungs, liver,

kidneys and brain. The peripheral compartment comprises poor-perfused tissues such as

muscle, fat and skin. After drug administrated into the central compartment, the drug is

assumed to distribute between that compartment and the peripheral compartment. How-

ever, the drug does not achieve instantaneous distribution between the two compartments.

Here we present a simple two-compartmental model which is described as follows. The

system of ordinary differential equations is:

dC1(t)

dt
= −(k10 + k12)C1(t) + k21C2(t),

dC2(t)

dt
= k12C1(t)− k21C2(t), (2.6)

where C1 and C2 represent the amount of drug in the central and peripheral compartment,
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respectively. The solution for bolus administration with C1(0) = Dose and C2(0) = 0 is

C(t) = A · e−α·t +B · e−β·t

=
F ·Dose
VD(α− β)

[
(α− k21)e−αt + (k21 − β)e−βt)

]
(2.7)

with

α · β = k12 · k10 (2.8)

and

α + β = k12 + k21 + k10 (2.9)

where k10, k12, k21 are the elimination rates constant from compartment one, the inter-

compartmental flow rate respectively. With a simple algebra, these rate constants can be

solved easily.

The model becomes more complicate when we start considering multiple compart-

ments in the system, such as catenary and mammillary compartmental structure see Figure

3 in Holz (2003). A mammillary model consists of a central compartment interacting with

a number of peripheral compartments surrounding it. The catenary model comprises of a

chain of interconnected compartments. The time course of the concentrations will always

follow a sum of exponentials under a certain assumption. However, it may need more

complex techniques to solve the equations.

Nowadays, the compartmental models are still widely used in various area. Kreuer

(2014) proposed a three-compartmental pharmacokinetic model extended with an addi-

tional lung compartmental and clearance to measure drug concentration in patient’s breath.

Yamazaki (2015) proposed a one-compartmental PK model to describe oral and subcu-

taneous profiles of anaplastic lymphoma kinase inhibitors.

10
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2.1.3 Physiologically-based Pharmacokinetics models (PBPK)

In the 1930s, Teorell (1937a, b) provided a set of equations for uptake, distribution, and

elimination of drugs from the body. These papers are regarded as providing the first

physiological model for drug distribution. However, computational methods were not

available to solve the sets of equations at that time. The focus shifted to the simple models

such as data-based non-compartmental and one- or two- compartmental models. Because

they have fewer number parameters and these parameters do not correspond directly with

a specific physiological compartment. For the next thirty years, PK modeling focused on

these simpler descriptions with exact solutions. However, with the availability of com-

puters and numerical integration algorithms, it regains the interest in physiology-based

model from 1970s. By 2010, hundreds of publications used PBPK models and some com-

panies’ business based on their expertise in PBPK. There is also a growing interest in

applying PBPK models for the discovery and development of drugs, Lupfert 2005.

PBPK models are compartmental models like the classical pharmacokinetics compart-

mental model, but the compartment here represents the actual tissue and organs. In gen-

eral, the concept of PBPK is to use mathematical equations to describe relevant physiolo-

gical, biochemical process which determines the pharmacokinetic behavior of a com-

pound. PBPK model is structured to compose the relevant physiological compartments.

Each compartment often represents a single organ or tissue. These compartments are

interconnected via the blood circulation loop. The mass-balance equations for each com-

partment describe the rate of substance change within it.

11
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Figure 2.1.3 illustrates the generic stucture of building a PBPK model. It includes the

monitoring of the drug concentration in core tissue, fluid and organs (arterial and venous

blood), liver (the main metabolising organ), kidney (for renally excreted drugs). Within

each compartment, mathematical equations are derived from the law of mass transfer.

Linear or nonlinear differential equations are the most common description of the phar-

macokinetic processes. The PBPK models have two groups of parameters: drug-specific

and physiological parameters. Typical drug-specific parameters include metabolism rate

and plasma protein binding constants. The physiological parameters include regional and

tissue blood flow rates, volumes of blood and different tissues parameters etc. An example

of a system of ordinary different equations are described for a real world problem Craig-

mill (2003). This model is to see how a chemical injected into a body of an animal spread

into all the organs and how the concentration of chemical changes over time in each or-

gans. The diagram for the model is shown 2.1.3, with a complicate differential equations

followed 2.1.3. See more details and explantation in the original paper.

The PBPK modeling has attracted considerable attention in pharmacological and toxic-

ological research (Grass and Sinko, 2002). There are also more applications in the dose

estimation (Johnson 2005) and drug-drug interactions (Chien, Monhutsky et al. 2003).

Another important area of PBPK application is the drug discovery and development in

Lupfert and Reichel (2005), Latz (2009). Jones and Rowland-Yeo (2013) presents a com-

prehensive tutorial for PBPK. Huang and Rowland (2012) discussed the role of PBPK

modeling in regulatory review. We refer the interested reader for PBPK models to Reddy

(2005).

In summary, the use of PBPK modeling to maximize the clinical potential of drugs

has been accepted in pharmacokinetics. But it requires intense resources to generate

the data on the various parameters in the model. The mathematical complexity of the

model and computationally intensive limit the application of PBPK modeling. Therefore,

user-friendly software would enhance the widespread use as well as the knowledge of
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physiology and biochemical process, especially in different disease states.

2.2 Pharmacodynamic models

Pharmacodynamics (PD) refers to the relationship between drug concentration at the site

of action and the resulting effect, including the intensity of therapeutic and adverse effects.

The magnitude of a drug response at the action site is determined by the amount of drug

binding to a certain type of receptor. More drug is at the action site, the stronger intensity

of a drug’s effect is. PD model quantifies the relationship between dose and response.

There are two basic assumptions in PD models. The first one is that the measured plasma

concentration is proportionally related to the concentration at the effect site. Ideally, the

concentrations should be measured at the effect site, the action site or biophase where the

interaction with the corresponding receptor system occurs, but this is not possible for most

drugs. However, the concentrations could be easily accessed in body fluids like plasma or

blood. The plasma concentrations are frequently used to establish the relationship between

a dose of drug and response.

The second assumption is about the drug effect. The drug effect can be defined as any

drug-induced change in a physiological parameter when compared to the baseline value.

The baseline is the values of the same physiological parameters in the absence of drug

dosing. Baseline values do not necessarily have to be constant but can change, i.e. as a

function of day. Moreover, “effect” has to be clearly separated from “efficacy”. Efficacy

is the sum of all therapeutically beneficial drug effects and is the most relevant target

parameter in clinical trial. In practice, efficacy is difficult to quantify and thus instead

use the easily accessible surrogate markers as effect parameters. But it needs to present

evidence that the effect parameters used correlates with the desired efficacy. In practice,

the measured response could be both continuous and categorical, i.e. blood pressure,
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cure/not cure,none, mild moderate and severe. In those cases logistic regression models

and survival analysis are applied to describe the probability of the events. The relationship

between concentration and the logit of the probability of the event is typically modeled as

a linear or Emax function. For a dichotomous longitudinal variable the probability of an

outcome P (t) may be estimated based on

L(t) = E0 + Slope× C(t) P (t) =
expL(t)

1 + expL(t)
(2.10)

where L(t) and E0 are the total and underlying effects on the logistic scale. In this section

we introduce the PD models in steady-state and non steady-state conditions.

2.2.1 Pharmacodynamic models for steady-state situations

When the concentration of the agent at the action site are constant and the PD parameters

are time-invariant, the system is said to be kinetically at steady state. The steady-state

condition can be reached with long-term IV infusions or multiple-dose regimens. Several

basic PK/PD models have been used to describe concentration-effect relationship, such as

fixed effect model, linear model, log-linear model, sigmoid Emax model Meibohm (1997).

The frequently used one is the sigmoidal Emax model, Mager (2003),

E(t) =
Emax × C(t)r

ECr
50 + C(t)r

+ E0 (2.11)

whereEmax is the maximum effect that can be achieved by the drug in the investigated sys-

tem and EC50 is the drug concentration that results in half of the maximum effect. EC50

is inversely related to the potency. γ is the sigmoidicity factor that determine the steepness

of the relationship but is in many cases not statistically significant from 1. Among effect

and log-concentration relationship,

• If r = 1, it is for a hyperbolic curve.
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• If r > 1, the relationship becomes steeper and will eventually approach a step-

function.

• If r < 1, it is for a smoother curve.

One reason for the popularity of the Emax model is that the function asymptotes to an

upper limit of stimulation or inhibition by a drug on a system. However, often there are

situations when sufficienty high concentrations can not be achieved to estimate Emax and

simplification can be made where fewer parameters are estimated. When the concentra-

tions are much smaller than E50, the Emax model collapses to a linear model (γ = 1) or a

power function with coefficient Slope as shown in 2.12,

E(t) = E0 + Slope× C(t)γ (2.12)

Another issue is that the underlying E0 is not always constant over the drug period. For

example, the effect variable may vary because of an underlying disease, such as fluctu-

ations in glucose in the event of diabetes in blood pressure. The model complexity can

increase with increased availability of data and knowledge of the underlying system. For

example, there may be feedback mechanisms that regulate the measured variable, such as

the influence of insulin on glucose levels. In addition, after drug administration, the drug

effect delay are frequently observed. There are multiple issue to affect the delay, such as

slow distribution to the effect site, active metabolite formation, signal transduction and

other mechanisms.

2.2.2 Pharmacodynamic models for non-steady-state situations

Under non-steady-state conditions, the time course of plasma concentration and effect

dissociate. Thus, to fully characterize the time course of drug action, PK and PD have to

be adequately linked to predict the relationship of PD effect versus plasma concentration.

Next we review two basic attributes in the integrated PK/PD models.
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Direct Link vs. Indirect Link

If drug concentration in plasma occurs rapidly enough at the effect site, which means the

temporal delay negligible, the concentrations are directly proportional in between over

time. The effect and plasma concentration lack any detectable hysteresis and may be dir-

ectly linked. However, in many cases, the concentration at the site of action may lag

behind that in plasma; then no direct link can be established. This is usually manifested

by a hysteresis between plasma concentration and effect. See an example in Suri et al.

(1997). The extent of hysteresis is dependent on the degree of delay between the concen-

trations in plasma and at the effect site. This can be resolved by introducing a hypothetical

effect compartment representing active drug concentration at the effect site. Linking the

effect compartment to the kinetic model with negligible mass of drug into the effect com-

partment.

Time Variant vs. Time Invariant

In PD model, most parameters are assumed to time invariant, i.e. Emax and EC50 stay

constant over time. However, when time-variant PD occurs, a specific model for the in-

volved process of tolerance is required. The tolerance is defined as a decrease in drug

effect over time, despite constant drug concentrations at the effect site, and is character-

ized by a clockwise hysteresis loop in a plot of effect versus drug concentration. In an

Emax model, tolerance is usually modeled as a time-dependent decrease of EC50 if re-

ceptor desensitization is assumed.

In summary, under non-steady and steady-state, there are several pharmacodynamic

models have been used to describe the relationship between drug concentration and effect.

The preferred models depend on many factors, including 1) the type of the drug used 2) the

response to be measured, 3) the effect seen after administration of drug, 4) the linearity in
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the effect-concentration curve, 5) the characteristics of parameters whether represent the

underlying process and mechanism.

2.3 Population PK/PD Models

The population approach is often employed to indicate a paradigm that attempts to define

important PK and PD differences and extract this information from complex data. The

ultimate goal of PK/PD analysis is to establish guidelines for individualizing dosage regi-

men. It consists of quantifying the mean and variance of PK/PD population parameters as

well as the intra- and inter- subject variability. In addition, it is also possible to investigate

the factors or covariates, such as age, weight, gender, which may help to distinguish the

difference among individuals or subgroups of the population.

2.3.1 Mechanism-Based PK/PD models

The PK data analysis is often considered routine and straightforward, but major physiolo-

gical insights have derived from basic physiology principles. The time course of drug

concentrations in a relevant biological fluid, i.e. unbound plasma concentration, Cp, are

typically represented by a mathematical function:

Cp(t) = f(θPK , Dose, t) (2.13)

where θPK is a vector of PK parameters determined by model fitting, Dose represents the

amount of medicine, t is the time course.

If plasma concentrations are assumed to be proportional to biophase concentrations,

then these expressions are served as known information in PD models.

E(t) = f(θPD, Cp, t, X) (2.14)
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where E(t) is the pharmacological response over time and X represents a vector of drug-

independent system parameters, i.e. age. Both equations 2.13 and 2.14 may be explicit

for some simple systems. In general, the population PK/PD approach imposes the dis-

tributional assumption on the individual-specific PK and PD parameter vectors, θPK and

θPD.

θi,PK ∼ N(µpk,Σpk) θi,PD ∼ N(µpd,Σpd) (2.15)

where N(·, ·) denotes a p-dimensional multivariate normal distribution with mean and co-

variance matrix. The main interest is to use the concentrations as a primary predictor to

construct a realistic model for drug effect that allow the efficacy and various covariates

to be explored. Nielsen and Friberg (2013) promoted more extensive use of modeling

and simulation to describe time courses of antibiotic drug effects in animals and patients.

Their review summarize the value of PK/PD modeling and provided an overview of the

characteristics of available PK/PD models of antibiotics. Dong (2014) developed a popu-

lation PK/PD model for mycophenolic acid in paediatric renal translate recipients. They

used a two compartmental model with a transit compartment for PK modeling. For the

PD model, a non-linear relationship between dose and acid exposure was described by a

power function.

The objective of a PK/PD modeling is not just to describe the data sets of the sample

of individuals but also used to simulate which concentration and effect and evaluate the

variability of drug response for the future patients when different doses are given. These

simulation and prediction can lead to optimised dosing recommendation. It is often said

that “all models are wrong but some are useful”. In order to define whether a population

PK/PD model is useful and valid in clinical study. A number of evaluation and validation

models have been performed such as goodness-of-fit models, bootstrap analysis, visual

predictive evaluation. Cock (2010) reviewed a few validation models of PK/PD model-

ing in paediatric clinical research. Burns (2014) proposed a population PK/PD model of
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caffeine by using visual analogue scale and evaluated both simultaneous and sequential

PK/PD modeling. Model validation were performed using diagnostic plots and visual pre-

dictive check plots.

The “mean” functions in population PK/PD models are often expressed by a system

of differential equations describing the kinetic and dynamic process in the body. Most

often, the analytic solutions of these equations do not exist. However, there are several

numerical solvers available, such as Runge-Kutta methods, adams methods and backward

differentiation formula. The choice of these approaches is on the base of the character-

istics of the systems, i.e. stiffness. An ODE system is called stiff if the state variables

change on a wide variety of time scales, including changing very rapidly as well as chan-

ging very slowly. Solving “stif” ODEs may request the special methods. An excessive

amount of computing time is required because it takes time to use very small time steps to

maintain stability. In addition, solving a system of ODEs depends on the “good” choice

of the starting values of parameters. The common packages of ODE solvers are available

in the programming languages i.e. FORTRAN (ODEPACK solver), C (CVODE solver),

MATLAB (ode45/ode15s solver) and R (deSolve package). In our work, we use R pack-

age, deSolve for solving PK and PD ODEs and also implement a self-written R code of

Euler’s method for PD ODEs.

2.3.2 Overview of softwares of population PK/PD modeling

There are various softwares available for PK, PBPK and PBPKPD modeling in drug de-

velopment processes. They are Phoenix WinNonlin, P-PHARM, PHEDSIM, MEDICI-

PK, Modkine, PDx-MC-PEM and JGuiB. These are well user friendly software for not

only simple PK/PD model but also for population PK/PD models. WinNonlin is pop-

ular because it includes extensive libraries for PK and/or PD and PK/PD models and it

also provides tools for table generation, scripting and data management. Roccheti (2009)
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provided a PK/PD analysis for estimating PK/PD parameters and computing the expected

tumor growth curves was carried out by WinNonlin V.3.1.
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Figure 2.2: A generic structure of the whole-body PBPK-model Dickschen (2012). The
model organism is built by compartments, each typically representing a single organ
defined by its physiological volume. Organs are interconnected via respective blood flows
which occur, except for pulmonary circulation, from the arterial blood pool to the ven-
ous blood pool thus accounting for inter-compartmental mass-transfer. Application of
substances can be defined as intravenous (i.v.), per oral (p.o.), or into any desired com-
partment. In addition to clearance events in intestinal wall, liver, and kidney, metabolism
processes can be implemented into any compartment. Transport processes that signific-
antly influence a compounds PK may be inserted between compartments.
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Figure 2.3: A diagram of PBPK model structure Craigmill (2003).

Figure 2.4: An example of a system of differential equation for each compartment Craig-
mill (2003).
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Chapter 3

Literature review on statistical

approaches for population PK/PD

models

In the field of biomedical applications, data usually consists of repeated measurements

on individuals under varying experimental conditions. For example, in pharmacokinetic

studies several blood samples are taken on participants over a period of time following the

administration of a drug. Those participants can be considered as a random sample from

a population of interest. The measured response is often not nonlinear with the varying

experimental condition with the parameters. The model is fitted to data sets from different

individuals. The main interest is to obtain inference on both population and individual

characteristics, and their variability.

Two common approaches are considered to fit the population PK/PD data. The first ap-

proach is to fit all data sets simultaneously in one simple model (simultaneous method). In

other words, PK and PD parameters are estimated at the same time. The second approach
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is to fit a model for the PK data first, then model the PD outcome conditional on the PK

data and/or estimates (“sequential” method). Zhang et al. (2003) uses the simulation data

to compare the performance of a simultaneous method with the sequential method. They

validated the results with respect to computation time, estimation precision and inference.

In the end, they concluded that the computation time of the sequential method is less and

the estimates are more easily obtained. Thus in our work, we fit both PK and PD data

simultaneously in our MCMC algorithm.

PK/PD have a precise administration in clinical trial study. The patients often receive

different doses of drug. Blood samples are collected over a period of time. In our real

data, paclitaxel was administered as a 3-hour infusion, with initial dose of 175mg/m2

every 3rd week. Dose adjustments were guided by hematological and nonhematological

toxicity which resulted in a final dose range of 110 to 232 mg/m2. Plasma concentrations

were monitored on course 1 and course 3, with an average of 3.5 samples per patient and

course.

There are several statistical methodologies to model the population PK/PD data. The

simplest approach is called “naive-pooled dat”. The “naive-pooled data” approach is to

fit all individuals’ data together without considering inter- and intra- subject variability.

The “two-stage” approach fits each individual’s data separately and then combines the in-

dividual parameter estimates. In the first stage, each individual PK/PD parameters are es-

timated from the individual PK and PD observations. In the second stage, the relationship

between covariates and the parameters are explored. The population mean and variance of

each parameter is derived. The third approach is the nonlinear mixed models. Nonlinear

mixed models is a mixture of fixed and random effects. Fixed effect is often repeatable

and the experimenter can directly manipulates. Random effect is the source of random

variation. The fixed effects estimate the population coefficients but the random effects ac-

count for the individual difference in response. The fourth approach is Bayesian. which
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incorporates the initial belief for the parameters in the model. Historically, the difficulty of

implementing the Bayesian analyses in complex statistical models was the intractability of

the numerous integrations. However, vigorous development of Markov chain Monte Carlo

(MCMC) techniques facilitated such integration in the early 1990s. Additionally new ad-

vances in computing power have made such Bayesian analysis feasible. The nonlinear

mixed model served as one of the first examples of this capability (Rosner and Muller

1994). We will provide a brief review of the important features of Bayesian inference. See

Davidian and Giltinan (1995, Ch.8) for an introduction and Carlin and Louis (2000) for

comprehensive coverage of modern Bayesian analysis. In this chapter, we review last two

approaches for the PK/PD models. In section 3.1, we review nonlinear mixed-effect mod-

els with available programs. In section 3.2, we discuss the Bayesian models and available

software.

3.1 Statistical Inference for Nonlinear Mixed-effect Mod-

els

Within the framework of nonlinear models, the main interest is focused on representing

the mean function, or mean trajectory, describing the dynamic relationship between the

response and explanatory variables, i.e. time. Most often, the means functions are de-

scribed by a system of ordinary differential equations (ODEs). (We skip ODEs for now

and discuss it more at the end of this chapter.)

The nonlinear mixed-effect model is the traditional approach for longitudinal data. The

concept of nonlinear mixed-effect model (NLMEM) first appeared in (Sheiner, Rosenberg,

Melmon 1972), modeling of individual PK for computer aided drug dosage. In 1977, the

first case study used NLMEM shown up in Sheiner, Rosenberg Melmon. They estimated

the population characteristics of PK parameters from routine clinical data. In late 1980s,
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it was widely spread in statistical research. There are numerous new methodologies and

computational techniques developed for these models in late 1990s, like NONMEN soft-

ware (an IBM-specific software). The estimation methods for population parameters are

the First Order method, Laplace approximation, and First Order linearization etc. Sheiner

and Beal published three important papers and evaluated the methods for estimating pop-

ulation pharmacokinetic parameters. From 1985 to 1990, nonparametric, bayesian estim-

ation of individual random effects given current estimates appeared, such as linearisation

of the model around the current estimates of the random effect, Newton-Raphson iterative

solution to a linear mixed effect estimation problem (Lindstrom and Bates (1990)).

Here we first introduce a simple version of nonlinear mixed-effect models and then

review several inferential methods. Let yij denote the jth observed response, for ith sub-

ject, measured at time point tij , for i = 1, 2, · · · ,m and j = 1, 2, · · · , ni. For example,

in pharmacodynamic settings, yij is the absolute neutrophil count at time tij for subject

i. The following methodology we present can be extended to a more general case with

multiple covariates. A statistical model can be expressed as,

yij = f(θi, tij) + εij, i = 1, . . . ,m, j = 1, . . . , ni (3.1)

For an individual i, the intra-individual error εij corresponds to the measurement uncer-

tainty associated with the observed response at time point tij . The random errors are

assumed to be independently distributed with zero mean and constant variance across all

measurements,

E(εij) = 0 and V ar(εij) = σ2 for i = 1, 2, · · · ,m and j = 1, 2, · · · , ni (3.2)

For simplicity, errors are assumed to be i.i.d, identically independent distributed. Al-

though this assumption is very strong, it can be relaxed to the case that the variance of

errors to be, V ar(εi) = σ2
iRi, where εi = (εi1, · · · , εini), Ri is a ni × ni positive definite

matrix. Ri may depend on other parameters. For simplicity, we consider Ri as an identity
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matrix with the number of ni elements. In equation 3.1, f(·) is the mean function describ-

ing the within-individual behavior. It depends on a vector of p parameters, θi, specific to

individual i. θis are assumed to from a common distribution with mean θ and variance

Σθ. Specifically we can write,

θi = d(θ, bi), bi ∼ N(0,D) (3.3)

3.3 represents the individual behavior conditional on θi and hence on bi, the random com-

ponent in 3.3. In 3.3, we assume that the distribution of bi|X i does not depend on all

the covariates X i. All bi’s have a common multivariate normal distribution with mean

0 and covariance D. In our real data, the PK parameter vector θi is (CLi, V
c
i , V

d
i , CL

d
i )

representing the system clearance, volume of central compartment, volume of peripheral

compartment, clearance of inter-compartment separately.

The joint density of the observed data y1, · · · ,ym is,
m∏
i=1

∫
p(yi, bi|θ)dbi =

m∏
i=1

∫ ni∏
j=1

p(yij|bi,θ)p(bi)dbi (3.4)

Ideally, the parameters involved in the NLME model can be estimated by maximizing the

joint density of all parameters based on equation 3.4. If f is a linear function of parameter

θi, the integral can be evaluated to obtain an analytic expression. Here we present a

very simple example where the joint density of parameters can be formalized. We do not

consider any covariates for now and set

θi = θ + bi, E(bi) = 0, V ar(bi) = D (3.5)

The likelihood function assuming normality of the responses and random effects can be

written as,

L(θ,D,σ) ∝
m∏
i=1

∫ ni∏
j=1

1

D
e−

1
2σ2

(yij−f(θi,tij))
2

|D|−1/2e−
1
2

(θi−θ)TD−1(θi−θ)dθi

=
m∏
i=1

(
1

σ2
)ni/2|D|−1/2

∫
e−

1
2σ2

∑ni
j=1(yij−f(θi,tij))

2− 1
2

(θi−θ)TD−1(θi−θ)dθi (3.6)
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Even though the likelihood in 3.6 has a specific form. However, in most cases of NLME

models, f is a nonlinear function of parameters θi. Nonlinearity means that the m in-

tegration in equations 3.4 and 3.6 can not be solved in a closed form. Thus, it is not

possible to obtain the analytic solution. In practice, the classical approaches are based

on approximation of the likelihood involving the linearization of the nonlinear model by

using either Taylor’s series expansion (Beal and Sheiner (1982)) or by applying Laplace’s

approximation to the likelihood (Wolfinger, 1993). Then estimate the parameters based on

the approximated likelihood functions. Here we review several methods based on approx-

imation of the likelihood according to the equations from 3.1 to 3.3.

3.1.1 Exact method

By exact methods, we mean methods which avoid approximations, such as exact max-

imum likelihood estimation (MLEs) or Bayes estimation. In order to obtain MLEs or

bayesian estimate, one must evaluate a high dimensional integral which requires numer-

ical methods, i.e. Monte Carlo. For MLE, the marginal density of yi given the parameters

bi, θ is required,

p(yi|θ, bi) =

∫
p(yi|θ, bi)p(bi)dbi (3.7)

In most cases, f is nonlinear in the random effect bi. So there is no closed form expression

for this integral. Both Calculating MLEs or Bayesian estimates can be computationally

difficult and time consuming especially when bi is more than one-dimensional. Next we

use the simplest model to introduce several approaches to approximate the function f .
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3.1.2 First order methods

This method, developed by Beal and Sheiner (1982), is extensively used in pharmacokin-

etics. First order method is based on using a Taylor expansion to approximate the model

function f , and maximizing the likelihood corresponding to the resulting approximation.

The first-order Taylor expansion of fi(·, bi) around bi = 0 gives the approximate model

yi = fi(θi, tij) + εi ≈ fi(·, bi = 0) + f ′i(·, bi = 0)bi + εi (3.8)

where f ′i(·, 0) is the derivative of fi(·, ·) with respect to bi evaluated at bi = 0. We can

write down the approximate marginal distribution of yi which is normal with expection

fi(·, 0) and variance σ2Ini + f ′i(·, bi = 0)D[f ′i(·, bi = 0)]T . Maximizing the corresponding

likelihood with respect to rest of parameters gives Beal and Sheiner estimates. This method

gives desired results in some situations but gives significantly biased estimates, i.e. when

fi(φ, bi) is significantly non-linear in bi.

3.1.3 Conditional First-order method

The conditional first-order algorithm also uses a first order Taylor expansion, but it expands

at both estimates of the random effects, bi = b̂i and and estimate of other parameters,

denoted by a vector φ. Next we describe the algorithm.

Step 1, set the initial values D0 and σ2
0 , the estimates of φ̂ and b̂i are obtained by min-

imizing,

m∑
i=1

( 1

σ2
0

||yi − fi(φ, bi)||2 + b′iD
−1
0 bi

)
(3.9)

Step 2, expand the model fi(φ, bi) around bi = b̂i and φ = φ̂,

yi ≈ fi(φ̂, b̂i) + f ′i(φ̂, b̂i)(φ− φ̂) + f ′i(φ̂, b̂i)(bi − b̂i) + εi (3.10)
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Then yi approximately follows normal with different expectation fi(φ̂, b̂i) + f ′i(φ̂, b̂i)(φ−

φ̂)−f ′i(φ̂, b̂i)b̂i and same covariance as in first-order method. This becomes a linear mixed

effect problem and φ̂, σ̂2 and D̂ maximize the approximate likelihood.

Step 3, set σ2
0 = σ̂2 and D2

0 = D̂2, repeat step 1 and 2 until convergence.

See more details in Davidian and Giltinan’s book and Wolfinger 1993 are good references

on this approach.

3.1.4 Laplacian Method

The Laplacian method evaluates the exact marginal likelihood by using a second-order

Taylor expansion of li around the empirical Bayes estimate bi. Let the first and second

derivatives of li describe as

l
′

i =
∂li
∂bi

l
′′

i =
∂2li

∂bi∂bTi

Thus

li = li(b̂i) + l
′

i(b̂)(bi − b̂i) +
1

2
(bi − b̂i)

T l
′′

i (b̂i)(bi − b̂i)

= li(b̂i) +
1

2
(bi − b̂i)

T l
′′

i (b̂i)(bi − b̂i) (3.11)

Consequently, the integral in can be approximated by 3.11. See more details in Wolfinger

(1993) and Davidian and Giltinan (1995).

3.1.5 Lindstrom and Bates algorithm

The Lindstrom and Bates algorithm can be derived using Laplacian approximation. The

estimation algorithm use a combination of a penalized nonlinear least-square estimate
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(PNLS) and a linear mixed-effect estimate (LME). They used a first-order Taylor expan-

sion on the conditional estimates of the individual random effect. To simplify the nota-

tions, denote the covariance matrix for random effect D−1 = σ−2∆T∆. In the penalized

nonlinear least-squares, the random effects bi and the estimate of the fixed effect β based

on the current estimate of Φ are obtained by minimizing the function as follows,

OPNLS =
N∑
i=1

(yi − fi(zi, θi))
T (yi − fi(zi, θi)) + bTi ∆T∆bi (3.12)

In order to update the estimate of Φ, the mean function f(·) is linearized using a first-order

Taylor expansion around the current estimate of β and the estimate of bi. The approximate

log-likelihood function for the estimation of Φ can be written as

logL(θ, σ2,∆) = −
∑N

i=1 ni
2

log(2πσ2)− 1

2

N∑
i=1

{
log(I +

∂fi
∂bTi

∆−1∆T ∂f
T
i

∂bTi
)

+
[
yi−fi(bi, θi)+

∂fi
∂bi

T

b̂i

]T(
I+

∂fi
∂bTi

∆−1∆T ∂f
T
i

∂bTi

)−1[
yi−fi(bi, θi)+

∂fi
∂bi

T

b̂i

]}
There are more methods besides our review i.e. adaptive Gaussian quadrature in SAS,

stochastic approximation expectation maximization. Vonesh and Carter (1987) proposed

the use of estimated generalized least squares and establish the asymptotic properties of

the resulting estimates. An alternative method is the use of iteratively weighted general-

ized least squares. The MIXNLIN program also implements pseudo maximum likelihood

and restricted maximum likelihood estimation by embedding the EM algorithm within a

re-weighted generalized least squares routine. The expansion is either about 0 or about

the empirical best linear unbiased predictor of the inter-individual random effects. All ap-

proaches started first from initial estimates set to the true values and second using altered

values. Roe et al. (1997) and Duffull et al. (2005) provide a systematic comparisons of

these population modeling and a summary of the estimation algorithms.

The success of the statistical techniques nowadays are directly related to the availability

of reliable, efficient and user-friendly software for its application. In pharmacology, non-
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linear mixed effects models are the most common method to describe pharmacokinetics

and pharmacodynamic relationship. It is very useful for mapping out many different kinds

of dose-response curves. In this section we briefly review 3 widely used packages.

The first one, NONMEN software was developed by Beal and Sheiner (1980) and has

been widely used by practitioners to implement PK/PD data analysis. It performs max-

imum likelihood estimation based on several approximation of log-likelihood function,

such as first-order, first-order conditional estimation methods and Laplacian method. This

software has various attractive features thus it is generally regarded as the gold standard

software for PK/PD modeling and fitting non-linear mixed effects models. NONMEN can

fit the standard PK/PD compartment models. Moreover, it can handle the multiple dosing

regimen in the model. More importantly, it can fit models expressed by the system of

ordinary differential equations. In general, NONMEN is quite accurate, stable, flexible to

fit PK/PD models.

The second one, R/S-plus package nlme can also be used to fit nonlinear mixed effect

model. This package can not only fit two levels of random effect of PK/PD models but

the multiple-level model non-PK/PD models. nlme also has many functions to be used for

modeling checking, plotting as well as diagnostics. nlme itself cannot handle compartment

models expressed by ODE’s without closed-form solution. It requires using an ODE solver

to these PK/PD models. nlmeODE package combines nlme with the odesolve package in

R. The odesolve package provides an interface to the Fortan ODE solver Isoda, which can

be used to solve initial value problems for systems of first-order ODE’s. The computation

times are usually significantly longer using nlme with nlmeODE compared to NONMEN.

The NLMIXED procedure in SAS is also widely used to fit non-linear mixed effects

models. PROC NLMIXED uses integration approximation methods to optimize the ob-

jective function. Thus it can be viewed as giving the “exact answer” to the optimization

problem. The advantage of NLMIXED procedure is that it allows users to specify the like-
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lihood function. In SAS, it is very easy to perform exploratory analysis, manipulate data

and perform diagnostics. The output can be directed to files in a variety of formats using

the SAS Output Delivery System. The NLMIXED procedure is quite sensitive to starting

values and parameterizations of the model.

3.2 Bayesian Hierarchical Models

A Bayesian hierarchical model can be considered as the analogous of the mixed effect

models in the frequentist statistical approach. Historically, the implementation of Bayesian

analyses in complex statistical models is not computationally feasible. However, the de-

velopment of MCMC techniques in the early 1990s have made posterior inference feas-

ible. MCMC techniques can produce samples from the relevant posterior distributions,

from which any desired function of the parameters of interest may then be approximated.

For population PK/PD models, MCMC algorithms may be more difficult to implement

because of the complexity of the mean functions and the nature of the data. Thus, the

implementation in available software such as WinBUGs and PKBugs may be more chal-

lenging. Rosner and Muller (1994) and Wakefield et al. (1994) provided the first examples

of a Bayesian approach in the analysis of PK/PD data. In this section, we present a com-

plete Bayesian approach for a population PK/PD model originally developed by Lunn et

al. (2002) and briefly mention the available softwares.

3.2.1 Bayesian Emax based model for population PK/PD model infer-

ence

First we present a simple Bayesian model for inference on population PK-PD model. Let

yij denote the PK response for ith subject at observed time point j, i = 1, 2, · · · ,m;
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j = 1, · · · , ni. Let θi denote the p-dimensional vector of PK parameters for individual i

and σ2
pk denote the PK variance for the measurement noise. The sampling distribution is

assumed to be normal,

p(yij|θi, σ2) ∼ N(f(θi, tij, Di), σ
2
pk), (3.13)

where the yijs are either concentration or log-concentrations measurement depending

whether normality or log-normality is the most appropriate assumption for the data. f(·)

is a function of individual-specific parameters θi, observed time tij and the dosing history,

Di. Assign a p-dimensional multivariate normal prior distribution. The individual-specific

PK parameter vector θi is then,

p(θi) ∼ Np(Ziµ,Σ) (3.14)

where Zi is a p× q covariate-effect design matrix for individual i, µ is a population-level

vector of coefficients and Σ (p × p) represents the population-level variance-covariance

matrix.

The model is completed by assuming a prior on the population-level parameters, σ2
pk,

µ and Σ,

σ2
pk ∼ IG(a, b); µ ∼ Nq(η,H); Σ ∼ IW (R, ρ) (3.15)

where IG(·, ·) and IW (·, ·) denote the inverse-gamma and inverse-Wishart distributions,

respectively. The hyper-parameters a, b, η,H,R and ρ are fixed based on available prior

information.

If PK modeling is of interest, then relevant inference focuses on the population level

parameters, σ2
pk, µ and Σ. However, where the drug effect has been measured, the PK

model becomes of intermediate interest, to predict drug concentrations in a certain ”effect

compartment”. These concentration measurements are then used as a primary predictor
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(input) to construct a realistic model for drug effects that allow the relationship between

efficacy and various covariates to be explored.

As outlined in section 2.2, PD data types are diverse. For example, they can be reported

by binary responses (e.g. presence of disease) or count data (e.g. the number of episode

of a particular condition). Logistic models and poisson regression models respectively

would be required in these cases. Here, for simplicity, we focus only on a continuous PD

response. Let eij′ denote the drug response for subject i measured at j′ time point, for

i = 1, · · · ,m and j′ = 1, · · · , n′i. φi is a p′-dimensional vector of individual-specific PD

parameter. The sampling distribution is described as

eij′|φi, θi, σ2
pk, σ

2
pd ∼ N(f ′(φi; θi; tij′), σ

2
pd), (3.16)

where f ′(·) is the function of individual-specific PD parameters φi. In general, the PK

model is a compartmental model so one can describe concentrations profile at the ”effect

compartment”. Thus we assume the dynamics depend upon the kinetics only through the

”effect compartment” concentrations, Ce(·):

f ′(φi; θi; tij′) = h(φi, Ce(θi, tij′ ;Di)) (3.17)

A simple PK/PD ”link model” can then be identified as,

p(eij′ |φi, θi;σ2
pd) = N(h(φi;Ce);σ

2
pd) (3.18)

where the function h(·) is given by the classic Emax formula described by

h =
Emax × Ce
Ce + C50

=
φi1Ce
Ce + φi2

(3.19)

where φi1 and φi2 indicating maximal effect and the concentration where the drug effect

reaches maximal for subject i.

Similar as in the PK model, the hierarchical model for the PD response is expressed

by

p(φi) ∼ Np′(Z
′
iµ
′,Σpd) (3.20)
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σ2
pd ∼ IG(a′, b′); µ′ ∼ Ns(η

′, H ′); Σpd ∼ IW (R′, ρ′) (3.21)

Here Z ′i is an p′ × s covariance-effect design matrix, µ′ is a vector of s fixed effect para-

meters, and Σpd is p′ × p′ covariance matrix for PD parameters.

In the following, we denote the matrix of all observed PK data Y = yij , i = 1, · · ·m

and j = 1, · · · , ni, and similarly let E denote all observed PD data. And let P be the set

of population parameter of interest, i.e. µ, µ′,Σpk,Σpd, σ
2
pk, σ

2
pd.

A typical Bayesian analysis involves estimation of the joint posterior distribution of

all unobserved quantities conditional on the observed data. Bayes’ theorem allows us to

express the posterior distribution as follows,

p(θ, φ, P |Y,E) =
p(Y,E|θ, φ, P )p(θ, φ, P )

p(Y,E)

∝ p(Y,E|θ, φ, P )p(θ, φ, P )

= p(Y,E, θ, φ|P )p(P ) (3.22)

More specifically, p(Y,E, θ, φ|P ) in equation 3.22 can be written as

p(Y,E, θ, φ|P ) =
{∏m

i=1

∏n′i
j=1 p(eij′ |φi, θi, σ2

pd)
}
×
{∏m

i=1

∏ni
j=1 p(yij|θi, σ2

pk)
}

×
{∏m

i=1 p(φi|θi, µ′,Σ′)
}{∏m

i=1 p(θi|µ,Σ)
}

(3.23)

which is the full likelihood function included in the model. The distribution on

p(P ) = p(µ)p(µ′)p(Σpk)p(Σpd)p(σ
2
pk)p(σ

2
pd). (3.24)

The posterior is proportional to the multiplication of 3.23 and 3.24. This is the whole

structure of a complete PK/PD model.

We can use MCMC methods to explore the joint posterior distribution of interest. We

can infer any interested quantity as long as their realization can be generated in an ergodic

Markov chain sequence of draws from full-conditional distributions. Monte Carlo simula-

tion from a Markov chain requires that the the stationary distribution is the target posterior.
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There are various algorithms for computing, such as Gibbs sampling, Metropolis-Hastings.

The Gibbs sampler is the primary tool to iteratively simulate each quantity from the full

conditional distribution. Given proper initial values for each qunantity of interest, one

iteration of the Gibbs sampler iterates through sampling across the following densities,

θ(1) ∼ p(θ|φ(0), µ(0), µ′(0), σ
2(0)
pk ,Σ

(0)
pk , σ

2(0)
pd ,Σ

(0)
pd , E, Y )

φ(1) ∼ p(φ|θ(1), µ(0), µ′(0), σ
2(0)
pk ,Σ

(0)
pk , σ

2(0)
pd ,Σ

(0)
pd , E, Y )

Σ
(1)
pk ∼ p(Σ|φ(1), θ(1), µ(0), µ′(0), σ

2(0)
pk , σ

2(0)
pd ,Σ

(0)
pd , E, Y )

etc. (3.25)

After T iterations, we have samples θ(T ), φ(T ) and P (T ). When T →∞,

p(θ(T ), φ(T ), P (T ))
d∼ p(θ, φ, P |Y,E) (3.26)

where “ d∼” represents “convergence in distribution”. If a Gibbs sampler is not suitable,

one can use a MH algorithm, rejection sampling as in Gilks et al. (1992), “slice” sampling

as in Neal et al. (1997).

3.2.2 WinBUGS, PKBUGS and ADAPT

There are three popular programs to implement the PK/PD models. The most popular

and versatile Bayesian program is WinBUGS. The package can handle complex Bayesian

analyses using MCMC methods. Since WinBUG requires a method specification that is

suitable for any class of model, it is not optimal for population PK/PD models. Because

the specification of population PK/PD models for majority of ”real-life” application is

complex, such as the complexity of patients’s dosing histories, time-varying covariates,

censored observations or missing data.

PKBUGS alleviates those difficulties of model specification and thus makes state-of-

art MCMC techniques accessible to the analysis of PK-PD models. It is an interface for
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the Bayesian statistical software for the analysis of only pharmacokinetic data. The main

feature of PKBUGS is to simplify the specification of PK modeling by using dialog boxes

and menu commands. It also can recognize the NONMEN data format and a number of

standard data items (like the patients’s id, time and response). The users can regress the

covariates against the desired PK parameters. The structure specifies 28 PK compartment

models with the input characteristics, such as bolus/infusion intravenous, first-order with

initial lag time. PKBUGS is a customized-oriented hierarchical PK model. See more in

Lunn (1999), (2002), Lunn and Aarons (1997), (1998).

ADAPT is another computational modeling platform developed for pharmacokinetics

and pharmacodynamics applications. It provides almost all relevant parametric nonlinear

mixed-effects modeling algorithms, such as the first-order conditional estimation method,

Laplace method, the Monte Carlo parametric Expectation Maximization and MCMC al-

gorithms. It is designed to describe the biological process, such as PK/PD, estimate model

parameters and make inference from model prediction. Bauer et al. (2007) used three pub-

lished data to compare the results from ADAPT with that of NONMEN and WINBUGS.

He claimed that ADAPTs performance was very stable, more efficiently with more com-

plex PK/PD models involving a system of differential equations. See more applications in

Hong, 2007, Ng CM, 2013, 2010.
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Bayesian Nonparametric Modeling

The parametric statistics assume that the data come from a type of probability distributions

and make inference on the parameters of the distribution. These probability distributions

are characterized by a finite number of parameters, i.e. a normal distribution with un-

known mean and variance. In contrast, nonparametric statistics avoids assumptions on the

probability distribution, for example a classical nonparametric test, the sign test.

In general, parametric methods make more assumptions than non-parametric methods.

If those assumptions are not violated, parametric methods can produce accurate and pre-

cise estimates. However, if the parametric assumptions are violated, parametric methods

can be misleading. For this reason, parametric approaches are not robust. Nonparametric

approaches are robust because they generally do not have assumptions on distributions.

What’s more, when modeling a distribution over data, parametric models use a fixed and

finite number of parameters. Thus, they can suffer from over- and under-fitting of the data.

It becomes difficult to balance between the complexity of the model and the amount of

data available. In this situation, non-parametric Bayes provides an alternative approach to

parametric modeling and allows the number of parameters to change when more data are

collected. Thus it can avoid under-fitting and over-fitting of the model.
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Suppose we have an underlying and unknown distribution which we wish to infer given

some observed data. Say, we observe x1, x2, · · · , with xi ∼ F . In other words, we assume

that the observations are independent and identical draws from F . A Bayesian would

approach this problem by placing a prior over F , then computing the posterior over F

given data. Traditionally these models and priors are chosen from a parametric family.

However, restricting distributions to a certain parametric family may limit the scope and

type of inference that can be made. The nonparametric Bayesian approach uses a prior

with a wide support, i.e. prior distribution can change with more data observed. We can

make different types of inference given a large space when posterior computations are

tractable.

The Dirichlet process (DP) is one of the most popular Bayesian nonparametric models.

Ferguson et al. (1973) first formalized it for general Bayesian statistical modeling. DP can

be succinctly described as a distribution over distributions, i.e. each draw from a DP is a

distribution itself. It is called a DP because it is characterised by Dirichlet distributed finite

dimensional marginal distributions. This is similar to a Gaussian process, where the finite

dimensional marginal distribution are Gaussian distributions. But the distributions drawn

from a DP are discrete, and they can not described using a finite number of parameters.

Since the random draw from DP is a discrete distribution, it is often used for clustering

the population into heterogeneous subpopulation. In this chapter, we introduce the DP and

DP mixture model with MCMC techniques in the Bayesian framework. In section 4.1, we

present the Dirichlet Process and its properties. Section 4.2 discusses DP mixture model.

In section 4.3, we discuss a modern MCMC sampling algorithm of Bayesian inference in

DP mixture model.
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4.1 The Dirichlet Process

The Dirichlet Process (Ferguson, 1973) is one of the most widely used Bayesian nonpara-

metric models for modeling unknown random distributions in Bayesian statistics. It has

been applied to a wide range of problems, such as variable selection in genetics (Kim et

al. 2006), linguistics (Teh, 2006b), psychology (Navarro et al., 2006, image segmentation

(Sudderth and Jordan, 2009) as well as in the neurosciences (Jbabdi et al., 2009). In this

section, we will review the popular representations of DP in Bayesian framework.

4.1.1 Definitions

There are many ways to define a Dirichlet process. Before we proceed to a formal defini-

tion, let us see an intuitive definition first. Consider a Bayesian mixture model consisting

of K components,

xi|zi, θ?k ∼ F (θ?k) (4.1)

with

zi|πα ∼ Multinomial(πα); πα ∼ Dir(α/K, · · · , α/K); θ?k|H ∼ H (4.2)

where πα denotes the vector of mixing proportion, α is the concentration parameter in Di-

richlet distribution, and H is a distribution over θ?k. F is a parametric distribution indexed

by θi. Then xi ∼
∑K

k=1 πkF (θ?k) which defines a finite mixture model. Here xis are ran-

dom draws from a component whose distribution parameterized by θ?k. Each observation

xi has a class label zi indicating which component xi is from. zi follows a multinomial

distribution with a parameter vector from a Dirichlet distribution. When K → ∞, we

obtain an infinite mixture model.

Ferguson (1973) first developed DP considering its finite dimensional distributions.

For a random distribution G ∼ DP (α,H), its marginal distributions must be Dirichlet
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distributed. A formal definition is that we say G is a Dirichlet process with base distribu-

tion H and concentration parameter α, written G ∼ DP (α,H), if

(G(A1), G(A2), · · · , G(Ar)) ∼ Dir(αH(A1), αH(A2), · · · , αH(Ar)) (4.3)

for any finite measurable partition A1, · · · , Ar of Ω. Here Dir(γ1, · · · , γk) denotes the

k-dimensional Dirichlet distribution with parameters γ1, · · · , γk.

The parameters H and α play an intuitive role in the definition of DP. The base distri-

bution is the mean of the DP. For a measurable set A ∈ Ω, we have E[G(A)] = H(A). On

the other hand, the concentration parameter can be understood as a precision parameter:

V ar[G(A)] = αH(A)(α−αH(A))
α2(α+1)

= H(A)(1−H(A))
α+1

. The larger α is, the smaller the variance,

and then DP will concentrate more of its mass around the mean. α is also called strength

parameter referring to the strength of the prior when using DP as a prior in a Bayesian

nonparametric model. See more explanation in posterior distribution of DP next.

4.1.2 Properties of Dirichlet Process

The DP has several well-known representations and properties. Here we give a brief sum-

mary.

Polya Urn Scheme and De Finetti’s Theorem

Polya Urn scheme provides a visualization of DP (Blackwell and Macqueen, 1973). More

importantly, it can be used to prove the existence of DP. Here we introduce the Polya Urn

scheme first and discuss the existence of DP. Suppose each value in the space Ω has a

unique color. In the beginning, there are no balls in the urn. First pick a color from H , i.e.

θ ∼ H , paint a ball with that color and drop it into urn. Second, either pick a ball from the

urn, paint a new ball with the same color, then drop both balls into the urn; or draw a new
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color from H , paint a ball with that color, and drop it into the urn. In the subsequent steps,

for the (n + 1)th time, draw a color from H with probability α
α+n

, paint a new ball with

that color and drop the ball into the urn; or choose a ball from the urn with probability
n

α+n
, paint a new ball with the same color and drop two balls back into urn. The color of

an infinite sequence of draws follows a DP with strength parameter α and base distribution

H .

The distribution over the color of ball represents the DP. The distribution of new ball

color depends the distribution of existing color and the base measure H . The sequence

of ball colors has an exchangeability property. Consider a finite sequence of ball colors,

θ1, . . . , θn, then we can define a distribution over the first n ball’s color as,

P (θ1, . . . , θn) =
n∏
i=1

P (θi|θ1, . . . , θn−1) (4.4)

The right-hand side in 4.4 is the same as any sequences of n elements from H . For ex-

ample, given any permutation σ of {1, 2, . . . , n}, it is not difficult to show,

P (θ1, . . . , θn) = P (θσ(1), . . . , θσ(n−1)). (4.5)

The joint density of a sequence of draws are equal to the joint density of any permuta-

tion of the sequence. This can be extended to the infinite sequence of DP. De Finetti’s

theorem states that for any infinitely exchangeable sequence, θ1, θ2, . . . , there is a random

distribution such that the sequence of independently identical draws are from it,

P (θ1, . . . , θn) =

∫ n∏
i=1

G(θi)dP (G) (4.6)

In this setting, G ∼ DP (α,H) is the mixing De Finetti’s measure.

Posterior distribution

Here we explore the posterior distribution of a DP. Let G ∼ DP (α,H). Since G is a

random distribution, we can draw samples from G. Let θ1, θ2, · · · , θn be a random sample
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from G. We are interested in the posterior distribution of G given θi. To examine it, let

A1, . . . , Ar be a finite partition of parameter space Ω. Let nk denote the number of θs in

Ak, nk = #{i : θi ∈ Ak}. G ∼ DP (α,H), by definition of DP,

(G(A1), G(A2), · · · , G(Ar) | θ1, θ2, · · · , θn)

∼ Dir(αH(A1) + n1, αH(A2) + n2, · · · , αH(Ar) + nr)

Since it is true for any partition of Ω, the posterior of distribution of G must be a DP too.

Now we can figure out the updated parameters for the posterior. The new concentration

parameter is equal to αH(A1) + n1 + · · · + αH(Ar) + nr = α + n. The new base

distribution is a mixture of the empirical cumulative distribution function of θ’s and n,

written as αH+
∑n
i=1 δθi

α+n
, where δ· is the point mass at θi. The posterior can be rewritten as

G|θ1, θ2, · · · , θn ∼ DP (α + n,
α

α + n
H +

n

α + n

∑n
i=1 δθi
n

) (4.7)

The posterior base distribution is a weighted average between the prior base distribution

H and the empirical distribution
∑n

i=1 δθi . The weight associated to n has weight pro-

portional to α and the empirical distribution has weight proportional to the number of

observations n. From this representation, it follows that α can be interpreted as a strength

parameter referring the strength of the prior.

Predictive Distribution

Now we explore the predictive distribution of draws from a DP. Since G|θ1, · · · , θn is a

DP, we have

p(θn+1 ∈ A|θ1, · · · , θn) = E(G(A)|θ1, · · · , θn)

=
α

α + n
H(A) +

1

α + n

n∑
i=1

δθi ,
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for any measurable set A ∈ Ω, where the last step is the posterior base distribution of G

given the first n observations. Marginalizing out G, we obtain the predictive distribution,

θn+1|θ1, · · · , θn ∼
α

α + n
H +

1

α + n

n∑
i=1

δθi (4.8)

Given the posterior base measure is also the predictive distribution of θn+1. When α →

0, the prior becomes non-informative, that is the predictive distribution is given by the

empirical distribution. When the number of observations is large, n >> α, the predictive

distribution is dominated by the base distribution which is also close to the underlying

distribution. This indicates the property of the DP: the posterior of DP converges to the

true underlying distribution. We can also see that DP is discrete with sum of probability

one. Equation 4.8 helps us to understand that each draw from DP is a distribution. The

first draw θ1 can be defined as a point mass at θi. The distribution of the second draw is

θ2|θ1 ∼ α
α+1

H + 1
α+1

θ1 and so on. The DP can be succinctly described as a distribution

over distributions.

The predictive distribution can often be characterized as a species sampling(SS) alloc-

ation rule. More formally, a SS sequence is a sequence of random variables θ1, θ2, · · · ,

characterized by the predictive probability function,

P{θn+1 ∈ ·|θ1, · · · , θn} =
n∑
j=1

qn,jδθj(·) + qn,n+1H (4.9)

Here qn,j = 1
α+n

and qn,n+1 = α
α+n

are non-negative values with
∑n+1

j=1 qn,j = 1. H is a

non-atomic probability measure (Pitman, 1996b). Considering the unique values of θj , the

equation 4.9 can be rewritten as

P{θn+1 ∈ ·|θ1, · · · , θn} =
Kn∑
j=1

q?j δθ?j (·) + q?Kn+1H, (4.10)

whereKn is the number of unique values, say (θ?1, · · · , θ?Kn) are the unique elements in the

sample of (θ1, · · · , θn). q?j s are the normalizing constants. Here q?j only depends on the
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frequency of θj occurring. From 4.10, we know that the value θ?k will be drawn θn+1 with

probability proportion to nk, the number of times the value has already been observed. In

the first n draws, the larger nk is, the higher the probability that the new draw θn+1 equals

to θ?k. This is a rich-gets-richer phenomenon, where large clusters (a set of θi with same θ?k)

grows larger fast. It also shows the clustering property of the DP by looking at partitions

induced by the clustering. The unique values of θ1, . . . , θn induce a partitioning of the set

[n] = {1, . . . , n} into clusters such that in each cluster, θi’s take on the same values θ?k.

Since θ1, . . . , θn are random, this induces a random partition of [n]. Larger nk and lower

value of α imply a tighter clustering.

The Chinese Restaurant Process (CRP) is another popular metaphor used to interpret

DP. Imagine a Chinese restaurant with an infinite number of tables, and a sequence of

customers are waiting for entering. The first customer enters and sits at the first table. The

second customer enters and sits either with the first customer at first table with prob-

ability 1
1+α

, or sits at a new table with probability α
1+α

. In the subsequent steps, nth

customer comes, he/she can sit at occupied table K with the probability k
n−1+α

, where

k represents the number of previous customers already sitting at table K, or at a new

table with probability α
n−1+α

. Identifying customers with integers 1, 2, . . . and tables as

clusters, n customers define a partition of [n]. CRP defines a distribution over partitions

of [k],k = 1, 2, · · · , K. The value of k is the number of customers. The distribution over

tables is a DP.

Stick-breaking Construction

Another representation of the Dirichlet process is provided by the stick-breaking construc-

tion (Sethuraman, 1994, Pitman, 1996). This process can be used to provide a constructive

algorithm for generating a DP. The distribution of DP is given by the density of a weighted
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sum of point masses.

G =
K∑
k=1

πkδθ?k

with πk = βk

k−1∏
i=1

(1− βi); βk ∼ Beta(1, α); θ?k ∼ H(4.11)

The construction of π can be understood as starting with a stick of length 1. Break it at

β1, assigning π1 to be the length of stick we just broke off, assign πi on a draw θi from H .

Break the remaining portion of the stick at β2 with the breaking off length π2, assign π2 as

a corresponding weight for the second draw θ2 from H . Recursively break the remaining

portion to obtain π3 and so forth. The stick-breaking distribution over π is written as

π ∼ GEM(α), where the letters stand for Griffiths, Engen and McCloskey.

This representation is the most versatile definition of the Dirichlet process. It has been

explored to generate efficient alternative MCMC algorithms. It is also the basis of the

definition of the generalizations that allow dependence across a collection of distributions,

i.e. dependent Dirichlet process (MacEachern, 2000, Griffin and Steel (2006)).

4.2 Dirichlet Process Mixture model

Dirichlet process mixture models go back to Antoniak (1974) and Ferguson (1973). They

have been developed by Escobar and West (1995), MacEachern and Muller (1998). DPM

is one of the most classic models in nonparametric Bayesian. It defines a mixture model

with countably infinitely components and can be used in density estimation or clustering

while the number of components is a priori unknown. DPM have become increasingly

popular for modeling when traditional parametric models impose unreasonably constraints

on the distribution. Examples of applications includes empirical Bayes problems (Escobar,

1994), nonparametric regression (Muller, Erkanli, and West (1996)), density estimation
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(Escobar and West 1995), hierarchical modeling (MacEachern 1994, West, Muller, and

Escobar 1994).

The core of the DPM model can basically be thought of as a simple Bayesian model.

Data y1, · · · , yn are independently draws from unknown distribution F . The prior is θi ∼

G. Here we add uncertainty about the prior distribution G, instead of using a distribution

from the exponential family.

yi|θi ∼ F (θi), θi|G ∼ G, G ∼ DP (α,H) (4.12)

where G is a random distribution from DP with base measure H and concentration para-

meter α, F (·) is an unknown distribution with parameter θi. The general applications of

DPM typically allow the introduction of subject-specific covariates. And the more com-

plex models also introduce distributions on the hyper-parameters on F , α and H .

Before we move to estimate the DPM and discuss MCMC sampling algorithms, we

need to briefly prove that an equivalent limiting process of a Dirichlet process mixture

model. This limiting process can improve the sampling efficiency. We start with a finite

mixture model with k components. The likelihood function can be written as

p(y1, · · · , yn) =
k∏
j=1

πj

n∏
i∈j

p(yi|θj) (4.13)

where πj is the mixing proportion for component j with
∑
πj = 1. p(·|θj) is the probab-

ility density function for component j with parameter θj . Here we first consider the model

for a fixed k components, then explore more properties as k →∞.

The mixing proportions πj , are given a symmetric Dirichlet prior with parameter

α/k, · · · , α/k:

p(π1, · · · , πk|α) ∼ D(α/k, · · · , α/k) =
Γ(α)

Γ(α/k)k

k∏
j=1

π
α/k−1
j (4.14)
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Here we introduce an indicator variable ci to “label” which component generates xi. cis

takes on values 1, · · · , k. The joint distribution of the cis is multinomial with parameter

π = π1, · · · , πk expressed,

p(c1, · · · , cn|π) ∝
k∏
j=1

π
nj
j , nj =

n∑
i=1

δci(j) (4.15)

Integrating out the mixing proportions π, the joint density of c1, · · · , cn,

p(c1, · · · , ck) =

∫
p(c1, · · · , ck|π1, · · · , πk)dπ1, · · · , dπk

=
Γ(α)

Γ(α/k)k

∫ k∏
j=1

π
nj+α/k−1
j dπj

=
Γ(α)

Γ(n+ α)

k∏
j=1

Γ(nj + α/k)

Γ(α/k)
(4.16)

In order to use Gibbs sampling to update ci in MCMC simulation, we need investigate the

conditional prior ci given the rest of labels, denoted as ci|c−i. Assuming ci = c,

p(ci = c|c−i) = p(c1, · · · , ci = c, · · · , cn)/p(c1, · · · , ci−1, ci+1, · · · , cn)

=

∫
pc1 , · · · , pci=c, · · · , pcn

Γ(α)
Γ(α/k)−k

p
(α/k)−1
1 , · · · , p(α/k)−1

k dp∫
pc1 , · · · , pci−1

, pci+1
, · · · , pcn

Γ(α)
Γ(α/k)−k

p
(α/k)−1
1 , · · · , p(α/k)−1

k dp

=
n−i,j

n− 1 + α
+

α/k

n− 1 + α
(4.17)

In summary, the above finite mixture model can be expressed hierarchically as follows,

yi|ci, φci ∼ f(yi|φci) (4.18)

with

c|π1:k ∼ Dis(π1, . . . , πk); φci ∼ H(θi); π1, . . . , πk ∼ Dir(α/k, . . . , α/k)

(4.19)
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where Dis denotes the discrete distribution. Dir represents the Dirichlet process. When

k →∞, the conditional probabilities defining the prior for the ci reach the limits,

p(ci = c|c−i) →
n−i,c

n− 1 + α
(4.20)

If ci 6= cj for all j 6= i,

p(ci|c−i) →
n−i,c

n− 1 + α
(4.21)

This limiting process is equivalent to Dirichlet process mixture model if we consider θi =

φci .

4.3 Inference samplings in DPM model

Use of DPM models has become computationally feasible with the development of

Markov chain methods for sampling from the posterior distribution. Methods based on

Gibbs sampling can be easily to implement in the model based on conjugate prior. How-

ever, in non-conjugate case, it is difficult to carry out because of the difficulty of solving

numerical integral. West, Muller and Escobar (1994) used a Monte Carlo approximation to

the integral. MacEchern and Muller (1998) developed an exact method for non-conjugate

priors. They used a mapping from a set of auxiliary parameters to the set of parameters

currently in use. Neal (2000) presented a comprehensive survey of MCMC sampling in DP

mixture models for both conjugate and non-conjugate priors. In our real application, the

prior is not conjugate but we developed a modern sampling algorithm that is suitable for

our special population PK/PD data. Here we first introduce a simple sampling algorithm

for a conjugate prior, and then move to a complex algorithm for non-conjugate case.
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Since a draw from a DP is discrete random distribution. Given a sequence of random

draws θ1, · · · , θn, the prior distribution of the θi can be expressed as

θi|θ−i ∼
1

n− 1 + α

∑
j 6=i

δθj +
α

n− 1 + α
H (4.22)

where δθ is the point mass at θj .

Given the likelihood and prior, the posterior distribution θi|θ−i, the posterior distribu-

tion θi|θ−i, yi is,

θi|θ−i, yi ∼
1

i− 1 + α

∑
j 6=i

p(yi|θj)δθj +
α

i− 1 + α
p(yi|θi)H(θ)

=
1

i− 1 + α

∑
j 6=i

p(yi|θj)δθj +
α

i− 1 + α
p(θ|yi, H)

∫
p(yi|θi)dH(θ)(4.23)

where p(θi|yi, H) is the posterior distribution of θ based on an observation yi and H . If

H is conjugate prior for the likelihood F , we can use Gibbs sampling to repeatedly draw

the new values from 4.23 and then make inference about θi. Because it is not difficult

to compute the integral
∫
p(yi|θi)dH(θ) and sampling from p(θi|yi, H). Escobar (1994)

and Escobar and West (1995) presented a simple algorithm based on equation 4.23. The

sampling is not efficient because of two reasons. First, when we update θi, it goes through

the low-probability states before reaching to the highest probability state. It becomes

slower if we have more states in practice. Second, we can only renew θi no more once at

each iteration.

Bush and MacEachern (1996) and West, Muller and Escobar (1994) improved this

algorithm by borrowing the strength of the limiting process. The basic idea is to assign

a cluster label ci for yi, update ci using the required probability for i = 1, · · · , n. Some

observations are assigned into several groups. In each group, we may have one or more

observations and then we can sample θci=c given yi ∈ c. This algorithm allows us to

change θi at least twice and it may pass through the inter-mediate state fast. Here we
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presents more details about the implementation. The permanent chain includes {ci, θi}.

We take updating θi as an example. To keep the simplicity of the notation, let c−i denote

the all cjs , j 6= i, similarly for θ−i too. k− denotes the number of distinct values of θ−i or

c−i. If ci = cj for some j 6= is, the required conditional probability is,

p(ci = c|c−i, θi, yi) ∝
n−i,c

n− 1 + α
p(yi|θc) (4.24)

where n−i,c denotes the number of c−i = c. If ci 6= cj for all cjs, j 6= i, the conditional

probability for ci is

p(ci 6= cj|ci, θ−i) ∝
α

n− 1 + α

∫
p(yi, θ)dH(θ) (4.25)

Using the equation 4.24 and 4.25, we can update ci for i = 1, · · · , n. Suppose that we

haveK groups in total after updating the cluster label. In each group, we may have several

observations. Therefore, we can sample θk using Metropolis-Hastings algorithm.

If H is a non-conjugate prior on F , it is difficult to compute the integral, especially

in high-dimensional cases. In order to avoid the integral computation and create a chain

mixing fast, we implement an adaptive MCMC algorithm, Gibbs sampling with auxiliary

parameters, in our real application.

The basic idea of the modern MCMC algorithm is that we are interested in sampling θi

from p(θi|θ−i, yi). However, we can not sample it directly because of the integral compu-

tation
∫
p(yi, θ)dH(θ). Instead we introduce several auxiliary parameters from H , draw

θi from the conditional distribution p(θi|θ−i, θauxiliary, yi) and discard θauxiliary during the

Markov chain simulation. We know that the p(θi|θ−i, θauxiliary, yi) is the marginal distribu-

tion p(θi, θauxiliary). It is easy to see that this update for θi will leave θi|θ−i invariant. In the

end, keep θi and discard θauxiliarys. The sampling process can be expressed as, first, draw

a new value of θauxiliary from H , given p(θi|θ−i) from the conditional distribution; second,

update θi given the new value of θauxiliary from the first step; third, discard θauxiliary and

keep θi only. Note that the values of θauxiliary are introduced temporarily and they are not
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associated with any observations. This algorithm is called Gibbs sampling with auxiliary

components (Neal et al. (2000)).

Next we show the general steps to implement the algorithm. The permanent state of the

Markov chain has ci and θi. We take sample ci and θi as an example. First we introduce a

number of temporary auxiliary components, denoted θk−+1, · · · , θk−+m. Here k− denotes

the number of distinct value among cj or θj, j 6= i.

The first step is to update ci based on the conditional distribution ci given all other para-

meters associated with the observations and the auxiliary parameters. If ci = cj = c for

some js, which means ci ∈ {1, 2, · · · , k−}, independently draw m auxiliary components

from H , the conditional distribution of ci is,

ci|c−i, θ1:k− , θk−+1, · · · , θk−+m, yi ∝
n−i,c

n− 1 + α
p(yi, θc) (4.26)

If ci 6= cj for all j 6= i, assign the class label ci = k−+ 1, and let θk−+1 = θi. We draw the

rest of m− 1 auxiliary components from H . The corresponding distribution is,

p(ci = k− + 1|c−i, θ1:k− , θk−+1, · · · , θk−+m, yi) ∝
α/m

n− 1 + α
p(yi, θc) (4.27)

where c ∈ (k−+1, · · · , k−+m). The equation 4.27 shows that θi has an equal probability

to be one of auxiliary parameters.

After updating ci for i = 1, · · · , n, some observations share the same class label which

indicates that they have the same parameter values in a group. We use θ?1, · · · , θ?k denote

the distinct values of (θ1, · · · , θn). Sampling θ?c given all the observations yi, i ∈ c is

straightforward. The target distribution equals the multiplication of the likelihood function

and prior,

p(θ?k|yi∈k, ci = k) =
∏
i∈k

p(yi|θ?k)π(θ) (4.28)

To simulate from the target distribution p(θk|·), we start with a starting values θ(0). At
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iteration T , we draw a proposal θ? from a known proposal distribution q(θ). We accept

θ(T ) =

θ
?, with probability α

θT−1, with probability (1− α)

with α defined:

α = min
{ p(θ?|y)

p(θ(T−1)|y)

q(θ(T−1)|θ?)
q(θ?|θ(T−1))

, 1
}

(4.29)

To implement the M-H algorithm, it is important to choose a proposal distribution such

that the chain “mixes well”, i.e. adequately explores the posterior distribution. The popular

choice is the multivariate normal distribution, Bennett Racine-Poon (1996), Carlin and

Louis (1996), and Huang (2004). However, an important issue regarding the multivariate

normal proposal distribution is the dispersion of the proposal density. If the variance of the

proposed density is too large, the large proportion of proposed candidates will be rejected,

and the Markov chain will waste many repeats and result in inefficiency of the algorithm.

On the other hand, if the variance of the proposed density is too small, the chain will

have a high acceptance rate but will move only in a small parameter space, leading to

inefficiency too. Tuning of associated parameters such as proposal variances is crucial to

achieve efficient mixing, but can also be very difficult.

In our MCMC implementation, we consider an automated tuning of MCMC algorithm

Harrio et al. (2001). Adaptive MCMC algorithms can automatically “learn” better para-

meter values of Markov chain Monte Carlo algorithms while they run because the proposal

variance is the variance of the empirical estimates. We begin with a d-dimensional target

distribution π(·). We perform a Metropolis algorithm with a proposal distribution given at

iteration n by Qn(x, ) = N(θ, (0.1)2Id/d) for n ≤ 2d, while for n > 2d,

Qn(θ, ·) = (1− β)N(θ, 2.382Σn/d) + βN(θ, 0.12Id/d), (4.30)

where Σn is the current empirical estimate of the covariance structure of the target distri-

bution based on the run so far, and where β is a small positive constant i.e. β = 0.05, d is
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the dimension of θ, and Σ0 is a fixed non-singular matrix, i.e. 0.12Id
d

. It is also necessary to

use some alternative fixed proposal distribution for the first few iterations when the empir-

ical covariance Σn is not yet well-defined. Roberts and Rosenthal (2001) proved that the

proposal N(θ, 2.382Σn/d) is optimal in a particular high-dimensional context. They also

demonstrate that this adaptive Metropolis algorithm will indeed “learn” the target covari-

ance matrix and approach an optimal algorithm, even in very high dimension. It may takes

many iterations before the adaption significantly improve the algorithm, in the end it will

converge enormously faster than a non-adapted random walk Metropolis algorithm. We

refer the desired readers to see more details and proof in Harrio et al. (2001) and Roberts

and Rosenthal’s multiple publications about adaptive Metropolis, Yang (2007), Saksman

and Vihola (2008), Bai et al. (2008), Atchade and Fort (2008), Craiu et al. 2008 Bai et al.

(2009).

We end this chapter by introducing a sampling step we implemented in our application.

After updating ci for i = 1, · · · , n, assuming that we haveK distinct estimates θ1, · · · , θK ,

we consider that it is a random sample from a population distribution N(µ,Σ). To keep

the notions clearly, we present the whole structure as follows,

θ1, · · · , θK|µ,Σ ∼ N(µ,Σ)

µ ∼ N(µ0,Σ0)

Σ ∼ IW (v0,Σ
−1
iw ) (4.31)

where IW represent the inverse-Wishart distribution with mean Σ−1
iw

v0−d−1
. The values for

µ0,Σ0, v0 and Σ−1
iw are known.

The posterior distribution of µ|θ1, · · · , θk,Σ is expressed as follows by multiplying the

joint likelihood function θ1, · · · , θK |µ,Σ, and prior,

p(µ|θ1, · · · , θK,Σ) ∝ e{−
1
2
µTΣ−1

0 µ+µTΣ−1
0 µ0}e{−

1
2
µTKΣ−1µ+µTKΣ−1θ̄}

= e{−
1
2
µTAnµ+µT bn}(4.32)
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Equation 4.32 implies that the conditional distribution of µ must be a multivariate normal

distribution with covariance A−1
n = (Σ−1

0 + KΣ−1)−1 and mean A−1
n bn = (Σ−1

0 +

KΣ−1)−1(Σ−1
0 µ0 +KΣ−1θ̄).

Similarly, given the prior for Σ, the full conditional distribution of Σ given θ1, · · · ,θK
and µ can be written as, The conditional distribution of Σ,

p(Σ|θ1, · · · , θK, µ) ∝ |Σ|−(v+p+1)/2e−tr(v0S0Σ−1)/2 × |Σ|−k/2e−tr(SθΣ−1)/2

= |Σ|−(v+k+p+1)/2e−tr(S0+Sθ)Σ−1/2(4.33)

Thus we have (Σ|·) ∼ W−1(v0 + k, [S0 +Sθ]
−1) with Sθ =

∑k
i=1(θi−µ)(θi−µ)T . The

result is intuitive. We can think of v0 + k as the “posterior sample size”, the sum of the

prior sample size v0 and the sample size of the data. Similarly, v0S0 + Sθ can be thought

of as the “prior” residual sum of squares plus the residual sum of squares from the data.

We can use these full conditional distributions to construct a Gibbs sampler which

provides a MCMC approximation to the joint posterior distribution p(µ,Σ|θ1, . . . , θk).

Given a starting value Σ(0) , the Gibbs sampler generates {θs+1,Σs+1} from {θs,Σs},

first from the equation 4.32 for µs+1 and then for Σs+1 from the equation 4.33.

Repeatedly sampling to obtain {(µ(0),Σ(0)), · · · , (µ(T ),Σ(T ))}. We are interested in

the posterior means denoted as θ̄post = 1
T

∑T
t=1 θ

(t) and Σ̄post = 1
T

∑T
t=1 Σ(t). In our

application, we do update µ and Σ given θ1, · · · , θK at each iteration for both PK and PD.
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Chapter 5

Nonparametric Bayes model for a

population PK/PD model

In this chapter, we will present our proposed approach for a population semi-mechanistic

PK-PD model. In section 5.1, we specify our nonparametric Bayes model. Section 5.2

discusses Euler’s approximation. In section 5.3, we will discuss the prediction inference.

In section 5.4, we will present a simulation data and a real data example.

5.1 Nonparameteric Bayesian Hierarchical Model

We consider a simple version of the model here. For the PK model, we use a two-

compartmental model to describe PK response measurement, i.e. unbound plasma con-

centration. We assume that the measurement variation represents inter-subject variability

and an error term. Let yPKij denote the observed jth measurement of the response in the

PK model for subject i at tij for i = 1, · · · , n, j = 1, · · · , ni. The value of n is the number
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of subjects. The PK model can be described as,

yPKij |θPKi = fPKi (θPKi , tij) + εij (5.1)

where fi(θPKi , tij) is a function for predicting the jth response in subject i, θPKi is a vector

of PK parameters. The function f is related to a system of ordinary differential equations,

which “represents” what happens to the drug in the body, see Figure 2.1(c). Mathematic-

ally, we use a differential equation to describes the rate of dose change in each compart-

ment, written as,

dxc(t)

dt
= −(

CL

V c
+
CLd

V c
)xc(t) +

CLd

V p
xp(t) + r(t)

dxp(t)

dt
=
CL

V c
xc(t)−

CLd

V p
xp(t)

C(t) =
xc(t)

V c

where xc and xp denote the amount of drug in the central and peripheral compartment

separately, r(t) is the infusion rate which is different across patients. CL is the system

clearance, V c and V p are volumes of the central and peripheral compartment respectively,

CLd is the inter-compartment clearance. The PK parameter is (CLi, V
c
i , V

p
i , CL

d
i ) for

subject i. C(t) is the time course of unbound plasma concentration.

For PD part, the observed response is the absolute neutrophil count (ANC) for the can-

cer patients. Neutrophils are key components in the system of defense against infection.

An absence or scarcity of neutrophils (a condition called neutropenia) makes a person vul-

nerable to infection. After chemotherapy, radiation, the ANC is usually depressed and then

slowly rises, reflecting the fact that the bone marrow is recovering and new blood cells are

beginning to grow and mature. We use a physiology-based PD model to characterize ANC.

The new cells generated in the bone marrow take time to be present in the circulation sys-

tem. We use a five compartmental model to represent the whole process. We prefer this

structure model because of three followed reasons. First, it can separate the system-related

parameters which are common across patients, and a drug-related parameter. Second, it
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includes three transits compartments which allow us to predict the time delay between the

drug effect site and observing site. The third reason is that we can use the full time course

of drug concentrations as a special covariate in the PD model. The whole structure consists

five compartments, a stem or progenitor compartment, denoted as Prol, three maturation

compartments, denoted as Trasit, and the circulation compartment Circ, which represent

the observed circulating cells, see Figure 6.1.

The first differential equation in 5.2 describes the rate of the number of stem/progenitor

cells change in the proliferation compartment. The rate of cell change is affected by the dif-

ference between the proliferation rate and elimination rate. If the generation rate is greater

than the elimination rate, the proliferation rate will increase, otherwise reverse. Moreover,

the proliferation and elimination rate can be influenced by the number cells in the prolif-

eration compartment. More cells in bone marrow, the higher generation rate is. However,

these stem and progenitor cells are sensitive to the drug. The drug is assumed to induce the

cell division and generation and the magnitude of drug effect is highly dependent by the

drug concentration, E = slope×Conc or Emax model, Emax×Conc/(EC50 ∗Conc).

Additionally, a rebound cells from the circulation compartment can affect the proliferation

rate called a feedback effect (Circ0/Circ)
γ . The first differential equation is nonlinear

with the rebound parameter, γ. The committed cell in the bone marrow goes through three

transit compartments, and then can be observed in Circ compartment. If more cells go

into a compartment and less go out, the rate of amount of cell will increase and otherwise

decrease. The mechanism is the same for the last four compartments. Moreover, we also

assume that the only cell loss is the cell “go” to next compartment, thus the proliferation

rate, transit rate and the circulation rate should be equal at the steady state, i.e. t = 0.

A system of nonlinear differential equations are used to describe the whole mechan-

ism process. The corresponding parameters include the baseline value of ANC (Circ0),

mean transit time (MTT), a drug related parameter (slope) and a feedback parameter (γ).
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MTT represents the average time for a new generated cell to pass through the transit com-

partments before entering the circulation compartment. MTT has an inverse association

with the transit rate, ktr, defined as MTT = (n + 1)/ktr where n is the number of transit

compartments. Slope parameter is a fixed constant connecting drug concentration in the

central compartment and drug effect. The parameter γ describes the strength of rebound

cells from the circulation compartment.

dProl

dt
= kprolProl(1− Edrug)(

Circ0

Circ
)γ − ktrProl

dTransit1
dt

= ktrProl − ktrTransit1
dTransit2

dt
= ktrTransit1 − ktrTransit2

dTransit3
dt

= ktrTransit2 − ktrTransit3
dCirc

dt
= ktrTransit3 − kcircCirc (5.2)

where Prol, T ransit1, T ransit2, T ransit3 and Circ denote the amount of neutrophil

count in the separate compartment. kprol, ktr and kcirc denote the proliferation rate, transit

rate and circulation rate. The drug effect E is expressed by Slope× Conc in our applica-

tion. At steady state, dProl
dt

= dCirc
dt

= 0, therefore, kprol = ktr = kcirc. Thus, the structure

model parameters are Circ0i,MTTi, γi, andSlopei denoted by θPDi .

We assume that the variability of observed ANC reflects the inter-subject variation and

the measurement error expressed as,

yPDij′ |θPDi = fPDi (θPDi , θPKi , tij′) + ηij (5.3)

where f is a function of predicting ANC over time for subject i at time tij . The noise

errors are assumed to follow the normal distribution independently respectively.

εij ∼ N(0, σ2
1) ηij′ ∼ N(0, σ2

2) (5.4)
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Given PK and PD model, the likelihood function is written as

p(yPDi , yPKi |·) =

ni∏
j=1

p(yPDij |θPDi , θPKi , tij′ , σ
2
2)

ni∏
j=1

p(yPKij |θPKi , tij, σ
2
1) (5.5)

When we explored the data, we noticed that the shape of PD profiles are different and some

shared the similar shapes in the population. The different shapes of PD curves may suggest

investigate the heterogeneity of the population. Therefore, we proposed a nonparametric

Bayes prior which induces a clustering property. See the clustering property in chapter

4.1. The goal of using a DP is to link the individualized PK and PD model and cluster the

patients into groups. It helps us understand how drug works in the body.

(θPDi , θPKi )|G ∼ G

G ∼ DP (α,H)

H ≡ N(µ,Σ) (5.6)

where α is the concentration parameter and H is the base distribution of DP. The final

stage includes additional hyper-parameters for σ2, µ and Σ, respectively.

σ2 ∼ IG(a0, b0); µ ∼ N(µ0,Σ0); Σ ∼ IW (v0,Σiw) (5.7)

where IG denotes an inverse-gamma with mean b0/(a0−1), IW denotes an inverse-Wishart

distribution with mean Σiw/(v0 − p− 1), where p is number of parameters. The values of

a0, b0, v0,Σiw, µ0 and Σ0 are fixed constants.

5.2 Euler Approximation

Using the differential equations is a common approach to describe a dynamic process in

practice. It is also widely used in PK and PD models as it provides a time-varying rate

of the response rather than the static average value. If the analytic solution of ODEs are
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available, we can obtain the solution from the existing packages given a starting value

of parameters. In practice, the analytical solution is often not available. For our case,

it does not have an exact solution. Thus we use a numerical default function, ode in R.

However, the simulation is pretty slow and the results are not stable either. We decided

to use Euler’s method to linearize the differential equations. Euler’s approximation make

the MCMC simulation 10 times faster than using the ODE solver in deSolve package. In

addition, the results are very stable too. In the end, we implement Euler’s method in the

PD model. Here we show more details of the implementation.

In PD model 5.3, the values of fPDi (·, tij′) require the solution of a system of ODEs

given by 5.2. To keep the notations simple, we use the following equation to redefine the

differential equations.

dv

dt
= g(t,v(t,θi)) for t 6= t0 (5.8)

with v(t0,θ) = v0(θ). The vector v(·) = (v1(·), · · · , vq(·))T represents the dynamic

equations of q items, i.e. Prol, T ransit1, T ransit2, T ransit3, Circ in PD ODEs. v0(θ)

is an initial condition. g(·) = (g1(·), · · · , gq(·))T is the known function with respect to

the parameters. The mean function fPDi (·) is directly related to v, i.e. f(·) = H(v(·), t)

where H is a known function.

We discretize the time points by an amount h, “step size”, which is the distance

between two consecutive time points. The observed time points may be unevenly dis-

tributed. We consider a discretization by N fixed time points t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn

such that tk+1− tk = h for k = 1, 2, · · · , (N − 1). We choose the maximal value for these

time points to be larger than tn so that we can obtain the approximately fitted response at

tn. The solution to the ODEs can be expressed as

v(t,θ) =

∫ t

t0

g(s,v(s,θ))ds+ v0(θ) (5.9)
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which approximately equals to

v(t+ h,θ)− v(t,θ) =

∫ t+h

t

g(s,v(s,θ))ds ≈ hg(t,v(t,θ)) (5.10)

as h→ 0. Let ṽk = ṽ(tk,θ) and µ̃k = µ̃(tk,θ) = H(ṽk) for k = 1, 2, · · · ,. We can write

ṽ(tk+1,θ) = ṽ(tk,θ) + (tk+1 − tk)g(tk,v(tk,θ))

µ̃k = H(ṽk) (5.11)

with initial condition v0(θ). If tk ≤ t < tk+1, the value of approximate mean term at t is

given

µ̃(t,θ) = µ̃(tk,θ) +
t− tk

tk+1 − tk
(µ̃(tk+1,θ)− µ̃(tk,θ)) (5.12)

Thus fPDi (·, tij) is linearized by µ̃(t,θ) function. This method is known as “naive” Euler’s

method, µ̃h(t,θ) = µ̃(t,θ) + o(h). In our simulation study, we compare the Euler’s

approach with a regular integrator. The results show that Euler’s approximation improve

the simulation speed. However, we need to determine the optimal size of step size, h. In

addition, the optimal value of h is different across different patients. If h is too small, the

approximation process stops at a certain time point before reaching tN . In this case, we can

not find the correspondingly fitted response. It is not possible to compute the likelihood

function. If h is too large, we may have negative values which are meaningless in practice.

Therefore, we need to choose h carefully. See more alternative linearization approaches

such as “improved” Euler’s method or Runge-Kutta method in Ghosh et al. (2011).

We also addressed another issue in our MCMC simulation. In high-dimensional case,

it is difficult to optimize the tuning parameter to achieve efficient mixing. On one hand,

we hope the chain is able to explore more regions. On the other hand, we also hope

the proposed values are solvable in differential equations and are meaningful in practice.

Therefore we implement the adaptive Metropolis which can automatically “learn” better

parameter values of while the chain proceeds. We perform adaptive MCMC in both PK and

63



Chapter 5. Nonparametric Bayes model for a population PK/PD model

PD model. The proposal distribution is given at iteration n by Qn(θ, ·) = N(θ, 0.12Id/d

for n ≤ 2d; while for n > 2d,

Qn(θ, ·) = (1− β)N(θ,
2.382

d
Σn) + βN(θ,Σ0) (5.13)

where Σn is the covariance of empirical estimates θ1, · · · , θn, d is the dimension of para-

meter space, β is a small number between 0 and 1. Σ0 is a fixed non-singular matrix which

keeps the covariance matrix from collapsing to 0, i.e. Σ0 = 0.12Id/d. The proposal distri-

bution, N(θ, 2.382Σn/d), is optimal in a high-dimension situation, Robert et al. (1997) and

Roberts and Rosenthal (2001). In our work, we use a truncated sampling because some

candidates, such as negative or extreme values, are ineligible in PK-PD modeling setting.

5.3 Predictive inference

There are several beneficial properties using the nonparametric bayesian model. We are

able to tie the individual PK and PD model together and cluster the patients into several

groups. We can also make full use of the full time course of concentration information.

After performing the MCMC simulation, we are able to make inference of the clustering

distribution and estimate the parameters by borrowing the strength from other patients.

Additionally, we can do the prediction inference which is our greatest interest. We can

predict the new patients’ PD profile on the basis of their PK profile which is easier to

obtain in practice. We use Polya Urn scheme, see more details in chapter 4, Dirichlet pro-

cess, to relate the new observation to the θ?1, θ
?
2, · · · at each iteration. Then the predictive

distribution of yn+1 is given by

p(yPDn+1|yPD1:n , y
PK
1:n ) =

∫ ∫
p(yPDn+1|θPDn+1, θ

PK
n+1)

p(θPDn+1, θ
PK
n+1|θPD1:n , θ

PK
1:n , y

PK
n+1, y

PD
1:n , y

PK
1:n )

p(θPD1:n , θ
PK
1:n |yPD1:n , y

PK
1:n )dθPD1:n dθ

PK
1:n (5.14)
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The middle term in equation 5.14 can be extended to

p(θPDn+1, θ
PK
n+1|·) ∼

nj
n+ α

k∑
j=1

p(yPKn+1|θPKj ) +
α

n+ α
p(yPKj |θPKH ) (5.15)

where k is the unique number of components at each iteration, nj denotes the size of jth

cluster, θPKH is a random draw from the base measureH . See more results in the simulation

and real data studies.

5.4 Implementation of the MCMC Scheme to the PK/PD

model

In order to implement the sampling scheme clearly, we start out by simplifying the nota-

tions. Let θ? = c(θ?1, · · · , θ?k) denote the set of distinct θis and k, (k ≤ n) is the number

of distinct elements. Let (c1, · · · , cn) denote the vector of configuration indicators, and

nj be the number of ci = j. We implement Gibbs sampling by iterative sampling ci from

the full conditionals. The subscript “−i” indicates without the ith element of the vector.

The superscript “−” refers to a summary with the appropriate observation or parameter

removed. For example, k− refers to the number of clusters formed by θ−i. n−j represents

the number of elements in cluster j when observation i is removed. All these notations

work for both PK and PD.

The whole estimation sampling of mixture of DP model includes 4 steps. The first

step is the initialization. The second step is implement Gibbs sampling with auxiliary

components to sample the class configuration ci for i = 1, . . . , n. In third step, we use an

adaptive Metropolis algorithm to estimate θ?j for cluster j. The last step is to specify the

hyper-parameters.
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Step 1: The initial state

The permanent chain consists of the class configuration ci, θ
pk
i and θpdi . The initial values

for the class label are 1 to n. Solving differential equations requires a “good” starting

value to produce the reliable results. Thus, we set the initial values for θPKi and θPDi are

the maximum likelihood estimates for PK and PD respectively. The parameters in the

mixture model are initialized as follows. The base measure of DP, H , is a multivariate

normal with mean parameter, the mean of MLEs, and covariance matrix, the covariance of

MLEs. The precision parameter α is 1. The number of temporary auxiliary components

is 3. The hyper-parameters are set to: µpk = µpd = 0, ΣPK
0 = ΣPD

0 = Id, and inverse-

Wishart with mean Σiw
v0−p−1

, v0 = 6 (v0 > p + 1), Σiw = Id. a0 = 3 and b = 0.02 in the

inverse gamma distribution.

Step 2: Sample [ci|c−i, θ1:k− , θk−+1, · · · , θk−+m]

Repeatedly sample ci for i = 1, · · · , n from I to IV :

• I . If ci 6= cj for all j 6= i, then ci = k− + 1 and θpkk−+1 = θpki , θpdk−+1 = θpdi . At the

same time, draw the other two auxiliary parameters, θpkk−+2 and θpkk−+3 independently

from Hpk; θpdk−+2 and θpdk−+3 independently from Hpd.

• II . if ci = cj for some j 6= i, then ci = cj , θPKi = θPKj and θPDi = θPDj . The class

configurations for all auxiliary components are equal to k−+ 1, k−+ 2, k−+ 3. The

three auxiliary parameters are randomly drawn from Hpk and Hpd.

• III . The corresponding probabilities in I and II are expressed as,

p(ci = c|c−i, yPDi , yPKi , θPK1:k− , θ
PK
k−+1:k−+m, θ

PD
1:k− , θ

PD
k−+1:k−+m) ∝
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n−i,cp(y
PD
i |θPDc , θPKc , σ2

2)p(yPKi |θPKc , σ2
1) for 1 ≤ c ≤ k−,

α
m
p(yPDi |θPDauxiliary, θPKauxiliary, σ2

2)p(yPKi |θPKau , σ2
1) for k− < c ≤ k− +m

• IV . After renewing each ci for i = 1, . . . , n, discard θpk and θpd which are not

associated with any observations, y1, · · · , yn. Keep the permanent terms, ci, θ
pk
i and

θpdi for i = 1, · · · , n.

In order to keep the notation simple in the following steps, let θpk,?1 , · · · , θpk,?k denote the

distinct values of θpk1 , · · · , θpkn , similar for PD, and θpd,?1:k . The unique values of the class

configuration is expressed as c?1, · · · , c?k.

Step 3: Sample [θ?pk|yi, ci = k] and [θ?pd|yi, ci = k]

In our model, we consider that θpk,?1 , · · · , θpk,?k are i.i.d from N(µpk,Σpk). Where µpk ∼

N(µpk0 = 0,Σpk
0 = Id) and Σpk ∼ Inverse-Whishart(v0,Σ

pk
iw). Since these are conjugate

priors, we can compute the full conditional distribution of µpk|θpk,?1:k ,Σ
pk and Σpk|θpk,?1:k , µ

pk.

We used Gibbs sampler to sample (µ1:T
pk ,Σ

1:T
pk ) T times and set µpkpost = (1/T )

∑T
1 µ

pk
i and

Σpk
post = (1/T )

∑T
i=1 Σpk

i . See more details in chapter 4 section 2. It is similar for PD part

(µpkpost,Σ
pk
post). We have K clusters after step 2, then we update θpkk and θpdk in the following

steps.

Repeat I and II for k = 1, . . . , K. We take kth cluster as example. Sampling θpkk |y
pk
i∈k

is as follows,

• I . The posterior distribution (target) is proportional to

p(θpk|ypki , ci = k) ∝
∏
i∈k

p(ypki |θ
pk
k )π(θpkk ) (5.16)

Since there is no close form of likelihood, we use Metropolis-Hastings algorithms

with an optimal proposal and an adaptive Metropolis algorithm in MCMC simula-
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tion. Propose a candidate, ˜θpk from 5.13 where θ is the current value of θpki and Σn is

the covariance of all the unique estimates in the previous states. The final acceptance

rate is,

α(θpk, ˜θpk) = min

{
1,

∏
i∈k p(y

pk
i |θ̃pk)π(θ̃pk, µpost,Σpost)∏

i∈k p(y
pk
i |θ

pk
k )π(θpkk , µpost,Σpost)

}
If the proposed values is accepted, we set θk = θ̃; otherwise, keep the current one.

• II . The steps of sampling θpkk |y
pd
i∈k, y

pk
i∈k, θ

pk
k are the same as (3I) except the target

density. It becomes,

p(θpdk |y
pd
i∈k, y

pk
i∈k, θ

pk
k ) ∝

∏
i∈k

p(ypdi |θ
pd
k , θ

pk
k )
∏
i∈k

p(ypki |θ
pd
k )π(θpkk , µ

PD
post,Σ

PD
post)

Step 4. Re-sampling the hyper-parameters in the model

The typical mixture of Dirichlet process applications would include the hyper-priors. In

each iteration, we do update the prior information given the associated observations are

observed. For example, we update µpk and Σpk after we have the random sample θpk1 , · · · ,

θpkk . It is same as for µpd and Σpd too. In addition, we also update σ2
1 and σ2

2 given

the Markov chain estimates in each iteration. We assume that the pk response ypkij ∼

N(fpki (θpki , tij), σ
2
1) and σ2

1 ∼ gamma−1(a0, b0). Given all the observations yij , for i =

1, . . . , n and j = 1, . . . , ni, the posterior distribution of σ2
1|yij can be expressed as,

p(v|ypk, θpk) ∝
n∏
i=1

ni∏
j=1

p(ypkij |v)π(v)

∝ (
1

v
)
N
2

+a0−1 exp−
1/2

∑
i
∑
j

(
yij−f

pk
i

(θ
pk
i
,tij)

)2

+b0

v

where v ≡ σ2. Therefore σ2|y ∼ gamma−1(N
2

+ a0,
1
2

∑∑
(yij − fpkij ))2 + b0). Similarly,

we can sampling PD parameters from the posterior distributions. We update σ2
1 and σ2

2 at

each iteration.
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Repeat step 2, 3 and 4 to obtain a desired number of MCMC runs. There are more

inference results in the simulation as well as real data.

5.5 A simulation study

In this section, we evaluated our proposed approach in a simulation. The simulation data

is based on the real clinical trial study. We generated both PK and PD data for 30 patients.

The “true” values of parameters are the maximum likelihood estimates of 3 patients who

have different shapes of PK and PD profiles in the real data Figure 6.2. The noise were

added, i.e. N(0, 0.01) for PK and N(0, 1) for PD, respectively. The variance is adopted

to prevent the responses to be negative or too close to 0. We kept the well-balanced and

non-negative response values.

The system of nonlinear differential equations do not have an exact solution. We used

deSolve, a R package, to solve the ODEs at first. However, it is slow and the results are

unstable due to the complex structure of ODE system. A MCMC simulation with 1000

iterations were tested using one of most popular numerical solver of ODEs in deSolve

package. On average, it takes more than 6 minutes to complete an iteration. To compare,

Euler’s method was tested under the same setting. It took 0.63 minute for one iteration.

Thus Euler’s approach is almost 10 times faster than lsoda solver. Figure 6.3 and 6.4 show

that the mean of PD parameter estimates with 95% probability interval. Each column rep-

resents the parameter mean estimates for one patient. The estimates for both approaches

are very close to each other for each patient. As ODEs were needed to solve more than

1000 times in each iteration, Euler’s method was adopted for the following MCMC sim-

ulation. Moreover, we implement a combination of Metropolis-Hastings algorithm and a

Gibbs sampling with auxiliary components in the MCMC simulation. See more details

about MCMC algorithm in chapter 5, section 4.
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Figure 6.5 shows the distribution of the clustering distribution of the maximum likeli-

hood estimates. Our approach indicates that there are 3 groups among 30 patients because

it has a relative large weight. This result is consistent to the true setting. Figure 6.4 predict

the individual parameter estimate with 95% probability interval. We can see that the first

ten patients’ parameter estimation as well as the confidence interval are very close to each

other. It suggests the first 10 patients belong to a cluster. Similarly, the last 10 patients

should go into second group. The rest belongs to the third cluster. At the same time, PK

parameter estimates show the similar pattern too, Figure 6.6. The Dirichlet Process is best

used for density estimation, and, as it is our case, for borrowing strength across observa-

tions and improving estimation when the curves need to be estimated with sparse data.

This appears to be overall achieved by our model.

Our approach with Euler approximation can improve the estimates across the cycles.

Figure 6.7 shows three PD curves fitted with an ODE solver package in R, and the “true

curve” that are used to generate the data as well as the final simulated data points (cross

signs). Figure 6.8 present the PD curves with Euler’s estimates for three patients in the

simulation data. The fitted values are estimated by fPDi (t) = (θ̂pdi , t), where θ̂i is the

posterior mean from MCMC samples.

Figure 6.9 shows that the PD response for a new patient are estimated by f̂PD(t) =

1/T
∑
fPD(θpdn+1, t), where θti is the t-th imputed parameter vector θi in simulated Monte

Carlo posterior sample. The interval is 95% probability interval of the predicted response

for each observed time point. In each iteration, we use p(yPKn+1|θPK1:n , θ
PK
auxiliary, σ1) to de-

termine the new patient going into which clusters. If the new patient goes into “true”

cluster which are used to generate the new patient data, the curve will be completely con-

sistent with the data. However, it is possible that the new patient will be assigned in one of

two existing clusters or the new cluster. In this case, the predicted curve will be not con-

sistent with the data as we expected. The final predictive distribution might heavily depend
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on the cluster assignment in the estimation step. The mean response at each observed data

point is an average value of all predictions from different cluster across iterations. For a

new patient generated from ID 57 occasion 1, there is 86.4% iteration that our model as-

signs the new patient to the “true” curve, 1.4% iteration that the new patient goes into the

new cluster, 7.2% iteration that it is assigned to the first cluster which generating the first

ten cycles, 28.4% iteration that it goes to the second cluster which simulates the middle

ten cycles. See results in Figure 6.9.

In addition, we check the trace plot of a patient’s PD parameters, Figure 6.10. The plat

line (“gap”) in the plot indicates that the proposed candidates is meaningless so we keep

the current state values.

5.6 Real data example

Here we use a real clinical trail data, Friberg (2002), to assess the performance of our

proposed approach. Usually, the clinical data has a precise administration. Overall 45

patients with different cancer forms only received paclitaxel, a single anticancer agent in

196 cycles (varying between one and 18 cycles per patient, median, 3 cycles). Paclitaxel

was administered as a 3-hour infusion, with an initial dose of 175 mg/m2 every 3rd week.

Unbound plasma concentrations were monitored on course 1 and course 3, with an average

of 3.5 samples per patient and course.

We chose 40 cycles from 45 patients. These 40 cycles satisfy two conditions. First, the

cycle has PK and PD data. Second, PD cycle has three or more observations. Figure 6.11

shows two fitted curves in the real data. The parameter initialization is the same as those

in the simulation study. The following estimation and prediction results are based on 5000

MCMC simulation.
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Figure 6.12 shows that the PD response for a new patient are estimated by f̂PD(t) =

1/T
∑T

t=1 f
PD(θpd,t), where θpd,t is the t-th imputed parameter vector in simulated Monte

Carlo posterior sample. The interval is 95% probability interval of the predicted response

for the observed time point.
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Discussion

We provide a coherent probability model for the analysis of PK/PD mechanistic model. By

using a bayes approach, we are able to tie individualized PK and PD cycles together, obtain

the inference on patients’ clustering on the basis of their concentration or response pro-

files. The cluster configuration allows us to predict the new patients’ drug response based

on its drug concentration data set. This approach helps us to investigate the heterogen-

eity of the population and then provides us a chance to gain more information from each

subpopulation. This model not only can combine prior information with the clinical trial

data, but also deal with complex dynamic systems. Thus the results of estimated dynamic

parameter based on this model should be reliable and reasonable to interpret long-term

PK/PD dynamics. This approach can help us better understand how the drugs work in the

body first in the subpopulation then in the whole population.

Although nonparametric Bayesian model is a promising perspective to address the

population PK/PD models, there are several challenges too. First, our approach is highly

computationally intensive. Our model requires solving a system of nonlinear differential

equations. It becomes very difficult when we have a limited data in a few cycles. That is

also one of the reasons that we introduced the Euler’s method to approximately estimate
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the corresponding response. Another challenge is that how to set up a reasonable truncated

the proposal distribution so that we can allows the chain to explore a large region and also

propose the doable parameters which is solvable in the highly unstable ODEs system.

More importantly, the proposed values are physiologically meaningful.

There are two directions I am interested in the future. One is to improve our approach

by incorporating the available covariates information including body surface area, biliru-

bin (hematoidin, excreted in bile), genetic biomarkers as well as the basic demographic

variables. The second direction is about missing data. We want to provide a reasonable

approach to deal with the “missing” data since it is a fairly common issue in clinical trial.

In real example, we only have one or two data points for some PD cycles. We are not very

clear how to do the parameter estimation. Right now, many software packages either throw

away all subjects who have missing data or impute missing values with population mean

or some fixed values. The first approach throws away a potential large amount inform-

ation, where as Hoff et al.(2009) proposed to use Gibbs sampling for the missing data.

Tsiatis et al.(2006) discussed the nonparametric theory and missing data which provides

us the framework to do deep research. In addition, we plan to write a R package for our

approach.
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Figure 6.1: Neutrophil cell proliferation model with feedback. Stem or progenitor cell
compartment, Prol; Maturation compartment for transit including Transit 1, Transit 2,
Transit 3. circulating neutrophil compartment, Circ. Edrug represents drug effect. Feed-
back represents the strength of rebound cells. MTT measures the mean transit time. kprol,
ktr and kcirc represent the proliferation rate, transit rate and circulation rate, respectively.
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Figure 6.2: The fitted curves chosen for generating the simulation data.
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Figure 6.3: PD parameter estimates: posterior mean with 95% probability interval across
patients using Euler linearization.
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Figure 6.4: PD parameter estimates: posterior mean with 95% probability interval across
patients using lsoda solver.
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Figure 6.6: PK parameter estimates: posterior mean with 95% probability interval across
patients.
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Figure 6.7: Fitted curves with MLEs for three patients in the simulation study.
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Figure 6.8: Fitted curves with posterior mean for three patients in the simulation study.
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Figure 6.10: Trace plot of PD parameters across the iterations.
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