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Abstract

This thesis considers an introduction of recently developed Particle Filter algo-

rithms and their application to Dynamic Linear models. We start from the case of

a dynamic model without fixed parameter estimation to demonstrate how particle

filter work. Then we show how advanced particle filters work on posterior density

approximations for models that allow dynamic states and fixed parameters estima-

tion simultaneously. It is proven that these state and parameter estimations can be

achieved for these classes of dynamic models via efficient Particle Filter methods

without the need of the more traditional Forward Filtering Backward Sampling

(FFBS) simulation. Simulations for the first order dynamic linear model and a

time-varying extreme value analysis via the Generalized Extreme Value distribu-

tion are illustrated using particle filter methods and a MCMC algorithm through

sampling of full conditionals that involve a variety of Metropolis-Hastings steps.

Additionally, we illustrate all the different methodologies with three practical time
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series of extreme values. The athletic records originally analyzed in Robinson &

Tawn (1995) and the follow-up discussions in Smith (1997) and Robinson & Tawn

(1997), the maximum monthly rainfall values from January 1961 to November

1999 taken at the Maiquet́ıa station near Caracas, Venezuela discussed in Huerta

and Sansó (2007) and and Huerta and Stark (2012), the minimum daily stock re-

turns occurring during a month from January 4, 1990 to December 28, 2007 using

the Tokyo Stock Price Index (TOPIX) as in Nakajima, Kunihama, Omori and

Frühwirth-Schnatter (2011).
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Chapter 1

Introduction to Dynamic Linear

Model

1.1 Dynamic Linear Model

Consider a time series y1:T = {y1, y2, . . . , yt−1, yt, yt+1, . . . , yT}, where yt is the

observation at time t and T is the total number of observations. For making

inference on the time series, in particular for predicting the next time point value

yt+1 given the previous stage observations {y1, . . . , yt}, we need to specify the

probability law of the process yt. State space models are based on the idea that

the time series y1:t = {y1, y2, . . . , yt} is an incomplete and noisy function of some

underlying unobservable process x1:t = {x1, x2, . . . , xt}, called the latent states.

See for example Petris, et al. (2009), Tanizaki (2004), West and Harrison (1997)

and Prado and West (2010).

The relation between the observations {y1, . . . , yt} and the unobservable states

{x1, x2, . . . , xt} is shown in Figure 1.1.

1



Chapter 1. Introduction to Dynamic Linear Model

x1 ... xt−1 xt ... xT

y1 yt−1 yt yT

Figure 1.1: Illustration of the relation between observations and states in a
dynamic model. yt: observation; xt: state.

We can reasonably assume that the observation yt only depends on xt, the state

of the system at the time the measurement is taken. The observations y1:t are

conditionally independent provided that x1:t are known. In other words, each yt

only depends on xt and therefore,

yt|xt ∼ py|x(y|xt) (1.1)

where py|x(y|xt) is the observation distribution function.

To simplify the analysis, the unobservable state xt can be modeled as a first order

latent or hidden Markov process with an initial distribution p(x0) and the following

evolution process,

xt|xt−1 ∼ pX(xt|xt−1) t = 1, . . . , T. (1.2)

As discussed by West and Harrrison (1997), p(x0) contains all the available relevant

starting information used to form initial views about the state at time 0, including

its history and all defining model quantities.

Dynamic linear models are a broad class of linear state space models with time

varying parameters to model time series data (Migon, Gamerman, Lopes and

Ferreira 2005). Let yt be an (r×1) vector observation and xt be an (n×1) parameter

vector, a basic linear state space model takes the form (West and Harrison 1997):

Observation equation: yt = F
′

txt + vt, vt ∼ N(0, Vt). (1.3)

2



Chapter 1. Introduction to Dynamic Linear Model

Evolution equation: xt = Gtxt−1 + ωt, ωt ∼ N(0,Wt). (1.4)

for each time t, where

1. Ft is a known (n× r) matrix;

2. Gt is a known (n× n) matrix;

3. Vt is a known (r × r) variance matrix;

4. Wt is a known (n× n) variance matrix.

The first equation, called observation or measurement equation, describes the re-

lation between the observed time series, yt, and the unobserved state, xt. In gen-

eral, it is assumed that the data yt are measured with error, which is represented

by the measurement error vt. The second equation, called evolution or transition

equation, describes the evolution of the state variables as being driven by the state

variable at previous time xt−1 and the evolution error ωt. Both errors are Normally

distributed and with variance matrix Σv and Σω correspondingly. The choice of F

and G depends on the model and the nature of the data that is being analyzed.

A much more general form of state space model can be extended as, the system

matrices F and G could depend explicitly on time, or one could introduce some

other unknown parameters into the model specification (West and Harrrison 1997).

1.2 First Order Dynamic Linear Model

The first order dynamic linear model, or the first order polynomial linear model

is the simplest and most widely used dynamic linear model. In this model, the

3



Chapter 1. Introduction to Dynamic Linear Model

observation equation takes the form

yt = xt + vt, vt ∼ N(0, Vt) (1.5)

where xt is the mean of the observation at time t and Vt is the observation variance

at time t. The time evolution of the mean is modeled as a simple random walk

xt = xt−1 + ωt, ωt ∼ N(0,Wt) (1.6)

to represent the evolution equation where Wt is the evolution variance at time t.

Normally, the evolution error ωt is independent of the observation error vt and the

evolution variance Wt is much smaller compared to the observation variance Vt.

As mentioned by West and Harrison (1997), this model is used effectively in nu-

merous applications, particularly in short-term forecasting for production planning

and stock control. In a product demand forecasting example, xt represents the true

underlying market demand at time t where vt represents random fluctuations which

reflect the discrepancy of individual customer orders.

1.3 General Dynamic Model

Although the first order dynamic linear model is efficient and easy to implement,

many real case examples need to include parameter non-linearity into the standard

DLM model. In order to model accurately the underlying dynamics of a physical

system, it is important to include elements of non-linearity and non-Gaussianity

in many application areas. Therefore, the Markovian general dynamic model has

the following form:

yt = ft(xt) + vt, vt ∼ N(0, Vt) (1.7)

4



Chapter 1. Introduction to Dynamic Linear Model

xt = gt(xt−1) + ωt, ωt ∼ N(0,WT ) (1.8)

where ft is a known non-linear function mapping the state vector xt to the obser-

vation and gt is a known non-linear vector evolution function. The most known

subclass of dynamic models is the normal dynamic linear model, referred to sim-

plify as the dynamic linear model, or DLMs. The first order dynamic linear model

is just a special case of the general dynamic model where ft and gt are the identity

functions.

1.4 Inference for the Dynamic Model via MCMC

In this section we outline the Kalman Filter analysis on a first order DLM. Next,

a MCMC posterior simulation for the general framework is introduced, which is

necessary for the class of nonlinear/non-Gaussian dynamic models. We will end

this chapter with algorithms specially designed for the Gaussian dynamic linear

model.

1.4.1 State Estimation

For a given state space model, the main tasks are to make inference on the un-

observed states or predict future observations based on a part of the observation

sequence. To estimate the state vector, filtering and sometimes smoothing density

calculations are needed.

In an online setting, such as with target tracking, we are interested in estimating

recursively the joint posterior distribution p(x1:t|y1:t) or just the marginal poste-

rior density p(xt|y1:t), the density of the current state xt conditional on a set of

sequential observations y1:t up to time t. This density is known as the filtering

5



Chapter 1. Introduction to Dynamic Linear Model

distribution (Doucet, et al 2001).

While filtering corresponds to estimating the distribution of the current state based

on all the observations received up to the current time, smoothing, or retrospective

analysis, corresponds to estimating the distribution of the state at a particular time

given all of the observations up to some later time (Doucet and Johansen 2008).

Observing the values until the last time point T , we may extrapolate back over time

to compute the joint posterior density p(x1:t|y1:T ) or to approximate the associated

marginals for an early time point t: p(xt|y1:T ). For example, in the stock market,

an analyst might have the time series of the stock price for a certain number of

days, she may update the current estimates as new data are observed (filtering);

or she might be interested in retrospectively understanding the operating behavior

for the past (smoothing).

1.4.2 Filtering and Smoothing

As discussed by Gordon, et al, (1993), Briers, et al, (2010), Doucet and Johansen

(2008) and Sarkka (2013), the filtering density p(xt|y1:t) can be achieved recursively

through two steps: one-step ahead prediction and filtering.

(i) Forward Evolution or Prediction. In this step, we compute the current

state marginal distribution p(xt|y1:t−1) given the posterior for the last state xt−1

and the observations up to the last stage y1:t−1. This is also called propagation

step and the evolution equation is,

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (1.9)

(ii) Update or Filtering. We update the filtering density on observing yt and

compute the current posterior with Bayes theorem,

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1). (1.10)

6
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1.4.3 Smoothing

Smoothing refers to the backward sampling step and depends on the following fact,

p(x0:T |y1:T ) ∝ p(xT |y1:T )
T∏
t=1

p(xt−1|xt:T , y1:T ). (1.11)

Due to the Markovian property of the evolution function in a general dynamic

model, we get

p(xt|xt+1:T , y1:T ) = p(xt|xt+1, y1:t)

=
p(xt+1|xt)p(xt|y1:t)

p(xt+1|y1:t)
∝ p(xt|y1:t)p(xt+1|xt). (1.12)

which shows the smoothing density is proportional to the product of the filtering

density p(xt|y1:t) and the evolution density p(xt+1|xt).

The smoothing sampling begins with time T (i.e., the endpoint case in the smooth-

ing algorithm) is equivalent to the filtering density at time T . It starts from

drawing samples xT ∼ p(xT |y1:T ) and then recursively by using equation 1.12, to

get smoothed samples at t − 1 by re-sampling the filtering samples with weight

proportional to p(xt+1|xt).

1.4.4 Kalman Filter for Dynamic Linear Models

The previous section discusses the general principles of the Bayesian filtering and

smoothing algorithm. However, in general the actual computation of these con-

ditional distributions is complicated. One great achievement in this area is the

popular Kalman filter that was proposed in the 1960’s: “The Kalman filter (KF)

is a closed form solution to the linear Gaussian filtering problem. Due to linear

Gaussian model assumptions the posterior distribution is exactly Gaussian and

7
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no numerical approximations are needed.” (Sarrka 2013). It is easy to prove that

dynamic linear models have a Gaussian distribution for any t ≥ 1 states as well.

Thus the filtering and smoothing densities are completely determined by their

means and variances.

In this section we introduce the Kalman Filter through a DLM defined by equations

1.3 and 1.4 with F
′
t , Gt, Vt and Wt are completely known and initial information

of p(x0) = N(m0, C0). More details can be found in West and Harrison (1997).

Filtering:

(a) Start from the posterior at t− 1:

(xt−1|y1:t−1) ∼ N(mt−1, Ct−1). (1.13)

(b) Get the prior at time t with the evolution equation:

(xt|y1:t−1) ∼ N(at, Rt), (1.14)

where at = Gtmt−1 and Rt = GtCt−1G
′
t +Wt.

(c) The one-step prediction at time t− 1 from the observation equation:

(Yt|Y1:t−1) ∼ N(ft, Qt), (1.15)

where ft = F
′
tat and Qt = F

′
tRtFt + Vt.

(d) The posterior at time t is computed with Bayes theorem:

(xt|Y1:t) ∼ N(mt, Ct), (1.16)

and gives the following recursive equations:

mt = at + Atet, (1.17)

Ct = Rt − AtQtA
′

t, (1.18)

At = RtFt/Qt, (1.19)

et = Yt − ft. (1.20)

8
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Smoothing:

To perform smoothing, we need to consider one more term for the filtering steps:

Bt = CtG
′

t+1/Rt+1 (1.21)

Then for all k, (1 ≤ k < T ), the marginal smoothing distributions are

(xT−k|Y1:T ) ∼ N(mmt−k, CCt−k) (1.22)

where,

mmt−k = mt−k +Bt−k(mmt−k+1 − at−k+1) (1.23)

and

CCt−k = Ct−k +Bt−k(Rt−k+1 −Rt−k+1)B
′

t−k (1.24)

with starting values,

mmT = mT and CCT = CT .

Therefore, when a DLM is completely specified, i.e., there are no unknown pa-

rameters except the state vector, one can use the well-known Kalman filtering and

smoothing algorithms to obtain means and variances of the conditional distribu-

tions of the states given the observed data.

1.4.5 MCMC Hybrid M-H within Gibbs

We have seen previously that the Kalman Filter can provide an analytic solution of

the sequence of densities p(x1:T |y1:T ) for the Gaussian dynamic linear model given

known measurement and evolution variance Wt and Vt. Unfortunately, real-world

models are rarely that simple enough to be solved exactly. We often have to esti-

mate unknown parameters, in the context of non-linearity or/and non-Gaussianity.

9
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While for a few very special cases, as seen in West and Harrison (1997), it is pos-

sible to compute the posterior distribution of unknown parameters in closed form

for many cases, we have to rely on Monte Carlo methods to draw samples from

the target posterior distribution.

Markov Chain Monte Carlo (MCMC) methods draw samples by simulating a

Markov chain having the target distribution as the stationary distribution. In

the case of models that are Gaussian and linear, or conditionally so, drawing

states is a natural component of Gibbs sampling methods for learning about the

posterior distribution of states, parameters and other functions of interest. Carlin,

Polson and Stoffer (1992), and Carter and Kohn (1994) introduced the scheme of

sampling nonlinear and/or non-Gaussian state-space models with Gibbs sampling.

The transition kernel of Gibbs sampling is formed by the full conditional distribu-

tions and Gibbs sampling is generally used only when full conditional distributions

are known and easy to sample from. Nevertheless, often it is not possible to sim-

ulate from one or more of the full conditional densities such as those cases with

densities not in standard form and that have intractable normalizing constants.

Then the posterior sampling is usually conducted via other schemes, very often

with the Metropolis-Hastings (MH) algorithm, as in Hastings (1970). For each

component of the parameter vector, a new sample is drawn from a “proposal”

distribution, then decide whether to take the proposed sample or keep the current

value using an acceptance probability:

α(θ?, θ) = min

{
1,
π(θ?)/J(θ?|θ)
π(θ)/J(θ|θ?)

}
where θ? is the propose parameter values evolved from current parameter value θ

with the proposal/transition kernel J(θ?|θ) to guide the move. The fraction inside

the brackets

π(θ?)/J(θ?|θ)
π(θ)/J(θ|θ?)

10
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is called the importance ratio (Gamerman and Lopes 2006).

Denote X = (X1, . . . , Xd) a vector that represents a combination of parameters

and states and assume the marginal and conditional distributions of the com-

ponents Xi can be obtained from the joint density π(X1, . . . , Xd). Let X−i =

(X1, . . . , Xi−1, Xi+1, . . . , Xd) represent the vector X with its ith component re-

moved. The conditional distribution of Xi|X−i, called full conditional distribu-

tion of Xi is denoted by πi(Xi). By conditional probability, we have π(X) =

πi(Xi)π(X−i). Furthermore, a component proposal/transition kernel Ji(X
?
i |Xi) is

used to guide the move of the ith component of X while the other components of

X are kept unchanged, thus

π(X1, . . . , Xi−1, X
?
i , Xi+1, . . . , Xd)

π(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xd)
=
πi(X

?
i )π(X−i)

πi(Xi)π(X−i)
=
πi(X

?
i )

πi(Xi)

This provides a reducible Markovian chain to propose a transition on component

Xi with kernel Ji while the other components of X remain fixed and are not

affected. Thus the importance ratio may be written as:

r =
πi(X

?
i )/Ji(X

?
i |Xi)

πi(Xi)/Ji(Xi|X?
i )

(1.25)

instead of the joint density formula of

r =
π(X?)/Ji(X

?|X)

π(X)/Ji(X|X?)
(1.26)

withX? = (X1, . . . , Xi−1, X
?
i , Xi+1, . . . , Xd) andX = (X1, . . . , Xi−1, Xi, Xi+1, . . . , Xd).

Geweke and Tanizaki (1999) proposed the nonlinear and non-Gaussian smoother

using the hybrid Metropolis-Hastings algorithm within Gibbs sampling. This is

also illustrated in Robert and Casella (2004) and Gamerman and Lopes (2006).

In this thesis, I apply the hybrid method due to its flexibility of dealing with

non-linear and non-Gaussian dynamic models. The component-wise version of the

hybrid algorithm suggested in Prado and West (2010) is as follows:

1. Initialize the iteration index m = 1 and set the initial value of the chain at

X(0).

11
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2. Start from the component index i = 1.

3. Propose the ith component of the vector of states of the chain to a new value

X?
i based on the proposal density Ji.

4. Calculate the importance ratio as in equation (1.25).

5. Set

X
(m)
i =

X
?
i with probability min(r, 1) ,

X
(m−1)
i otherwise .

(1.27)

6. Change the component index to the next one i+ 1 and return to step 3 until

i = d.

7. Change the iteration index to m+ 1 until convergence is reached.

A critical issue for using the MCMC method in applications is how to determine

when it is safe to stop sampling and use the samples to estimate the posterior

distribution of interest. The textbook by Christensen, et al. (2011) mentions that

the study of convergence in MCMC is usually approached by analyzing the ob-

served output from the sample chain empirically. Initial poor estimates are not

uncommon in MCMC implementation since we may not have good knowledge on

how to set the initial values. Burn-in is frequently used to deal with this issue,

which refers to the practice of discarding initial iterations of sampled values. A

reasonable burn-in value will be selected so that the sampling density achieves sta-

tionarity. Trace plots of each component will be used to check stationarity of the

chain by showing there is no trend of pattern after burn-in. A second diagnostics

is the lagged autocorrelation function. Large autocorrelations will suggest non-

independence of samples which may need a huge number of sampling iterations

for MCMC convergence. Usually, even after the burn-in phase, significant auto-

correlations in the observed output terms are present especially for complicated

12
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models. To reduce or even remove this autocorrelation effects, we can select sam-

ples by reducing the output or sample values by keeping only every kth iteration.

This process is known as thinning.

13



Chapter 2

Particle Filter Methods

Particle Filter or Sequential Monte Carlo (SMC) methods are a set of online al-

gorithms that estimate the posterior density of the state space vector by directly

implementing the Bayesian recursive equations of a state space model. Many real-

world data analysis tasks involve observations that arrive sequentially in time and

one could be interested in performing Bayesian inference in actual time. Kalman

filters were developed to track the state of a dynamic system for which a Bayesian

model exists, they provide an exact solution analytically. But very often, that

exact solution is computationally expensive or even not achievable.

Whereas for an online setting, one should update the posterior distribution as data

become available in order to take full advantage of sequentially arrived data. In

cases where the state and observation models are linear and Gaussian, it is pos-

sible to evaluate the posterior density p(x1:t|y1:t) in closed form using a Kalman

filter (Kalman, 1960). Nonetheless, in the case of nonlinear, non-Gaussian state

space models, a closed form solution for the posterior density is usually difficult

or not available. MCMC schemes can be designed to approximate the posterior

distribution, but it is often difficult to make them efficient for computation in

high dimensional spaces. This lead to the development of a class of approximation

14
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techniques known as sequential Monte Carlo methods, or particle filters (Nemeth,

Fearnhead and Mihaylova 2013).

2.1 Basic Particle Filter

In its most basic form, particle filters work by starting with a sample from the

posterior at time t − 1, predicting the state at time t, and then updating the

importance weights based on the observation yt. In this section, I will introduce

the concept of filtering first and later provide the basic particle filter algorithms

which focus on state estimation.

2.1.1 Filtering Algorithms

In what can be considered the seminal work in the particle filtering literature,

Gordon, Salmond and Smith (1993) developed a strategy based on a sequence of

importance sampling steps. Filtering can be thought of as the repeated application

of a two-stage procedure. First, the current density must be propagated into the

future via the state transition density p(xt|xt−1) to produce the prediction density

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (2.1)

where p(xt|y1:t−1) = p(xt|y1, . . . , yt−1).

Second, one moves to the filtering density via Bayes theorem,

p(xt|y1:t) = p(xt|yt, y1:t−1) =
p(yt|xt)f(xt|y1:t−1)

p(yt|y1:t−1)

where in the denominator

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|y1:t−1)dxt. (2.2)
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See Appendix A for a detailed proof.

This implies that the data can be processed in a single sweep, updating our knowl-

edge about the states as we receive more information.

Particle filters are a class of simulation-based filters that recursively approximate

the filtering random variable (xt|y1:t) by a set of particles x1t , x
2
t , ..., x

N
t . Each

particle has a weight or discrete probability mass of ω1
t , ..., ω

N
t assigned to it that

represents the probability of each particle being sampled from the probability den-

sity function. These discrete particles are viewed as samples from f(xt|y1:t) so a

continuous pdf is being approximated by these discrete particles. Throughout, N

is taken to be very large and we require that as N →∞, the particles can be used

to approximate increasing well the density of (xt|y1:t) as shown in Prado and West

(2010):

p̂(xt|y1:t) =
N∑
j=1

ωjt δxjt
(xt) ≈ p(xt|y1:t) (2.3)

where δ denotes the Dirac delta function. The particles at time (t−1), {x1t−1, x2t−1, ...,

xNt−1}, are updated to obtain a new set of particles at time t via importance sam-

pling and re-sampling. We now discuss various algorithms for updating the parti-

cles from time t− 1 to t.

2.1.2 Sequential Importance Sampling and Re-sampling

(SIS and SIR)

The sequential importance sampling (SIS) is a sequential version of importance

sampling. The SIS algorithm can be used to approximate the joint density p(x0:t|y1:t),

here x0 is used to represent the state at time 0. Refer to Liu and Chen (1998)

and Doucet, de Freitas and Gordon (2001) for a more detailed discussion. At time

t− 1, assume that p(x0:t−1|y1:t−1) is approximated by the weighted set of particles

{(x0:(t−1), ωt−1)j; j = 1, ..., N}. Then for each j, with j = 1 : N ,
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1. Sample xjt from an importance or proposal density gt(xt|xj0:(t−1), y1:t) and set

xj0:t = (xj0:(t−1), x
j
t).

2. Compute the importance weights ωjt as

ωjt ∝ ωjt−1
p(yt|xjt)p(x

j
t |x

j
t−1)

gt(x
j
t |x

j
0:(t−1), y1:t)

(2.4)

see appendix A for why the SIR method works.

Finally, use {(x0:t, ωt)j; j = 1, ..., N} as a particle approximation to p(x0:t|y1:t). If

we continue this process until the last time point T , then we get {(x0:T , ωT )j; j =

1, ..., N} as a particle approximation to p(x0:T |y1:T ), which is the full posterior

distribution of x0:T , or the joint smoothing density conditional on all observations.

This is the reason why the SIS method is called particle smoother in Sarkka (2013).

Although the SIS method looks attractive due to its straight forward one step

solving for both the filtering and smoothing density, in practice, it is difficult to

achieve reasonable samples due to the so called issue of degeneracy.

As discussed in Doucet, Godsill and Andrieu (2000), it can be shown that the

variance of the importance weights increases over time, leading to a problem known

as partial degeneracy. That is, after some iterations of the algorithm all except

one particle will have weights that are very close to zero. The degeneracy problem

can be reduced by using a re-sampling procedure. This refers to a procedure where

we draw N new samples from the discrete distribution defined by the weights and

replace the old set of N samples with this new set.

The re-sampling procedure can be described as follows:

1. Interpret each weight ωjt as the probability of obtaining the sample index for

the set {xjt , j = 1, ...N}.
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2. Draw N samples from this discrete distribution and replace the old sample

set with this new one.

3. Set all weights to a constant value so ωjt = 1/N .

The idea of the re-sampling procedure is to remove particles with very small weights

and duplicate particles with large weights.

Adding a re-sampling step to the sequential importance sampling algorithm leads

to the so called sequential importance re-sampling (SIR) (Gordon, et al., 1993;

Kitagawa, 1996; Doucet, et al., 2001). In SIR, re-sampling is not usually performed

at every time step, but only when it is actually needed. The so-called effective

sample size (Liu 1996) given by

Mt,eff =
1∑N

j=1(ω
j
t )

2
, (2.5)

can be used as a measure of degeneracy. Note that Mt,eff = N , the total number

of particles, when ωjt = 1/N for all the particles and Mt,eff = 1 when a single

particle has weight equal to one. A small value of the effective size indicates

particle degeneracy. Typically we do resampling only when the effective sample

size is below N/2, or half of the number of particles. A SIR algorithm based on

the effective number of particles is implemented in Prado & West (2010):

1. Sample xjt from an importance density gt(xt|xj0:(t−1), y1:t)

and set xj0:t = (xj0:(t−1), x
j
t).

2. Compute the importance weights ωjt as

ωjt ∝ ωjt−1
p(yt|xjt)p(x

j
t |x

j
t−1)

gt(x
j
t |x

j
0:(t−1), y1:t)

. (2.6)
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3. Compute Mt,eff . If Mt,eff < M0 for some specified minimum sample size M0,

usually a percentage of the number of particles, N , then do the re-sampling

as follows:

(a) For j = 1 : N sample xj0:t with probability ωjt from the particle approx-

imation obtained in Step 2.

(b) Set ωjt = 1/N for all j

and report the new particle set {(x0:t, ωt)j;ωjt = 1/N ; j = 1, ..., N} as a

particle approximation to p(x0:t|y1:t).

We have seen that SIS and SIR can provide an approximation of the smoothing

density p(x0:T |y1:T ) upon arriving to the last time point T . To get the smooth-

ing solution from SIR we need to re-sample the state histories but not only the

current states. However, these approximations are poor when T is large because

of the degeneracy problem where for some small value t, all xjt , j = 1...N are the

same particle. An alternative scheme for obtaining the smoothing density will be

discussed later.

If the objective is to approximate p(xt|y1:t), the filtering distribution, then the

first t components in each path xj0:t can be discarded as long as the calculation

of weights depends only on xjt and xjt−1 (Prado and West 2010, Klaas, de Freitas

and Doucet 2012, Lindsten, Schn and Svensson 2012, Sarkka 2013). Since we are

interested in the filtering distributions only, we discard the sample histories x0:t−1

and only keep the current states xt for later implementations of the SIR algorithm

in this dissertation.
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2.1.3 Bootstrap Filter

The bootstrap filter (Gordon, et al. 1993) is a variation of the SIR method where

the state transition density, or “prior kernel” p(xt|xt−1) is solely used as the im-

portance distribution gt(xt|xj0:(t−1), y1:t). Cappe, Godsill and Moulines (2007) men-

tioned that a distinctive feature of the bootstrap filter is that the weight does not

depend on the past trajectory of the particles but only on the likelihood p(xt|xt−1).

The use of the prior kernel is popular because sampling is often straightforward,

and computing the incremental weight simply amounts to evaluating the condi-

tional likelihood of the new observation given the updated particle position. Then

the importance weight in equation (2.4) is simplified to

ωjt ∼ ωjt−1p(yt|x
j
t).

Bootstrap filter algorithm (Sarkka 2013) :

• Suppose at time t − 1, p(xt−1|y1:t−1) is approximated by {(xt−1, ωt−1)j; j =

1, ..., N}.

• Approximate the next stage filtering density p(xt|y1:t):

For each j,

1. Sample a new point using the evolution density from the dynamic

model:

xjt ∼ p(xt|xjt−1) (2.7)

2. Calculate the weight:

ωjt ∝ ωjt−1p(yt|x
j
t) (2.8)

3. Do re-sampling if needed.
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In the original version of the bootstrap algorithm, re-sampling is carried out at

each and every time step, in which case the term ωjt−1 = 1/N is a constant and

may thus be ignored. With this form of the importance distribution, we do not

need to store the whole histories xj0:t as in the SIS algorithm, only the current

states xjt . This form is also convenient in other particle filters discussed in the

next section, since we do not need to worry about the state histories during the

re-sampling step as in the particle smoother (Sarkka 2013).

Despite its appealing properties and ease of implementation, the use of the state

transition density as importance distribution can often lead to poor performance

and may require a very large number of Monte Carlo samples for accurate esti-

mation due to the inefficiency of the importance distribution. In addition to the

re-sampling method, several approaches have been proposed to obtain importance

densities that lead to importance weights with low variance. These approaches

include the auxiliary variable filter (APF) of Pitt and Shephard (1999). Further-

more, Liu and West (2001) extended the APF algorithm to consider parameter

learning, which we will discuss in Section 2.2.2.

2.1.4 Auxiliary Particle Filter

Bootstrap filter uses a transition density as proposal distribution to ensure that

knowledge of the current observation is incorporated into the proposal mecha-

nism. So particles are not moved blindly into regions of the state space which

are extremely unlikely in light of that observation. However it seems wasteful to

resample particles at the end of time t − 1 prior to looking at yt. Therefore, it is

natural to ask whether it is possible to employ knowledge about the next observa-

tion before resampling to ensure that particles which are likely to be compatible

with that observation have a good chance of surviving, as mentioned by Whiteley

and Johansen (2011).
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Pitt and Shephard (1999) proposed the auxiliary variable particle filter method

and try to improve some deficiencies of the SIR algorithm. The auxiliary par-

ticle filter (APF) algorithm invokes an auxiliary variable construction inside the

sampling step to sample an auxiliary variable (a particle index) for each particle

according to a distribution which weights each particle in terms of its compatibility

with the upcoming observation. The idea of the APF is to mimic the availability

of the optimal importance distribution by performing the re-sampling at step t−1

using the available measurement at time t.

In each filtering step, the algorithm consists of first drawing a sample of the par-

ticle index k which is propagated from t− 1 into the new observation at next step

t:

p(xt, k|xt−1, y1:t) ∝ p(yt|xt)p(xt|xkt−1)ωkt−1 (2.9)

Pitt (1999) approximated Equation 2.9 by the following importance density:

gt(xt, k|xt−1, y1:t) ∝ p(yt|µkt )p(xt|xkt−1)ωkt−1 (2.10)

where µkt could be the mean, mode, a draw, or some other likely value of xt given

xt−1 such that Pr(k = j|y1:t) ∝ p(yt|µjt)ω
j
t−1.

The APF algorithm from Prado & West (2010) is as follows:

• Suppose at time t − 1, p(xt−1|y1:t−1) is approximated by {(xt−1, ωt−1)j; j =

1, ..., N}.

• For each j,

1. Sample an auxiliary variable k(j) with probabilities

Pr(k(j) = j) ∝ p(yt|µjt)ω
j
t−1, j = 1, ..., N .

k(j) is the value of the jth element of index vector k.

2. Sample xjt from p(xt|xk
(j)

t−1).
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3. Finally, the weights are updated to account for the mismatch between

the likelihood at the actual sample and the predicted point. The new

weights are calculated as: ωjt ∝ p(yt|xjt)/p(yt|µk
(j)

t ).

The auxiliary variables in this algorithm are helpful in identifying the particles

with larger predictive likelihoods and hence resulting in lower computation cost

and becoming more efficient. A re-sampling step based on the effective sample size

as introduced in the SIR algorithm above can be added.

2.2 Combined State and Parameter Estimation

In previous sections, a state space model that is function of some latent states was

introduced. However, the need for more general algorithms that deal simultane-

ously with both state variable and unknown static parameters is pressing in many

practical situations. A more general Markovian state space model that contains

static parameters takes the form

yt ∼ p(yt|xt, θ),

xt ∼ p(xt|xt−1, θ) (2.11)

where xt is the unobserved state vector and θ is the unobserved static or fixed

parameter vector.

As pointed out by Nemeth, Fearnhead and Mihaylova (2013), while particle fil-

ter methods based on SIR and APF can work well on solving the state variables,

the potential issue of particle degeneracy leaves estimation of static parameters for

state space models still an open challenge. Estimation of the static parameters has

received plenty of interest over the last decade. Initial approaches to this prob-

lem suggested that the parameters could be estimated by augmenting the state to
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include the unknown parameters and apply a filtering approach. However, while

this scheme can be employed sequentially, it quickly leads to particle degeneracy

as the θ component of the augmented state comprises only of particles selected at

the initialization stage (Doucet, et al. 2009).

Alternatively the problem of particle degeneracy can be partially alleviated by

applying MCMC updates to θ within particle filters (see Gilks and Berzuini, 2001;

Fearnhead, 2002; Storvik, 2002). The Storvik filter (2002) and the Particle Learn-

ing filter of Carvalho, et al. (2010) and Lopes, et al. (2010) are also well established

filters for sequentially learning about xt and θ.

2.2.1 Extended Particle Filters with Artificial Evolution

Noise

A common trick in engineering is to include the static parameter vector θ as part

of the state vector. However, the non-dynamics of the parameter quickly make

the samples degenerate into one or a few different values as time t increases: The

samples of θ at time t can only take the values given at the previous stage, time

t− 1. Since some of these values can become very unlikely with new observations

arriving, it will quickly result in a production of distorted estimates.

Gordon, Salmond and Smith (1993) suggested adding artificial evolution noise for θ

when tackling the problem of sequentially learning the static parameters of a state

space model. This method can be interpreted in terms of an extended model in

which the static parameters are contained and viewed as time-evolving parameters.

In detail, the parameter θ is replaced by θt and included into an augmented state

vector (xt, θt). This replacement can be easily achieved by adding an independent,

zero-mean normal noise to the parameter at each time point. That is,

θt+1 = θt + ζt+1, ζt+1 ∼ N(0, σζ) (2.12)
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Since parameters actually do not belong to the state vector, adding noise artifi-

cially will very likely distort the validity of the approximated posterior distribution.

Besides that, the variance of the noise is difficult to determine. Obviously, if the

variance of noise is too large, the estimation of the posterior distributions (both

states and parameter) will be inaccurate. If the variance is too small, frequently

the real parameter value cannot be tracked in the model. One possible solution to

this problem is make the variance σζ dynamic, relatively large and decaying over

time. This technique is called roughening or jittering and it is expected that this

has negligible effect on the estimates.

Liu and West (2001) proposed another solution to estimate the static parameters

by applying a kernel density approximation to θ, where instead of sampling param-

eters from a finite set of particles, parameters can now be sampled from a density.

However, it is often not clear how to choose the bandwidth in the kernel density

approximation, nor how this approximation impacts the accuracy of estimates of

the parameters (Prado and West 2010).

2.2.2 Liu and West Particle Filter

Liu and West (2001) adapt the generic APF to sequentially re-sample and propa-

gate particles associated with states xt and the parameter vector θ simultaneously.

More specifically, p(xt, θ|y1:t) from the general state space model in (2.11) is rewrit-

ten as

p(xt, θ|y1:t) ∝ p(yt|xt, θ)p(xt|θ, y1:t−1)p(θ|y1:t−1) (2.13)

and p(θ|y1:t−1) is approximated by the mixture distribution:

p(θ|y1:t−1) ≈
N∑
j=1

ωjt−1N(θ|mj
t−1, (1− a2)Vt−1) (2.14)
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where a is a smoothing parameter defined as a = (3δ−1)/(2δ), and δ is a Discount

Factor with typical value δ ∈ [0.9, 1]. Vt−1 is the variance of parameter samples

from the last stage and the mj
t−1 define the locations of the mixture components.

The particle set {(θt−1, ωt−1)j; j = 1, ..., N} is the approximation to p(θ|y1:t−1),

θt−1 denotes the particle mean and N(·|mj
t−1, (1−a)2Vt−1) is a multivariate Gaus-

sian density with mean mj
t−1 and variance/covariance matrix (1− a)2Vt−1.

The main attraction of Liu and West’s filter is its generality as it can be im-

plemented in any state space model. It also takes advantage of APF’s re-sample-

propagate framework and can be considered a benchmark in the current literature.

Prado & West (2010) summarized the steps of the Liu and West algorithm as fol-

lows:

Assume at time t−1, {(xt−1, θt−1, ωt−1)j.j = 1 : N} approximates p(xt−1, θ|y1:t−1).

Then for each particle j, perform the following steps:

1. Identify prior point estimate of (xt−1, θ) given by (µjt ,m
j
t−1), where

µjt = E(xt|xjt−1, θ
j
t−1), (2.15)

mj
t−1 = aθjt−1 + (1− a)θt−1. (2.16)

and µjt is the mean or some other likely value of xt given xjt−1 defined by the

evolution equation.

2. Sample an auxiliary index k(j) from the set {1 : N} with probability propor-

tional to

Pr(k(j) = j) ∝ ωjt−1p(yt|µ
j
t ,m

j
t−1); j = 1, ..., N. (2.17)

3. Propagate/sample a new parameter vector θjt from

θjt ∼ N(θ|mk(j)

t−1, (1− a2)Vt−1) (2.18)

with Vt−1 = 1
N−1

∑N
j=1(θ

j
t−1 − θt−1)(θ

j
t−1 − θt−1)′.
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4. Re-sample a value of the current state vector xjt from p(xt|xk
(j)

t−1, θ
j
t ).

5. Compute the new weights

ωjt ∝
p(yt|xjt , θ

j
t )

p(yt|µk
(j)

t ,mk(j)
t−1)

. (2.19)

Finally {(xt, θt, ωt)j, j = 1, ..., N} approximates p(xt, θ|y1:t). Note that in practice,

θ may need to be transformed so that the Normal kernels in equation (2.14) are

appropriate. Alternatively, other kernels, such as Beta or Gamma kernels can be

used for bounded static parameters.

2.2.3 Storvik Particle Filter

To avoid the degeneracy problem, Storvik (2002) (see also Fearnhead, 2002) mod-

ifies the SIR algorithm by adding a Gibbs sampling step for θ conditional on

the state trajectory. The algorithm is developed in the SIS framework and con-

sequently inherits the theoretical justifications of SIS (Erol, et al. 2013). The

approach is based on marginalizing the static parameters out of the posterior dis-

tribution such that only the state vector needs to be considered.

Suppose the posterior distribution of θ given x1:t and y1:t depends on some low-

dimensional set of sufficient statistics st = St(x1:t, y1:t), where St is easy to update

recursively. Assume that an approximate particle set zt−1 is available from the

posterior distribution p(x1:t−1|y1:t−1). We need an update to a new particle set zt

at time t. The approach is based on the following (Storvik 2002):

p(x1:t, θ|y1:t) = C ∗ p(x1:t, θ, yt|y1:t−1)

= C ∗ p(x1:t−1|y1:t−1)p(θ|x1:t−1, y1:t−1)

·p(xt|x1:t−1, y1:t−1, θ)p(yt|x1:t, y1:t−1, θ)

= C ∗ p(x1:t−1|y1:t−1)p(θ|st−1)p(xt|xt−1, θ)p(yt|xt, θ)
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where C = [p(yt|y1:t−1)]−1, which is a constant not depending on x1:t or θ. The

simplest approach would be to simulate x1:t−1 fron p(x1:t−1|y1:t−1), θ from p(θ|st−1),

xt from p(xt|xt−1, θ) and accept with probability proportional to p(yt|xt, θ). The

key point is that the parameter θ simulated at time t does not depend on values

simulated at previous time points. The Storvik algorithm has the advantage of

reducing computational and memory requirements given that only the sufficient

statistics need to be stored as opposed to the complete state trajectories. The

algorithm is summarized as below (Storvik 2002):

For each particle j = 1 : N ,

1. Sample the parameter particle θj from the proposal distributions for θ,

ft,1(θ|θ(j)0:t−1; y1:t). Typically ft,1(θ|θ(j)0:t−1; y1:t) = ft,1(θ|s(j)t−1) in order to make

computation fast.

2. Propagate and sample the state particles from the proposal distribution for

xt, x
(j)
t ∼ ft,2(xt|x(j)0:t−1, yt, θ).

3. Compute the importance weight:

ω
(j)
t ∝ ω

(j)
t−1

p(θ|s(j)t−1)p(x
(j)
t |x

(j)
t−1, θ)p(yt|x

(j)
t , θ)

ft,1(θ|θ(j)0:t−1; y1:t)ft,2(x
(j)
t |x

(j)
t−1; yt, θ)

. (2.20)

4. Re-sampling:

• Obtain the new index vector k(j) by resampling set {1 : N} with weight

{ω(1)
t : ω

(N)
t },

• Put xjt = xk
(j)

t , sjt−1 = sk
(j)

t−1 and ω
(j)
t = 1/N .

5. Propagate the sufficient statistics sjt = S(sjt−1, x
j
t , yt).
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2.2.4 Particle Learning

Carvalho, et al. (2010) present methods for sequential filtering, particle learning

(PL) and smoothing for rather general state space models. They extend Chen and

Liu (2000) mixture Kalman filter (MKF) methods by allowing parameter learn-

ing and utilize a re-sample-propagate algorithm together with a particle set that

includes state sufficient statistics as in the Storvik filter described in the previous

section. They also show via several simulation studies that PL outperforms both

the LW and Storvik filters and is comparable to MCMC samplers, even when full

adaptation is considered. The advantage is even more pronounced for large values

of T .

More specifically, the PL algorithm assumes that p(θ|x0:t, y1:t) = p(θ|st), and the

state sufficient statistics satisfies deterministic updating rules st = S(st−1, xt, yt),

as in the Storvik filter from the previous subsection. The particles are represented

by {(st−1, xt−1, θ)(j); j = 1, ..., N} at time t− 1 and the PL method updates parti-

cles at time t using the following Bayesian updating equations:

p(st−1, xt−1, θ|y1:t) ∝ p(yt|st−1, xt−1, θ)p(st−1, xt−1, θ|y1:t−1)

and

p(st, xt, θ|y1:t) =

∫
p(st|st−1, xt, yt)p(xt|st−1, xt−1, θ, yt)

× p(st−1, xt−1, θ|y1:t)dst−1dxt−1

The PL algorithm is summarized as follows:

For each particle j = 1 : N ,

1. Sample an auxiliary index k(j) with probabilities

Pr(k(j) = j) ∝ p(yt|sjt−1, x
j
t−1, θ), j = 1, ..., N .

2. Propagate and sample the state particles xjt ∼ p(xt|sk
(j)

t−1, x
k(j)

t−1, θ, yt).
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3. Propagate sufficient statistics particles sjt ∼ S(sk
(j)

t−1, x
j
t , yt).

4. Sample θj from p(θ|sjt).

2.2.5 Particle Markov Chain Monte Carlo Methods (PM-

CMC)

Markov Chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) meth-

ods are the two most popular classes of algorithms used to sample from general

high-dimensional probability distributions. Unfortunately both methods have their

problems especially when dealing with non-linear, non-Gaussian state-space mod-

els.

The basic idea in PMCMC is to use SMC to construct a proposal kernel for an

MCMC sampler. Using MCMC steps within SMC algorithms avoids the introduc-

tion of an artificial dynamic model or of a fixed lag approximation. An approach

originally proposed by Andrieu, Doucet and Holenstein (2010) consists of adding

MCMC steps to re-introduce “diversity” among the particles.

The PMMH algorithm is an MCMC algorithm for state space models jointly up-

dating the parameter θ and the states x0:T . This algorithm runs iterations of

Metropolis-Hastings or the Gibbs sampler to produce samplers which target the

posterior distribution. Within each iteration, a proposed new θ? is first generated

from a proposal f(θ?|θ), and then a corresponding x?0:T is generated by running a

bootstrap particle filter. However, PMCMC is extremely slow even with a small

number of particles. For this reason, this algorithm is not further discussed in this

thesis.
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2.3 Particle Smoothing

Whereas filtering corresponds to estimating the distribution of the current state

based upon the observations received up to the current time, smoothing corre-

sponds to estimating the distribution of the state at a particular time given all

of the observations up to some later time. In this sense, particle smoothers are

alternatives to MCMC in state space models (Kitagawa, 1996). The trajectory

estimates obtained by such methods, as a result of the additional information

available, tend to be smoother than those obtained by filtering (Doucet and Jo-

hansen 2008).

The backward-simulation particle smoother (BSPS) is an smooth approach pro-

posed by Godsill, Doucet, and West (2004) that relies on a

(i) Forward particle sampling

and

(ii) Backward particle re-sampling,

which allows to perform smoothing computation in general state space models.

This method assumes the filtering has already been performed using any particle

filtering, so that an approximated representation of p(xt|y1:t) is available at each

t = 1 : T via the weighted set of particles {(x0:t, ωt)j; j = 1, ..., N}.

To compute the marginal smoothing distribution, the joint distribution can be

decomposed as

p(x0:T |y1:T ) ∝ p(xT |y1:T )
T∏
t=1

p(xt|xt+1, y1:T ). (2.21)

By Bayes’ rule and conditional independence of the state space model, we get

p(xt|xt+1, y1:T ) = p(xt|xt+1, y1:t)

=
p(xt|y1:t)p(xt+1|xt)

p(xt+1|y1:t)
∝ p(xt|y1:t)p(xt+1|xt).
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Then it is possible to obtained the modified particle approximation

p(xt|xt+1, y1:T ) ≈
N∑
j=1

←−−−ωt|t+1
jδxjt

(xt) (2.22)

with

←−−−ωt|t+1
j =

ωjtp(xt+1|xjt)∑N
i=1 ω

i
tp(xt+1|xit)

So the weights for the smoothing approximation are modified by p(xt+1|xt). Lead-

ing to the following particle smoothing algorithm as in Prado & West (2010):

1. After implementing all the filtering steps, at time T , approximate p(xT |y1:T )

by choosing {(←−xT ,←−ωT )j; j = 1, ..., N} = {(xT , ωT )j; j = 1, ..., N}

2. For t = (T − 1) : 0,

• Calculate ←−−−ωt|t+1
j ∝ ωjtp(

←−−xt+1|xjt) for j = 1, ..., N .

• Re-sample by choosing ←−xt j = xjt with probability ←−−−ωt|t+1
j.

3. Then {←−xt j, j = 1, ..., N} is an approximate realization from the smoothing

distribution p(xt|y1:T )

Steps 1 and 2 can be repeated several times to obtain independent approximate

realizations of p(xt|y1:T ).
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Simulation Study for the First

Order Dynamic Linear Model

In this chapter we illustrate the algorithms introduced in Chapter 2 using simulated

data from a first order dynamic linear model with unknown observation variance

and to evaluate the performance of the particle filters when one static parameter

is unknown. This DLM has the same format as the model discussed in Section

1.4.4 but with constant observation and evolution variance.

Yt = xt + vt, vt ∼ N(0, V ), (3.1)

xt = xt−1 + ωt, ωt ∼ N(0,W ). (3.2)

To simplify the computation, I assume the state variance W is provided and is

relatively small compared to the observation variance V . We have chosen this

model so that we can easily apply different methodologies presented in this thesis

and compare their performance.

Estimated posterior distributions from particle filters are compared with the pos-

terior distributions obtained from a full MCMC run at each time point using a
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large number of iterations, M=100,000. The number of particles has been set to

N=5000, such that a reasonable agreement with the MCMC runs could be reached.

3.1 MCMC Algorithm

While sampling the parameters depends heavily on the model and priors being

used, the state vector sequence can be generated from its full conditional distri-

bution using the so-called forward filtering backward sampling (FFBS) algorithm

(Carter and Kohn 1994). This algorithm is basically a simulation version of the

Kalman smoother, consisting in running the Kalman Filter first, followed by a

backward recursion to generate all the states from the final time T to time 0.

FFBS is well suited to deal with state space models that are conditionally Gaus-

sian. As illustrated by West and Harrison (1997), a fully conjugate Bayesian

analysis is capable of providing specific equations for the posterior distribution of

the observation variance V .

3.1.1 Prior for the Observation Variance

In many univariate structural models (local level, local linear trend, seasonal fac-

tor components), the only unknown parameters are the observation and system

variances. In this case, I assume independent Inverse-Gamma priors for these

variances since it provides an easy way to set up a Gibbs sampler - conditionally

conjugate model. Besides, it is convenient to work with the precision φ = 1/V

rather than with the variance V .

A conjugate prior for φ is such that it has a Gamma density with parameters

(a0, b0) and denoted by φ ∼ Gamma(a0, b0). Here b0 is the inverse scale, or so
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called rate parameter so the mean of this Gamma distribution is a0/b0. Given

the observations (y1, y2, ...yT ), we can update our opinion about φ through the

computation of the posterior density. Using Bayes formula, we can compute the

posterior density for φ given x1:T and y1:T . For the model of equations 3.1 and 3.2:

π(φ|x1:T , y1:T ) ∝ p(φ) ·
T∏
t=1

p(yt|xt, φ)

∝ (φ)a0−1exp(−φb0) · (φ)T/2exp

{
−1

2

T∑
t=1

φ(yt − xt)2
}

∝ (φ)a0+T/2−1exp

{
−φ

(
b0 +

1

2

T∑
t=1

(yt − xt)2
)}

which shows the conjugate posterior density of

p(φ|x1:T , y1:T ) = Gamma

(
a0 + T/2, b0 +

1

2

T∑
t=1

(yt − xt)2
)
.

One of the most commonly used non-informative prior for the variance V is the

Inverse-Gamma with parameters a0 = 0.001 and b0 = 0.001 (Gelman 2006). For

the states x1:T , we need a prior for x0:

x0 ∼ N(m0, C0)

with m0 = 0 and C0 = 100 or a larger value of C0 to make the prior non-

informative.

3.1.2 Gibbs Sampling

Since we can easily get the full conditional densities for this first order DLM,

a Gibbs sampler is good enough to run the MCMC and get the approximation

of the joint posterior density π(x1:T , V |y1:T ). The Gibbs sampling iterations are

summarized as follows:
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1. Set initial value for the variance, V (0). This initial value could be generated

from the prior density. Alternatively, one could use the sample variance of all

the observations: V (0) = var(y1:T ). The initial value of x0 can be a random

draw from its prior distribution.

2. For iteration m = 1, 2, ...

(a) Apply the FFBS algorithm as discussed in Section 1.4.4 to generate

samples of the state parameter x
(m)
1:T |y1:T given V (m−1).

(b) Generate V (m) from IG
(
a0 + T/2, b0 + 1

2

∑T
t=1(yt − x

(m)
t )2

)
.

After convergence is reached, the resulting samples are draws from the posterior

density. Theoretically, values from the posterior density are only obtained after

running the algorithm an infinite number of iterations. In practice, a visual in-

spection of trace plots can be used to check if the chains empirically converged

to a stable distribution within the parameter space. We may also look at den-

sity plots and check the autocorrelation between draws of the Markov chain. We

would expect the kth lag autocorrelation to be smaller as the value k increases.

Furthermore, it is a standard practice to discard the initial iterations or burn-in

as they could be strongly influenced by the starting values and may not provide

good information about the target distribution.

3.2 Particle Filter Algorithm

As discussed in section 2.2.1, for the BS and APF particle filters, we will include

the static parameters in the state vector and make it evolve with an artificial

variance that decays over time. A log transformation on V is considered in order

to use a Normal distribution proposal. The details to approximate the posterior
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density of the parameters with particle filters for a first order DLM are provided

next.

3.2.1 BS Filtering

1. Set initial values:

(a) Pick N samples of log(V ) from a N (log[var(y1:5)], σ0). Here var(y1:5)

is the sample variance of the first 5 observations, other number of ini-

tial observations can be chosen as well (e.g. 10 or 20). Different σ0

values are considered and an optimal value was picked in order to reach

convergence fast.

(b) Pick N samples of x
(0)
t based on the prior density, x

(0)
t ∼ N(m0, C0).

2. For time t = 1, ..., T

For each particle index j = 1, ..., N ,

i. Sample new particles from the dynamic model:

First take jittering for the dynamic variance: σt = 0.9σt−1 and then

propagate it:

log(V j
t ) ∼ N(log(V j

t−1), σt) (3.3)

xjt ∼ N(xjt−1,W ). (3.4)

ii. Calculate the weights:

ωjt ∝ p(yt|xjt , V
j
t ), j = 1, ..., N (3.5)

given that p(yt|xjt , V
j
t ) = N(yt|xjt , V

j
t ).

iii. Re-sample xjt and V j
t based on the new weights.
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3.2.2 APF Filtering

1. Set initial values as in the BS filtering case.

2. For time t = 1, ..., T

For each particle index j = 1, ..., N ,

First use jittering to define a dynamic variance: σt = 0.9σt−1.

i. Sample an auxiliary variable by first computing the weight:

wj
t ∝ p(yt|µt, V j

t−1). (3.6)

We take µt to be the mean of the distribution of xt given xjt−1,

which is simply µt = xjt−1 due to the Normality of p(xt|xt−1). Then

we obtain the N dimensional auxiliary index vector k based on sam-

pling over the set {1 : N} using the N weights.

ii. Propagate the new particles from the original particles under the

auxiliary index vector k as:

log(V j
t ) ∼ N

(
log(V k(j)

t−1 ), σt

)
xjt ∼ N

(
xk

(j)

t−1,W
)
,

where k(j) represent the index value from the jth element of the

auxiliary index vector k.

iii. Compute a new weight using:

ωjt ∝ p(yt|xjt , V
j
t )/wk(j)

t ,

where p(yt|xjt , V
j
t ) = N(yt|xjt , V

j
t ).

iv. Re-sample xjt , V
j
t based on the new weights.
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3.2.3 LW Filtering

1. Set initial values as in the BS filtering case.

2. For time t = 1, ..., T

For each particle index j = 1, ..., N ,

i. Calculate the sample variance from the particles of V at t− 1:

µlog(v) =
1

N

N∑
i=1

log(V i
t−1),

vpart−1 =
1

N − 1

N∑
i=1

[
log(V i

t−1)− µlog(v)
]2
. (3.7)

Calculate the prior mean estimate based on the particles at t− 1:

µjt = E(xt|xjt−1) = xjt−1, (3.8)

mj
t−1 = alog(V j

t−1) + (1− a)µlog(v). (3.9)

ii. Compute the first stage weights:

wj
t ∝ p(yt|µjt ,m

j
t−1)

= N(yt|µjt ,m
j
t−1) = N(yt|xjt−1,m

j
t−1).

And obtain the index vector k based on sampling the set {1 : N}

using these weights.

iii. Perform a parameter re-sample of V j
t :

log(V j
t ) ∼ N

(
mk(j)

t−1, (1− a2)vpart−1
)
. (3.10)

Perform the propagation of the state xjt

xjt ∼ N
(
xk

(j)

t−1,W
)
. (3.11)

iv. Compute the second stage weights

ωjt ∝ p(yt|xjt , V
j
t )/wk(j)

t , (3.12)

where p(yt|xjt , V
j
t ) = N(yt|xjt , V

j
t ).

v. Do a re-sample of xjt and V j based on the second stage weights.
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3.2.4 PL Filtering

1. Set initial values as in the BS filtering case.

2. The sufficient statistics for this model are:

st =

[
t

2
,
1

2

t∑
l=1

(yl − xl)2
]
.

3. For time t = 1, ..., T

For each particle index j = 1, ..., N ,

i. Obtain an auxiliary index vector by computing the weights:

wj
t ∝ p(yt|xjt−1, V

j
t−1,W ),

with p(yt|xjt−1, V
j
t−1,W ) = N(yt|xjt−1, V

j
t−1 +W ).

And get the index vector k by sampling over the set {1 : N} with

these weights.

ii. Propagate the state particles xjt by

xjt ∼ p(xt|sjt−1, x
j
t−1, V

j,W, yt)

= p(xt|xjt−1, V j,W, yt)

∝ p(yt|xt, V j,W )p(xt|xjt−1, V j,W )

∝ N

{
ytW + xt−1V

j

V j +W
,
V j ·W
V j +W

}
.

See Appendix A.4 for the proof of this step.

iii. Update the sufficient statistics

st = f(st−1, xt, yt)

= f

(
t− 1

2
,

1

2

t−1∑
l=1

(yl − xl)2, xt, yt
)

=

[
t− 1

2
+

1

2
,

1

2

t−1∑
l=1

(yl − xl)2 + (yt − xt)2
]

=

[
t

2
,

1

2

t∑
l=1

(yl − xl)2
]
.
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Chapter 3. Simulation Study for the First Order Dynamic Linear Model

iv. Sample the static parameter from p(θ|sjt) as:

V |st ∼ IG

(
a0 + t/2, b0 +

1

2

t∑
l=1

(yl − xl)2
)

3.3 Simulation Study

In this section, a simulation case to approximate the posterior densities of the state

parameters xt and observation variance V is studied. A dataset is generated from

the first order DLM model described in Equations 3.1 and 3.2 with fixed parameters

V = 1, W = 0.01 and xt = xt−1 + ωt with x0 = 25 and T = 200. We compare

the approximation from the MCMC and all particle filter methods by sequentially

updating the filtering density p(µ1:t|y1:t), t = 11, ..., T as new observations are

processed. The detail procedure is as follows: use t = 1 : 10 as a warm-up period

and run the MCMC and particle filters based on these first 10 observations. For

a subsequent period (t = 11, 12, ...T ), run the MCMC on y1:t and draw posterior

samples. This gives an approximation to the filtering distribution p(xt|y1:t). We

start the comparison from t = 11 since a smaller number of observations will not

provide enough information to approximate the posterior density. For particle

filters, we retain particles from the previous stage running on y1:t and update

these particles with a new observation yt+1. The updated particles are a posterior

density approximation for p(xt+1|y1:t+1). For MCMC simulation, the total number

of iterations is set to M = 4, 000 and 3000 samples for burn-in without thinning.

N = 5000 particles were used for all particle filter methods. The results are shown

in Figures 3.2 to 3.3.

Figure 3.2 shows the approximation of the posterior density of the state parameter

p(xt|y1:t), t = 11, ..., T from different methods. In plot (a), the dots represent the

observations generated from the first order DLM model. The solid line in red color
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Chapter 3. Simulation Study for the First Order Dynamic Linear Model

are the true values of the state xt. The filled gray area represents the 95% credible

interval of the MCMC simulation and the solid black line is the posterior median

value at each time point. The plot shows that the median values from the MCMC

method follow a similar behavior as the true values of the state parameter xt.

The 95% credible interval of the MCMC method covers the true state parameter

for most of the time points except at t = 80 to t = 95. Plot (b) illustrates

the comparison between the MCMC and the BS particle filter approximation.

Just like in plot (a), the filled gray area symbolizes the 95% credible interval of

the MCMC simulation and the solid black line represents the posterior median

values. The solid line in blue are the posterior median values of the BS particle

filter approximation and the dashed lines in blue give the 95% credible interval.

The 95% credible interval from the BS particle filter matches with the one from

MCMC and the BS particle filter achieves almost the same result as the MCMC

method. Plot (c) shows a comparison between the MCMC and the APF particle

filter approximation. Plot (d) illustrates the comparison between the MCMC and

the LW particle filter approximation. Plot (e) illustrates the comparison between

the MCMC and the PL particle filter approximation. In plots (c) and (e), the

solid black line representing the posterior median values from the MCMC method

is not easily identified since it is overlapping with the solid blue line representing

the posterior median values from the particle filter method. Plots (c), (d) and

(e) prove that the APF, LW and PL particle filters achieve similar results as the

MCMC method in estimating the state parameter xt. Figure ?? shows estimates

of the posterior density of the observational variance parameter V , p(V |y1:t)fort =

11, ..., T . In plot (a), the filled gray area represents the 95% credible interval of

the MCMC simulation and the solid black line are the posterior median values.

The solid line in blue stands for the posterior median values of the BS particle

filter approximation and the dashed lines in blue cover the 95% credible interval.

The MCMC estimates match with the BS particle filter estimates through all time
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Figure 3.1: Estimation of the state parameter xt of a first order DLM. (a) True
parameter vs MCMC, (b) MCMC vs BS, (c) MCMC vs APF, (d) MCMC vs LW,
(e) MCMC vs PL.

points, t = 11, ..., 200. The posterior median values and the 95% credible interval

from both the MCMC and BS particle filter methods tend to agree with each other.

Plot (b) illustrates the comparison between the MCMC and the APF particle filter

approximation. This plot clearly shows the APF particle filter achieves a similar

result as the BS particle filter but tends to provide a more stable 95% credible

interval. Plot (c) illustrates the comparison between the MCMC and the LW

particle filter approximation. Plot (d) illustrates the comparison between the
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Chapter 3. Simulation Study for the First Order Dynamic Linear Model

MCMC and the PL particle filter approximation. Among all these methods, the

PL particle filter method provides the best match with , while the LW method

provides the second best match to MCMC. Other particle filter methods also

provide comparable estimates of the posterior distribution but the LW particle

filter generates the smallest 95% credible interval. Figure 3.3 shows histograms
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Figure 3.2: Estimation of the state parameter xt of a first order DLM. (a) True
parameter vs MCMC, (b) MCMC vs BS, (c) MCMC vs APF, (d) MCMC vs LW,
(e) MCMC vs PL.

of the samples of the posterior density approximation at the last time point T ,

p(xT |y1:T ) and p(V |y1:T ) for all methods considered respectively. Histograms have
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Chapter 3. Simulation Study for the First Order Dynamic Linear Model

the same range in order to provide a clear comparison among different methods.

Histograms corresponding to p(xT |y1:T ) on the left panel show all methods provide

similar samples of the state parameter conditional on all the data. On the right

panel, all the histograms of the samples of the posterior density approximation for

p(V |y1:T ) contain the true parameter value of 1. The result from the PL method is

graphically closer to the MCMC result while the LW method provides the smallest

credible.
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Figure 3.3: Histograms of posterior samples for a first order DLM.
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Chapter 4

The Generalized Extreme Value

(GEV) Distribution

Extreme value theory has been applied to assess the extreme behavior of random

variables in various fields from natural sciences (e.g., extreme temperature) to

financial econometric (e.g., risk management). In recent years, dynamic extreme

value models have attracted some attention to investigate time-dependence change

of extremes. A MCMC algorithm is generally used to estimate the posterior dis-

tributions of the parameters of this model in a Bayesian framework.

In this chapter, we apply the MCMC and particle filter approaches mentioned in

this thesis to dynamic GEV models. Since MCMC is a well recognized approach to

identify the dynamic state and static parameters for GEV distribution, I consider

the MCMC posterior approximation as a benchmark to test performance on model

estimation of particle filter approximations.
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Chapter 4. The Generalized Extreme Value (GEV) Distribution

4.1 GEV Distribution

As mentioned by Adlouni and Ouarda (2009), extreme value analysis allows the

interpretation of past records and the inference about future probabilities of oc-

currence of extreme events, such as floods, extreme rainfalls, or high wind gusts.

Extreme values are often represented by the maximum value of the variable of

interest over a given time period, such as a day, a month or even a year.

The generalized extreme value (GEV) distribution, also known as the von Mises

type extreme value distribution or the von Mises-Jenkinson type distribution (Jenk-

inson, 1955), is a family of continuous probability distributions developed within

the extreme value theory that combines the Gumbel, Frèchet and Weibull families

also known as type I, II and III extreme value distributions (Coles 2001).

Let yt, for t = 1, . . . , T , be the maximum of a block of observations over a unit of

time (e.g., a year, a month, a day). Then yt follows a GEV distribution, denoted

here by yt ∼ GEV (µ, σ, ξ). Its cumulative distribution function (cdf) H is given

by

H(y) = Pr(yt ≤ y) = exp

{
−
(

1 + ξ

(
y − µ
σ

))− 1
ξ

}
, (4.1)

where µ ∈ R, σ > 0 and ξ ∈ R are the location, scale and shape parameters,

respectively, and 1 + ξ(yt − µ)/σ > 0. More specifically, yt varies in [µ− σ/ξ,∞),

(−∞, µ − σ/ξ] and R for ξ > 0 (Frèchet), ξ < 0 (Weibull) and ξ = 0 (Gumbel),

respectively. The case of ξ > 0 corresponds to a heavy-tail, ξ < 0 is the case of

a finite upper endpoint and ξ = 0 is the case of an exponentially decreasing tail

(Kotz and Nadarajah, 2000). H(y) arises through a limiting argument for block

maxima as the block size goes to infinity in the so-called Extreme Type Theorem

that is discussed for example, in Coles (2001).
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Chapter 4. The Generalized Extreme Value (GEV) Distribution

The density function is, consequently,

f(y|µ, σ, ξ) =
1

σ

[
1 + ξ

(
x− µ
σ

)](−1/ξ)−1
· exp

{
−
[
1 + ξ

(
x− µ
σ

)](−1/ξ)}

for y > µ − σ/ξ in the case ξ > 0, and for y < µ + σ/ξ in the case ξ < 0. The

density is 0 outside these ranges.

In the case ξ = 0 the density is positive on the whole real line and equal to

f(y|µ, σ, ξ) =
1

σ
exp

[
−
(
y − µ
σ

)]
exp

{
− exp

[(
−y − µ

σ

)]}
.
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Figure 4.1: Probability density curves of the GEV distribution for 3 values of
the shape parameter with µ = 0 and σ = 1.

Figure 4.1 shows the pdfs of the GEV distribution for ξ = −0.5, 0, 0.5 respectively

with µ = 0 and σ = 1. We can clearly see the difference between the three types
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Chapter 4. The Generalized Extreme Value (GEV) Distribution

of GEV distributions. However, given a shape value of 0.1 and -0.1, the difference

between the three types of GEV distributions is less evident as shown in Figure

4.2.
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Figure 4.2: Probability density curves of the GEV distribution for 3 values of
the shape parameter with µ = 0 and σ = 1.

4.2 MCMC for the GEV Distribution with Time

Components

In order to include time varying components, the standard extreme value model can

be enhanced by assuming a functional form, usually a time dependence model, for

each of its parameters. Gaetan and Grigoletto (2004) assume that the parameters
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γt = (µt, log σt, ξt) are time-varying and related to a d-dimensional state vector Xt

as

γt = ZtXt, (4.2)

where Zt is a known 3xd matrix. The state varies according to a standard linear

evolution with Gaussian errors

Xt = GXt−1 + wt, wt ∼ N(0,W ) (4.3)

where G is a known d by d transition matrix and the initial state is modeled as

X0 ∼ N(m0, C0).

Gaetan and Grigoletto (2004) also consider that the behavior of the location pa-

rameter µt can be decomposed in a long-term trend, and/or a seasonal component

and/or a term which includes covariate dependence. In their case study about the

Women’s 3000m athletic record, a dataset that I consider in a later chapter, they

assume fixed scale and shape parameters while consider the time behavior of µt is

described by a first-order random walk (RW1),

µt = µt−1 + ωt (4.4)

or a second-order random walk (RW2)

µt = 2µt−1 − µt−2 + ωt (4.5)

where the errors ωt are independent and follow a N(0, V ) distribution.

My study will be based on the model suggested by Gaetan and Grigoletto (2004)

with a RW1 or RW2 time evolution on the state µt. We need to estimate the

posterior distribution p(µ1:t, σ, ξ|y1:T ). In the next section, we develop a MCMC

algorithm to estimate the parameters of the time-dependent GEV model where

the state variables µt follow the RW1 process. To use a Gaussian distribution, a

log transformation is employed for the scale parameter σ.
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A problem for the MCMC is how to set the initial condition that direct to fast

convergence. A good initial condition that is close to the true parameter values can

guarantee rapid convergence of the MCMC and particle filter approaches. How-

ever, when the initial conditions deviate far from the true values, the probability

of the particles approaching the true states can be very low, especially in the early

time stages. Although theoretically convergence occurs regardless of the starting

point, a bad starting point may make convergence difficult or even impossible to

achieve. A possible approach to set the the starting values of µ0 is through trial

and error, or with the mean value of a few observations, such as

µ
(0)
t =

1

10

10∑
t=1

(yt).

The initial values of the scale and shape parameters are generated using a max-

imum likelihood estimation of the GEV distribution by considering that location

parameter µt, constant across time.

4.2.1 Prior Distributions

Coles and Powell (1996) argue that eliciting priors in terms of the GEV parameters

is not necessarily the most sensible approach to express prior beliefs on this distri-

bution. However, without any previous information and given the computational

complexities of a time-varying GEV model, we need to choose priors on parameters

rather than on quantiles or differences of quantiles as suggested by these authors.

An important but reasonable assumption is that the parameters are independent,

allowing us to define their priors separately.

We adopt independent Normal density priors for all states and parameters, so the

joint prior distribution for p(µ1:T , σ, ξ, V ) is given by:

• µ0 ∼ N(Mµ, V ),
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• log(σ) ∼ N(Mσ, Vσ),

• ξ ∼ N(Mξ, Vξ), and

• log(V ) ∼ N(MV , VV ).

where Mµ,Mσ,Mξ,MV are the prior means and Vσ, Vξ, VV are the prior variances

respectively. We only define the prior for µ0 since for the other location parameters

µ1:T the prior can be obtained through the time behavior defined in Equation 4.4

or 4.5. For the evolution variance V an Inverse-Gamma prior can be used as in

the previous chapter.

4.2.2 Posterior Distributions

Let {y1, y2, ..., yT} be independent realizations from a GEV distribution conditional

to all model parameters. The likelihood function is:

L(µ1:T , ξ, , σ, | y1:T ) =
T∏
t=1

p(yt|µt, ξ, σ)

=
T∏
t=1

1

σ

[
1 + ξ

(
yt − µt
σ

)]−(1+ 1
ξ
)

+

exp

{
−
[
1 + ξ

(
yt − µt
σ

)]− 1
ξ

+

}
.

Using Bayes theorem, the posterior distribution is proportional to the product of

the likelihood function and the prior distribution.

p(µ1:T , ξ, σ, V |y1:T ) ∝ p(y1:T |µ1:T , ξ, σ, V )× p(µ1:T , ξ, σ, V )

∝ p(y1:T |µ1:T , ξ, σ, V )× p(µ1:T |ξ, σ, V )× p(ξ, σ, V )

∝

{
T∏
t=1

p(yt|µt, ξ, σ)

}
× p(µ0)×

{
T∏
t=1

p(µt|µt−1, V )

}
× p(ξ)× p(σ)× p(V )

∝

{
T∏
t=1

p(yt|µt, ξ, σ)

}
× exp

{
−(µ0 −Mµ)2

2Vµ

}
×

{
T∏
t=1

exp

{
−(µt − µt−1)2

2V

}}
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× exp

{
−(log(V )−MV )2

2VV

}
× exp

{
−(ξ −Mξ)

2

2Vξ

}
× exp

{
−(log σ −Mσ)2

2Vσ

}
The full conditional distributions for each parameter ξ, σ and V :

p(ξ|y1:T , µ1:T , σ, V ) ∝

{
T∏
t=1

p(yt|µt, ξ, σ)

}
× p(ξ),

p(σ|y1:T , µ1:T , ξ, V ) ∝

{
T∏
t=1

p(yt|µt, ξ, σ)

}
× p(σ),

p(V |y1:T , µ1:T , ξ, σ) ∝

{
T∏
t=1

p(µt|µt−1, V )

}
× p(V ).

The full conditional distributions for each µt, t = 2, ...(T − 1) is given by:

p(µt|y1:T , {µ−t}, ξ, σ, V ) ∝ p(yt|µt, ξ, σ)× p(µt|µt−1, V )× p(µt+1|µt, V )

where {µ−t} is the set of location parameters without µt, that is

{µ−t} = {µ1, ..., µt−1, µt+1, ..., µT}.

The full conditional distributions for µ1 is:

p(µ1|y1:T , {µ2:T}, ξ, σ, V ) ∝ p(y1|µ1, ξ, σ)× p(µ2|µ1, V ).

The full conditional distributions for µT is given by:

p(µT |y1:T , {µ1:T−1}, ξ, σ, V ) ∝ p(yT |µT , ξ, σ)× p(µT |µT−1, V ).

Posterior draws for µt, V, σ and ξ can be obtained through full conditional draws of

each parameter based on the Metropolis-Hastings (M-H) algorithm. For example,

to draw the shape parameter ξ with a M-H step, at iteration m+ 1:
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1. Sample ξm+1 from a Normal distribution centered at ξm which defines a

symmetric proposal distribution based on a Random Walk so our M-H step

reduces to a pure Metropolis step.

2. Compute α(ξm, ξm+1) = min
{

1, p(ξ
m+1)

p(ξm)

}
, where p(ξm+1) is the full con-

ditional posterior distribution evaluated at the generated value ξm+1, and

p(ξm) is full conditional posterior evaluated at the previous sampled ξm.

3. Generate u ∼ U(0, 1). If u < α(ξm, ξm+1), we accept the proposed value

ξm+1 as our current point in the chain. Otherwise, we reject ξm+1 and keep

the previous point ξm.

The Estimation of theµt, V and σ follow a similar procedure. A difficulty here is

how to find an appropriate symmetric proposal distribution for µt:

The full conditional distributions for µt, t = 2, ...(T − 1) can be simplified as:

p(µt|µt−1, V )× p(µt+1|µt, V )

∝ exp

{
−(µt − µt−1)2

2V

}
× exp

{
−(µt+1 − µt)2

2V

}
∝ exp

{
−

2µ2
t − 2µt(µt−1 + µt+1)) + µ2

t−1 + µ2
t+1

2V

}
∝ exp

{
−
µ2
t − 2(µt)[(µt−1 + µt+1)/2] + µ2

t−1/2 + µ2
t+1/2

2V/2

}

∝ exp

−
{
µt − [(µt−1 + µt+1)/2]

}2

2V/2


which is a Normal distribution:

p(µt|µt−1, µt+1) = N

(
(µt−1 + µt+1)

2
,
V

2

)
.

Therefore we can take it as the proposal density g (µ?t |µm1:T ) and help to simplify

the calculation of the Metropolis ratio. Recall that Hastings (1970) proposed to
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define the acceptance probability with

α(θ?, θ) = min

{
1,
p(θ?)g(θ|θ?)
p(θ)g(θ?|θ)

}
. (4.6)

These values µ?t and θ? are generated values based on the proposal distribution.

In our case, to set the value at iteration m+ 1, we can simplify the test ratio as

p(θ?)

g(θ?|θ)
=
p(θ?|y1:T )

g(θ?|θt−1)

=
p
(
µ?t |y1:T , µm1:T , ξ, σ, V

)
g
(
µ?t |µm1:T

)
=
p(yt|µ?t , ξ, σ) · p(µ?t |µmt−1, µmt+1)

p(µ?t |µmt−1, µmt+1)

= p(yt|µ?t , ξ, σ).

And the accept/reject ratio is simplified as:

r =
p(θ?|y)/g(θ?|θt−1)
p(θt−1|y)/g(θt−1|θ?)

=
p(yt|µ?t , ξ, σ)

p(yt|µmt , ξ, σ)

which depends on two likelihood evaluations based on the GEV distribution. The

MCMC posterior simulation is summarized as follows:

1. Set the initial values for all states and static parameters as discussed before.

2. For iteration m = 1, 2...M :

• For time t = 1, 2, ...T ,

Draw µm+1
t |y1:T , µm+1

t−1 , µ
m
t , µ

m
t+1, σ

m, ξm, V m with a M-H step.

• Draw σm+1|y1:T , {µm+1
t }Tt=1, σ

m, ξm with a M-H step.

• Draw ξm+1|y1:T , {µm+1
t }Tt=1, σ

m+1, ξm with a M-H step.

• Draw V m+1|y1:T , {µm+1
t }Tt=1, σ

m+1, ξm+1, V m with a M-H step.
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Chapter 4. The Generalized Extreme Value (GEV) Distribution

To achieve faster convergence, we limit the possible range of the scale parameter

within (0,30). Another reason to limit the range of the scale parameter is this can

help to get reasonable estimation of parameters. The simulation study shows that

without the limit on the scale parameter, the posterior estimation could be far from

the true parameter ranges. The range of the shape parameter is limited within

(-0.5, 0.5) to satisfy the regularity conditions of MLEs for the GEV distribution

(Smith 1985; Ailliot, et al. 2011). To make the comparison consistent across all

methods, I will use the same range limit for the scale and shape parameters in all

particle filter methods.

We can extend the Metropolis-Hastings algorithm to a RW2 evolution for the states

µt. The only difference with the RW1 evolution is the full conditional distributions

of µt and the corresponding proposal density.

p(µt|y1:T , {µ−t}, ξ, σ, V ) ∝ p(yt|µt, ξ, σ)× p(µt|µt−1, µt−2, V )

× p(µt+1|µt, µt−1, V )× p(µt+2|µt+1, µt, V )

and

p(µt|µt−1, µt−2, V )× p(µt+1|µt, µt−1, V )× p(µt+2|µt+1, µt+1, µt, V )

∝ exp

{
− [µt − (2µt−1 − µt−2)]2

2V

}
× exp

{
− [µt+1 − (2µt − µt−1)]2

2V

}
× exp

{
− [µt+2 − (2µt+1 − µt)]2

2V

}
∝ exp

{
−6µ2

t − µt[−2µt+2 + 8µt+1 + 8µt−1 − 2µt−2]

2V

}
∝ exp

{
−µ

2
t − 2µt[−2µt+2 + 8µt+1 + 8µt−1 − 2µt−2]/12

2V/6

}

∝ exp

−
{
µt − [(−2µt+2 + 8µt+1 + 8µt−1 − 2µt−2)/12]

}2

2V/6

 .

This is a Normal distribution,

p(µt|µt−1, µt+1) = N

(
(−2µt+2 + 8µt+1 + 8µt−1 − 2µt−2)

12
,
V

6

)
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Chapter 4. The Generalized Extreme Value (GEV) Distribution

Similar as with µt for a RW1 evolution model, I take this Normal probability as

the proposal density and the accept/reject ratio is simplified as:

r =
p(yt|µ?t , ξ, σ)

p(yt|µmt , ξ, σ)
.

It is important to monitor the acceptance rate (the fraction of candidate draws

that are accepted) of the Metropolis-Hastings algorithm. A too high acceptance

rate may indicate the chain is probably not mixing well (not moving around the

parameter space quickly enough). A too low acceptance rate may indicate the

algorithm is too inefficient (rejecting too many candidate draws).

4.2.3 MCMC Diagnostics: Is the MCMC Method Work-

ing?

We check trace plots of the MCMC output to make sure they show no pattern

and have roughly a horizontal line with no ascending/descending structure. We

also look at the autocorrelation between samples. The MCMC samples have a

tendency to be autocorrelated and are not independent. This should be examined

empirically and the chain must be thinned if necessary.

The diagnostics result from one of the simulation study is illustrated here to demon-

strate that the MCMC result achieve convergence. As shown in Figure 4.3. Plot

(a) illustrate the trace plot of estimations of the scale parameter σ. Plot (b) il-

lustrate the trace plot of estimations of the shape parameter ξ. Both plots show

no pattern of pattern and is roughly horizontal, which illustrate the chains have

settled down nicely between 5000 and 50000 iterations. Plots (c) and (d) are the

autocorrelation function (ACF) plot of the estimates of σ and ξ respectively. The

ACF rapidly approaches zero and stays there, which indicate no correlation be-

tween adjacent picked samples.
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Figure 4.3: Diagnostics for the estimation of a dynamic GEV model. (a) MCMC
M-H acceptance rate, (b) P.F. effective sample size.

4.3 Particle Filters on Dynamic GEV Distribu-

tion

Notice that Storvik (Storvik 2002) and PL (Carvalho et al. 2010) particle filter

methods require sufficient statistics to implement the algorithm; However, it is

impossible to get finite dimensions sufficient statistics for the parameters of the

GEV distribution. In this section, I will focus on the BS, APF and LW particle
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Chapter 4. The Generalized Extreme Value (GEV) Distribution

filters only for one dynamic GEV model. Similarly as what we did in the first

order DLM simulation study, I include the static parameters σ and ξ as part of

the state vector for the BS and APF particle filters with added artificial evolution

noise.

4.3.1 BS Filtering

1. Set initial values of µt, σ, ξ and V as in the MCMC case.

2. For time t = 1, ..., T ,

For each particle index j = 1, ..., N ,

i. Draw new samples from the dynamic model.

Define a jittering dynamic variance: Vσ = 0.9Vσ and Vξ = 0.9Vξ

and then propagate as

µjt ∼ N(µjt−1, Vµ),

logσjt ∼ N(log(σjt−1), Vσ),

ξjt ∼ N(ξjt−1, Vξ).

ii. Calculate the weight:

ωjt ∝ p(yt|µjt , σ
j
t , ξ

j
t ) (4.7)

given by p(yt|µjt , σ
j
t , ξ

j
t ) = GEV (yt|µjt , σ

j
t , ξ

j
t ), the pdf of the GEV

distribution.

Compute and report the effective sample size MT,eff = 1∑N
j=1(ω

j
T )

2

when t = T .

iii. Re-sample µjt , σ
j
t , ξ

j
t based on the new weights.
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4.3.2 APF Filtering

1. Set initial values as in the MCMC case.

2. For time t = 1, ..., T

For each particle index j = 1, ..., N ,

Define a jittering dynamic variance: Vσ = 0.9Vσ and Vξ = 0.9Vξ.

i. Sample an auxiliary index vector k(j), j = 1, ..., N by sampling the

set {1 : N} with the following weights:

wj
t ∝ p(yt|µjt−1, σ

j
t−1, ξ

j
t−1)ω

j
t−1 (4.8)

with p(yt|µjt−1, σ
j
t−1, ξ

j
t−1) = GEV (yt|µjt−1, σ

j
t−1, ξ

j
t−1), the pdf of the

GEV distribution.

ii. Propagate the new particles from these re-sampled particles

µjt ∼ N(µk
(j)

t−1, Vµ),

log(σjt ) ∼ N
(
log(σk

(j)

t−1), Vσ

)
,

ξjt ∼ N(ξk
(j)

t−1 , Vξ).

where k(j) is index value of the jth element of auxiliary index vector

k generated at last phase.

iii. Compute new weights using

ωjt ∝ p(yt|µjt , σ
j
t , ξ

j
t )/w

k(j)

t (4.9)

with p(yt|µjt , σ
j
t , ξ

j
t ) = GEV (yt|µjt , σ

j
t , ξ

j
t ), the pdf of the GEV dis-

tribution.

Compute and report the effective sample size MT,eff = 1∑N
j=1(ω

j
T )

2

when t = T .

iv. Re-sample µjt , σ
j
t , ξ

j
t based on the new weights.
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4.3.3 LW Filtering

1. Set initial values as in the MCMC case.

2. For time t = 1, ..., T

For each particle index j = 1, ..., N ,

i. Compute the sample covariance particles at time t− 1:

µlog(σ) =
1

N

N∑
i=1

log(σit−1),

varlog(σ) =
1

N − 1

N∑
i=1

(
log(σit−1)− µlog(σ)

)2
µξ =

1

N

N∑
i=1

ξit−1

varξ =
1

N − 1

N∑
i=1

(
ξit−1 − µξ

)2
cov[log(σ),ξ] =

1

N − 1

N∑
i=1

(
log(σit−1)− µlog(σ)

) (
ξit−1 − µξ

)
Therefore, the covariance matrix is:

vpart−1 =

 varlog(σ) cov[log(σ),ξ]

cov[log(σ),ξ] varξ

 . (4.10)

The prior mean estimate is the expected (mean) value of the evo-

lution density whose mean value is taken from particles at time

t− 1:

U j
t = E(µ|µjt−1) = µjt−1

mj
t−1 = a(log(σjt−1), ξ

j
t−1)

T + (1− a)
N∑
i=1

(log(σjt−1), ξ
j
t−1)

T/N

ii. Compute the first stage weights

wj
t ∝ p(yt|U j

t ,m
j
t−1)

= p(yt|µjt−1, σjm, ξjm)
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= GEV (yt|µjt−1, σjm, ξjm)

where σjm and ξjm are the scale and shape parameter value taken

from the mj
t−1 vector. An index vector k is generated by sampling

on the set {1 : N} with these weights wj
t .

iii. Do a re-sampling on the scale and shape parameters with:

(log(σjt ), ξ
j
t )
T ∼ N

(
mk(j)

t−1, (1− a2)vpart−1
)

(4.11)

and propagate the location µt with:

µjt ∼ N(µk
(j)

t−1, Vµ).

iv. Compute the second stage weights

ωjt ∝ p(yt|µjt , σ
j
t , ξ

j
t )/w

k(j)

t . (4.12)

Compute and report the effective sample size MT,eff = 1∑N
j=1(ω

j
T )

2

when t = T .

v. Perform re-sampling of µjt , σ
j and ξj based on these new weights

ωjt , i.e, pick a new index by sampling the set {1 : N} using weights

generated from 4.12.
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Chapter 5

Dynamic GEV Distribution

Simulation Study

In this chapter, we analyse the performance of particle filters based on the study

of simulated datasets for the dynamic GEV model. To simplify the process, we

focus on the dynamic GEV model with static scale and shape parameters, while

the location parameter µt is represented with a RW1 evolution with fixed variance

V . Similarly as illustrated in Chapter 3 for the first order DLM simulation, all the

simulations are based on observations that come in sequence. The dynamic GEV

distribution is described by Equation 4.1. All the datasets are generated with fixed

parameters σ = 1.1, ξ = 0.1 and µt is defined in the form of µt = µt−1 + εt with

µ0 = 510 and evolution variance V = 1. We compare the approximation based

on the MCMC and various particle filter methods by sequentially updating the

filtering density p(µ1:t, σ, ξ|y1:t), t = 11, ..., T with new observations arriving. We

start the comparison from t = 11 since smaller number of observations will not

provide enough information to approximate the posterior density. For each t, the

MCMC simulation is based on M = 40, 000 iterations with a burn-in of 10,000

and a thinning equal to 30. The simulation study takes N = 5000 particles for
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Chapter 5. Dynamic GEV Distribution Simulation Study

particle filter methods. To verify the performance of our algorithms, we start from

a simpler case where some of the parameters in the model are assumed known.

5.1 Fixed Evolution Variance V of the Location

Parameter

In this section, a simulation case to approximate the location µt, scale σ and shape

ξ is studied when the evolution variance V of the location parameter is assumed

known. The estimation result shows that the posterior means are close to the true

values of the parameters and the true values are contained in the 95% credible

intervals for the location and scale parameters. The results of the simulation are

shown in Figures 5.1 to 5.5.

Figure 5.1 shows the approximation of the posterior density of the location pa-

rameters p(µt|y1:t), t = 11, ..., T . In plot (a), the dots represent the simulated

observations from the dynamic GEV distribution. The solid line in red color are

the true values of the location parameter µt. The filled gray area symbolizes the

95% credible interval of the MCMC simulation and the solid black line represents

the posterior median values. This plot clearly shows the posterior median values

of the MCMC method are close to the true µt parameter values. Plot (b) illus-

trates the comparison between MCMC and the BS particle filter approximation.

Just like in plot (a), the filled gray area symbolizes the 95% credible interval of

the MCMC simulation and the solid black line is used to represent the posterior

median values. The solid line in blue color stands for the posterior median val-

ues computed from the BS particle filter approximation and the dashed lines in

blue color cover the 95% credible interval. The solid black line representing the

posterior median values of the MCMC method is not easily identified since it is

overlapping with the solid blue line representing the posterior median values from
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Chapter 5. Dynamic GEV Distribution Simulation Study

the particle filter method. The 95% credible interval from the BS particle filter

also matches the MCMC result. Apparently, the BS particle filter achieves almost

the same performance as the MCMC method to estimate the location parameter

µt. Plot (c) summarizes the comparison between the MCMC and APF particle

filter approximation. In a similar way, plot (d) illustrates the comparison between

the MCMC and LW particle filter approximation. Plots (b), (c) and (d) show that

the APF and LW particle filters achieve an homogeneous result to the MCMC

method when estimating the state parameter. Figure 5.2 shows estimates of the

posterior distribution for the scale parameter p(σ|y1:t), t = 11, ..., T . In plot (a),

the filled gray area symbolizes the 95% credible interval of the MCMC simulation

and the solid black line stands for the posterior median values. The solid line in

blue color stands for the posterior median values of the BS particle filter approxi-

mation and the dashed lines in blue color give the 95% credible interval for the BS

particle filter method. Evidently, the MCMC estimates provide smaller intervals

than the BS particle filter estimates through all time points, t = 11, ..., 200. The

posterior median values from both the MCMC and BS particle filter methods tend

to agree with each other. Plot (b) illustrates the comparison between the MCMC

and APF particle filter approximation. This plot clearly shows the APF particle

filter achieves a similar result as the BS particle filter and tends to become consis-

tent with the MCMC approximation for a large number of observations for both

the posterior median values and the 95% credible interval. Plot (c) illustrates the

comparison between the MCMC and LW particle filter approximation. The LW

particle filter provides the smallest 95% credible interval among all these methods

and is consistent with the MCMC result more closely compared to the BS and

APF filters. Figure 5.3 shows estimates of the posterior distribution for the shape

parameter p(ξ|y1:t), t = 11, ..., T . In plot (a), the filled gray area symbolizes the

95% credible interval of the MCMC simulation and the solid black line stands for

the posterior median values. The solid line in blue stands for the posterior median
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Figure 5.1: Estimation of the location parameter µt of a dynamic GEV model
with known V . (a) True parameter vs MCMC, (b) MCMC vs BS, (c) MCMC vs
APF, (d) MCMC vs LW.

values of the BS particle filter approximation and the dashed lines in blue cover

the 95% credible interval. Apparently, the MCMC method has difficulty to ap-

proximate the true shape parameter value. Although the posterior median values

of the approximation of the MCMC method are close to the true parameter value,

0.1. The 95% credible interval contains both positive and negative values and

does not allow to make clear differences between the three types of extreme value

distributions. The results of the BS particle filter show it has the same problem as
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Figure 5.2: Estimation of the scale parameter σ of a dynamic GEV model with
known V . (a) MCMC vs BS, (b) MCMC vs APF, (c) MCMC vs LW.

the MCMC method. Plot (b) and plot (c) show comparisons of the MCMC with

the APF and the LW particle filters approximation respectively. The 95% credible

intervals of APF and LW particle filters provide values below the true parameter

value 0.1 and move towards negative values. Apparently, all the particle filter

methods have difficulty to estimate the shape parameter as well. Figure 5.4 illus-

trates some diagnostics of the methods based on the simulation. Plot (a) shows

the M-H acceptance rate of the MCMC method for both the scale (in blue) and

shape (in green) parameters. Both parameters have the acceptance rate within
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Figure 5.3: Estimation of the shape parameter ξ of a dynamic GEV model with
known V . (a) MCMC vs BS, (b) MCMC vs APF, (c) MCMC vs LW.

the range of 40% to 60% for number of observations is larger than 50. Plot (b)

at the bottom shows the number of effective sample size from the three particle

filter methods, with BS particle filter in blue, APF particle filter in green and LW

particle filter in purple respectively. In this plot, there are sporadic drops in the

effective sample size, usually around data outliers (see plot (a) of Figure 5.1) and

break points, but they return to normal quickly afterwards, which indicates all the

particle filter methods do not have the degeneracy issue discussed in section 2.1.2.

Figure 5.5 shows histograms of samples from the marginal posterior approximation
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Figure 5.4: Diagnostics of the estimation of a dynamic GEV model with known
V . (a) MCMC M-H acceptance rate, (b) P.F. effective sample size.

taken at the last time point, p(µT |y1:T ), p(σ|y1:T ) and p(ξ|y1:T ) for all the meth-

ods respectively. Histograms are limited to the same range in order to provide

a clear comparison among the different methods. Histograms of the samples for

p(µT |y1:T ), in the left panel show all methods can approximate similarly the pos-

terior distribution of the location parameter. In the center panel, the histograms

of the posterior distribution of the scale parameter p(σ|y1:T ) provide good estima-

tion of the true parameter value, 1.1, across all methods. In the right panel, the

histograms of the posterior distribution of the shape parameter p(ξ|y1:T ) spread
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around negative and positive ranges, which make it impossible to distinguish the

data from the three types of GEV distributions (ξ > 0, ξ = 0, ξ < 0).
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Figure 5.5: Histograms of posterior samples of a dynamic GEV model with
known V . (Rows are by method, columns are by parameter.)

5.2 All Parameters are Unknown with ξ = 0.1

In this section, a simulation case to approximate the posterior distribution of all

the model parameters is studied for the location µt, scale σ, shape ξ and the evo-
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lution variance V of the location parameter. Under this scenario, the situation is

such that all parameters are unknown and need to be approximated.

A preliminary study shows estimation of the scale and shape parameters is how-

ever, not stable after including the evolution variance V within the approximation.

Instead, the posterior mean obtained from the MCMC method is used as a known

evolution variance for particle filters. Therefore, I ran the MCMC algorithm with

the first 50 observations and computed the posterior mean of the evolution variance

p(V |y1:50). Then plugged-in this posterior mean as the known V for particle filter

estimations with new observations coming in. For the simulated dynamic GEV

model, the parameters are set at σ = 1, ξ = 0.1, V = 1 and µt = µt−1 + εt with

µ0 = 510. We compare the approximation from the MCMC and all particle filter

methods by sequentially updating the filtering density p(µ1:t|y1:t), t = 11, ..., T .

The estimation result shows that all estimated posterior means are close to the

true values and the true values are contained in the 95% credible intervals for the

location and scale parameters. The results are shown in Figures 5.6 to 5.10.

Figure 5.6 shows the approximation of the posterior density of the location pa-

rameters p(µt|y1:t), t = 11, ..., T . In plot (a), the dots represent the simulated

observations from the dynamic GEV distribution. The solid line in red stands

for the true values of location parameter µt. The filled gray area symbolizes the

95% credible interval of the MCMC simulation and the solid black line stands for

the posterior median values. This plot clearly shows the posterior median values

from the MCMC method are close to the true µt values. Plot (b) illustrates the

comparison between the MCMC and the BS particle filter approximation. Just

like in plot (a), the filled gray area symbolizes the 95% credible interval of the

MCMC simulation and the solid black line is used to represent the posterior me-

dian values. The solid line in blue color stands for the posterior median values of

the BS particle filter approximation and the dashed lines in blue color define the

95% credible interval. In plot (b), the solid black line representing the posterior
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median values from the MCMC method is not easily to be identified since it is

overlapping with the solid blue line representing the posterior median values from

the BS particle filter method. The 95% credible interval from the BS particle filter

also matches with the MCMC results. Apparently, the BS particle filter achieves

almost the same result as the MCMC method. Plot (c) illustrates the comparison

between the MCMC and APF particle filter approximation. Plot (d) illustrates

the comparison between the MCMC and LW particle filter approximation. Fur-

thermore, plots (b), (c) and (d) prove that the APF and LW particle filters achieve

similar results to the MCMC method. Figure 5.7 shows estimates of the posterior

distribution for the scale parameter posterior distribution, p(σ|y1:t), t = 11, ..., T .

In plot (a), the filled gray area symbolizes the 95% credible interval of the MCMC

simulation and the solid black line gives the posterior median values. The solid

line in blue stands for the posterior median values of the BS particle filter approx-

imation and the dashed lines in blue give the 95% credible interval. Evidently,

the MCMC estimates provide a much larger interval than the BS particle filter

estimates under a small number of observations (t less than 50). As the number

of observations increases, the posterior median values and the 95% credible inter-

val from both the MCMC and BS particle filter methods tend to agree with each

other. Plot (b) illustrates the comparison between the MCMC and APF particle

filter approximation. It clearly shows the APF particle filter achieves a similar

result as the BS particle filter and tends to agree with the MCMC approximation

for a large number of observations. Plot (c) illustrates the comparison between

the MCMC and LW particle filter approximation. The LW particle filter provides

the shortest 95% credible interval at small number of observations (less than 50)

among all these methods. For a large number of observations, the LW particle

filter agrees with the MCMC result but provides values slightly larger than the

MCMC results. Figure 5.8 shows estimates of the posterior distribution for the

shape parameter posterior distribution, p(ξ|y1:t), t = 11, ..., T . In plot (a), the filled
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Figure 5.6: Estimation of the location parameter µt of a dynamic GEV model
with all parameters unknown. (a) True parameter vs MCMC, (b) MCMC vs BS,
(c) MCMC vs APF, (d) MCMC vs LW.

gray area symbolizes the 95% credible interval of the MCMC simulation and the

solid black line stands for the posterior median values. Apparently, the MCMC

method has difficulty to approximate the shape parameter. Although the poste-

rior median values of the approximation of the MCMC method are close to the

true parameter value, 0.1. The 95% credible interval contains both positive and

negative values and is impossible to distinguish the three types of extreme value

distributions. Also in plot (a), the solid line in blue stands for the posterior median
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Figure 5.7: Estimation of the scale parameter σ of a dynamic GEV model with
all parameters unknown. (a) MCMC vs BS, (b) MCMC vs APF, (c) MCMC vs
LW.

values of the BS particle filter approximation and the dashed lines in blue define

the 95% credible interval. The approximation with the BS particle filter shows it

has the same problem as the MCMC method. Plot (b) and plot (c) illustrate the

comparisons of the MCMC with the APF and the LW particle filters approxima-

tion respectively. The 95% credible intervals of the APF and LW particle filters

provide values below the true parameter value 0.1 and tend towards negative val-

ues. Apparently, all the particle filter methods have difficulty to approximate the
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shape parameter as well. Figure 5.9 illustrates some diagnostics of the method-
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Figure 5.8: Estimation of the shape parameter ξ of a dynamic GEV model with
all parameters unknown. (a) MCMC vs BS, (b) MCMC vs APF, (c) MCMC vs
LW.

ology, based on our simulation. Plot (a) shows the M-H acceptance rates of the

MCMC method for both the scale (in blue) and shape (in green) parameters. Both

parameters have the acceptance rate within the range of 40% to 60% when the

number of observations is larger than 50. Plot (b) at the bottom shows the num-

ber of effective sample size for the three particle filter methods, with BS particle

filter in blue color, APF particle filter in green color and LW particle filter in
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purple respectively. In this plot, there are sporadic drops in the effective sample

size, usually around data outliers (see plot (a) of Figure 5.6) and break points,

but they return to stable quickly afterwards, suggesting that weight degeneracy

is minor in this study. Figure 5.10 shows histograms of parameter approximation
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Figure 5.9: Diagnostics of the estimation of a dynamic GEV model with all
parameters unknown. (a) MCMC M-H acceptance rate, (b) P.F. effective sample
size.

taken at the last time point of observations, p(µT |y1:T ), p(σ|y1:T ) and p(ξ|y1:T ) of

all methods respectively. Histograms are limited to the same range in order to

provide a clear comparison among different methods. Histogram of samples for
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approximation of the location parameter at the final time point, p(µT |y1:T ), in the

left panel show all methods can provide similar samples the location parameter.

In the center panel, the histograms of the posterior distribution of the scale pa-

rameter p(σ|y1:T ) provide good estimation of the true parameter value, 1.1, across

all methods. In the right panel, the histograms of the posterior distribution of the

shape parameter p(ξ|y1:T ) cover negative and positive values, which make it im-

possible to distinguish the three types of GEV distributions (ξ > 0, ξ = 0, ξ < 0).

Compared to the previous case study where the given evolution variance V of the
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Figure 5.10: Histograms of posterior samples of a dynamic GEV model with all
parameters unknown. (Rows are by method, columns are by parameter.)
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location parameter is fully known, the approximations of this section shows no

major difference to this other study. Another simulation study (not included here)

also shows the approximation results are not so sensitive to the setting of the value

of the evolution variance V . Hence, applying the posterior mean from the MCMC

method as a true value for the particle filter study is acceptable.

5.3 All Parameters are Unknown with ξ = 0.35

The two dynamic GEV model cases we studied so far show no problem of esti-

mating the state and scale parameters, but have difficulty to estimate the shape

parameter when the value of the shape parameter ξ is close to 0. Pioneer study of

the data sets that in the next chapter shows the shape parameter has mean value

around 0.4, we want to check the particle filter performance on a larger value for

the shape parameter. We generate a dataset using the same setting for the previ-

ous section but change the value of ξ from 0.1 to 0.35. Then we approximate all

the parameters as in Section 5.2. The estimation result shows that all estimated

posterior means are close to the true values of all the parameters including the

shape parameter and the true parameter values are contained in the 95% credible

intervals. The simulation result are shown in Figures 5.11 and 5.12. In this case,

the results for the state and scale parameters is not shown since they are similar

to the previous example.

Figure 5.11 shows estimates of the posterior distribution for the shape parameter

posterior distribution, p(ξ|y1:t), t = 11, ..., T . In plot (a), the filled gray area rep-

resents the 95% credible interval of the MCMC simulation and the solid black line

stands for the posterior median values. The 95% credible interval of the MCMC

method begins to contain positive values only after the number of observations is

larger than 100 and does contain the true shape parameter value, 0.35. The solid
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line in blue is the posterior median values of the BS particle filter approximation

and the dashed lines in blue provide the 95% credible interval. The 95% credible

interval of the BS particle filter follows the same trend as the MCMC method, it

starts to contain positive values at the same time point as the MCMC method

does. The overall 95% credible interval from the BS particle filter has almost the

same width span as the interval obtained from the MCMC method. Plot (b) and

plot (c) compare the MCMC with the APF and the LW particle filters approxi-

mation respectively. The APF and LW particle filters follow a similar trend as the

MCMC method, but with a smaller interval. For a large number of observations

(t > 100), the posterior means from all methods are estimated to be positive and

the 95% credible intervals do not contain zero. Figure 5.12 shows histograms from

the posterior distributions at the last time point, p(µT |y1:T ), p(σ|y1:T ) and p(ξ|y1:T )

of all methods respectively. These histograms are limited to the same range in or-

der to provide a clear comparison among the different methods. Histograms of

the samples from the location parameter at the final time point, p(µT |y1:T ), in

the left panel show all methods can approximate similarly the location parameter

with similar median values and 95% credible intervals. In the center panel, the

histograms of the posterior distribution of the scale parameter p(σ|y1:T ) contain

the true parameter value, 1.1, across all methods. Regarding the estimates of the

shape parameter as shown in the right panel, the histograms of the posterior distri-

bution of p(ξ|y1:T ) spread in positive ranges only, which make it possible to detect

the data arising from a type Frèchet (ξ > 0) of the GEV family of distributions.
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Figure 5.11: Estimation of the location parameter ξ of a dynamic GEV model
with all parameters unknown (ξ=0.35). (a) MCMC vs BS, (b) MCMC vs APF,
(c) MCMC vs LW.
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Figure 5.12: Histograms of posterior samples of a dynamic GEV model with all
parameters unknown (ξ=0.35). (Rows are by method, columns are by parameter.)
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5.4 All Parameters are Unknown with ξ = −0.35

The case in the previous section shows the MCMC method and all the particle

filter methods can well approximate the dynamic GEV model when the value of

the shape parameter set is around 0.4. Now I explore what is the result for the case

when the shape parameter is set to a negative value that is relatively far from 0.

A preliminary study shows estimates from the MCMC method are chaotic under

a negative value of the shape parameter, so I decided to extend the number of

observations to be T = 500 and work on a generated dataset with the same setting

as the previous section, except the value of ξ is -0.35. Then, I approximate all the

parameters similarly to what I did in Section 5.2 and 5.3. The estimation result

shows that the MCMC method has difficulty to estimate either the scale or the

shape parameter. On the other hand, all the particle filter methods do a good job

to estimate all these parameters. The simulation results are shown in Figures 5.13

to 5.17.

Figure 5.13 shows the approximation of the posterior density of the location pa-

rameters p(µt|y1:t), t = 11, ..., T . In plot (a), the dots represent the simulated

observations from the dynamic GEV distributions. The solid line in red stands for

the true location parameter µt. The filled gray area symbolizes the 95% credible

interval of the MCMC simulation and the solid black line stands for the posterior

median values. This plot clearly shows that the posterior median values from the

MCMC method are close to the true µt values. Plots (b), (c) and (d) illustrate

the comparison between the MCMC with the particle filters approximation. The

filled gray area represents the 95% credible interval of the MCMC simulation and

the solid black line is used to represent the posterior median values. The solid

line in blue stands for the posterior median values of the particle filter approxima-

tion and the dashed lines in blue color define the 95% credible interval. It can be

seen that all the particle filter methods provide similar estimates as the MCMC

82



Chapter 5. Dynamic GEV Distribution Simulation Study

method but with a smaller credible interval. Figure 5.14 shows estimates of the
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Figure 5.13: Estimation of the location parameter µt of a dynamic GEV model
with all parameters unknown (ξ=-0.35). (a) True parameter vs MCMC, (b)
MCMC vs BS, (c) MCMC vs APF, (d) MCMC vs LW.

posterior distribution for the scale parameter p(σ|y1:t), t = 11, ..., T . In all three

plots, the filled gray area symbolizes the 95% credible interval of the MCMC sim-

ulation and the solid black line stands for the posterior median values. The solid

line in blue stands for the posterior median values of the particle filter approxima-

tion and the dashed lines in blue cover the 95% credible interval. Apparently, the

MCMC method lost track of the posterior density of the scale parameter. On the
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other hand, the 95% credible intervals from these particle filter methods contain

the true scale parameter value and tend to be stable within a small span width.

Figure 5.15 shows estimates of the posterior distribution for the shape parameter
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Figure 5.14: Estimation of the scale parameter σ of a dynamic GEV model with
all parameters unknown (ξ=-0.35). (a) MCMC vs BS, (b) MCMC vs APF, (c)
MCMC vs LW.

p(ξ|y1:t), t = 11, ..., T . In all three plots, the filled gray area symbolizes the 95%

credible interval of the MCMC simulation and the solid black line stands for the

posterior median values. The solid line in blue stands for the posterior median

values of the particle filter approximation and the dashed lines in blue provide a
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95% credible interval. Evidently, the 95% credible intervals for all these meth-

ods contain the true shape parameter value and and define a negative range only.

However, the posterior median values based on the MCMC method is much lower

than the true parameter value and tends to go beyond the boundary value of -0.5.

Figure 5.16 illustrates some diagnostics of the simulation. Plot (a) shows the M-H
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Figure 5.15: Estimation of the shape parameter ξ of a dynamic GEV model with
all parameters unknown (ξ=-0.35). (a) MCMC vs BS, (b) MCMC vs APF, (c)
MCMC vs LW.

acceptance rate of the MCMC method for both the scale (in blue) and shape (in

green) parameters. Both parameters have an acceptance rate below 40% for most
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time points. An enormous number of iterations is needed in order to achieve the

MCMC method to get a higher acceptance rate. Plots (b), (c) and (d) show the

number of effective sample size from the three particle filter methods respectively.

Compared to the previous cases, these plots show more frequent sporadic drops

in the effective sample size, which are around data outliers. Check plot (a) of

Figure 5.13, we can see more outliers appear in this dataset. However, the drops

in the effective sample size return to normal quickly afterwards, suggesting that

weight degeneracy is not so much of a concern in this study. Figure 5.17 shows

histograms of posterior samples of parameters considered at the last time point

of observations T , p(µT |y1:T ), p(σ|y1:T ) and p(ξ|y1:T ) of all methods respectively.

Histograms describe the same parameter are limited to the same range in order to

provide a clear comparison among different methods. Histograms of the posterior

samples of the location parameter at the final time point, p(µT |y1:T ), in the left

panel show all methods can well approximate the location parameter, except that

the approximation of the MCMC method cover a large range. In the center panel,

the histograms of the posterior distribution of the scale parameter p(σ|y1:T ) pro-

vide evidence that all particle filters are capable of estimating the true parameter

value, while the MCMC method covers a large range and has difficulty to track the

true parameter value. The right panel displays the histograms of samples from the

posterior distribution of p(ξ|y1:T ). Basically for all methods, the posterior samples

range within negative values, which makes it possible to distinguish a Weibull dis-

tribution. The simulation from the MCMC method is quite different than with

particle filters since a large number of samples are around -0.5 or even smaller.
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Figure 5.16: Diagnostics of the estimation of a dynamic GEV model with all
parameters unknown (ξ=-0.35). (a) MCMC M-H acceptance rate, (b) P.F. effective
sample size of BS Filter, (c) P.F. effective sample size of APF Filter, (d) P.F.
effective sample size of LW Filter.

5.5 Simulation Summary

Several constraints were discovered during the simulation study in this chapter.

A preliminary study suggests the evolution variance V of the location parameter

needs to be limited in a small scale (as not larger than 3) in order to get an accurate

approximation of the scale and shape parameters. Furthermore, the simulations
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Figure 5.17: Histograms of posterior samples of a dynamic GEV model with all
parameters unknown (ξ=-0.35). (Rows are by method, columns are by parameter.)

show that adding an artificial evolution noise of the scale and shape parameters in

the BS and APF particle filters does help to approximate the posterior density of

the scale and shape parameters respectively. However, the challenge is how to set

the jittering of the artificial evolution variance. Trial and error simulation is used

to detect a decrease factor between 0.8 and 0.99 over time as an optimal choice.

Furthermore, during all simulation studies, a log transformation is employed for

the scale parameter σ in order to propose a Gaussian evolution on this parameter.

We can summarize the simulation results for the dynamic GEV model as follows:
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1. For all the methods, including the MCMC and the three particle filter meth-

ods we studied in this chapter, the estimated posterior densities of the loca-

tion parameter p(µt|y1:t) from particle filters are close to the MCMC location

estimates. Basically the 95% credible interval from all methods can contain

the true parameter values.

2. In most of our study cases, the approximation of the posterior density of the

scale parameter of particle filters matches with the result from the MCMC

method for relatively large number of observations, such as t > 50. Although

the intervals are not exactly the same, the 95% credible intervals from the

particle filters are a close match to the MCMC credible intervals.

3. All these methods have problems with the shape parameter estimation when

the parameter value is close to 0. For a larger value of the shape parameter,

the 95% credible intervals from the particle filters tend to provide a better

estimation than MCMC methods.
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Chapter 6

Data Applications with the

Dynamic GEV Model

In this chapter, we analyse the performance of particle filter algorithms and com-

pare it with the MCMC method through three data examples that had been stud-

ied by fitting a dynamic GEV model in several papers. The settings and steps to

estimate the parameters of the dynamic GEV models are close to the procedures

implemented in Section 5.2, 5.3 and 5.4. The posterior mean of V obtained from

the MCMC method is used as a known evolution variance for particle filter meth-

ods. More specifically, we run the MCMC algorithm with part of the observations

and compute the posterior mean of the evolution variance of p(V |y1:t). Then this

posterior mean is the known V for particle filter simulations with observations

arising sequentially. As in the previous chapter, we start the comparison from

t = 11 since a smaller number of observations will not provide enough information

to approximate the posterior density.
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6.1 Athletic Records Data Set

The first case study is for the annual world record for women’s 3000m race from

1972 to 1993. Robinson and Tawn (1995) first studied the record to assess whether

Wang Junxia’s world record in 1993 was consistent with the previous data by fit-

ting a GEV model. Their study was subsequently discussed by Smith (1997) and

replied by Robinson and Tawn (1997). Gaetan and Grigoletto (2004) extended

these analyses by using particle filter methods to model a dynamic trend by as-

suming that µt follows a second-order random walk trend while σ and ξ are kept as

static parameters. Fearnhead, Wyncoll and Tawn (2010) extended their method

by adding in more data from recent years.

Although the state estimation from Gaetan and Grigoletto (2004) looks attractive,

the estimations of the scale and shape parameters are not provided in their paper.

On the other hand, Fearnhead, Wyncoll and Tawn (2010) estimated σ and ξ by

an EM algorithm and reported that the scale parameter σ is around 4 while the

shape parameter ξ is around -0.1 for this dataset. As shown in Figures 6.1 to 6.5,

my study achieves a similar result to theirs and so the algorithms presented in this

thesis get further verified.

Figure 6.1 shows the approximation of the posterior density of the location pa-

rameters p(µt|y1:t), t = 11, ..., T . In plot (a), the dots represent the observations

of the annual world record data. For all the three plots, the filled gray area sym-

bolizes the 95% credible interval of the MCMC simulation and the solid black

line represents the posterior median values. The solid line in blue stands for the

posterior median values of the particle filter approximation and the dashed lines

in blue cover the 95% credible interval. Evidently, all three particle filters achieve

a result that is comparable to the MCMC method. The dynamic GEV model we

proposed seems a good candidate to deal suitably with the location parameter in

a time varying RW1 model. Figure 6.2 shows estimates of the posterior distribu-
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Figure 6.1: Estimation of the location parameter µt of the women’s 3000m race
data set using a dynamic GEV model. (a) MCMC vs BS, (b) MCMC vs APF, (c)
MCMC vs LW.

tion for the scale parameter p(σ|y1:t), t = 11, ..., T . For all three plots, (a), (b)

and (c), the filled gray area symbolizes the 95% credible interval of the MCMC

simulation and the solid black line stands for the posterior median values. The

solid line in blue stands for the posterior median values of the different particle

filter approximation and the dashed lines in blue color provide the 95% credible

interval for the particle filter methods. Since this data has a very limited number

of observations (T = 21), a solid conclusion from the posterior density cannot be
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drawn here. Overall, the LW particle filter provides a more stable estimation and

matches with the MCMC method. The MCMC and LW particle filter show that

the posterior density approximation of the scale parameter spans from 5 to 10 and

the median value is around 7. This result agrees with the conclusion drawn by

Fearnhead, Wyncoll and Tawn (2010). Figure 6.3 shows estimates of the posterior
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Figure 6.2: Estimation of the scale parameter σ of the women’s 3000m race data
set using a dynamic GEV model. (a) MCMC vs BS, (b) MCMC vs APF, (c)
MCMC vs LW.

distribution for the shape parameter p(ξ|y1:t), t = 11, ..., T . In all three plots,

the filled gray area symbolizes the 95% credible interval of the MCMC simulation
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and the solid black line stands for the posterior median values. The solid line in

blue represents the posterior median values of the BS particle filter approxima-

tion and the dashed lines in blue cover the 95% credible interval for the particle

filter methods. Apparently, all methods have difficulty to distinguish any of the

three types of GEV distributions (ξ > 0, ξ = 0, ξ < 0). On the other hand, the

posterior median values are close to −0.1 or −0.2. Again, this matches with the

estimation result of Fearnhead, Wyncoll and Tawn (2010). Figure 6.4 illustrates
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Figure 6.3: Estimation of the shape parameter ξ of the women’s 3000m race
data set using a dynamic GEV model. (a) MCMC vs BS, (b) MCMC vs APF, (c)
MCMC vs LW.
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some diagnostics of the methods based on my estimation. Plot (a) shows the M-H

acceptance rate of the MCMC method for both the scale (in blue) and shape (in

green) parameters. The scale parameter σ has acceptance rate within the range of

40% to 60% and the shape parameter ξ has an acceptance rate larger than 60%.

Plot (b) at the bottom shows the number of effective sample size from the three

particle filter methods, with the BS particle filter in blue, the APF particle filter in

green and the LW particle filter in purple respectively. Since the number of obser-

vations is very limited in this dataset, the effective sample size produced does not

seem to be convincing enough. This plot shows the effective sample sizes from the

BS and APF particle filters are low. On the other hand, the result from the LW

particle filter has a larger number of the effective sample size compared to the BS

and APF particle filters, suggesting that weight degeneracy from the LW particle

filter method is lower in this study. Figure 6.5 shows histograms of samples from

the marginal posterior approximation obtained at the last time point, p(µT |y1:T ),

p(σ|y1:T ) and p(ξ|y1:T ) of all the methods respectively. Histograms are limited to

the same range in order to provide a clear comparison among the different meth-

ods. Histograms of the samples for p(µT |y1:T ), in the left panel show all methods

provide a similar range and median values. In the center panel, the histograms

of the posterior distribution of the scale parameter p(σ|y1:T ) also provide similar

range and median values across all methods. In the right panel, the histograms

of the samples of the posterior distribution approximation of the shape parameter

p(ξ|y1:T ) spread around negative and positive ranges, which make it impossible to

distinguish one of the three types of GEV distributions. However, it appears that

the shape parameter tends to be negative as shown by the mode of the histograms.
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Figure 6.4: Diagnostics of the estimation of the women’s 3000m race data set
using a dynamic GEV model. (a) MCMC M-H acceptance rate, (b) P.F. effective
sample size.

6.2 Rainfall Data

In this example we study the maximum monthly rainfall values (in millimeter)

from January 1961 to November 1999 taken at the Maiquet́ıa station located at

the Simón Boĺıvar Airport near Caracas, Venezuela. Huerta and Sansó (2007)

first studied this data and which is further discussed by Huerta and Stark (2012).

The result from their study using a MCMC method with fixed location parameter
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Figure 6.5: Histograms of posterior samples of the women’s 3000m race data set
using a dynamic GEV model. (Rows are by method, columns are by parameter.)

shows the scale parameter is between 8 to 11 for a 95% credible interval with me-

dian value around 9.5. They also concluded that the shape parameter is between

0.3 to 0.7 with median value around 0.5. In Chapter 4, we discussed to limit the

value of the shape parameter within (-0.5, 0.5) to satisfy the regularity conditions

of MLEs. However, in this case, the possible value of the shape parameter is out

of this range. Considering this, I limit the value of the shape parameter within

(-1, 1) instead of (-0.5, 0.5) to capture more possible values. As shown in Figures

6.6 to 6.10, my study is similar to the results of Huerta and Stark (2012).

97



Chapter 6. Data Applications with the Dynamic GEV Model

Figure 6.6 shows the approximation of the posterior density of the location pa-

rameters p(µt|y1:t), t = 11, ..., T . In plot (a), the dots represent the observations of

the maximum monthly rainfall values data. For all the three plots, the filled gray

area symbolizes the 95% credible interval of the MCMC simulation and the solid

black line is the posterior median values. The solid line in blue color stands for the

posterior median values of the particle filter approximation and the dashed lines in

blue color cover the 95% credible interval for the particle filter methods. Evidently,

all three particle filters achieve similar results compared to the MCMC method.

Furthermore, it can be seen that the estimated values from particle filter methods

are larger than the estimates from the MCMC methods. Figure 6.7 shows esti-

mates of the posterior distribution for the scale parameter p(σ|y1:t), t = 11, ..., T .

For all three plots, the filled gray area symbolizes the 95% credible interval of

the MCMC simulation and the solid black line are the posterior median values.

The solid line in blue stands for the posterior median values of different particle

filter approximation and the dashed lines in blue provide the 95% credible interval

for the particle filter methods. All the estimates from particle filters show simi-

lar behavior as the MCMC method but the estimates are larger compared to the

MCMC method. The approximation of the LW particle filter in plot (c) provides

a stable estimation with a smaller length for the 95% credible interval. The ap-

proximation from the MCMC method provides information that the samples of

the posterior of the scale parameter span between 7 to 10 with median values at

around 9. This result agrees with the one obtained by Huerta and Stark (2012).

The approximation from the LW particle filter provides samples at larger value

and these samples span between 10 to 12 with the median values at around 11.

Figure 6.8 shows estimates of the posterior distribution for the shape parameter

p(ξ|y1:t), t = 11, ..., T . In all three plots, the gray area symbolizes the 95% credible

interval of the MCMC simulation and the solid black line stands for the posterior

median values. The solid line in blue stands for the posterior median values of
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Figure 6.6: Estimation of the location parameter µt of the maximum monthly
rainfall values using a dynamic GEV model. (a) MCMC vs BS, (b) MCMC vs
APF, (c) MCMC vs LW.

the BS particle filter approximation and the dashed lines in blue provide the 95%

credible interval for the particle filter methods. In all these plots, the 95% credible

intervals of the shape parameter do not contain zero. The posterior median values

and the 95% credible intervals of the particle filters tend to be consistent with the

Estimation of thethe MCMC method for large number of observations (t > 300).

Since the estimates from the LW particle filter are more stable compared to other

methods, including the MCMC and the BS and APF particle filter methods, we
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Figure 6.7: Estimation of the scale parameter σ of the maximum monthly rainfall
values using a dynamic GEV model. (a) MCMC vs BS, (b) MCMC vs APF, (c)
MCMC vs LW.

can consider the estimates from the LW particle filter are more effective in this

case. Figure 6.9 illustrates some diagnostics of the methods based on the simu-

lation. Plot (a) shows the M-H acceptance rate of the MCMC method for both

the scale (in blue) and shape (in green) parameters. Both of them have an accep-

tance rate within the range of 40% to 60% for most of the time points. Plot (b)

at the bottom shows the number of effective sample size from the three particle

filter methods, with BS particle filter in blue, APF particle filter in green and LW
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Figure 6.8: Estimation of the shape parameter ξ of the maximum monthly rainfall
values using a dynamic GEV model. (a) MCMC vs BS, (b) MCMC vs APF, (c)
MCMC vs LW.

particle filter in purple respectively. In this plot, there are only a very limited

number of sporadic drops in the effective sample size, but they return to normal

quickly afterwards, suggesting that weight degeneracy is minor in this study. For

most of the time points, the number of effective sample sizes from the APF and

LW particle filter methods are close to the number of particles, 5000. Looking at

the observations in plot (a) of Figure 6.6, all the observations are spread around all

the space and no obvious outlier can be identified. Figure 6.10 shows histograms of
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Figure 6.9: Diagnostics of the estimation of the maximum monthly rainfall values
using a dynamic GEV model. (a) MCMC M-H acceptance rate, (b) P.F. effective
sample size.

samples from the marginal posterior approximation taken at the last time point,

p(µT |y1:T ), p(σ|y1:T ) and p(ξ|y1:T ) for all methods respectively. Histograms are

limited to the same range in order to provide a clear comparison among the dif-

ferent methods. Histograms of the samples for p(µT |y1:T ), in the left panel show

all particle filters provide similar range and median values. The MCMC approxi-

mation presents smaller values in general compared to the particle filters. At the

center panel, the histograms of the posterior distribution of the scale parameter
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p(σ|y1:T ) show that the posterior median values of the three particle filters are

consistent with each other while the LW particle filter has a smaller length for the

95% credible interval. The approximation of the MCMC method presents smaller

values in general compared to the three particle filters. In the right panel, the

histograms of the posterior distribution of the shape parameter p(ξ|y1:T ) show the

posterior median values and the 95% credible intervals of all the methods are con-

sistent with each other. Furthermore, none of the 95% credible intervals contain

zero. The positive values demonstrate that under my modeling framework, these

maximum monthly rainfall observations belong to a Frèchet distribution.

6.3 Minimum Daily Stock Returns

In this section, we apply our methods to the minimum daily stock returns occur-

ring during a month using the Tokyo Stock Price Index (TOPIX). The original

sample period is from January 4, 1990 to December 28, 2007. Currently, increasing

numbers of researchers and practitioners are interested in high-frequency financial

data to analyse the market dynamic structure. The daily stock return is one of

the most popular figures that market participants much care about range of ap-

plications such as risk management and portfolio selection.

Nakajima, Kunihama, Omori and Frúhwirth-Schnatter (2012) studied this data

with different GEV model that has state parameters with AR or MA evolution

and they estimated the value of the scale parameter between 0.5 to 0.9. The

estimated shape is also positive and less than 0.3. As mentioned in Nakajima, Ku-

nihama, Omori and Frúhwirth-Schnatter (2012), the estimates of the parameter ξ

obtained above imply that the underlying daily return data would follow a heavy-

tailed distribution, as often pointed out in the financial literature. For ξ > 0,

the GEV distribution gives the Frèchet distribution and its domain of attraction
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Figure 6.10: Histograms of posterior samples of the estimation of the maxi-
mum monthly rainfall values using a dynamic GEV model. (Rows are by method,
columns are by parameter.)

includes distributions such as the Student-t, the Pareto and the Inverse-Gamma

distributions. My results are similar to their results as shown in Figures 6.11 to

6.15.

Figure 6.11 shows the approximation of the posterior density of the location pa-

rameters p(µt|y1:t), t = 11, ..., T . In plot (a), the dots represent the observations

from the minimum daily stock returns data. For all the three plots, the filled gray

area symbolizes the 95% credible interval of the MCMC simulation and the solid
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black line provides the posterior median values. The solid line in blue stands for

the posterior median values of the particle filter approximation and the dashed

lines in blue are the 95% credible interval. The posterior median values and the

95% credible intervals from these particle filters have a close match to the MCMC

method and small differences are hard to detect. Figure 6.12 shows estimates of
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Figure 6.11: Estimation of the location parameter µt of the minimum daily stock
returns, TOPIX data set, using a dynamic GEV model. (a) MCMC vs BS, (b)
MCMC vs APF, (c) MCMC vs LW.

the posterior distribution for the scale parameter p(σ|y1:t), t = 11, ..., T . For all

three plots, the gray area symbolizes the 95% credible interval of the MCMC sim-
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ulation and the solid black line represents the posterior median values. The solid

line in blue stands for the posterior median values of different particle filter approx-

imation and the dashed lines in blue color cover the 95% credible interval for the

particle filter methods. Overall, there is a close match between the particle filters

and the MCMC method. It is demonstrated by these plots that the samples of the

posterior approximation for the scale parameter span between 0.5 to 0.9 with the

posterior median value being around 0.7. This result agrees with the numerical

results obtained by Nakajima, Kunihama, Omori and Frúhwirth-Schnatter (2012).

Figure 6.13 shows estimates of the posterior distribution for the shape parameter

p(ξ|y1:t), t = 11, ..., T . In all three plots, the filled gray area symbolizes the 95%

credible interval of the MCMC simulation and the solid black line stands for the

posterior median values. The solid line in blue represents the posterior median

values of the BS particle filter approximation and the dashed lines in blue provide

the 95% credible interval for the particle filter methods. Although these intervals

contain zero for most of the time points, they contain positive value towards the

end of the time series (t > 100). This result is similar to what I obtained in

the simulation study of Section 5.3, where the samples from the shape parameter

posterior approximation contain positive value only after a certain number of ob-

servations. Figure 6.14 illustrates some diagnostics of the methods based on the

simulation. Plot (a) shows the M-H acceptance rate of the MCMC method for

both the scale (in blue color) and shape (in green color) parameters. The scale

parameter σ has acceptance rate within the range of 40% to 60%, and the shape

parameter ξ has an acceptance rate that is slightly larger than 60%. Plot (b) at

the bottom shows the effective sample size from the three particle filter methods,

with BS particle filter in blue, APF particle filter in green and the LW particle

filter in purple, respectively. In this plot, there are sporadic drops in the effec-

tive sample size, (see plot (a) of Figure 6.11), but they return to more acceptable

values quickly afterwards, suggesting that weight degeneracy is not relevant in
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Figure 6.12: Estimation of the scale parameter σ of the minimum daily stock
returns, TOPIX data set, using a dynamic GEV model. (a) MCMC vs BS, (b)
MCMC vs APF, (c) MCMC vs LW.

this study. Figure 6.15 shows histograms of samples from the marginal posterior

approximation taken at the last time point, p(µT |y1:T ), p(σ|y1:T ) and p(ξ|y1:T ) of

all the methods respectively. Histograms are limited to the same range in order

to provide a clear comparison among the different methods. Histograms of the

samples for p(µT |y1:T ), in the left panel show all methods provide similar range

and median values. At the center panel, the histograms of samples of the poste-

rior distribution of the scale parameter p(σ|y1:T ) also provide similar range and

107



Chapter 6. Data Applications with the Dynamic GEV Model
−0

.4
0.

0
0.

4

T

Sc
al

e

10 20 30 40 50 60 70 80 90 100

(a)

−0
.4

0.
0

0.
4

T

Sc
al

e

10 20 30 40 50 60 70 80 90 100

(b)

−0
.4

0.
0

0.
4

T

Sc
al

e

10 20 30 40 50 60 70 80 90 100

(c)

MCMC Median MCMC 95% PF Median PF 95%

Figure 6.13: Estimation of the shape parameter ξ of the minimum daily stock
returns, TOPIX data set, using a dynamic GEV model. (a) MCMC vs BS, (b)
MCMC vs APF, (c) MCMC vs LW.

median values across all methods. In the right panel, the histograms of samples

of the posterior distribution of the shape parameter p(ξ|y1:T ) show all the 95%

credible intervals contain zero, but tend to contain majorly positive values.
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Figure 6.14: Diagnostics for the estimation of the minimum daily stock returns,
TOPIX data set, using a dynamic GEV model. (a) MCMC M-H acceptance rate,
(b) P.F. effective sample size.
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Figure 6.15: Histograms of posterior samples of minimum daily stock returns,
TOPIX data set, using a dynamic GEV model. (Rows are by method, columns
are by parameter.)
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Chapter 7

Summary and Future Work

The aim of the thesis I submitted is to examine the performance of particle filters

on a dynamic GEV model. There are papers talked about particle filter method-

ologies and applications on different data sets. A few papers discussed how to

utilize particle filters to approximate the GEV model but there is lack of system-

atic comparison among all these algorithms. In this thesis, I first studied all the

particle filters that are widely used and then introduced some recent development.

A simple simulation study on the first order Dynamic Linear model showed that

these particle filter algorithms could effectively estimate the parameters and in

some cases even outperformed the MCMC method.

In Chapter 4 and 5, the dynamic GEV model was introduced and the posterior

distribution was approximated applying these particle filter methodologies with

comparison to the result of MCMC approximation. PCS density was proposed

in the MCMC algorithm which largely improved the efficiency and decreased the

computation time. The simulation study showed that our MCMC algorithm ef-

fectively approximated the location and scale parameters but had some issue to

estimate the shape parameter.

We proposed the associated particle filter methods and generated particles directly
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based on the data information and demonstrated that our filtering method was

superior to the MCMC method in some cases. The application study in Chapter 6

illustrated several data sets in the time-dependent GEV class. The parameter esti-

mations showed that applying particle filters on the time-dependent GEV models

provided good fit to the data sets.

With respect to the future work, in addition to the marginal likelihood, forecasting

performance is an important criterion for model comparison. This can be achieved

by studying one step predictive density described as:

F̃ (y) =

∫
F (y|θT+1, xT+1, x1:T )p(θT+1, xT+1|y1:T )dθT+1dxT+1. (7.1)

Another future project will be on other proposed dynamic models, such as dynamic

scale or shape parameters instead of making both fixed. Furthermore, some other

model can be applied to the location parameters, such as a MA, RA or RW2

models. We’ll need to compare which proposed model performs better. Discussed

by Fulop and Li (2013), a sequential Bayes factor can be constructed for sequential

model comparison, a feature that batch estimation cannot have. For any models

M1 and M2, the Bayes factor at time t has the following recursive formula

BF t =
p(y1:t|M1)

p(y1:t|M2
=
p(yt|y1:t−1,M1)

p(yt|y1:t−1,M2)
BF t−1. (7.2)

We can sequentially estimate p(yt|y1:t−1,M) via

p(yt|y1:t−1,M) ≈
N∑
j=1

ωjt−1p(yt|x
j
t−1, θ

j
t−1). (7.3)

Another future topic will be studying the GEV model using the recently developed

Integrated Nested Laplace Approximation (INLA) approach. When the data set

is fixed, in the sense that all observations were already measured, and the interest

is in the estimation of parameters and states using just this information, there

is no reason why the procedure for inference should also be “dynamic”. This is

the idea pursued in the INLA approach, where the posteriors of interest are di-

rectly approximated avoiding look at the temporal structure of the data. INLA
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is a computational approach recently introduced by Rue and Martino (2007) and

Rue et al. (2009), to perform fast Bayesian inference in the broad class of latent

Gaussian models. The INLA method does not sample from the posterior. It ap-

proximates the posterior with a closed form expression. Therefore, problems of

convergence and mixing are not an issue. As an alternative to the usually time

consuming MCMC methods, the main benefit of INLA approximations is com-

putational: where Markov chain Monte Carlo algorithms need hours or days to

run, INLA approximations provide more precise estimates in seconds or minutes.

The GEV model package in INLA is recently developed and we will compare the

performance between INLA and the particle filters as well.
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Appendix A

Detailed SIR Algorithm

Recall from section 2.1.1 that the one-step prediction distribution is given by

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (A.1)

The filtering distribution is

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

(A.2)

Proof:

p(xt|y1:t) =
p(y1:t, xt)

p(y1:t)

=
p(y1:t|xt)p(xt)

p(y1:t)

=
p(y1:t|xt)p(xt)

p(y1:t)

=
p(yt|xt)p(y1:t−1|xt)p(xt)∫

p(y1:t|xt)p(xt)dxt

=
p(yt|xt)p(y1:t−1, xt)/p(y1:t−1)∫
p(y1:t|xt)p(xt)dxt/p(y1:t−1)

=
p(yt|xt)p(xt|y1:t−1)∫

p(yt|xt)p(y1:t−1|xt)p(xt)/p(y1:t−1)dxt
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=
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

The smoothing distribution:

p(xt|y1:T ) = p(xt|y1:t)
∫
p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1 (A.3)

Proof (Sarkka 2012)

Due to the Markov properties the state xt is independent of yt+1:T given xt+1,

which gives p(xt|xt+1, y1:T ) = p(xt|xt+1, y1:t).

p(xt|y1:T ) =

∫
p(xt, xt+1|y1:T )dxt+1

=

∫
p(xt+1|y1:T )p(xt|xt+1, y1:T)dxt+1

=

∫
p(xt+1|y1:T )p(xt|xt+1, y1:t)dxt+1

=

∫
p(xt+1|y1:T )

p(xt, xt+1|y1:t)
p(xt+1|y1:t)

dxt+1

=

∫
p(xt+1|y1:T )

p(xt+1|xt, y1:t)p(xt|y1:t)
p(xt+1|y1:t)

dxt+1

=

∫
p(xt+1|y1:T )

p(xt+1|xt)p(xt|y1:t)
p(xt+1|y1:t)

dxt+1

= p(xt|y1:t)
∫
p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1

= p(xt|y1:t)
∫
p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1

A.1 Predictive Distribution

Particle estimation of the prediction density is based on the following approxima-

tion of relation A.1:

p(xt|y1:t−1) '
1

N

N∑
j=1

pX(xt|xj,t−1|t−1) (A.4)
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In fact, on the grounds of this approximation we can obtain a random sample of

p(xt|y1:t−1) by first choosing randomly an integer k in {1, ..., N} and then gener-

ating a value from pX(xt|xk,t−1|t−1).

Proof (Gordon et al. 1993):

• N is the total number of particles of xjt−1, j = 1, ...N sampled from previous

stage posterior density p(xt−1|y1:t−1), which will be the “prior” for current

stage posterior density p(xt|y1:t).

• With N large enough, such as infinity.
∑N

j=1 p(xt|x
j
t−1) will be approximately

equal to the total number of samples of xt given all the possible xjt−1 sampled

from p(xt−1|y1:t−1). Then from the conditional distribution theory,

1
N

∑N
k=1 p(xt|x

j
t−1) will be approximately equal to p(xt|y1:t−1).

A.2 Filtering Distribution

To generate the samples for the filtering distribution. That is, how to generate

particles which follow the filtering density p(xt|y1:t).

Smith (1992) introduced how to re-sample from H(X) = f(X)/
∫
f(X)dX:

1. Given {Xj, j = 1, 2, ..., N} are samples from g(X), a density function easy to

sample or already obtained from previous stage. Then define the Bootstrap

weight, or mass as qj = ωj/
∑

j ω
j with ωj = f(Xj)/g(Xj).

2. Draw X? from the discrete distribution over X1, X2, ..., XN , and placing

mass qj on Xj.

3. Then X? ∼ H(X?) as the sample size N increase.
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Back to our case, we want to re-sample from the filtering distribution

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

which we can consider it as the H(X) = f(X)/
∫
f(X)dX density we want to

sample.

Then we follow Smith’s procedure as described above:

1. Suppose xj, j = 1, 2, ..., N are samples from the prediction density function

g = p(xt|y1:t−1). Define

ωj = f(xj)/g(xj)

= p(yt|xj)p(xj|y1:t−1)/p(xj|y1:t−1)

= p(xj|y1:t)

then the bootstrap weight is

qj = ωj/
∑
i

ωj

=
p(yt|xj)∑N
j=1 p(yt|xj)

2. Draw {xk[1], xk[2], ..., xk(j) , ..., xk[N ]} from {x1, x2, ..., xj, ..., xN} with mass qi.

3. Then

xk
(j) ∼ H(X) = f(X)/

∫
f(X)dX

=
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1dxt

which is just the filtering distribution function.

The filtering procedure can continue until the last time stage, to get samples of

p(xT |y1:T ).
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A.3 Smoothing Distribution

We are assuming that {←−−−xt+1|T
j, j = 1, 2, ..., N}, are available, which denote the ran-

dom samples generated from the marginal smoothing density P (xt+1|y1:T ). Then

we need backward recursively generate random draws from P (xt|y1:T ), the previ-

ous time point given those samples from p(xt+1|y1:T ).

The smoothing distribution:

p(xt|y1:T ) = p(xt|y1:t)
∫
p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1

is approximated by:

p(xt|y1:T ) = p(xt|y1:t)
∫
p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1

= p(xt|y1:t)
∫

p(xt+1|xt)
p(xt+1|y1:t)

p(xt+1|y1:T )dxt+1

' p(xt|y1:t)
1

N

N∑
j=1

p(←−−−xt+1|T
j|xt)

p(←−−−xt+1|T j|y1:t)
with ←−−−xt+1|T

j ∼ p(xt+1|y1:T )

' p(xt|y1:t)
1

N

N∑
j=1

px(
←−−−xt+1|T

j|xt)
1
N

∑N
m=1 p(

←−−−xt+1|Tm|xmt )
with xmt ∼ p(xt|y1:t)

= p(xt|y1:t)
N∑
j=1

px(
←−−−xt+1|T

j|xt)∑N
m=1 p(

←−−−xt+1|T j|xm,t|t)

A.4 PL Filtering State Full Conditional Density

xt ∼ p(xt|st−1, xt−1, V,W, yt)

= p(xt|xt−1, V,W, yt)

∝ p(yt|xt, V,W, )p(xt|xt−1, V,W, )

∝ exp

(
− 1

2

(yt − xt)2

V

)
· exp

(
− 1

2

(xt − xt−1)2

W

)
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Because yt ∼ N(xt, V ) and xt ∼ N(xt−1,W )

∝ exp

(
− 1

2

W (yt − xt)2 + V (xt − xt−1)2

V ·W

)
= exp

(
− 1

2

Wx2t + V x2t − 2xtytW − 2xtxt−1V + y2t V + x2t−1W

V ·W

)
= exp

(
− 1

2

(W + V )x2t − 2xt(ytW + xt−1V ) + y2t V + x2t−1W

V ·W

)
= exp

(
− 1

2

x2t − 2xt
(ytW+xt−1V )

V+W
+

y2t V+x2t−1W

V+W

(V ·W )/(V +W )

)
∼ N

(
(ytW + xt−1V )

V +W
,
V ·W
V +W

)
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Programming Code

B.1 MCMC Code for Dynamic GEV

// Smooth func t i on with a l l th ree parameters s imulated

// provided the low 5% q u a n t i l e as we l l

#inc lude <c s t d l i b>

#inc lude <iostream>

#inc lude <algor ithm>

#inc lude <Rcpp . h>

#inc lude <omp . h>

#inc lude <vector>

#inc lude <cmath>

//#inc lude <random>

//#inc lude ”math . h”

//#inc lude <p d f l i b . cpp>

us ing namespace std ;
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// Generate a random number between 0 and 1 ; uniform number

in [ 0 , 1 ] .

double unifRand ( ) {

r e turn rand ( ) / double (RAND MAX) ;

}

double stddev ( std : : vector<double> data , i n t n) {

double mean = 0 . 0 ;

double sum deviat ion = 0 . 0 ;

i n t i ;

f o r ( i = 0 ; i<n ; i++) {

mean += data [ i ] ;

}

mean = mean / n ;

f o r ( i = 0 ; i<n ; i++)

sum deviat ion += ( data [ i ] − mean) ∗( data [ i ]

− mean) ;

r e turn s q r t ( sum deviat ion / n) ;

}

double sampleNormal ( ) {

double u = ( ( double ) rand ( ) / (RAND MAX) ) ∗ 2 − 1 ;

double v = ( ( double ) rand ( ) / (RAND MAX) ) ∗ 2 − 1 ;

double r = u ∗ u + v ∗ v ;

i f ( r == 0 | | r > 1) re turn sampleNormal ( ) ;

double c = s q r t (−2 ∗ l og ( r ) / r ) ;
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r e turn u ∗ c ;

}

double r8 normal pdf ( double av , double sd , double r v a l ) {

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗80

// R8 NORMAL PDF eva lua t e s the PDF of a normal

d i s t r i b u t i o n .

// Input , double AV, the mean value .

// Input , double SD, the standard dev i a t i on . 0 . 0 < SD.

// Input , double RVAL, the po int where the PDF i s

eva luated .

// Output , double R8 NORMAL PDF, the value o f the PDF at

RVAL.

double p i = 3.141592653589793 ;

double rtemp ;

double va lue ;

i f ( sd <= 0.0 ) {

std : : cout << ”\n ” ;

std : : cout << ”R8 NORMAL PDF − Fatal e r r o r !\n ” ;

std : : cout << ” Standard dev i a t i on must be p o s i t i v e .\n

” ;

e x i t ( 1 ) ;

}
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rtemp = ( r v a l − av ) ∗ ( r v a l − av ) ∗ 0 .5 / ( sd ∗ sd )

;

va lue = exp ( − rtemp ) / sd / s q r t ( 2 . 0 ∗ pi ) ;

r e turn value ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

double dGEV( double y , double mu, double sg , double x i ) {

double va lue ;

double t ;

i f ( x i == 0 . 0 ) {

t = exp(−(y − mu) / sg ) ;

va lue = (1 / sg ) ∗ pow( t , ( x i + 1) ) ∗ exp(−t ) ;

}

e l s e i f ( x i > 0) {

i f ( y > (mu−sg / x i ) ){

t = pow( (1 + ( ( y − mu) / sg ) ∗ x i ) , (−1 / x i

) ) ;

va lue = (1 / sg ) ∗ pow( t , ( x i + 1) ) ∗ exp(−t ) ;

}

e l s e {

value = 0 . 0 ;

}

}

e l s e {

i f ( y < (mu−sg / x i ) ){
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t = pow( (1 + ( ( y − mu) / sg ) ∗ x i ) , (−1 / x i

) ) ;

va lue = (1 / sg ) ∗ pow( t , ( x i + 1) ) ∗ exp(−t ) ;

}

e l s e {

value = 0 . 0 ;

}

}

r e turn value ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

// double g v l i k ( vector<double> y , vector<double> mu, double

sg , double xi , i n t T) {

double g v l i k ( double y [ ] , double mu [ ] , double sg , double xi ,

i n t T) {

double l o g l i k s = 0 ;

f o r ( i n t t = 0 ; t < T; t++) {

l o g l i k s = l o g l i k s + log ( fmin (pow(10 , 300) ,

fmax (pow(10 , −300) , dGEV( y [ t ] , mu[ t ] , sg

, x i ) ) ) ) ;

}

r e turn l o g l i k s ;

}
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/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

double gensg ( double y [ ] , double mu[ ] , double sg , double xi ,

double s s i g , i n t T) {

double ps in = log ( sg ) + s s i g ∗ sampleNormal ( ) ;

double sgex = exp ( ps in ) ;

i n t count = 0 ;

whi l e ( sgex == 0 | | sgex >30){

ps in = log ( sg ) + s s i g ∗ sampleNormal ( ) ;

sgex = exp ( ps in ) ;

count++;

i f ( count > 10000){

sgex = 10 ∗ unifRand ( ) ;

}

}

double priornew = log ( fmax (pow(10 , −300) ,

r8 normal pdf (0 , 100 , l og ( sgex ) ) ) ) ;

double p r i o r o l d = log ( fmax (pow(10 , −300) ,

r8 normal pdf (0 , 100 , l og ( sg ) ) ) ) ;

double l iknew = g v l i k (y , mu, sgex , xi , T) ;

double l i k o l d = g v l i k (y , mu, sg , xi , T) ;

double l o g r a t i o = l iknew − l i k o l d + priornew −

p r i o r o l d ;
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i f ( i s nan ( l o g r a t i o ) != 0 | | ( f i n i t e ( l o g r a t i o ) ) ==

0) {

sg = sgex ;

}

e l s e {

double un = log ( unifRand ( ) ) ;

i f ( un <= fmin ( l o g r a t i o , 0) ) {

sg = sgex ;

}

e l s e {

sg = sg ;

}

}

r e turn sg ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

double genxi ( double y [ ] , double mu[ ] , double sg , double xi ,

double sx i , i n t T) {

double randomNumber = sampleNormal ( ) ;

double xin = x i + s x i ∗randomNumber ;

i n t count = 0 ;

whi l e ( xin < −0.5 | | xin >0.5) {

xin = x i + s x i ∗ sampleNormal ( ) ;

count++;
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i f ( count > 10000){

xin = unifRand ( ) − 0 . 5 ;

}

}

double h s t a r t = fmax (pow(10 , −300) , r8 normal pdf

( xi , sx i , x in ) ) ;

double h t s t a r = fmax (pow(10 , −300) , r8 normal pdf

( xin , sx i , x i ) ) ;

double priornew = log (max(pow(10 , −300) ,

r8 normal pdf (0 , 1000 , x in ) ) ) ;

double p r i o r o l d = log (max(pow(10 , −300) ,

r8 normal pdf (0 , 1000 , x i ) ) ) ;

double l iknew = g v l i k (y , mu, sg , xin , T) ;

double l i k o l d = g v l i k (y , mu, sg , xi , T) ;

double l o g r a t i o = l iknew − l i k o l d + priornew −

p r i o r o l d ;

double r a t i o = exp ( l o g r a t i o ) ∗ h t s t a r / h s t a r t ;

i f ( i s nan ( r a t i o ) != 0 | | ( f i n i t e ( r a t i o ) ) == 0) {

x i = xin ;

}

e l s e {

double un = unifRand ( ) ;
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i f ( un <= fmin ( ra t i o , 1) ) {

x i = xin ;

}

e l s e {

x i = x i ;

}

}

r e turn x i ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

// double mulik ( vector<double> y , vector<double> mu, double

sdmu , i n t T) {

double mulik ( double y [ ] , double mu [ ] , double sdmu , i n t T) {

double l o g l i k s = 0 ;

f o r ( i n t t = 1 ; t < T; t++) {

l o g l i k s = l o g l i k s + log ( fmin (pow(10 , 300) , max(

pow(10 , −300) , r8 normal pdf (mu[ t − 1 ] , sdmu ,

mu[ t ] ) ) ) ) ;

}

r e turn l o g l i k s ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void genmu( double y [ ] , double ∗ mu0 add , double sg , double

xi , double sdmu , i n t T) {

double munew, l o g r a t i o ;
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double ∗ mu[T ] ;

f o r ( i n t i = 0 ; i < T; i++) {

mu[ i ] = mu0 add++; /∗ a s s i g n the address o f

i n t e g e r . ∗/

}

// In the middle , i t depends on obs be f o r e and

a f t e r i t .

f o r ( i n t t = 1 ; t < T−1; t++) {

munew = 1 . 0 / 2 . 0∗ (∗mu[ t−1] + ∗mu[ t +1]) +

sdmu/ s q r t (2 ) ∗ sampleNormal ( ) ;

l o g r a t i o = log (dGEV( y [ t ] , munew, sg , x i ) )

− l og (dGEV( y [ t ] , ∗mu[ t ] , sg , x i ) ) ;

i f ( i s nan ( l o g r a t i o ) != 0 | | ( f i n i t e (

l o g r a t i o ) ) == 0) {

∗mu[ t ] = munew ;

}

e l s e {

double un = log ( unifRand ( ) ) ;

i f ( un <= fmin ( l o g r a t i o , 0) ) {

∗mu[ t ] = munew ;

}

e l s e {

∗mu[ t ] = ∗mu[ t ] ;

}

}
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}

// t =0, r e l y on t=1 only

munew = ∗mu[ 1 ] + sdmu ∗ sampleNormal ( ) ;

l o g r a t i o = log (dGEV( y [ 0 ] , munew, sg , x i ) ) − l og (

dGEV( y [ 0 ] , ∗mu[ 0 ] , sg , x i ) ) ;

i f ( i s nan ( l o g r a t i o ) != 0 | | ( f i n i t e ( l o g r a t i o ) )

== 0) {

∗mu[ 0 ] = munew ;

}

e l s e {

double un = log ( unifRand ( ) ) ;

i f ( un <= fmin ( l o g r a t i o , 0) ) {

∗mu[ 0 ] = munew ;

}

e l s e {

∗mu[ 0 ] = ∗mu [ 0 ] ;

}

}

// t=T−1, r e l y on t=T−2 only

munew = ∗mu[T−2] + sdmu ∗ sampleNormal ( ) ;

l o g r a t i o = log (dGEV( y [T−1] , munew, sg , x i ) ) − l og (

dGEV( y [T−1] , ∗mu[T−1] , sg , x i ) ) ;

i f ( i s nan ( l o g r a t i o ) != 0 | | ( f i n i t e ( l o g r a t i o ) )

== 0) {
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∗mu[T−1] = munew ;

}

e l s e {

double un = log ( unifRand ( ) ) ;

i f ( un <= fmin ( l o g r a t i o , 0) ) {

∗mu[T−1] = munew ;

}

e l s e {

∗mu[T−1] = ∗mu[T−1] ;

}

}

// re turn mu;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

us ing namespace std ;

// [ [ Rcpp : : export ] ]

Rcpp : : NumericVector MCMCRW1 sdmu(Rcpp : : NumericVector y ,

Rcpp : : NumericVector ITEs , Rcpp : : NumericVector I n i t i a l s )

{

i n t i t e r = ITEs [ 0 ] ;

i n t burnin = ITEs [ 1 ] ;

i n t th in = ITEs [ 2 ] ;
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i n t nthin = ITEs [ 3 ] ;

i n t T = ITEs [ 4 ] ;

double mu 0 = I n i t i a l s [ 0 ] ;

double sdmu = I n i t i a l s [ 1 ] ;

double s c a l e 0 = I n i t i a l s [ 2 ] ;

double s s i g = I n i t i a l s [ 3 ] ;

double x i = I n i t i a l s [ 4 ] ;

double s x i = I n i t i a l s [ 5 ] ;

double yy [T ] ;

f o r ( i n t k = 0 ; k<T; k++) {

yy [ k ] = y [ k ] ;

}

double sg = s c a l e 0 ;

double mu[T ] ;

f o r ( i n t k = 0 ; k<T; k++) {

mu[ k ] = mu 0 + sdmu∗ sampleNormal ( ) ;

}

double mus [ nthin ] [ T ] ;

memset (mus , 0 , ( nthin ) ∗T∗ s i z e o f ( double ) ) ; // I n i t i a l

matrix

double s c a l e s [ nthin ] ;

memset ( s c a l e s , 0 , ( nthin ) ∗ s i z e o f ( double ) ) ; // I n i t i a l

matrix

double shapes [ nthin ] ;
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memset ( shapes , 0 , ( nthin ) ∗ s i z e o f ( double ) ) ; // I n i t i a l

matrix

std : : vector<double> l o g s c a l e v e c ;

s td : : vector<double> shape vec ;

l o g s c a l e v e c . a s s i g n (1 , l og ( sg ) ) ;

shape vec . a s s i g n (1 , x i ) ;

i n t K thin = 0 ;

i n t K Accept sca le = 0 ;

i n t K Accept shape = 0 ;

double s g o l d ;

double x i o l d ;

f o r ( i n t i =0; i< i t e r ; i++) {

s g o l d = sg ;

x i o l d = x i ;

genmu( yy , &mu[ 0 ] , sg , xi , sdmu , T) ;

genmu( yy , &mu[ 0 ] , sg , xi , sdmu , T) ; // Repeat

here to use the new approx again 4/2/2015

sg = gensg ( yy , mu, sg , xi , s s i g , T) ;

x i = genxi ( yy , mu, sg , xi , sx i , T) ;

i f ( s g o l d != sg ) {

K Accept sca le = K Accept sca le + 1 ;

}
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i f ( x i o l d != x i ) {

K Accept shape = K Accept shape + 1 ;

}

std : : vector<double > : : i t e r a t o r i t ;

i t = l o g s c a l e v e c . end ( ) ;

l o g s c a l e v e c . i n s e r t ( i t , 1 , l og ( sg ) ) ;

i t = shape vec . end ( ) ;

shape vec . i n s e r t ( i t , 1 , x i ) ;

s td : : vector<double> V1 , V2 ;

i f ( i > 1000){

V1 . i n s e r t (V1 . begin ( ) , l o g s c a l e v e c . end ( ) −

499 , l o g s c a l e v e c . end ( ) ) ;

V2 . i n s e r t (V2 . begin ( ) , shape vec . end ( ) −

499 , shape vec . end ( ) ) ;

s s i g = fmax ( stddev (V1 , 500) , 0 . 001 ) ;

s x i = fmax ( stddev (V2 , 500) , 0 . 001 ) ;

V1 . c l e a r ( ) ;

V2 . c l e a r ( ) ;

}

i f ( i >= ( burnin−1) && ( i − burnin + 1) % th in ==

0){

f o r ( i n t j = 0 ; j < T; j++){

mus [ K thin ] [ j ] = mu[ j ] ;
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}

s c a l e s [ K thin ] = sg ;

shapes [ K thin ] = x i ;

K thin++;

}

}

Rcpp : : NumericMatrix product ( nthin , T+3) ;

// #pragma omp p a r a l l e l f o r

f o r ( i n t i =0; i<nthin ; i++) {

f o r ( i n t j = 0 ; j < T; j++){

product ( i , j ) = mus [ i ] [ j ] ;

}

}

f o r ( i n t i =0; i<nthin ; i++){

product ( i ,T) = s c a l e s [ i ] ;

product ( i , T+1) = shapes [ i ] ;

}

product (0 , T + 2) = double ( K Accept sca le ) / double ( i t e r ) ;

product (1 , T + 2) = double ( K Accept shape ) / double ( i t e r ) ;

f o r ( i n t j = 2 ; j < nthin ; j++){

product ( j , T + 2) = 0 ;

}

r e turn ( product ) ;
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}

B.2 P.F. Code for Dynamic GEV

B.2.1 BS Filter

####### BootStrap ( SIR ) smoothing

#########################################################

BS = func t i on (y , mu 0 , s i g l o c , s c a l e 0 , s i g l o g s c a 0 ,

shape 0 , sx i 0 , N, RW){

T Local = length ( y )

mus = matrix (0 ,N)

s c a l e s = matrix (0 ,N)

shapes = matrix (0 ,N)

mus F = matrix (0 ,N, T Local )

s c a l e s F = matrix (0 ,N, T Local )

shapes F = matrix (0 ,N, T Local )

weight F = matrix (0 ,N, T Local )

mus S = matrix (0 ,N, T Local )

s c a l e s S = matrix (0 ,N, T Local )

shapes S = matrix (0 ,N, T Local )

weight S = matrix (0 ,N, T Local )

### I n i t i a l parameter va lue s
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s i g l o g s c a = s i g l o g s c a 0

s x i = s x i 0

l o c s = rnorm (N, mean=mu 0 , sd=s i g l o c )

#s c a s = exp ( rnorm (N, mean=log ( s c a l e 0 ) , sd=s i g l o g s c a ) )

s c a s =exp ( rtruncnorm (n=N, a=−10ˆ(300) , b=log (30) , mean=

log ( s c a l e 0 ) , sd=s i g l o g s c a ) )

sha s = rtruncnorm (n=N, a=−0.5, b=0.5 , mean=shape 0 , sd=

s x i )

i f (RW==1) {

## Instead , t=1 make RW around i t s e l f

f o r ( t in 1 : 1 ) {

mus = rnorm (N, l o c s , s i g l o c )

#s c a l e s = exp ( rnorm (N, l og ( s c a s ) , s i g l o g s c a ) )

### Use same s c a l e and shape l i m i t as in MCMC

s c a l e s = exp ( rtruncnorm (n=N, a=−10ˆ(300) , b=log (30) ,

mean=log ( s c a s ) , sd=s i g l o g s c a ) )

shapes = rtruncnorm (n=N, a=−10, b=10, mean=sha s , sd=

s x i )

w = NULL

### Shape bound removed due to NA va lues

f o r ( i in 1 :N) {

w[ i ] <− min (10ˆ(300) ,

max(10ˆ(−300) ,

dgev ( y [ t ] , l o c=mus [ i ] , s c a l e=s c a l e s [ i

] , shape=shapes [ i ] , l og = FALSE) ) )
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}

w = w/sum(w)

## Resampling

index <− sample ( 1 :N, s i z e=N, r e p l a c e=TRUE, prob=w)

## Save r e s u l t

mus F [ , t ] = mus [ index ]

s c a l e s F [ , t ] = s c a l e s [ index ]

shapes F [ , t ] = shapes [ index ]

weight F [ , t ] = rep (1/N, N)

}

f o r ( t in 2 : T Local ){

s x i = max( s x i ∗0 . 9 , 0 . 01 )

s i g l o g s c a = max( s i g l o g s c a ∗0 . 9 , 0 . 01 )

#### Sample ve c t o r s at r i g h t s i d e are from l a s t time

i t e r a t i o n po int ( t−1)

mus = rnorm (N, mus F [ , t−1] , s i g l o c )

#s c a l e s = exp ( rnorm (N, l og ( s c a l e s F [ , t−1]) ,

s i g l o g s c a ) )

s c a l e s = exp ( rtruncnorm (n=N, a=−10ˆ(300) , b=log (30) ,

mean=log ( s c a l e s F [ , t−1]) , sd=s i g l o g s c a ) )

shapes = rtruncnorm (n=N, a=−0.5, b=0.5 , mean=shapes F

[ , t−1] , sd=s x i )

w = NULL
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### Shape bound removed due to NA va lues

f o r ( i in 1 :N) {

w[ i ] <− min (10ˆ(300) ,

max(10ˆ(−300) ,

dgev ( y [ t ] , l o c=mus [ i ] , s c a l e=s c a l e s

[ i ] , shape=shapes [ i ] , l og =

FALSE) ) ) }

w = w/sum(w)

## Resampling

index <− sample ( 1 :N, s i z e=N, r e p l a c e=TRUE, prob=w)

## Save r e s u l t

mus F [ , t ] = mus [ index ]

s c a l e s F [ , t ] = s c a l e s [ index ]

shapes F [ , t ] = shapes [ index ]

weight F [ , t ] = rep (1/N, N)

}

}

e l s e i f (RW==2) {

## F i r s t time po int t=1&2, s i n c e they cannot apply RW2.

## Instead , t=1 make RW around i t s e l f and t=2 make RW

around value o f t=1

f o r ( t in 1 :2 ){

mus = rnorm (N, l o c s , s i g l o c )

#s c a l e s = exp ( rnorm (N, l og ( s c a s ) , s i g l o g s c a ) )
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s c a l e s = exp ( rtruncnorm (n=N, a=−10ˆ(300) , b=log (30) ,

mean=log ( s c a s ) , sd=s i g l o g s c a ) )

shapes = rtruncnorm (n=N, a=−0.5, b=0.5 , mean=sha s ,

sd=s x i )

w = NULL

### Shape bound removed due to NA va lues

f o r ( i in 1 :N) {

w[ i ] <− min (10ˆ(300) ,

max(10ˆ(−300) ,

dgev ( y [ t ] , l o c=mus [ i ] , s c a l e=s c a l e s

[ i ] , shape=shapes [ i ] , l og =

FALSE) ) ) }

w = w/sum(w)

## Resampling

index <− sample ( 1 :N, s i z e=N, r e p l a c e=TRUE, prob=w)

## Save r e s u l t

mus F [ , t ] = mus [ index ]

s c a l e s F [ , t ] = s c a l e s [ index ]

shapes F [ , t ] = shapes [ index ]

weight F [ , t ] = rep (1/N, N)

## Save t h e t a t=1 and being used at t=2 back to next

loop .

l o c s = mus [ index ]

s c a s = s c a l e s [ index ]

141



Appendix B. Programming Code

sha s = shapes [ index ]

}

f o r ( t in 3 : T Local ){

s x i = max( s x i ∗0 . 9 , 0 . 001 )

s i g l o g s c a = max( s i g l o g s c a ∗0 . 9 , 0 . 001 )

#### Sample ve c t o r s at r i g h t s i d e are from l a s t time

i t e r a t i o n po int ( t−1)

mus = rnorm (N, 2∗mus F [ , t−1] − mus F [ , t−2] ,

s i g l o c )

#s c a l e s = exp ( rnorm (N, l og ( s c a l e s F [ , t−1]) ,

s i g l o g s c a ) )

s c a l e s = exp ( rtruncnorm (n=N, a=−10ˆ(300) , b=log (30) ,

mean=log ( s c a l e s F [ , t−1]) , sd=s i g l o g s c a ) )

shapes = rtruncnorm (n=N, a=−0.5, b=0.5 , mean=shapes F

[ , t−1] , sd=s x i )

w = NULL

### Shape bound removed due to NA va lues

f o r ( i in 1 :N) {

w[ i ] <− min (10ˆ(300) ,

max(10ˆ(−300) ,

dgev ( y [ t ] , l o c=mus [ i ] , s c a l e=s c a l e s

[ i ] , shape=shapes [ i ] , l og =

FALSE) ) ) }

w = w/sum(w)
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## Resampling

index <− sample ( 1 :N, s i z e=N, r e p l a c e=TRUE, prob=w)

## Save r e s u l t

mus F [ , t ] = mus [ index ]

s c a l e s F [ , t ] = s c a l e s [ index ]

shapes F [ , t ] = shapes [ index ]

weight F [ , t ] = rep (1/N, N)

}

}

pr in t (”BS end ”)

re turn ( l i s t (mus=mus F , s c a l e s = sca l e s F , shapes =

shapes F , s i g l o g s c a=s i g l o g s c a , s i g s h a=s x i ) )

}

B.2.2 APF Filter

####### Prado West P170 ######

## Try RW1 of l o ca t i on , s c a l e and shape f i x e d ##

APF = func t i on (y , mu 0 , s i g l o c , s c a l e 0 , s i g l o g s c a 0 ,

shape 0 , sx i 0 , N, RW){

T Local= length ( y )

### I n i t i a l parameter va lue s

s i g l o g s c a = s i g l o g s c a 0

s x i = s x i 0
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l o c s = rnorm (N, mean=mu 0 , sd=s i g l o c )

#s c a s = exp ( rnorm (N, mean=log ( s c a l e 0 ) , sd=s i g l o g s c a ) )

s c a s = exp ( rtruncnorm (n=N, a=−10ˆ(300) , b=log (30) , mean=

log ( s c a l e 0 ) , sd=s i g l o g s c a ) )

sha s = rtruncnorm (n=N, a=−0.5, b=0.5 , mean=shape 0 , sd=

s x i )

### Save r e s u l t f o r mu, each column f o r each time po int

###

mus F = matrix (0 ,N, T Local )

s c a l e s F = matrix (0 ,N, T Local )

shapes F = matrix (0 ,N, T Local )

weight F = matrix (0 ,N, T Local )

mus S = matrix (0 ,N, T Local )

s c a l e s S = matrix (0 ,N, T Local )

shapes S = matrix (0 ,N, T Local )

weight S = matrix (0 ,N, T Local )

qs = NULL

w1 = rep (1/N, N) ## For i n i t i a l weight

mus F [ , 1 ] = l o c s

f o r ( t in 1 : T Local ){

s x i = max( s x i ∗0 . 9 , 0 . 01 )

s i g l o g s c a = max( s i g l o g s c a ∗0 . 9 , 0 . 01 )

# (1) sample Aux i l i a ry v a r i a b l e / index
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w = NULL

f o r ( i in 1 :N) {

### max here to make sure no 0 value

w[ i ] = min (10ˆ(300) ,

max(10ˆ(−300) , dgev ( y [ t ] , l o c=l o c s [ i ] ,

s c a l e=s c a s [ i ] , shape=sha s [ i ] , l og =

FALSE) ∗ w1 [ i ] ) ) }

w=w/sum(w)

k = sample ( 1 :N, s i z e=N, r e p l a c e=TRUE, prob=w)

# (2) Sample new samples

i f (RW==1){

i f ( t==1) {

l o c s 1 = rnorm (N, mus F [ k , 1 ] , s i g l o c ) }

e l s e {

l o c s 1 = rnorm (N, mus F [ k , t−1] , s i g l o c ) }

}

e l s e i f (RW==2) {

i f ( t==1 | t==2) {

l o c s 1 = rnorm (N, mus F [ k , 1 ] , s i g l o c ) }

e l s e {

l o c s 1 = rnorm (N, 2∗mus F [ k , t−1] − mus F [ k , t−2] ,

s i g l o c ) }

}

#s c a s 1 = exp ( rnorm (N, l og ( s c a s [ k ] ) , s i g l o g s c a ) )

s c a s 1 = exp ( rtruncnorm (n=N, a=−10ˆ(300) , b=log (30) ,

mean=log ( s c a s [ k ] ) , sd=s i g l o g s c a ) )
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sha s1 = rtruncnorm (n=N, a=−0.5, b=0.5 , mean=sha s [ k ] ,

sd=s x i )

# (3) Get new weights

w1 = NULL

f o r ( i in 1 :N) {

w1 [ i ] = min (10ˆ300 ,

max(10ˆ(−300) , dgev ( y [ t ] , l o c=l o c s 1 [ i

] , s c a l e=s c a s 1 [ i ] , shape=sha s1 [ i ] ,

l og = FALSE) / w[ k [ i ] ] ) )

}

### w[ k [ i ] ] i s the mean o f ˜ par ( t+1) | par t [ k ] , which

i s j u s t pa r t [ k ] .

### Add extra s tep o f resampl ing f o r each one

w1 = w1/sum(w1)

## Resampling

index <− sample ( 1 :N, s i z e=N, r e p l a c e=TRUE, prob=w1)

## Save r e s u l t

mus F [ , t ] = l o c s 1 [ index ]

s c a l e s F [ , t ] = s c a s 1 [ index ]

shapes F [ , t ] = sha s1 [ index ]

weight F [ , t ] = rep (1/N, N)

l o c s = l o c s 1 [ index ]

s c a s = s c a s 1 [ index ]
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sha s = sha s1 [ index ]

w1 = rep (1/N, N)

}

pr in t (”APF end ”)

re turn ( l i s t (mus=mus F , s c a l e s = sca l e s F , shapes =

shapes F , s i g l o g s c a=s i g l o g s c a , s i g s h a=s x i ) )

}

B.2.3 LW Filter

LW = func t i on (y , mu 0 , s i g l o c , s c a l e 0 , s i g l o g s c a 0 ,

shape 0 , sx i 0 , N, RW){

T Local = length ( y )

h2 = 1−aˆ2

### I n i t i a l parameter va lue s

s i g l o g s c a = s i g l o g s c a 0

s x i = s x i 0

l o c s = l o c s 0 = rnorm (N, mean=mu 0 , sd=s i g l o c ) # rep (

mu 0 , N)

#s c a s = exp ( rnorm (N, mean=log ( s c a l e 0 ) , sd=s i g l o g s c a ) )

s c a s = exp ( rtruncnorm (n=N, a=−10ˆ(300) , b=log (30) , mean=

log ( s c a l e 0 ) , sd=s i g l o g s c a ) )

sha s = rtruncnorm (n=N, a=−0.5, b=0.5 , mean=shape 0 , sd=

s x i )

147



Appendix B. Programming Code

pars = cbind ( l og ( s c a s ) , sha s ) ## Below i s the f i x e d

parameters \phi

w = rep (1/N, N)

### Save r e s u l t f o r smoothing useage , each column f o r

each time point###

mus F = matrix (0 ,N, T Local )

s c a l e s F = matrix (0 ,N, T Local )

shapes F = matrix (0 ,N, T Local )

weight F = matrix (0 ,N, T Local )

mus S = matrix (0 ,N, T Local )

s c a l e s S = matrix (0 ,N, T Local )

shapes S = matrix (0 ,N, T Local )

weight S = matrix (0 ,N, T Local )

qs = NULL

f o r ( t in 1 : T Local ){

vpar = var ( pars )

# Step 1 , i d e n t i f y mu t and m ( t−1)

## Sample m o f parameter vec to r :

mpar = apply ( pars , 2 , mean) ## Mean o f each column ,

mean o f phi ( t−1)

m = a∗ pars+(1−a ) ∗matrix (mpar ,N, 2 , byrow=TRUE) ##

m ( t−1)

m l og s ca s = m[ , 1 ]

m sha s = m[ , 2 ]

148



Appendix B. Programming Code

# Step 2 , sample a u x i l i a r y index k

weight = NULL

f o r ( i in 1 :N) {

weight [ i ] = min (10ˆ(300) ,

max(10ˆ(−300) , dgev ( y [ t ] , l o c=

l o c s 0 [ i ] , s c a l e=exp ( m l og s ca s

[ i ] ) , shape=m sha s [ i ] , l og =

FALSE) ) )

}

weight = weight /sum( weight )

k = sample ( 1 :N, s i z e=N, r e p l a c e=TRUE, prob=weight )

# Step 3 , sample f i x e d parameters : p h i t

Mat <− h2∗vpar

newMat <− Mat + 0.000001∗ diag (2 )

newMat <− 0 .5∗newMat + 0.5∗ t (newMat)

#pars = m[ k , ] + matrix ( rnorm (2∗N) ,N, 2 )%∗%cho l (newMat)

#pars = m[ k , ] + mvrnorm(n=N, mu=c (0 , 0 ) , Sigma=h2∗vpar ,

t o l = 1e−6, e m p i r i c a l = FALSE)

pars = m[ k , ] + mvrnorm(n=N, mu=c (0 , 0 ) , Sigma=newMat ,

t o l=1e−6, e m p i r i c a l=FALSE)

l o g s c a s = pars [ , 1 ]

sha s = pars [ , 2 ]

## Step 4 , sample s t a t e vec to r { t+1}
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i f (RW==1) {

i f ( t==1) {

l o c s = rnorm (N, l o c s 0 [ k ] , s i g l o c ) }

e l s e {

l o c s = rnorm (N, mus F [ k , t−1] , s i g l o c ) }

}

e l s e i f (RW==2) {

i f ( t==1 ){

l o c s = rnorm (N, l o c s 0 [ k ] , s i g l o c ) }

e l s e i f ( t==2) {

l o c s = rnorm (N, mus F [ k , t−1] , s i g l o c ) }

e l s e {

l o c s = rnorm (N, 2∗mus F [ k , t−1] − mus F [ k , t−2] ,

s i g l o c ) }

}

## Step 5

f o r ( i in 1 :N) {

w[ i ] = min (10ˆ300 , max(10ˆ(−300) , dgev ( y [ t ] , l o c=

l o c s [ i ] , s c a l e=exp ( l o g s c a s [ i ] ) , shape=sha s [ i ] ,

l og = FALSE) / weight [ k [ i ] ]

∗ duni f ( sha s [ i ] ,

−0.5 , 0 . 5 ) ) ) }

### Add extra s tep o f resampl ing f o r each one

## Resampling

w <− w/sum(w)

index <− sample ( 1 :N, s i z e=N, r e p l a c e=TRUE, prob=w)
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pars = pars [ index , ]

l o c s = l o c s [ index ]

s c a s = exp ( l o g s c a s [ index ] )

sha s = sha s [ index ]

mus F [ , t ] = l o c s

s c a l e s F [ , t ] = s c a s

shapes F [ , t ] = sha s

l o c s 0 = l o c s

}

pr in t (”LW end ”)

re turn ( l i s t (mus=mus F , s c a l e s = sca l e s F , shapes = shapes F

, pars = pars ) )

}
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