

44

Figure 10

2. BSHC (Bottleneck Stochastic Hill Climbing): A one-sided stochastic hill

climbing method adapted to handle bottleneck crossings using the local bottleneck

45

crossing principles of MEC’s EDGESIFT. As with OMEC, Algorithm 7 was

implicitly utilized by BSHC to handle the maintenance of edge cross counts. As

reflected in its pseudocode (Algorithm 8), BSHC was made to keep running until

15 consecutive generations had passed with no improvement in the graph’s

bottleneck value.

46

Figure 11

3. BC + OMEC: OMEC with initial barycenter preprocessing. Applies OMEC to a

bipartite graph that has had the barycenter heuristic initially applied to it.

4. BC +BSHC: BSHC with initial barycenter preprocessing. Applies BSHC to a

bipartite graph that has had the barycenter heuristic initially applied to it.

47

Chapter 5: Results

5.1: One-Sided Unweighted Crossing Minimization

 Average test results on graphs of size 20 in terms of percentage deviation from the

lower bound and time measured in seconds are given in Figures 12 and 13 below. For full

results including average crossing values, standard deviations, and results for larger graphs,

see the Appendix.

 From Figure 12 one can clearly see that all crossing minimization methods

gradually perform better on average with increasing graph density. For instance,

Hybrid_SA achieved average percent deviations of 6.5, 3.7, and 2.5 percent above

optimality for graph densities of 10, 20 and 30 percent respectively. Similarly, the

barycenter heuristic resulted in corresponding percent deviations of 3.0, 1.2, and 0.6. This

trend of improved performance with higher edge density is likely due to there being less

room for improvement as the number of edges in a graph increases. As a graph’s density

grows, it naturally becomes harder to avoid the crossing of pairs of edges, making it

“easier” for an algorithm to have closer to optimal output.

48

Figure 12: Average percent deviation of algorithms from the lower bound on random,
unweighted, size 20 graphs.

49

Figure 13: Average algorithm times (in seconds) when executed on random, unweighted, size 20
graphs.

Not surprisingly, barycenter ranks within the top two of the 6 methods when it

comes to minimizing crossings. As previously noted, for size 20 graphs with densities 10,

20 and 30 percent the heuristic was able to achieve crossings 3, 1.2, and 0.6 percent higher

than the associated lower bound on average. The only other method to outperform it was

the one-sided stochastic hill climbing heuristic SHC, which produced corresponding

deviations of 1.8, 0.9 and 0.4 percent above the lower bounds. However, despite its close

to optimal crossings performance stochastic hill climbing was not the fastest method, with

50

running times similar to those of one-sided hybrid simulated annealing (although with a

higher standard deviation values). On graphs of size 20 and density 30%, for instance, SHC

averaged a runtime of 3.0 seconds. This was clearly slower than the 0.0 second runtimes

of barycenter and WOLF, the two fastest methods for one-sided crossing minimization.

The high speed of these algorithms can be attributed to the fact that they are deterministic,

reordering nodes according to certain calculated sums.

 Although 3-WOLF and Hybrid_SA did not rank within the top 2, the two methods

(ranked 3rd and 4th) still achieved crossing values that were close to optimal, being at most

6.5 percent above the average lower bound. Interestingly, although 3-WOLF was designed

to optimize weighted edge crossings, it still performed very well on the unweighted graphs.

For size 20 graphs it’s average crossings ranged between 5.8 and 3.6 percent above the

average lower bounds. Although the hybrid simulated annealing algorithm produced

average results close to those of 3-WOLF, it did not achieve the same level of optimality

as it did when applied to its original two-sided crossing minimization context [18]. This

could be due to its hybrid design, which searches for permutations that give both low linear

arrangement and low crossing count values. Although low linear arrangements tend to

coincide with low cross counts in both the one and two-sided cases, they do not necessarily

yield optimal results for the latter. The previously cited relations between linear

arrangements and edge crossings in bipartite graphs was proven with the assumption that

both layers (i.e. every node in the graph) could be permuted [2,3]. It could be then that part

of the reason Hybrid_SA did not give results closer to stochastic hill climbing was because

51

of the one-sided context of the drawing problem. When applied in its original two layer

setting the linear arrangement values that it optimizes for likely give closer approximations

to optimal graph crossings than in the current study’s single layer case. Hybrid_SA may

have also missed the cut in rankings because it was not given any spectral initialization in

the one-sided crossing tests. The original two-sided version of the algorithm began with an

initial Fiedler vector-induced placement of nodes. This likely helped the simulated

annealing algorithm a lot both in terms of average crossings and in terms of time, something

that the one-sided version, Hybrid_SA, did not benefit from.

 In regards to the two genetic algorithms, it was the algorithm of Mäkinen and

Sieranta that consistently performed better in terms of average crossings. For density 10,

20 and 30 percent graphs of size 20 Makinen_GA deviated 16.3, 8.8 and 5.9 percent, on

average, above the lower bound. This was clearly lower than the average corresponding

deviations of 30.1, 15.6 and 10.4 percent that resulted from application of Zoheir_GA.

With the exception of Zoheir_GA on size 20 and density 30 percent graphs which had an

average runtime of 4.8 seconds, the two genetic algorithms were able to achieve runtimes

close to those of Hybrid_SA and SHC. This shows that at least in the unweighted context

with graphs that are not too large, genetic algorithms for bipartite graph drawing can be

time competitive if given a suitable proxy measurement for fitness evaluation. The increase

in time efficiency does come at a cost though in terms of average crossings performance,

with Makinen_GA and Zoheir_GA ranking 5th and 6th according to crossing minimization

performance.

52

As to why the genetic algorithm of Mäkinen and Sieranta performed better than

that of Zoheir, it could be due to several things. For one, although the crossover operation

of Makinen_GA was quite expensive, it did appear by design to introduce a lot of

randomization in the resulting child permutations, for instance when each child would

inherit its missing elements according to their order in the opposing parent. At the same

time, the crossover operation was also made to preserve the ordering of nodes within

segments from both (potentially fit) parents. In addition, the combination of more and less

fit permutations during this phase helped to randomize the process even more. As a result,

even though the mutation operator was removed to improve runtimes, the combined

crossover and selection portions of Makinen_GA appeared to have enough randomness to

avoid getting stuck in local optima while still evolving permutations with good fitness

values. As it repeatedly swaps the positions of nodes at random, the genetic algorithm of

Zoheir Ezziane does appear on the surface to be capable of searching a large space of

permutations and to have a lot of inbuilt randomness, like Makinen_GA. However, unlike

stochastic hill climbing, the genetic algorithm of Zoheir does not keep track of

improvements in edge crossings with node swaps. Even if the reordering of a pair of nodes

results in an increase in edge crossings, it will accept the permutation just the same. Even

more importantly though, the iterative randomized swap procedure of Zoheir’s GA is less

likely to preserve good node arrangements from previous generations. While the genetic

algorithm of Mäkinen and Sieranta preserves permutation segments during crossover, the

heavily mutation based algorithm of Zoheir is constantly changing permutations at a high

57

 As previously noted, stochastic hill climbing was the clear winner for minimizing

weighted edge crossings. It was not as fast as the deterministic 3-WOLF though, which

achieved the same rounded runtimes as barycenter. On size 20 graphs the runtimes for SHC

ranged between 0.8 and 3.0 seconds on average, similar to Hybrid_SA. However, despite

its slower runtimes, the fact that the weighted stochastic hill climbing heuristic, the simplest

of all the crossing minimization procedures, was able to consistently beat 3-WOLF by at

least more than 3 percent on size 20 graphs is impressive, particularly when one considers

how much a percentage difference can account for in terms of total weighted crossings (see

appendix results), and also because 3-WOLF has been shown to be a near optimal

algorithm for weighted crossing minimization. The inherent flexibility of stochastic hill

climbing and its ability to achieve crossings so close to the approximate lower bounds

suggest that it is not only effective as a simple stand-alone method for weighted crossing

minimization, but also as a potential post-processing procedure. If the graph data isn’t too

large and/or runtime is not an issue, then stochastic hill climbing alone can be used for

approximating the minimum crossing number for a weighted bipartite graph. If, on the

other hand, the graph data is quite large and/or runtime is more of an issue, then weighted

stochastic hill climbing can be applied as a greedy post-processing method to improve the

result of 3-WOLF for a weighted graph.

5.3: Weighted versus Unweighted Barycenter Results:

58

 Average results of weighted (BC_W) and unweighted (BC) variants of the

barycenter heuristic for weighted size 20, 25 and 30 bipartite graphs are presented in figures

16, 17 and 18. Actual average weighted crossing numbers can be found in the appendix.

Since both variants of the barycenter heuristic consistently averaged runtimes of 0.0

seconds, bar charts reflecting execution times were excluded.

The traditional barycenter heuristic was not originally designed to account for edge

weights. If given a weighted graph as input, BC simply ignores the edge weights and orders

nodes according to the averages of their neighbors’ x-coordinates. BC_W, on the other

hand, does consider edge weights in its calculations by computing averages as edge-

weighted sums of neighbors’ x-coordinates.

Neither BC nor BC_W was able to outperform the best methods of Section 5.2.

However, interestingly, the simple non-edge-weighted version of barycenter performs

better than its weighted variant when it comes to minimizing weighted edge crossings. This

goes against the intuition that factoring in edge weights will help to improve the

performance of a heuristic like barycenter when tested on weighted graphs. As one can see

though, by ignoring edge weights the simpler version of barycenter was able to improve

the average edge crossing performance by a significant amount over its weighted

counterpart in some cases. For bipartite graphs with density 10 percent and sizes 20, 25

and 30 the corresponding improvements in average crossings were about 10, 7 and 5

percent respectively. For density 20 percent graphs with sizes 20, 25 and 30 the

corresponding average improvements were 3.6, 2.9, and 2.6 percent. And for density 30

59

percent graphs with sizes 20, 25 and 30 the average improvements were 2.8, 1.8, and 1.7

percent.

Figure 16: Average percent deviations of weighted (BC_W) versus unweighted (BC) barycenter
on random weighted bipartite graphs of size 20.

60

Figure 17: Average percent deviations of weighted (BC_W) versus unweighted (BC) barycenter
on random weighted bipartite graphs of size 25.

61

Figure 18: Average percent deviations of weighted (BC_W) versus unweighted (BC) barycenter
on random weighted bipartite graphs of size 30.

 Although the standard barycenter heuristic consistently performs better on the test

graphs than its weighted variant, one may notice from the previously cited numbers that

the percentage difference between the two decreases with graph size and density. It is

possible that the two versions of barycenter perform more similarly with bigger graphs

simply due to their higher complexity. It is especially the case that with higher density

62

graphs, as the number of edges increases, the possibilities for reducing weighted crossings

should go down as more pairs of edges come up that can’t avoid crossing with each other.

This is not to say, however, that the relative performance of the two methods should be

judged purely based off of percentage differences. Even a percentage difference seemingly

as small as 1.7 can amount to a weighted edge crossing reduction of almost 2,000 (e.g.

when comparing the average 123808.2 of BC for size 30 density 30 graphs to the

corresponding average of 125794.6 of BC_W as shown in the appendix). This could

potentially be significant based on the application in which such results may arise, giving

even more credence to the simpler fast heuristic that ignores edge weights.

 As for the sparser, density 10 graphs, the unweighted barycenter heuristic clearly

performs better than its weighted counterpart. As to why this may be the case, it is useful

to think of an edge-weighted graph as a multigraph (a graph that allows for loops and

multiple edges). Rather than picturing a weighted edge as a straight line running between

layers with a number attached to it, one can also imagine it as several straight lines each

with a weight of one and all connecting the same pair of vertices. So, rather than having a

single edge between two nodes with a weight of 3, one could alternately have three parallel

edges with weight one connecting the same pair of nodes. Minimizing crossings in a

weighted bipartite graph then becomes equivalent to minimizing the crossings in its

corresponding multigraph. If we now think in terms of arranging nodes to reduce the

crossings on each single edge of unitary weight in the multigraph, the regular barycenter

method that tends to straighten edges by calculating unweighted averages seems to be the

63

natural choice. Introducing edge weights in this context could potentially throw off the

average calculations and lead to a permutation that results in bad crossing values not just

for one, but all parallel edges connecting the same pair of nodes. Since the placement of a

node affects all parallel edges adjacent to it, good heuristic like the unweighted barycenter

that gives low crossing values for single edges should benefit the remaining parallel edges.

This could explain its superior performance on the crossing values of the weighted graph

as a whole.

5.3: One-Sided Bottleneck Crossing Minimization

 Average bottleneck crossing minimization results for OMEC, the one-sided variant

of MEC, BSHC, the bottleneck crossings based stochastic hill climbing procedure, and

each of the two methods with barycenter preprocessing (BC+ OMEC and BC+BSHC

respectively) are presented in figures 19 and 20 below. Only size 20 graph results are

shown, with results for other graph sizes and standard deviations given in the appendix.

As one can see, for all graph densities the bottleneck edge oriented variant of

stochastic hill climbing was able to outperform OMEC by a significant amount in terms of

average bottleneck crossing values. For size 20 density 10 graphs the average bottleneck

value of BSHC was 22.5% better than that of OMEC (27.8/22.7). When the density

increased to 20% the ratio of OMEC to BSHC was about 1.2. On size 20 graphs the two

methods had similar runtimes. However, as the edge density and graph size increased so

did the difference between the methods’ times (see appendix), with the average runtimes

64

of OMEC significantly outgrowing those of BSHC. Make note on slower runtime here

for OMEC.

Figure 19: Average bottleneck crossing results of OMEC and BSHC (with and without barycenter
preprocessing) on random unweighted size 20 bipartite graphs.

65

Figure 20: Average bottleneck crossing times of OMEC and BSHC (with and without barycenter
preprocessing) on random unweighted size 20 bipartite graphs.

Apart from OMEC and BSHC Figure 19 also considers the results of the two

methods when applied to random graphs that have been reordered by barycenter for initial

preprocessing (i.e. BC+OMEC and BC+BSHC). The intuition behind this preprocessing

step is that by applying barycenter first, the test graphs should get a quick reduction in the

average crossings occurring on individual edges. With a smart initial layout like this that

is closer to optimality, the heuristics shouldn’t take as much time to further refine the

ordering for bottleneck crossing minimization. According to the results, this intuition was

correct. In most cases barycenter preprocessing helped to reduce the average bottleneck

66

crossing values along with cuts in corresponding runtimes. For OMEC the initial

barycenter-induced orderings helped reduce its average bottleneck crossings by significant

amounts. Without preprocessing, the average OMEC bottleneck values on size 20 graphs

with 10, 20 and 30 percent edge densities were 27.8, 70.5 and 114.4 respectively. With

preprocessing these numbers decreased to 23.8, 63.3 and 107.8, values closer to those

output by BSHC. Barycenter preprocessing was also able to reduce the runtimes of OMEC

slightly for size 20 graphs, and in some cases significantly or size 25 and 30 graphs (see

appendix). For bottleneck-based stochastic hill climbing the average bottleneck values

obtained with preprocessing were similar to those without barycenter initialization. This is

a likely indication that the values obtained through BSHC were already close to optimal.

And as with OMEC, the runtimes of BSHC showed slight improvements with barycenter

preprocessing that gradually became more apparent as the graph size and density grew (see

appendix).

Despite the reduction in the crossings performance gap between BSHC and OMEC,

BSHC was still able to achieve the lowest average bottleneck crossings after initial

barycenter processing. Since OMEC ignores nodes after passing them to EDGESIFT, it’s

exploration of the search space is much more limited than bottleneck-based stochastic hill

climbing, even after barycenter has improved the initial layout. As a result, the

approximations for the bottleneck crossing minimization problem on the test graphs were

better for BSHC both with and without barycenter preprocessing.

67

Chapter 6: Conclusions and Future Research

 Stochastic hill climbing was consistently found throughout all of the preceding tests

to perform the best for one-sided unweighted, weighted, and bottleneck bipartite crossing

minimization. These findings were particularly notable in the weighted and bottleneck

crossing minimization contexts. In these cases, stochastic hill climbing was found to be

flexible enough to surpass the results of 3-WOLF and the one-sided version of the MEC

heuristic for handling bottleneck crossings. In their previous work Cakiroglu et. al. [9] had

found 3-WOLF to be a top performing algorithm for one-sided weighted crossing

minimization. Despite being the simplest of the crossing minimization methods, stochastic

hill climbing had enough randomization to outperform the prior dominance of 3-WOLF.

Also prior to this study, the one-sided bottleneck crossing minimization problem had never

been considered, and in the multi-layer crossing minimization case MEC was found to be

the best algorithm for the problem. In the tests on random unweighted bipartite graphs of

varying sizes the bottleneck-based stochastic hill climbing procedure was found to

consistently yield average bottleneck crossing values significantly lower than those output

by the one-sided version of the maximum edge crossings heuristic. Even after applying the

barycenter heuristic on test graphs for initial node placement, bottleneck-based stochastic

hill climbing was still found to outperform the one-sided variant of MEC.

The main drawbacks for stochastic hill climbing came in terms of time, with

gradual increases in runtime as the test graphs got larger and denser. If runtime is not

68

critical then the stochastic hill climbing procedures could be used alone for solving the

crossing minimization problems of the preceding sections. Being able to improve the

average crossing values by even a small percentage gives stochastic hill climbing a

competitive edge, as even a small percentage deviation from optimality can translate to

thousands of corresponding edge crossings. If the time efficiency for calculating crossing

minimization is important, then stochastic hill climbing could still be used as a post-

processing procedure, say after barycenter or 3-WOLF, to reduce edge crossings. This was

evidenced in the case of bottleneck crossing minimization, where initial barycenter

placement was found to improve the runtimes of stochastic hill climbing by significant

amounts while still achieving superior crossing values. And if simplicity is desired, then

stochastic hill climbing is particularly attractive in that it is, besides barycenter, the simplest

algorithm to implement. That one of the simplest methods was able to achieve the best

approximations for the hard crossing minimization problems is particularly impressive.

 With these conclusions in mind and in relation to the overall work of this thesis the

following extensions and problems could form promising lines of future research:

1. Although Stallman and Gupta [27] claim that it is simple to prove the NP-Hardness

of the multi-layer bottleneck crossing minimization problem by adapting

techniques from previous work [1][4], a formal proof is not supplied in their

technical report or in the subsequent paper by Stallman [29]. A formal proof of this

claim would be desirable, as well as one for the one-sided variant of the problem.

69

2. The majority of studies that concern bipartite graph drawing assume that the

minimization of crossings is not only beneficial for circuit-based applications, but

is also the basis of the easiest to read and aesthetically pleasing of bipartite graph

layouts. It would be interesting to conduct a study by which users view and rate

bipartite graph drawings that have been optimized according to varying criteria:

crossing minimization, minimal edge length, and bottleneck crossing minimization.

Although graph drawings are primarily judged by edge crossings, it may be that in

the case of bipartite graphs, drawings that are optimized according to other aesthetic

measures appear more useful and are easier to understand.

3. In the case of traditional bipartite graph drawing, exact methods exist for one-sided

[8], two-sided [39] and multilayer crossing minimization [38]. To the author’s

knowledge there are no published algorithms for calculating the minimum

bottleneck crossing number for bipartite graphs. It would be very useful for future

research to have such a method, not only to solve the problem exactly and hopefully

efficiently but also to provide a minimum baseline to gauge the crossing

performance of various approximation algorithms and heuristics.

4. The problem of two-sided weighted crossing minimization has never been studied.

It would be worthwhile to compare the performance of an iterative 3-WOLF against

a two-sided weighted stochastic hill climbing in this context. It would also be

interesting to see how iterated barycenter methods (both ones including and

excluding edge weights in their calculations) would perform, especially since the

70

iterated barycenter heuristic is one of the primarily dominant methods for

unweighted two-sided bipartite graph drawing.

5. It was observed that the traditional barycenter heuristic yielded lower weighted

crossings when ignoring edge weights than the weighted variant that has been used

previously by researchers for weighted graphs. The difference between the two in

terms of percentage deviation from optimality does appear to close though with

increasing graph sizes and densities (see appendix). Further experimental studies

should be done to compare the performance of the two versions of barycenter on

larger-sized graphs and with more variation in edge weights to see how the results

may change with bigger data.

6. It would be worthwhile to repeat the weighted and unweighted one-sided drawing

experiments with barycenter heuristic methods that have been augmented with

various tie breaking heuristics (i.e. heuristics that will determine the relative order

of nodes that have the same average computed by barycenter). Poranen and

Mäkinen explored the utility of such tie-breaking methods for two-sided bipartite

graph drawing, finding that such heuristics did indeed improve the average results

on various sets of bipartite test graphs [36]. It would be particularly interesting to

see how well these heuristics apply to both the weighted and unweighted cases for

one-sided bipartite graph drawing.

7. It would also be interesting to modify the population generation and selection

phases of our genetic algorithms to discount repeated permutations. This could, as

71

noted by Khan [41] potentially lead to a wider more varied searching of the solution

space. In turn the average crossing results may improve, and possibly even the

running times (for instance if it results in the GA’s taking fewer iterations to

converge) despite the extra computational effort in checking for repeat

permutations.

8. It would be worthwhile to repeat the bottleneck crossing tests with a version of

BSHC that is more optimized. Specifically, a modified version of the sub-procedure

for counting subgraph edge crossings in stochastic hill climbing could cut down the

runtime of BSHC. Rather than recalculating the edge crossings of the graph as a

whole during each iteration, bottleneck stochastic hill climbing could limit its

calculations to a smaller subgraph and thus save a considerable amount of runtime.

The runtime of OMEC could also be improved by making use of the updating swap

procedure of MEC, rather than the simpler Edge_Count_Simple method for

keeping track of individual edge crossings.

72

Appendix

The tables that follow fully summarize the data obtained through the experiments

outlined in Chapter 4. Each table presents the average performance results for algorithms

in specific graph drawing contexts and for varying graph sizes (20, 25, or 30). In the case

of weighted and unweighted crossing minimization, data are given in the same tabulated

form with a column set for each algorithm. Column data is given in rows (corresponding

to specific graph densities and separated by horizontal lines) for both average results and

standard deviations in results. Columns for the top 2 or 3 performing algorithms in

unweighted and weighted crossing minimization are bolded to emphasize their rankings.

Within each row of a column, the average number of edge crossings, time (in

seconds) and percentage deviation of an algorithm from the lower bound are given in said

order and separated by vertical lines. So for instance, on random unweighted bipartite

graphs of size 20 and density 10% the genetic algorithm of Mäkinen and Sieranta

produced layouts, with 209.4 crossings in 1.4 seconds on average. Its average percentage

deviation above the lower bound was 16.3%. Its average associated standard deviations

were 9.5, 0.4, and 5.5 respectively.

Following weighted and unweighted crossing minimization result tables are those

comparing the results of weighted (BC_W) versus the traditional unweighted (BC)

barycenter heuristic. Since both heuristics are essentially deterministic their average

standard deviations in results (which are all 0.0) are not given. The average weighted

73

crossings, time, and percent from optimality are presented in the same format as in the

preceding tables. Results for graphs of size 20, 25 and 30 are all given in the same table.

The final set of tables at the end of the appendix give the full results for one-sided

bottleneck crossing minimization with and without barycenter preprocessing. Average

bottleneck crossings and time in seconds of each algorithm are given for each graph size

and density with standard deviations in parentheses. So for instance on graphs of size 20

and density 10 percent OMEC resulted in an average bottleneck crossing value of 27.8

with a standard deviation of 0.3. The corresponding average time was 0.4 seconds with

an average standard deviation of 0.0 seconds.

Unweighted One-Sided Crossing Minimization Test Results:

74

Weighted One-Sided Crossing Minimization Test Results:

75

76

Weighted vs. Unweighted Barycenter Results:

One-Sided Bottleneck Crossing Minimization Results:

77

78

References

[1] M.R. Garey, D.S. Johnson. Computers and Intractability - A Guide to the Theory and

Practice of NP-Completeness. W.H. Freeman, San Francisco, 1979

[2] F. Shahrokhi et. al. “On Bipartite Drawings and the Linear Arrangement Problem,”

SIAM J. Comput., vol. 30, 2001, pp. 1773-1789.

[3] M. Juvan and B. Mohar. “Optimal Linear Labelings and Eigenvalues of Graphs,”

Discrete Appl. Math, vol. 36, 1992, pp. 153-168.

[4] M.R. Garey and D.S. Johnson. “Crossing Number is NP-Complete,” SIAM J.

Algebraic and Discrete Methods, vol. 4, pp. 312-316, (give date).

[5] P. Eades and N.C. Wormald. “Edge Crossings in Drawings of Bipartite Graphs,”

Algorithmica, vol. 11, 1994, pp. 379-403.

[6] K. Sugiyama et. al. “Methods for Visual Understanding of Hierarchical System

Structures,” IEEE Transaction on systems, Man and Cybernetics, vol. 11, No. 2, 1981,

pp. 109-125.

[7] Xiao Yu Li and Matthias F. Stallman. “New Bounds on the Barycenter Heuristic for

Bipartite Graph Drawing,” Information Processing Letters, vol. 82, June 30 2002, pp.

293-298.

[8] M. Jűnger and P. Mutzel. “2-Layer Straight Line Crossing Minimization:

Performance of Exact and Heuristic Algorithms,” J. Graph Algorithms Appl., vol. 1,

1997, pp. 1-25.

[9] Olca A. Cakiroglu et. al. “Crossing Minimization in Weighted Bipartite Graphs,”

Experimental Algorithms, vol. 4525, Springer Berlin Heidelberg, 2007, pp. 122-135.

79

[10] A. Yamaguchi and A. Sugimoto. “An Approximation Algorithm for the Two-

Layered Graph Drawing Problem,” in Proceedings of 5th Annual Intl. Conf. on

Computing and Combinatorics (COCOON ‘99), LNCS, Springer, 1999, pp. 81-91.

[11] C. Demestrescu and I. Finocchi. “Breaking Cycles for Minimizing Crossings,” J.

Exp. Algorithms, vol. 6, no. 2, 2001.

[12] T. Eloranta and E. Makinen. “TimGA: A Genetic Algorithm for Drawing Undirected

Graphs,” Divulgaciones Matematicas, vol. 9, no. 2, 2001, pp. 155-170.

[13] Q.G. Zhang et. al. “Drawing Undirected Graphs with Genetic Algorithms,”

Advances in Natural Computation, vol. 3612, 2005, pp. 28-36.

[14] B. M. M. Neta et. al. “A multiobjective genetic algorithm for automatic orthogonal

graph drawing,” in Proceedings of the 13th Annual Conference on Genetic and

Evolutionary Computation, GECCO 2011, Dublin, Ireland, ACM, July 12-16, 2011, pp.

925-932.

[15] B. M. M. Neta et. al. “A fuzzy genetic algorithm for automatic orthogonal graph

drawing,” Applied Soft Computing, vol. 12, no. 4, April 2012, pp. 1379-1389.

[16] H. He et. al. “Genetic algorithms for the 2-page book drawing problem of graphs,”

Journal of Heuristics, vol. 13, no. 1, Feb 2007, pp. 77-93.

[17] Hiroshi Nagamochi and Nobuyasa Yamada. “Counting edge crossings in a 2-layered

drawing,” Information Processing Letters, vol. 91, no. 5, September 15, 2004, pp. 221-

225.

[18] K. Srivastava et. al. “A hybrid simulated annealing algorithm for the Bipartite

Crossing Number Minimization Problem,” in Evolutionary Computation, 2008. CEC

2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on, Hong

Kong, 2008, pp. 2948-2954.

80

[19] Matthew Newton et. al. “Two New Heuristics for Two-Sided Bipartite Graph

Drawing,” in Graph Drawing Lecture Notes in Computer Science, vol. 2528, Springer

Berlin Heidelberg, 2002, pp. 312-319.

[20] Y. Koren and D. Harel. “A multi-scale algorithm for the linear arrangement

problem,” in Proceeding WG ‘02 Revised Papers from the 28th International Workshop

on Graph-Theoretic Concepts in Computer Science, London, UK: Springer-Verlag, 2002,

pp. 296-309.

[21] E. Mäkinen and M. Sieranta. “Genetic Algorithms for Drawing Bipartite Graphs,”

International Journal of Computer Mathematics, vol. 53, 1994, pp. 157-166.

[22] Z. Ezziane. “Experimental Comparison between Evolutionary Algorithm and

Barycenter Heuristic for the Bipartite Drawing Problem,” J. Computer Science, vol. 3,

no. 9, 2007, pp. 717-722.

[23] M. Newton et. al. “A Parallel Approach to Row-Based VLSI Layout using

Stochastic Hill Climbing,” Developments in Applied Artificial Intelligence, Springer

Berlin-Heidelberg, vol. 2718, 2003, pp. 750-758.

[24] P. Eades and D. Kelly. “Heuristics for reducing crossings in 2-layered networks,”

Ars Combinatoria, vol. 21, 1986, pp. 89-98.

[25] C. Matuszewski et. al. “Using sifting for k-layer straightline crossing minimization,”

in 7th International Symposium on Graph Drawing (GD’99), LNCS 1731, Springer,

1999, pp. 217-224.

[26] S. Bhatt and F. Leighton. “A framework for solving VLSI graph layout problems,”

Journal of Computer and System Sciences, vol. 28, 1984, pp. 300-343

81

[27] S. Gupta and M. Stallman. “Bottleneck crossing minimization in layered graphs,”

Dept. Computer Science, NC State University, North Carolina, Rep. 13, 2010.

[28] Henry S.H. Chung et. al. “An Optimized Fuzzy Logic Controller for Active Power

Factor Corrector Using Genetic Algorithm” in The Practical Handbook of Genetic

Algorithms: Applications, 2nd ed. Boca Raton, FL, CRC Press, 2000, ch. 11, sec. 11.3.4,

pp. 376.

[29] M. Stallman. “A heuristic for bottleneck crossing minimization and its performance

on general crossing minimization: Hypothesis and experimental study,” Journal of

Experimental Algorithmics, vol. 17, 2012.

[30] U. Brandes et. al. “Visualizing related metabolic pathways in two and a half

dimensions” (long paper), in Proceedings of Graph Drawing (GD ’03), LNCS, Springer,

2004, pp. 111-122.

[31] U. Brandes and D. Wagner. “Analysis and Visualization of Social Networks,” in

Graph Drawing Software, Springer, 2003, pp. 321–340.

[32] M. Forster. “Applying crossing reduction strategies to layered compound graphs,” in

Proceedings of Graph Drawing (GD ’02), LNCS, Springer, 2002, pp. 276-284.

[33] Brian P. Flemming et. al., “Minimization or Maximization of Functions,” in

Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge University

Press, ch. 10, sec. 9, pp. 445-447.

[34] Zahra Karimi-Dehkordi et. al., “Sudoku Using Parallel Simulated Annealing”, in

Advances in Swarm Intelligence, Springer Berlin Heidelberg, 2010, ch. 60, pp. 461-467.

82

[35] Xiaofang Pei et. al., “Application of Simulated Annealing Algorithm in Fingerprint

Matching,” in Applied Informatics and Communication, Springer Berlin Heidelberg,

2011, ch. 5, pp. 33-40.

[36] Timo Poranen and Erkki Makinen. “Tie Breaking Heuristics for the Barycenter and

Median Algorithms,” unpublished.

[37] Web site for test graphs: Available: http://math.nist.gov/MatrixMarket/

[38] M. Jűnger et. al. “A polyhedral approach to the multi-layer crossing minimization

problem,” in Graph Drawing: 5th International Symposium, GD ‘97, Rome, Italy,

September 18-20, 1997. Proceedings, Springer, 1997, ch. 2, pp. 13-24.

[39] V. Valls et. al. “A branch and bound algorithm for minimizing the number of

crossing arcs in bipartite graphs,” European Journal of Operational Research, vol. 90,

1996, pp. 303-319.

[40] B. Smith and S. K. Lim, “QCA channel routing with wire crossing minimization,” in

Proceedings of the 15th ACM Great Lakes Symposium on VLSI, GLSVLSI ‘05, 2005, pp.

217-220.

[41] Salabat Khan et. al. “A Solution to Bipartite Drawing Problem Using Genetic

Algorithm,” in Advances in Swarm Intelligence, Springer-Verlag Berlin Heidelberg,

2011, ch. 63, pp. 530-538.

http://math.nist.gov/MatrixMarket/

