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Abstract

I study the equivalence between the Likelihood Ratio Test (LRT), Restricted Like-

lihood Ratio Test (RLRT) and the F-test when testing variance components within

the class of generalized split-plot (GSP) models. In this work, I derive explicit expres-

sions for both the maximum likelihood estimates (MLEs) and restricted maximum

likelihood estimates (RMLEs) for the variance components of the GSP model and

show the equivalence between the F-test, the LRT or the F-test and the RLRT when

the level of the test, α, is less or equal to one minus the probability, p, that the LRT

or the RLRT statistic is zero. However, when α > 1 − p, I show that the F-test

has a larger power than either the LRT or RLRT. Further, we derive the statistical

distribution of these tests under both the null and alternative hypotheses H0 and H1

where H0 is the hypothesis that the whole plot variance is zero.
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To establish the power inequality for the case α > 1 − p, I developed a new

stochastic inequality involving a class of distributions that includes, for example, the F

and Gamma distributions. I call random variables (r.v.s.) that inherit this inequality

to be quantile-stochastic. The stochastic representation of the new inequality involves

α, p ∈ (0, 1) such that if p > α and k > 1 with W being a random variable with an

F (ν1, ν2) or Gamma(τ, θ) distribution then it’s always true that

1

p
P

(
W <

Wp

k

)
>

1

α
P

(
W <

Wα

k

)
,

where γ = P (W < Wγ). The inequality changes direction for k ∈ [0, 1) and becomes

equality for k = 1 and, trivially, for k = ∞.

KEY WORDS: MLEs, REMLs, LRT, RLRT, F-Test, generalized split-plot, mixed

model, variance components, stochastic inequality, quantile-stochastic.
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Chapter 1

Introduction

1.1 Background

Recently, Lu and Zhang (2010) established the equivalence between the generalized

likelihood ratio test and the traditional F test for no group effects in the balanced

one-way random effects model, see also Herbach (1959). We extend this result both

to a much broader family of models with one random effect, the generalized split-

plot (GSP) models introduced in Christensen (1987) and to the generalized residual

likelihood test. Generalized split-plot models include standard split-plot models with

nearly any experimental design for the whole plot treatments and include some ability

to incorporate covariates into split-plot models. The balanced one-way random effects

model is the simplest generalized split plot model.

The GSP models are a special case of the general linear mixed models since they

specify both fixed effects and random effects. A general linear mixed model can be

written

Y = X̃β + X1γ + ε, (1.1)

1
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where Y is a vector of observations, X̃ is a known model matrix for fixed effects, β

is an unobservable parameter vector of fixed effects, X1 is a known model matrix for

random effects, γ is an unobservable vector of random effects, and ε is a vector of

residual errors with E(ε) = 0, Cov(ε) = R, E(γ) = 0, Cov(γ) = D, Cov(ε, γ) = 0, and

therefore Cov(Y ) = X1DX
′
1 + R.

1.2 Notation

For the rest of this dissertation, we use the notation C(A) and r(A) to denote the

column space and rank of the matrix A respectively. In addition, the perpendicular

projection operator (PPO) onto C(A) is denoted by MA unless otherwise specified. In

matrix notation, Jc
r and 0r×c denote a matrix of ones and a matrix of zeros respectively

each of size r × c. When c = 1, for simplicity we suppress c so that Jr and 0r denote

a column vector of ones and a column vector of zeros respectively of length r. In is

the identity matrix of size n while I, with no subscripts, has size that can be inferred

from context. We use diag(V1, . . . , VN) to denote a block diagonal matrix with square

matrices V1, . . . , VN on its diagonal and Blk diag(V ) to denote a block diagonal matrix

whose diagonal entries are all V . Vertical lines denote the determinant when enclosing

a matrix and absolute value when enclosing a number. L(.), `(.), and `∗(.) denote the

likelihood, −2Log-likelihood and 2Log-likelihood functions respectively.
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1.3 Generalized Split Plot (GSP) Models

We sumarize the definition and analysis of GSP models from Christensen (1984, 1987

and 2011). Consider a two-stage cluster sampling model

Y = Xβ + ξ, (1.2)

with n observations, mi subjects from each cluster, and includes fixed effects for each

cluster. Let X = [X1, X2] where the columns of X1 are indicators for the clusters

and X2 contains the other effects. Write β ′ = [α′, γ′] so that α is a vector of fixed

cluster effects and γ is a vector of fixed non-cluster effects. Because it is a two-stage

cluster sampling model, the error vector ξ has uncorrelated clusters and intraclass

correlation structure and can be written with random effects as

ξ = X1η + ε, (1.3)

where η contains random cluster effects and ε is a random error. Assume that η and

ε are independent such that η ∼ N(0, σ2
wIN), ε ∼ N(0, σ2

sIn) with Cov(ε, γ) = 0n×N

such that n =
∑N

i=1 mi then we get the mixed model

Y = X1α + X2γ + (X1η + ε), (1.4)

with

V ≡ Cov(Y ) = σ2
wX1X

′
1 + σ2

sIn. (1.5)

The GSP models are obtained by imposing additional structure on the fixed cluster

effects within the cluster sampling model (1.4). To model the whole plot (cluster)

effects we put a constraint on C(X1) by considering a reduced model

Y = X∗δ + X2γ + (X1η + ε), C(X∗) ⊂ C(X1)
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≡ X̃β∗ + ξ, (1.6)

where X̃ = [X∗, X2] and β ′
∗ = [δ

′
, γ

′
] and the covariance matrix remains as in (1.5).

The δis will be the whole plots fixed effects and the γis will be the subplots fixed

effects. In this model, η is the whole plot error and ε is the subplot error.

To develop a traditional split-plot analysis for GSP models, we need three as-

sumptions:

(a) mi = m, i.e. all whole plots are of the same size,

(b) C(X∗) ⊂ C(X1), i.e. δ contains whole plot effects,

(c) C(X̃) = C(X∗, (I−M1)X2) where M1 is the PPO onto C(X1), i.e. subplot effects

are orthogonal to whole plots (not just whole plot effects).

In particular, with these three conditions, the least-squares estimates (LSEs) for

model (1.6) are best linear unbiased estimates (BLUEs) and standard split-plot F

and t statistics have null hypothesis F and t distributions, cf., Christensen (1987,

2011, Chapter 11).

We consider a GSP model with n total observations, r(M1) = N whole plots and

m subplots in each whole plot. In model (1.6), with covariance structure (1.5) and

assumption (a) we can rewrite (1.5) as

V = σ2
wBlk diag(JmJ ′

m) + σ2
sIn = σ2

sIn + σ2
wmM1

= Blk diag(Ṽ ) = IN ⊗ Ṽ , (1.7)

where

Ṽ = σ2
wJmJ ′

m + σ2
sIm =




σ2
w + σ2

s σ2
w . . . σ2

w

σ2
w σ2

w + σ2
s . . . σ2

w

...
...

. . .
...

σ2
w σ2

w . . . σ2
w + σ2

s




. (1.8)
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In a general mixed model (1.1) exact statistical inference cannot typically be per-

formed. However, there are special cases such as Wald’s tests for variance components

and split-plot models where exact inferences are available. The analysis of split-plot

designs is complicated by having two different errors in the model. If σ2
w = 0, the

model (1.6) reduces to the standard linear model

Y = X∗δ + X2γ + ε, E(ε) = 0, Cov(ε) = σ2
eIn

= X̃β∗ + ε. (1.9)

In particular, if the whole plot model is a one-way ANOVA, i.e., the whole plot design

is a completely randomized design (CRD), and the subplot effects involve only subplot

main effects and whole plot by subplot interaction then the model reduces to two-way

ANOVA with interaction. Further, if the whole plot one-way model is unbalanced this

might be an interesting two-way ANOVA model wherein the number of observations

on each pair of factors ij is k = 1, ..., mNi instead of the usual k = 1, ..., Nij. To test

the appropriateness of the standard linear model (1.9), the hypothesis of interest is

whether or not the covariance component for whole plots lies on the boundary of the

parameter space,

H0 : σ2
w = 0 vs. H1 : σ2

w > 0. (1.10)

There are three competing test statistics for the null hypothesis in (1.10), the likeli-

hood ratio test (LRT) and the traditional, exact, F-test (Wald’s test) and the like-

lihood ratio test based on the residual likelihood (RLRT). These tests have been

studied extensively over the past few decades (see Crainiceanu and Ruppert (2004),

Greven et al. (2008), Wiencierz et al. (2011), Molenberghsa and Verbeke (2007)

and Scheipl et al. (2008)), however studies about their equivalnace in the context of

split-plot designs are limited.
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1.4 Objectives

In this work, I derive explicit expressions for both the maximum likelihood estimates

(MLEs) and restricted maximum likelihood estimates (RMLEs) for the variance com-

ponents of the GSP model. Further, I show that the LRT, RLRT and F tests are

equivalent for testing (1.10) in GSP models when the size of the test, α, is reason-

ably small and I derive the exact distribution for the LRT and RLRT test statistics

under both H0 and H1. In particular, I show that the three tests are equivalent when

α ≤ 1 − p where p is the probability that the LRT/RLRT statistic is zero and give

a proof that the F test has a larger power when α > 1 − p. As a byproduct of this

research work, I develope a new stochastic inequality involving a class of distributions

that includes the F and Gamma distributions and is called either the F-inequality

or the G-inequality. I call random variables (r.v.s.) that inherit this property to be

quantile-stochastic. This new theory of quantile-stochastic distributions will make

it possible for the first time to compare distributions in terms of the ratio of their

cumulative distribution function (CDF) and quantiles and it opens new windows to

distribution theory. In fact, the work on these inequalities will be presented in sepa-

rate series of publication due to its magnitude and special interest. These inequalities

will be of interest to mathematicians and statisticians whose work involves stochastic

inequalities, stochastic lower and upper bounds, power comparison, and distribution

properties and classification.
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1.5 Additional Notation, Means and Variance Com-

ponents

Let M , M1, M̃ and M∗ be the PPOs onto C(X), C(X1), C(X̃) and C(X∗), respec-

tively, so that

M1 = X1(X
′

1X1)
−1X

′

1 = Blk diag

(
1

m
JmJ ′

m

)
=

1

m
X1X

′
1, (1.11)

and define

M2 = (I − M1)X2

(
X

′

2(I − M1)X2

)−
X

′

2(I − M1) (1.12)

to be the PPO onto C(X1)
⊥
C(X) which under our assumptions is also the PPO onto

C(X∗)
⊥
C(X̃)

. From Christensen (2011, Chapter 11) the projection operators satisfy

M̃ = M∗ + M2, M∗M1 = M∗, M1M2 = 0 and M = M1 + M2. (1.13)

For completeness, these properties are reproven in Appendix A.1. The sum of squares

for whole plot error and subplot error are, respectively,

SSE(w) ≡ Y
′
(M1 − M∗)Y and SSE(s) ≡ Y

′
(I − M)Y, (1.14)

such that

SSE(s) = Y
′
(I − M)Y = Y

′
(I − M̃)Y − Y

′
(M1 − M∗)Y. (1.15)

The F statistic for testing (1.10) is defined as

F =
MSE(w)

MSE(s)
=

SSE(w)/[r(X1) − r(X∗)]

SSE(s)/[n − r(X)]
=

SSE(w)/[N − r(X∗)]

SSE(s)/[n − r(X)]
. (1.16)
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1.6 Outline of the dissertation

In Chapter 2 we present the maximum likelihood estimators of the variance parame-

ters both on and off the parameter boundary for σ2
w and σ2

s . These are necessary for

finding the LRT. It also contains the main result about the equivalence of the LRT

and F-test and establishes the exact distribution of the LRT statistic, say Λ. Chap-

ter 3 largely reiterates chapter 2 but for the REMLs and RLRT. Chapters, 2 and 3,

stablishe respectively that the F-test has a larger power, when α > 1 − p, than the

LRT and RLRT. Monte Carlo simulations are presented in Chapter 4. In Chapter 5

I prove the F-inequality and the G-inequality respectively. All secondary proofs are

deferred to an appendix.



Chapter 2

The Equivalence Between the LRT

and F-test

2.1 Maximum Likelihood Estimators (MLEs)

The likelihood function for model (1.6) is:

L(β∗, σ
2
w, σ2

s |Y ) =
1

(2π)n/2 |V |1/2
e−1/2(Y −X̃β∗)′V −1(Y −X̃β∗), (2.1)

where

V = V (σ2
w, σ2

s) = mσ2
wM1 + σ2

sIn. (2.2)

We use ` to denote minus 2 times the natural logarithm of the likelihood of Y (i.e.

` = −2 log L). We provide three lemmas

Lemma 2.1.1 The inverse of aIn + bP , where P is a PPO and a and b are real

numbers such that a 6= 0 and a 6= −b, is

(aIn + bP )−1 =
1

a

(
In − b

a + b
P

)
. (2.3)

9
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Proof of Lemma 2.1.1: See Proposition 12.11.1 in Christensen (2011, p.322). 2

Lemma 2.1.2 The determinant of aIn + bP , where P is a PPO and a and b are real

numbers, is

|aIn + bP | = an−r(P )(a + b)r(P ). (2.4)

Proof of Lemma 2.1.2: Any nonzero vector in C(P )⊥ is an eigenvector for the

eigenvalue a, so a has multiplicity n− r(P ). Similarly, any nonzero vector in C(P ) is

an eigenvector for the eigenvalue a+b, so a+b has multiplicity r(P ). The determinant

is the product of the eigenvalues and hence |aIn + bP | = an−r(P )(a+ b)r(P ). Appendix

A.2 contains an illustration.

Lemma 2.1.3 For q1, q2 > 0, maximizing the function

g(x1, x2) = −
[
constant + q1 log(x1) + q2 log(x2) + q1

(
Q1

x1

)
+ q2

(
Q2

x2

)]
(2.5)

subject to the constraint x2 ≥ x1 > 0 gives a maximum at (x1, x2) = (Q1, Q2) when

x2 > x1 > 0 (i.e. when (x1, x2) is in the interior of the constraint) or a maximum at

(x1, x2) =
(

q1Q1+q2Q2

q1+q2
, q1Q1+q2Q2

q1+q2

)
when x2 = x1 (i.e. when (x1, x2) is on the boundary

of the constraint).

The proof is in Appendix A.3.

Applying Lemmas 2.1.1 and 2.1.2 to V in (2.2) gives the following determinant

and inverse covariance matrix:

|V | =
∣∣σ2

s + mσ2
w

∣∣N ∣∣σ2
s

∣∣n−N
, (2.6)

and

V −1 =
1

σ2
s

In −
(

σ2
w

σ2
s

)
m

σ2
s + mσ2

w

M1. (2.7)
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Substituting (2.6) in (2.1) and taking −2 times the natural logarithm leads to

`(β∗, σ
2
w, σ2

s |Y ) = n log(2π) + N log
(
σ2

s + mσ2
w

)
+ N(m − 1) log(σ2

s)

+ (Y − X̃β∗)
′V −1(Y − X̃β∗). (2.8)

Proposition 2.1.4 The Maximum Likelihood estimators for β∗, σ2
w and σ2

s of model

(1.6) are

β̂∗ =
(
X̃ ′V −1X̃

)−
X̃ ′V −1Y =

(
X̃ ′X̃

)−
X̃ ′Y, (2.9)

σ̂2
w =

1

m
max

{
0,

SSE(w)

N
− SSE(s)

n − N

}
, and (2.10)

σ̂2
s = min

{
SSE(s)

n − N
,
SSE(s) + SSE(w)

n

}
, (2.11)

such that the pair σ̂2
w = 0 and σ̂2

s = SSE(s)+SSE(w)
n

occurs when SSE(w)
N

≤ SSE(s)
n−N

and

the other pair σ̂2
w = 1

m

[
SSE(w)

N
− SSE(s)

n−N

]
and σ̂2

s = SSE(s)
n−N

occurs otherwise.

Proof of Proposition 2.1.4. Differentiating (2.8) with respect to β∗ and setting the

partial derivative to zero, leads to

β̂∗ =
(
X̃ ′V −1X̃

)−1

X̃ ′V −1Y. (2.12)

It is well known, for the fixed effects in mixed models, that the maximum likelihood

estimates (MLEs) are also the best linear unbiased estimates (BLUEs) and Chris-

tensen (2011, Chapter 11) has shown, since C(V X̃) ⊂ C(X̃), that the ordinary least

squares estimates (OLSEs) are the BLUEs for β∗ so they are also the maximum

likelihood estimates. Therefore, β̂∗ =
(
X̃ ′V −1X̃

)−1

X̃ ′V −1Y =
(
X̃ ′X̃

)−1

X̃ ′Y and

subsequently X̃β̂∗ could be computed, using the OLSEs, as

X̃β̂∗ = M̃Y. (2.13)
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Note that the least squares estimates do not depend on the variance parameters so

to find σ̂2
w and σ̂2

s , we need to maximize

`∗(β̂∗, σ
2
w, σ2

s |Y ) ≡ −`(β̂∗, σ
2
w, σ2

s |Y ) = −[n log(2π) + N(m − 1) log(σ2
s)

+N log
(
σ2

s + mσ2
w

)
+ Ψ(σ2

w, σ2
s)],(2.14)

where

Ψ(σ2
w, σ2

s) = (Y − X̃β̂∗)
′V −1(Y − X̃β̂∗). (2.15)

To maximize this function we need to simplify Ψ. Thus, using (2.7) we can write

V −1 = aI + bM1 with a = 1
σ2

s
and b = −σ2

w

σ2
s

m
σ2

s+mσ2
w

which along with (1.13) and (1.14)

gives

Ψ = (Y − M̃Y )′V −1(Y − M̃Y ) = Y ′(I − M̃)(aI + bM1)(I − M̃)Y

= Y ′(I − M̃)
[
a(I − M̃)Y + bM1(I − M̃)Y

]

= aY ′(I − M̃)Y + bY ′(M1 − M1M̃)(I − M̃)Y

= aY ′(I − M̃)Y + bY ′(M1 − M1M∗ − M1M2)(I − M̃)Y

= aY ′(I − M̃)Y + bY ′(M1 − M∗)(I − M̃)Y

= aY ′(I − M̃)Y + bY ′(M1 − M∗)Y − bY ′(M1 − M∗)M̃Y

= a [Y ′(M1 − M∗)Y + Y ′(I − M)Y ] + bY ′(M1 − M∗)Y

= aY ′(I − M)Y + (a + b)Y ′(M1 − M∗)Y

=
SSE(s)

σ2
s

+
SSE(w)

σ2
s + mσ2

w

. (2.16)

Not simplifying and expressing Ψ in terms of the sum of square errors would make

it impossible to, mathematically, maximize `∗(β̂∗, σ
2
w, σ2

s |Y ) and subsequently having

closed form for the MLEs. Hence,

`∗(β̂∗, σ
2
w, σ2

s |Y ) = −
[
n log(2π) + N(m − 1) log(σ2

s) + N log
(
σ2

s + mσ2
w

)
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+
SSE(s)

σ2
s

+
SSE(w)

σ2
s + mσ2

w

]
. (2.17)

Now, let q1 = N(m − 1) = n − N , q2 = N , x1 = σ2
s , x2 = σ2

s + mσ2
w, Q1 = SSE(s)

q1

and Q2 = SSE(w)
q2

. A key point is x2 ≥ x1 so our maximization has to be done subject

to that constraint. Applying Lemma 2.1.3 to `∗ in (2.17) gives the maximizers

(
σ̂2

s , σ̂
2
s + mσ̂2

w

)
=

(
SSE(s)

n − N
,
SSE(w)

N

)

⇐⇒
(
σ̂2

s , σ̂
2
w

)
=

(
SSE(s)

n − N
,

1

m

[
SSE(w)

N
− SSE(s)

n − N

])
(2.18)

when SSE(w)
N

> SSE(s)
n−N

and

(
σ̂2

s , σ̂
2
s + mσ̂2

w

)
=

(
SSE(s) + SSE(w)

n
,
SSE(s) + SSE(w)

n

)

⇐⇒
(
σ̂2

s , σ̂
2
w

)
=

(
SSE(s) + SSE(w)

n
, 0

)
(2.19)

when SSE(w)
N

≤ SSE(s)
n−N

.

Now, suppose that the MLE of σ2
w is σ̂2

w = 1
m

(
SSE(w)

N
− SSE(s)

n−N

)
then SSE(s)

n−N
≤ SSE(w)

N

so that

SSE(s)

n − N
≤
(

n − N

n

)
SSE(s)

n − N
+

(
N

n

)
SSE(w)

N
=

SSE(s) + SSE(w)

n
(2.20)

with the first inequality true because the term in the middle is a weighted average

so has to be larger than the smaller of the two things being averaged, therefore the

MLE of σ2
s is the smaller of the terms SSE(s)

n−N
and SSE(s)+SSE(w)

n
. That is, the larger

term between 0 and 1
m

(
SSE(w)

N
− SSE(s)

n−N

)
forces the answer to be the smaller term

between SSE(s)
n−N

and SSE(s)+SSE(w)
n

and vice versa. Hence (2.18) and (2.19) could be

written via max and min as

σ̂2
w =

1

m
max

{
0,

SSE(w)

N
− SSE(s)

n − N

}
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and

σ̂2
s = min

{
SSE(s)

n − N
,
SSE(s) + SSE(w)

n

}

2

Note that the partial derivatives for (2.17) are

∂`

∂σ2
w

= −
[

n

σ2
s + mσ2

w

− mSSE(w)

(σ2
s + mσ2

w)2

]
, (2.21)

and

∂`

∂σ2
s

= −
[

N

σ2
s + mσ2

w

+
N(m − 1)

σ2
s

− SSE(s)

(σ2
s)

2
− SSE(w)

(σ2
s + mσ2

w)2

]
. (2.22)

So, for varification purposes, pluging in the pair σ̂2
w = 0 and σ̂2

s = SSE(s)+SSE(w)
n

into

(2.22) and the other pair σ̂2
w = 1

m

[
SSE(w)

N
− SSE(s)

n−N

]
and σ̂2

s = SSE(s)
n−N

into (2.21) gives

zero as desired.

2.2 Monotonic Relationship Between the LRT and

F-test Statistics

We show that the LRT statistic Λ is a monotone function of the F-test statistic F for

testing the null hypothesis in (1.10). When Λ is not 0, the monotone relationship is

strict, so whenever the size of the test α is smaller than the probability 1 − pm that

Λ 6= 0, the tests are equivalent. We also examine the behavior of the tests when they

are not equivalent (i.e. when α > 1−pm). To establish this monotone relationship we

need to distinguish between the sum of squared errors and model parameters under

the reduced model in (1.9) versus the full model in (1.6). In particular, the sum of

squares for errors under the reduced model is

SSE(e) ≡ SSE(w) + SSE(s). (2.23)
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Similarly, we use σ2
e to denote the variance parameter corresponding to the reduced

model while σ2
w and σ2

s denote the variance parameters of the full model. Since the

reduced and full models are nested we present the equivalance between the LRT and

F-test under the full model. Since there are two cases for the MLEs of σ2
w and σ2

s ,

the relationship between the statistics Λ and F will be decomposed into two cases as

well.

Proposition 2.2.1 The LRT statistic Λ, for (1.10), is a monotone function of the

F statistic. In particular, (case-I) when σ̂2
w = 0 and σ̂2

s = SSE(s)+SSE(w)
n

we have

Λ = 0, (2.24)

and (case-II) when σ̂2
w = 1

m

[
SSE(w)

N
− SSE(s)

n−N

]
and σ̂2

s = SSE(s)
n−N

we have

Λ = n log

(
m − 1

m

)
+ N log

(
N(n − r(X))

(n − N)(N − r(X∗))

)

+n log

(
1 +

N − r(X∗)

n − r(X)
F

)
+ N log

(
1

F

)
(2.25)

such that case-I occurs when F ≤ κ and case-II occurs when F > κ where

κ =
n − r(X)

(m − 1)(N − r(X∗))
. (2.26)

In Case-II, the relationship is strictly monotone so the tests are equivalent as long

as the alpha level is smaller than P (F > κ). The plot of Λ as a function of F is

presented in Figure 2.1.

Proof of proposition (2.2.1). To examine the variation between plots, we test the

whole plot error as in (1.10). Note that, under H0 we get the reduced model (1.9)

where ε ∼ N(0, σ2
eI) with

L(β∗, σ
2
e |Y ) =

1

(2πσ2
e)

n/2
e
− 1

2σ2
e
(Y −X̃β∗)′(Y −X̃β∗)

, (2.27)
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κ

Λ

F

0

Figure 2.1: A plot of the LRT statistic Λ versus the F statistic according to (2.24)

and (2.25). When F ≤ κ, Λ is constant and equal to 0.

and

`(β̂∗, σ
2
e |Y ) = n log(2π) + n log(σ2

e) +
SSE(e)

σ2
e

, (2.28)

so that the MLE of σ2
e is

σ̂2
e =

SSE(e)

n
. (2.29)

The likelihod ratio test statistic Λ is defined as the difference of −2Log-Likelihood

for two nested models (reduced and full). In our case, (1.6) is the full model and (1.9)

is the reduced one so that

Λ = `R(β̂∗, σ̂
2
e |Y ) − `F (β̂∗, σ̂

2
w, σ̂2

s |Y ), (2.30)

where `R(β̂∗, σ̂
2
e |Y ) ≡ sup `(β̂∗, σ

2
e |Y ) and `F (β̂∗, σ̂

2
w, σ̂2

s |Y ) ≡ sup `(β̂∗, σ
2
w, σ2

s |Y ) such

that the R and F subscripts refer to the reduced and full models respectively. Using
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(2.23), then plugging (2.29) into (2.28) gives

`R(β̂∗, σ̂
2
e |Y ) = n log (2π) + n − n log (n) + n log (SSE(s) + SSE(w)) . (2.31)

Further, if we let σ̂2
s and σ̂2

w be the MLEs for σ2
s and σ2

w respectively and plug them

into (2.17) we get

`F (β̂∗, σ̂
2
w, σ̂2

s |Y ) = n log (2π)+N(m−1) log(σ̂2
s)+N log(σ̂2

s+mσ̂2
w)+

SSE(s)

σ̂2
s

+
SSE(w)

σ̂2
s + mσ̂2

w

.

(2.32)

Case-I: If σ̂2
w = 0 and σ̂2

s = SSE(s)+SSE(w)
n

then

Λ = n − n log (n) + n log (SSE(s) + SSE(w)) − Nm log
(
σ̂2

s

)

+N log
(
σ̂2

s

)
− N log

(
σ̂2

s + m · 0
)
− SSE(s)(

SSE(s)+SSE(w)
n

) − SSE(w)(
SSE(s)+SSE(w)

n

)

= n − n log (n) + n log (SSE(s) + SSE(w))

−n log

(
SSE(s) + SSE(w)

n

)
− n

= n − n log (n) + n log(n) − n = 0. (2.33)

Case-II: If σ̂2
w = 1

m

[
SSE(w)

N
− SSE(s)

n−N

]
and σ̂2

s = SSE(s)
n−N

then, by (1.16), we get

Λ = n − n log (n) + n log (SSE(s) + SSE(w)) − Nm log
(
σ̂2

s

)

+N log
(
σ̂2

s

)
− N log

(
σ̂2

s + m.σ̂2
s

)
− SSE(s)

σ̂2
s

− SSE(w)

σ̂2
s + mσ̂2

w

= n − n log (n) + n log (SSE(s) + SSE(w)) − n log

(
SSE(s)

n − N

)

+N log

(
SSE(s)

n − N

)
− N log

(
SSE(s)

n − N
+ m

1

m

[
SSE(w)

N
− SSE(s)

n − N

])

− SSE(s)(
SSE(s)
n−N

) − SSE(w)(
SSE(s)
n−N

+ m 1
m

[
SSE(w)

N
− SSE(s)

n−N

])

= [n − n log (n)] + n log

(
1 +

SSE(w)

SSE(s)

)
+ n log(n − N)

+N log

(
SSE(s)

n − N

)
− N log

(
SSE(w)

N

)
− (n − N) − N
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= [n − n log (n) − n] + n log

(
1 +

SSE(w)

SSE(s)

)

+N log

(
N

n − N

SSE(s)

SSE(w)

)
+ n log

(
n

n − N

n

)

= [n − n log (n) + n log(n) − n] + n log

(
n − N

n

)

+n log

(
1 +

SSE(w)

SSE(s)

)
+ N log

(
N

n − N

SSE(s)

SSE(w)

)

= n log

(
m − 1

m

)
+ N log

(
N(n − r(X))

(n − N)(N − r(X∗))

)

+n log

(
1 +

N − r(X∗)

n − r(X)
F

)
+ N log

(
1

F

)
. (2.34)

We note that this case holds only when σ̂2
w > 0 so F must be larger than κ since

1

m

[
SSE(w)

N
− SSE(s)

n − N

]
> 0 ⇐⇒ SSE(w)

SSE(s)
>

1

m − 1

⇐⇒ N − r(X∗)

n − r(X)
F >

1

m − 1

⇐⇒ F >
n − r(X)

(m − 1)(N − r(X∗))

⇐⇒ F > κ. (2.35)

The function of Λ for Case II given in (2.34) is strictly increasing in F since

∂Λ

∂F
> 0 ⇐⇒

nN−r(X∗)
n−r(X)

1 + N−r(X∗)
n−r(X)

F
− N

F
> 0

⇐⇒ n(N − r(X∗))F

n − r(X) + (N − r(X∗))F
> N

⇐⇒ n(N − r(X∗))F > N [n − r(X) + (N − r(X∗))F ]

⇐⇒ (n − N)(N − r(X∗))F > N(n − r(X))

⇐⇒ F >
N(n − r(X))

(n − N)(N − r(X∗))

⇐⇒ F >
n − r(X)

(m − 1)(N − r(X∗))

⇐⇒ F > κ. (2.36)

2
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2.3 The Distribution of the F-test and LRT Sta-

tistics

The form of relation between the Λ and F helps us better understand the distribution

of Λ. In particular, this relation implies an important lemma (see Lemma 2.3.2) on

the distribution of Λ for (1.6).

Proposition 2.3.1 The distribution of the F −ratio in (1.16) for the model in (1.6)

is a constant multiple of an F distribution,

F =
MSE(w)

MSE(s)
∼ σ2

s + mσ2
w

σ2
s

F (N − r(X∗), n − r(X)). (2.37)

Proof of Proposition (2.3.1): It has been shown in Chapter 11.2 of Christensen (2011)

that

W1 :=
SSE(w)

σ2
s + mσ2

w

=
Y ′(M1 − M∗)Y

σ2
s + mσ2

w

∼ χ2
N−r(X∗), (2.38)

W2 :=
SSE(s)

σ2
s

=
Y ′(I − M)Y

σ2
s

∼ χ2
n−r(X), (2.39)

and SSE(w) is independent of SSE(s). Thus, since the F-distribution arises from the

ratio of two independent chi-squared random variables, each divided by its respective

degrees of freedom, we have

F =
SSE(w)/[N − r(X∗)]

SSE(s)/[n − r(X)]

=

(
σ2

s + mσ2
w

σ2
s

)
W1/[N − r(X∗)]

W2/[n − r(X)]

∼ σ2
s + mσ2

w

σ2
s

F (N − r(X∗), n − r(X)). (2.40)

2

Now, if we let W ∼ F (N − r(X∗), n − r(X)) then σ̂2
w = 0 ⇐⇒ F ≤ κ ⇐⇒

W ≤ κσ2
s

σ2
s+mσ2

w
where the first if and only if is an exact relationship and the second one
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is only a distributional relationship.

Lemma 2.3.2 The distribution of the LRT statistic Λ for the model in (1.6) is de-

termined by the relationship in (2.41) where W ∼ F (N − r(X∗), n − r(X)) and a

and τ are as described.

Λ ∼





0 if W ≤ κσ2
s

σ2
s+mσ2

w

τ + N log
(

(1+aW )m

W

)
if W > κσ2

s

σ2
s+mσ2

w

(2.41)

such that

pm = Pr

(
W ≤ κσ2

s

σ2
s + mσ2

w

)
, (2.42)

where

a =
N − r(X∗)

n − r(X)

σ2
s + mσ2

w

σ2
s

, (2.43)

and

τ = N log

(
(m − 1)m−1

mm

1

a

)
. (2.44)

Proof of Lemma 2.3.2: From case-I of Proposition 2.2.1 we know that Λ = 0 iff F ≤ κ

so

pm ≡ P (Λ = 0) = P (F ≤ κ)

= P

(
MSE(w)

MSE(s)
≤ κ

)

= P

(
σ2

s + mσ2
w

σ2
s

W ≤ κ

)

= P

(
W ≤ κσ2

s

σ2
s + mσ2

w

)
. (2.45)

The equality in the third line of (2.45) holds due to Proposition 2.3.1. Now, from

case-II of Proposition 2.2.1 we also know that, if F > κ (i.e. when W > κσ2
s

σ2
s+mσ2

w
),

Λ = n log

(
m − 1

m

)
+ N log

(
N(n − r(X))

(n − N)(N − r(X∗))

)
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+n log

(
1 +

N − r(X∗)

n − r(X)
F

)
+ N log

(
1

F

)
. (2.46)

So, if we let W ∼ F (N − r(X∗), n − r(X)) then substituting F from (2.37) into

(2.46) gives

Λ = n log

(
m − 1

m

)
+ N log

(
N(n − r(X))

(n − N)(N − r(X∗))

)

+n log

(
1 +

N − r(X∗)

n − r(X)
F

)
+ N log

(
1

F

)

= Nm log

(
m − 1

m

)
+ N log

(
N(n − r(X))

(Nm − N)(N − r(X∗))

)

+Nm log

(
1 +

N − r(X∗)

n − r(X)
F

)
− N log(F )

∼ N log

(
(m − 1)m

mm

)
+ N log

(
n − r(X)

(m − 1)(N − r(X∗))

)

+N log

[(
1 +

N − r(X∗)

n − r(X)

σ2
s + mσ2

w

σ2
s

W

)m]
− N log

(
σ2

s + mσ2
w

σ2
s

W

)

∼ N log

[
(m − 1)m−1

mm

n − r(X)

N − r(X∗)

]
+ N log [(1 + aW )m]

−N log

(
σ2

s + mσ2
w

σ2
s

)
− N log(W )

∼ N log

[
(m − 1)m−1

mm

n − r(X)

N − r(X∗)

σ2
s

σ2
s + mσ2

w

]
+ N log

[
(1 + aW )m

W

]

∼ N log

[
(m − 1)m−1

mm

1

a

]
+ N log

[
(1 + aW )m

W

]

∼ τ + N log

[
(1 + aW )m

W

]
, (2.47)

where a = N−r(X∗)
n−r(X)

σ2
s+mσ2

w

σ2
s

and τ = N log
(

(m−1)m−1

mm
1
a

)
. 2

We note that lim
W→ κσ2

s
σ2

s+mσ2
w

Λ = 0. This result can be verified by plugging in

W = κσ2
s

σ2
s+mσ2

w
in the third equality of (2.47). In practice, the probability mass at zero

for the likelihood ratio test in (2.42) should be numerically estimated by using the

MLEs as follows.

pm ≡ P (Λ = 0) = P (F ≤ κ)
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= P

(
W ≤ κσ2

s

σ2
s + mσ2

w

)

≈ P

(
W ≤ κσ̂s

2

σ̂s
2 + mσ̂2

w

)
. (2.48)

The distribution of Λ under the null hypothesis is obtained by substituting zero

for σ2
w in Lemma 2.3.2. This implies that, under H0, the probability that Λ is zero

does not depend on the parameters σ2
w and σ2

s and equals

pm = P (W ≤ κ) . (2.49)

GSP models offer remarkable advantages in the ability to perform exact calculations.

For example, Crainiceanu and Ruppert (2004) derive the probability mass at zero for

the likelihood ratio test in linear mixed models (LMM) with one variance component

as

pc = P

(∑K
s=1 µs,nw

2
s∑n−p̃

s=1 w2
s

≤ 1

n

K∑

i=1

ξs,n

)
, (2.50)

where µs,n and ξs,n are the K eigenvalues of the K × K matrices X
′
1P0X1 and X

′
1X1

respectively, where wi ∼ N(0, 1), P0 = In−X̃
(
X̃

′
X̃
)−1

X̃
′
and p̃ is the dimensionality

of the vector β∗ in view of (1.6). We are assuming that they had a typo in defining p̃,

and that they meant p̃ is the rank of the design matrix X̃ instead of the dimensionality

of the vector β∗. We present the equivalance between the two formulas in (2.49) and

(2.50) in the discussion that follows.

Considering the model in (1.6), one can show that the eigenvalues ξs,n, of X
′
1X1,

are m of multiplicity N and the eigenvalues µs,n, of X
′
1P0X1, are m of multiplicity

N − r(X∗) and zero of multiplicity r(X∗). Further, from (1.13), it’s immediate that

M∗ ⊥ (M − M1) and M1 ⊂ M so that

r(X̃) = r(M̃)
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= r(M∗ + M2)

= r(M∗ + (M − M1))

= r(M∗) + r(M − M1)

= r(M∗) + r(M) − r(M1)

= r(X∗) + r(X) − N. (2.51)

Thus, if we let ws ∼ N(0, 1) then according to (2.50), the probability mass at zero

for the likelihood ratio test in testing (1.10) is

pc = P

(∑K
s=1 µs,nw

2
s∑n−p

s=1 w2
s

≤ 1

n

K∑

i=1

ξs,n

)

⇐⇒ pc = P

( ∑N−r(X∗)
s=1 mw2

s∑n−(r(X∗)+r(X)−N)
s=1 w2

s

≤ 1

n

N∑

i=1

m

)

⇐⇒ pc = P

( ∑N−r(X∗)
s=1 mw2

s∑N−r(X∗)
s=1 w2

s +
∑n−(r(X∗)+r(X)−N)

s=N−r(X∗)+1 w2
s

≤ 1

)

⇐⇒ pc = P




N−r(X∗)∑

s=1

mw2
s ≤

N−r(X∗)∑

s=1

w2
s +

n−(r(X∗)+r(X)−N)∑

s=N−r(X∗)+1

w2
s




⇐⇒ pc = P


(m − 1)

N−r(X∗)∑

s=1

w2
s ≤

n−(r(X∗)+r(X)−N)∑

s=N−r(X∗)+1

w2
s




⇐⇒ pc = P

( ∑N−r(X∗)
s=1 w2

s∑n−(r(X∗)+r(X)−N)
s=N−r(X∗)+1 w2

s

≤ 1

m − 1

)

⇐⇒ pc = P

(
W1

W2
≤ 1

m − 1

)

⇐⇒ pc = P

(
W1/[N − r(X∗)]

W2/[n − r(X)]
≤ 1

m − 1

n − r(X)

N − r(X∗

)

⇐⇒ pc = P (W ≤ κ) , (2.52)

which is the same as (2.49).
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The formula in (2.49) is an easier way of getting the probability mass at zero for

the likelihood ratio test under H0 than (2.50). In fact, our results stand out relative

to the derivation of Crainiceanu and Ruppert (2004) for being nice and compact and

because it’s not possible in general to give such short and straightforward expression

for computing the probability mass at zero for the LRT statistic. Also, to the best of

our knowledge, it is the first time that an explicit mathematical form, Lemma 2.3.2,

has been presented for the LRT for any variance component in a linear mixed model

under the full model. This allows us compute the power of the test through a formula

instead of a Monte Carlo simulation.

2.4 Power Comparison

This section includes four subsections. In the first section, we illustrate the steps for

computing the critical value and power of the F-test and give a concrete example.

In the second section, we illustrate the steps for computing the critical value and

power of the LRT when α ≤ 1 − pm (i.e. when there is no randomized test) and

give a concrete example; we use the very same example that we use for the F-test

to show the equivalence in power through a numerical example. These illustrative

steps and example, of the second section, don’t utilize the relationship between the

two test statistics Λ and F . Thus, the second section is concluded with a very short

theorem on the equivalence between the two test for the case when α ≤ 1− pm. The

third section gives a detailed proof, without numerical examples, that the F-test has

a lerger power than the LRT when α > 1 − pm. The fourth section discusses the

practicality of the second case when α > 1 − pm.
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2.4.1 The Power of the F-test

The F-test statistic, by Proposition 2.3.1, has a distribution that is a constant multiple

of an F distribution as F ∼ σ2
s+mσ2

w

σ2
s

F (N − r(X∗), n− r(X)). Since the F-test statistic

is denoted by F and the F-distribution is traditionally known by the symbol F ,

to eliminate ambiguities, we let W ∼ F (N − r(X∗), n − r(X)). Then, at a given

significance level α, the critical value C is computed under H0 as

α = P (F ≥ C|H0 is true ) ⇐⇒ α = P

(
σ2

s + mσ2
w

σ2
s

W ≥ C|σ2
w = 0

)

⇐⇒ α = P (W ≥ Wα)

⇐⇒ Wα = G−1(1 − α), (2.53)

G is the CDF for F(N−r(X∗),n−r(X)). For example, if we let N − r(X∗) = 3 and

n−r(X) = 9 then, for α = 0.05, C is found as C = G−1(1−α) = G−1(0.95) = 3.86255.

If m = 4, σ2
s = 3 and σ2

w = 7, then the power of a size α F-test is

ΞF = P (F ≥ C|Ha is true ) ⇐⇒ ΞF = P

(
σ2

s + mσ2
w

σ2
s

W ≥ Wα

)

⇐⇒ ΞF = 1 − G

(
σ2

s

σ2
s + mσ2

w

Wα

)
. (2.54)

For example, if we let N−r(X∗) = 3, n−r(X) = 9, m = 4, σ2
s = 3 and σ2

w = 7 then, for

α = 0.05, the critical value is 3.86255 and the power is ΞF = 1− G
(

3
31

× 3.86255
)

=

0.7741.

2.4.2 The power of the LRT when α ≤ 1 − pm

The LRT statistic, by Lemma 2.3.2, has a mixtute distribution as

Λ ∼





0 w.p pm

τ + N log
(

(1+aW )m

W

)
w.p 1 − pm

(2.55)
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such that pm, τ and a are defined in Lemma 2.3.2. Thus, at a given significance level

α, the critical value C ′ is computed under H0 as

α = P

(
Λ ≥ C ′|H0 is true , W >

κσ2
s

σ2
s + mσ2

w

)

⇐⇒ α = P
(
Λ ≥ C ′|σ2

w = 0, W > κ
)

⇐⇒ (1 − pm)P

(
τ + N log

(
(1 + aW )m

W

)
≥ C ′|σ2

w = 0, W > κ

)
= α

⇐⇒ P

(
τ + N log

(
(1 + aW )m

W

)
≥ C ′|σ2

w = 0, W > κ

)
=

α

1 − pm

⇐⇒ P

(
τ + N log

(
(1 + aW )m

W

)
< C ′|σ2

w = 0, W > κ

)
= 1 − α

1 − pm

⇐⇒ C ′ = G′−1(1 − α

1 − pm
), (2.56)

where G′ is the CDF of the transformed random variable τ + N log
(

(1+aW )m

W

)
for

W ∼ F (N − r(X∗), n − r(X)) when W > κ and σ2
w = 0. For example, if we let

N − r(X∗) = 3 and n − r(X) = 9 then, for α = 0.05 under H0, κ = 1, pm = 0.56371

and

Λ =





0 w.p 0.56371

6 log

[
81
256

(1+W
3 )

4

W

]
w.p 0.43629

(2.57)

so that C ′ is found, by numerical simulation or numerical integration after transfor-

mation, as C ′ = G′−1(1− α
1−pm

) = G−1(0.8853973) = 4.848. See Castellacci (2012) for

more details on computing the quantiles of mixture distributions.

If m = 4, σ2
s = 3 and σ2

w = 7 then the power of a size α LRT is

ΞLRT = P

(
Λ ≥ C ′|Ha is true , W >

κσ2
s

σ2
s + mσ2

w

)

⇐⇒ ΞLRT = P

(
Λ ≥ C ′|σ2

w > 0, W >
κσ2

s

σ2
s + mσ2

w

)

⇐⇒ ΞLRT = (1 − pm)P

(
τ + N log

(
(1 + aW )m

W

)
≥ C ′|σ2

w > 0, W >
κσ2

s

σ2
s + mσ2

w

)

⇐⇒ ΞLRT = (1 − pm) [1 − G”(C ′)] (2.58)
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where G” is the CDF of the transformed random variable τ + N log
(

(1+aW )m

W

)
for

W ∼ F (N − r(X∗), n − r(X)) when W > κσ2
s

σ2
s+mσ2

w
and σ2

w > 0. For example, if we

let N − r(X∗) = 3, n− r(X) = 9, m = 4, σ2
s = 3 and σ2

w = 7 then, for α = 0.05 under

H1, κ = 3
4
, pm = 0.04014 and

Λ ∼





0 w.p 0.04014

6 log

[
243
7936

(1+ 31W
9 )

4

W

]
w.p 0.95986

(2.59)

so that ΞLRT is found, by numerical simulation or numerical integration after trans-

formation, as ΞLRT = (1 − pm) [1 − G”(C ′)] = 0.95986 [1 − G”(4.848)] = 0.7741.

Note that both test statistics Λ and F are nonnegative and whenever Λ 6= 0 there

is a strict monotonic relationship and thus when the LRT critical region does not

include 0, the tests are the same. In fact, in the case when α ≤ 1 − pm, the critical

region will consist of positive values where Λ is a strictly increasing function of the

F , thus we have

Proposition 2.4.1 Let α be the size of the test. If α ≤ 1 − pm where p = P (Λ =

0|σ2
w = 0) then the F-test and LRT are equivalent and hence have the same power.

Proof of Proposition (2.4.1): Since Λ can be written as

Λ ∼





0 w.p pm

g(F ) w.p 1 − pm

(2.60)

where g(.) is a strictly increasing function, then the critical region of the LRT when

α ≤ 1 − pm doesn’t involve 0 and hence the power can be calculated as

ΞLRT = P (Λ ≥ C ′|Ha is true ) ⇐⇒ ΞLRT = P
(
g(F ) ≥ C ′|σ2

w > 0
)

⇐⇒ ΞLRT = P
(
F ≥ C”|σ2

w > 0
)

= ΞF . (2.61)
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F

κ = W1−pm

0
C

’Λ

Wα

LR
T

>
C

’

F > Wα

Figure 2.2: A plot of the LRT statistic versus the F -ratio showing their equivalence

whenever α ≤ 1− pm. W1−pm = κ is the minimal critical value at which the two tests

are equivalent.

2

Figure 2.2 illustrates the equivalence of the F-test and LRT whenever α ≤ 1− pm

where pm = P (Λ = 0|σ2
w = 0). Further, it clarifies why the two tests are equivalent as

long as the critical value Wα of the F-test is larger than W1−pm ; the minimal critical

value at which the two tests are equivalent. In fact, under the null hypothesis of

σ2
w = 0 we have limW→κ Λ = 0.

2.4.3 Power Comparison when α > 1 − pm

In the case when α > 1 − pm, the critical region of the LRT involves Λ = 0 hence it

involves randomization. We show mathematically, for this case, that the power of the
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F-test is larger than that of the LRT. Let k := σ2
s+mσ2

w

σ2
s

. Firstly, we rewrite the power

of a size α F-test in terms of pm the probabilty that Λ = 0 under H0 as follows.

ΞF = P (F ≥ Wα) = P (F ≥ W1−pm) + P (Wα ≤ F ≤ W1−pm)

= P (kW ≥ W1−pm) + P (Wα ≤ kW ≤ W1−pm)

= P

(
W ≥ 1

k
W1−pm

)
+ P

(
W ≤ 1

k
W1−pm

)
− P

(
W ≤ 1

k
Wα

)
. (2.62)

Note that the second equality in (2.62) is due to the probabilistic identity P (E) +

P (Ec) = 1. Secondly, we rewrite the randomized test for the LRT in terms of the

F-test according to the monotonic relationship between their test statistics and the

smallest critical value, W1−pm = κ, where the F and LRT tests are equivalent as

follows.

φ(Λ) =





1 if Λ > 0

γ if Λ = 0

0 if Λ < 0

⇐⇒ φ(F ) =





1 if F > W1−pm

γ if F ≤ W1−pm

(2.63)

where γ is determined according to the size of the test as

α = EH0φ(Λ) ⇐⇒ α = P (Λ > 0|σ2
w = 0) + γP (Λ = 0|σ2

w = 0)

⇐⇒ α = (1 − pm) + γpm

⇐⇒ γ =
α − (1 − pm)

pm

. (2.64)

Hence, the power of the LRT is

ΞLRT = P (F ≥ W1−pm) +
α − (1 − pm)

pm
P (F ≤ W1−pm)

= P

(
W ≥ 1

k
W1−pm

)
+

α − (1 − pm)

pm

P

(
W ≤ 1

k
W1−pm

)
. (2.65)
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Proposition 2.4.2 Let pm = P (Λ = 0|σ2
w = 0). For GSP models with a finite whole

plots size m, if α > 1 − pm then the power of the size α F-test is larger than that of

the LRT in testing σ2
w = 0.

Proof of Proposition 2.4.2: It’s sufficient to show that

P

(
W ≤ 1

k
W1−pm

)
− P

(
W ≤ 1

k
Wα

)
>

α − (1 − pm)

pm
P

(
W ≤ 1

k
W1−pm

)

⇐⇒ P

(
W ≤ 1

k
W1−pm

)[
1 − α − (1 − pm)

pm

]
> P

(
W ≤ 1

k
Wα

)

⇐⇒ (1 − α)P

(
W ≤ 1

k
W1−pm

)
> pmP

(
W ≤ 1

k
Wα

)

⇐⇒ 1

pm
P

(
W ≤ 1

k
W1−pm

)
>

1

1 − α
P

(
W ≤ 1

k
Wα

)
, (2.66)

which is true, since k = σ2
s+mσ2

w

σ2
s

> 1, according to the F-Inequality in Chapter 5. 2

2.4.4 Is α > 1 − pm Practical?

The LRT and F-test are equivalent as long as the level of the test is smaller or equal

to P (W > κ) where κ = n−r(X)
(m−1)(N−r(X∗))

and W ∼ FN−r(X∗),n−r(X). That is, the two

tests are equivalent for all α’s satisfying the inequality α ≤ P
(
W > n−r(X)

(m−1)(N−r(X∗))

)
.

Table 2.1 presents the maximal values of α satisfying this inequality for different

combinations of the degrees of freedom df1 = N−r(X∗) and df2 = n−r(X) when m =

2. Since the increase in m, for being in the denominator of n−r(X)
(m−1)(N−r(X∗))

, increases

the maximal values of α satisfying the inequality α ≤ P
(
W > n−r(X)

(m−1)(N−r(X∗))

)
, it’s

sufficient to provide another Table (see Table 2.2) for the case when m = 4 to explain

the pattern in which those maximal values of α behave as a function of m. The

highlighted cells of Table 2.1 in red italic represent the combination of degrees of
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freedom for which the F-test has a larger power than the LRT at the 5% significance

level when m = 2. The very same thing is true for Table 2.2 when m = 4. We

observed from simulation, and below give a mathematical proof, that as m increases

the power of the LRT approaches that of the F-test. Typically, the degrees of freedom

for subplot error df2 are much larger than the degrees of freedom for whole plots error

df1; for GSP models. So, the α > 1 − pm case is very practical.

Proposition 2.4.3 For GSP models, if α > 1−pm then, for a size α test, ΞLRT ↑ ΞF

in testing σ2
w = 0 as the whole plots size m approaches infinity.

Proof of Proposition 2.4.3: Recall that

ΞF = P

(
W ≥ 1

k
W1−pm

)
+ P

(
W ≤ 1

k
W1−pm

)
− P

(
W ≤ 1

k
Wα

)
,

and

ΞLRT = P

(
W ≥ 1

k
W1−pm

)
+

α − (1 − pm)

pm

P

(
W ≤ 1

k
W1−pm

)
.

From Proposition 2.4.2, we have established for a finite whole plot size m

P

(
W ≤ 1

k
W1−pm

)
− P

(
W ≤ 1

k
Wα

)
>

α − (1 − pm)

pm

P

(
W ≤ 1

k
W1−pm

)
.

If we let m ↑ ∞ then k ↑ ∞ so that

P

(
W ≤ 1

k
W1−pm

)
= P

(
W ≤ 1

k
Wα

)
= P

(
W ≤ 1

k
W1−pm

)
= 0,

and thus the inequality becomes equality and as a result ΞLRT ↑ ΞF . In fact for

m = ∞ we have ΞLRT = ΞF = 1 since limk→+∞ P
(
W ≥ 1

k
W1−pm

)
= 1. 2
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df2\df1 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120

1 0.50 0.71 0.82 0.88 0.92 0.95 0.97 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

2 0.29 0.50 0.65 0.75 0.82 0.88 0.91 0.94 0.96 0.97 0.99 1.00 1.00 1.00 1.00 1.00

3 0.18 0.35 0.50 0.62 0.71 0.78 0.84 0.88 0.91 0.94 0.99 1.00 1.00 1.00 1.00 1.00

4 0.12 0.25 0.38 0.50 0.60 0.69 0.76 0.81 0.86 0.89 0.97 0.99 1.00 1.00 1.00 1.00

5 0.08 0.18 0.29 0.40 0.50 0.59 0.67 0.74 0.79 0.84 0.95 0.99 1.00 1.00 1.00 1.00

6 0.05 0.12 0.22 0.31 0.41 0.50 0.58 0.66 0.72 0.77 0.93 0.98 1.00 1.00 1.00 1.00

7 0.03 0.09 0.16 0.24 0.33 0.42 0.50 0.58 0.65 0.71 0.90 0.97 1.00 1.00 1.00 1.00

8 0.02 0.06 0.12 0.19 0.26 0.34 0.42 0.50 0.57 0.64 0.86 0.95 1.00 1.00 1.00 1.00

9 0.01 0.04 0.09 0.14 0.21 0.28 0.35 0.43 0.50 0.57 0.82 0.93 0.99 1.00 1.00 1.00

10 0.01 0.03 0.06 0.11 0.16 0.23 0.29 0.36 0.43 0.50 0.77 0.91 0.99 1.00 1.00 1.00

15 0.00 0.01 0.01 0.03 0.05 0.07 0.10 0.14 0.18 0.23 0.50 0.73 0.95 0.99 1.00 1.00

20 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.09 0.27 0.50 0.85 0.97 1.00 1.00

30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.15 0.50 0.80 0.99 1.00

40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.20 0.50 0.92 1.00

60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.50 1.00

120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50

Table 2.1: The maximal values of α satisfying the inequality α ≤ P
(
W > n−r(X)

(m−1)(N−r(X∗))

)
for different combinations of the

degrees of freedom df1 = N − r(X∗) and df2 = n − r(X) when m = 2.
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df2\df1 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120

1 0.67 0.87 0.94 0.97 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 0.50 0.75 0.88 0.94 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 0.39 0.65 0.80 0.89 0.94 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 0.31 0.56 0.73 0.84 0.91 0.95 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 0.25 0.49 0.67 0.79 0.87 0.92 0.96 0.97 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

6 0.21 0.42 0.60 0.74 0.83 0.90 0.94 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00

7 0.17 0.37 0.54 0.69 0.79 0.86 0.91 0.95 0.97 0.98 1.00 1.00 1.00 1.00 1.00 1.00

8 0.14 0.32 0.49 0.63 0.75 0.83 0.89 0.93 0.96 0.97 1.00 1.00 1.00 1.00 1.00 1.00

9 0.12 0.27 0.44 0.58 0.70 0.79 0.86 0.91 0.94 0.96 1.00 1.00 1.00 1.00 1.00 1.00

10 0.10 0.24 0.39 0.53 0.66 0.76 0.83 0.89 0.92 0.95 1.00 1.00 1.00 1.00 1.00 1.00

15 0.04 0.12 0.22 0.33 0.45 0.56 0.66 0.74 0.81 0.86 0.98 1.00 1.00 1.00 1.00 1.00

20 0.02 0.06 0.12 0.20 0.29 0.39 0.49 0.58 0.67 0.74 0.94 0.99 1.00 1.00 1.00 1.00

30 0.00 0.01 0.03 0.06 0.11 0.16 0.23 0.31 0.39 0.47 0.80 0.95 1.00 1.00 1.00 1.00

40 0.00 0.00 0.01 0.02 0.04 0.06 0.09 0.14 0.19 0.25 0.58 0.83 0.99 1.00 1.00 1.00

60 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.21 0.48 0.89 0.99 1.00 1.00

120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.14 0.48 0.96 1.00

Table 2.2: The maximal values of α satisfying the inequality α ≤ P
(
W > n−r(X)

(m−1)(N−r(X∗))

)
for different combinations of the

degrees of freedom df1 = N − r(X∗) and df2 = n − r(X) when m = 4.



Chapter 3

The Equivalence Between the

RLRT and F-test

3.1 The Restricted Maximum Likelihood Estima-

tors (REMLs)

Restricted (or residual, or reduced) maximum likelihood (REML) is a well known

method for improving the bias of the MLEs in their estimation of variance components

in LMMs. The REMLs of σ2
w and σ2

s for a GSP model are obtained by maximizing the

likelihood function of K ′Y where K is any n× [n− r(X̃)] full-rank matrix satisfying

K ′X̃ = 0. Christensen (2011) has shown that the maximum of the likelihood does

not depend on the choice of K. Since K ′Y ∼ N(0, K ′V K) where V is given in (1.7),

then the likelihood function is free of β∗ and can be written

L(σ2
w, σ2

s |K ′Y ) = (2π)−0.5[n−r(X̃)]|K ′V K|−0.5e−0.5(K′Y )′(K′V K)−1(K′Y ) (3.1)

34
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so that minus 2 times the log-likelihood is

`(σ2
w, σ2

s |K ′Y ) = [n − r(X̃)] log(2π) + log |K ′V K| + (K ′Y )′(K ′V K)−1(K ′Y ). (3.2)

However, as a consequence of Lemmas 12.6.2 and 12.6.3 of Christensen (2011), the

term (K ′Y )′(K ′V K)−1(K ′Y ) is the same as Ψ = (Y − X̃β̂∗)
′V −1(Y − X̃β̂∗). Thus, `

in (3.2) can be simplified to

`(σ2
w, σ2

s |K ′Y ) = [n − r(X̃)] log(2π) + log |K ′V K| + SSE(s)

σ2
s

+
SSE(w)

σ2
s + mσ2

w

. (3.3)

Further, from (1.13), one can verify that we have an orthogonal decomposition of Rn

based on orthogonal ppos

I = M∗ + (M1 − M∗) + M2 + (I − M), (3.4)

where the right hand side are ppos on to, respectively, the whole plot effect space the

whole plot error space the subplot effect space and the subplot error space. Thus,

given condition (c) of the definition of a GSP model and (3.4), we can decompose the

column spaces of X̃ and its orthogonal complement as

C(X̃) = C(M∗ + M2), (3.5)

and

C(X̃)⊥ = C((I − M) + (M1 − M∗)). (3.6)

So, if we define K := [K1, K2] with K ′K = I then the column space of K could also

be decomposed as

C(K) = C((I − M) + (M1 − M∗)), (3.7)

with C(K1) = C(I −M), C(K2) = C(M1 −M∗) ⊂ C(M1), K ′
1K1 = In−r(X), K ′

2K2 =

IN−r(X∗), K ′
1K2 = 0(n−r(X))×(N−r(X∗)) and K ′

2K1 = 0(N−r(X∗))×(n−r(X)). We use this
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decompostition to simplify the restricted likelihood. Using condition (a), X1X
′
1 =

mM1 so that for V = σ2
sIn + σ2

wX1X
′
1 we have

|K ′V K| =

∣∣∣∣∣∣∣




K ′
1

K ′
2


 (σ2

sIn + mσ2
wM1)

[
K1 K2

]
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

(σ2
sK

′
1K1 + mσ2

wK ′
1M1K1) (σ2

sK
′
1K2 + mσ2

wK ′
1M1K2)

(σ2
sK

′
2K1 + mσ2

wK ′
2M1K1) (σ2

sK
′
2K2 + mσ2

wK ′
2M1K2)

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

σ2
sIn−r(X) 0

0 (σ2
s + mσ2

w)IN−r(X∗)

∣∣∣∣∣∣∣
= (σ2

s)
n−r(X)(σ2

s + mσ2
w)N−r(X∗). (3.8)

Hence, −` in (3.3) becomes

`∗(σ
2
w, σ2

s |K ′Y ) = −
[
(n − r(X̃)) log(2π) + (n − r(X)) log(σ2

s)

+(N − r(X∗)) log(σ2
s + mσ2

w) +
SSE(s)

σ2
s

+
SSE(w)

σ2
s + mσ2

w

]
.(3.9)

Proposition 3.1.1 The Restricted Maximum Likelihood estimators for σ2
w and σ2

s of

model (1.6) are

σ̂2
w =

1

m
max

{
0,

SSE(w)

N − r(X∗)
− SSE(s)

n − r(X)

}
, and (3.10)

σ̂2
s = min

{
SSE(s)

n − r(X)
,
SSE(s) + SSE(w)

n − r(X̃)

}
, (3.11)

such that the pair σ̂2
w = 0 and σ̂2

s = SSE(s)+SSE(w)

n−r(X̃)
occurs when SSE(w)

N−r(X∗)
≤ SSE(s)

n−r(X)
and

the other pair σ̂2
w = 1

m

[
SSE(w)

N−r(X∗)
− SSE(s)

n−r(X)

]
and σ̂2

s = SSE(s)
n−r(X)

occurs otherwise.

Proof of Proposition 3.1.1: let q1 = n−r(X), q2 = N−r(X∗), x1 = σ2
s , x2 = σ2

s +mσ2
w,

Q1 = SSE(s)
q1

and Q2 = SSE(w)
q2

. A key point is x2 ≥ x1 so our maximization has to

be done subject to that constraint and therefore applying Lemma 2.1.3 to `∗ in (3.9)
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gives the maximizers

(
σ̂2

s , σ̂
2
s + mσ̂2

w

)
=

(
SSE(s)

n − r(X)
,

SSE(w)

N − r(X∗)

)

⇐⇒
(
σ̂2

s , σ̂
2
w

)
=

(
SSE(s)

n − r(X)
,

1

m

[
SSE(w)

N − r(X∗)
− SSE(s)

n − r(X)

])
(3.12)

when SSE(w)
N−r(X∗)

> SSE(s)
n−r(X)

and

(
σ̂2

s , σ̂
2
s + mσ̂2

w

)
=

(
SSE(s) + SSE(w)

n − r(X) + N − r(X∗)
,

SSE(s) + SSE(w)

n − r(X) + N − r(X∗)

)

⇐⇒
(
σ̂2

s , σ̂
2
s + mσ̂2

w

)
=

(
SSE(s) + SSE(w)

n − r(X̃)
,
SSE(s) + SSE(w)

n − r(X̃)

)

⇐⇒
(
σ̂2

s , σ̂
2
w

)
=

(
SSE(s) + SSE(w)

n − r(X̃)
, 0

)
(3.13)

when SSE(w)
N−r(X∗)

≤ SSE(s)
n−r(X)

. Suppose the REML of σ2
w is σ̂2

w = 1
m

(
SSE(w)
N−r(X∗)

− SSE(s)
n−r(X)

)

then SSE(s)
n−r(X)

≤ SSE(w)
N−r(X∗)

so that

SSE(s)

n − r(X)
≤

(
n − r(X)

n − r(X̃)

)
SSE(s)

n − r(X)
+

(
N − r(X∗)

n − r(X̃)

)
SSE(w)

N − r(X∗)

=
SSE(s) + SSE(w)

n − r(X̃)
(3.14)

with the first inequality true because the term in the middle is a weighted average,

since r(X̃) = r(X∗)+r(X)−N , so has to be larger than the smaller of the two things

being averaged, therefore the REML of σ2
s is the smaller of the terms SSE(s)

n−r(X)
and

SSE(s)+SSE(w)

n−r(X̃)
. That is, the larger term between 0 and 1

m

(
SSE(w)
N−r(X∗)

− SSE(s)
n−r(X)

)
forces

the answer to be the smaller term between SSE(s)
n−r(X)

and SSE(s)+SSE(w)

n−r(X̃)
and vice versa.

Hence (3.12) and (3.13) could be written via max and min as

σ̂2
w =

1

m
max

{
0,

SSE(w)

N − r(X∗)
− SSE(s)

n − r(X)

}

and

σ̂2
s = min

{
SSE(s)

n − r(X)
,
SSE(s) + SSE(w)

n − r(X̃)

}



38

2

Note that the partial derivatives for `∗ in (3.9) are

∂`

∂σ2
w

= −
[
m(N − r(X∗))

σ2
s + mσ2

w

− mSSE(w)

(σ2
s + mσ2

w)2

]
, (3.15)

and

∂`

∂σ2
s

= −
[
N − r(X∗)

σ2
s + mσ2

w

+
n − r(X)

σ2
s

− SSE(s)

(σ2
s)

2
− SSE(w)

(σ2
s + mσ2

w)2

]
. (3.16)

So, for varification purposes, plugging in the pair σ̂2
w = 0 and σ̂2

s = SSE(s)+SSE(w)

n−r(X̃)

into (3.16) and the other pair σ̂2
w = 1

m

[
SSE(w)
N−r(X∗)

− SSE(s)
n−r(X)

]
and σ̂2

s = SSE(s)
n−r(X)

into (3.15)

gives zero as desired.

3.2 Monotonic Relationship Between the RLRT

and F-test Statistics

We show that the restricted likelihood ratio test statistic Λr is a monotonic function

of the F-test statistic F for testing the null hypothesis in (1.10). When the Λr is not

0, the monotone relationship is strict, so whenever the size of the test α is smaller

than the probability 1 − pr that Λr 6= 0, the tests are equivalent. We also examine

the behavior of the tests when they are not equivalent (i.e. when α > 1−pr). Firstly,

under the reduced model in (1.9), the −2Log restricted likelihood function and REML

estimate for σ2
e are, respectively,

`r(σ2
e |K ′Y ) = (n − r(X̃)) log(2π) + (n − r(X̃)) log(σ2

e) +
SSE(e)

σ2
e

, (3.17)

and

σ̂2
e =

SSE(e)

n − r(X̃)
. (3.18)
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Secondly, the −2Log restricted likelihood function for the full model in (1.6) is

`r(σ2
w, σ2

s |K ′Y ) = (n − r(X̃)) log(2π) + (n − r(X)) log(σ2
s)

+(N − r(X∗)) log(σ2
s + mσ2

w) +
SSE(s)

σ2
s

+
SSE(w)

σ2
s + mσ2

w

.(3.19)

Proposition 3.2.1 The RLRT statistic Λr, for testing (1.10), is a monotone func-

tion of the F-test statistic F . In particular, (case-I) when σ̂2
w = 0 and σ̂2

s = SSE(s)+SSE(w)

n−r(X̃)

we have

Λr = 0, (3.20)

and (case-II) when σ̂2
w = 1

m

[
SSE(w)

N−r(X∗)
− SSE(s)

n−r(X)

]
and σ̂2

s = SSE(s)
n−r(X)

we have

Λr = ζ + (n − r(X)) log

(
1 +

N − r(X∗)

n − r(X)
F

)

+(N − r(X∗)) log

(
1 +

n − r(X)

N − r(X∗)

1

F

)
, (3.21)

where

ζ = (n − r(X)) log

(
n − r(X)

n − r(X̃)

)
+ (N − r(X∗)) log

(
N − r(X∗)

n − r(X̃)

)
(3.22)

and case-I occurs only when F ≤ 1 while case-II occurs when F > 1.

Proof of proposition (3.2.1) The RLRT statistic Λr is defined as the difference of

−2Log restricted likelihood for two nested models (reduced and full). In our case,

(1.6) is the full model and (1.9) is the reduced one so that

Λr = `r
R(σ̂2

e |K ′Y ) − `r
F (σ̂2

w, σ̂2
s |K ′Y ), (3.23)

where `r
R(σ̂2

e |K ′Y ) ≡ sup `r(σ̂2
e |K ′Y ) and `r

F (σ̂2
w, σ̂2

s |K ′Y ) ≡ sup `r(σ̂2
w, σ̂2

s |K ′Y ) such

that the R and F subscripts refere to the reduced and full models respectively. Since

SSE(e) = SSE(s) + SSE(w), then plugging (3.18) into (3.17) gives

`r
R = (n−r(X̃)) log (2π)+(n−r(X̃))+(n−r(X̃)) log

(
SSE(s) + SSE(w)

n − r(X̃)

)
. (3.24)
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Further, if we let σ̂2
s and σ̂2

w be the RMLEs for σ2
s and σ2

w respectively and plug them

into (3.19) we get

`r
F = (n − r(X̃)) log(2π) + (n − r(X)) log(σ̂2

s) + (N − r(X∗)) log(σ̂2
s + mσ̂2

w)

+
SSE(s)

σ̂2
s

+
SSE(w)

σ̂2
s + mσ̂2

w

. (3.25)

Case-I: If σ̂2
w = 0 and σ̂2

s = SSE(s)+SSE(w)

n−r(X̃)
then

Λr = (n − r(X̃)) + (n − r(X̃)) log

(
SSE(s) + SSE(w)

n − r(X̃)

)

−(n − r(X)) log

(
SSE(s) + SSE(w)

n − r(X̃)

)

−(N − r(X∗)) log

(
SSE(s) + SSE(w)

n − r(X̃)

)
− SSE(s)

SSE(s)+SSE(w)

n−r(X̃)

= (n − r(X̃)) log

(
SSE(s) + SSE(w)

n − r(X̃)

)

−(n + N − r(X) − r(X∗)) log

(
SSE(s) + SSE(w)

n − r(X̃)

)

= 0. (3.26)

Case-II: If σ̂2
w = 1

m

[
SSE(w)
N−r(X∗)

− SSE(s)
n−r(X)

]
and σ̂2

s = SSE(s)
n−r(X)

then, by (1.16), we get

Λr = (n + r(X̃)) + (n − r(X)) log

(
SSE(s) + SSE(w)

n − r(X̃)

)

−(n − r(X)) log

(
SSE(s)

n − r(X)

)

−(N − r(X∗)) log

(
SSE(s)

n − r(X)
+ m

1

m

(
SSE(w)

N − r(X∗)
− SSE(s)

n − r(X)

))

−SSE(s)
SSE(s)
n−r(X)

− SSE(w)
SSE(s)
n−r(X)

+ m 1
m

(
SSE(w)
N−r(X∗)

− SSE(s)
n−r(X)

)

= (n − r(X̃)) − (n − r(X)) + (n − r(X̃)) log

(
SSE(s) + SSE(w)

n − r(X̃)

)

−(n − r(X)) log

(
SSE(s)

n − r(X)

)

−(N − r(X∗)) log

(
SSE(w)

N − r(X∗)

)
− (N − r(X∗))
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= (n − r(X) + N − r(X∗)) log

(
SSE(s) + SSE(w)

n − r(X̃)

)

−(n − r(X)) log

(
SSE(s)

n − r(X)

)
− (N − r(X∗)) log

(
SSE(w)

N − r(X∗)

)

= (n − r(X)) log

(
n − r(X)

n − r(X̃)

(
1 +

SSE(w)

SSE(s)

))

+(N − r(X∗)) log

(
N − r(X∗)

n − r(X̃)

)(
1 +

SSE(s)

SSE(w)

)

= (n − r(X)) log

(
n − r(X)

n − r(X̃)

(
1 +

N − r(X∗)

n − r(X)
F

))

+(N − r(X∗)) log

(
N − r(X∗)

n − r(X̃)

)(
1 +

n − r(X)

N − r(X∗)

1

F

)

= (n − r(X)) log

(
n − r(X)

n − r(X̃)

)
+ (N − r(X∗)) log

(
N − r(X∗)

n − r(X̃)

)

+(n − r(X)) log

(
1 +

N − r(X∗)

n − r(X)
F

)

+(N − r(X∗)) log

(
1 +

n − r(X)

N − r(X∗)

1

F

)

= ζ + (n − r(X)) log

(
1 +

N − r(X∗)

n − r(X)
F

)

+(N − r(X∗)) log

(
1 +

n − r(X)

N − r(X∗)

1

F

)
. (3.27)

This case holds only when σ̂2
w > 0, which in turn means that F must be larger than

1 since

1

m

[
SSE(w)

N − r(X∗)
− SSE(s)

n − r(X)

]
> 0 ⇐⇒ SSE(w)

SSE(s)
>

N − r(X∗)

n − r(X)

⇐⇒ N − r(X∗)

n − r(X)
F >

N − r(X∗)

n − r(X)

⇐⇒ F > 1. (3.28)

The Λr (3.27) is strictly increasing in F for case II since

∂Λr

∂F
> 0 ⇐⇒ N − r(X∗)

1 + N−r(X∗)
n−r(X)

F
−

(n − r(X)) 1
F 2

1 + n−r(X)
N−r(X∗)

1
F

> 0

⇐⇒ n − r(X)

(n − r(X)) + (N − r(X∗))F
>

n−r(X)
N−r(X∗)

1
F 2

(N−r(X∗))F+(n−r(X))
(N−r(X∗))F
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⇐⇒ n − r(X)

(n − r(X)) + (N − r(X∗))F
>

n−r(X)
F

(n − r(X)) + (N − r(X∗))F

⇐⇒ F > 1. (3.29)

2

3.3 The Distribution of the RLRT Statistic

Lemma 3.3.1 The distribution of the RLRT statistic Λr for the model in (1.6) is

determined by the relationship in (3.30) where W ∼ F (N − r(X∗), n − r(X)), ϕ, ζ

and Υ are as described.

Λr ∼





0 if W ≤ σ2
s

σ2
s+mσ2

w

Υ + (n − r(X̃)) log (1 + ϕW ) − (N − r(X∗)) log(W ) if W > σ2
s

σ2
s+mσ2

w

(3.30)

such that

pr = Pr

(
W ≤ σ2

s

σ2
s + mσ2

w

)
, (3.31)

where

ϕ =
N − r(X∗)

n − r(X)

σ2
s + mσ2

w

σ2
s

, (3.32)

ζ = (n − r(X)) log

(
n − r(X)

n − r(X̃)

)
+ (N − r(X∗)) log

(
N − r(X∗)

n − r(X̃)

)
, (3.33)

and

Υ = ζ − (N − r(X∗)) log(ϕ). (3.34)

Proof of Lemma (3.3.1): From case-I of Proposition 3.2.1 we know that Λr = 0 iif

F ≤ 1 so

pr ≡ P (Λr = 0) = P (F ≤ 1)
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= P

(
MSE(w)

MSE(s)
≤ 1

)

= P

(
σ2

s + mσ2
w

σ2
s

W ≤ 1

)

= P

(
W ≤ σ2

s

σ2
s + mσ2

w

)
. (3.35)

The equality in the third line of (3.35) holds due to Proposition 2.3.1. Now, from

case-II of Proposition 3.2.1 we also know that, if F > 1 (i.e. when W > σ2
s

σ2
s+mσ2

w
),

Λr = ζ + (n − r(X)) log

(
1 +

N − r(X∗)

n − r(X)
F

)

+(N − r(X∗)) log

(
1 +

n − r(X)

N − r(X∗)

1

F

)
. (3.36)

So, if we let h = N−r(X∗)
n−r(X)

F and W ∼ F (N − r(X∗), n − r(X)) then substituting F

from (2.37) into (3.36) gives

Λr = ζ + (n − r(X)) log(1 + h) + (N − r(X∗)) log

(
1 +

1

h

)

= ζ + (n − r(X)) log(1 + h) + (N − r(X∗)) log(1 + h) − (N − r(X∗)) log(h)

= ζ + (n − r(X̃)) log(1 + h) − (N − r(X∗)) log(h)

= ζ + (n − r(X̃)) log

(
1 +

N − r(X∗)

n − r(X)
F

)
− (N − r(X∗)) log

(
N − r(X∗)

n − r(X)
F

)

= ζ − (N − r(X∗)) log

(
N − r(X∗)

n − r(X)

)
+ (n − r(X̃)) log

(
1 +

N − r(X∗)

n − r(X)
F

)

−(N − r(X∗)) log(F )

∼ ζ − (N − r(X∗)) log

(
σ2

s + mσ2
w

σ2
s

N − r(X∗)

n − r(X)

)
− (N − r(X∗)) log(W )

+(n − r(X̃)) log

(
1 +

N − r(X∗)

n − r(X)

σ2
s + mσ2

w

σ2
s

W

)

∼ ζ − (N − r(X∗)) log(ϕ) + (n − r(X̃)) log(1 + ϕW ) − (N − r(X∗)) log(W )

∼ Υ + (n − r(X̃)) log(1 + ϕW ) − (N − r(X∗)) log(W ), (3.37)

where ϕ = N−r(X∗)
n−r(X)

σ2
s+mσ2

w

σ2
s

, ζ = (n− r(X)) log
(

n−r(X)

n−r(X̃)

)
+ (N − r(X∗)) log

(
N−r(X∗)

n−r(X̃)

)
,

and Υ = ζ − (N − r(X∗)) log(ϕ). 2
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In practice, the probability mass at zero for the likelihood ratio test in (3.31)

should be numerically estimated by using the REMLEs or MSEs as follows.

pr ≡ P (Λr = 0) = P (F ≤ 1)

= P

(
W ≤ σ2

s

σ2
s + mσ2

w

)

≈ P

(
W ≤ σ̂s

2

σ̂s
2 + mσ̂2

w

)
, (3.38)

or

pr ≡ P (Λr = 0) = P (F ≤ 1)

= P

(
W ≤ σ2

s

σ2
s + mσ2

w

)

≈ P

(
W ≤ MSE(s)

MSE(w)

)
. (3.39)

The approximation in the third line of (3.39) holds since MSE(w) and MSE(s) are

an unbiased estimators for σ2
s + mσ2

w and σ2
s respectively as shown in the following

Lemma.

Lemma 3.3.2 For the model in (1.6), MSE(w) = SSE(w)
N−r(X∗)

and MSE(s) = SSE(s)
n−r(X)

are an unbiased estimators for σ2
s + mσ2

w and σ2
s respectively.

Proof of Lemma (3.3.2):

EMSEw = E(MSE(w))

= E

(
Y ′(M1 − M∗)Y

N − r(X∗)

)

=
1

N − r(X∗)
E (Y ′(M1 − M∗)Y )

=
1

N − r(X∗)

[
tr [(M1 − M∗) Cov(Y )] + µ

′
(M1 − M∗)µ

]
, µ = E(Y )

=
1

N − r(X∗)
[tr [(M1 − M∗)V ]]
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=
1

N − r(X∗)

[
tr
[
(M1 − M∗)

(
σ2

wBlk diag (JmJ ′
m) + σ2

sIn

)]]

=
1

N − r(X∗)

[
tr
[
(M1 − M∗)

(
σ2

wmM1 + σ2
sIn

)]]

=
1

N − r(X∗)

[
tr
(
M1σ

2
wmM1 + M1σ

2
sIn − M∗σ

2
wmM1 − M∗σ

2
sIn

)]

=
1

N − r(X∗)

[
mσ2

wr(M1) + σ2
sr(M1) − mσ2

wr(M∗) − σ2
sr(M∗)

]

=
1

N − r(X∗)
(σ2

s + mσ2
w)(r(M1) − r(M∗))

=
1

N − r(X∗)
(σ2

s + mσ2
w)(N − r(X∗))

= σ2
s + mσ2

w, (3.40)

and

EMSEs = E(MSE(s))

= E

(
Y ′(I − M)Y

n − r(X)

)

=
1

n − r(X)
E (Y ′(I − M)Y )

=
1

n − r(X)

[
tr [(I − M) Cov(Y )] + µ

′
(I − M)µ

]
, µ = E(Y )

=
1

n − r(X)
[tr [(I − M)V ]]

=
1

n − r(X)

[
tr
[
(I − M)(σ2

wBlk diag (JmJ ′
m) + σ2

sIn)
]]

=
1

n − r(X)

[
tr
[
(I − M)(mσ2

w + σ2
sIn)

]]

=
1

n − r(X)

[
tr
(
mσ2

wM1 + σ2
sIn − mσ2

wMM1 − Mσ2
sIn

)]

=
1

n − r(X)

[
mσ2

wr(M1) + σ2
sr(In) − mσ2

wr(MM1) − σ2
sr(M)

]

=
1

n − r(X)

[
mσ2

wN + nσ2
s − mσ2

wr(MM1) − σ2
sr(X)

]

=
1

n − r(X)

[
mNσ2

w + nσ2
s − mNσ2

w − σ2
sr(X)

]

=
1

n − r(X)

[
σ2

s(n − r(X))
]

= σ2
s . (3.41)
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The equality in line 9 of (3.40) is true because M∗M1 = M∗ and the equality in line

11 of (3.41) is true because M = M1 + M2 and M1M2 = 0 (see (1.13)) so that

r(MM1) = r [(M1 + M2)M1]

= r(M1M1 + M2M1)

= r(M1M1) + r(M2M1)

= r(M1) + r(M1M2) = N. (3.42)

2

Under H0, the probability that the RLRT is zero does not depend on the para-

meters σ2
w and σ2

s and equals to

pr = Pr (W ≤ 1) . (3.43)

This formula agrees with the findings of Crainiceanu and Ruppert (2004) who sug-

gested, to compute the probability mass at zero for the Restricted likelihood ratio

test in linear mixed models (LMM) with one variance component, the computation

pcr = P

(∑K
s=1 µs,nw

2
s∑n−p̃

s=1 w2
s

≤ 1

n − p

K∑

i=1

µs,n

)
, (3.44)

where µs,n, wis and p̃ are defined in section 2.2. The simplification in (3.45) presents

the equivalance between the two formulas in (3.43) and (3.44).

pcr = P

(∑K
s=1 µs,nw

2
s∑n−p

s=1 w2
s

≤ 1

n − p

K∑

i=1

µs,n

)

⇐⇒ pcr = P




∑N−r(X∗)
s=1 mw2

s∑n−(r(X∗)+r(X)−N)
s=1 w2

s

≤ 1

n − r(X̃)

N−r(X∗)∑

i=1

m




⇐⇒ pcr = P

( ∑N−r(X∗)
s=1 mw2

s∑N−r(X∗)
s=1 w2

s +
∑n−(r(X∗)+r(X)−N)

s=N−r(X∗)+1 w2
s

≤ m(N − r(X∗))

n − r(X̃)

)
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⇐⇒ pcr = P


 n − r(X̃)

N − r(X∗)

N−r(X∗)∑

s=1

w2
s ≤

N−r(X∗)∑

s=1

w2
s +

n−(r(X∗)+r(X)−N)∑

s=N−r(X∗)+1

w2
s




⇐⇒ pcr = P


n − r(X̃) − (N − r(X∗))

N − r(X∗)

N−r(X∗)∑

s=1

w2
s ≤

n−(r(X∗)+r(X)−N)∑

s=N−r(X∗)+1

w2
s




⇐⇒ pcr = P

( ∑N−r(X∗)
s=1 w2

s∑n−(r(X∗)+r(X)−N)
s=N−r(X∗)+1 w2

s

≤ N − r(X∗)

n − [r(X∗) + r(X) − N ] − (N − r(X∗))

)

⇐⇒ pcr = P

(
W1

W2
≤ N − r(X∗)

n − r(X)

)

⇐⇒ pcr = P (W ≤ 1) . (3.45)

3.4 Power Comparison

The power function of the F-test was shown in Section 2.4.1.

3.4.1 The power of the RLRT when α ≤ 1 − pr

The RLRT statistic Λr, by Lemma 3.3.1, has a mixtute distribution as

Λr ∼





0 w.p pr

Υ + (n − r(X̃)) log (1 + ϕW ) − (N − r(X∗)) log(W ) w.p 1 − pr

(3.46)

such that pr, Υ, and ϕ are defined in Lemma 3.3.1 . Thus, at a given significance

level α, the critical value K ′ is computed under H0 as

α = P

(
Λr ≥ K ′|H0 is true , W >

σ2
s

σ2
s + mσ2

w

)

⇐⇒ α = P
(
Λr ≥ K ′|σ2

w = 0, W > 1
)

⇐⇒ (1 − pr)P
(
Υ + (n − r(X̃)) log (1 + ϕW )

−(N − r(X∗)) log(W ) ≥ K ′|σ2
w = 0, W > 1

)
= α



48

⇐⇒ P
(
Υ + (n − r(X̃)) log (1 + ϕW )

−(N − r(X∗)) log(W ) ≥ K ′|σ2
w = 0, W > 1

)
=

α

1 − pr

⇐⇒ P
(
Υ + (n − r(X̃)) log (1 + ϕW )

−(N − r(X∗)) log(W ) ≥ K ′|σ2
w = 0, W > 1

)
=

α

1 − pr

⇐⇒ K ′ = O′−1(1 − α

1 − pr
), (3.47)

where O′ is the CDF of the transformed random variable Υ+(n−r(X̃)) log (1 + ϕW )−

(N − r(X∗)) log(W ) for W ∼ F (N − r(X∗), n − r(X)) when W > 1 and σ2
w = 0. For

example, if we let N −r(X∗) = 3, n−r(X) = 9, and n−r(X̃) = 12 then, for α = 0.05

under H0, pr = 0.56371 and

Λr ∼





0 w.p 0.56371

3 log

[
81
256

(1+W
3 )

4

W

]
w.p 0.43629

(3.48)

so that K ′ is found, by numerical simulation or numerical integration after transfor-

mation, as K ′ = O′−1(1 − α
1−pr

) = O−1(0.8853973) = 2.436.

If m = 4, σ2
s = 3 and σ2

w = 7 then the power of a size α RLRT is

ΞRLRT = P

(
Λr ≥ K ′|Ha is true , W >

σ2
s

σ2
s + mσ2

w

)

⇐⇒ ΞRLRT = P

(
Λr ≥ K ′|σ2

w > 0, W >
σ2

s

σ2
s + mσ2

w

)

⇐⇒ ΞRLRT = (1 − pr)P
(
Υ + (n − r(X̃)) log (1 + ϕW )

−(N − r(X∗)) log(W ) ≥ K ′|σ2
w > 0, W >

σ2
s

σ2
s + mσ2

w

)

⇐⇒ ΞRLRT = (1 − pr)
[
1 − P

(
Υ + (n − r(X̃)) log (1 + ϕW )

−(N − r(X∗)) log(W ) < K ′|σ2
w > 0, W >

σ2
s

σ2
s + mσ2

w

)]

⇐⇒ ΞRLRT = (1 − pr) [1 − O”(K ′)] (3.49)

where O” is the CDF of the transformed random variable Υ+(n−r(X̃)) log (1 + ϕW )−
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(N−r(X∗)) log(W ) for W ∼ F (N − r(X∗), n − r(X)) when W > σ2
s

σ2
s+mσ2

w
and σ2

w > 0.

For example, if we let N − r(X∗) = 3, n − r(X) = 9, n − r(X̃) = 12, m = 4, σ2
s = 3

and σ2
w = 7 then, for α = 0.05 under H1, p1 = 0.04014 and

Λr ∼





0 w.p 0.04014

3 log

[
243
7936

(1+ 31W
9 )

4

W

]
w.p 0.95986

(3.50)

so that ΞRLRT is found, by numerical simulation or numerical integration after trans-

formation, as ΞRLRT = (1 − pr) [1 − O”(K ′)] = 0.95986 [1 − O”(2.436)] = 0.7741.

Note that the power of the RLRT, for this example, is the same as that of the LRT

and equals to 0.7741; the power of the F-test. However, it’s not always true that the

RLRT and LRT have the very same power. The exception in here is due to the fact

that for this particular example α ≤ 1− pr = 1− pm so the three tests are equivalent

and hence have the same power.

Note that both test statistics Λr and F are nonnegative and whenever the Λr 6= 0

there is a strict monotonic relationship and thus when the RLRT critical region does

not include 0, the tests are the same. In fact, in the case when α ≤ 1−pr, the critical

region will consist of positive values where Λr is a strictly increasing function of the

F , thus we have

Proposition 3.4.1 Let α be the size of the test. If α ≤ 1 − pr where pr = P (Λr =

0|σ2
w = 0) then the F-test and RLRT are equivalent and hence have the same power.

Proof of Proposition (3.4.1): Since the LRT can be written as

Λr ∼





0 w.p pr

g(F ) w.p 1 − pr

(3.51)

where g(.) is a strictly increasing function, then the critical region of the RLRT when
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α ≤ 1 − pr doesn’t involve 0 and hence the power can be calculated as

ΞRLRT = P (Λr ≥ K ′|Ha is true ) ⇐⇒ ΞRLRT = P
(
g(F ) ≥ K ′|σ2

w > 0
)

⇐⇒ ΞRLRT = P
(
F ≥ C”|σ2

w > 0
)

= ΞF . (3.52)

2

F

1 = W1−pr

0
K

’

Λ
r

Wα

R
LR

T
>

K
’

F > Wα

Figure 3.1: A plot of the RLRT statistic versus the F -ratio showing their equivalence

whenever α ≤ 1 − pr. W1−pr = 1 is the minimal critical value at which the two tests

are equivalent.

Figure 3.1 illustrates the equivalence of the F-test and RLRT whenever α ≤ 1−pr

where pr = P (Λr = 0|σ2
w = 0). Further, it clarifies why the two tests are equivalent

as long as the critical value Wα of the F-test is larger than W1−pr = 1; the minimal

critical value at which the two tests are equivalent.
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3.4.2 Power Comparison when α > 1 − pr

In the case when α > 1 − pr, the critical region of the RLRT involves Λr = 0 and

hence it involves randomization. We show mathematically , for this case, that the

power of the F-test is larger than that of the RLRT. Firstly, we rewrite the power of

a size α F-test in terms of pr the probabilty that Λr = 0 under H0 as follows.

ΞF = P (F ≥ Wα) = P (F ≥ W1−pr) + P (Wα ≤ F ≤ W1−pr)

= P (kW ≥ W1−pr) + P (Wα ≤ kW ≤ W1−pr)

= P

(
W ≥ 1

k
W1−pr

)
+ P

(
W ≤ 1

k
W1−pr

)
− P

(
W ≤ 1

k
Wα

)
. (3.53)

Note that the second equality in (3.53) is due to the probabilistic identity P (E) +

P (Ec) = 1. Secondly, we rewrite the randomized test for the RLRT in terms of the

F-test according to the monotonic relationship between them and the smallest critical

value, W1−pr = 1, where the F and RLRT tests are equivalent as follows.

φ(Λr) =





1 if Λr > 0

γ if Λr = 0

0 if Λr < 0

⇐⇒ φ(F ) =





1 if F > W1−pr

γ if F ≤ W1−pr

(3.54)

where γ is determined according to the size of the test as

α = EH0φ(Λr) ⇐⇒ α = P (Λr > 0|σ2
w = 0) + γP (Λr = 0|σ2

w = 0)

⇐⇒ α = (1 − pr) + γpr

⇐⇒ γ =
α − (1 − pr)

pr
. (3.55)

Hence, the power of the RLRT is

ΞRLRT = P (F ≥ W1−pr) +
α − (1 − pr)

pr
P (F ≤ W1−pr)

= P

(
W ≥ 1

k
W1−pr

)
+

α − (1 − pr)

pr

P

(
W ≤ 1

k
W1−pr

)
. (3.56)
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Proposition 3.4.2 Let pr = P (Λr = 0|σ2
w = 0). For GSP models with a finite whole

plots size m, if α > 1 − pr then the power of the size α F-test is larger than that of

the RLRT in testing σ2
w = 0.

Proof of Proposition 3.4.2: It’s sufficient to show that

P

(
W ≤ 1

k
W1−pr

)
− P

(
W ≤ 1

k
Wα

)
>

α − (1 − pr)

pr
P

(
W ≤ 1

k
W1−pr

)

⇐⇒ P

(
W ≤ 1

k
W1−pr

)[
1 − α − (1 − pr)

pr

]
> P

(
W ≤ 1

k
Wα

)

⇐⇒ (1 − α)P

(
W ≤ 1

k
W1−pr

)
> prP

(
W ≤ 1

k
Wα

)

⇐⇒ 1

pr
P

(
W ≤ 1

k
W1−pr

)
>

1

1 − α
P

(
W ≤ 1

k
Wα

)
, (3.57)

which is true, since k = σ2
s+mσ2

w

σ2
s

> 1, according to the F-Inequality in Chapter 5. 2

3.4.3 Is α > 1 − pr Practical?

The RLRT and F-test are equivalent as long as the level of the test is smaller or equal

to P (W > 1) where W ∼ F(N−r(X∗),n−r(X)). That is, the two tests are equivalent for all

α’s satisfying the inequality α ≤ P (W > 1). Table 3.2 presents the maximal values

of α satisfying this inequality for different combinations of the degrees of freedom

df1 = N − r(X∗) and df2 = n− r(X) for any m. Table 3.2 shows that for a commonly

used α values the case α > 1 − pr is not practical. This implies that the F-test

would have a larger power than the RLRT only when α is larger the 0.30; a situation

which never occurs in practice. So, for practical purposes, the F-test and RLRT are

equivalent. We observed from simulation, and hence give a mathematical proof, that

as m increases the power of the RLRT approaches that of the F-test.
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Proposition 3.4.3 For GSP models, if α > 1−pr then for a size α test ΞRLRT ↑ ΞF

in testing σ2
w = 0 as the whole plots size m approaches infinity.

Proof of Proposition 3.4.3: Recall that

ΞF = P

(
W ≥ 1

k
W1−pr

)
+ P

(
W ≤ 1

k
W1−pr

)
− P

(
W ≤ 1

k
Wα

)
,

and

ΞRLRT = P

(
W ≥ 1

k
W1−pr

)
+

α − (1 − pr)

pr

P

(
W ≤ 1

k
W1−pr

)
.

From Proposition 3.4.2, we have established for a finite whole plot size m

P

(
W ≤ 1

k
W1−pr

)
− P

(
W ≤ 1

k
Wα

)
>

α − (1 − pr)

pr

P

(
W ≤ 1

k
W1−pr

)
.

If we let m ↑ ∞ then k ↑ ∞ so that P
(
W ≤ 1

k
W1−pr

)
= P

(
W ≤ 1

k
Wα

)
= P

(
W ≤ 1

k
W1−pr

)
=

0 and thus the inequality becomes equality and as a result ΞRLRT ↑ ΞF . In fact for

m = ∞ we have ΞRLRT = ΞF = 1 since limk→+∞ P
(
W ≥ 1

k
W1−pr

)
= 1. 2

3.5 Simultaneous Comparisons

Now, we consider the comparisons between the three tests simultaneously. Based on

the previous section, we have 6 possible cases as shown in Table 3.1.
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Power Comparisons

α ≤ 1 − pm and α ≤ 1 − pr ΞF = ΞLRT = ΞRLRT

α ≤ 1 − pm and α > 1 − pr ΞF = ΞLRT > ΞRLRT

α > 1 − pm and α ≤ 1 − pr ΞF = ΞRLRT > ΞLRT

α > 1 − pm = 1 − pr ΞF > ΞLRT = ΞRLRT

α > 1 − pm > 1 − pr ΞF > ΞLRT > ΞRLRT

α > 1 − pr > 1 − pm ΞF > ΞRLRT > ΞLRT

Table 3.1: All possible power comparisons between the F-test, LRT and RLRT.
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df2\df1 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120

1 0.50 0.58 0.61 0.63 0.64 0.64 0.65 0.65 0.66 0.66 0.67 0.67 0.67 0.68 0.68 0.68

2 0.42 0.50 0.54 0.56 0.57 0.58 0.59 0.59 0.59 0.60 0.61 0.61 0.62 0.62 0.63 0.63

3 0.39 0.46 0.50 0.52 0.54 0.55 0.55 0.56 0.56 0.57 0.58 0.59 0.59 0.60 0.60 0.60

4 0.37 0.44 0.48 0.50 0.51 0.52 0.53 0.54 0.54 0.55 0.56 0.57 0.58 0.58 0.59 0.59

5 0.36 0.43 0.46 0.49 0.50 0.51 0.52 0.53 0.53 0.53 0.55 0.56 0.57 0.57 0.57 0.58

6 0.36 0.42 0.45 0.48 0.49 0.50 0.51 0.51 0.52 0.52 0.54 0.55 0.56 0.56 0.57 0.57

7 0.35 0.41 0.45 0.47 0.48 0.49 0.50 0.51 0.51 0.52 0.53 0.54 0.55 0.55 0.56 0.57

8 0.35 0.41 0.44 0.46 0.47 0.49 0.49 0.50 0.51 0.51 0.53 0.53 0.54 0.55 0.55 0.56

9 0.34 0.41 0.44 0.46 0.47 0.48 0.49 0.49 0.50 0.50 0.52 0.53 0.54 0.54 0.55 0.56

10 0.34 0.40 0.43 0.45 0.47 0.48 0.48 0.49 0.50 0.50 0.52 0.52 0.53 0.54 0.55 0.55

15 0.33 0.39 0.42 0.44 0.45 0.46 0.47 0.47 0.48 0.48 0.50 0.51 0.52 0.53 0.53 0.54

20 0.33 0.39 0.41 0.43 0.44 0.45 0.46 0.47 0.47 0.48 0.49 0.50 0.51 0.52 0.52 0.53

30 0.33 0.38 0.41 0.42 0.43 0.44 0.45 0.46 0.46 0.47 0.48 0.49 0.50 0.51 0.51 0.52

40 0.32 0.38 0.40 0.42 0.43 0.44 0.45 0.45 0.46 0.46 0.47 0.48 0.49 0.50 0.51 0.52

60 0.32 0.37 0.40 0.41 0.43 0.43 0.44 0.45 0.45 0.45 0.47 0.48 0.49 0.49 0.50 0.51

120 0.32 0.37 0.40 0.41 0.42 0.43 0.43 0.44 0.44 0.45 0.46 0.47 0.48 0.48 0.49 0.50

Table 3.2: The maximal values of α satisfying the inequality α ≤ P (W > 1) for different combinations of the degrees of

freedom df1 = N − r(X∗) and df2 = n − r(X) for any m.



Chapter 4

Illustration Via Simulation

4.1 Illustration

Consider the following split-plot model with a completely randomized design (CRD)

for whole plot:

yijk = µ + αi + βj + (αβ)ij + φk(i) + εijk, (4.1)

where i = 1, . . . , a, j = 1, . . . , m, k = 1, . . . , c, φk(i) ∼ N(0, σ2
w) and εijk ∼ N(0, σ2

s).

In particular, yijk denotes observation k in level i of factor A and level j of factor B,

µ denotes the overall mean, αi denotes the effect of level i of factor A, βj denotes

the effect of level j of factor B, (αβ)ij the effect of the ijth interaction of A × B,

φk(i) denotes the whole plot error and εijk denotes the split-plot error. The ANOVA

table for model (4.1) is presented in Table 4.1. Let α = [α1, . . . , αa], β = [β1, . . . , βm],

αβ = [αβ(11), . . . , αβ(am)] and φ = [φ1(1), . . . , φc(1), . . . , φc(a)]. Then, in view of (1.6),

model (4.1) could be written as

Y = X∗[µ : α]′ + X2[β : αβ]′ + (X1[φ]′ + ε) , (4.2)
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Df Sum Sq F value

Whole plot factor: A a − 1 SSE(A) MS(A)/MS(w)

Whole plot error: plot(A) a(c − 1) SSE(w) MS(w)/MS(s)

Subplot factor: B m − 1 SSE(B) MS(B)/MS(s)

A× B (a − 1)(m − 1) SSE(AB) MS(AB)/MS(s)

Subplot error: B× plot(A) a(m − 1)(c − 1) SSE(s)

Table 4.1: ANOVA table for for model (4.1).

where n = amc, N = ac, δ = [µ : α]′, γ = [β : αβ]′ and η = [φ]′ such that δ(a+1)×1,

γ(m+am)×1, ηN×1, X∗n×(a+1), X2n×(m+am), X1n×N with

X∗ = [Ja ⊗ Jm ⊗ Jc : Ia ⊗ Jm ⊗ Jc], (4.3)

X2 = [Jc ⊗ Im ⊗ Ja : Ia ⊗ Jc ⊗ Im], and (4.4)

X1 = [Ia ⊗ Ic ⊗ Jm]. (4.5)

Thus, r(X) = r([X1, X2]) = ac + am − a, r(X∗) = a and r(X1) = ac so that

N − r(X∗)

n − r(X)
=

ac − a

amc − (ac + am − a)
=

1

m − 1
, (4.6)

and subsequently κ = 1 and a in (2.43) is

a =
σ2

s + mσ2
w

(m − 1)σ2
s

, (4.7)

τ in (2.44) is

τ = N log

[(
m − 1

m

)m
σ2

s

σ2
s + mσ2

w

]
, (4.8)

W in Lemma 2.3.2 is

W ∼ F (a(c − 1), a(m − 1)(c − 1)) , (4.9)
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and pm in (2.42) is

pm = P

(
F (a(c − 1), a(m − 1)(c − 1)) ≤ σ2

s

σ2
s + mσ2

w

)
. (4.10)

Note that the degrees of freedom of the F distribution in (4.10) could be obtained

directly from the ANOVA table (see Table 4.1) when testing for the whole plot error

(i.e. σ2
w = 0). Thus, according to proposition 2.2.1, the LRT statistic Λ as a function

of F is expressed in the following monotone relation

Λ ∼





0

n log
(

m−1
m

)
+ n log

(
1 + F

m−1

)
+ N log

(
1
F

) (4.11)

such that the 0 case accurs when σ̂2
w = 0 and σ̂2

s = SSE(s)+SSE(w)
n

and the > 0 case

occurs when σ̂2
w = 1

m

[
SSE(w)

N
− SSE(s)

n−N

]
and σ̂2

s = SSE(s)
n−N

. By lemma 2.3.2 Λ has the

distribution

Λ ∼





0 w.p. pm

W∗ w.p. 1 − pm

(4.12)

where pm is computed in (4.10) and W∗ is the random variable

W∗ = N log

((
m − 1

m

)m
σ2

s

σ2
s + mσ2

w

[
(1 + aW )m

W

])
. (4.13)

To demonstrate the relation in (4.11), under H1, we conduct a simulation. The results

of 1,000 runs of a monte carlo simulation are presented in Figure 4.1. Further, this

numerical simulation leads to the exact distribution of Λ, under H1, as shown in

Figure 4.2.

For the simulated examples in Figures 4.1 and 4.2 the empirical value of pm, under

H1, was found to be p1imp = 0.247 and p2imp = 0.045 respectively for the cases (σ2
w =

3, σ2
s = 7) and (σ2

w = 7, σ2
s = 3). These numbers are very similar to the theoretical

value of pm as p1 = P (F3,9 ≤ 7
7+4×3

) = 0.22 and p2 = P (F3,9 ≤ 3
3+4×7

) = 0.04.
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Figure 4.1: Two cases of relation of Λ and F with 1, 000 runs under H1. Left panel:

samples are from a split-plot design with a = 3, m = 4, c = 2, σ2
w = 3 and σ2

s = 7;

Right panel: samples are from a split-plot design with a = 3, m = 4, c = 2, σ2
w = 7

and σ2
s = 3. Solid line on both graphs indicates the relation found in (4.11).
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Figure 4.2: Two cases of the Empirical versus Theoretical mixed density function of

Λ under H1. Left panel: the empirical density is obtained from a split-plot design

sample with a = 3, m = 4, c = 2, σ2
w = 3 and σ2

s = 7. Right panel: the empirical

density is obtained from a split-plot design sample with a = 3, m = 4, c = 2, σ2
w = 7

and σ2
s = 3. The theoretical density in both panels, drawn in solid line and point

mass, is obtained according to (4.12).



60

For instance, the model probability distribution of Λ for the two simulated examples

under the full model are as follows.

For σ2
w = 3 and σ2

s = 7, the model probability distribution of Λ is

Λ ∼





0 with pm = 0.22

6 log
[(

567
4864

) (1+ 19
21

W )4

W

]
with pm = 0.78

(4.14)

and for (σ2
w = 7, σ2

s = 3), the model probability distribution of Λ is

Λ ∼





0 with. pm = 0.04

6 log
[(

243
7936

) (1+ 31
9

W )4

W

]
with pm = 0.96

(4.15)

where W ∼ F (3, 9).

The results in (4.14) and (4.15) should not be surprising since Λ = 0 is most likely

to happen when σ2
w is much less than σ2

s . This observation is due to the fact that

MSE(w)
MSE(s)

estimates σ2
s+mσ2

w

σ2
s

as was shown in Lemma (3.3.2).

This conducted simulation is important when one is interested in the power of

the test. However, to conduct the test through the Neymen-Pearson approach, we

only need to know the distribution of the LRT statistic under the null hypothesis.

Knowing the sampling distribution of the test-statistic under H0 helps us compute

the p-value that tells us how much evidence we have against the null model. Thus,

to demonstrate the relation in (4.11), under the null, we conduct a simulation. The

results of 1,000 runs of a monte carlo simulation are presented in Figure 4.3. The

model probability distribution of Λ under the reduced model for the example in Figure

(4.3) is

Λ ∼





0 with pm = 0.56

6 log
[(

81
256

) (1+ 1
3
W )4

W

]
with pm = 0.44

(4.16)
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Figure 4.3: Left panel: relation of LRT and F with 1, 000 runs under the reduced

model. Right panel: the Empirical versus Theoretical mixed density function of LRT

under H0. The samples are from a split-plot design with a = 3, m = 4, c = 2,

σ2
w = 0 and σ2

s = 3. Solid line on left panel indicates the relation found in (4.11).The

theoretical density in right panel is drawn in solid line and point mass according to

(4.12).

For this example, the empirical value of pm, under H0, was found to be pimp = 0.542.

This number is very similar to the theoretical value of pm as p = P (F3,9 ≤ 1) = 0.56.



Chapter 5

New Stochastic Inequalities

5.1 Background and Motivation

We derive a new inequality involving either the F or Gamma distribution and their

quantiles and call it either the F-Inequality or G-Inequality. The stochastic represen-

tation of the new inequality involves α, p ∈ (0, 1) such that if p > α and k > 1 with

W being a random variable with an F (ν1, ν2) or Gamma(τ, θ) distribution then it’s

always true that

1

p
P

(
W <

Wp

k

)
>

1

α
P

(
W <

Wα

k

)
,

where for any γ between 0 and 1, Wγ is defined by γ = P (W < Wγ). The inequality

changes direction for k ∈ [0, 1) and becomes equality for k = 1 and, trivially, for

k = ∞. This inequality seems to hold for a larger class of distributions that include

for example the F , Gamma, Cauchy, and special cases of the Beta distribution and

perhaps others. However, we provide rigorous proofs only for the F and Gamma

distribution.

One of theses inequalities, the F-inequality, came up while proving that for the
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generalized split-plot model the F-test for the whole plot variance being zero has larger

power than either the likelihhod ratio test (LRT) or the restricted likelihood ratio

test (RLRT) when the level of the test, α, is larger than one minus the probability,

p, that the LRT or the RLRT statistic is zero(see Sections 2.4.3 and 3.4.2 for more

details). Beside their use in power comparisons for testing variance parameters on

the boundaries of the parameter space, these inequalities promise value in developing

stochastic lower and upper bounds in many fields. Moreover, strikingly, they present

a solid example demonstrating the case when the unjustified inequality a/c > b/d for

a > b > 0 and c > d > 0 holds, see Cloud and Drachman (1998) for more details about

dividing inequalities. The next section presents two lemmas needed for the proofs.

Section 5.3 gives the F-inequality and Section 5.4 establishes the G-inequality.

5.2 Hypergeometric Functions

We now present two lemma related to special hypergeometric functions that we need

to prove the inequalities.

Definition 5.2.1 For real numbers α, β and γ with γ 6= 0,−1,−2, . . . , the Gauss

Hypergeometric Function, commonly written 2F1(α, β, γ, x) but that for clarity we

write here as H(α, β, γ, x), is defined as

H(α, β, γ, x) = 1 +
α.β

γ

x

1!
+

α(α + 1)β(β + 1)

γ(γ + 1)

x2

2!

+
α(α + 1)(α + 2)β(β + 1)(β + 2)

γ(γ + 1)(γ + 2)

x3

3!
+ . . . , (5.1)

for |x| < 1 (Miller and Mocanu, 1990).

Lemma 5.2.2 Let k > 0, Fp be the pth quantile of the F (ν1, ν2) distribution such

that p = P (F < Fp) and define the function s(p|ν1, ν2, k) in terms of the Gauss
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Hypergeometric Function as

s(p|ν1, ν2, k) = H

(
ν1 + ν2

2
, 1,

ν1

2
+ 1, F̃p,1

)
− H

(
ν1 + ν2

2
, 1,

ν1

2
+ 1, F̃p,k

)
,

where

F̃p,k ≡ Fp

Fp + kν2

ν1

(5.2)

then

Case I: if k ∈ (0, 1) then s(p|ν1, ν2, k) < 0.

Case II: if k = 1 then s(p|ν1, ν2, k) = 0.

Case III: if k > 1 then s(p|ν1, ν2, k) > 0.

Proof of Lemma 5.2.2: By Definition 5.2.1, H(α, β, γ, x) is increasing in x for positive

α, β and γ. In our case, α := ν1+ν2

2
> 0, β := 1 > 0 and γ := ν1

2
+ 1 > 0. Thus

Case I: if k ∈ (0, 1) then F̃p,1 < F̃p,k and subsequently

s(p|ν1, ν2, k) = H
(
α, β, γ, F̃p,1

)
− H

(
α, β, γ, F̃p,k

)
< 0.

Case II: if k = 1 then F̃p,1 = F̃p,k and subsequently

s(p|ν1, ν2, k) = H
(
α, β, γ, F̃p,1

)
− H

(
α, β, γ, F̃p,k

)
= 0.

Case III: if k > 1 then F̃p,1 > F̃p,k and subsequently

s(p|ν1, ν2, k) = H
(
α, β, γ, F̃p,1

)
− H

(
α, β, γ, F̃p,k

)
> 0.

2
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Definition 5.2.3 For real numbers α and β with β 6= 0,−1,−2, . . . , the Kummer

Confluent Hypergeometric Function, commonly written 1F1(α, β, x), but that for clar-

ity we write here as M(α, β, x), is defined as

M(α, β, x) = 1 +
α

β

x

1!
+

α(α + 1)

β(β + 1)

x2

2!

+
α(α + 1)(α + 2)

β(β + 1)(β + 2)

x3

3!
+ . . . ,

for −∞ < x < ∞ (Miller and Mocanu, 1990).

Lemma 5.2.4 Let k > 0, Gp be the pth quantile of the Gamma distribution with

positive shape parameter τ and scale parameter θ such that p = P (G < Gp) and

define the function S(p|τ, θ, k) in terms of the Kummer’s confluent hypergeometric

function such that

S(p|τ, θ, k) = M

(
1, τ + 1,

Gp

θ

)
− M

(
1, τ + 1,

Gp

kθ

)
,

then

Case I: if k ∈ [0, 1) then S(p|τ, θ, k) < 0.

Case II: if k = 1 then S(p|τ, θ, k) = 0.

Case III: if k > 1 then S(p|τ, θ, k) > 0.

Proof of Lemma 5.2.4: By Definition 5.2.3, M(α, β, x) is increasing in x for positive

α and β. In our case, α := 1 > 0 and β := τ + 1 > 0. Thus

Case I: if k ∈ (0, 1) then Gp/θ < Gp/kθ so that M (1, τ + 1, Gp)−M
(
1, τ + 1, Gp

k

)
< 0

and hence S(p|τ, θ, k) < 0.

Case II: if k = 1 then Gp/θ = Gp/kθ so that M (1, τ + 1, Gp) − M
(
1, τ + 1, Gp

k

)
= 0

and hence S(p|τ, θ, k) = 0.
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Case III: if k > 1 then Gp/θ > Gp/kθ so that M (1, τ + 1, Gp)−M
(
1, τ + 1, Gp

k

)
> 0

and hence S(p|τ, θ, k) > 0. 2

5.3 The F-Inequality

The F-inequality exploits the well-known relationship between the F distribution and

the Beta distribution, namely that if F ∼ F (ν1, ν2) then F
F+

ν2
ν1

∼ Beta
(

ν1

2
, ν2

2

)
.

Definition 5.3.1 For a, b > 0, the regularized incomplete beta function Ix(a, b) is de-

fined in terms of the incomplete beta function B(x; a, b) and the complete beta function

B(a, b) as

Ix(a, b) =
B(x; a, b)

B(a, b)
,

where

B(x; a, b) =

∫ x

0

ta−1(1 − t)b−1dt

for x ∈ [0, 1] and

B(a, b) := B(1; a, b) =

∫ 1

0

ta−1(1 − t)b−1dt,

see O’Connor (2011).

Note that Ix(a, b) is the cumulative distribution function (CDF) of a Beta(a, b) dis-

tribution.

Proposition 5.3.2 Let F be a random variable with an F (ν1, ν2) distribution. De-

fine the FR-function as h(p|k) = 1
p
B
(
F̃p,k,

ν1

2
, ν2

2

)
where p ∈ (0, 1). Then, h(p|k) is

a monotonic function for k ≥ 0 such that:

Case I: if 0 ≤ k < 1 then h(p|k) is strictly decreasing in p.



67

Case II: if k = 1 then h(p|k) = B(ν1/2, ν2/2) (constant).

Case III: if k > 1 then h(p|k) is strictly increasing in p.

Proof of Proposition 5.3.2: The idea is to establish that ∂
∂p

h(p|k) = 0 if and only if

k = 1. Since ∂
∂p

h(p|k) is continuous in k, this means that for k ∈ [0, 1), h(p|k) is

monotonic and for k > 1, h(p|k) is also monotonic. Moreover, for k ∈ [0, 1), we show

that h(p|k) is monotonically decreasing in p and for k > 1, that h(p|k) is monotoni-

cally increasing in p.

Case II: The CDF of the F-distribution with ν1 and ν2 degrees of freedom is

F (x; ν1, ν2) := I x

x+
ν2
ν1

(ν1

2
,
ν2

2

)
= I ν1x

ν1x+ν2

(ν1

2
,
ν2

2

)
,

where I is the Beta CDF. Thus, incorporating equation (5.2),

p = P (F ≤ Fp) =

B

(
Fp

Fp+
ν2
ν1

, ν1

2
, ν2

2

)

B(ν1/2, ν2/2)

⇐⇒ 1

p
B
(
F̃p,1,

ν1

2
,
ν2

2

)
= B(ν1/2, ν2/2). (5.3)

The left hand side of this equality is precisely h(p|k = 1) which completes the proof

for this case.

The result of Case II tells us that ∂
∂p

h(p|k = 1) = 0 for all p. If we let f denote

the density function of the F random variable we have ∂
∂p

Fp = 1
f(Fp)

so that

∂

∂p
h(p|k) =

−1

p2
B
(
F̃p,k,

ν1

2
,
ν2

2

)
+

1

p

(
F̃p,k

) ν1
2
−1 (

1 − F̃p,k

) ν2
2
−1 ν2k

ν1f(Fp)
(
Fp + ν2k

ν1

)2 ,

(5.4)
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and for k = 1,

0 =
∂

∂p
h(p|k = 1)

= − 1

p2
B
(
F̃p,1,

ν1

2
,
ν2

2

)

+
1

p

(
F̃p,1

)ν1/2−1

×
(
1 − F̃p,1

)ν2/2−1 ν2

ν1f(Fp)
(
Fp + ν2

ν1

)2 ,

and thus

ν2

ν1f(Fp)
=

B
(
F̃p,1,

ν1

2
, ν2

2

)(
Fp + ν2

ν1

)2

p
(
F̃p,1

)ν1/2−1 (
1 − F̃p,1

)ν2/2−1
. (5.5)

One can verify the equality in (5.5) as an exercise by using (5.3) and the substitution

of Fp in the density function of the F distribution.

Before proceeding in the proof of cases I and III, we provide an expression for

∂
∂p

h(p|k) as follows. Letting a := ν2

ν1
and substituting (5.5) in (5.4) gives

∂

∂p
h(p|k) =

−1

p2
B
(
F̃p,k,

ν1

2
,
ν2

2

)

+
k (Fp + a)2

(
F̃p,k

) ν1
2
−1 (

1 − F̃p,k

) ν2
2
−1

B
(
F̃p,1,

ν1

2
, ν2

2

)

p2 (Fp + ka)2
(
F̃p,1

) ν1
2
−1 (

1 − F̃p,1

) ν2
2
−1

=
−1

p2
Bk +

k

p2

(
F̃p,k

) ν1
2
−1 (

1 − F̃p,k

) ν2
2
−1

(
F̃p,1

) ν1
2
−1 (

1 − F̃p,1

) ν2
2
−1

(Fp + a)2

(Fp + ka)2
B1,

where

Bk ≡ B
(
F̃p,k,

ν1

2
,
ν2

2

)
.

Observe that, from (5.2)

(
F̃p,k

) ν1
2
−1 (

1 − F̃p,k

) ν2
2
−1

(
F̃p,1

) ν1
2
−1 (

1 − F̃p,1

) ν2
2
−1

=
(Fp + a)

ν1
2

+
ν2
2
−2k

ν2
2
−1

(Fp + ka)
ν1
2

+
ν2
2
−2

.
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So,

∂

∂p
h(p|k) =

−1

p2
Bk +

k
ν2
2

p2

(Fp + a)
ν1+ν2

2
−2(Fp + a)2

(Fp + ka)
ν1+ν2

2
−2(Fp + ka)2

B1

=
−1

p2
Bk +

k
ν2
2

p2

(Fp + a)
ν1+ν2

2

(Fp + ka)
ν1+ν2

2

B1

=
−1

p2
Bk +

1

p2
k

ν2
2

(
Fp + ka

Fp + a

)− ν1+ν2
2

B1. (5.6)

As shown in Dutka (1981), the Hypergeometric representation of the incomplete Beta

function is B(x; a, b) = xa(1−x)b

a
H(a + b, 1; a + 1; x). Using this representation reduces

(5.6) to

∂

∂p
h(p|k) =

−2

ν1p2

(
F̃p,k

) ν1
2
(
1 − F̃p,k

) ν2
2

H

(
ν1 + ν2

2
, 1,

ν1

2
+ 1, F̃p,k

)

+
2

ν1p2
k

ν2
2

(
Fp + ka

Fp + a

)− ν1+ν2
2 (

F̃p,1

) ν1
2
(
1 − F̃p,1

) ν2
2

×H

(
ν1 + ν2

2
, 1,

ν1

2
+ 1, F̃p,1

)

=
−2

ν1p2

(
F̃p,1

) ν1
2
(
1 − F̃p,1

) ν2
2


−

(
F̃p,k

F̃p,1

)ν1
2
(

1 − F̃p,k

1 − F̃p,1

) ν2
2

Hk

+k
ν2
2

(
Fp + ka

Fp + a

)− ν1+ν2
2

H1

]
,

where

Hk ≡ H

(
ν1 + ν2

2
, 1,

ν1

2
+ 1, F̃p,k

)
.

Observe that, from (5.2)

(
F̃p,k

F̃p,1

) ν1
2
(

1 − F̃p,k

1 − F̃p,1

) ν2
2

= k
ν2
2

(
Fp + ka

Fp + a

)− ν1+ν2
2

and

(
F̃p,1

) ν1
2
(
1 − F̃p,1

) ν2
2

k
ν2
2

(
Fp + ka

Fp + a

)− ν1+ν2
2

= (ka)
ν2
2 F

ν1
2

p (Fp + ka)−
ν1+ν2

2 .
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So,

∂

∂p
h(p|k) =

2

ν1p2

(
F̃p,1

) ν1
2
(
1 − F̃p,1

) ν2
2

k
ν2
2

(
Fp + ka

Fp + a

)− ν1+ν2
2

[H1 − Hk]

=
2

ν1p2
F

ν1
2

p (Fp + ka)−
ν1+ν2

2 (ka)
ν2
2 × s(p|ν1, ν2, k), (5.7)

where s(p|ν1, ν2, k) was defined in Lemma 5.2.2.

Case I: if k ∈ [0, 1) then 2
ν1

F
ν1
2

p (Fp + ka)−
ν1+ν2

2 (ka)
ν2
2 > 0 and by Case I of Lemma

5.2.2, s(p|ν1, ν2, k) < 0 and hence ∂
∂p

h(p|k) < 0 so that h(p|k) is decreasing in p which

completes the proof for this case.

Case III: if k > 1 then 2
ν1

F
ν1
2

p (Fp + ka)−
ν1+ν2

2 (ka)
ν2
2 > 0 and by Case III of Lemma

5.2.2, s(p|ν1, ν2, k) > 0 and hence ∂
∂p

h(p|k) > 0 so that h(p|k) is increasing in p which

completes the proof for this case. 2

p

k

h(p,k)

p

k
h(p,k)

Figure 5.1: Left Panel is the bimonotonic surface of the function h(p, k) for k ∈ [0, 1)

and p ∈ (0, 1). Right Panel is the bimonotonic surface of the function h(p, k) for

k > 1 and p ∈ (0, 1).
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Figure 5.1 illusrates the behaviour of h(p|k) for different p and k values. It’s very

clear from Figure 5.1 that h(p|k) is decreasing in p for k ∈ [0, 1) and increasing in p

for k > 1 while h(p|k) is decreasing in k for any p.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

h(
p|

k)

k = 0

k = 1

k ∈ [0,1)

k > 1
k = ∞

Figure 5.2: The plot of h(p|k). Solid lines are the bounds at which h(p|k) changes its

monotonicity.

Figure 5.2 illustrates the behaviour of h(p, k) in p for fixed k values in a one-dimensional

plot. For example, for k ∈ [0, 1) the dashed decreasing lines represent h(p|k) as a func-

tion of changing p and they are bounded from below by the constant line h(p|k = 1) =

B(ν1/2, ν2/2) and from above by the decreasing curve h(p|k = 0) = 1
p
B(ν1/2, ν2/2).

On the other hand, for k > 1 the dashed increasing lines represent h(p|k) as a function
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of changing p and they are bounded by the constant lines h(p|k = 1) = B(ν1/2, ν2/2)

and h(p|k = ∞) = 0. If we look at h(p|k) as a function of two variables p and k, it’s

easily seen that h(p|k) is a continuous function with no non-degenerate stationary

points. In fact

∂

∂k
h(p, k) = 0 ⇐⇒

[
∂

∂x
B(x, ν1/2, ν2/2)/p

∣∣∣
x=F̃p,k

]
×
[

∂

∂k
F̃p,k

]
= 0

⇐⇒ 1

p

(
F̃p,k

)ν1/2−1 (
1 − F̃p,k

)ν2/2−1 −Fp

(Fp + ka)2

(
ν2

ν1

)
= 0

⇐⇒ k = 0, (5.8)

and we already have established that ∂
∂p

h(p, k) = 0 ⇐⇒ k = 1. That is, there is no

point (p, k) at which ∂
∂p

h(p, k) = ∂
∂k

h(p, k) = 0 which means that the surface of h(p, k)

is bimonotonic. Further, (5.8) implies that h(k|p) is monotonic in k with a degenerate

stationary point on the boundary of the domain when k = 0. Also, one should

expect h(p|k) to be decreasing in p for fixed k ∈ [0, 1) without examining the sign

of the derivative for the following reasons. Note that h(p|k = 0) = 1
p
B (ν1/2, ν2/2),

h(p|k = 1) = B (ν1/2, ν2/2) and h(p|k = 1) < h(p|k = 0) so that limp→1 h(p|k = 0) =

h(p|k = 1) (i.e. h(p, k) is bounded by a constant from below and a monotonically

decreasing function from above). Thus since h(p|k) is monotonic for k ∈ [0, 1) it must

be be decreasing in p otherwise, by definition of infimum, it cannot be bounded by a

constant from below and a monotonically decreasing function from above.

Theorem 5.3.3 Let α, p ∈ (0, 1) such that p > α (i.e. Fp > Fα where p = P (F < Fp)

and α = P (F < Fα)). For k > 1, if F is a random variable with an F (ν1, ν2)

distribution then the following inequality always holds:

1

p
× P

(
F <

1

k
Fp

)
>

1

α
× P

(
F <

1

k
Fα

)
, (5.9)
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or alternatively,

P

(
F <

Fp

k

∣∣∣F < Fp

)
> P

(
F <

Fα

k

∣∣∣F < Fα

)
. (5.10)

The inequality changes direction for k ∈ [0, 1) and becomes equality for k = 1 and,

trivially, when k = ∞.

Proof of Theorem 5.3.3: Recall that the CDF of the F-distribution with ν1 and ν2

degrees of freedom is

F (x; ν1, ν2) = I ν1x
ν1x+d2

(ν1

2
,
ν2

2

)
,

where I is the reglarized incomplete beta function as defined in Definition 5.3.1. Thus,

one can write the inequality in (5.9) in terms of the incomplete beta function as

1

p
× B

(
F̃p,k;

ν1

2
,
ν2

2

)
>

1

α
× B

(
F̃α,k;

ν1

2
,
ν2

2

)
. (5.11)

Now, since k > 1 and p > α, the inequality in (5.11) follows immediately from Case

III of Proposition 5.3.2. If k ∈ [0, 1) then Case I of the proposition changes the

direction of the inequality while, for k = 1, Case II changes the inequality to equality.

For k = ∞, both sides of the inequality become zero making it equality. 2

5.4 The G-Inequality

Similar arguments establish the G-inequality for Gamma distributions.

Definition 5.4.1 For a > 0, the lower incomplete gamma function γ(a, x) is defined

as

γ(a, x) =

∫ x

0

ta−1e−tdt
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for x ≥ 0 and the gamma function Γ(a) is defined as

Γ(a) =

∫ ∞

0

ta−1e−tdt,

see O’Connor (2011).

Recall that the CDF of the Gamma(τ, θ) distribution is

F (x; τ, θ) =
1

Γ(τ)
γ
(
τ,

x

θ

)
.

Proposition 5.4.2 Let G be a random variable with the Gamma(τ, θ) distribution.

Define the GR-function as h̃(p|k) = 1
p
γ
(
τ, Gp

kθ

)
where p ∈ (0, 1) and Gp is the pth

quantile of the gamma distribution such that p = P (G < Gp). Then, h̃(p|k) is a

monotonic function for k ≥ 0 such that:

Case I: if 0 ≤ k < 1 then h̃(p|k) is strictly decreasing in p.

Case II: if k = 1 then h̃(p|k) = Γ(τ) (constant).

Case III: if k > 1 then h̃(p|k) is strictly increasing in p.

Proof of Proposition 5.4.2: The outline of the proof is identical to that of Proposition

5.3.2 and therefore we start it with case II as follows.

Case II:

p = P (G ≤ Gp) =
1

Γ(τ)
γ

(
τ,

Gp

θ

)

⇐⇒ 1

p
γ

(
τ,

Gp

θ

)
= Γ(τ). (5.12)

But the left hand side of this equality is precisely h̃(p|k = 1) which completes the

proof for this case.
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The result of Case II tells us that ∂
∂p

h̃(p|k = 1) = 0 for all p. So, if we let f

denote the density function of the G random variable we have ∂
∂p

Gp = 1
f(Gp)

so that

the following identity is always true.

∂

∂p
h̃(p|k = 1) = 0

⇐⇒ − 1

p2
γ

(
τ,

Gp

θ

)
+

1

p

(
Gp

θ

)τ−1

e
−Gp

θ
1

θf(Gp)
= 0

⇐⇒
(

Gp

θ

)τ−1
1

θf(Gp)
=

1

p
γ

(
τ,

Gp

θ

)
e

Gp
θ . (5.13)

One can verify the equality in (5.13) as an exercise by using (5.12) and the substitu-

tion of Gp in the density function of the Gamma distribution.

Using this identity in deriving ∂
∂p

h̃(p|k) gives

∂

∂p
h̃(p|k) = − 1

p2
γ

(
τ,

Gp

kθ

)
+

1

p

(
Gp

kθ

)τ−1
1

kθf(Gp)
e

−Gp
kθ

= − 1

p2
γ

(
τ,

Gp

kθ

)
+

[
1

p

(
Gp

θ

)τ−1
1

θf(Gp)

]
1

kτ
e

−Gp
kθ

= − 1

p2
γ

(
τ,

Gp

kθ

)
+

1

p2
γ

(
τ,

Gp

θ

)
e

Gp
θ e

−Gp
kθ k−τ . (5.14)

As shown in Cuyt et al. (2008), the connection between the lower incomplete gamma

function and the Kummer’s confluent hypergeometric function is

γ(a, x) = a−1xae−xM(1, a + 1, x).
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Using this representation and arguments similar to those for the F-inequality

reduce (5.14) to

∂

∂p
h̃(p|k) =

1

p2
τ−1

(
Gp

kθ

)τ

e
−Gp
kθ × S(p|τ, θ, k), (5.15)

where S(p|τ, θ, k) was defined in Lemma 5.2.4.

Case I: if k ∈ [0, 1) then 1
p2 τ

−1
(

Gp

kθ

)τ

e
−Gp

kθ > 0 and by Case I of Lemma 5.2.2,

S(p|τ, θ, k) < 0 and hence ∂
∂p

h̃(p|k) < 0 so that h̃(p|k) is decreasing in p which com-

pletes the proof for this case.

Case III: if k > 1 then 1
p2 τ

−1
(

Gp

kθ

)τ

e
−Gp

kθ > 0 and by Case III of Lemma 5.2.2,

S(p|τ, θ, k) > 0 and hence ∂
∂p

h̃(p|k) > 0 so that h̃(p|k) is increasing in p which

completes the proof for this case. 2

p

k

h~
(p

, k
)

p

k

h~
(p

, k
)

Figure 5.3: Left Panel is the bimonotonic surface of the function h̃(p, k) for k ∈ [0, 1)

and p ∈ (0, 1). Right Panel is the bimonotonic surface of h̃(p, k) for k > 1 and

p ∈ (0, 1).
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Figure 5.4: The plot of h̃(p|k). Solid lines are the bounds at which h̃(p|k) changes its

monotonicity.

Figure 5.3 illusrates the behaviour of h̃(p, k) for different p and k values. It’s very

clear from figure 5.3 that h̃(p, k) is decreasing in p for k ∈ [0, 1) and increasing in p for

k > 1 while h̃(p, k) is decreasing in k for any p. Figure 5.4 illustrates the behaviour

of h̃(p, k) in p for fixed k values in a one-dimensional plot. For example, for k ∈ [0, 1)

the dashed decreasing lines represent h̃(p|k) as a function of changing p and they

are bounded from below by the constant line h̃(p|k = 1) = Γ(τ) and from above by

the decreasing line h̃(p|k = 0) = 1
p
Γ(τ). On the other hand, for k > 1 the dashed

increasing lines represent h(p|k) as a function of changing p and they are bounded by

the constant lines h̃(p|k = 1) = Γ(τ) and h̃(p|k = ∞) = 0. If we look at h̃(p, k) as a

function of two variables p and k, it’s easily seen that h̃(p, k) is a continuous function

with no non-degenerate stationary points. In fact
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∂

∂k
h̃(p, k) = 0 ⇐⇒

[
∂

∂x
γ(τ, x)/p

∣∣∣
x=

Gp
kθ

]
×
[

∂

∂k

Gp

kθ

]
= 0

⇐⇒ 1

p

(
Gp

kθ

)τ−1

e
−Gp

kθ

(
−Gp

θk2

)
= 0

⇐⇒ k = ∞, (5.16)

and we already have established that ∂
∂p

h̃(p, k) = 0 ⇐⇒ k = 1. That is, there

is no point (p, k) at which ∂
∂p

h̃(p, k) = ∂
∂k

h̃(p, k) = 0 which means that the surface

of h̃(p, k) is bimonotonic. Also, one should expect h̃(p|k) to be decreasing in p for

fixed k ∈ [0, 1) without examining the sign of the derivative for the following reasons.

Note that from Cases I and II we know that h̃(p|k = 0) = 1
p
Γ(τ), h̃(p|k = 1) = Γ(τ)

and h̃(p|k = 1) < h̃(p|k = 0) so that limp→1 h̃(p|k = 0) = h̃(p|k = 1) (i.e. h̃(p, k)

is bounded by a constant from below and a monotonically decreasing function from

above). Thus since h̃(p|k) is monotonic for k ∈ [0, 1) it must be be decreasing in p

otherwise, by definition of infimum, it cannot be bounded by a constant from below

and a monotonically decreasing function from above.

Theorem 5.4.3 Let α, p ∈ (0, 1) such that p > α (i.e. Gp > Gα where p = P (G <

Gp) and α = P (G < Gα)). For k > 1, if G is a gamma random variable with

parameters τ and θ then the following inequality always hold:

1

p
× P

(
G <

Gp

k

)
>

1

α
× P

(
G <

Gα

k

)
, (5.17)

or alternatively,

P

(
G <

Gp

k

∣∣∣G < Gp

)
> P

(
G <

Gα

k

∣∣∣G < Gα

)
. (5.18)

The inequality changes direction for k ∈ [0, 1) and becomes equality for k = 1 and,

trivially, when k = ∞.
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Proof of Theorem 5.4.3: Recall that the CDF of the Gamma(τ, θ) distribution is

F (x; τ, θ) =
1

Γ(τ)
γ
(
τ,

x

θ

)
,

where γ is the lower incomplete gamma function and Γ is the gamma function as

defined in Definition 5.4.1. Thus, one can write the inequality in (5.17) in terms of

the lower incomplete gamma function as

1

p
γ

(
τ,

Gp

kθ

)
>

1

α
γ

(
τ,

Gα

kθ

)
. (5.19)

Now, since k > 1 and p > α then the inequality in (5.19) follows immediately from

Case III of Proposition 5.4.2. If k ∈ [0, 1) then Case I of the very same Proposition

changes the direction of the inequality while, for k = 1, Case II changes the inequality

to equality. For k = ∞, both sides of the inequality become zero making it equality.

2



Appendix A

Proofs of secondary results

A.1 Proof for the PPOs Properties in (1.13)

Firstly, M̃ = M∗ + M2: This result is an immediate consequence of conditions (b)

and (c) of Section 1.3. In particular, since C(X̃) = C(X∗, (I − M1)X2) then by

defintion of PPO

M̃ = [X∗, (I − M1)X2]







X
′
∗

[(I − M1)X2]
′


 [X∗, (I − M1)X2]




−1

×




X
′
∗

[(I − M1)X2]
′




= [X∗, (I − M1)X2]




X
′
∗X∗ X

′
∗(I − M1)X2

X
′
2(I − M1)X∗ X

′
2(I − M1)X2




−1 


X
′
∗

[(I − M1)X2]
′




= [X∗, (I − M1)X2]



(
X

′
∗X∗

)−1
0

0
(
X

′
2(I − M1)X2

)−1







X
′
∗

[(I − M1)X2]
′
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=

[
X∗

(
X

′

∗X∗

)−1

, (I − M1)X2

(
X

′

2(I − M1)X2

)−1
]



X
′
∗

X
′
2(I − M1)




= X∗

(
X

′

∗X∗

)−1

X
′

∗ + (I − M1)X2

(
X

′

2(I − M1)X2

)−1

X
′

2(I − M1)

= M∗ + M2. (A.1)

The equality in the third line of (A.1) is due to condition (b) which implies that

(I − M1)X∗ = X
′
∗(I − M1) = 0.

Secondly, M∗M1 = M∗: This result is an immediate consequence of condition (b).

In particular, since C(X∗) ⊂ C(X1) then X∗ = X1B for some matrix B and therefore,

by defintion of PPO,

M∗ = X∗

(
X

′

∗X∗

)−1

X
′

∗

= X1B
(
(X1B)

′
X1B

)−1

(X1B)
′

= X1B
(
B

′
X

′

1X1B
)−1

B
′
X

′

1. (A.2)

Thus, using M∗ from (A.2) and M1 from (1.11) gives

M∗M1 = X1B
(
B

′
X

′

1X1B
)−1

B
′
X

′

1X1

(
X

′

1X1

)−1

X
′

1

= X1B
(
B

′
X

′

1X1B
)−1

B
′
X

′

1

= M∗. (A.3)

Thirdly, M1M2 = 0: This results is trivially obtained by simply multiplying M1

from (1.11) and M2 from (1.12).

Fourthly, M = M1 + M2: Let X = [X1, X2] such that M is the PPO onto C(X).

Since M1M2 = 0, then C(M1) ⊥ C(M2) and hence M = M1 + M2 is a PPO onto

C(M1, M2) by Theorem B.45 of Christensen (2011). But C(M1, M2) = C(X1, (I −

M1)X2) since C(M1) = C(X1) and C(M2) = C((I −M1)X2). So, it remains to prove
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that C(X1, X2) = C(X1, (I−M1)X2) to complete the proof. To do so, we use the fact

that C(A1) = C(A2) iff there exist B1 and B2 such that A1 = A2B2 and A2 = A1B1

as follows.

[X1, (I − M1)X2] = [X1, X2 − M1X2]

=
[
X1, X2 − X1(X

′

1X1)
−1X

′

1X2

]

= [X1, X2]




I −(X
′
1X1)

−1X
′
1X2

0 I


 (A.4)

and

[X1, X2] = [X1, (I − M1)X2]



I (X

′
1X1)

−1X
′
1X2

0 I


 . (A.5)

That is, C(X1, (I − M1)X2) ⊂ C(X1, X2) and C(X1, X2) ⊂ C(X1, (I − M1)X2) so

that C(X1, X2) = C(X1, (I − M1)X2) as desired. 2

A.2 Illustration for the proof of Lemma 2.1.2

Let λ = −a
b
. Then

|aIn + bP | = |b (P − λIn) |

= bn|P − λIn|. (A.6)

However, the determinant |P − λIn| in (A.6) is the characteristic polynomial of P

which equals to (A.7) since 1 and 0 are the eigenvalues for P with multiplicity r(P )

and n − r(P ) respectively.

|P − λIn| ≡ pP (λ) = (−λ)n−r(P )(1 − λ)r(P ). (A.7)
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Hence, substituting (A.7) in (A.6) gives the desired result

|aIn + bP | = bn|P − λIn|

= bn(−λ)n−r(P )(1 − λ)r(P )

= bn
(a

b

)n−r(P ) (
1 +

a

b

)r(P )

=
bnan−r(P )

bn−r(P )

(a + b)r(P )

br(P )

= an−r(P )(a + b)r(P ). (A.8)

2

A.3 Proof of Lemma 2.1.3

When x2 > x1 > 0, we have a standard maximization problem for a function of two

variables. Setting the partial derivatives to zero gives

∂g

∂x1
= 0 ⇐⇒ q1(Q1 − x1)

x2
1

= 0 ⇐⇒ x1 = Q1, (A.9)

and

∂g

∂x2
= 0 ⇐⇒ q2(Q2 − x2)

x2
2

= 0 ⇐⇒ x2 = Q2. (A.10)

Let gxixj
= ∂

∂xj

(
∂

∂xi
g(xi, xj)

)
for i, j ∈ {1, 2}. Then, according to the second deriva-

tive test, we have

D(x1, x2) = gx1x1(x1, x2)gx2x2(x1, x2) − [gx1x2(x1, x2)]
2

=

(
q1

x2
1

− 2q1Q1

x3
1

)(
q2

x2
2

− 2q2Q2

x3
2

)
(A.11)

with D(Q1, Q2) = q1q2

Q2
1Q2

2
> 0 and gx1x1(Q1, Q2) = −q1

Q2
1

< 0 so that (x1, x2) = (Q1, Q2)

is a maximum point. Thus, if Q2 > Q1 > 0 then the point (Q1, Q2) is in the interior



84

and maximizes the function within the interior; i.e. a local maximum.

When x1 = x2 := x, using direct substitution, the problem reduces to maximizing

the function of one variable

g(x) = −
[
constant + (q1 + q2) log(x) +

q1Q1 + q2Q2

x

]
(A.12)

over R+. So, setting the partial derivative of g(x) to zero gives

∂g

∂x
= 0 ⇐⇒ −q1 + q2

x
+

q1Q1 + q2Q2

x2
= 0 ⇐⇒ x =

q1Q1 + q2Q2

q1 + q2
. (A.13)

Now, using the second derivative test, we have

∂g(x)

∂x2
=

q1 + q2

x2
− 2(q1Q1 + q2Q2)

x3
(A.14)

with

∂g(x)

∂x2
|
x=

q1Q1+q2Q2
q1+q2

=
−(q1 + q2)

3

(q1Q1 + q2Q2)2
< 0 (A.15)

so that (x1, x2) =
(

q1Q1+q2Q2

q1+q2
, q1Q1+q2Q2

q1+q2

)
is a maximum point on the boundary of the

domain.

Now, we show that if Q2 > Q1 > 0 then the maximum in the interior is a global

maximum. Note that when the maximum is in the interior at (Q1, Q2) it attains the

value

g(Q1, Q2) = − [constant + (q1 + q2) + log (Qq1

1 Qq2

2 )] .

Further, when the maximum is on the boundary at
(

q1Q1+q2Q2

q1+q2
, q1Q1+q2Q2

q1+q2

)
it attains

the value

g

(
q1Q1 + q2Q2

q1 + q2

)
= −

[
constant + (q1 + q2) + (q1 + q2) log

(
q1Q1 + q2Q2

q1 + q2

)]
.
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Showing that g(Q1, Q2) > g
(

q1Q1+q2Q2

q1+q2

)
is the same as showing

log

(
q1Q1 + q2Q2

q1 + q2

)
>

q1 log(Q1)

q1 + q2
+

q2 log(Q2)

q1 + q2
,

which is true due to Jensen’s Inequality:

Let Q be a r.v. such that P (Q = Q1) = q1

q1+q2
and P (Q = Q2) = q2

q1+q2
then by

Jensen’s Inequality we have

log [E(Q)] > E [log(Q)]

⇐⇒ log

(
q1Q1 + q2Q2

q1 + q2

)
>

q1 log(Q1)

q1 + q2

+
q2 log(Q2)

q1 + q2

.

Now, we show that if Q1 > Q2 > 0 then the maximum in the boundary is a global

maximum. Note that if Q1 > Q2 > 0, there are no critical points of the function

within the interior. Further, we know that g(x1, x2) goes to −∞ in both x1 and x2

which forces the maximum on the boundary at
(

q1Q1+q2Q2

q1+q2
, q1Q1+q2Q2

q1+q2

)
to be a global

maximum. 2
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