
University of New Mexico
UNM Digital Repository

Linguistics ETDs Electronic Theses and Dissertations

Summer 7-16-2018

A Path To Alignment
Gregory Richard Arnold
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/ling_etds

Part of the Linguistics Commons

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for
inclusion in Linguistics ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact amywinter@unm.edu.

Recommended Citation
Arnold, Gregory Richard. "A Path To Alignment." (2018). https://digitalrepository.unm.edu/ling_etds/64

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fling_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ling_etds?utm_source=digitalrepository.unm.edu%2Fling_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/etds?utm_source=digitalrepository.unm.edu%2Fling_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ling_etds?utm_source=digitalrepository.unm.edu%2Fling_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/371?utm_source=digitalrepository.unm.edu%2Fling_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ling_etds/64?utm_source=digitalrepository.unm.edu%2Fling_etds%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:amywinter@unm.edu

i

Gregory R. Arnold
Candidate
Linguistics
Department

This thesis is approved, and it is acceptable in quality
and form for publication:

Approved by the Thesis Committee:

Sherman Wilcox, Chairperson

Melissa Axelrod

Jill Morford

ii

A PATH TO ALIGNMENT

BY

GREGORY R ARNOLD

B.A. Linguistics, Seattle Pacific University, 1985

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Arts

Linguistics

The University of New Mexico
Albuquerque, New Mexico

July, 2018

iii

DEDICATION

In memory of Wayne Otto, a life well-lived, an avid reader, a professor of education, a

mentor of inquisitive pursuits and pastiche. We will miss you dearly.

iv

ACKNOWLEDGMENTS

I heartily acknowledge Dr. Sherman Wilcox, my advisor and thesis chair, for

continuing to encourage me to not give up writing and rewriting this thesis, and

introducing me to cognitive linguistics. His guidance and professional style will remain

with me as I continue my career. I also thank my committee members, Dr. Melissa

Axelrod, and Dr. Jill Morford, for their valuable recommendations pertaining to this

study and their assistance with professional development. Gratitude is extended to Sandia

National Laboratories for the funding to pursue this research. To Dr. William Croft for

his spurning instruction in typology, morphosyntax and semantics, it was foundationally

essential. To Bruce Carpenter for engaging me in countless conversations about

consciousness. And finally, to my wife and best friend, Eleni Otto, your love and support

is the greatest gift of all.

v

A PATH TO ALIGNMENT

By

Gregory R Arnold

B.A., Linguistics, Seattle Pacific University, 1985

ABSTRACT

What is really needed to make a machine into a verisimilitude of a language using

human? Clearly there are holes in human communication, missing linguistic forms, and

yet we manage to convey meaning. The under-determinacy of language seems to play an

integral part in the adaptive system that all humans possess for perceiving, processing and

producing language with shared semantic value. We invent symbols that index the

missing contextual elements, allowing partial production of linguistic units. A machine

would require the same abilities of indexicality and inventiveness.

In this pilot study, I attempt to understand how semantic values shift and align during

conversation with the further hope of developing a model for a computer to be able to

interact with a human. I draw on the data available from YouTube closed-caption text,

and build a corpus of discourses with the aim of developing meta-data in the form of

dimensional values. This data represents the temporal flow of usage events with a

semantic value system that seems to prod the activation of more usage events, align or

misalign coordinated meaning during the semiotic cycle. I finally propose a usage-based

data driven application, Chatbot that stores the tokens of conversation between a person

and the computer as symbolic units for memory and exemplars for construction.

vi

Table of Contents

List of Figures .. vii

List of Tables .. viii

Preface .. ix

1 Introduction .. 1

2 Background .. 5

2.1 Neuroscience ... 5

2.2 Philosophy .. 6

2.3 Computational Linguistics .. 9

3 Building a Corpus .. 23

3.1 Collecting YouTube Data and Building a Corpus .. 23

3.2 Building YouTube Symbolic Units and Vectors .. 26

3.3 Producing Useful Information and Visualizations .. 29

4 A Usage Event Data Model ... 31

4.1 The Three Stages of Corpus Data ... 31

4.2 Plain Text .. 33

4.3 Tagged and Categorized Text ... 35

4.4 Words and Frames .. 38

4.5 Words and Hypernyms ... 40

4.6 Vectors and Dimensionality and Domains ... 42

4.7 A Value System Application .. 44

5 Conclusions .. 50

6 Figures ... 53

7 Tables ... 66

8 Appendices ... 100

8.1 Corpus Python Code ... 100

9 References .. 130

vii

List of Figures

Figure 1 - Somatic Processing Model ... 53

Figure 2 - A Scheme for higher-order consciousness (Edelman & Tononi, 2000, p. 194) 53

Figure 3 - Dynamical Systems Terminology .. 54

Figure 4 - A two-dimensional emotion space (Russell, 1980) .. 55

Figure 5 Conventional Unit Status .. 55

Figure 6 Symbolic Assembly .. 56

Figure 7 Forward-Propagation .. 56

Figure 8 Neuron .. 57

Figure 9 Symbolic Unit Bias Vector ... 58

Figure 10 Dynamic System Matching Process ... 59

Figure 11 - Closed Caption File Sample ... 60

Figure 12 - Synsets for target word "guess" .. 60

Figure 13 - YouTube corpus Symbolic Unit ... 61

Figure 14 - Dispersion Plot of discourse Creationism vs. Evolution 62

Figure 15 - Memory Corpora Data Model .. 63

Figure 16 – Exemplar Construction Data Model .. 64

Figure 17 - Chatbot Data Flow ... 65

viii

List of Tables

Table 1 - Modal Verbs Frequency by Category .. 66

Table 2 - YouTube Videos for Corpus ... 66

Table 3 - NLTK Part of Speech Tags .. 72

Table 4 - Stages of Corpus Data ... 77

Table 5 - K-Nearest Neighbor for Discourse 6NOSD0XK0r8 ... 93

ix

Preface

My thesis asserts that the “meeting of minds”, coordination of meaning, is achieved

through common lexical knowledge shared between two or more people engaged in

conversation, i.e. the semiotic cycle (Steels, 2016, pp. 3-4)). Under-determinacy in

language production (Everett, 2017, pp. 3-4,66,251,256) indicates there is a clear human

invention of symbols, from the early cave drawings to the present day, which refer to or

index missing contextual elements and semantic values. There is something else

“prodding” activation in language processing, however, when attaining “joint attention”

or a fixpoint in conceptual space (Gärdenfors, 2014, pp. 91,260,272-275).

Mutual alignment or un-alignment of meaning occurs; linguistic categorization (memory,

learning and performance) is biased dynamically by a set of one or more value systems

(dimensions), re-entrant mapping of motor activities on sensory information of an

individual speaker or hearer (Thelen & Smith, 2000, p. 160). This is evident because

alignment of meaning can fail even with common lexical knowledge. Also, linguistic

units of input that are different from linguistic units containing the intended meaning are

often employed in conversation to activate coordination. The value systems hold the

linguistic criteria, including indexing missing context for language processing, activation

and selection of the best adaptive meaning.

1

1 Introduction

If I wanted to build a robot that could communicate with humans very much like a human

would with all the irrational and variant behaviors that can be attributed to humankind, I

would need a cognitively sufficient model that considered many forms of input, many

sensorimotor mechanisms, many use-specific processing units with cooperation abilities,

value systems that act as biases for processing, and a storage medium where processing

units can be activated. Figure 1 shows three boxes modelling a body-centric process. The

first box is the world-environment input that is abundant with various forms of waves and

particles, e.g. light and sound. The second box contains the bodily sensorimotor

mechanisms that human evolution has adapted, e.g. the senses, ears, eyes, skin and

tongue. The third box embodies the human consciousness full of processing units that are

clustered and inter-connected. Bi-directional arrows connect the three boxes as data flows

into and out of the human machine.

Consciousness has been an elusive topic for a very long time in human years. It has been

a topic of fireside discussion since human predecessors came down out of the trees. More

recently cognitive and neuroscience research has aided in developing theories about how

consciousness emerges; what goes on in the brain as part of a human interacting with the

world. Language is one of the more central emergent observations as it is foundational to

human communication. In computer science, many algorithms have been applied to

human interaction via computer interfaces, AKA Natural Language Processing. This has

been achieved by processing language data using Machine Learning algorithms, and then

2

applying the learned indexical knowledge to software programs like SIRI1 and others.

Technology has achieved perceptive machine capabilities to analyze and disseminate data

from spoken, written and kinetic sources. Although this is truly amazing, it is not even

close to approaching the Human Consciousness level of processing. Each Machine

Learning algorithm is targeted to solve a specific problem, and then collectively used to

manifest a verisimilitude of consciousness.

The human difference is observed when quick decisions are made, and sometimes not the

most logical ones. There are many theories that show a multi-modal input can be

processed by a machine quickly and probabilistically, based on massive amounts of

indexed data, i.e. IBM’s Watson2, even to the extent of competing and winning in a

popular trivia game show. Another current example is the computer in self-driving cars

that can process input based on trained data sets, and learn from actual road experience.

These applications are wondrous examples of modern utopia-driven utilitarian

technology, but what about a machine that makes mistakes, or makes irrational decisions?

Is it even possible to create a “Conscious” machine?

The situation of most interest to my thesis involves, in its simplest form, a three-step

model for language processing. The first step is the processing of input, which takes as its

input multiple raw signals (R where R is all the signals [0 to n]), and processes each of

them into a unit (p where p is the construction (Croft, Radical Construction Grammar

Syntactic Theory in Typological Perspective, 2001, p. 4) (Steels, 2013, p. 153) in the

1 “Siri (pronounced /ˈsɪəri/) is an intelligent personal assistant, part of Apple Inc.'s iOS.”
https://en.wikipedia.org/wiki/Siri
2 https://en.wikipedia.org/wiki/Watson_(computer)

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Intelligent_personal_assistant
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Siri
https://en.wikipedia.org/wiki/Watson_(computer)

3

form of a symbolic unit (Langacker, 2008)). The second step is the activation function

(f(x) where x is the valuation of a product of contextual weight (w) and the indexical

vector of (p), and summed with the bias or vector of value system calculations (Friston,

Tononi, Reeke Jr., Sporns, & Edelman, 1994, p. 232)), which takes the processed unit and

activates its usage against semantic domains (Gärdenfors, 2014, pp. 30-38). The third

step is the result or output or response, which is a point in conceptual space (Gärdenfors,

2014, pp. 271-275) that refers or points to a production unit or units. These three

fundamental steps are repeated in a semiotic cycle (Steels, 2016, pp. 3-4) until the point

in conceptual space maps onto itself (f(x) = x), or the meaning is coordinated

(Gärdenfors, 2014, p. 94), of course this mapping may or may not happen in a discourse

because of any number of interruptions or divergent meanings. Consciousness emerges,

like foam atop a cold pint of beer3, from the collinear, multi-cued dynamical system of

usage of this language processing model (Onnis & Spivey, 2012, p. 140).

My research focuses on what steers or prods (Thelen & Smith, 2000, p. 160) the

emergences of consciousness for more than one human when they attain joint attention

(Gärdenfors, 2014, p. 92) while in conversation with each other. Edelman proposes that

consciousness emerges as part of the re-entrant loop between value-category memory and

current perceptual categorization, as shown in Figure 2.

Value systems could be modelled as the input to calculating a bias in the Neural Network

algorithm affecting the actual linguistic activation as hinted at above in the robot analogy.

I ask the following questions then to narrow the scope of my research. What is a

3 Simile

4

Linguistic Value System, and more specifically what is the “Bias” that steers activation

and selection? Can we identify sensorimotor sources of linguistic value, e.g. visual

preference? In the next section I summarize some of the germane research already out

there.

5

2 Background

The multi-disciplinary domain of cognitive science research is vast, contemporary-

popular and extremely complex, somewhat overwhelming really. Neuroscience,

psychology, philosophy, education and linguistics, for example, make up some of the

areas of study. It is befitting for consciousness to have so much attention because of its

emergent contribution to human evolution and global communications. The question of

how a human brain works, by itself, has entire institutional focus yielding many benefits

to humanity from curing diseases to adaptive technologies applied to sensory

impairments. In the following sections I try to summarize some relevant studies of

cognition from various disciplines to provide a stage for my proposed thesis and research.

2.1 Neuroscience

Edelman pioneered the TNGS4 model that greatly furthers the study of consciousness.

Neuronal group selection is the theory that value systems modulate synaptic changes to

provide constraints for the selection of adaptive behaviors in somatic time. Value systems

are modified with experience, a feedback loop of selection (re-entrant). Brain functions

are mediated by:

i. Selectional events occurring among interacting cells in the developing embryo to

form large repertoires of variant neural circuits

ii. Further selectional events occurring among populations of synapses to enhance

those neuronal responses having adaptive value for the organism

4 The Theory of Neuronal Group Selection (Edelman & Tononi, Universe of Consciousness,
2000, p. 83)

6

iii. re-entrant signals, exchanged via parallel and reciprocal connections, that serve

through synaptic selection to integrate response patterns among functionally

segregated brain areas in an adaptive fashion

Biases (innate values) constrain the selectional system instead of it being governed by

pre-programmed rules or syntax. “The value of a global pattern of neuronal responses to

a particular environmental situation (stimulus) is reflected in the capacity of that response

pattern to increase the likelihood that it will recur in the same context.” (Friston, Tononi,

Reeke Jr., Sporns, & Edelman, 1994, p. 230) Value is most effective when movement

becomes part of the learning sequence. “An interesting consequence of value-dependent

plasticity in afferents to sensory units in the model is that receptive field properties can

change preferentially to sample cues having potential value.” (Friston, Tononi, Reeke Jr.,

Sporns, & Edelman, 1994, p. 237)

2.2 Philosophy

Embodied Cognition

It is all about a “Theory of Mind”, and two major theoretical camps that branch several

times only to merge loosely as Radical Embodied Cognition (Chemero, 2011, pp. 17-24).

The Representational Theory of Mind (RTM) is dialectically followed by the

Eliminativism Theory of Mind (ETM). RTM has five tenets:

i. Proposition attitude states are relational

ii. Some relata are mental representations

iii. Mental representations are symbols (form and meaning)

iv. Mental representations have causal roles through form

v. Propositional attitudes get meaning from other object mental representations

7

A branch of RTM is computational, and asserts that computation is a rule-governed

manipulation of symbols (CTM). This also involves the traffic of discrete tokens in the

mind.

ETM works from a natural, ecological perspective and lays out three main assertions:

i. Perception is direct, i.e. no computation, no representation, no addition

ii. Perception is for guidance of action (perhaps a value system) i.e. always an

action, we perceive to do

iii. Perception is of affordances, i.e. environmental opportunities for behavior,

affordances can be both subjective and objective

A branch from this theory is situated semantics, or embodied cognition which is

composed of indexicals (here, now, there, I, etc.), and the meaning of thoughts which are

relationships between thinker and environmental information. The situation or thought is

continuous in “act and check again” cognition. The applications that have sprung from

this theory are numerous, including robotics, simulated evolution, developmental

psychology to name a few.

Dynamical System Theory (DST), defined in Figure 3, comes out of situated semantics as

well, and play a fundamental role in Radical Embodied Cognition. DST asserts a multi-

variable input, each with a formula to calculate the action. “The agent produces

representations that are geared toward the actions it performs from the beginning.”

(Chemero, 2011, p. 27) The calculations are therefore differential equations that one

might be tempted to view as part of the RTM camp, but the ETM camp, at this state of

theory evolution, are not anti-representationalists. Instead they view these perception

variables in an indexical-functional manner.

8

Radical Embodied Cognition (REC) and Embodied Cognition (EC) differ, therefore, in

that REC evolves from ETM, and EC evolves from RTM, but both posit that embodied

cognition is explained by way of tools like DST. REC rejects the idea of mental

representation maps, and EC is more computationally tolerant. So, EC is defined as

“Scientific study of perception, cognition, and action as necessarily embodied

phenomenon, using explanatory tools that don’t posit mental representations.” (Chemero,

2011, p. 29) This is aligns well with the somatic processing model, Figure 1, where

perception is the world, action is the body, and cognition is the brain, i.e. it models

human existence philosophically.

Enactive Perception

The basic declaration of the enactivists is that they reject the idea that perception is a

process inside the brain (Noë, 2006, p. 2). Instead perception is the bodily activity that

humans engage in because of brain processes. The sensorimotor control in the brain

enacts perception by usage in the form of embodied movement. Like what Edelman and

others suggested that a value system maintained in neuronal groups is responsible for the

apparent patterning of these perception activities. The so-called senses are used by the

controlling neurons, not the other way around. Adaptive behavior of people with certain

sensory deficits, such as blindness, shows how usage will shift to other sensual

mechanisms to achieve the necessary perceptions (Noë, 2006, pp. 7-11). In other words,

perception is a result of bodily actions.

Sensorimotor knowledge is then, if I understand this correctly, only the neurological

pattern that would bodily reenact the perception. The implications are staggering

regarding memories of what happened. The brain does not record the event itself, but

9

instead records the neuronal paths created by chemicals which provide a guidance, i.e.

“Perception” for the sensorimotor action. The memory recall then recreates the pathways,

and provides another, not likely identical, guidance. In other words, “perception” is a

space in between thought and action that guides the action.

2.3 Computational Linguistics

Construction Grammar

There are three types of linguistic data considered in research by construction

grammarians: introspective, observational and experimental. For the sake of evaluation of

data on a continuum, because linguists love continuums, three dimensions of perception

are considered: setting, stimulus and unit/response (Gries S. T., 2013, p. 94). The

application of an introspective approach to data in a corpus involves a researcher

evaluating “what sounds right”. This approach is somewhat prone to personal bias, and

has been dismissed in favor of the other two approaches. Observational approaches to

data look mostly at textually analyzable tokens, and provide statistical results for the

three dimensions using frequencies of (co)occurrence, conditional probabilities,

association strengths, and multi-factorial and multi-variance analysis. Experimental

approaches include many studies involving psycholinguistic methods to elicit responses,

such as priming effects. More recently there have been more uses of measure devices,

like an EEG, to collect data that arises from production or perception of corpus data.

These experimental activities would still fall at the natural end of the continuum, but here

are also artificial dimensions used in studies involving computational linguistics and

machine learning.

10

The models used in the latter experimental approach vary greatly in how activation,

simulation and learning occurs in the artificial environment, but still provide for the three

dimensions. “Finally, with the importance that usage plays in most contemporary

incarnations of Construction Grammar, computational simulations of first-language

acquisition or diachronic change will assume a more central role that they have done so

far and (Edelman S. , 2007) surveys some notions relevant in this context.” (Gries S. T.,

2015, p. 108). It is noted lastly that these approaches provide a richer toolbox for the

Construction Grammarian.

Fluid Construction Grammar (FCG) “attempts to capture intuitions and theoretical

notions from cognitive linguistics in general and Construction Grammar in particular.”

(Steels, 2013, p. 153) FCG has been computational since 1998, and has yielded two main

components: FCG-System and FCG-Interpreter. The system is embedded in the

Common-LISP programming environment, and the interpreter is a web tool for linguists

to use and interact with. Many computational algorithms are employed; such as those

employed in machine learning. There are two levels of approaches for constructionists:

the processing level, which uses transient structures to represent information about what

is being parsed or produced, and the design level, encompasses the complexity of writing

grammars by maintaining methods and techniques.

The processing level looks at a sentence as having two poles (Steels, 2013, p. 155): a

semantic and a syntactic. The semantic pole contains a transient tree structure that is read

from left to right, perhaps capturing the schematicity of the linguistic unit. The Syntactic

pole is also a transient tree structure that is read right to left, and is notionally equivalent

to the phonological pole in cognitive grammar. Tree structures also represent the unit and

11

sub-unit hierarchies. A matching and merging process occurs during the parsing of a

construction where the condition already exists in the corpus for a given pole, and the

contribution is matched to and merged with the condition. The semantic and syntactic

poles are completely dependent on the design of a construction grammarian. All this is

very much like a usage-based exemplar (Bybee, 2010, p. 19) in that the construction is

the same for both parsing and production, and variation is well-represented. The novel

differences or changes in the construction are called footprints, and are tagged for

historical reference. Sets and networks are used to determine contextual priority of

execution. Chunks are also used for construction units that are highly entrenched, which

provides a more effective triggering.

The design level is the construction grammarian’s workshop. All constructions work

more efficiently if there are constraints. The grammar designer starts with the higher-

level abstractions. Over the years of grammar implementation design patterns have been

uncovered, and now can be used as starting templates. Common sets of features are often

bundled, and then matrixed to differentiate feature bundle competition. Several human

steps must be accounted for in the grammar design. “The first step is to embed the

production of comprehension of sentences in a complete semiotic cycle.” (Steels, 2013, p.

165). This includes the internal world model of perception and action, the categorization

of reality, i.e. meaning, application of constructions, and articulation. And then the

reverse steps for the hearer. FCG emphasizes reversibility of constructions, it goes both

ways.

12

Conceptual Spaces

“Il mondo ha la struttura del linguaggio e il linguaggio ha le forme della mente.” (The

world has the structure of language and language has the form of the mind) (Gärdenfors,

2014, p. 8). This is profound in that it says language is experiential, and we are not

disconnected from the world we live in. Gärdenfors lays out the background of

semantics, and provides a cognitive linguistic understanding of its importance. Two

conceptual spaces are defined with three important themes: convexity, domains and

dimensionality. Convexity supports the learnability of categories and effectiveness of

communication (Gärdenfors, 2014, p. 26). Concepts are learned, we are not born with

them. It adheres to the semantic hypothesis that the typical meaning is the prototype at

the center of a convex region assigned to the linguistic unit. Domain is broadly

interpreted as indicating any kind of conception of realm of experience (Langacker, 2008,

p. 31). Domains are gradient from basic to abstract and locational to configurational.

Dimensionality is important in describing the space in which domains exist. Gärdenfors

argues that all domains can be described dimensionally.

Gärdenfors explores semantic domains in depth. Basic domains, the ones that are more

closely tied to sensorimotor processing, are learned early in child development. Thus, the

value system of “language must be learnable to a child” (Gärdenfors, 2014, p. 54) arises5.

Gärdenfors refers to it as the epistemological learning criterion. It is easier to explain to a

child “chartreuse” and “mauve” than it is “inflation” and “mortgage” because the color

domain is closer to the sensorimotor visual input. The main domain thesis is “a close

5 I want to collect any linguistic value system I find, as it will be important to my thesis.

13

parallel exists between the development of intersubjectivity and the development of

semantic domains. Intersubjectivity is the representation in the mind of the emotions of

others, the desires of others, the attentions of others, the goals and intentions of others

and beliefs and knowledge of others. These five components of intersubjectivity are

crucial to language development (Gärdenfors, 2014, p. 57). Emotions being first as

shown in Figure 4.

The emotion domain is the first to be learned by the infant, in the womb with sounds and

movement, and by the touch of the parents before the eyes open. The development of

semantic knowledge begins with emotion. This is not the only a semantic domain

developing, but is the most salient communication occurring for the developing child.

Metaphors are a blending of conceptual spaces. A mental frame is a conventional bundle

of ideas (Coulson, 2001, p. 26). A mental space is an array of connected mental elements

simultaneously activated by a person. A mental web is a set of mental spaces that are

activated and connected as one is thinking about a topic. Vital relations are the most

frequent and important connections. Blending mental spaces in a mental web yields a

blend. Projections are the elements and relations that come into mental spaces and are

blended. There is an emergent structure in the blend and in the mental web. There is a

scale of human thought bundles from not tractable and manageable, where they are

beyond the mental limits, to very tractable and manageable. Blends are tight compression

of emergent ideas, but with less information than in the entire mental web.

Blending appears to be a human experience that no one is even partially aware of except

rarely and it seems elusive to science to measure. This process of frame-shifting

(Coulson, 2001, p. 34) is critical to creating new concepts and domains experientially.

14

Conceptual blending occurs at all schematic levels, and tends to group in identifiable

patterns (Coulson, 2001, p. 123) of concepts and domains, like neuronal groupings

(Edelman G. M., 2006, p. 55).

Cognitive Grammar

Cognitive Grammar is a framework (Langacker, 2008, p. 3) from which a comprehensive

and coherent view of language structure manifests inclusive of all human experiences. In

this framework, several key concepts are offered, the first and foremost of which is that

grammar is meaningful and symbolic by nature (Langacker, 2008, pp. 3-5). Another

important concept is that a linguistic unit is emergent due to its use in language. The

usage event occurs repeatedly, and as life happens the linguistic unit is entrenched or

conventionalized within a community of human language users. From the continuous use

of these linguistic units or the first-time use, the individual processes and stores them

with other units that are related. The symbolic structure of a unit has both a semantic and

a phonological pole which are bound together by its use, i.e. meaning and form are bound

by their relationship. Each pole has varying Schematicity. A new expression is specific. A

frequently used expression is more abstract. An expression can become more schematic

over time and with experience (Langacker, 2008, p. 21). “Google” for example, started as

a name of the search engine, and is now used quite frequently for more than just the name

of the trademark. All this is mapped as the conventional unit status shown in Figure 5

Conventional Unit Status.

Symbolic assemblies are manifest by their gradient schematicity, salience and

elaboration, which correspond nicely to levels of entrenchment, contextual priming and

overlap, and could be implemented in a neural network as three axes in a coordinate

15

system, i.e. a vector. The vector could be derived from the unit itself and existing corpus

data (more on that later). The symbolic assembly, shown in Figure 6 Symbolic Assembly,

can somewhat easily be written in a format that is amenable to storing data in a corpus

using a construction grammar framework such a Fluid Construction Grammar6. That will

not be discussed here, but it is important to note the complexity of the assembly as having

five symbolic structures using three symbolic units.

It could represent, for example, the usage event of “Eat your soup”, and the translated

construction grammar could look like “[[EAT/eat V IMP][[PERSON REFERENCE /

your 2P POSS][SOUP / soup N]]]”. Notationally this construction is completely

fabricated on my part, but is based in part by how Langacker has suggested that a

construction might appear (Langacker, 2008, p. 161). It is important to note the

disagreement with CG construction ubiquity, i.e. cross-linguistically there is much

evidence of typological variance in constructions (Croft, 2001, p. 104). Also, Croft

describes the typological variants using the concept temporal orderings, e.g. de-ranked

hierarchy as an example of temporal ordering in constructions as related to subordinate

clauses (Croft, Radical Construction Grammar Syntactic Theory in Typological

Perspective, 2001, p. 360). This is however represented, and could allow for variance in

the nested nature of cognitive grammar symbolic structures. The construction is

important for our perceptive machine to analyze the input, and properly store data in the

6 See https://www.fcg-net.org/tutorial/lectures/ for more information regarding Fluid Construction
Grammar, an endeavor led by Luc Steels, and his book about FCG design patterns (Steels, Design
Patterns in Fluid Construction, 2011)

https://www.fcg-net.org/tutorial/lectures/

16

corpus. With a clean form of construction, the bias can be derived by calculating the level

of entrenchment, contextual priming or salience and the amount of overlap from each

symbolic unit in the construction. The sum of unit values for each structure are then

passed to the function that determines storage, e.g. in the “Eat your soup” example there

would be five structures passed to the function.

Language Processing

If we look at the human body as a perceptive machine, again with the robot analogy, the

dynamical system then needs to mimic the somatic model shown in Figure 1. Machine

Learning (ML) is among the vast number of computer science academic pursuits

currently being researched today. The broad goal of many of these researchers is to

mimic, or simulate functions of the human brain in its cognitive ability to process

incoming sensory data, and to store it such that it can be queried again and used in the

continuous processing of new input. These researchers spend much of their time studying

and devising computational algorithms to allow a computer to learn. This area of study

has been called many things, among which is the neural network. It is more recently

referred to as deep learning in the ML domain, but I will refer to it as neural network.

This paper is concerned with a small part of the process of matching input with stored

data, and focusses on the Cognitive Grammar (CG) means of selection, namely the level

of entrenchment, contextual priming and amount of overlap between target and potential

categorizing structure or schema.

Computational linguistics would benefit greatly from a cognitive grammar approach to

the Deep Learning algorithm. I argue that a neurological value system using the Bias in

the neural network forward-propagation algorithm could be used to guide the dynamic

17

system matching process. This bias, unlike the typical bias used by researchers in the NN

algorithm, would be a vector representing the constraints of a multi-modal symbolic

structure input as mentioned above. It could be used to guide the storage of tokens, their

symbolic unit relationships and contextual or discourse information in both short-term

and long-term corpora like what we call “memory”.

The equation shown in Figure 7 Forward-Propagation, which is computed by

multiplying a weight (w) by a scalar input (p) and adding it to the bias (b) and this is

summed for all inputs (R), is passed into a function (f) and yields the activation or output

(𝛼𝛼). The algorithm, shown in (Figure 7 Forward-Propagation), was developed in the

1950s, and has since been used in most machine learning and artificial intelligence

endeavors that are constantly making improvements in speech processing and near

instantaneous speech translation, for example (Müller & Guido, 2016, p. 364). We can

think of the NN algorithm as representing a single neuron, and when we consider the

brain, we can expand this to a vast network of neurons that relate to each other

dynamically when input is received. Considered by many computer scientists as the black

box calculation of artificial intelligence, for cognitive linguists with a computational slant

it is ideal for computationally gathering and evaluating usage events as they are

perceived, and storing the output in corpora. There is obviously a great deal to this

algorithm, but in this paper, I want to focus on the Bias, which is often disregarded or

trivialized in computer science. I believe it is essential to a dynamic system, and even

more specifically to the matching process where symbolic units are stored following a

usage event.

18

The perceptive machine, as I am calling it, is on the receiving end of information, i.e.

sensory data. This fictional machine could, conceivably, be a person’s smart phone, but

that is not as important as what it could do. As sensory data is perceived it is first

translated into a machine-readable format. The machine then can parse the token into its

symbolic units. Each unit is valued and weighted. At this point the machine creates the

bias vector from data already stored in its corpora. The bias is summed with input value,

and then passed to the activation function that is responsible for storing the processed

input, i.e. adding data to the corpora, short-term and long-term. It is therefore critical to

examine the bias more closely considering neuro and cognitive sciences and cognitive

grammar ideas.

Edelman describes the value system in the brain as a selection mechanism that releases

neurotransmitters such as dopamine to govern behavior. These rewards are pleasurable in

the sense that learning is facilitated allowing the selection of favorable activities within

the network of neuronal groups of synapses. “Selection within these networks determines

the categories of an individual animal’s behavior; value systems provide the biases and

rewards (Edelman G. M., second nature , 2006, p. 31).” The neuron, shown in (Figure 8

Neuron), provides a selection process that activates per the neurotransmitters received at

the synapse. The activation then in turn has relationships with other neurons. “…neurons

that fire together wire together…no two brains…are wired the same (Edelman G. M.,

2006, p. 55)”.

Neurotransmitters provide the bias or value system that determine the course of

activation, and over time, the selection of behaviors. A continual flow of pleasurable

molecules acts as a reward system enabling memories to exist. The value system is

19

essential to the development of a dynamic system. Temporal association of perception

and action are foundational to changing skill and behavioral development. Developing

systems exhibit emergent properties their interactions, and not dependent on preexisting

codes (Thelen & Smith, 2000, p. 142). “So value systems may jump-start the building of

oughts in a society, but do not directly determine them.” (Edelman G. M., second nature ,

2006, p. 95) Whether we decide to view the biases as Constraints or Prods or Guides,

there is an effect on the output that propagates forward to the next usage event that is

perceived. The bias determines the storage of memories of usage events, which emerge as

favorable or not per individual. In the NN the bias shifts the activation function output.

For our purposes in cognitive grammar there is one bias per Symbolic Unit. The NN bias

is either 1 or -1 in most machine learning algorithms, and it is determined by where the

input value falls on a threshold curve; “Biases are weights associated with vectors that

lead from a single node whose location is outside of the main network and whose

activation is always 1 - Gallant (1993, pp.65-66), Bishop (1995a, p.78), and Reed and

Marks (1999, pp.15-17)” referenced by (Hagan, Demuth, Beale, & De Jesus, 2016, pp. 2-

2,2-8). In a dynamic system of matching usage events to long-term corpus, and short-

term corpus storage, I propose a cognitive grammar bias vector (level of entrenchment,

context priming or salience, amount of overlap) because these values can be determined

from corpus data, a kind of bias feedback loop, or forward propagation.

Since the bias is typically a value of 1 for most researchers of machine learning, this

approach is somewhat unorthodox, but not unheard of, e.g. it is used in supervised

learning algorithms such as the k-nearest neighbor calculation (Müller & Guido, 2016,

20

pp. 30-46), which uses a Support Vector Machine algorithm7. It will however require a

slower processing time to calculate the three values for our bias vector. In Figure 9

Symbolic Unit Bias Vector I show the three-dimensional conceptual space of the vector

for ease of visualization. Each of the axes represents a gradient value between 0 and 1,

which allows for maximal variation. The conceptual space is like a network of neurons in

that each coordinate represents a location in memory. The visualization could of course

be spherical or even better a blob where the distance from the center is boundless, but

perhaps self organizes into the shape of a brain, (complete conjecture). The point

however is that locations of vector endpoints can cluster together, and thus represent a

“wire together, fire together” concept (Edelman G. M., 2006, p. 55). The bias vector then

serves to guide the storage of the input, and the resulting activated vector becomes an

address or index of the perceived symbolic unit. Also, other data can be queried easily

from this storage configuration such as the ever popular “neighborhood density” value. It

is important to discuss how we can derive each of the values that make the vector.

Level of entrenchment is gradient from the specific use to the schematic or

conventionalized use. Salience or contextual priming is gradient from the unit being

completely novel to very salient. The amount of overlap is gradient from elaborative to

baseline. The task then is to calculate each of these values such that a vector can be used

in the matching process. In the perception process shown in Figure 10 Dynamic System

7 A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating
hyperplane. In other words, given labeled training data (supervised learning), the algorithm
outputs an optimal hyperplane which categorizes new examples.
https://en.wikipedia.org/wiki/Support_vector_machine

https://en.wikipedia.org/wiki/Support_vector_machine

21

Matching Process, it is the steps where the bias vector is determined, circled in green,

which needs to be described.

Starting with the level of entrenchment, I would propose that we could obtain the

frequency of use from the long-term corpus storage by querying all tokens containing the

unit and calculating a distributed frequency value. Bybee noted, “the conservative

behavior of high-frequency forms is related to the faster lexical access of high-frequency

form: the more form is used, the more its representation is strengthened (Bybee, 2007, p.

271).” Therefore, by counting use of a symbolic unit among all the tokens a value of

frequency can be computed to give us the probability of it occurring again.

The amount of overlap can be computed by looking at the nested level of the unit within

the symbolic structure, querying for its usage count at that level in the long-term corpus,

and computing the elaboration percentage of the baseline, i.e. the highest level of nested

structure. This value will require some experimentation to determine the proper fit,

maybe employing the Bayesian algorithm8. The gradient is flipped for this value because

a baseline is more substantive than an elaboration (Langacker, 2016, p. 406). The

baseline is therefore 1, and any elaboration would be calculated as a percentage of the

baseline.

The context priming or salience is a tricky calculation because we are considering how

meaningful a symbolic unit is within the context of the running discourse. Several

problems present themselves, for one what is the size a discourse are we looking at, and

8 In probability theory and statistics, Bayes' theorem (alternatively Bayes' law or Bayes' rule)
describes the probability of an event, based on prior knowledge of conditions that might be
related to the event. https://en.wikipedia.org/wiki/Bayes'_theorem

https://en.wikipedia.org/wiki/Bayes'_theorem

22

two does this cover multiple discourses, and if so, where do we query to obtain a value? I

would assert that a short-term corpus be maintained along with the long-term. Like our

short-term memory, it stores the current set of usage events, which could be queried to

count usage, and determine relevance to the current topic. Obviously, this is not trivial

either because aside from the same tokens being stored in long-term, it would require the

storage of primary topic units that might be tagged as part of the construction, including

the identification of the viewing frame channels which make up the symbolic unit poles

(Langacker, 2008, p. 146). With this data stored in the short-term along with the

frequency of use in the long-term, a gradient value could be computed.

In summary the multi-disciplinary research that has been looking at cognitive processing

of language is contributing to a better understanding of how the CG selection criteria

could be applied to a neural network model as the bias for processing language as input.

More specifically it is my hope that my research will provide data that will allow me to

compare the bias part of the neural network computation to Edelman’s Value Systems and

to the selection means of entrenchment, context and overlap in Cognitive Grammar. In

the next section I describe the methods used to gather the data.

23

3 Building a Corpus

For a pilot study like this one I felt compelled to gather as much data as I could to be able

to determine how the alignment of meaning is attained, or not, during the semiotic cycle

of conversation. The three steps I performed in my research were the collecting discourse

data from actual conversations between two or more people, coding the conversations

with the cognitive grammar symbolic unit parts of phonology, which is the word spoken,

and semantic, which is the domain or frame and the dimensionality (vectors) along with a

time stamp for temporal ordering, and then analyzing the coded text to determine what

causes the alignment.

3.1 Collecting YouTube Data and Building a Corpus

YouTube is a vast jungle of videos that include content like music, movies, instruction,

copied media, interviews, discussions, etc. Some videos have subtitles, which are used to

as a translation mechanism for various language preferences. Subtitles are usually

embedded in the video, but sometimes is included as metadata and queued as time-

marked text per language preferred by audience. Since the goal was to collect natural

language data, subtitles don’t work. Closed-captions are also sometimes available, and

this text is closer to what we want to collect. The video is usually marked with a “CC”

hyperlink if they are available. When the “CC” link is activated the video then displays

the Closed Caption text as words and sounds occur. This is not always exactly

synchronous or entirely accurate, but for acquiring mass amounts of natural language

discourse data for a corpus intended for semantic analysis it is adequate.

In order to download the closed-caption text I relied on a scripting language very popular

among data scientists, Python, mainly because of the extensive useful code libraries

24

available. One such code library is called “youtube-dl”, which when employed can

download pretty much anything associated with a YouTube video. YouTube videos are

referenced by a “display id” that part of the YouTube URL like,

https://www.youtube.com/watch?v=hpDHwfXbpfg. The last series of alpha-numeric

characters following the “v=” is the display id. My video selection criteria were as

follows:

• The speakers in the video should be speaking the English language, and I

primarily preferred dialects of US based English.

• The video should contain two or more actively participating speakers such as

interviews, discussions or conversations.

• The amount of spoken words should amount to at least 200, but I preferred the

longer video discussions because my goal was to collect a million of them.

• The accuracy of the Closed Caption should be close to what is really said, some

videos are wildly inaccurate, so I preferred the transcript use, which has the

advantage of being punctuated as well as more accurate in most cases.

• I tried to collect a diverse range of topics, preferring to not include topical data

that has been repeated more than 5 times in the corpus.

• It is important that some of the conversations contain a situation where initially

there is a misunderstanding between speakers, and then both speakers come to a

mutual understanding, and some should be a control set of conversations where

no common understanding is achieved.

The extraction of closed caption transcripts from YouTube can be accomplished

by using some Python code libraries, as I mentioned earlier. I wrote a script that I can

https://www.youtube.com/watch?v=hpDHwfXbpfg
https://www.youtube.com/

25

execute from the command line, named “youtube_corpus_maker.py” (8.1). To acquire the

metadata of a YouTube video I simply pass the command parameter

“download_youtube:hpDHwfXbpfg” with a colon followed by the display id of the

video. This downloads the metadata to a folder on the hard drive, which by default is

“corpora/youtube/hpDHwfXbpfg”. The metadata for the “hpDHwfXbpfg” display id is

approximately 130 megabytes in size, which includes the video file (mp4 format, largest

file), annotation files and most importantly the Closed Caption files. Since the discourse

is in English I am interested in the file named “hpDHwfXbpfgmp4.en.vtt”. This file

contains the video timed transcript (vtt), i.e. the text is marked with a time stamp

indicating when the text is displayed during the video playback, shown in Figure 11.

Next, I wrote some more code to pull the raw text out of the Closed Caption file, and

write it all to a text file (8.1), which is the first of many corpus files that can be queried

using a corpus reader. I will briefly describe the Natural Language Toolkit (NLTK)

library here because everything the code does from this point on depends on it. NLTK

(Bird, Klein, & Loper, 2009) is an extensive Python code library that can be used to

analyze text.” We will take Natural Language Processing — or NLP for short — in a

wide sense to cover any kind of computer manipulation of natural language. At one

extreme, it could be as simple as counting word frequencies to compare different writing

styles. At the other extreme, NLP involves "understanding" complete human utterances,

at least to the extent of being able to give useful responses to them.” (REF p2). Part of

this library includes a corpus reader, which I have extended for this project to be able to

query all of the data from all of the video Closed Captions. The plain text file,

“hpDHwfXbpfg_plain.txt”, is the foundation from which all other files used in analysis

26

are created, and therefore has a plain text corpus reader. The next file I produced with the

script code is a Part of Speech Tagged corpus file “hpDHwfXbpfg.pos”. I extended the

Tagged Corpus Reader code to query this file. With these two files added to the corpus it

is possible to perform many important queries and operations for building the symbolic

units, and eventually vectors for determining alignment of meaning during the discourse.

3.2 Building YouTube Symbolic Units and Vectors

I wrote more code to construct the discourse symbolic units (Langacker, 2008, pp. 16-17)

in the form of an array of discourse segments that contain the following elements:

• The word – a phonological representation of the segment uttered by the speaker

• The Part of Speech – noun, verb, adjective, adverb, etc.

• The Time – the time at which the segment occurred in the discourse

• The Frame – a semantic pole representation of the segment

• The Vector – comprised of three dimensions entrenchment, context and overlap

These units, especially the ones that index the target understanding with value systems

(dimensions in a vector) had to be constructed from additional files. The word and parts

of speech tagged data are now available for use in creating them. It is important that a

value system is quantifiable to be able to calculate the vector dimension. Dimensions are

gradient and therefore can be decimal value between 0 and 1, e.g. 0.0 or 0.7899 or 1.0

would be acceptable values. This can also be done using various Natural Language

Processing Python libraries9. From these dimensions, the alignment vector is formed,

9 The Python libraries that I propose using are youtube-dl and nltk for extracting and coding.
Other math libraries can be used for calculating dimensions for the vectors, such as multi-variant

27

which can be used to compare against similar usages in the discourse during analysis.

First however I created some supplementary files such as an array of words and the times

they occur “hpDHwfXbpfg_time_line.json” and a file containing discourse topical

information “hpDHwfXbpfg_topics.json”.

The entrenchment dimension is simply a calculation of frequency distribution for a given

word within the entire corpus, so the more words in the corpus the more accurate a

calculation. NLTK provides a function for calculating the distribution values, so that is

easy. To make a vector dimension scaled from 0.0 to 1.0 it is necessary to calculate the

percentile across all word distributions. In other words, I took the highest word

distribution and subtracted the lowest word distribution, and then divided the target word

distribution by that value, i.e. Percentile = Target Distribution / (Maximum Distribution –

Minimum Distribution). This becomes the entrenchment dimension.

The overlap dimension is calculated by looking at the target word in the context of

synonyms and the percentage of difference between the synonym and its hypernym. The

schematic distance from elaboration to baseline can be calculate from data that is also

available for the English language called Word Net. It is a very large corpus synonym

sets, as one might find in a thesaurus or at the bottom of a dictionary entry. It was

necessary, therefore, to first create of file of word, synonym, hypernym and distance

“hpDHwfXbpfg_word_nets.json”. NLTK provides a word net corpus reader that provides

the ability to query synonym matches of a target word. By querying the word net corpus

and selecting the synonym that fits best I could write an array to file. An element of the

logistic regression. Note: I will explain my methodology for extracting and coding thoroughly in
final document.

28

array looks like what is shown in Figure 12, which identifies the target word, the part of

speech tag, an array of possible synsets that best match the target along with the

hypernym synset and the schematic distance or similarity. This target is in the context of

“Hey , welcome back to TED It’s great to have you here Thanks for

having me So , in the next half hour or so we’re going to spend some

time exploring your vision what an exciting future might look like ,

which I guess makes my first question a little ironic Why are you boring

Yeah I ask myself that frequently”.

The best fit could be any of the first three because they have the greatest similarity,

elaboration compared to baseline. The overlap calculation is simply the best similarity.

The calculation of the contextual priming or salience dimension requires another file to

be created “hpDHwfXbpfg_frames.json”. NLTK also provides a Frame Net corpus

reader for the English language. With this corpus we can query10 for lexical units in

frame net that match the target word. My code then selected the lexical unit that matched

the target word part of speech. The lexical unit has a related frame, which is written to the

file along with the target word. I also store the distribution of frames used within the

discourse. The salience calculation uses this distribution similarly to how entrenchment

uses the corpus word distribution, i.e. Percentile = Target Distribution / (Maximum

Distribution – Minimum Distribution). Once everything mentioned above has been

calculated, the vector file “hpDHwfXbpfg_vectors.json” is written. This corpus file gives

10 This query was very slow. It could take a couple of minutes for one word.

29

us everything we need to produce analysis information and visualizations. Each element

in the array contains the symbolic unit with word, frame, time and a three-dimensional

vector of entrenchment, overlap and context.

3.3 Producing Useful Information and Visualizations

I wrote some additional code to export a discourse vector file to a tab-delimited file that

can be consumed by data analytic tools such as Microsoft Excel. The core objective is to

be able to look at the words and corresponding frames during the discourse, and look at

how the vectors change. This can be done by pivoting the data in Microsoft Excel, and

even charted, but the size of the data can be daunting. I therefore provide for a filtering of

words, frames or times as part of the export function. This allows me, after watching the

video, and noting specific segments of interest, to export only those vectors. Targeting

data in this way gives me something that is visible and easier to analyze. However, this

doesn’t give me enough to really visualize the alignment.

Another option would be to visualize the vectors in a cube, like (Figure 9 Symbolic Unit

Bias Vector), and colorize the dots according to the time scale. I wrote some additional

code that implements a few more Python libraries, “pygame (for the user interface),

moviepy (allows playback of video) and pyopengl (for the three-dimensional graphing)”.

It is a challenge to bring vectors that cluster closely to a visualized state that is

perceptibly meaningful so scaling is also necessary.

In summary, the effort is time-consuming to create visualizations, and may be more

suited for further analysis in the order of a dissertation level of effort. Seeing that time is

limited for writing this thesis, just acquiring the data is sufficient for the pilot study. The

vectors show dimensionality in language use, and although only three dimensions were

30

calculated, there are many more, and multi-variant. The tools that I have created using

Python are useful for extracting any text source, e.g. written text, transcripts from any

source, including multi-lingual, and synthesized text sources. I chose YouTube as a

source because it was readily available, and searchable for topics of interest. Of course,

more metadata, such as the identity of the speaker, could be collected as well to enhance

the corpus. I will continue to enhance the tool of course, but for now I will focus on the

data collected from YouTube video closed caption text. In the next section I will show

some more interesting examples of collected data, and review terminology used.

31

4 A Usage Event Data Model

The new corpus is comprised of over a million words from over a hundred hours of

YouTube video closed caption text (Table 2 - YouTube Videos for Corpus). Each word is

tagged with the part of speech11. The Natural Language Toolkit (NLTK) identifies the

part of speech by an English lexicon that includes its grammatical usage and its tag that is

part of the NLTK Tag Set (Table 3 - NLTK Part of Speech Tags). In addition to the corpus

that is queryable through an extension of the NLTK Corpus Reader, there are data

structures linking Frame Net and Word Net Lexical entries, as well as for the vector

calculations. All this corpus data is easily available for analysis of dimensionality and

value systems that prod the semantic alignment of understandings between interlocutors.

To analyze the mutual understanding phenomenon, it is necessary to review the

terminology of data analysis, and show how the corpus can be used to mine the

analyzable data. Since we know that human language processing is adaptive, and the

mutual understanding is attained through multiple exchanges of words and gestures,

multiple inputs, then we can look at the many machine learning algorithms used by data

scientists as possible ways of processing the corpus data.

4.1 The Three Stages of Corpus Data

There are three forms of data that are generally accepted among data scientists, and they

are raw, transformed and information. Raw data is the data closest to the source, so in my

corpus of YouTube closed caption text it is the data contained in the closed caption file as

11 A list of these tags can be acquired by running a python script “nltk.help.upenn_tagset()”

32

shown in Figure 11 - Closed Caption File Sample. This data could be queried, but would

take more time to process because the data is encoded for the specific purpose of

displaying during a YouTube video at a specific time. Therefore, it is necessary to

transform this data into a format that can be queried. As mentioned earlier it was

necessary to transform the data into several forms, and utilize other corpora to produce

the most useful query for my needs, i.e. the symbolic unit including vector. The stages of

data transformation is shown in (Table 4 - Stages of Corpus Data) for one of the closed

caption extracts from YouTube (video id: gZKDInabaPM, words: 2305, set: 590,

duration: 00:11:05.878, title: I debate with Dietitian on LIVE TV this morning - My

reaction - People Blogs, the first 44 words).

Before I describe the data produced in the transformative phase, I would like to quickly

discuss discourse and how information is packaged. Aside from closed caption data being

somewhat lacking for several reasons that I will cover in the conclusion, there is some

value that can be attained, namely the “word” element, the smallest datum in this corpus.

Each word is therefore important to the discourse as a point in the temporal flow of the

recorded conversations. I would also assert that the word is the segmental content as part

of the usage event viewing frame (Langacker, 2008, p. 146). The view frame is divided

into sets of channels, vocalization and conceptualization, and the segmental content being

the word as heard in the conversation. The transformation of data then builds upon the

word in the conceptualization channels. The closed caption discourse is then comprised

of a temporal flow of usage events containing transformed data where the phonological

pole contains the word, and the semantic pole contains domains, time, part of speech and

the dimensions of entrenchment, overlap and contextual priming (or salience). The

33

information channel could also be added with some more effort using parts of speech to

identify which discourse mode (Smith, 2003) is used. The corpus, however, does not

include currently discourse modes.

Following the concepts of the usage event and the bipolar segments and channels as they

flow through time in a discourse, I have drawn a (Figure 13 - YouTube corpus Symbolic

Unit). Since Cognitive Grammar considers any aspect of a usage event possibly emergent

as a linguistic unit (Langacker, 2008, p. 146), then the stages corpus data that I have

amassed are also relevant. A phonological pole is comprised of the plain text word and

the part of speech. A semantic pole is comprised of the semantic domain, the part of

speech, the temporal order of event and the dimensions (entrenchment, overlap and

context). In the following parts of this section I describe the stage of data, what

information can be derived from it, and how the corpus data is used in processing from

the observer’s point of view, i.e. the person watching the YouTube video.

4.2 Plain Text

Text is the fundamental structure of closed captions. It is a stream of words marked with

time stamps indicating when to display them as the video progresses. As stated earlier in

this paper, closed caption text can be with or without punctuation. It can be transcribed

accurately, or not so accurately with missing utterances. The YouTube corpus has plain

text files that contain text only with or without punctuation. This is the basis for building

everything else. Words and punctuation are delimited by a space, and contracted words

like “it’s” are split and represented as “it” and “‘s”. With the plain text corpus reader, it is

then possible to get an accurate list of words. The Natural Language Toolkit functions

available to derive important linguistic information such as frequency distribution,

34

concordances, n-grams and more, all of which are usable with the plain text part of the

corpus. Describe how plain text can be queried for frequency and concordances.

There are many useful queries to be performed on a text only corpus, and can be

accomplished using the Python Interpreter. For example, if I wanted to know the

dispersion of several related words in a discourse, I can simply load the discourse as text

and call a function that creates dispersion plot, using the following Python code:

• import nltk
• from nltk import text
• from corpus import youtube
• wrds = youtube.words(['y8hy8NxZvFY/y8hy8NxZvFY.pos'])
• txt = text.Text(wrds)
• txt.dispersion_plot(['darwin', 'darwinian', 'god', 'christian', 'belief',

'church', 'creation', 'biology', 'biological', 'evolution', 'science', 'religion',
'soul', 'language'])

The dispersion plot, shown in Figure 14 - Dispersion Plot of discourse Creationism vs.

Evolution, has words that are important to both parties discussing “”, and shows an even

exchange ending with “belief”. Frequency Distribution is another function available with

NLTK, so the following shows the frequency of derivations of “belief” from the same

discourse.

• import nltk.probability
• fdist = nltk.FreqDist(txt)
• fdist['belief']
• Out[12]: 8
• fdist['believe']
• Out[13]: 46
• fdist['believes']
• Out[14]: 1
• fdist['believer']
• Out[15]: 0
• fdist['believed']
• Out[16]: 2
• fdist['believing']
• Out[17]: 6
• fdist['believers']
• Out[18]: 0

The concordance can be generated as well, so the following shows where “belief” is used.

• txt.concordance('belief')
• Displaying 8 of 8 matches:
• he opium of the people today is the belief that they wo n't be judged by God w

35

• question and that is Does religious belief make the world a better place does
• world a better place does religious belief make the world a better place ? We
• say on the question does religious belief make the world a better place over
• led may be Alleviated somewhat by a belief in God Psychosomatic medicine is we
• ple were killed for their Christian belief in the last century than any other
• nty-six percent saying no religious belief does not make the world where this
• does not make the world where this belief does not make the world a better pl

Another interesting function is collocation, which shows bigrams that are used often in

the discourse.

• txt.collocations()
• Richard Dawkins; George pell; 've got; old testament; better place;
• natural selection; non theist; wafer turns; religious belief; homo
• Sapiens; hope nobody; original sin; lawrence krauss; random selection;
• n't believe; give rise; Catholic church; Darwinian natural; creative
• intelligence; silly question

There are also many other functions available to produce additional data and create an

informational presentation. For this paper, it was necessary to use some of these functions

to build a corpus viable for semantic analysis, i.e. frequency distribution. The stream of

plain text is tokenized so that each individual word is packaged as phonological segment

content in each usage event, and is viewed or heard by the observer as they occur in the

video, or at least close to the visual utterance or articulation segment. It is also important

to note, concerning timing, words in conversations are not articulated always “one after

another”. Interlocutors will often say words at the same time, creating overlapping usage

events, but closed captioning is delivered as chunks, often after the articulation.

4.3 Tagged and Categorized Text

The part-of-speech corpus files have the extension of “.pos”, and each token is

represented with the word followed by a part-of-speech tag (Table 3 - NLTK Part of

Speech Tags), and delimited with a “/”, for example:

“okay/NN let/NN 's/POS start/VB off/RP with/IN what/WP is/VBZ a/DT computer/NN what/WP
is/VBZ it/PRP computer/NN it/PRP 's/VBZ really/RB simple/NN it/PRP 's/VBZ just/RB a/DT
simple/JJ machine/NN but/CC it/PRP 's/VBZ a/DT new/JJ type/NN of/IN machine/NN the/DT
gears/NNS the/DT Pistons/NNS have/VBP been/VBN replaced/VBN with/IN electrons/NNS”

36

From this corpus file, we can also get the words, perform the same NLTK functions as

with plain text, so in creating other files I have used the part of speech tagged file with

the corpus reader. The following is frequency distribution of the part-of-speech tags in the

YouTube corpus.

• import nltk
• from nltk import text
• from corpus import youtube
• import nltk.probability
• yt_tagged_words = youtube.tagged_words()
• tag_fd = nltk.FreqDist(tag for (word, tag) in yt_tagged_words)
• tag_fd.most_common()
• Out[8]:
• [('NN', 147886), ('IN', 126074), ('PRP', 118907), ('DT', 102274), ('NNP', 82888),

('RB', 79435),
• ('VBP', 62287), ('JJ', 59751), ('VB', 52203), ('CC', 51990), ('NNS', 45488),

('VBZ', 42688),
• ('VBD', 29890), ('TO', 29233), ('VBG', 23552), ('MD', 16486), ('VBN', 15911),

('PRP$', 13747),
• ('.', 10562), ('CD', 10403), ('WP', 10048), ('WRB', 9344), ('WDT', 7822), (',',

6663), (':', 5388),
• ('EX', 5257), ('RP', 4963), ('POS', 2981), ('JJR', 2906), ('RBR', 1854), ('JJS',

1703), ('PDT', 1103),
• ('UH', 757), ('NNPS', 630), ('RBS', 563), ("''", 134), ('``', 117), ('FW', 90),

('$', 73), ('WP$', 56),
• ('(', 53), (')', 53), ('SYM', 6), ('#', 4), ('LS', 2)]

Of all the part-of-speech tags, nouns (NN) win the “most occurrences” award. These tags

are very useful for parsing grammar according to a pre-defined set of syntax rules, and

NLTK provides functions to help with that, but I used them mainly to filter results from

querying Frame-Net and Word-Net corpora, which I will cover in the next part. I would

also assert that the part-of-speech tag is packaged as part of both the phonological and

semantic poles in the usage event. In the semantic pole, the classification of a word is at

play, schematically bound to the English language, in the YouTube corpus, as

participants, modifiers and events. The entrenched patterns or syntax rules belong in the

phonological pole as a larger usage event such as noun phrase and verb phrase. For

example, “always”, a temporal adverb precedes verbs mostly as shown below.

• bi_tags = [b[1] for (a, b) in nltk.bigrams(yt_tagged_words) if a[0] == 'always']
• bi_fd = nltk.FreqDist(bi_tags)
• bi_fd.tabulate()

37

• VB VBN VBP VBG VBD IN DT JJ NN RB VBZ PRP NNS PRP$ RBR WRB
• 100 94 91 61 57 48 47 40 40 40 32 26 13 5 4 4

The pattern of the adverb “always” followed by a verb is recognizable by an observer as a

larger usage event. In the computational area of study of distributional semantics, context

occurrence prediction relies heavily on word meanings by their contextual representations

(Fried, Polajnar, & Clark, 2015, p. 1). The part-of-speech tagging allows such analysis.

Another categorization that is part of the collected YouTube data is the discourse

categories and tags12. A comparison, for example, of frequencies by category across

discourses can generated as shown in Table 1 - Modal Verbs Frequency by Category.

• import youtube_corpus_tool
• words = ['would', 'could', 'should', 'will', 'can', 'shall', 'must']
• output = 'corpora'
• export = 'tabular_modal_frequencies_by_category.txt'

• tfdbc = youtube_corpus_tool.get_tabular_frequency_distribution_by_category(words,
output, export)

From this simple table, a heat map could be generated to show the hot spots modality

used in media. Categories are packaged as part of the information structure channel, and

can be used to correlate words in as much as they are relevant to the discourse topic. For

example, in terms of event modality, the category of “Education” as shows a high

frequency for dynamic abilitive modal use, i.e. the word “can”. A usage event, therefore,

may have high semantic relevance to the topic of “Education” when part of a dynamic

abilitive modal event (Palmer, 2001, pp. 76-77). Much more can be done with tags and

categories, of course, but the main importance is the foundational data is generated, and

upon this data, semantic data can be generated, which will be described in the remaining

parts of this section.

12 Tags here refer to the annotation words, mostly names of popular people and subjects,
attributed to a given discourse, similar to “Hash Tags”.

38

4.4 Words and Frames

FrameNet is a corpus developed on the theory of Sematic Frames created by Charles

Fillmore and colleagues. Fillmore’s Semantic Frames model derives its data from lexical

sets, which in the case of the FrameNet corpus can be queried in many ways. The

YouTube corpus contains a file for each discourse with frames identified for some of the

usage events. The files are named with the YouTube video identifier, and suffixed with

“_frames.json”13. The file is composed of two parts, the frames that are identified as

framing the lexical unit or word and the frequencies of use for each frame with in the

discourse.

• {"frames": [["okay", ""], ["evening", ""], ["everybody", ""], ["and", ""],
["welcome", ""], ["my", ""], ["name", "Being_named"], ["is", ""], ["slim",
"Body_description_holistic"], ["Charles", ""]…

• "counts": {"": 3790, "Being_named": 18, "Body_description_holistic": 2,
"Compliance": 127, "Statement": 21…

The symbolic unit’s semantic content packs the frame or domain (Langacker and

Gärdenfors), and is quantified to calculate the salience dimension. Frames can form an

intonation group of one to several words (Langacker, 2008, p. 154) forming a

phonological cohesion, but this corpus data is derived from a single lexical unit. In other

words, each word in a discourse is singly queried against the FrameNet Corpus using the

following code.

• def get_word_frames_from_tagged_words(tagged_words):
 stopwords = nltk.corpus.stopwords.words('english')
 word_frames = []
 frame_counts = {}
 for tagged_word in tagged_words:
 if len(tagged_word) > 1:
 word = tagged_word[0]
 pos = get_lexical_unit_pos(tagged_word[1])
 frame = ''
 if word not in stopwords and word.isalpha() and len(pos) > 0:

13 The “json” extension indicates that the data is formatted according to the JavaScript Object
Notation standard.

39

 lexical_units = fn.lus(r'(?i)' + word)
 frames = [lu.frame.name for lu in lexical_units if
lu.name.endswith(pos)]
 if frames and len(frames) > 0:
 frame = frames[0]
 word_frames.append((word, frame))
 if frame not in frame_counts.keys():
 frame_counts[frame] = 1
 else:
 frame_counts[frame] += 1
 return word_frames, frame_counts

When FrameNet is queried it returns a list of lexical units that match the word, from

which a list of frames filtered by part-of-speech is extracted. Although sometimes more

than one frame is returned, I am only relating the first one in the list to the word. This

could be changed to allow more than one, but then the salience dimension would be

multi-variant, and require much more rigor to calculate. Note that I excluded stop words

from my query. I did this to reduce the time it takes to process a discourse. I am aware

that by excluding these words I am losing salience, and I may put them back in. Stop

words can be acquired with the following code.

• import nltk
• from nltk.corpus import stopwords
• stopwords = nltk.corpus.stopwords.words('english')
• print(stopwords)
• ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your',

'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her',
'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs',
'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those',
'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had',
'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if',
'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about',
'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above',
'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under',
'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why',
'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some',
'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very',
's', 't', 'can', 'will', 'just', 'don', 'should', 'now', 'd', 'll', 'm', 'o',
're', 've', 'y', 'ain', 'aren', 'couldn', 'didn', 'doesn', 'hadn', 'hasn',
'haven', 'isn', 'ma', 'mightn', 'mustn', 'needn', 'shan', 'shouldn', 'wasn',
'weren', 'won', 'wouldn']

These words have a high frequency of use, and do have frames, but are also significant to

the flow of the discourse. So, they are packaged as segment and semantic content in a

usage event. The frames profile a lexical unit as it is used (Croft & Cruse, 2004, p. 14) in

a coherent region of conceptual space. This is also called a domain, and this is why I

generated a master file of domains present in the YouTube corpus, named

40

“_domains.json”. This file contains the frame, and all vectors associated with it in the

corpus. I will describe vectors more on page 42. The frames file also counts usage of the

frame in each discourse. The baseline and elaboration dimension or overlap could also be

derived from frames, because there is a hierarchy at work. This proved to be less

information, however, and so I used the WordNet corpus, which I describe in the next

part of this section. There are too few frames in the FrameNet corpus that profile lexical

units, i.e. some words do not have frames.

4.5 Words and Hypernyms

There is another corpus that provides senses of words as synonyms. WordNet (Miller,

1995) is a database that holds semantic relations of synonyms, called “synsets” that are

linked hierarchically. The following shows the synsets for “belief”.

• import nltk
• from nltk.corpus import wordnet
• synonyms = wordnet.synsets('belief')
• print(synonyms)
• [Synset('belief.n.01'), Synset('impression.n.01')]

Each synset is a schematic node in a hierarchy of concepts, where higher level nodes are

more abstract, and lower level nodes are more specific. The schema can be traversed by

querying hypernyms and hyponyms. The next level below in the schema for “belief”, for

example, is shown below.

• synonyms[0].hyponyms()
• Out[7]:
• [Synset('autotelism.n.01'),
• Synset('conviction.n.01'),
• Synset('doctrine.n.01'),
• Synset('expectation.n.01'),
• Synset('faith.n.02'),
• Synset('fetishism.n.01'),
• Synset('geneticism.n.01'),
• Synset('individualism.n.02'),
• Synset('meliorism.n.01'),
• Synset('opinion.n.01'),
• Synset('originalism.n.01'),
• Synset('pacifism.n.02'),

41

• Synset('philosophy.n.03'),
• Synset('public_opinion.n.01'),
• Synset('religion.n.01'),
• Synset('revolutionism.n.01'),
• Synset('sacerdotalism.n.01'),
• Synset('spiritual_being.n.01'),
• Synset('spiritual_world.n.01'),
• Synset('spiritualism.n.02'),
• Synset('suffragism.n.01'),
• Synset('supernaturalism.n.01'),
• Synset('superstition.n.01'),
• Synset('supremacism.n.01'),
• Synset('theory.n.03'),
• Synset('theosophism.n.01'),
• Synset('thought.n.03'),
• Synset('totemism.n.01'),
• Synset('tribalism.n.02'),
• Synset('values.n.01'),
• Synset('vampirism.n.01')]

The hypernym is the next level node above, and for “belief” looks like the following.

• synonyms[0].hypernyms()
• Out[8]: [Synset('content.n.05')]
• synonyms[0].hypernyms()[0].hypernyms()
• Out[11]: [Synset('cognition.n.01')]
• synonyms[0].hypernyms()[0].hypernyms()[0].hypernyms()
• Out[12]: [Synset('psychological_feature.n.01')]
• synonyms[0].hypernyms()[0].hypernyms()[0].hypernyms()[0].hypernyms()
• Out[13]: [Synset('abstraction.n.06')]
• synonyms[0].hypernyms()[0].hypernyms()[0].hypernyms()[0].hypernyms()[0].hypernyms(

)
• Out[14]: [Synset('entity.n.01')]

The highest abstraction is “entity”, but the next level up from “belief”, “content” is

enough to calculate the baseline/elaboration dimension using the distance from the

hypernym.

• belief = wordnet.synsets('belief')
• abstract = belief[0].hypernyms()[0]
• print(abstract)
• Synset('content.n.05')
• print(belief)
• [Synset('belief.n.01'), Synset('impression.n.01')]
• distance = 1 - belief[0].wup_similarity(abstract)
• print(distance)
• 0.0909090909090909

The distance is calculated by subtracting the similarity of “belief” to “content” from 1.

This is included in the YouTube corpus in another file suffixed with “_word_nets.json”.

For each word in a discourse, an entry contains the word, the part-of-speech, the synsets

and the synset distances, as shown below.

42

• ["believe", "VB", [["Synset('believe.v.01')", "[Synset('accept.v.01')]",
0.8571428571428571], ["Synset('think.v.01')", "[Synset('evaluate.v.02')]", 0.8],
["Synset('believe.v.03')", "[Synset('expect.v.01')]", 0.8571428571428571],
["Synset('believe.v.04')", "[Synset('believe.v.01')]", 0.8888888888888888],
["Synset('believe.v.05')", "[Synset('credit.v.04')]", 0.9230769230769231]]]

Each of the synonyms are senses of the verb “believe”, and could be substituted in a

usage event with slightly different amounts of schematic elaboration. In the

conceptualization channels (Langacker, 2008, p. 146) of the semantic pole the schema

packs information that relates to and coordinates with the usage events before and after,

but also can be a reference to other parts of the discourse playing a pragmatic role. With

the data queried from WordNet, the YouTube corpus becomes stronger, but it still needs

to be pulled all together into a complete symbolic unit. In the next part of this section I

describe the vector, a value system, which contains three dimensions of entrenchment,

overlap and salience.

4.6 Vectors and Dimensionality and Domains

The previous corpus files were created with the vector in mind. With these files, we can

create another file that comprises for each word: the word, the part-of-speech, the time of

close caption appearance in the video, the domain, and the vector of entrenchment,

overlap and salience/context priming as shown in (Figure 9 Symbolic Unit Bias Vector).

For each discourse, the file is the video display identifier suffixed with “_vectors.json”,

and each entry is stored as follows.

• {"word": "believe", "pos": "VB", "domain": "Taking_sides", "time": ["believe",
"00:02:17.195"], "vector": ["0.0130081300813", "0.0769230769231",
"0.0270700636943"]}

The symbolic unit as shown in (Figure 13 - YouTube corpus Symbolic Unit) is complete

with the addition of the topical categories and tags that can be queried for each discourse.

I can export the vectors to a tabular file that can be imported into Microsoft Excel, and

then create pivot table and charts, etc. There are some issues with this structure, however,

43

that need to be addressed, such as; not all words have domains, and this limits a

contiguous representation of conceptual spaces. In other words, there are holes in the

data. This is a limitation of FrameNet, or ignorance of the writer of this paper in querying

FrameNet. There is always a part-of-speech present however, and this is a conceptual

space as well. Another way to perform the contiguous analysis is to remove the vectors

with blank domains. Part-of-speech is important to the usage event regarding

dimensionality because we can derive the semantic roles and object categories

(Gärdenfors, 2014, p. 116).

Taking vectors a little further, I also created a corpus file, suffixed with “_knn.json” that

stores the vector, the K-Nearest Neighbor vector and the distance between them where an

entry looks as follows.

• {"current": {"word": "biography", "pos": "NN", "domain": "Text", "time":
["biography", "00:02:46.008"], "vector": ["0.00162601626016", "0.0666666666667",
"0.0127388535032"]}, "neighbor": {"word": "Island", "pos": "NNP", "domain":
"Natural_features", "time": ["Island", "01:04:03.515"], "vector":
["0.00162601626016", "0.0666666666667", "0.0143312101911"]}, "distance":
0.0015923566878999987}

I list all words in (Table 5 - K-Nearest Neighbor for Discourse 6NOSD0XK0r8) where

the distance is greater than zero. The above entry shows that within the corpus and within

the discourse, the word “biography” has a vector that is closest to the vector of the word

“island”, and relates the domain of “Text” with the domain of “Natural_features”, and

they are temporally distant in the discourse.

In summary, the stages of development of the YouTube corpus leads to the vectors. It is

the vectors that are important. My thesis is asserting that the value systems, quantified as

a vector, of the interlocutors are at play, prodding what words get activated next within

the conceptual domains. NLTK and other Python libraries provide the means for

visualizing the vector data.

44

4.7 A Value System Application

An idea for a practical application of a corpus like the YouTube corpus is a “Chatbot”,

like popular smart phone voice interaction applications. The YouTube corpus serves as

one of the long-term memory storage areas or corpus, and the current chat conversation is

stored locally in computer short-term memory, but also stored in a Chatbot corpus, which

is like the YouTube corpus structure shown in (Figure 13 - YouTube corpus Symbolic

Unit), so that the same queries could be performed. The Chatbot processes incoming text,

and generates a response based on the usage event data of each word, chunk and

sentence. The vectors are summed and compared to the vectors in the Chatbot corpus

using K-nearest neighbor to determine the best-known response, i.e. the responses are

activated from the corpus of input-response data, but the usage event vectors are

calculated from the entire corpora, a value system at work. This, however, is of course

not as “fait accompli” as described because the values stored and queried would always

be the same. Although the K-Nearest Neighbor calculation does provide a probabilistic

result, it still lacks the intuitive connection with another human being. The transformation

from a canned response to a genuine “aware” exchange of meaning just isn’t there. There

is obviously still much more to be done to create an “intelligent” Chatbot.

The corpora design is therefore very important to artificial intelligence research, and the

conceptual space ontological model (Gärdenfors, 2014, p. 262) plays and important part

in getting closer to a meaningful conversation with a machine. The Chatbot corpus can

include sentence structure and chunking, and can be categorized by speaker and

perceived topic categories. The YouTube closed-caption corpus is inadequate because of

its lack of structure, and vectors are calculated at the word level only, providing a very

45

restricted value system. There are also holes in the semantic data that could easily lead to

misunderstanding, or even complete impasse. Thankfully there are many other sources of

data, e.g. transcripts of live chat sessions, for building corpora. The long-term and short-

term memory corpora data model (Figure 15 - Memory Corpora Data Model) has

potential, but still has flaws. The relationships of entities are described as follows:

1. A corpora (database) has one or more corpus entities
2. A corpus entity has one or more file entities
3. A file entity can be associated with many topic entities
4. A topic entity can be associated with many file entities
5. A file entity has one or more token entities
6. A token entity can be associated with many classifier entities
7. A classifier entity can be associated with many token entities
8. A token entity is associated with one or more sentence entities
9. A sentence entity has one or more word entities
10. A word entity is identified as a POS (part-of-speech) entity
11. A word entity can be associated with many chunk entities
12. A word entity can be associated with many semantic value entities
13. A semantic value entity can be associated with many word entities
14. A chunk entity can be associated with many word entities
15. A chunk entity is identified as a POS entity
16. A chunk entity can be associated with many semantic value entities
17. A semantic value entity can be associated with many chunk entities

This data abstraction allows each usage event to be stored in a way that can be queried

using SQL (Structured Query Language)14, and resulting a matrix set of desired

attributes from any of the joined entities. The memory corpora data model is one of many

possible data storage and retrieval paradigms, but with this relation database model the

value system captured as semantic values calculated from extant data at the time of the

usage event. Semantic values, or dimensions, in turn make up the vector associated to the

14 A structured query language is a procedural programming syntax used in obtaining a relational
data set programmatically that joins entities according to their relationships and allows filtering,
grouping and ordering of the results (https://en.wikipedia.org/wiki/SQL).

46

word or chunk. This gives us the perception part of the process, but not the production

part. With the activation of data as a usage event takes place, it is then necessary for the

Chatbot to construct a response, which means a response data model is required.

“CONSTRUCTIONS, NOT CATEGORIES AND RELATIONS, ARE THE BASIC,

PRIMITIVE UNITS OF SYNTACTIC REPRESENTATION. The categories and

relations found in constructions are derivative…” (Croft, 2001, p. 46). The questions

become “How and when does the Chatbot learn constructions?”, and “How does the

activated data relate to possible or probable constructions?”.

I suggest a cursory construction data model, shown in (Figure 16 – Exemplar

Construction Data Model), that is not related to the memory data model, but is

maintained by an independent parallel process that learns the acceptable constructions

from the memory data model, and when a response is needed the response is constructed

by passing the activation data to a process that queries the construction data model for the

most probable construction, and then assembles a response. This model follows the

usage-based exemplar construction model (Hoffmann & Trousdale, 2013, pp. 60-63) as

Bybee proposes in her chapter “USAGE-BASED THEORY AND EXEMPLAR

REPRESENTATIONS OF CONSTRUCTIONS”. The relationships of entities are

described as follows:

1. A corpora (database) has one or more exemplar entities
2. An exemplar entity can be associated with many slot entities
3. An exemplar slot association can be associated with many lexical unit entities
4. A slot entity is identified as a POS (part-of-speech) entity
5. A lexical unit is identified as a POS (part-of-speech) entity
6. A vector can be associated with many classifier entities
7. A lexical unit entity can be associated with many vector entities
8. A vector entity has one or more semantic value entities
9. A classifier entity can be associated with many vector entities
10. A vector entity can be associated with many lexical unit entities

47

Chatbot now can pick the best response by querying the trained Exemplar Construction

Data Model using the activation data from the Memory Corpus Data Model. The data

flow, shown in (Figure 17 - Chatbot Data Flow), has two independent processes acting on

interdependent data. The chat process is started with an initial request for information

about the person who is chatting. The collected data is stored and updated in the

classifiers entity. Classifiers are important to machine learning because they provide a

feature-set that can be used in the linear regression calculation, used by many of the

popular machine learning algorithms. Classifiers such as “age” and “gender” are most

popular in recent research. It is important to note that the “name” classifier is associated

with the chat text tokens, but the other classifiers of “age”, “gender”, etc. are associated

with the answer tokens initially gathered in the chat session. The chat process proceeds

with a back and forth exchange between person and Chatbot until the person indicates

they want to quit. The input text from the person is transformed into data of which a

series of token usage events are comprised, and then stored in Figure 15 - Memory

Corpora Data Model. This completes the input phase.

The activation phase is where Chatbot queries the memory for a most probable set of

activation data for the provided token. Memory activation occurs because of the set-based

query that joins and filters data in the entire corpora to a smaller dataset. The activation

data is most important for the last phase of generating a response. The value system

determines the activation by looking at close vector matches of each lexical unit in a

token against the entire corpora. The bias is calculated in the previous phase with current

data, is made up of multiple and various dimensions, dependent on the state of the person

corpus and the entire corpora of data. The vectors are summed for chunks and sentences.

48

The classifier feature-set could be used to filter the resulting data, but probably isn’t

necessary.

The response phase is dependent on Figure 16 – Exemplar Construction Data Model,

which is maintained and updated with an independent process that builds construction

exemplars from the corpora. The process is started, and repeats after a configured waiting

period. Memory is queried for any changes, and then runs adds new exemplars or updates

existing ones. The construction probabilities are then re-calculated for feature-sets and

exemplars. By doing this, the response phase of the chat process can identify the best

construction and corresponding lexical units to use as the response. The response is

displayed after it has been stored in memory, and the process cycles again.

In summary, although the YouTube corpus lacks the classifiers necessary for Chatbot to

act with a modicum of simulated intelligence, the overall effort of building the data by

extracting, transforming and loading into files has set the stage for an application like

Chatbot. The use of a database would provide a perhaps better container for the corpora,

allowing the set-based query to be used. The usage event is abstracted in the database in

such a way that words, chunks, sentences and tokens are bound to a corpus of files or

discourses. The database allows any source of data to be added as well, with some extra

programming, which allows the memory and exemplars to be amended, creating a

smarter Chatbot. There improvements also that can be made, such as allowing for person

or Chatbot to input or display multiple tokens at a time, as usually occurs in chatting

between two or more people, instead of the back and forth conversation. Also, the

possibility of allowing more than one person to chat with Chatbot could be developed

49

using the same data models. It is my intent to continue my research in this direction, and

implement this application.

50

5 Conclusions

I want to say that I have gained a linguistically valid understanding of a value system in

terms of its influence on coming to, or not coming to, a mutual understanding when two

or more people engage in conversation. Is “value system” the correct term? If there is a

bias, with multi-variant dimensions (value systems), is it used by a person when the

activation occurs, and is the vector really pointing to a location in conceptual space? This

pilot study, I think, shed light on these questions. The corpora of today are more robust

than ever, and with semantic analysis tools like FrameNet (Ruppenhofer, et al., 2016) and

WordNet (Miller, 1995) it will be easier to query for symbolic unit categorization. The

end goal, although not conclusive, provided a clearer understanding of a cognitively

sufficient “robot” model that considered many forms of input, i.e. a multi-modal, many

sensorimotor mechanisms, many use-specific processing units with cooperation abilities,

value systems that act as biases for language processing, and a storage medium where

processing units can be activated by the perceptive machine. Again, I should stress that

this was a pilot study that explored some aspects of how semantic alignment occurs or

doesn’t occur in discourse. The dimensionality of vectors could be much more complex if

applied to real world artificial intelligence and robotics.

A major success of this pilot study was that I built a corpus from internet resources

(YouTube Closed-Captions) using NLP tools like NLTK and Python. The evolution of the

corpus structure from plain text to vectors and more demonstrated the potential for

building corpora that would support applications like Chatbot (4.7). There are many

Python libraries available now, and more being built, that provide tools for data collection

from the internet and document sources. Also, as shown with Chatbot, the can be stored

51

in a database, or a combination of flat files and database, and flat files can be in multiple

formats, such as JSON (Java Script Object Notation) or CSV (Comma Separated Values)

or XML (eXtensible Markup Language). Extending the NLTK library for querying

custom values allows the custom corpus creation. A usage-based corpus is practical, and

could be used to identify semantic alignment. The idea of dimensionality pointing to a

point in conceptual space is sound because of two things, one dimensions exist, and two

semantic change occurs. Finding the evidence will require more research and corpus

building.

The YouTube corpus that I created was not conclusive, however, because of the missing

classifiers i.e. if the closed-caption files were to contain who said what, then a classifier

of who was speaking could be attributed to the spoken token. NLTK lacks access to a

complete FrameNet, which also leaves holes in the data. WordNet does have a more

complete corpus for the English language and could be used for obtaining semantic

domains, but that was not the path I chose. Visualization of the data is lacking because

most of the discourses were long, and who said what was indistinguishable. YouTube has

a useful source of linguistic data, but not the closed-captions. Perhaps using the

comments regarding a video that were contributed by viewers would yield better results.

If I were to start all over I would create the Chatbot (4.7) application, and agnostically

approach corpus creation by finding sources of data with identifiable classifiers, and I

would load them into the Chatbot database using the same processes (Figure 17 - Chatbot

Data Flow). The most important piece of data that was lacking in this study, but should be

required, is the classifier both at the chat session level and at the token level. The Chatbot

data model that I proposed earlier provides a relational storage location for classification.

52

Classifiers are essentially contextual reference points that point to semantic domain in

conceptual space, they are schematically more abstract, and therefore provide target for

the dimensional values that bias activation.

The linguistic value system of an individual allows them to participate in the coordination

of meaning, which is achieved through common lexical knowledge shared between the

individual and others who are engaged in conversation. Their value system prods the

activation of memories in language processing, and maybe alignment or un-alignment of

meaning occurs; linguistic categorization (memory, learning and performance) is biased

dynamically by a set of one or more value systems (dimensions). The value systems hold

the linguistic criteria for language processing, activation and selection of the best

adaptive meaning. With the activated data the individual can construct a response from

construction patterns in memory because data is retained for all linguistic experiences as

exemplars of usage theoretically. Although the pilot study doesn’t show evidence of this,

it does suggest further research in corpora development.

In summary, there were a few things that were evident in this study. Closed-caption text is

not the best source of data due to the lack of classification features. The data does

however support the idea that language is shared, and when two or more people are

having a conversation there are missing parts which are pointed to with the shared

context, shared human experiences. The under-determinacy is evident because mutual

understanding does occur, and not just with the participants in the conversation, but with

the viewer of the YouTube video also.

53

6 Figures

The World The Body The Brain

Particles

Waves

Processing Unit
Clusters

Motors

Sensors

Figure 1 - Somatic Processing Model

Figure 2 - A Scheme for higher-order consciousness (Edelman & Tononi, 2000, p. 194)

54

Figure 3 - Dynamical Systems Terminology

55

Figure 4 - A two-dimensional emotion space (Russell, 1980)

Novel Expressions

LEXICON

GRAMMAR

Markers
(Phonologically Specific)

Class Descriptions
(Phonologically Schematic)

Prototypical Lexical Item

Rules

Symbolic Complexity

Sc
he

m
at

ic
ity

En
tr

en
ch

m
en

t /
 C

on
ve

nt
io

na
lit

y

Figure 5 Conventional Unit Status

56

Figure 6 Symbolic Assembly

Figure 7 Forward-Propagation

S

P
∑

S

P
∑

S

P
∑

 ∑
 ∑

R

w
p

b

+ 𝑓 𝛼𝛼

57

Figure 8 Neuron

58

Figure 9 Symbolic Unit Bias Vector

(x
) E

nt
re

nc
hm

en
t

(y) Overlap

Context
Prim

ing (
z)

[1]

[1]

[1]

[0]

Specific

Schematic

Novel BaselineElaboration

Salient

[0.7584,0.3785,0.5869]

59

Figure 10 Dynamic System Matching Process

Machine
receives multi-

modal input

Transform
input into

construction
Get

Construction
Database

Calculate
product of
input and

weight for unit

Get Long-Term
Corpus

Calculate
Entrenchment

Bias Value
Get

Calculate
Overlap Bias

Value
Calculate

Context Bias
Value

Get

Short-Term
Corpus

(Discourse)

Get

Sum Input and
Bias Vector

More Units?

Yes

No
Storage

Selection
Put

Put

60

Figure 11 - Closed Caption File Sample

Figure 12 - Synsets for target word "guess"

61

Figure 13 - YouTube corpus Symbolic Unit

Conceptualization
Channels

Vocalization
Channels

Symbolic Unit

Word, part-of-speech

Word, part-of-speech

Synonyms, elaboration

Categories, vector

Frame, domain, vector

Word

Semantic
Pole

Phonological
Pole

62

Figure 14 - Dispersion Plot of discourse Creationism vs. Evolution

1.

63

TOKENTOKEN

FILEFILE

CORPUSCORPUS

SENTENCESENTENCE

WORDWORD
CHUNKCHUNK

POSPOS

WORD_CHUNKWORD_CHUNK

TOPICTOPIC FILE_TOPICFILE_TOPIC

SEMANTIC_VALUESEMANTIC_VALUE

CHUNK_VALUECHUNK_VALUE
WORD_VALUEWORD_VALUE

CLASSIFIERCLASSIFIER

TOKEN_CLASSIFIERTOKEN_CLASSIFIER

TOKEN_IDTOKEN_IDPKPK

FILE_IDFILE_ID

PLAIN_TEXTPLAIN_TEXT

FILE_IDFILE_IDPKPK

CORPUS_IDCORPUS_ID

FILE_NAMEFILE_NAME

CORPUS_IDCORPUS_IDPKPK

CORPUS_NAMECORPUS_NAME

CORPUS_DESCRIPTIONCORPUS_DESCRIPTION

SENTENCE_IDSENTENCE_IDPKPK

SENTENCE_ORDERSENTENCE_ORDER

TOKEN_IDTOKEN_ID

WORD_IDWORD_IDPKPK

WORD_FORMWORD_FORM

POS_IDPOS_ID

CHUNK_IDCHUNK_IDPKPK

POS_IDPOS_ID

FILE_DATE_TIMEFILE_DATE_TIME

TOKEN_DATE_TIMETOKEN_DATE_TIME

POS_IDPOS_IDPKPK

POS_CODEPOS_CODE

POS_DESCRIPTIONPOS_DESCRIPTION

POS_EXAMPLEPOS_EXAMPLE

SENTENCE_IDSENTENCE_ID

WORD_ORDERWORD_ORDER

WORD_CHUNK_IDWORD_CHUNK_IDPKPK

WORD_IDWORD_ID

CHUNK_IDCHUNK_ID

WORD_CHUNK_ORDERWORD_CHUNK_ORDER

TOPIC_IDTOPIC_IDPKPK

TOPIC_NAMETOPIC_NAME

TOPIC_DESCRIPTIONTOPIC_DESCRIPTION

FILE_TOPIC_IDFILE_TOPIC_IDPKPK

FILE_IDFILE_ID

TOPIC_IDTOPIC_ID

attribute nameattribute namePKPK

SEMANTIC_VALUE_IDSEMANTIC_VALUE_IDPKPK

VALUE_NAMEVALUE_NAME

VALUE_DESCRIPTIONVALUE_DESCRIPTIONCHUNK_VALUE_IDCHUNK_VALUE_IDPKPK

CHUNK_IDCHUNK_ID

SEMANTIC_VALUE_IDSEMANTIC_VALUE_ID

WORD_VALUE_IDWORD_VALUE_IDPKPK

SEMANTIC_VALUE_IDSEMANTIC_VALUE_ID

WORD_IDWORD_ID

CALCULATED_VALUECALCULATED_VALUE

EVENT_DATE_TIMEEVENT_DATE_TIME

CLASSIFIER_IDCLASSIFIER_IDPKPK

CLASSIFIER_NAMECLASSIFIER_NAME

CLASSIFIER_DESCRIPTIONCLASSIFIER_DESCRIPTION

TOKEN_CLASSIFIER_IDTOKEN_CLASSIFIER_IDPKPK

CLASSIFIER_IDCLASSIFIER_ID

TOKEN_IDTOKEN_ID

Figure 15 - Memory Corpora Data Model

64

EXEMPLAR

SLOT

EXEMPLAR_SLOT

LEXICAL_UNIT

VECTOR

SEMANTIC_VALUE

POS

CLASSIFIER

LEXICAL_UNIT_VECTOR

EXEMPLAR_SLOT_LEXICAL_UNIT

VECTOR_CLASSIFIER

EXEMPLAR_IDPK

CONSTRUCTION_FORM

SLOT_IDPK

POS_ID

EXEMPLAR_SLOT_IDPK

EXEMPLAR_ID

SLOT_ID

LEXICAL_UNIT_IDPK

POS_ID

UNIT_FORM

VECTOR_IDPK

VECTOR_DATE_TIME

SEMANTIC_VALUE_IDPK

VALUE_NAME

VALUE_DESCRIPTION

CALCULATED_VALUE

EVENT_DATE_TIME

POS_IDPK

POS_CODE

POS_DESCRIPTION

POS_EXAMPLE

POSITION

CLASSIFIER_IDPK

CLASSIFIER_NAME

CLASSIFIER_DESCRIPTION

LEXICAL_UNIT_VECTOR_IDPK

LEXICAL_UNIT_ID

VECTOR_ID

EXEMPLAR_SLOT_LEXICAL_UNIT_IDPK

EXEMPLAR_SLOT_ID

LEXICAL_UNIT_ID

VECTOR_CLASSIFIER_IDPK

VECTOR_ID

CLASSIFIER_ID

VECTOR_ID

Figure 16 – Exemplar Construction Data Model

65

Chatbot Data Flow

Chat Memory Construction

Re
sp

on
se

In
pu

t
Ac

tiv
at

io
n

Start Chat

End

Get Classifier
information from

chat person

Classifiers:
person

name, age,
gender, etc.

Store Classifier Data Classifiers

Exemplars

Get chat input from
chat person

Start Learning

Done Chatting? Input text Transform Input
Data

Memories

Transformed
Data

Store Transformed
Data

Get Activation Data

Activation
Data

Get Exemplar
Construction Data

Constructions

Generate Response
Data

Response
Data

Display Response

noyes

Check for new
memories and

classifiers

Run Machine
Learning ?Wait

Update Exemplars

Classifiers
and

Memories

Update
Constructions

Probable
Response

Data
Store Response DataResponse

Data

Figure 17 - Chatbot Data Flow

66

7 Tables

•

Table 1 - Modal Verbs Frequency by Category

would could should will can shall must
Nonprofits 384 214 132 189 514 8 18
People 485 241 209 265 537 3 9
News 639 321 233 416 789 2 31
Politics 639 321 233 416 789 2 31
Style 3 1 0 1 9 0 0
Sports 59 31 14 11 54 0 3
Events 57 45 12 19 29 0 0
Autos 10 13 9 26 36 0 0
Education 848 516 292 437 1174 14 74
Howto 3 1 0 1 9 0 0
Comedy 25 9 17 1 18 0 0
Animation 53 34 10 17 36 1 4
Blogs 485 241 209 265 537 3 9
Activism 384 214 132 189 514 8 18
Music 157 107 34 49 195 2 7
Travel 57 45 12 19 29 0 0
Technology 142 93 53 132 247 2 6
Vehicles 10 13 9 26 36 0 0
Science 142 93 53 132 247 2 6
Entertainment 195 83 84 94 260 1 10
Film 53 34 10 17 36 1 4
all 3096 1750 1105 1681 3973 33 165

Table 2 - YouTube Videos for Corpus

Video Id Words Set Time Description

-XFaEFNALqU 9,779 1,613 01:07:28.560
Dawn Eden - Courage 2013 #5 - CONF 222 -
Education

0mJXSnpKqJc 5,447 1,457 00:44:13.006

Art Talks: Dr Loretta Würtenberger and
Melanie Gerlis discuss 'The Artist's Estate' -
Nonprofits Activism

0Ttrb-97tFA 13,293 2,672 01:19:38.945
Naomi Wolf and Jim Pfaus talk sex -
Education

0wGsXO1vzNI 18,600 2,509 01:21:41.144

SOFREP Radio: Green Beret Terry Schappert
in studio talking "Hollywood Weapons" -
Travel Events

67

0xPlja9a2Cs 12,338 1,881 01:00:30.659

PRO/CON at The Pier: The Return of Civil
Discourse - Public Education: Is It Broken? -
Nonprofits Activism

1LLbCU6QxoM 10,106 1,552 00:54:07.285
Steve Jobs 1983 Gives A Talk About The
Future - Science Technology

2jtdrIcEXus 1,584 482 00:10:58.002

Jackie Chan On Why We Seeks Variety In His
Roles: 'I Want To Be Like Robert De Niro' -
Entertainment

2lgvd5wsWG0 16,903 2,254 01:30:25.430
#037: David & Anna Discuss Amanda Palmer:
The art of asking - Music

2LwaVr_OgZE 10,539 1,537 01:11:15.835

‘Women in the Arts’ – Siri Hustvedt, Katharina
Grosse, Nicola Graef at me Collectors Room
Berlin - Education

2ZVA0vwHMQs 15,928 2,153 01:39:02.356
Same-Sex Marriage Debate: Gallagher vs.
Corvino - Education

3eVclwNQHJo 8,852 1,313 00:57:35.883
Marcus and Anthony Discuss Polyamory -
People Blogs

3PFrdfxdYPI 1,537 478 00:08:09.685
Richard Dawkins Interview - Sky News -
Entertainment

4-4F95jtcxI 6,742 1,283 00:34:15.716
Warren Buffett Candid Interview 2015 -
People Blogs

4C_MLzjb0bI 10,156 1,595 00:52:55.459
Intelligence to Protect the Homeland and the
Way Ahead - Autos Vehicles

4e2kJhAGPCE 4,006 791 00:24:12.615

PEACE, LOVE AND MISUNDERSTANDING |
indieWIRE | TIFF Industry 2011 - Film
Animation

5ir1hhpkwbo 23,994 660 00:19:06.395
Jimmy Kimmel's FULL INTERVIEW with
President George W. Bush - Comedy

6F4M2tDlAAQ 6,806 1,269 00:32:04.896
Mark Cuban Interview 2017 - Talks Tech,
Business, Investing - Science Technology

6HffK1ZxVZ4 2,059 687 00:10:36.846 much ado group teaching project - Music

6NOSD0XK0r8 18,504 2,162 01:35:26.826
Fired Google Engineer James Damore (Live
Interview) - News Politics

7M5c71l9tno 1,988 556 00:14:42.085
The Tango Cafe Legacy - Conversation
between friends - Education

7MlGiL2lgKA 3,703 734 00:19:35.471

Talking With Tea & Bee: Real Conversation
between Friends :) - Tianna Thompson -
People Blogs

7NMOMscsA2c 1,243 409 00:06:13.187 Heated debate on gun control - People Blogs

7PxFnKFFvK4 3,748 822 00:20:58.781
Women Discuss Being Pro Casual Sex -
People Blogs

8IiDgZK-Fz4 21,197 3,015 02:04:44.722
Sex and Speech on the College Campus -
Roundtable Discussion - Education

9HKlzk4xKl8 2,437 716 00:13:11.555
Funniest Local News interviews 😀😀😀😀😀😀 -
People Blogs

68

ad9L3zWcWIo 1,882 613 00:10:25.871

Sarah Huckabee Heated Exchange vs CNN Jim
Acosta, San Juan mayor, private jet, Rex
Tillerson 10/5/17 - People Blogs

Alzqh8x9OpI 5,159 953 00:26:43.826
Caroline Kennedy | CONVERSATIONS AT KCTS
9 - People Blogs

APC2jnOSfhQ 4,207 823 00:21:58.152
REAL CONVERSATIONS: I'm Pro-Gun | Change
My Mind - Comedy

avlAa4KUm-Y 454 190 00:03:31.035

#7 Hilarious Language Barrier
Misunderstanding! : Yurgei Meets Monica -
Entertainment

B14uaSxLong 14,609 2,474 01:28:39.428

What is the Use of Ornament in
Contemporary Art and Architecture? -
Nonprofits Activism

B1EhafsWudQ 13,317 1,913 01:18:02.111

VIDEO: 8/1/2017 - The Chief talks Climate
Change with Bailey Hall for Climate Corps -
Entertainment

BgBs5BNHYNQ 9,654 1,378 00:47:14.525

Andy Stanley, Michael Leahy and ex-wife talk
about Michael's sex addiction - Nonprofits
Activism

bmovaPIsHa0 7990 1,524 00:52:41.762

EDWARD SNOWDEN EXPOSES DONALD
TRUMP FULL INTERVIEW 2017 - News
Politics

byT2P4OxaBE 8,538 1,618 00:49:19.078
The Future of Economy | Panel Discussion -
Education

bZYwZDqdsas 4,576 731 00:23:45.847
Advanced English Conversation About Travel
[The Fearless Fluency Club] - Education

cEProM1NcvU 9805 1741 01:17:34.775

TRAC2014: Roger Scruton and Odd Nerdrum -
Contemporary Representational Aesthetics -
Education

CkObh3RZKXU 16,368 2,096 01:47:39.051
CLE812 - Various Panelists - Life After Death
Life After Life Panel - Entertainment

cOzSYkk3ZM0 12,915 2,069 01:23:26.437
Point-Counterpoint Discussion on Rail Transit
- Education

cYhjo5O-nfg 11,000 2,273 01:15:46.290
Mastering Style: The Learning and Teaching of
Writing - Education

dLmcZ9dGBk4 5,587 1,057 00:26:44.815

Colin Goddard & Kristina Anderson |
CONVERSATIONS AT KCTS 9 - Nonprofits
Activism

dmbSENYk-KI 5,482 1,146 00:40:16.936
Peter, Paul and Mary's Peter Yarrow candid
feature interview - Music

dqq4TMXxq1E 2,913 657 00:20:02.922
Real English Conversation: My Wife and I
Answer Your Questions! - Entertainment

e5MD-2GTqto 483 208 00:02:19.829
Chicken Connoisseur tv interview -
Entertainment

EG3Y8Cp-9NA 16,847 2,413 01:48:52.933
Drinking Water: A Crisis in Every State - News
Politics

Erkp675dLrM 167 102 00:00:56.812
Hurricane Harvey - Awkward News Interview
Question - Comedy

69

eymykfdIIpc 1,545 432 00:07:09.955 Chatting with Friends: Wakfu - Entertainment

fe9fZxfsqwM 3,496 773 00:20:38.388

Connie and Samuel Johnson discuss Love Your
Sister, unicycles, and mortality -
Entertainment

fLcHfHZ1k9A 16,292 2,437 01:38:03.223

Death at SeaWorld Panel Discussion: Author
David Kirby, Dr Naomi Rose and Dr Lori
Marino - Nonprofits Activism

FnrJ3jPWG68 2,167 568 00:12:08.437
We're Cursed w/ Keith Lemelin | Karla's Car
Conversations - People Blogs

g--WzSUmkdk 13,978 1,690 01:11:42.449

A conversation with Hemant Mehta (ex-Jain,
editor of the Friendly Äthïest) - Nonprofits
Activism

gd0oSNjHf1A 9,247 1,385 00:38:50.052
Joe Rogan vs Steven Crowder: Heated
Argument over Marijuana - People Blogs

GDF-8PiM_vg 3,373 729 00:17:34.006

James O'Keefe Uncovers Evil Machinations Of
Mainstream Media | Cerno News Interview -
News Politics

GhVzaEGxTw4 11,317 1,479 00:58:45.941
Coach Unplugged Interview (Mike McGivern)
- Sports

gWT-EWKIR3M 2,114 673 00:10:37.047

Climate Realist Marc Morano Debates Bill Nye
the Science Guy on Global Warming - News
Politics

gZKDInabaPM 2,305 590 00:11:05.878
I debate with Dietitian on LIVE TV this
morning - My reaction - People Blogs

h0962biiZa4 10891 1751 01:00:02.110
Superintelligence: Science or Fiction? | Elon
Musk & Other Great Minds - People Blogs

h4cSZLP8cwA 1,070 284 00:03:34.293
Tim and Eric Get Into a Heated Discussion |
THE ULTIMATE FIGHTER - Sports

H4h44yN_QTg 10,708 1,933 01:10:24.799

39 Leston Havens MD: #3 Patient Interview
and Discussion: War Neurosis or
Malingering? - Education

hpDHwfXbpfg 6,863 1,409 00:40:40.581
Elon Musk Interview 2017 | TEDTalk -
Science Technology

hRniRF2BAus 12,048 1,533 01:03:11.000

HOW TO CHANGE YOUR PAST & YOUR
FUTURE - CONVERSATION WITH BRIDGET
NIELSEN - People Blogs

Hz9FqepcRUM 17,866 2,358 01:22:37.990
FULL Steve Bannon Interview with Charlie
Rose - News Politics

IhqDbLPvKsM 10,992 1,595 00:54:14.037 Buffy Panel Discussion - Film Animation

IiqAVxT0FUw 1,126 331 00:11:38.112
Conversations with Curl Friends at Curl Fest! -
Howto Style

iOKePIvoNcI 9,591 1,416 01:08:29.578
Sex Talk: Group Discussion on Sex, Purity, and
Holiness - People Blogs

j1xDizRZw3I 5,367 903 00:31:04.787
Interview with Vanessa [Featuring Jack from
ToFluency] - Education

Jk0PndXxSoQ 14,670 1,966 01:32:48.613
Dont Call Me Crazy: How we Fell in Love With
Outsider Art - Nonprofits Activism

70

jsJeE9suuBc 70,635 2,481 02:20:25.687
A Public Discussion About Race in Boston -
News Politics

jX86JCbkSUI 13,552 1,622 01:15:01.850

Fireside Chat #6: Yakov Boyko with Khepra
Anu. Raw Food. Nutrition. Health. -
Education

KCDVEn5Wzmg 12,466 1,860 01:08:00.483
Every Bot Is a Critic: 03.06.17 at New Lab -
Science Technology

KKjKCec8i6c 9,392 1,581 00:52:48.843
Jeff Bezos - A Candid Interview About The
Amazon Story - Science Technology

KncbeLE9HS0 28,342 3,548 02:54:53.013
Amazing Interview With Astrophysicist Neil
deGrasse Tyson - News Politics

Kp-wGkzDLSw 14,565 2,202 01:22:08.283
Jonathan Haidt - Panel Discussion - Future of
Cities - NYU - People Blogs

KRLI42qd_wQ 13,869 1,929 01:13:31.662
Tech Talk: Marketing to Today's Diner -
Education

LduioANhxlA 13,902 2,184 01:25:12.149
Watch This! Artist Panel Discussion -
Education

lgjqYRdgkTw 8,786 1,216 00:42:10.285
Raising Kids With or Without Religion: The
Mom's View Live - People Blogs

lgK6qLBLVD0 10,539 2,054 01:13:37.539 Counter Terrorism Discussion - Education

Lp9zuo52Njo 986 327 00:06:16.238
Spontaneous Road Trips w/Dayviideo| Karla's
Car Conversations - People Blogs

ltbADstPdek 12,468 2,054 01:16:56.682
Richard Dawkins & Neil deGrasse Tyson -
Education

mhvw0Jrevqk 12,733 2,367 01:24:42.993
Presidential Leadership Scholars 2017
Graduation - Nonprofits Activism

N4aXeJ3Z29w 2,799 649 00:15:15.622
Conversations on Death with Kim Mooney -
People Blogs

N6m7pWEMPlA 2,682 198 00:03:12.720
Obamacare vs. Affordable Care Act #2 -
Entertainment

n7IHU28aR2E 21,339 3,100 01:57:12.239
The Four Horseman - Hitchens, Dawkins,
Dennet, Harris [2007] - Education

N8zIiSaETqk 11,343 1,600 01:01:34.369
Nerd HQ 2016: A Conversation with Zac and
Friends - Entertainment

nEA0oW9TSjw 11,497 1,845 01:00:31.632
Lowkey In Discussion - #FlipLifeRadio -
PyroRadio - (15/09/2017) - Music

nHHDoywUfCQ 1,481 418 00:08:19.883
Jimmy Fallon Interview on Live with Kelly and
Ryan - People Blogs

NWdc7PyZNLA 5,023 718 00:18:24.304
Guest Host Jennifer Lawrence Interviews Kim
Kardashian West - Comedy

oG804t0WG-c 12,921 1,959 01:06:30.359
Dan Savage vs. Brian Brown: The Dinner Table
Debate - News Politics

ovN6ntFy0zI 5,344 775 00:23:37.703
SELF LOVE or SELFISH? | The Mom's View -
People Blogs

PJIvBeVKoQA 173 111 00:01:22.818
Anchorman can't stop laughing! - World's
funniest live news interview - People Blogs

QgJPYJ0Jn04 12,815 2,080 01:06:57.547
Fixing the System: VICE on HBO Special
Report (Full Episode) - News Politics

71

qKnBIiIUv9A 7,684 1,421 00:43:41.014
Bill Maher On The Messy Truth With Van
Jones - Full Show - News Politics

R0HpE1yh_sw 11,529 1,765 01:12:12.366

GENERAL SESSION: How Transit Agencies are
Integrating Rideshare and Public
Transportation - Nonprofits Activism

rmpi3uYK3A4 7,223 1,234 00:50:13.586
Artist and Curator: A Conversation -
Education

RSFNe0AowwM 4,865 1,223 00:25:49.055
Kieser Report: Cryptocurrency Taking Russia
By Storm? (E1146) - News Politics

rtIE5evvHGg 12,098 1,900 01:10:00.899
Panel Discussion Sustaining Relationships -
Education

sT40DH6hdKs 10,401 1,638 01:03:12.109

Discussion Panel | Blockchain and Bitcoin will
Disrupt Entire Industries and Governments -
News Politics

t4jUQGbHhUw 16,527 2,595 01:42:56.702

St. John's College Special Panel Discussion -
"Implications of the Death of Osama Bin
Laden" - Education

tAZGxRmxMH0 14,934 1,968 01:23:44.749

Bernie Sanders VS. Ted Cruz on The GOP Tax
Plan. #Breaking #TaxReform #BernieSanders
#TedCruz - News Politics

ThHzIJUm-So 9,627 1,682 00:54:40.883
Warren Buffett And Bill Gates - January 2017 -
People Blogs

Tm6ESsMlvYE 13,042 1,889 01:24:06.929
Gloria Steinem and Emma Watson in
Conversation - People Blogs

tzzoVNR5wkM 11,635 1,778 01:18:20.689
The Trouble With Sculpture - Nonprofits
Activism

uBz8uzJEJxI 17,171 1,971 01:27:50.449
The Trouble With Painting - Nonprofits
Activism

UKM3ac_6CVs 173 113 00:01:30.581

UPDATE #7 Sgnt. Hurricane Harvey The
Hunkered Down Hurricane Hawk - People
Blogs

Un0ohUagTWo 6,756 1,118 00:41:05.681

First Ladies Laura Bush and Michelle Obama
at Investing in Our Future - Nonprofits
Activism

v9wzw5nFVfc 9,600 1,885 00:55:09.008
Let’s talk about men sexual abuse – The
Urban Debate (July 6) - News Politics

vln9D81eO60 2,065 583 00:10:06.179

Ben Affleck, Sam Harris and Bill Maher
Debate Radical Islam | Real Time with Bill
Maher (HBO) - Entertainment

vqJM80MZQQ8 10,647 1,499 00:49:59.605
Danny Meyer & Michael Romano, "Family
Table" | Talks at Google - Music

Vv1x4GHpU7E 269 148 00:02:52.625
UH Thea 1331 "much ado about nothing soap
opera" - People Blogs

W1Sa6CzHpiE 13,044 1,666 01:30:43.659

My Friends Are Gonna Be Strangers: A
Conversation with Merle Haggard, Norm
Hamlet, Don Markham. - Music

wLx4DjeMtz8 8,014 1,296 00:55:49.710
Apple CEO, Tim Cook Interview On Steve Jobs,
AR, Heros, The Future - Science Technology

72

xvOtab2vn2Y 299 139 00:02:19.275
Jurgen Klopp's disagreement with a journalist
- Sports

y2KwVRiuILk 10,300 1,965 01:04:09.140
Artist panel discussion on Form & Story -
Education

y8hy8NxZvFY 9,938 1,887 00:59:56.774
DEBATE: Atheist vs Christian (Richard Dawkins
vs Cardinal George Pell) - Education

YCuxezFZUVg 4,615 715 00:20:10.933 Cheating?!? - Entertainment

yI_h0loITWM 11,087 1,446 00:52:58.187

Howard Stern and Bill Maher Discuss His
Romanticization of Al-Qaeda's 9/11 Terror
Invasion - Entertainment

YsQ6Relf7bw 10,586 1,613 00:49:13.168
The GORUCK Show: Travel Like a Green Beret
- People Blogs

yYeS3gNQnaQ 14,221 2,652 01:40:46.229
Imagining Queer Justice: Prison Abolition and
LGBT Hate Crime Legislation - Education

z6gB3gA9UZg 43,182 3,715 03:58:51.004
Debate: Socialism vs Capitalism - News
Politics

ZWE8HUjYf8Q 6,068 1,361 00:47:31.852
Obama's Full Speech and Q&A with Bill and
Melinda Gates - News Politics

zylMee7xJ0c 2,123 532 00:13:47.706
Conversations with Friends: The Gender
Spectrum and Sexuality - Film Animation

120 Videos 1, 159,8 43 34,948 105:13:41.000

Table 3 - NLTK Part of Speech Tags

POS DESCRIPTION EXAMPLE

$ dollar $ -$ --$ A$ C$ HK$ M$ NZ$ S$ U.S.$ US$

'' closing quotation mark ' ''

(opening parenthesis ([{

) closing parenthesis)] }

, comma ,

-- dash --

. sentence terminator . ! ?

: colon or ellipsis ; ...

CC conjunction, coordinating & 'n and both but either et for less minus neither nor or plus so

therefore times v. versus vs. whether yet

73

CD numeral, cardinal mid-1890 nine-thirty forty-two one-tenth ten million 0.5 one

forty- seven 1987 twenty '79 zero two 78-degrees eighty-four

IX '60s .025 fifteen 271,124 dozen quintillion DM2,000 ...

DT determiner all an another any both del each either every half la many

much nary neither no some such that the them these this

those

EX existential there there

FW foreign word gemeinschaft hund ich jeux habeas Haementeria Herr K'ang-si

vous lutihaw alai je jour objets salutaris fille quibusdam pas

trop Monte terram fiche oui corporis ...

IN preposition or conjunction,

subordinating

astride among uppon whether out inside pro despite on by

throughout below within for towards near behind atop

around if like until below next into if beside ...

JJ adjective or numeral,

ordinal

third ill-mannered pre-war regrettable oiled calamitous first

separable ectoplasmic battery-powered participatory fourth

still-to-be-named multilingual multi-disciplinary ...

JJR adjective, comparative bleaker braver breezier briefer brighter brisker broader

bumper busier calmer cheaper choosier cleaner clearer closer

colder commoner costlier cozier creamier crunchier cuter ...

JJS adjective, superlative calmest cheapest choicest classiest cleanest clearest closest

commonest corniest costliest crassest creepiest crudest cutest

darkest deadliest dearest deepest densest dinkiest ...

74

LS list item marker A A. B B. C C. D E F First G H I J K One SP-44001 SP-44002 SP-

44005 SP-44007 Second Third Three Two * a b c d first five

four one six three two

MD modal auxiliary can cannot could couldn't dare may might must need ought

shall should shouldn't will would

NN noun, common, singular or

mass

common-carrier cabbage knuckle-duster Casino afghan shed

thermostat investment slide humour falloff slick wind hyena

override subhumanity machinist ...

NNP noun, proper, singular Motown Venneboerger Czestochwa Ranzer Conchita

Trumplane Christos Oceanside Escobar Kreisler Sawyer Cougar

Yvette Ervin ODI Darryl CTCA Shannon A.K.C. Meltex

Liverpool ...

NNP

S

noun, proper, plural Americans Americas Amharas Amityvilles Amusements

Anarcho-Syndicalists Andalusians Andes Andruses Angels

Animals Anthony Antilles Antiques Apache Apaches

Apocrypha ...

NNS noun, common, plural undergraduates scotches bric-a-brac products bodyguards

facets coasts divestitures storehouses designs clubs fragrances

averages subjectivists apprehensions muses factory-jobs ...

PDT pre-determiner all both half many quite such sure this

POS genitive marker ' 's

PRP pronoun, personal hers herself him himself hisself it itself me myself one oneself

ours ourselves ownself self she thee theirs them themselves

they thou thy us

75

PRP

$

pronoun, possessive her his mine my our ours their thy your

RB adverb occasionally unabatingly maddeningly adventurously

professedly stirringly prominently technologically magisterially

predominately swiftly fiscally pitilessly ...

RBR adverb, comparative further gloomier grander graver greater grimmer harder

harsher healthier heavier higher however larger later leaner

lengthier less- perfectly lesser lonelier longer louder lower

more ...

RBS adverb, superlative best biggest bluntest earliest farthest first furthest hardest

heartiest highest largest least less most nearest second

tightest worst

RP particle aboard about across along apart around aside at away back

before behind by crop down ever fast for forth from go high

i.e. in into just later low more off on open out over per pie

raising start teeth that through under unto up up-pp upon

whole with you

SYM symbol % & ' '' ''.)). * + ,. < = > @ A[fj] U.S U.S.S.R * ** ***

TO to as preposition or

infinitive marker

to

UH interjection Goodbye Goody Gosh Wow Jeepers Jee-sus Hubba Hey Kee-

reist Oops amen huh howdy uh dammit whammo shucks heck

anyways whodunnit honey golly man baby diddle hush

sonuvabitch ...

76

VB verb, base form ask assemble assess assign assume atone attention avoid bake

balkanize bank begin behold believe bend benefit bevel

beware bless boil bomb boost brace break bring broil brush

build ...

VBD verb, past tense dipped pleaded swiped regummed soaked tidied convened

halted registered cushioned exacted snubbed strode aimed

adopted belied figgered speculated wore appreciated

contemplated ...

VBG verb, present participle or

gerund

telegraphing stirring focusing angering judging stalling lactating

hankerin' alleging veering capping approaching traveling

besieging encrypting interrupting erasing wincing ...

VBN verb, past participle multihulled dilapidated aerosolized chaired languished

panelized used experimented flourished imitated reunifed

factored condensed sheared unsettled primed dubbed

desired ...

VBP verb, present tense, not 3rd

person singular

predominate wrap resort sue twist spill cure lengthen brush

terminate appear tend stray glisten obtain comprise detest

tease attract emphasize mold postpone sever return wag ...

VBZ verb, present tense, 3rd

person singular

bases reconstructs marks mixes displeases seals carps weaves

snatches slumps stretches authorizes smolders pictures

emerges stockpiles seduces fizzes uses bolsters slaps speaks

pleads ...

WDT WH-determiner that what whatever which whichever

WP WH-pronoun that what whatever whatsoever which who whom whosoever

77

WP$ WH-pronoun, possessive whose

WRB Wh-adverb how however whence whenever where whereby wherever

wherein whereof why

`` opening quotation mark ` ``

Table 4 - Stages of Corpus Data

Stage Data

Raw 00:00:00.000 --> 00:00:05.069 align:start position:19%

I've<00:00:00.149><c> had</c><00:00:00.420><c>

obese</c><c.colorE5E5E5><00:00:01.199><c>

nutritionist</c><00:00:02.159><c> try</c><00:00:02.490><c>

and</c><00:00:02.639><c> tell</c></c>

00:00:02.850 --> 00:00:06.120 align:start position:19%

me<c.colorCCCCCC><00:00:02.879><c> that</c><00:00:03.120><c>

my</c></c><c.colorE5E5E5><00:00:03.629><c> diet</c><00:00:04.170><c>

is</c><00:00:04.380><c> wrong</c><00:00:04.620><c>

and</c><00:00:04.830><c> I'm</c><00:00:04.890><c> like</c></c>

00:00:05.069 --> 00:00:07.680 align:start position:19%

hey<c.colorE5E5E5><00:00:05.279><c> just</c><00:00:05.549><c>

because</c></c><c.colorCCCCCC><00:00:05.700><c>

you've</c><00:00:05.790><c> got</c><00:00:05.819><c>

a</c><00:00:05.910><c> bit</c></c><c.colorE5E5E5><00:00:06.029><c>

of</c></c>

00:00:06.120 --> 00:00:09.360 align:start position:19%

paper<c.colorE5E5E5><00:00:06.359><c> doesn't</c><00:00:07.109><c>

mean</c><00:00:07.200><c> I'm</c><00:00:07.290><c>

going</c><00:00:07.440><c> to</c><00:00:07.500><c> take</c></c>

78

00:00:07.680 --> 00:00:17.640 align:start position:19%

your<c.colorE5E5E5><00:00:07.830><c>

advice</c></c><c.colorCCCCCC><00:00:07.919><c> I</c><00:00:08.370><c>

want</c><00:00:08.580><c> to</c><00:00:08.670><c>

see</c><00:00:08.820><c> the</c><00:00:08.940><c> results</c></c>

Plain I 've had obese nutritionist try and tell me that my diet is wrong and I

'm like hey just because you 've got a bit of paper does n't mean I 'm

going to take your advice I want to see the results

Tagged I/PRP 've/VBP had/VBN obese/JJ nutritionist/JJ try/NN and/CC tell/VB

me/PRP that/IN my/PRP$ diet/NN is/VBZ wrong/JJ and/CC I/PRP 'm/VBP

like/IN hey/NN just/RB because/IN you/PRP 've/VBP got/VBN a/DT bit/NN

of/IN paper/NN does/VBZ n't/RB mean/VB I/PRP 'm/VBP going/VBG to/TO

take/VB your/PRP$ advice/NN I/PRP want/VBP to/TO see/VB the/DT

results/NNS

Frames ["I", "Compliance"], ["'ve", ""], ["had", ""], ["obese",

"Body_description_holistic"], ["nutritionist", ""], ["try",

"Isolated_places"], ["and", ""], ["tell", "Omen"], ["me", ""], ["that",

""], ["my", ""], ["diet", ""], ["is", ""], ["wrong",

"Morality_evaluation"], ["and", ""], ["I", "Compliance"], ["'m", ""],

["like", "Similarity"], ["hey", ""], ["just", ""], ["because", ""],

["you", ""], ["'ve", ""], ["got", "Wearing"], ["a", ""], ["bit",

"Quantified_mass"], ["of", ""], ["paper", "Text"], ["does", ""], ["n't",

""], ["mean", "Linguistic_meaning"], ["I", "Compliance"], ["'m", ""],

["going", "Getting_underway"], ["to", ""], ["take",

"Getting_vehicle_underway"], ["your", ""], ["advice", ""], ["I",

"Compliance"], ["want", "Possession"], ["to", ""], ["see", "Request"],

["the", ""], ["results", ""]

Word Nets ["I", "PRP", []], ["'ve", "VBP", []], ["had", "VBN",

[["Synset('have.v.01')", "{}", 0], ["Synset('have.v.02')", "{}", 0],

["Synset('experience.v.03')", "[Synset('undergo.v.01')]", 0.8],

["Synset('own.v.01')", "{}", 0], ["Synset('get.v.03')",

"[Synset('make.v.02')]", 0.8], ["Synset('consume.v.02')", "{}", 0],

["Synset('have.v.07')", "[Synset('interact.v.01')]", 0.8],

["Synset('hold.v.03')", "[Synset('direct.v.04')]", 0.8571428571428571],

["Synset('have.v.09')", "{}", 0], ["Synset('have.v.10')", "{}", 0],

79

["Synset('have.v.11')", "[Synset('change.v.02')]", 0.4],

["Synset('have.v.12')", "[Synset('suffer.v.06')]", 0.8],

["Synset('induce.v.02')", "{}", 0], ["Synset('accept.v.02')",

"[Synset('get.v.01')]", 0.4], ["Synset('receive.v.01')",

"[Synset('get.v.01')]", 0.4], ["Synset('suffer.v.02')",

"[Synset('experience.v.03')]", 0.8571428571428571],

["Synset('have.v.17')", "[Synset('score.v.01')]", 0.8],

["Synset('give_birth.v.01')", "[Synset('produce.v.01')]", 0.8],

["Synset('take.v.35')", "[Synset('sleep_together.v.01')]",

0.8888888888888888]]], ["obese", "JJ", [["Synset('corpulent.s.01')",

"{}", 0]]], ["nutritionist", "JJ", []], ["try", "NN",

[["Synset('attempt.n.01')", "[Synset('activity.n.01')]",

0.9230769230769231]]], ["and", "CC", []], ["tell", "VB",

[["Synset('state.v.01')", "[Synset('express.v.02')]", 0.4],

["Synset('tell.v.02')", "[Synset('inform.v.01')]", 0.8888888888888888],

["Synset('tell.v.03')", "[Synset('inform.v.01')]", 0.8888888888888888],

["Synset('order.v.01')", "[Synset('request.v.02')]", 0.9333333333333333],

["Synset('tell.v.05')", "[Synset('guess.v.04')]", 0.8571428571428571],

["Synset('assure.v.02')", "[Synset('affirm.v.02')]", 0.8888888888888888],

["Synset('tell.v.07')", "[Synset('inform.v.03')]", 0.9090909090909091],

["Synset('distinguish.v.01')", "[Synset('identify.v.01')]", 0.8]]],

["me", "PRP", []], ["that", "IN", []], ["my", "PRP$", []], ["diet", "NN",

[["Synset('diet.n.01')", "[Synset('fare.n.04')]", 0.9230769230769231],

["Synset('diet.n.02')", "[Synset('legislature.n.01')]",

0.9333333333333333], ["Synset('diet.n.03')", "[Synset('fare.n.04')]",

0.9230769230769231], ["Synset('diet.n.04')", "[Synset('fast.n.01')]",

0.9523809523809523]]], ["is", "VBZ", [["Synset('be.v.01')", "{}", 0],

["Synset('be.v.02')", "{}", 0], ["Synset('be.v.03')", "{}", 0],

["Synset('exist.v.01')", "{}", 0], ["Synset('be.v.05')", "{}", 0],

["Synset('equal.v.01')", "{}", 0], ["Synset('constitute.v.01')", "{}",

0], ["Synset('be.v.08')", "{}", 0], ["Synset('embody.v.02')",

"[Synset('typify.v.02')]", 0.9473684210526315], ["Synset('be.v.10')",

"[Synset('take.v.02')]", 0.8], ["Synset('be.v.11')", "{}", 0],

["Synset('be.v.12')", "[Synset('stay.v.01')]", 0.8],

["Synset('cost.v.01')", "[Synset('be.v.01')]", 0.4]]], ["wrong", "JJ",

80

[["Synset('incorrect.a.01')", "{}", 0], ["Synset('wrong.a.02')", "{}",

0], ["Synset('improper.s.03')", "{}", 0], ["Synset('amiss.s.01')", "{}",

0], ["Synset('wrong.a.05')", "{}", 0], ["Synset('wrong.s.06')", "{}", 0],

["Synset('wrong.s.07')", "{}", 0], ["Synset('ill-timed.s.01')", "{}", 0],

["Synset('faulty.s.02')", "{}", 0]]], ["and", "CC", []], ["I", "PRP",

[]], ["'m", "VBP", []], ["like", "IN", []], ["hey", "NN", []], ["just",

"RB", [["Synset('merely.r.01')", "{}", 0], ["Synset('precisely.r.01')",

"{}", 0], ["Synset('just.r.03')", "{}", 0], ["Synset('just.r.04')", "{}",

0], ["Synset('barely.r.01')", "{}", 0], ["Synset('just.r.06')", "{}",

0]]], ["because", "IN", []], ["you", "PRP", []], ["'ve", "VBP", []],

["got", "VBN", [["Synset('get.v.01')", "{}", 0],

["Synset('become.v.01')", "[Synset('change_state.v.01')]", 0.8],

["Synset('get.v.03')", "[Synset('make.v.02')]", 0.8],

["Synset('receive.v.02')", "[Synset('change.v.02')]", 0.4],

["Synset('arrive.v.01')", "{}", 0], ["Synset('bring.v.04')",

"[Synset('transmit.v.04')]", 0.8], ["Synset('experience.v.03')",

"[Synset('undergo.v.01')]", 0.8], ["Synset('pay_back.v.02')",

"[Synset('get_even.v.02')]", 0.8571428571428571], ["Synset('have.v.17')",

"[Synset('score.v.01')]", 0.8], ["Synset('induce.v.02')", "{}", 0],

["Synset('get.v.11')", "[Synset('seize.v.01')]", 0.8],

["Synset('grow.v.08')", "[Synset('change.v.02')]", 0.4],

["Synset('contract.v.04')", "[Synset('sicken.v.02')]",

0.8888888888888888], ["Synset('get.v.14')",

"[Synset('communicate.v.02')]", 0.8571428571428571],

["Synset('make.v.02')", "[Synset('change.v.01')]", 0.4],

["Synset('drive.v.11')", "[Synset('mean.v.01')]", 0.9411764705882353],

["Synset('catch.v.18')", "[Synset('understand.v.01')]", 0.4],

["Synset('catch.v.07')", "[Synset('attract.v.01')]", 0.8571428571428571],

["Synset('get.v.19')", "[Synset('hit.v.03')]", 0.8],

["Synset('get.v.20')", "{}", 0], ["Synset('get.v.21')",

"[Synset('get.v.01')]", 0.4], ["Synset('get.v.22')",

"[Synset('buy.v.01')]", 0.8], ["Synset('catch.v.21')",

"[Synset('hear.v.01')]", 0.8], ["Synset('catch.v.22')",

"[Synset('hurt.v.06')]", 0.8], ["Synset('get.v.25')", "{}", 0],

["Synset('scram.v.01')", "[Synset('leave.v.01')]", 0.4],

81

["Synset('get.v.27')", "[Synset('catch.v.09')]", 0.8571428571428571],

["Synset('get.v.28')", "[Synset('annoy.v.01')]", 0.8],

["Synset('get.v.29')", "[Synset('touch.v.03')]", 0.8],

["Synset('catch.v.24')", "[Synset('reproduce.v.03')]",

0.8888888888888888], ["Synset('draw.v.15')", "[Synset('effect.v.01')]",

0.8571428571428571], ["Synset('get.v.32')", "[Synset('destroy.v.02')]",

0.4], ["Synset('perplex.v.01')", "[Synset('confuse.v.02')]", 0.8],

["Synset('get_down.v.07')", "{}", 0], ["Synset('suffer.v.02')",

"[Synset('experience.v.03')]", 0.8571428571428571],

["Synset('beget.v.01')", "[Synset('make.v.03')]", 0.4]]], ["a", "DT",

[]], ["bit", "NN", [["Synset('spot.n.10')",

"[Synset('small_indefinite_quantity.n.01')]", 0.9090909090909091],

["Synset('bit.n.02')", "[Synset('fragment.n.01')]", 0.9090909090909091],

["Synset('moment.n.02')", "[Synset('time.n.03')]", 0.9230769230769231],

["Synset('piece.n.05')", "[Synset('case.n.01')]", 0.9230769230769231],

["Synset('bit.n.05')", "[Synset('stable_gear.n.01')]",

0.9473684210526315], ["Synset('bit.n.06')",

"[Synset('unit_of_measurement.n.01')]", 0.9090909090909091],

["Synset('morsel.n.02')", "[Synset('taste.n.05')]", 0.9230769230769231],

["Synset('snatch.n.01')", "[Synset('fragment.n.03')]",

0.9411764705882353], ["Synset('act.n.04')",

"[Synset('performance.n.01')]", 0.9333333333333333],

["Synset('bit.n.10')", "[Synset('part.n.02')]", 0.8888888888888888],

["Synset('bit.n.11')", "[Synset('cutting_implement.n.01')]",

0.9473684210526315]]], ["of", "IN", []], ["paper", "NN",

[["Synset('paper.n.01')", "[Synset('material.n.01')]",

0.9230769230769231], ["Synset('composition.n.08')",

"[Synset('essay.n.01')]", 0.9230769230769231],

["Synset('newspaper.n.01')", "[Synset('press.n.02')]",

0.9473684210526315], ["Synset('paper.n.04')", "[Synset('medium.n.01')]",

0.9333333333333333], ["Synset('paper.n.05')", "[Synset('article.n.01')]",

0.9411764705882353], ["Synset('newspaper.n.02')",

"[Synset('publisher.n.01')]", 0.9473684210526315],

["Synset('newspaper.n.03')", "[Synset('product.n.02')]",

0.9333333333333333]]], ["does", "VBZ", [["Synset('make.v.01')", "{}", 0],

82

["Synset('perform.v.01')", "{}", 0], ["Synset('do.v.03')",

"[Synset('carry_through.v.01')]", 0.8888888888888888],

["Synset('do.v.04')", "[Synset('proceed.v.04')]", 0.8],

["Synset('cause.v.01')", "[Synset('make.v.03')]", 0.4],

["Synset('practice.v.01')", "{}", 0], ["Synset('suffice.v.01')",

"[Synset('satisfy.v.01')]", 0.8888888888888888], ["Synset('do.v.08')",

"[Synset('create.v.05')]", 0.8], ["Synset('act.v.02')", "{}", 0],

["Synset('serve.v.09')", "[Synset('spend.v.01')]", 0.4],

["Synset('do.v.11')", "{}", 0], ["Synset('dress.v.16')",

"[Synset('groom.v.03')]", 0.8888888888888888], ["Synset('do.v.13')",

"[Synset('travel.v.01')]", 0.4]]], ["n't", "RB", []], ["mean", "VB",

[["Synset('mean.v.01')", "[Synset('convey.v.01')]", 0.9333333333333333],

["Synset('entail.v.01')", "[Synset('necessitate.v.02')]",

0.9090909090909091], ["Synset('mean.v.03')", "{}", 0],

["Synset('intend.v.01')", "{}", 0], ["Synset('mean.v.05')", "{}", 0],

["Synset('think_of.v.04')", "[Synset('associate.v.01')]", 0.8],

["Synset('mean.v.07')", "[Synset('intend.v.02')]", 0.8571428571428571]]],

["I", "PRP", []], ["'m", "VBP", []], ["going", "VBG",

[["Synset('travel.v.01')", "{}", 0], ["Synset('go.v.02')",

"[Synset('act.v.01')]", 0.4], ["Synset('go.v.03')",

"[Synset('exit.v.01')]", 0.8], ["Synset('become.v.01')",

"[Synset('change_state.v.01')]", 0.8], ["Synset('go.v.05')", "{}", 0],

["Synset('run.v.05')", "[Synset('be.v.01')]", 0.4],

["Synset('run.v.03')", "[Synset('be.v.03')]", 0.4],

["Synset('proceed.v.04')", "[Synset('happen.v.01')]", 0.4],

["Synset('go.v.09')", "[Synset('disappear.v.01')]", 0.4],

["Synset('go.v.10')", "[Synset('be.v.01')]", 0.4],

["Synset('sound.v.02')", "[Synset('cause_to_be_perceived.v.01')]", 0.4],

["Synset('function.v.01')", "{}", 0], ["Synset('run_low.v.01')",

"[Synset('end.v.01')]", 0.4], ["Synset('move.v.13')",

"[Synset('change.v.02')]", 0.4], ["Synset('survive.v.01')", "{}", 0],

["Synset('go.v.16')", "{}", 0], ["Synset('die.v.01')",

"[Synset('change_state.v.01')]", 0.8], ["Synset('belong.v.03')",

"[Synset('be.v.03')]", 0.4], ["Synset('go.v.19')",

"[Synset('compare.v.02')]", 0.8], ["Synset('start.v.09')", "{}", 0],

83

["Synset('move.v.15')", "{}", 0], ["Synset('go.v.22')", "{}", 0],

["Synset('go.v.23')", "{}", 0], ["Synset('blend.v.02')",

"[Synset('harmonize.v.01')]", 0.8571428571428571], ["Synset('go.v.25')",

"[Synset('be.v.03')]", 0.4], ["Synset('fit.v.02')",

"[Synset('fit.v.07')]", 0.8], ["Synset('rifle.v.02')",

"[Synset('search.v.04')]", 0.8], ["Synset('go.v.28')", "{}", 0],

["Synset('plump.v.04')", "[Synset('choose.v.01')]", 0.8],

["Synset('fail.v.04')", "[Synset('change.v.02')]", 0.4]]], ["to", "TO",

[]], ["take", "VB", [["Synset('take.v.01')", "[Synset('act.v.01')]",

0.4], ["Synset('take.v.02')", "[Synset('use.v.03')]", 0.4],

["Synset('lead.v.01')", "{}", 0], ["Synset('take.v.04')", "{}", 0],

["Synset('assume.v.03')", "[Synset('change.v.02')]", 0.4],

["Synset('take.v.06')", "[Synset('interpret.v.01')]", 0.8],

["Synset('bring.v.01')", "[Synset('transport.v.02')]", 0.8],

["Synset('take.v.08')", "{}", 0], ["Synset('take.v.09')",

"[Synset('use.v.01')]", 0.4], ["Synset('choose.v.01')",

"[Synset('decide.v.01')]", 0.4], ["Synset('accept.v.02')",

"[Synset('get.v.01')]", 0.4], ["Synset('fill.v.04')",

"[Synset('work.v.02')]", 0.4], ["Synset('consider.v.03')",

"[Synset('think_about.v.01')]", 0.8], ["Synset('necessitate.v.01')",

"{}", 0], ["Synset('take.v.15')", "[Synset('experience.v.03')]",

0.8571428571428571], ["Synset('film.v.01')", "[Synset('record.v.01')]",

0.8888888888888888], ["Synset('remove.v.01')", "{}", 0],

["Synset('consume.v.02')", "{}", 0], ["Synset('take.v.19')",

"[Synset('undergo.v.01')]", 0.8], ["Synset('take.v.20')", "{}", 0],

["Synset('take.v.21')", "{}", 0], ["Synset('assume.v.05')",

"[Synset('move.v.03')]", 0.4], ["Synset('accept.v.05')",

"[Synset('accept.v.02')]", 0.8], ["Synset('take.v.24')",

"[Synset('receive.v.02')]", 0.8], ["Synset('learn.v.04')", "{}", 0],

["Synset('claim.v.05')", "[Synset('necessitate.v.01')]", 0.4],

["Synset('take.v.27')", "[Synset('head.v.01')]", 0.8571428571428571],

["Synset('aim.v.01')", "[Synset('position.v.01')]", 0.8571428571428571],

["Synset('take.v.29')", "[Synset('become.v.01')]", 0.8571428571428571],

["Synset('carry.v.02')", "[Synset('have.v.02')]", 0.4],

["Synset('lease.v.04')", "[Synset('get.v.01')]", 0.4],

84

["Synset('subscribe.v.05')", "[Synset('buy.v.01')]", 0.8],

["Synset('take.v.33')", "[Synset('buy.v.01')]", 0.8],

["Synset('take.v.34')", "{}", 0], ["Synset('take.v.35')",

"[Synset('sleep_together.v.01')]", 0.8888888888888888],

["Synset('claim.v.04')", "[Synset('affirm.v.02')]", 0.8888888888888888],

["Synset('accept.v.08')", "[Synset('be.v.01')]", 0.4],

["Synset('contain.v.05')", "[Synset('be.v.01')]", 0.4],

["Synset('take.v.39')", "{}", 0], ["Synset('drive.v.16')",

"[Synset('traverse.v.01')]", 0.8571428571428571], ["Synset('take.v.41')",

"[Synset('win.v.01')]", 0.4], ["Synset('contract.v.04')",

"[Synset('sicken.v.02')]", 0.8888888888888888]]], ["your", "PRP$", []],

["advice", "NN", [["Synset('advice.n.01')", "[Synset('proposal.n.01')]",

0.9090909090909091]]], ["I", "PRP", []], ["want", "VBP",

[["Synset('desire.v.01')", "{}", 0], ["Synset('want.v.02')",

"[Synset('be.v.01')]", 0.4], ["Synset('want.v.03')",

"[Synset('search.v.01')]", 0.4], ["Synset('want.v.04')",

"[Synset('demand.v.01')]", 0.9230769230769231], ["Synset('want.v.05')",

"[Synset('miss.v.06')]", 0.4]]], ["to", "TO", []], ["see", "VB",

[["Synset('see.v.01')", "[Synset('perceive.v.01')]", 0.4],

["Synset('understand.v.02')", "{}", 0], ["Synset('witness.v.02')",

"[Synset('experience.v.01')]", 0.8571428571428571],

["Synset('visualize.v.01')", "[Synset('imagine.v.01')]",

0.8571428571428571], ["Synset('see.v.05')", "[Synset('think.v.01')]",

0.8571428571428571], ["Synset('learn.v.02')", "{}", 0],

["Synset('watch.v.03')", "[Synset('watch.v.01')]", 0.4],

["Synset('meet.v.01')", "{}", 0], ["Synset('determine.v.08')", "{}", 0],

["Synset('see.v.10')", "[Synset('verify.v.01')]", 0.8],

["Synset('see.v.11')", "[Synset('visit.v.03')]", 0.8],

["Synset('see.v.12')", "[Synset('visit.v.03')]", 0.8],

["Synset('visit.v.01')", "[Synset('tour.v.01')]", 0.8571428571428571],

["Synset('attend.v.02')", "[Synset('care.v.02')]", 0.8571428571428571],

["Synset('see.v.15')", "[Synset('receive.v.05')]", 0.4],

["Synset('go_steady.v.01')", "[Synset('consort.v.01')]",

0.8571428571428571], ["Synset('see.v.17')", "[Synset('see.v.01')]", 0.8],

["Synset('see.v.18')", "[Synset('consider.v.05')]", 0.9333333333333333],

85

["Synset('see.v.19')", "[Synset('detect.v.01')]", 0.8571428571428571],

["Synset('examine.v.02')", "{}", 0], ["Synset('experience.v.01')",

"[Synset('undergo.v.01')]", 0.8], ["Synset('see.v.22')",

"[Synset('accompany.v.02')]", 0.8], ["Synset('see.v.23')",

"[Synset('bet.v.02')]", 0.8888888888888888], ["Synset('interpret.v.01')",

"[Synset('understand.v.01')]", 0.4]]], ["the", "DT", []], ["results",

"NNS", [["Synset('consequence.n.01')", "[Synset('phenomenon.n.01')]",

0.8888888888888888], ["Synset('solution.n.02')",

"[Synset('statement.n.01')]", 0.9090909090909091],

["Synset('result.n.03')", "[Synset('ending.n.04')]", 0.9230769230769231],

["Synset('resultant_role.n.01')", "[Synset('semantic_role.n.01')]",

0.9333333333333333]]]

Vectors {"word": "I", "pos": "PRP", "domain": "Compliance", "time": ["I",

"00:00:00.000"], "vector": ["1.01219512195", "1.0", "1.01219512195"]},

{"word": "'ve", "pos": "VBP", "domain": "", "time": ["'ve",

"00:00:02.005"], "vector": ["0.0", "1.0", "0.0"]}, {"word": "had", "pos":

"VBN", "domain": "", "time": ["had", "00:00:03.333"], "vector": ["0.0",

"0.111111111111", "0.0"]}, {"word": "obese", "pos": "JJ", "domain":

"Body_description_holistic", "time": ["obese", "00:00:03.075"], "vector":

["0.0243902439024", "1", "0.0487804878049"]}, {"word": "nutritionist",

"pos": "JJ", "domain": "", "time": ["nutritionist", "00:00:04.000"],

"vector": ["0.0731707317073", "1.0", "0.0"]}, {"word": "try", "pos":

"NN", "domain": "Isolated_places", "time": ["try", "00:00:04.166"],

"vector": ["0.0243902439024", "0.0769230769231", "0.0487804878049"]},

{"word": "and", "pos": "CC", "domain": "", "time": ["and",

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, {"word": "tell",

"pos": "VB", "domain": "Omen", "time": ["tell", "00:00:04.375"],

"vector": ["0.0243902439024", "0.0666666666667", "0.0243902439024"]},

{"word": "me", "pos": "PRP", "domain": "", "time": ["me",

"00:00:02.085"], "vector": ["0.0", "1.0", "0.0"]}, {"word": "that",

"pos": "IN", "domain": "", "time": ["that", "00:00:05.275"], "vector":

["0.0", "1.0", "0.0"]}, {"word": "my", "pos": "PRP$", "domain": "",

"time": ["my", "00:00:06.833"], "vector": ["0.0", "1.0", "0.0"]},

{"word": "diet", "pos": "NN", "domain": "", "time": ["diet",

"00:00:06.487"], "vector": ["0.0853658536585", "0.047619047619", "0.0"]},

86

{"word": "is", "pos": "VBZ", "domain": "", "time": ["is",

"00:00:06.073"], "vector": ["0.0", "0.0526315789474", "0.0"]}, {"word":

"wrong", "pos": "JJ", "domain": "Morality_evaluation", "time": ["wrong",

"00:00:06.891"], "vector": ["0.0243902439024", "1", "0.0365853658537"]},

{"word": "and", "pos": "CC", "domain": "", "time": ["and",

"00:00:07.714"], "vector": ["0.0", "1.0", "0.0"]}, {"word": "I", "pos":

"PRP", "domain": "Compliance", "time": ["I", "00:00:07.937"], "vector":

["1.01219512195", "1.0", "1.01219512195"]}, {"word": "'m", "pos": "VBP",

"domain": "", "time": ["'m", "00:00:07.161"], "vector": ["0.0", "1.0",

"0.0"]}, {"word": "like", "pos": "IN", "domain": "Similarity", "time":

["like", "00:00:07.215"], "vector": ["0.19512195122", "1.0",

"0.158536585366"]}, {"word": "hey", "pos": "NN", "domain": "", "time":

["hey", "00:00:05.069"], "vector": ["0.0853658536585", "1.0", "0.0"]},

{"word": "just", "pos": "RB", "domain": "", "time": ["just",

"00:00:06.103"], "vector": ["0.0", "1", "0.0"]}, {"word": "because",

"pos": "IN", "domain": "", "time": ["because", "00:00:06.448"], "vector":

["0.0", "1.0", "0.0"]}, {"word": "you", "pos": "PRP", "domain": "",

"time": ["you", "00:00:06.620"], "vector": ["0.0", "1.0", "0.0"]},

{"word": "'ve", "pos": "VBP", "domain": "", "time": ["'ve",

"00:00:06.724"], "vector": ["0.0", "1.0", "0.0"]}, {"word": "got", "pos":

"VBN", "domain": "Wearing", "time": ["got", "00:00:06.793"], "vector":

["0.0731707317073", "0.0588235294118", "0.0731707317073"]}, {"word": "a",

"pos": "DT", "domain": "", "time": ["a", "00:00:06.842"], "vector":

["0.0", "1.0", "0.0"]}, {"word": "bit", "pos": "NN", "domain":

"Quantified_mass", "time": ["bit", "00:00:06.879"], "vector":

["0.0243902439024", "0.0526315789474", "0.280487804878"]}, {"word": "of",

"pos": "IN", "domain": "", "time": ["of", "00:00:06.908"], "vector":

["0.0", "1.0", "0.0"]}, {"word": "paper", "pos": "NN", "domain": "Text",

"time": ["paper", "00:00:06.012"], "vector": ["0.0609756097561",

"0.0526315789474", "0.0975609756098"]}, {"word": "does", "pos": "VBZ",

"domain": "", "time": ["does", "00:00:07.068"], "vector": ["0.0",

"0.111111111111", "0.0"]}, {"word": "n't", "pos": "RB", "domain": "",

"time": ["n't", "00:00:08.002"], "vector": ["0.0", "1.0", "0.0"]},

{"word": "mean", "pos": "VB", "domain": "Linguistic_meaning", "time":

["mean", "00:00:08.046"], "vector": ["0.134146341463", "0.0666666666667",

87

"0.0975609756098"]}, {"word": "I", "pos": "PRP", "domain": "Compliance",

"time": ["I", "00:00:08.616"], "vector": ["1.01219512195", "1.0",

"1.01219512195"]}, {"word": "'m", "pos": "VBP", "domain": "", "time":

["'m", "00:00:08.072"], "vector": ["0.0", "1.0", "0.0"]}, {"word":

"going", "pos": "VBG", "domain": "Getting_underway", "time": ["going",

"00:00:08.794"], "vector": ["0.0853658536585", "0.142857142857",

"0.0853658536585"]}, {"word": "to", "pos": "TO", "domain": "", "time":

["to", "00:00:08.085"], "vector": ["0.0", "1.0", "0.0"]}, {"word":

"take", "pos": "VB", "domain": "Getting_vehicle_underway", "time":

["take", "00:00:08.893"], "vector": ["0.0731707317073", "0.111111111111",

"0.0731707317073"]}, {"word": "your", "pos": "PRP$", "domain": "",

"time": ["your", "00:00:07.068"], "vector": ["0.0", "1.0", "0.0"]},

{"word": "advice", "pos": "NN", "domain": "", "time": ["advice",

"00:00:13.002"], "vector": ["0.0731707317073", "0.0909090909091",

"0.0"]}, {"word": "I", "pos": "PRP", "domain": "Compliance", "time":

["I", "00:00:14.008"], "vector": ["1.01219512195", "1.0",

"1.01219512195"]}, {"word": "want", "pos": "VBP", "domain": "Possession",

"time": ["want", "00:00:15.069"], "vector": ["0.0853658536585",

"0.0769230769231", "0.0853658536585"]}, {"word": "to", "pos": "TO",

"domain": "", "time": ["to", "00:00:16.224"], "vector": ["0.0", "1.0",

"0.0"]}, {"word": "see", "pos": "VB", "domain": "Request", "time":

["see", "00:00:16.058"], "vector": ["0.121951219512", "0.0666666666667",

"0.121951219512"]}, {"word": "the", "pos": "DT", "domain": "", "time":

["the", "00:00:16.834"], "vector": ["0.0", "1.0", "0.0"]}, {"word":

"results", "pos": "NNS", "domain": "", "time": ["results",

"00:00:17.025"], "vector": ["0.121951219512", "0.0666666666667", "0.0"]}

K-Nearest

Neighbor

{"current": {"word": "I", "pos": "PRP", "domain": "Compliance", "time":

["I", "00:00:00.000"], "vector": ["1.01219512195", "1.0",

"1.01219512195"]}, "neighbor": {"word": "I", "pos": "PRP", "domain":

"Compliance", "time": ["I", "00:00:07.937"], "vector": ["1.01219512195",

"1.0", "1.01219512195"]}, "distance": 0.0}, {"current": {"word": "'ve",

"pos": "VBP", "domain": "", "time": ["'ve", "00:00:02.005"], "vector":

["0.0", "1.0", "0.0"]}, "neighbor": {"word": "and", "pos": "CC",

"domain": "", "time": ["and", "00:00:04.285"], "vector": ["0.0", "1.0",

"0.0"]}, "distance": 0.0}, {"current": {"word": "had", "pos": "VBN",

88

"domain": "", "time": ["had", "00:00:03.333"], "vector": ["0.0",

"0.111111111111", "0.0"]}, "neighbor": {"word": "does", "pos": "VBZ",

"domain": "", "time": ["does", "00:00:07.068"], "vector": ["0.0",

"0.111111111111", "0.0"]}, "distance": 0.0}, {"current": {"word":

"obese", "pos": "JJ", "domain": "Body_description_holistic", "time":

["obese", "00:00:03.075"], "vector": ["0.0243902439024", "1",

"0.0487804878049"]}, "neighbor": {"word": "obese", "pos": "JJ", "domain":

"Body_description_holistic", "time": ["obese", "00:08:49.201"], "vector":

["0.0243902439024", "1", "0.0487804878049"]}, "distance": 0.0},

{"current": {"word": "nutritionist", "pos": "JJ", "domain": "", "time":

["nutritionist", "00:00:04.000"], "vector": ["0.0731707317073", "1.0",

"0.0"]}, "neighbor": {"word": "nutritionist", "pos": "JJ", "domain": "",

"time": ["nutritionist", "00:02:32.011"], "vector": ["0.0731707317073",

"1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": "try", "pos":

"NN", "domain": "Isolated_places", "time": ["try", "00:00:04.166"],

"vector": ["0.0243902439024", "0.0769230769231", "0.0487804878049"]},

"neighbor": {"word": "experience", "pos": "NN", "domain": "Expertise",

"time": ["experience", "00:04:42.065"], "vector": ["0.0243902439024",

"0.0769230769231", "0.0487804878049"]}, "distance": 0.0}, {"current":

{"word": "and", "pos": "CC", "domain": "", "time": ["and",

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word":

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"],

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word":

"tell", "pos": "VB", "domain": "Omen", "time": ["tell", "00:00:04.375"],

"vector": ["0.0243902439024", "0.0666666666667", "0.0243902439024"]},

"neighbor": {"word": "fact", "pos": "NN", "domain": "Artifact", "time":

["fact", "00:00:40.521"], "vector": ["0.0243902439024",

"0.0666666666667", "0.0243902439024"]}, "distance": 0.0}, {"current":

{"word": "me", "pos": "PRP", "domain": "", "time": ["me",

"00:00:02.085"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word":

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"],

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word":

"that", "pos": "IN", "domain": "", "time": ["that", "00:00:05.275"],

"vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word": "and", "pos":

"CC", "domain": "", "time": ["and", "00:00:04.285"], "vector": ["0.0",

89

"1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": "my", "pos":

"PRP$", "domain": "", "time": ["my", "00:00:06.833"], "vector": ["0.0",

"1.0", "0.0"]}, "neighbor": {"word": "and", "pos": "CC", "domain": "",

"time": ["and", "00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]},

"distance": 0.0}, {"current": {"word": "diet", "pos": "NN", "domain": "",

"time": ["diet", "00:00:06.487"], "vector": ["0.0853658536585",

"0.047619047619", "0.0"]}, "neighbor": {"word": "diet", "pos": "NN",

"domain": "", "time": ["diet", "00:08:50.093"], "vector":

["0.0853658536585", "0.047619047619", "0.0"]}, "distance": 0.0},

{"current": {"word": "is", "pos": "VBZ", "domain": "", "time": ["is",

"00:00:06.073"], "vector": ["0.0", "0.0526315789474", "0.0"]},

"neighbor": {"word": "been", "pos": "VBN", "domain": "", "time": ["been",

"00:00:28.393"], "vector": ["0.0", "0.0526315789474", "0.0"]},

"distance": 0.0}, {"current": {"word": "wrong", "pos": "JJ", "domain":

"Morality_evaluation", "time": ["wrong", "00:00:06.891"], "vector":

["0.0243902439024", "1", "0.0365853658537"]}, "neighbor": {"word":

"wrong", "pos": "JJ", "domain": "Morality_evaluation", "time": ["wrong",

"00:08:52.085"], "vector": ["0.0243902439024", "1", "0.0365853658537"]},

"distance": 0.0}, {"current": {"word": "and", "pos": "CC", "domain": "",

"time": ["and", "00:00:07.714"], "vector": ["0.0", "1.0", "0.0"]},

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and",

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0},

{"current": {"word": "I", "pos": "PRP", "domain": "Compliance", "time":

["I", "00:00:07.937"], "vector": ["1.01219512195", "1.0",

"1.01219512195"]}, "neighbor": {"word": "I", "pos": "PRP", "domain":

"Compliance", "time": ["I", "00:00:07.937"], "vector": ["1.01219512195",

"1.0", "1.01219512195"]}, "distance": 0.0}, {"current": {"word": "'m",

"pos": "VBP", "domain": "", "time": ["'m", "00:00:07.161"], "vector":

["0.0", "1.0", "0.0"]}, "neighbor": {"word": "and", "pos": "CC",

"domain": "", "time": ["and", "00:00:04.285"], "vector": ["0.0", "1.0",

"0.0"]}, "distance": 0.0}, {"current": {"word": "like", "pos": "IN",

"domain": "Similarity", "time": ["like", "00:00:07.215"], "vector":

["0.19512195122", "1.0", "0.158536585366"]}, "neighbor": {"word": "like",

"pos": "IN", "domain": "Similarity", "time": ["like", "00:00:23.855"],

"vector": ["0.19512195122", "1.0", "0.158536585366"]}, "distance": 0.0},

90

{"current": {"word": "hey", "pos": "NN", "domain": "", "time": ["hey",

"00:00:05.069"], "vector": ["0.0853658536585", "1.0", "0.0"]},

"neighbor": {"word": "hey", "pos": "NN", "domain": "", "time": ["hey",

"00:00:17.648"], "vector": ["0.0853658536585", "1.0", "0.0"]},

"distance": 0.0}, {"current": {"word": "just", "pos": "RB", "domain": "",

"time": ["just", "00:00:06.103"], "vector": ["0.0", "1", "0.0"]},

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and",

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0},

{"current": {"word": "because", "pos": "IN", "domain": "", "time":

["because", "00:00:06.448"], "vector": ["0.0", "1.0", "0.0"]},

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and",

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0},

{"current": {"word": "you", "pos": "PRP", "domain": "", "time": ["you",

"00:00:06.620"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word":

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"],

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word":

"'ve", "pos": "VBP", "domain": "", "time": ["'ve", "00:00:06.724"],

"vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word": "and", "pos":

"CC", "domain": "", "time": ["and", "00:00:04.285"], "vector": ["0.0",

"1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": "got", "pos":

"VBN", "domain": "Wearing", "time": ["got", "00:00:06.793"], "vector":

["0.0731707317073", "0.0588235294118", "0.0731707317073"]}, "neighbor":

{"word": "got", "pos": "VBD", "domain": "Wearing", "time": ["got",

"00:08:52.095"], "vector": ["0.0731707317073", "0.0588235294118",

"0.0731707317073"]}, "distance": 0.0}, {"current": {"word": "a", "pos":

"DT", "domain": "", "time": ["a", "00:00:06.842"], "vector": ["0.0",

"1.0", "0.0"]}, "neighbor": {"word": "and", "pos": "CC", "domain": "",

"time": ["and", "00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]},

"distance": 0.0}, {"current": {"word": "bit", "pos": "NN", "domain":

"Quantified_mass", "time": ["bit", "00:00:06.879"], "vector":

["0.0243902439024", "0.0526315789474", "0.280487804878"]}, "neighbor":

{"word": "bit", "pos": "NN", "domain": "Quantified_mass", "time": ["bit",

"00:08:53.426"], "vector": ["0.0243902439024", "0.0526315789474",

"0.280487804878"]}, "distance": 0.0}, {"current": {"word": "of", "pos":

"IN", "domain": "", "time": ["of", "00:00:06.908"], "vector": ["0.0",

91

"1.0", "0.0"]}, "neighbor": {"word": "and", "pos": "CC", "domain": "",

"time": ["and", "00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]},

"distance": 0.0}, {"current": {"word": "paper", "pos": "NN", "domain":

"Text", "time": ["paper", "00:00:06.012"], "vector": ["0.0609756097561",

"0.0526315789474", "0.0975609756098"]}, "neighbor": {"word": "paper",

"pos": "NN", "domain": "Text", "time": ["paper", "00:06:51.802"],

"vector": ["0.0609756097561", "0.0526315789474", "0.0975609756098"]},

"distance": 0.0}, {"current": {"word": "does", "pos": "VBZ", "domain":

"", "time": ["does", "00:00:07.068"], "vector": ["0.0", "0.111111111111",

"0.0"]}, "neighbor": {"word": "does", "pos": "VBZ", "domain": "", "time":

["does", "00:00:07.068"], "vector": ["0.0", "0.111111111111", "0.0"]},

"distance": 0.0}, {"current": {"word": "n't", "pos": "RB", "domain": "",

"time": ["n't", "00:00:08.002"], "vector": ["0.0", "1.0", "0.0"]},

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and",

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0},

{"current": {"word": "mean", "pos": "VB", "domain": "Linguistic_meaning",

"time": ["mean", "00:00:08.046"], "vector": ["0.134146341463",

"0.0666666666667", "0.0975609756098"]}, "neighbor": {"word": "mean",

"pos": "VBP", "domain": "Linguistic_meaning", "time": ["mean",

"00:03:19.665"], "vector": ["0.134146341463", "0.0666666666667",

"0.0975609756098"]}, "distance": 0.0}, {"current": {"word": "I", "pos":

"PRP", "domain": "Compliance", "time": ["I", "00:00:08.616"], "vector":

["1.01219512195", "1.0", "1.01219512195"]}, "neighbor": {"word": "I",

"pos": "PRP", "domain": "Compliance", "time": ["I", "00:00:07.937"],

"vector": ["1.01219512195", "1.0", "1.01219512195"]}, "distance": 0.0},

{"current": {"word": "'m", "pos": "VBP", "domain": "", "time": ["'m",

"00:00:08.072"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word":

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"],

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word":

"going", "pos": "VBG", "domain": "Getting_underway", "time": ["going",

"00:00:08.794"], "vector": ["0.0853658536585", "0.142857142857",

"0.0853658536585"]}, "neighbor": {"word": "going", "pos": "VBG",

"domain": "Getting_underway", "time": ["going", "00:01:25.949"],

"vector": ["0.0853658536585", "0.142857142857", "0.0853658536585"]},

"distance": 0.0}, {"current": {"word": "to", "pos": "TO", "domain": "",

92

"time": ["to", "00:00:08.085"], "vector": ["0.0", "1.0", "0.0"]},

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and",

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0},

{"current": {"word": "take", "pos": "VB", "domain":

"Getting_vehicle_underway", "time": ["take", "00:00:08.893"], "vector":

["0.0731707317073", "0.111111111111", "0.0731707317073"]}, "neighbor":

{"word": "take", "pos": "VB", "domain": "Getting_vehicle_underway",

"time": ["take", "00:02:55.683"], "vector": ["0.0731707317073",

"0.111111111111", "0.0731707317073"]}, "distance": 0.0}, {"current":

{"word": "your", "pos": "PRP$", "domain": "", "time": ["your",

"00:00:07.068"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word":

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"],

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word":

"advice", "pos": "NN", "domain": "", "time": ["advice", "00:00:13.002"],

"vector": ["0.0731707317073", "0.0909090909091", "0.0"]}, "neighbor":

{"word": "advice", "pos": "NN", "domain": "", "time": ["advice",

"00:04:14.618"], "vector": ["0.0731707317073", "0.0909090909091",

"0.0"]}, "distance": 0.0}, {"current": {"word": "I", "pos": "PRP",

"domain": "Compliance", "time": ["I", "00:00:14.008"], "vector":

["1.01219512195", "1.0", "1.01219512195"]}, "neighbor": {"word": "I",

"pos": "PRP", "domain": "Compliance", "time": ["I", "00:00:07.937"],

"vector": ["1.01219512195", "1.0", "1.01219512195"]}, "distance": 0.0},

{"current": {"word": "want", "pos": "VBP", "domain": "Possession",

"time": ["want", "00:00:15.069"], "vector": ["0.0853658536585",

"0.0769230769231", "0.0853658536585"]}, "neighbor": {"word": "want",

"pos": "VBP", "domain": "Possession", "time": ["want", "00:03:33.022"],

"vector": ["0.0853658536585", "0.0769230769231", "0.0853658536585"]},

"distance": 0.0}, {"current": {"word": "to", "pos": "TO", "domain": "",

"time": ["to", "00:00:16.224"], "vector": ["0.0", "1.0", "0.0"]},

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and",

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0},

{"current": {"word": "see", "pos": "VB", "domain": "Request", "time":

["see", "00:00:16.058"], "vector": ["0.121951219512", "0.0666666666667",

"0.121951219512"]}, "neighbor": {"word": "see", "pos": "VB", "domain":

"Request", "time": ["see", "00:00:57.537"], "vector": ["0.121951219512",

93

"0.0666666666667", "0.121951219512"]}, "distance": 0.0}, {"current":

{"word": "the", "pos": "DT", "domain": "", "time": ["the",

"00:00:16.834"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word":

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"],

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word":

"results", "pos": "NNS", "domain": "", "time": ["results",

"00:00:17.025"], "vector": ["0.121951219512", "0.0666666666667", "0.0"]},

"neighbor": {"word": "results", "pos": "NNS", "domain": "", "time":

["results", "00:03:48.355"], "vector": ["0.121951219512",

"0.0666666666667", "0.0"]}, "distance": 0.0}

Table 5 - K-Nearest Neighbor for Discourse 6NOSD0XK0r8

Temporal Flow Nearest Neighbor Distance

Time Word Domain POS Time Word Domain POS

00:00:24.200 report Statement NN 00:25:55.613 statement Statement NN 0.001626016

00:00:48.125 room Building_subparts NN 01:02:22.989 AT Calendric_unit NNP 0.003575798

00:01:05.998 talk Discussion NN 00:20:56.051 show Hostile_encounter NN 0.004436408

00:01:39.512 hang Cause_change VBP 00:24:40.429 trait Natural_features NN 0.001626016

00:02:46.008 biography Text NN 01:04:03.515 Island Natural_features NNP 0.001592357

00:03:19.089 fun Contingency NN 00:36:21.982 cycle Vehicle NN 0.001592357

00:04:39.443 guys

VBP 00:07:38.085 groups

NNS 0.003252033

00:06:46.418 corporation Businesses NN 00:38:38.575 friends Personal_relationship NNS 0.001592357

00:07:07.017 sit Placing VB 00:48:57.355 regret Experiencer_focus VB 0.003575798

00:07:31.522 sort Hedging RB 00:06:01.005 something Hedging NN 0.009756098

00:10:05.483 outrage Emotion_directed NN 00:56:30.448 US Calendric_unit NNP 0.003184713

00:11:02.431 point Appointing VB 00:28:24.803 public Public_services NN 0.005778937

00:12:49.131 hop Cause_harm VB 01:10:01.882 fix Attaching VB 0.001592357

00:12:55.032 knows

NNS 00:20:00.188 situation

NN 0.001626016

00:14:15.431 buddy Attention_getting NN 00:15:19.026 cousin Kinship NN 0.011146497

00:14:20.666 night Calendric_unit NN 01:33:41.949 cell Building_subparts NN 0.003184713

00:14:46.924 na Size JJ 00:21:56.629 interesting Mental_stimulus_stimulus_focus JJ 0.001592357

00:15:02.108 plead Request VB 00:47:18.639 request Request VB 0.01025641

00:15:19.654 lawyer People_by_vocation NN 01:13:16.862 girlfriend Personal_relationship NN 0.036016413

00:15:19.026 cousin Kinship NN 00:49:09.716 Terminator Death NNP 0.003184713

94

00:15:42.094 harassment Offenses NN 00:14:19.004 Monday Calendric_unit NNP 0.006369427

00:17:02.649 got Discussion NNS 00:14:46.924 na Size JJ 0.008126126

00:17:04.839 little Degree RB 00:14:56.047 public Secrecy_status JJ 0.007151595

00:17:52.420 compare Evaluative_comparison VB 01:30:08.421 screw Bungling VB 0.001592357

00:18:13.823 crap Desirability NN 01:20:22.008 read Desirability NN 0.008130081

00:18:14.558 citizen People_by_jurisdiction NNS 00:22:17.341 nationalist

NN 0.001592357

00:20:19.061 invites

NNS 00:14:24.036 perpetuating

VBG 0.038095238

00:20:31.014 Business Documents NNP 01:17:08.629 patron Being_named NN 0.004436408

00:20:43.002 cut Change_operational_state VB 00:00:17.008 turned

VBD 0.001592357

00:21:10.007 act Theft VBP 01:13:33.316 bring Cause_to_start VBP 0.001592357

00:21:10.406 behave Conduct VBP 01:06:46.855 meditate Cogitation VBP 0.006369427

00:22:03.089 disagree Quarreling NN 00:01:21.999 ideological

JJ 0.001592357

00:23:11.396 shape Cause_change VB 01:31:02.151 smear Filling VB 0.003184713

00:23:22.469 fan Body_parts NN 00:55:41.416 market Buildings NN 0.001592357

00:24:09.246 fear Experiencer_focus VBP 00:29:11.314 set Attack VBN 0.001592357

00:24:18.957 cut Leadership NN 00:27:34.783 rule Leadership NN 0.001626016

00:24:40.429 trait Natural_features NN 00:52:06.009 infiltrate Attack VB 0.001592357

00:25:01.035 glad Biological_area NN 00:23:49.004 names Namesake NNS 0.001626016

00:27:06.438 study Scrutiny NN 00:03:46.610 puzzle Emotion_directed NN 0.00477707

00:27:29.065 sure Telling VB 00:09:32.007 feedback

RB 0.001592357

00:27:58.514 cares Manipulation VBZ 00:48:57.355 regret Experiencer_focus VB 0.002275858

00:28:43.318 fight Hostile_encounter NN 00:35:37.097 punch Containers NN 0.002275858

00:29:40.842 decent Offenses NN 00:21:19.036 usually Frequency RB 0.001592357

00:29:49.056 progressive

NN 00:14:40.348 seen

VBN 0.001626016

00:30:23.087 ratio Leadership NN 00:00:14.091 engineer People_by_vocation NN 0.007151595

00:31:08.208 evolve Coming_to_be VB 00:39:21.395 depend Contingency VB 0.001592357

00:31:27.262 defense Defending NN 00:21:57.745 phrase

NN 0.001592357

00:33:48.028 suspect Suspicion NN 01:25:24.484 keep

NN 0.001592357

00:34:53.414 buck Containers NN 01:10:24.541 machine Weapon NN 0.001592357

00:35:37.097 punch Containers NN 00:28:43.318 fight Hostile_encounter NN 0.002275858

00:36:22.148 spin Biological_area NN 00:31:27.262 defense Defending NN 0.001592357

00:36:29.617 accord Documents NN 00:20:10.844 News Organization NNP 0.001592357

00:36:54.223 tweet Sounds NN 00:16:07.633 employment Being_employed NN 0.001592357

00:39:44.546 ok Omen VBP 00:32:02.238 publicly Secrecy_status RB 0.001592357

00:41:33.357 plenty Sufficiency NN 00:41:59.084 require Needing VBP 0.001592357

95

00:41:40.099 host Aggregate NN 00:06:50.052 population Aggregate NN 0.004761724

00:41:52.084 allow Statement VB 00:00:24.200 report Statement NN 0.01025641

00:41:59.084 require Needing VBP 00:41:33.357 plenty Sufficiency NN 0.001592357

00:42:08.000 hole Medical_conditions NN 00:13:51.039 band Abandonment NN 0.001592357

00:42:21.034 training

VBG 00:18:50.643 made

VBD 0.001626016

00:42:55.006 correct Prison NN 00:01:09.811 glad Emotions_by_stimulus JJ 0.001592357

00:43:15.416 gas Accoutrements NN 01:16:21.873 owner Intoxicants NN 0.002275858

00:43:29.008 move Intentionally_act NN 00:30:55.395 feelings Feeling NNS 0.001626016

00:43:41.456 na Being_named NNS 00:03:42.427 got Wearing VBD 0.00816666

00:47:05.083 dish Experiencer_obj VB 00:24:40.429 trait Natural_features NN 0.00477707

00:47:18.639 request Request VB 00:16:13.243 treat Request VBP 0.003252033

00:47:56.931 function Contingency NN 01:12:40.073 challenge Competition NN 0.001592357

00:48:11.853 throw Weapon NN 00:26:38.135 treatment Abusing NN 0.002275858

00:48:36.983 Super Leadership NNP 00:27:34.783 rule Leadership NN 0.004140787

00:48:41.624 courage Emotion_directed NN 01:07:08.830 summer Calendric_unit NN 0.003184713

00:48:57.355 regret Experiencer_focus VB 00:27:58.514 cares Manipulation VBZ 0.002275858

00:49:02.092 need Needing NN 00:01:04.769 story Individual_history NN 0.001626016

00:49:09.716 Terminator Death NNP 00:18:14.558 citizen People_by_jurisdiction NNS 0.001592357

00:50:50.011 average

NN 00:12:22.046 called

VBN 0.001626016

00:50:55.001 train Hindering VB 00:20:03.245 repeated Event_instance VBN 0.001592357

00:50:55.808 kid Attention_getting NN 01:22:46.480 sheep Animals NN 0.008198302

00:52:06.009 infiltrate Attack VB 00:24:40.429 trait Natural_features NN 0.001592357

00:52:18.039 tricky Difficulty JJ 01:15:17.425 single Personal_relationship JJ 0.001592357

00:52:34.981 field Locale_by_use NN 00:31:23.616 ER Medical_conditions NNP 0.001592357

00:52:34.255 leans Grooming VBZ 00:03:57.465 apply Using VB 0.001592357

00:52:37.829 libertarian

NN 00:03:25.716 biology

NN 0.003252033

00:53:25.018 Jersey

NNP 01:14:13.423 grades

NNS 0.001544402

00:55:03.609 elsewhere Locative_relation RB 00:17:39.025 San Expertise NNP 0.001592357

00:56:30.448 US Calendric_unit NNP 00:10:05.483 outrage Emotion_directed NN 0.003184713

00:57:19.000 load Filling VBZ 00:52:06.009 infiltrate Attack VB 0.001592357

00:57:30.228 drama Text NN 00:21:41.308 hate Buildings NN 0.002275858

00:57:36.638 cool Containers NN 00:43:55.322 la Commemorative NN 0.001592357

00:58:57.043 lists

VBZ 00:18:50.643 made

VBD 0.001626016

00:59:00.001 bill Body_parts NN 00:38:07.551 Bill Body_parts NNP 0.001626016

00:59:13.435 foundation Body_decoration NN 00:16:45.448 claim Judgment_communication NN 0.002275858

96

00:59:14.007 education Education_teaching NN 01:14:11.003 professor Education_teaching NN 0.003478261

00:59:44.455 ability Capability NN 00:07:07.017 sit Placing VB 0.00477707

01:00:24.652 second Measure_duration NN 00:23:22.662 Trump Sounds NNP 0.001592357

01:01:17.386 role Containers NN 01:10:17.583 weapon Weapon NN 0.001592357

01:02:27.774 arms Weapon NNS 01:00:24.652 second Measure_duration NN 0.001592357

01:03:20.011 drug Leadership NN 00:21:52.562 alt Building_subparts NN 0.005046219

01:03:28.581 increase Change_position_on_a_scale VB 01:11:37.705 choose Choosing VB 0.003184713

01:04:03.515 Island Natural_features NNP 00:02:46.008 biography Text NN 0.001592357

01:04:03.613 suck Desirability VBD 00:12:24.756 read Time_vector VBP 0.029469127

01:04:09.252 Reb Kinship NNP 00:02:30.013 explode Change_position_on_a_scale VB 0.001592357

01:04:59.583 attempt Attempt NN 00:10:50.001 fine Inhibit_movement NN 0.001592357

01:05:58.569 action Theft NN 00:30:49.636 heart Part_orientational NN 0.001592357

01:06:02.581 avenue Roadways NN 00:54:44.801 representative Leadership NN 0.001592357

01:06:46.855 meditate Cogitation VBP 01:21:14.779 cause Causation VB 0.005778937

01:07:26.269 visible Obviousness JJ 00:42:40.915 obvious Obviousness JJ 0.003252033

01:08:34.749 attack Attack VB 00:55:06.007 Valley Natural_features NNP 0.001592357

01:08:39.065 strike Attack NN 00:09:27.920 phone Word_relations NN 0.001592357

01:10:01.882 fix Attaching VB 00:12:49.131 hop Cause_harm VB 0.001592357

01:10:17.583 weapon Weapon NN 01:01:17.386 role Containers NN 0.001592357

01:10:24.541 machine Weapon NN 00:34:53.414 buck Containers NN 0.001592357

01:10:43.450 fair Fairness_evaluation VB 00:17:13.179 according

VBG 0.002275858

01:10:47.650 rate Intoxicants NN 01:08:35.367 mine Intoxicants NN 0.003252033

01:11:19.811 control Control VBP 00:03:16.769 took

VBD 0.001592357

01:11:37.705 choose Choosing VB 01:01:58.232 National Military NNP 0.002275858

01:12:09.083 agree Documents NN 00:31:46.000 exactly Proportional_quantity RB 0.005825612

01:12:40.073 challenge Competition NN 00:02:21.262 describe Communicate_categorization VB 0.001592357

01:13:16.862 girlfriend Personal_relationship NN 00:15:19.654 lawyer People_by_vocation NN 0.036016413

01:13:33.316 bring Cause_to_start VBP 00:21:10.007 act Theft VBP 0.001592357

01:13:42.380 bit Degree VB 00:34:06.332 come Suitability VB 0.006827573

01:14:06.062 kids

NNS 01:14:13.423 grades

NNS 0.001731602

01:14:08.048 say

RB 00:24:47.218 oh

IN 0.006504065

01:14:13.423 grades

NNS 00:53:25.018 Jersey

NNP 0.001544402

01:14:11.003 professor Education_teaching NN 00:59:14.007 education Education_teaching NN 0.003478261

01:14:32.493 CTO Calendric_unit NNP 00:01:46.428 ish Emotion_directed JJ 0.003184713

01:15:17.425 single Personal_relationship JJ 00:52:18.039 tricky Difficulty JJ 0.001592357

97

01:15:49.760 harm Stimulus_focus NN 01:08:35.367 mine Intoxicants NN 0.0065737

01:16:02.306 steam Apply_heat NN 01:05:56.474 income Earnings_and_losses NN 0.001592357

01:16:22.154 Emory Memory NNP 00:01:00.229 away Time_vector RB 0.014423159

01:16:43.226 community Aggregate NN 00:15:42.094 harassment Offenses NN 0.008003149

01:17:08.629 patron Being_named NN 00:20:31.014 Business Documents NNP 0.004436408

01:18:25.044 push Cause_change_of_position_on_a_scale NN 01:18:01.614 fire Setting_back_burn NN 0.002275858

01:18:33.045 well

IN 00:24:47.218 oh

IN 0.003252033

01:20:12.411 stop Preventing_or_letting NN 00:12:25.086 attack Attack NN 0.002275858

01:20:22.008 read Desirability NN 00:18:13.823 crap Desirability NN 0.008130081

01:20:26.947 name Cause_emotion VB 00:04:37.000 working

VBG 0.002275858

01:20:49.077 know

RB 01:02:42.058 know Being_named JJ 0.047770701

01:21:07.626 removal Removing NN 00:58:52.494 exchange Discussion NN 0.002275858

01:21:14.629 pens Containers NNS 00:34:53.414 buck Containers NN 0.003478261

01:21:14.779 cause Causation VB 00:27:28.170 join Adjacency VB 0.001592357

01:22:34.217 past Locative_relation IN 00:26:13.598 biological Weapon JJ 0.001592357

01:22:46.480 sheep Animals NN 01:02:29.056 monitor Information_display NN 0.007962925

01:22:54.834 attempt Attempt VB 00:51:10.838 force Enforcing VB 0.001592357

01:22:59.694 shadow Omen VBP 00:47:05.083 dish Experiencer_obj VB 0.006369427

01:23:38.964 Image Physical_artworks NNP 00:02:46.008 biography Text NN 0.001592357

01:24:05.165 infer Coming_to_believe VB 00:51:00.625 engineer People_by_vocation NN 0.003620955

01:24:47.206 thought Awareness NN 00:27:38.956 believe Taking_sides VBP 0.003575798

01:24:45.061 attention Attention NN 00:34:27.965 sides Avoiding NNS 0.001592357

01:25:24.484 keep

NN 00:33:48.028 suspect Suspicion NN 0.001592357

01:25:33.004 mind Evoking VB 01:08:56.330 remind Evoking VB 0.003252033

01:25:37.018 religion Co-association NN 00:05:33.523 X Commemorative NNP 0.001592357

01:25:42.689 house Locale_by_use NN 00:52:27.556 IT People_by_origin NNP 0.001592357

01:26:42.632 answer Communication_response VB 00:09:57.876 month Measure_duration NN 0.003620955

01:28:16.035 explore Scrutiny VB 00:07:51.395 start Activity_start VBP 0.042535243

01:28:27.806 century Measure_duration NN 00:43:11.065 electricity Electricity NN 0.001592357

01:28:45.497 recognize Becoming_aware VB 01:01:17.386 role Containers NN 0.001592357

01:29:04.098 country Isolated_places NN 00:43:11.065 electricity Electricity NN 0.001592357

01:29:47.001 change Undergo_change NN 00:33:48.028 suspect Suspicion NN 0.001592357

01:30:08.421 screw Bungling VB 00:17:52.420 compare Evaluative_comparison VB 0.001592357

01:30:57.157 trick Quantified_mass NN 01:04:34.299 number Quantified_mass NN 0.005265152

01:31:02.151 smear Filling VB 00:23:11.396 shape Cause_change VB 0.003184713

98

01:32:10.095 happen Coincidence NN 00:13:12.337 important Importance JJ 0.001626016

01:32:32.564 feeling Sensation NN 00:37:50.414 intention Purpose NN 0.001592357

01:33:00.597 fascinating Stimulus_focus JJ 00:24:15.402 scary Stimulus_focus JJ 0.001626016

01:33:20.034 come Communication_response NN 00:01:02.478 saw Cause_to_move_in_place VBD 0.004551716

01:33:23.112 thank Judgment_direct_address VB 00:12:11.669 ton Word_relations NN 0.001626016

01:33:41.949 cell Building_subparts NN 00:51:29.225 salon Building_subparts NN 0.001626016

01:33:46.322 skill Expertise NN 00:28:05.098 conversation Chatting NN 0.003575798

01:34:08.320 message Statement NN 01:23:47.102 explain Statement VB 0.031912165

01:35:11.058 parent Kinship NN 01:19:02.705 interference Hindering NN 0.001592357

01:35:24.120 Tuesday Calendric_unit NNP 00:14:19.004 Monday Calendric_unit NNP 0.001626016

99

100

8 Appendices

8.1 Corpus Python Code

import argparse
import codecs
import json
import os
import sys
import math
import time
import numpy as np
import unicodedata
from moviepy.video.io.VideoFileClip import VideoFileClip
from scipy.spatial import KDTree
import scipy
import matplotlib.pyplot as plt
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import nltk
import nltk.probability
from nltk.corpus import stopwords
from nltk.corpus import framenet as fn
from nltk.corpus import wordnet as wn
import string
import youtube_dl
from corpus import youtube as yttc
import pygame
from scipy.spatial import convex_hull_plot_2d
from OpenGL.GL import *
from pgu import gui
import re
import random
from six.moves import input

reflections = {
 "i am": "you are",
 "i was": "you were",
 "i": "you",
 "i'm": "you are",
 "i'd": "you would",
 "i've": "you have",
 "i'll": "you will",
 "my": "your",
 "you are": "I am",
 "you were": "I was",
 "you've": "I have",
 "you'll": "I will",
 "your": "my",
 "yours": "mine",
 "you": "me",
 "me": "you"
}

class Chat(object):
 def __init__(self, pairs, reflections={}):
 """
 Initialize the chatbot. Pairs is a list of patterns and responses. Each
 pattern is a regular expression matching the user's statement or question,
 e.g. r'I like (.*)'. For each such pattern a list of possible responses
 is given, e.g. ['Why do you like %1', 'Did you ever dislike %1']. Material
 which is matched by parenthesized sections of the patterns (e.g. .*) is mapped to
 the numbered positions in the responses, e.g. %1.

 :type pairs: list of tuple
 :param pairs: The patterns and responses
 :type reflections: dict
 :param reflections: A mapping between first and second person expressions

101

 :rtype: None
 """

 self._pairs = [(re.compile(x, re.IGNORECASE), y) for (x, y) in pairs]
 self._reflections = reflections
 self._regex = self._compile_reflections()

 def _compile_reflections(self):
 sorted_refl = sorted(self._reflections.keys(), key=len,
 reverse=True)
 return re.compile(r"\b({0})\b".format("|".join(map(re.escape,
 sorted_refl))), re.IGNORECASE)

 def _substitute(self, str):
 """
 Substitute words in the string, according to the specified reflections,
 e.g. "I'm" -> "you are"

 :type str: str
 :param str: The string to be mapped
 :rtype: str
 """

 return self._regex.sub(lambda mo:
 self._reflections[mo.string[mo.start():mo.end()]],
 str.lower())

 def _wildcards(self, response, match):
 pos = response.find('%')
 while pos >= 0:
 num = int(response[pos + 1:pos + 2])
 response = response[:pos] + \
 self._substitute(match.group(num)) + \
 response[pos + 2:]
 pos = response.find('%')
 return response

 def respond(self, str):
 """
 Generate a response to the user input.

 :type str: str
 :param str: The string to be mapped
 :rtype: str
 """

 # check each pattern
 for (pattern, response) in self._pairs:
 match = pattern.match(str)

 # did the pattern match?
 if match:
 resp = random.choice(response) # pick a random response
 resp = self._wildcards(resp, match) # process wildcards

 # fix munged punctuation at the end
 if resp[-2:] == '?.': resp = resp[:-2] + '.'
 if resp[-2:] == '??': resp = resp[:-2] + '?'
 return resp

 # Hold a conversation with a chatbot
 def converse(self, quit="quit"):
 user_input = ""
 while user_input != quit:
 user_input = quit
 try:
 user_input = input(">")
 except EOFError:
 print(user_input)
 if user_input:
 while user_input[-1] in "!.": user_input = user_input[:-1]

102

 print(self.respond(user_input))

class LaunchVizDialog(gui.Dialog):
 def __init__(self, display_id):
 title = gui.Label('Launch Visualization')
 self.value = gui.Form()

 t = gui.Table()

 t.tr()
 t.td(gui.Label("YouTube Display ID: "), align=0, colspan=2)
 t.td(gui.Input(name="display_id", value=display_id, size=25))
 t.tr()
 e = gui.Button("Launch")
 e.connect(gui.CLICK, self.send, gui.CHANGE)
 t.td(e)
 ##

 e = gui.Button("Cancel")
 e.connect(gui.CLICK, self.close, None)
 t.td(e)

 gui.Dialog.__init__(self, title, t)

class ColorDialog(gui.Dialog):
 def __init__(self, value, **params):
 self.value = list(gui.parse_color(value))

 title = gui.Label("Color Picker")

 main = gui.Table()

 main.tr()

 self.color = gui.Color(self.value, width=64, height=64)
 main.td(self.color, rowspan=3, colspan=1)

 ## The sliders CHANGE events are connected to the adjust method. The
 ## adjust method updates the proper color component based on the value
 ## passed to the method.
 ## ::
 main.td(gui.Label(' Red: '), 1, 0)
 e = gui.HSlider(value=self.value[0], min=0, max=255, size=32, width=128,
height=16)
 e.connect(gui.CHANGE, self.adjust, (0, e))
 main.td(e, 2, 0)
 ##

 main.td(gui.Label(' Green: '), 1, 1)
 e = gui.HSlider(value=self.value[1], min=0, max=255, size=32, width=128,
height=16)
 e.connect(gui.CHANGE, self.adjust, (1, e))
 main.td(e, 2, 1)

 main.td(gui.Label(' Blue: '), 1, 2)
 e = gui.HSlider(value=self.value[2], min=0, max=255, size=32, width=128,
height=16)
 e.connect(gui.CHANGE, self.adjust, (2, e))
 main.td(e, 2, 2)

 gui.Dialog.__init__(self, title, main)

 ##The custom adjust handler.
 ##::
 def adjust(self, value):
 (num, slider) = value
 self.value[num] = slider.value
 self.color.repaint()
 self.send(gui.CHANGE)

103

 ##

class PartsOfSpeech:
 def __init__(self):
 self.pos = get_pos_dict()

 def get_description(self, tag):
 if tag in self.pos.keys():
 return self.pos[tag][0]
 else:
 return ''

 def get_example(self, tag):
 if tag in self.pos.keys():
 return self.pos[tag][1]
 else:
 return ''

 def get_color(self, tag):
 if tag in self.pos.keys():
 return self.pos[tag][2]
 else:
 return 255, 255, 255

class Polyhedron:
 def __init__(self, vertices=[]):
 self.points = np.array([[v.x, v.y, v.z] for v in vertices])
 self.volumne = convex_hull_plot_2d(self.points)

class Point3D:
 def __init__(self, x=0, y=0, z=0):
 self.x, self.y, self.z = float(x), float(y), float(z)

 def rotateX(self, angle):
 """ Rotates the point around the X axis by the given angle in degrees. """
 rad = angle * math.pi / 180
 cosa = math.cos(rad)
 sina = math.sin(rad)
 y = self.y * cosa - self.z * sina
 z = self.y * sina + self.z * cosa
 return Point3D(self.x, y, z)

 def rotateY(self, angle):
 """ Rotates the point around the Y axis by the given angle in degrees. """
 rad = angle * math.pi / 180
 cosa = math.cos(rad)
 sina = math.sin(rad)
 z = self.z * cosa - self.x * sina
 x = self.z * sina + self.x * cosa
 return Point3D(x, self.y, z)

 def rotateZ(self, angle):
 """ Rotates the point around the Z axis by the given angle in degrees. """
 rad = angle * math.pi / 180
 cosa = math.cos(rad)
 sina = math.sin(rad)
 x = self.x * cosa - self.y * sina
 y = self.x * sina + self.y * cosa
 return Point3D(x, y, self.z)

 def project(self, win_width, win_height, fov, viewer_distance):
 """ Transforms this 3D point to 2D using a perspective projection. """
 factor = fov / (viewer_distance + self.z)
 x = self.x * factor + win_width / 2
 y = -self.y * factor + win_height / 2
 return Point3D(x, y, 1)

104

def get_pos_dict():
 return {'CC': ('coordinating conjunction', '', (240, 248, 255)),
 'CD': ('cardinal digit', '', (240, 248, 255)),
 'DT': ('determiner', '', (245, 255, 250)),
 'EX': ('existential there', '(like: "there is" ... think of it like "there
exists")', (255, 255, 255)),
 'FW': ('foreign word', '', (255, 255, 255)),
 'IN': ('preposition/subordinating conjunction', '', (240, 248, 255)),
 'JJ': ('adjective', 'big', (255, 248, 220)),
 'JJR': ('adjective, comparative', 'bigger', (255, 248, 220)),
 'JJS': ('adjective, superlative', 'biggest', (255, 248, 220)),
 'LS': ('list marker', '1)', (245, 255, 250)),
 'MD': ('modal', 'could, will', (255, 182, 193)),
 'NN': ('noun, singular', 'desk', (224, 255, 255)),
 'NNS': ('noun plural', 'desks', (224, 255, 255)),
 'NNP': ('proper noun, singular', 'Harrison', (224, 255, 255)),
 'NNPS': ('proper noun, plural', 'Americans', (224, 255, 255)),
 'PDT': ('predeterminer', 'all the kids', (245, 255, 250)),
 'POS': ('possessive ending', 'parent\'s', (255, 235, 205)),
 'PRP': ('personal pronoun', 'I, he, she', (224, 255, 255)),
 'PRP$': ('possessive pronoun', 'my, his, hers',
 (224, 255, 255)),
 'RB': ('adverb', 'very, silently', (255, 240, 245)),
 'RBR': ('adverb, comparative', 'better', (255, 240, 245)),
 'RBS': ('adverb, superlative', 'best', (255, 240, 245)),
 'RP': ('particle', 'give up', (255, 240, 245)),
 'TO': ('to', 'go "to" the store', (240, 248, 255)),
 'UH': ('interjection', 'errrrrrrrm', (255, 255, 255)),
 'VB': ('verb', 'base form take', (255, 182, 193)),
 'VBD': ('verb, past tense', 'took', (255, 182, 193)),
 'VBG': ('verb, gerund/present participle', 'taking', (255, 182, 193)),
 'VBN': ('verb, past participle', 'taken', (255, 182, 193)),
 'VBP': ('verb, sing. present, non-3d', 'take', (255, 182, 193)),
 'VBZ': ('verb, 3rd person sing. present', 'takes', (255, 182, 193)),
 'WDT': ('wh-determiner', 'which', (245, 255, 250)),
 'WP': ('wh-pronoun', 'who, what', (224, 255, 255)),
 'WP$': ('possessive wh-pronoun', 'whose', (255, 235, 205)),
 'WRB': ('wh-abverb', 'where, when', (255, 240, 245))}

def get_youtube_url(display_id):
 url = 'https://www.youtube.com/watch?v=' + display_id
 return url

def extract_youtube_data(display_id, output, overwrite):
 url = get_youtube_url(display_id)
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 folder_exists = os.path.isdir(folder)
 if not folder_exists or overwrite:
 ydl = youtube_dl.YoutubeDL({'outtmpl': folder + '%(id)s%(ext)s',
 'writesubtitles': True,
 # 'proxy': 'http://wwwproxy.sandia.gov:80',
 'allsubtitles': True,
 'writedescription': True,
 'writeinfojson': True,
 'writeannotations': True,
 'writeautomaticsub': True,
 'skip_download': False})
 with ydl:
 result = ydl.extract_info(
 url,
 download=True
)

def write_audio_clip(display_id, output, overwrite):
 movie_path = get_youtube_video_path(display_id, output)
 audio_path = movie_path + '.mp3'
 file_exists = os.path.exists(audio_path)
 if not file_exists or overwrite:

105

 print('getting clip', movie_path)
 clip = VideoFileClip(movie_path)
 clip.audio.write_audiofile(audio_path)
 return audio_path

def check_for_cc_files(folder, display_id, extension):
 cc_exists = False
 json_file_path = os.path.join(folder, display_id + extension + '.info.json')
 with open(json_file_path, 'r') as f:
 data = json.load(f)
 if data['automatic_captions']:
 cc_exists = True
 return cc_exists

def get_url_parameters(url):
 parameters = {}
 main_parts = url.split('?')
 parameter_parts = main_parts[1].split('&')
 for kv in parameter_parts:
 kv_parts = kv.split('=')
 parameters[kv_parts[0]] = kv_parts[1]
 return parameters

def get_start_end_times(time_line):
 time_parts = time_line.split('-->')
 clock_time = time_parts[0].strip()
 parts = clock_time.split(':')
 sec_parts = parts[2].split('.')
 start_time = {'time': clock_time, 'hours': parts[0], 'minutes': parts[1],
 'seconds': sec_parts[0], 'milliseconds': sec_parts[1]}
 clock_time = time_parts[1].strip()
 parts = clock_time.split(':')
 sec_parts = parts[2].split('.')
 end_time = {'time': clock_time, 'hours': parts[0], 'minutes': parts[1],
 'seconds': sec_parts[0], 'milliseconds': sec_parts[1]}
 return start_time, end_time

def get_time_difference(start_time, end_time):
 hours = int(end_time['hours']) - int(start_time['hours'])
 minutes = int(end_time['minutes']) - int(start_time['minutes'])
 seconds = int(end_time['seconds']) - int(start_time['seconds'])
 milliseconds = int(end_time['hours']) - int(start_time['milliseconds'])
 total = format(hours, '02') + ':' + format(minutes, '02') + ':' + format(seconds,
'02') + '.' + format(
 milliseconds,
 '03')
 return {'time': total, 'hours': format(hours, '02'), 'minutes': format(minutes,
'02'),
 'seconds': format(seconds, '02'), 'milliseconds': format(milliseconds, '02')}

def get_clean_line(line):
 remove_chr = False
 clean_line = ''
 for c in line:
 if c == '<':
 remove_chr = True
 elif c == '>':
 remove_chr = False
 if not remove_chr:
 clean_line += c
 clean_line = clean_line.replace('>', '')
 clean_line = clean_line.replace('\r', '')
 clean_line = clean_line.replace('\n', '')
 return clean_line + ' '

106

def get_text_lines_from_cc_file(cc_path):
 lines = []
 with codecs.open(cc_path, 'r', 'ISO-8859-2') as c:
 clean_line = ''
 timestamp = ''
 for line in c.readlines():
 if '-->' in line:
 if timestamp != '':
 lines.append((timestamp, clean_line))
 time_line = line.replace('\n', '')
 start_time, end_time = get_start_end_times(time_line)
 elapsed_time = get_time_difference(start_time, end_time)
 timestamp = {'stamp': line.replace('\n', ''), 'start': start_time, 'end':
end_time,
 'elapsed': elapsed_time}
 clean_line = ''
 else:
 clean_line += get_clean_line(line)
 return lines

def append_text_line(path, line):
 with codecs.open(path, 'a+', 'utf-16') as f:
 f.write(line.strip() + '\r\n')

def append_text(path, line):
 with codecs.open(path, 'a+', 'ISO-8859-2') as f:
 f.write(line.strip() + " ")

def get_youtube_media_extension(display_id, output):
 extension = 'mp4'
 for file in os.listdir(output + r'/youtube/' + display_id + r'/'):
 if file.endswith(".description"):
 extension = file.replace(display_id, '').replace('.description', '')
 break
 return extension

def extract_cc_plain_text(display_id, output, overwrite):
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 plain_text_path = os.path.join(folder, display_id + r'_plain.txt')
 word_time_stamp_json_path = os.path.join(folder, display_id + r'_time_line.json')
 file_exists = os.path.exists(plain_text_path)
 extension = get_youtube_media_extension(display_id, output)
 cc_exist = check_for_cc_files(folder, display_id, extension)
 text_lines = []
 if cc_exist:
 if not file_exists or overwrite:
 annotations_path = os.path.join(folder, display_id + extension +
r'.info.json')
 with open(annotations_path, 'r') as f:
 data = json.load(f)
 if data['automatic_captions']:
 youtube_en_auto_url = data['automatic_captions']['en'][0]['url']
 url_parameters = get_url_parameters(youtube_en_auto_url)
 lang = url_parameters['lang']
 cc_path = os.path.join(folder, display_id + extension + r'.' + lang +
'.vtt')
 text_lines = get_text_lines_from_cc_file(cc_path)
 else:
 plain_text_path = ''
 word_time_stamp_json_path = ''
 return plain_text_path, word_time_stamp_json_path, text_lines

def write_pos_tagged_to_youtube_corpus(display_id, output, overwrite):
 plain_text_path, word_time_stamp_json_path, text_lines =
extract_cc_plain_text(display_id, output, overwrite)
 plain_exists = os.path.exists(plain_text_path)

107

 time_file_exists = os.path.exists(word_time_stamp_json_path)
 if plain_text_path == '':
 print('no captions')
 return
 corpora_path = os.path.join(output, r'youtube/' + display_id + r'/' + display_id +
r'.pos')
 corpus_file_exists = os.path.exists(corpora_path)
 if not corpus_file_exists or overwrite:
 if plain_exists:
 os.remove(plain_text_path)
 if time_file_exists:
 os.remove(word_time_stamp_json_path)
 if corpus_file_exists:
 os.remove(corpora_path)
 count = 0
 word_time_lines = []
 for timestamp, line in text_lines:
 words = nltk.tokenize.word_tokenize(line)
 tagged_words = nltk.pos_tag(words)
 tagged_line = ''
 plain_line = ''
 word_time_line = []
 for i in range(len(tagged_words)):
 tagged_line += tagged_words[i][0] + '/' + tagged_words[i][1] + ' '
 plain_line += tagged_words[i][0] + ' '
 word_time_line.append((tagged_words[i][0],
get_time_from_timestamp(timestamp, i)))
 count += 1
 tagged_line = tagged_line.strip() + '\r\n'
 append_text(corpora_path, tagged_line)
 append_text(plain_text_path, plain_line)
 word_time_lines.append(word_time_line)
 with codecs.open(word_time_stamp_json_path, 'w+', 'ISO-8859-2') as j:
 json.dump(word_time_lines, j)
 print(corpora_path, plain_text_path, word_time_stamp_json_path, count)

def get_convex_hull_delaunay_from_vertices(vertices):
 points = np.array(vertices)
 ch = None
 d = None
 try:
 if len(points) > 3:
 ch = scipy.spatial.ConvexHull(points)
 d = scipy.spatial.Delaunay(points)
 except:
 print("Oops!", sys.exc_info()[0], "occurred.")
 return ch, d

def write_domains_to_youtube_corpus(output):
 folder = os.path.join(output, r'youtube/')
 display_ids = [sub for sub in os.listdir(folder) if
os.path.isdir(os.path.join(folder, sub))]
 domains = {}
 domain_count = 0
 total_vertices = 0
 for display_id in display_ids:
 vectors = get_vectors(display_id, output)
 for vector in vectors:
 domain = vector['domain']
 v = vector['vector']
 vertex = [float(v[0]), float(v[1]), float(v[2])]
 if len(domain) > 0:
 if domain in domains:
 if vertex not in domains[domain]['vertices']:
 domains[domain]['vertices'].append(vertex)
 domain_count += 1
 else:
 domains[domain] = {'vertices': [vertex]}
 domain_count += 1

108

 print(display_id, domain_count, 'vertices added')
 total_vertices += domain_count
 domain_count = 0
 # write domains file to corpus
 domains_path = os.path.join(folder, r'_domains.json')
 file_exists = os.path.exists(domains_path)
 if file_exists:
 os.remove(domains_path)
 with codecs.open(domains_path, 'w+', 'ISO-8859-2') as j:
 json.dump(domains, j)
 print(total_vertices, 'total vertices')

def write_topics_to_youtube_corpus(display_id, output, overwrite):
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 topics_json_path = os.path.join(folder, display_id + r'_topics.json')
 file_exists = os.path.exists(topics_json_path)
 extension = get_youtube_media_extension(display_id, output)
 cc_exist = check_for_cc_files(folder, display_id, extension)
 if cc_exist:
 if not file_exists or overwrite:
 annotations_path = os.path.join(folder, display_id + extension +
r'.info.json')
 with open(annotations_path, 'r') as f:
 data = json.load(f)
 title = ''
 categories = []
 description = ''
 tags = ''
 if data['title']:
 title = data['title']
 if data['categories']:
 for cat in data['categories']:
 if '&' in cat:
 cat_parts = cat.split('&')
 for cat2 in cat_parts:
 categories.append(cat2.strip())
 else:
 categories.append(cat.strip())
 if data['description']:
 description = data['description']
 if data['tags']:
 tags = data['tags']
 if overwrite and file_exists:
 os.remove(topics_json_path)
 with codecs.open(topics_json_path, 'w+', 'ISO-8859-2') as j:
 json.dump({"title": title, "categories": categories, "description":
description, "tags": tags}, j)
 print(topics_json_path)

def get_corpus_domains(output):
 domains = None
 folder = os.path.join(output, r'youtube/')
 domains_path = os.path.join(folder, r'_domains.json')
 file_exists = os.path.exists(domains_path)
 if file_exists:
 with codecs.open(domains_path, 'r', 'ISO-8859-2') as j:
 domains = json.load(j)
 return domains

def get_lexical_unit_pos(tag):
 pos = ''
 if tag.startswith('V') or tag.startswith('MD'):
 pos = 'v' # v - verb
 elif tag.startswith('N') or tag.startswith('PRP') or tag.startswith('WP'):
 pos = 'n' # n - noun
 elif tag.startswith('J'):
 pos = 'a' # a - adjective
 elif tag.startswith('R') or tag == 'WRB':

109

 pos = 'adv' # adv - adverb
 elif tag.startswith('IN'):
 pos = 'prep' # prep - preposition
 elif tag.startswith('CD'):
 pos = 'num' # num - numbers
 elif tag.startswith('UH'):
 pos = 'intj' # intj - interjection
 elif tag.endswith('DT'):
 pos = 'art' # art - article
 elif tag.startswith('CC'):
 pos = 'c' # c - conjunction
 elif tag.startswith('IN'):
 pos = 'scon' # scon - subordinating conjunction
 return pos

def penn2morphy(penntag, returnNone=False):
 morphy_tag = {'NN': wn.NOUN, 'JJ': wn.ADJ,
 'VB': wn.VERB, 'RB': wn.ADV}
 try:
 return morphy_tag[penntag[:2]]
 except:
 return None if returnNone else ''

def get_word_frames_from_tagged_words(tagged_words):
 stopwords = nltk.corpus.stopwords.words('english')
 word_frames = []
 frame_counts = {}
 for tagged_word in tagged_words:
 if len(tagged_word) > 1:
 word = tagged_word[0]
 pos = get_lexical_unit_pos(tagged_word[1])
 frame = ''
 if word not in stopwords and word.isalpha() and len(pos) > 0:
 lexical_units = fn.lus(r'(?i)' + word)
 frames = [lu.frame.name for lu in lexical_units if lu.name.endswith(pos)]
 if frames and len(frames) > 0:
 frame = frames[0]
 word_frames.append((word, frame))
 if frame not in frame_counts.keys():
 frame_counts[frame] = 1
 else:
 frame_counts[frame] += 1
 return word_frames, frame_counts

def write_word_frames_to_youtube_corpus(display_id, output, overwrite):
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 word_frame_path = os.path.join(folder, display_id + r'_frames.json')
 file_exists = os.path.exists(word_frame_path)
 if not file_exists or overwrite:
 fileid = display_id + r'/' + display_id + r'.pos'
 tagged_words = yttc.tagged_words([fileid])
 frames, counts = get_word_frames_from_tagged_words(tagged_words)
 if overwrite and file_exists:
 os.remove(word_frame_path)
 with codecs.open(word_frame_path, 'w+', 'ISO-8859-2') as j:
 json.dump({"frames": frames, "counts": counts}, j)
 print(word_frame_path)

def get_word_net_synsets_from_tagged_words(tagged_words):
 syns = []
 counts = {}
 for word, pos in tagged_words:
 ss = {}
 syn = wn.synsets(word, pos=penn2morphy(pos))
 sss = []
 for s in syn:
 abstract = {}

110

 similarity = 0
 if s:
 hyps = {}
 if isinstance(s, list):
 hyps = s[0].hypernyms()
 if hyps:
 if isinstance(hyps, list):
 abstract = hyps[-1:]
 similarity = s[0].wup_similarity(abstract[0])
 else:
 abstract = hyps
 similarity = s[0].wup_similarity(abstract)
 else:
 hyps = s.hypernyms()
 if hyps:
 if isinstance(hyps, list):
 abstract = hyps[-1:]
 similarity = s.wup_similarity(abstract[0])
 else:
 abstract = hyps
 similarity = s.wup_similarity(abstract)
 sss.append((str(s), str(abstract), similarity))
 syns.append((word, pos, sss))
 if word not in counts.keys():
 counts[word] = len(sss)
 else:
 counts[word] += len(sss)
 return syns, counts

def write_word_nets_to_youtube_corpus(display_id, output, overwrite):
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 word_net_path = os.path.join(folder, display_id + r'_word_nets.json')
 file_exists = os.path.exists(word_net_path)
 if not file_exists or overwrite:
 fileid = display_id + r'/' + display_id + r'.pos'
 tagged_words = yttc.tagged_words([fileid])
 syns, counts = get_word_net_synsets_from_tagged_words(tagged_words)
 if overwrite and file_exists:
 os.remove(word_net_path)
 with codecs.open(word_net_path, 'w+', 'ISO-8859-2') as j:
 json.dump({"syns": syns, "counts": counts}, j)
 print(word_net_path)

def get_seconds_from_time_string(time_stamp):
 tp = time_stamp.split(':')
 seconds = 0
 if tp and len(tp) > 2:
 tps = tp[2].split('.')
 seconds = (int(tp[0]) * 60 * 60) + (int(tp[1]) * 60) + int(tps[0])
 return seconds

def get_time_string_from_seconds(word_seconds):
 t = ''
 ts = str(word_seconds).split('.')
 h = 60 * 60
 m = 60
 hms = int(ts[0])
 if hms >= h:
 hs = int(hms / h) * h
 t += str(int(hms / h)).zfill(2) + ':'
 hms = hms - hs
 else:
 t += '00:'
 if hms >= m:
 hm = int(hms / m) * m
 t += str(int(hms / m)).zfill(2) + ':'
 hms = hms - hm
 else:

111

 t += '00:'
 if hms > 0:
 t += str(hms).zfill(2)
 else:
 t += '00'
 if len(ts) > 1:
 t += '.' + str(int(ts[1])).zfill(3)[:3]
 else:
 t += '.000'
 return t

def get_time_from_timestamp(timestamp, i):
 start_hours = int(timestamp['start']['hours'])
 start_minutes = int(timestamp['start']['minutes'])
 start_seconds = int(timestamp['start']['seconds'])
 start_milliseconds = abs(int(timestamp['start']['milliseconds']))
 word_seconds = (start_seconds + (start_hours * 60 * 60) + (start_minutes * 60) +
(start_milliseconds / 1000))
 hours = int(timestamp['elapsed']['hours'])
 minutes = int(timestamp['elapsed']['minutes'])
 seconds = int(timestamp['elapsed']['seconds'])
 milliseconds = abs(int(timestamp['elapsed']['milliseconds']))
 word_seconds += ((seconds + (hours * 60 * 60) + (minutes * 60) + (milliseconds /
1000)) / (i + 1)) * i
 t = get_time_string_from_seconds(word_seconds)
 return t

def get_word_times(display_id, output):
 word_times = []
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 word_time_stamp_json_path = os.path.join(folder, display_id + r'_time_line.json')
 file_exists = os.path.exists(word_time_stamp_json_path)
 if file_exists:
 with codecs.open(word_time_stamp_json_path, 'r', 'ISO-8859-2') as j:
 word_time_lines = json.load(j)
 for word_time_line in word_time_lines:
 for word, timestamp in word_time_line:
 t = (word, timestamp)
 word_times.append(t)
 return word_times

def get_topic(display_id, output):
 topic = None
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 word_topic_json_path = os.path.join(folder, display_id + r'_topics.json')
 file_exists = os.path.exists(word_topic_json_path)
 if file_exists:
 with codecs.open(word_topic_json_path, 'r', 'ISO-8859-2') as j:
 topic = json.load(j)
 return topic

def get_corpus_fileids(output):
 folder = os.path.join(output, r'youtube/')
 ids = [item for item in os.listdir(folder) if os.path.isdir(os.path.join(folder,
item))]
 fileids = []
 for id in ids:
 fileid = id + '/' + id + '.pos'
 fileids.append(fileid)
 return fileids

def get_discourse_categories(output):
 folder = os.path.join(output, r'youtube/')
 ids = [item for item in os.listdir(folder) if os.path.isdir(os.path.join(folder,
item))]
 discourse_categories = {}

112

 for id in ids:
 topic = get_topic(id, output)
 discourse_categories[id] = topic['categories']
 return discourse_categories

def get_category_discourses(output):
 dcs = get_discourse_categories(output)
 cs = []
 for d in dcs.keys():
 for c in dcs[d]:
 cs.append(c)
 cats = set(cs)
 category_discourses = {}
 for c in cats:
 category_discourses[c] = [d + '/' + d + '.pos' for d in dcs.keys() if c in
dcs[d]]
 return category_discourses

def get_tabular_frequency_distribution_by_category(words, output, export=None):
 discourse_categories = get_discourse_categories(output)
 category_discourses = get_category_discourses(output)
 tfdbc = {}
 for c in category_discourses.keys():
 dws = yttc.words(category_discourses[c])
 dts = nltk.Text(dws)
 fds = nltk.FreqDist(dts)
 wfs = {}
 for word in words:
 wfs[word] = (fds[word], fds.freq(word))
 tfdbc[c] = wfs
 all_words = yttc.words()
 all_text = nltk.Text(all_words)
 all_fd = nltk.FreqDist(all_text)
 all_word_frequencies = {}
 for word in words:
 all_word_frequencies[word] = (all_fd[word], all_fd.freq(word))
 tfdbc['all'] = all_word_frequencies
 if export:
 header = ''
 for word in words:
 header += '\t\t' + word
 if os.path.exists(export):
 os.remove(export)
 append_text_line(export, header)
 for c in tfdbc.keys():
 line = c
 for w in tfdbc[c].keys():
 line += '\t{}\t{}'.format(tfdbc[c][w][0], tfdbc[c][w][1])
 append_text_line(export, line)
 return tfdbc

def get_frames(display_id, output):
 frames = {}
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 word_frames_json_path = os.path.join(folder, display_id + r'_frames.json')
 file_exists = os.path.exists(word_frames_json_path)
 if file_exists:
 with codecs.open(word_frames_json_path, 'r', 'ISO-8859-2') as j:
 frames = json.load(j)
 return frames

def get_knns(display_id, output):
 knns = {}
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 word_frames_json_path = os.path.join(folder, display_id + r'_knn.json')
 file_exists = os.path.exists(word_frames_json_path)
 if file_exists:

113

 with codecs.open(word_frames_json_path, 'r', 'ISO-8859-2') as j:
 knns = json.load(j)
 return knns

def get_word_nets(display_id, output):
 word_nets = []
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 word_word_nets_json_path = os.path.join(folder, display_id + r'_word_nets.json')
 file_exists = os.path.exists(word_word_nets_json_path)
 if file_exists:
 with codecs.open(word_word_nets_json_path, 'r', 'ISO-8859-2') as j:
 word_nets = json.load(j)
 return word_nets

def get_entrenchment(tagged_word, word_freq_dists):
 entrenchment = 0.0
 c = len(word_freq_dists)
 sfd = word_freq_dists.most_common()
 wfd = [(sfd[i], i) for i in range(0, len(sfd) - 1) if sfd[i][0] in [tagged_word[0]]]
 arr = [sfd[i][1] for i in range(len(sfd) - 1)]
 min = np.min(arr)
 max = np.max(arr)
 if wfd and len(wfd) > 0:
 dst = wfd[0][0][1]
 entrenchment = dst / (max - min)
 return entrenchment

def get_overlap(word_net, i):
 overlap = 0.0
 syns = word_net['syns']
 syn = syns[i]
 if len(syn[2]) > 0:
 arr = [syn[2][i][2] for i in range(0, len(syn[2]))]
 overlap = np.max(arr)
 return 1 - overlap

def get_salience(frames, i):
 salience = 0.0
 frame = frames['frames'][i]
 domain = frame[1]
 if len(domain) > 0:
 counts = frames['counts']
 domain_counts = []
 for key in counts.keys():
 if len(key) > 0:
 domain_counts.append((key, counts[key]))
 arr = [domain_counts[i][1] for i in range(len(domain_counts) - 1)]
 min = np.min(arr)
 max = np.max(arr)
 d = [domain_counts[i][1] for i in range(0, len(domain_counts) - 1) if domain ==
domain_counts[i][0]]
 if d and len(d) > 0:
 dct = d[0]
 salience = dct / (max - min)
 return salience, frame[1]

def get_clean_frequency_distributions_from_tagged_words(tagged_words):
 stop_words = set(stopwords.words('english'))
 punctuations = str.maketrans('', '', string.punctuation)
 words = [word for word in [w.translate(punctuations) for w, p in tagged_words] if
 word not in stop_words and word.isalpha()]
 freq_dist_list = nltk.FreqDist(words)
 return freq_dist_list

def get_word_vectors_from_tagged_words(display_id, output, tagged_words):

114

 vectors = []
 word_times = get_word_times(display_id, output)
 frames = get_frames(display_id, output)
 word_nets = get_word_nets(display_id, output)
 clean_word_freq_dists =
get_clean_frequency_distributions_from_tagged_words(tagged_words)
 for i in range(0, len(tagged_words) - 1):
 # get entrenchment as frequency of word in entire corpus
 entrenchment = get_entrenchment(tagged_words[i], clean_word_freq_dists)
 # get overlap as similarity of synset to abstract hypernym
 overlap = get_overlap(word_nets, i)
 # get salience as usage of frames in discourse
 salience, frame = get_salience(frames, i)
 vectors.append({'word': tagged_words[i][0], 'pos': tagged_words[i][1], 'domain':
frame, 'time': word_times[i],
 'vector': (str(entrenchment), str(overlap), str(salience))})
 return vectors

def write_word_vectors_to_youtube_corpus(display_id, output, overwrite):
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 word_vectors_path = os.path.join(folder, display_id + r'_vectors.json')
 file_exists = os.path.exists(word_vectors_path)
 if not file_exists or overwrite:
 fileid = display_id + r'/' + display_id + r'.pos'
 tagged_words = yttc.tagged_words([fileid])
 vectors = get_word_vectors_from_tagged_words(display_id, output, tagged_words)
 if overwrite and file_exists:
 os.remove(word_vectors_path)
 with codecs.open(word_vectors_path, 'w+', 'ISO-8859-2') as j:
 json.dump(vectors, j)
 print(word_vectors_path)

def get_vectors(display_id, output):
 vectors = []
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 word_vectors_path = os.path.join(folder, display_id + r'_vectors.json')
 file_exists = os.path.exists(word_vectors_path)
 if file_exists:
 with codecs.open(word_vectors_path, 'r', 'ISO-8859-2') as j:
 vectors = json.load(j)
 return vectors

def get_knns_from_vectors(vectors):
 knns = []
 data = [[float(d['vector'][0]), float(d['vector'][1]), float(d['vector'][2])] for d
in vectors]
 point_array = np.array(data)
 kdt = KDTree(point_array, 100000)
 for i in range(len(vectors)):
 distances, indices = kdt.query(point_array[i], 2)
 neighbors = {'current': vectors[i], 'neighbor': vectors[indices[1]], 'distance':
float(distances[1])}
 knns.append(neighbors)
 return knns

def write_k_nn_word_vectors_to_youtube_corpus(display_id, output, overwrite):
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 word_knn_path = os.path.join(folder, display_id + r'_knn.json')
 file_exists = os.path.exists(word_knn_path)
 if not file_exists or overwrite:
 vectors = get_vectors(display_id, output)
 knns = get_knns_from_vectors(vectors)
 if overwrite and file_exists:
 os.remove(word_knn_path)
 with codecs.open(word_knn_path, 'w+', 'ISO-8859-2') as j:
 json.dump(knns, j)
 print(word_knn_path)

115

def print_file_id_and_topic_information(display_id, output, overwrite, export):
 fileid = display_id + r'/' + display_id + r'.pos'
 words = yttc.words(fileid)
 t = len(words)
 s = len(set(words))
 title = display_id
 description = ''
 vl = "unknown"
 vls = 0
 word_times = get_word_times(display_id, output)
 if word_times and len(word_times) > 0:
 wt = word_times[-1]
 vl = wt[1]
 vls = get_seconds_from_time_string(vl)
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 topics_json_path = os.path.join(folder, display_id + r'_topics.json')
 file_exists = os.path.exists(topics_json_path)
 if file_exists:
 with open(topics_json_path, 'r') as f:
 data = json.load(f)
 if data['title'] and len(data['title']) > 0:
 title = data['title']
 if data['categories'] and len(data['categories']) > 0:
 title += ' - '
 for cat in data['categories']:
 title += ' ' + cat
 print('{:<15} {:<10} {:<10} {:<10} {}'.format(display_id, t, s, vl, title))
 if export and len(export) > 4:
 if data['description'] and len(data['description']) > 0:
 description = data['description']
 append_text_line(export, '{}\t{}\t{}\t{}\t{}'.format(display_id, t, s,
vl, title))
 return t, s, vls

def print_vector_data(display_id, output, overwrite, start, stop, export):
 folder = output + r'/youtube/' + display_id + r'/'
 word_vectors_path = folder + display_id + r'_vectors.json'
 file_exists = os.path.exists(word_vectors_path)
 if file_exists:
 with codecs.open(word_vectors_path, 'r', 'ISO-8859-2') as j:
 word_vectors = json.load(j)
 r = range(0, len(word_vectors))
 if start != '':
 seconds = get_seconds_from_time_string(start)
 for i in r:
 i_seconds = get_seconds_from_time_string(word_vectors[i]['time'][1])
 if seconds >= i_seconds:
 r = range(i, len(word_vectors))
 break
 if stop != '':
 seconds = get_seconds_from_time_string(stop)
 for i in r:
 i_seconds = get_seconds_from_time_string(word_vectors[i]['time'][1])
 if seconds <= i_seconds:
 r = range(i, len(word_vectors))
 break
 for i in r:
 word = word_vectors[i]['word']
 frame = word_vectors[i]['domain']
 pos = word_vectors[i]['pos']
 time = word_vectors[i]['time'][1]
 entrenchment = word_vectors[i]['vector'][0]
 overlap = word_vectors[i]['vector'][1]
 salience = word_vectors[i]['vector'][2]
 print(
 '{:<15} {:<30} {:<30} {:<5} <{:<15}, {:<15}, {:<15}> '.format(time,
word, frame, pos, entrenchment,

116

overlap,

salience))
 if export and len(export) > 4:
 append_text_line(export,
 '{}\t{}\t{}\t{}\t{}\t{}\t{}'.format(time, word,
frame, pos, entrenchment, overlap,
 salience))

def plot_3d_surface_from_corpus_vectors(display_id, output, overwrite):
 vectors = get_vectors(display_id, output)
 fig = plt.figure()
 ax = fig.gca(projection='3d')
 X = []
 Y = []
 Z = []
 max_t = float(get_seconds_from_time_string(vectors[-1]['time'][1]))
 min_t = float(get_seconds_from_time_string(vectors[0]['time'][1]))
 for v in vectors:
 t = float(get_seconds_from_time_string(v['time'][1])) / (max_t - min_t)
 x = [float(v['vector'][0]), t]
 y = [float(v['vector'][1]), t]
 z = [float(v['vector'][2]), t]
 X.append(x)
 Y.append(y)
 Z.append(z)
 cmhot = plt.get_cmap('coolwarm')
 surf = ax.plot_surface(X, Y, Z, cmap=cmhot, linewidth=0, antialiased=False)
 ax.set_zlim(0.00, 1.00)
 ax.zaxis.set_major_locator(LinearLocator(10))
 ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
 fig.colorbar(surf, shrink=0.5, aspect=5)
 plt.show()

def draw_vector_viz_surface(vertices, edges, surfaces):
 glBegin(GL_QUADS)
 for surface in surfaces:
 glColor3fv(vertices[surface[0]])
 for vertex in surface:
 glVertex3fv(vertices[vertex])
 glEnd()
 glBegin(GL_LINES)
 for edge in edges:
 for vertex in edge:
 glVertex3fv(vertices[vertex])
 glEnd()

def draw_knn_viz(screen, knns):
 vertices = []
 edges = []
 for i in range(len(knns)):
 if len(knns[i]['current']['domain']) > 0 and len(knns[i]['neighbor']['domain']) >
0:
 v1 = knns[i]['current']['vector']
 v2 = knns[i]['neighbor']['vector']
 vertices.append((float(v1[0]), float(v1[1]), float(v1[2])))
 vertices.append((float(v2[0]), float(v2[1]), float(v2[2])))
 for i in range(0, len(vertices), 2):
 edges.append((i, i + 1))
 # draw
 glBegin(GL_LINES)
 for edge in edges:
 glColor3fv(vertices[edge[0]])
 for vertex in edge:
 glVertex3fv(vertices[vertex])
 glEnd()

117

def draw_vector_viz(screen, cubes, edges, labels, colors, surfaces):
 # draw cubes
 glBegin(GL_QUADS)
 for i in range(len(cubes)):
 glColor3fv(colors[i])
 for surface in surfaces:
 for vertex in surface:
 glVertex3fv(cubes[i][vertex])
 glEnd()
 glBegin(GL_LINES)
 for i in range(len(cubes)):
 glColor3fv(colors[i])
 for edge in edges:
 for vertex in edge:
 glVertex3fv(cubes[i][vertex])
 glEnd()
 glBegin(GL_LINES)
 for i in range(len(cubes)):
 glColor3fv(colors[i])
 glVertex3fv((cubes[i][0][0], 0, 0))
 glVertex3fv(cubes[i][0])
 glEnd()
 # draw labels
 for i in range(len(cubes)):
 x = cubes[i][0][0]
 y = cubes[i][0][1] + 0.02
 z = cubes[i][0][2]
 gl_draw_text((x, y, z), labels[i][0])
 gl_draw_text((x, y - 0.04, z), labels[i][1])

def get_cubes_edges_labels_colors_surfaces_from_vectors(vectors, domains):
 labels = []
 colors = []
 surfaces = []
 cubes = []
 vertices = []
 wait_times = []
 edges = [(0, 1), (1, 3), (3, 2), (2, 6), (6, 7), (7, 5), (5, 4), (4, 0), (0, 2), (4,
6), (3, 7), (1, 5)]
 surfaces = [(0, 1, 2, 3), (1, 5, 7, 3), (2, 3, 7, 6), (0, 2, 6, 4), (0, 1, 5, 4), (4,
6, 7, 5)]
 vecs = [vectors[i] for i in range(len(vectors))]
 # if vectors[i]['domain'] in domains
 if len(vecs) > 0:
 inc = 0
 for i in range(len(vecs)):
 if i < len(vecs) - 1:
 it = get_seconds_from_time_string(vecs[i]['time'][1])
 nt = get_seconds_from_time_string(vecs[i + 1]['time'][1])
 wait_times.append((nt - it) * 1000)
 inc = (nt - it) / 1000
 # corner vertices
 v = vecs[i]['vector']
 x = float(v[0])
 xi = (float(v[0]) + (inc * i))
 y = float(v[1])
 z = float(v[2])
 vertices.append((xi, y, z))
 colors.append((x, y, z))
 # labels
 if vectors[i]['domain'] in domains:
 label = (
 '[' + vecs[i]['domain'].upper() + ' / ' + vecs[i]['word'] + ']',
 '<' + str(round(x, 4)) + ', ' + str(round(y, 4)) + ', ' +
str(round(z, 4)) + '>')
 else:
 label = ('', '')
 labels.append(label)
 # cubes and edges
 for i in range(len(vertices)):

118

 x = vertices[i][0]
 y = vertices[i][1]
 z = vertices[i][2]
 d = 0.01
 cube = ((x, y, z), (x, y, z - d), (x, y + d, z), (x, y + d, z - d), (x + d,
y, z), (x + d, y, z - d),
 (x + d, y + d, z), (x + d, y + d, z - d))
 cubes.append(cube)
 return cubes, edges, labels, colors, surfaces, wait_times

def get_conceptual_spaces(vectors, x_scale=100, y_scale=100, z_scale=100):
 spaces = {}
 for vector in vectors:
 domain = vector['domain']
 v = vector['vector']
 x = int(float(v[0]) * x_scale)
 y = int(float(v[1]) * y_scale)
 z = int(float(v[2]) * z_scale)
 vertex = Point3D(x, y, z)
 if len(domain) > 0:
 if domain in spaces:
 spaces[domain]['vertices'].append(vertex)
 else:
 spaces[domain] = {'vertices': [vertex]}
 return spaces

def gl_draw_text(position, textString):
 font = pygame.font.Font(None, 12)
 textSurface = font.render(textString, True, (0, 0, 0, 255), (245, 245, 220, 255))
 textData = pygame.image.tostring(textSurface, "RGBA", True)
 glRasterPos3d(*position)
 glDrawPixels(textSurface.get_width(), textSurface.get_height(), GL_RGBA,
GL_UNSIGNED_BYTE, textData)

def draw_single_vector_viz(screen, edges, cube, label, vec_color, surfaces):
 # draw cubes
 glBegin(GL_QUADS)
 glColor3fv(vec_color)
 for surface in surfaces:
 for vertex in surface:
 glVertex3fv(cube[vertex])
 glEnd()
 glBegin(GL_LINES)
 glColor3fv(vec_color)
 for edge in edges:
 for vertex in edge:
 glVertex3fv(cube[vertex])
 glEnd()
 glBegin(GL_LINES)
 glColor3fv(vec_color)
 glVertex3fv((cube[0][0], 0, 0))
 glVertex3fv(cube[0])
 glEnd()
 # draw labels
 x = cube[0][0]
 y = cube[0][1] + 0.02
 z = cube[0][2]
 gl_draw_text((x, y, z), label[0])
 gl_draw_text((x, y - 0.04, z), label[1])

def draw_conceptual_spaces(screen, vectors):
 conceptual_spaces = get_conceptual_spaces(vectors)
 angleX, angleY, angleZ = 0, 0, 0
 for d in conceptual_spaces.keys():
 f = len(conceptual_spaces[d]['vertices'])
 if f > 2:
 t = []

119

 vs = conceptual_spaces[d]['vertices']
 for i in range(f):
 # Rotate the point around X axis, then around Y axis, and finally around
Z axis.
 r = vs[i].rotateX(angleX).rotateY(angleY).rotateZ(angleZ)
 # Transform the point from 3D to 2D
 p = r.project(screen.get_width(), screen.get_height(), 256, 4)
 # Put the point in the list of transformed vertices
 t.append(p)
 for j in range(0, len(t), 2):
 if j == len(t) - 1:
 pygame.draw.line(screen, (255, 255, 255), (t[j].x, vs[j].y), (t[0].x,
t[0].y))
 else:
 pygame.draw.line(screen, (255, 255, 255), (t[j].x, t[j].y), (t[j +
1].x, t[j + 1].y))

def draw_vector_word_domain_text(surface, offset, position, word, domain, part_of_speech,
vector_string, timestamp,
 fore_color=(0, 0, 0), back_color=(255, 255, 255)):
 indent = 5
 basic_font = pygame.font.SysFont(None, 24)
 word_text = basic_font.render(word, True, fore_color, back_color)
 domain_text = basic_font.render(domain, True, fore_color, back_color)
 pos_text = basic_font.render(part_of_speech, True, fore_color, back_color)
 vector_text = basic_font.render(vector_string, True, fore_color, back_color)
 time_text = basic_font.render(timestamp, True, fore_color, back_color)
 time_text_rect = time_text.get_rect()
 time_text_rect.left += (offset * position) + indent
 time_text_rect.centery = surface.get_height() - time_text_rect.height
 surface.blit(time_text, time_text_rect)
 pos_text_rect = pos_text.get_rect()
 pos_text_rect.left += (offset * position) + indent
 pos_text_rect.centery = surface.get_height() - pos_text_rect.height -
time_text_rect.height
 surface.blit(pos_text, pos_text_rect)
 vector_text_rect = vector_text.get_rect()
 vector_text_rect.left += (offset * position) + indent
 vector_text_rect.centery = surface.get_height() - vector_text_rect.height -
pos_text_rect.height - time_text_rect.height
 surface.blit(vector_text, vector_text_rect)
 domain_text_rect = domain_text.get_rect()
 domain_text_rect.left += (offset * position) + indent
 domain_text_rect.centery = surface.get_height() - domain_text_rect.height -
vector_text_rect.height - pos_text_rect.height - time_text_rect.height
 surface.blit(domain_text, domain_text_rect)
 word_text_rect = word_text.get_rect()
 word_text_rect.left += (offset * position) + indent
 word_text_rect.centery = surface.get_height() - word_text_rect.height -
domain_text_rect.height - vector_text_rect.height - pos_text_rect.height -
time_text_rect.height
 surface.blit(word_text, word_text_rect)
 return word_text_rect.left, word_text_rect.top

def get_vertex_from_string_vector(v):
 vertex = (float(v[0]), float(v[1]), float(v[2]))
 return vertex

def draw_origin_vector_line(surface, origin, vertex, offset, colors):
 w_scale = offset - 10
 h_scale = origin[1] - 30
 salience_scale = len(colors)
 start_pos = (origin[0], origin[1])
 end_pos = (round(vertex[0] * w_scale) + origin[0], origin[1] - round(vertex[1] *
h_scale))
 line_color = get_color_from_vertex(vertex, colors)
 line_width = round(vertex[2] * (salience_scale / 5)) + 1
 pygame.draw.line(surface, line_color, start_pos, end_pos, line_width)

120

 radius = round(vertex[2] * salience_scale) + 1
 end_circle = pygame.draw.circle(surface, line_color, end_pos, radius)

def get_color_from_vertex(vertex, colors):
 c = int(vertex[2] * len(colors)) - 1
 if c < 0:
 c = 0
 if c > len(colors) - 1:
 c = len(colors) - 1
 return colors[c]

def draw_domain_vertices_scatter(surface, origin, vertices, offset, colors):
 w_scale = offset - 10
 h_scale = origin[1] - 30
 salience_scale = len(colors)
 for vertex in vertices:
 point = (round(vertex[0] * w_scale) + origin[0], origin[1] - round(vertex[1] *
h_scale))
 circle_color = get_color_from_vertex(vertex, colors)
 radius = round(vertex[2] * salience_scale) + 1
 pygame.draw.circle(surface, circle_color, point, radius, 1)

def get_short_vector_string(vector_tuple, decimal_places=4):
 precision = decimal_places * 4
 x = round(float(vector_tuple[0]) / precision) / precision
 y = round(float(vector_tuple[1]) * precision) / precision
 z = round(float(vector_tuple[2]) * precision) / precision
 return str(x) + ',' + str(y) + ',' + str(z)

def draw_rainbow(surface, colors, x, y, w=5, h=15, indent=5):
 for c in range(len(colors)):
 x = (w * c) + indent
 pygame.draw.rect(surface, colors[c], (x, y, w, h))

def get_viz_colors():
 colors = []
 red_frequency = .1
 green_frequency = .2
 blue_frequency = .3
 center = 128
 width = 127
 phase1 = 0
 phase2 = 2
 phase3 = 4
 length = 50
 for i in range(length):
 red = int(math.sin(red_frequency * i + phase1) * width + center)
 green = int(math.sin(green_frequency * i + phase2) * width + center)
 blue = int(math.sin(blue_frequency * i + phase3) * width + center)
 colors.append((red, green, blue))
 return colors

def fill_rect_surface_with_color(surface, pos_color, x, y, w, h):
 rect = pygame.draw.rect(surface, pos_color, (x, y, w, h))

def draw_prev_curr_next_vectors(surface, vectors, domain_vertices, i, lv, rv, colors):
 parts_of_speech = PartsOfSpeech()
 v_cnt = 1 + lv + rv
 w = surface.get_width()
 h = surface.get_height()
 offset = round(w / v_cnt)
 curr_pos = 0
 for vi in range(i - lv, i + rv + 1):
 if -1 < vi < len(vectors):

121

 vector_string = get_short_vector_string(vectors[vi]['vector'])
 tag = vectors[vi]['pos']
 pos_descr = parts_of_speech.get_description(tag)
 pos_color = parts_of_speech.get_color(tag)
 fill_rect_surface_with_color(surface, pos_color, (offset * curr_pos), 0,
offset, h)
 x, y = draw_vector_word_domain_text(surface, offset, curr_pos,
vectors[vi]['word'], vectors[vi]['domain'],
 pos_descr, vector_string,
vectors[vi]['time'][1], back_color=pos_color)
 origin = (x, y - 10, 0)
 if vectors[vi]['domain'] in domain_vertices.keys():
 vertices = domain_vertices[vectors[vi]['domain']]['vertices']
 draw_domain_vertices_scatter(surface, origin, vertices, offset, colors)
 vertex = get_vertex_from_string_vector(vectors[vi]['vector'])
 draw_origin_vector_line(surface, origin, vertex, offset, colors)
 curr_pos += 1

def get_youtube_video_path(display_id, output):
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 extension = get_youtube_media_extension(display_id, output)
 movie_path = os.path.join(folder, display_id + extension)
 return movie_path

def get_youtube_audio_path(display_id, output):
 audio_path = get_youtube_video_path(display_id, output)
 audio_path += '.mp3'
 return audio_path

def get_domain_convex_hulls(output, vectors):
 hulls = None
 domains = get_corpus_domains(output)
 if domains is not None:
 hulls = {}
 for vector in vectors:
 domain = vector['domain']
 if domain in domains.keys():
 vertices = domains[domain]['vertices']
 ch, d = get_convex_hull_delaunay_from_vertices(vertices)
 if ch is not None:
 points = [(x, y, z) for x, y, z in ch.simplices]
 if domain not in hulls.keys():
 hulls[domain] = points
 return hulls

def imdisplay(imarray, screen=None):
 """Splashes the given image array on the given pygame screen """
 a = pygame.surfarray.make_surface(imarray.swapaxes(0, 1))
 if screen is None:
 screen = pygame.display.set_mode(imarray.shape[:2][::-1])
 screen.blit(a, (0, 0))
 pygame.display.flip()

def draw_text_to_surface(surface, text, x, y, max_width, text_color, back_color,
indent=5):
 basic_font = pygame.font.SysFont(None, 24)
 txt = text + ' '
 new_text = basic_font.render(txt, True, text_color, back_color)
 new_text_rect = new_text.get_rect()
 if (x + new_text_rect.width) > max_width:
 x = indent
 y = y + new_text_rect.height
 new_text_rect.left = x
 new_text_rect.top = y
 surface.blit(new_text, new_text_rect)
 return new_text_rect

122

def draw_topic(surface, topic_info, total_time, total_words, colors):
 indent = 5
 x = indent
 y = 290
 title = topic_info['title']
 title_words = title.split()
 categories = topic_info['categories']
 tags = topic_info['tags']
 total_time_text = 'Total Time: ' + total_time
 total_words_text = 'Total Words: ' + str(total_words)
 colors_text = 'Salience Scale: (' + str(len(colors)) + ') 0.0 to 1.0'
 max_width = 270
 last_rect_height = 0
 for i in range(len(title_words)):
 try:
 rect = draw_text_to_surface(surface, title_words[i], x, y, max_width, (0, 0,
0), (255, 255, 255))
 x = rect.right
 y = rect.top
 last_rect_height = rect.height
 except:
 pass
 x = indent
 y = y + last_rect_height
 rect = draw_text_to_surface(surface, 'Categories:', x, y, max_width, (0, 0, 0), (255,
255, 255))
 last_rect_height = rect.height
 x = indent
 y = y + last_rect_height
 for i in range(len(categories)):
 try:
 rect = draw_text_to_surface(surface, categories[i], x, y, max_width, (0, 0,
0), (255, 255, 255))
 x = rect.right
 y = rect.top
 last_rect_height = rect.height
 except:
 pass

 x = indent
 y = y + last_rect_height
 rect = draw_text_to_surface(surface, 'Tags:', x, y, max_width, (0, 0, 0), (255, 255,
255))
 last_rect_height = rect.height
 x = indent
 y = y + last_rect_height
 for i in range(len(tags)):
 try:
 rect = draw_text_to_surface(surface, tags[i], x, y, max_width, (0, 0, 0),
(255, 255, 255))
 x = rect.right
 y = rect.top
 last_rect_height = rect.height
 except:
 pass
 x = indent
 y = y + last_rect_height
 rect = draw_text_to_surface(surface, total_time_text, x, y, max_width, (0, 0, 0),
(255, 255, 255))
 last_rect_height = rect.height
 x = indent
 y = y + last_rect_height
 rect = draw_text_to_surface(surface, total_words_text, x, y, max_width, (0, 0, 0),
(255, 255, 255))
 last_rect_height = rect.height
 x = indent
 y = y + last_rect_height
 rect = draw_text_to_surface(surface, colors_text, x, y, max_width, (0, 0, 0), (255,
255, 255))

123

 last_rect_height = rect.height
 x = indent
 y = y + last_rect_height
 draw_rainbow(surface, colors, x, y)

def get_vector_index_from_current_time(t, vectors):
 remaining = [i for i in range(len(vectors)) if
get_seconds_from_time_string(vectors[i]['time'][1]) > t]
 if len(remaining) > 0:
 return remaining[0]
 else:
 return None

def draw_time_stamp(surface, t, indent=5):
 time_stamp = get_time_string_from_seconds(t)
 x = indent
 y = surface.get_height() - 20
 draw_text_to_surface(surface, time_stamp, x, y, 270, (0, 255, 0), (255, 255, 255))

def get_adjusted_video_time(key, t, first, last):
 tt = t
 if pygame.key.get_mods() & pygame.KMOD_SHIFT:
 modification = 10.0
 elif pygame.key.get_mods() & pygame.KMOD_CTRL:
 modification = 60.0
 elif pygame.key.get_mods() & pygame.KMOD_ALT:
 modification = 300.0
 elif pygame.key.get_mods() & pygame.KMOD_CTRL & pygame.KMOD_SHIFT:
 modification = 600.0
 elif pygame.key.get_mods() & pygame.KMOD_CTRL & pygame.KMOD_ALT:
 modification = 1800.0
 else:
 modification = 1.0
 if key == pygame.K_RIGHT:
 tt = tt + modification
 if tt > last:
 tt = last
 elif key == pygame.K_LEFT:
 tt = tt - modification
 if tt < first:
 tt = first
 elif key == pygame.K_END:
 tt = last
 elif key == pygame.K_HOME:
 tt = first
 return tt

def restart_audio_at_position(t, audio_path):
 pygame.mixer.quit()
 pygame.mixer.init()
 pygame.mixer.music.load(audio_path)
 pygame.mixer.music.play(-1, t)

def draw_analysis_legend(surface):
 fore_color = (255, 255, 255)
 back_color = (0, 0, 0)
 basic_font = pygame.font.SysFont(None, 24)
 baseline_text = basic_font.render('BASELINE', True, fore_color, back_color)
 baseline_text_rect = baseline_text.get_rect()
 baseline_text_rect.centerx = round(surface.get_width() / 2) + 165
 baseline_text_rect.centery = 25
 surface.blit(baseline_text, baseline_text_rect)
 elaboration_text = basic_font.render('ELABORATION', True, fore_color, back_color)
 elaboration_text_rect = elaboration_text.get_rect()
 elaboration_text_rect.centerx = round(surface.get_width() / 2) + 165
 elaboration_text_rect.centery = surface.get_height() - 25

124

 surface.blit(elaboration_text, elaboration_text_rect)
 frequent_text = basic_font.render('FREQUENT', True, fore_color, back_color)
 frequent_text = pygame.transform.rotate(frequent_text, 90)
 frequent_text_rect = frequent_text.get_rect()
 frequent_text_rect.centerx = surface.get_width() - 25
 frequent_text_rect.centery = round(surface.get_height() / 2)
 surface.blit(frequent_text, frequent_text_rect)
 novel_text = basic_font.render('NOVEL', True, fore_color, back_color)
 novel_text = pygame.transform.rotate(novel_text, -90)
 novel_text_rect = novel_text.get_rect()
 novel_text_rect.centerx = 305
 novel_text_rect.centery = round(surface.get_height() / 2)
 surface.blit(novel_text, novel_text_rect)

def viz_vector_data(display_id, output, overwrite, start, stop, export):
 # prep data
 white = (255, 255, 255)
 colors = get_viz_colors()
 vectors = get_vectors(display_id, output)
 topic_info = get_topic(display_id, output)
 topic_total_words = len(vectors)
 topic_time_length = vectors[-1]['time'][1]
 # domain_hulls = get_domain_convex_hulls(output, vectors)
 domain_vertices = get_corpus_domains(output)
 # start presentation
 os.environ['SDL_VIDEO_WINDOW_POS'] = "%d,%d" % (10, 100)
 pygame.init()
 display = (1850, 900)
 screen = pygame.display.set_mode(display, pygame.RESIZABLE)
 pygame.display.set_caption('Path to Alignment - Semantic change in discourse')
 icon = pygame.image.load('assets/exu.png')
 pygame.display.set_icon(icon)
 viz_surface = pygame.display.get_surface()
 analysis_surface = pygame.Surface((1470, 800))
 draw_analysis_legend(viz_surface)
 # set up movie surface
 fps = 15
 video_surface = pygame.Surface((280, 900))
 video_surface.fill((255, 255, 255))
 movie_path = get_youtube_video_path(display_id, output)
 movie = VideoFileClip(movie_path, target_resolution=(280, 280))
 img = movie.get_frame(0)
 imdisplay(img, video_surface)
 result = []
 t0 = time.time()
 first = 1.0 / fps
 last = movie.duration - .001
 if len(start) > 0:
 first = get_seconds_from_time_string(start)
 if len(stop) > 0:
 last = get_seconds_from_time_string(stop)
 # sound
 pygame.mixer.init()
 audio_path = get_youtube_audio_path(display_id, output)
 pygame.mixer.music.load(audio_path)
 pygame.mixer.music.play(-1, first)
 fts = [t1 for t1 in np.arange(first, last, 1.0 / fps)]
 pausing = False
 while True:
 mt = pygame.mixer.music.get_pos()
 remaining = [t2 for t2 in fts if t2 > (mt / 1000)]
 if len(remaining) > 0:
 t = remaining[0]
 else:
 pygame.quit()
 quit()
 img = movie.get_frame(t)
 # handle events
 for event in pygame.event.get():
 if event.type == pygame.QUIT:

125

 pygame.quit()
 quit()
 elif event.type == pygame.KEYDOWN:
 if event.key == pygame.K_ESCAPE:
 print("Keyboard interrupt")
 return result
 elif event.key == pygame.K_SPACE:
 pausing = not pausing
 if pausing:
 pygame.mixer.music.pause()
 else:
 pygame.mixer.music.unpause()
 elif event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT or
event.key == pygame.K_END \
 or event.key == pygame.K_HOME:
 tt = get_adjusted_video_time(event.key, t, first, last)
 if tt is not t:
 t = tt
 restart_audio_at_position(t, audio_path)
 elif event.key == pygame.K_F1:
 dialog = ColorDialog("#00ffff")
 dialog.open()
 elif event.type == pygame.MOUSEBUTTONDOWN:
 x, y = pygame.mouse.get_pos()
 t1 = time.time()
 time.sleep(max(0, t - (t1 - t0)))
 imdisplay(img, video_surface)
 draw_topic(video_surface, topic_info, topic_time_length, topic_total_words,
colors)
 draw_time_stamp(video_surface, t)
 # draw analysis viz
 i = get_vector_index_from_current_time(t, vectors)
 if i is not None:
 analysis_surface.fill(white)
 draw_prev_curr_next_vectors(analysis_surface, vectors, domain_vertices, i, 1,
1, colors)
 viz_surface.blit(analysis_surface, (331, 51))
 viz_surface.blit(video_surface, (0, 0))
 # update and wait
 pygame.display.update()

def viz_launcher(ids, output, overwrite, start, finish):
 app = gui.Desktop()
 app.connect(gui.QUIT, app.quit, None)
 title = gui.Label('Path to Alignment - Launch Visualization')
 app.add(title, 50, 5)
 icon = pygame.image.load('assets/exu.png')
 pygame.display.set_icon(icon)
 c = gui.Table(width=640, height=900)

 def onchange(value):
 script = r'C:\ProgramData\Anaconda3\python.exe C:/LING/599-
Thesis/code/youtube_corpus_tool.py'
 cmd = 'viz_corpus_vector_data:' + value.value['display_id'].value
 os.system(script + ' ' + cmd)

 def tab():
 box.widget = g.value

 g = gui.Group()
 g.connect(gui.CHANGE, tab)
 c.tr()

 t1 = gui.Table(width=1800, height=900)
 b = gui.Tool(g, gui.Label("Visualizations", width=25), t1)
 c.td(b, align=-1)

 def launch_viz_dialog(display_id):
 dialog = LaunchVizDialog(display_id)
 dialog.connect(gui.CHANGE, onchange, dialog)

126

 dialog.open()

 t1.tr()
 t1.td(gui.Label('VIDEO'))
 t1.td(gui.Label('WORDS'))
 t1.td(gui.Label('SET'))
 t1.td(gui.Label('DURATION'))
 t1.td(gui.Label('DESCRIPTION'))

 for display_id in ids:
 fileid = display_id + r'/' + display_id + r'.pos'
 words = yttc.words(fileid)
 t = len(words)
 s = len(set(words))
 title = display_id
 description = ''
 vl = "unknown"
 vls = 0
 word_times = get_word_times(display_id, output)
 if word_times and len(word_times) > 0:
 wt = word_times[-1]
 vl = wt[1]
 vls = get_seconds_from_time_string(vl)
 folder = os.path.join(output, r'youtube/' + display_id + r'/')
 topics_json_path = os.path.join(folder, display_id + r'_topics.json')
 file_exists = os.path.exists(topics_json_path)
 if file_exists:
 with open(topics_json_path, 'r') as f:
 data = json.load(f)
 if data['title'] and len(data['title']) > 0:
 title = data['title']
 if data['categories'] and len(data['categories']) > 0:
 title += ' - '
 for cat in data['categories']:
 title += ' ' + cat
 t1.tr()
 btn = gui.Button(display_id)
 btn.connect(gui.CLICK, launch_viz_dialog, display_id)
 t1.td(btn, align=-1)
 t1.td(gui.Label(str(t)))
 t1.td(gui.Label(str(s)))
 t1.td(gui.Label(str(vl)))
 t1.td(gui.Label(unicodedata2.normalize('NFKD', title).encode('ascii',
'ignore')), align=-1)

 c.tr()
 spacer = gui.Spacer(1850, 900)
 box = gui.ScrollArea(spacer, height=900)
 c.td(box)
 app.run(c)

def main(command, output, overwrite, start, finish, export):
 folder = os.path.join(output, r'youtube/')
 ids = [item for item in os.listdir(folder) if os.path.isdir(os.path.join(folder,
item))]
 command_parts = command.split(':')
 cmd = command_parts[0]
 val = ''
 if len(command_parts) > 1:
 val = command_parts[1]
 if val != '':
 ids = [val]
 # header for print
 tws = 0
 uws = 0
 vls = 0
 if cmd == 'make_all_domain_vertices':
 write_domains_to_youtube_corpus(output)
 return
 elif cmd == 'viz_launcher':

127

 viz_launcher(ids, output, overwrite, start, finish)
 return
 if cmd == 'print_corpus_info':
 print('{:<15} {:<10} {:<10} {:<10} {}'.format('Display ID', 'Total Words',
'Unique Words', 'Total Time',
 'Title'))
 elif cmd == 'print_corpus_vector_data':
 print('{:<15} {:<30} {:<30} {:<5} <{:<15}, {:<15}, {:<15}> '.format('Time',
'Word', 'frame', 'POS',

'Entrenchment', 'Overlap',
 'Salience'))
 if export and len(export) > 4 and os.path.exists(export):
 os.remove(export)
 for did in ids:
 if cmd == 'download_youtube':
 extract_youtube_data(did, output, overwrite)
 elif cmd == 'make_audio_file':
 write_audio_clip(did, output, overwrite)
 elif cmd == 'make_pos_text':
 write_pos_tagged_to_youtube_corpus(did, output, overwrite)
 elif cmd == 'make_topic_list':
 write_topics_to_youtube_corpus(did, output, overwrite)
 elif cmd == 'make_word_frames':
 write_word_frames_to_youtube_corpus(did, output, overwrite)
 elif cmd == 'make_word_net':
 write_word_nets_to_youtube_corpus(did, output, overwrite)
 elif cmd == 'make_word_vectors':
 write_word_vectors_to_youtube_corpus(did, output, overwrite)
 elif cmd == 'make_word_k_nn_vectors':
 write_k_nn_word_vectors_to_youtube_corpus(did, output, overwrite)
 elif cmd == 'plot_vector_surface':
 plot_3d_surface_from_corpus_vectors(did, output, overwrite)
 elif cmd == 'print_corpus_info':
 t, s, v = print_file_id_and_topic_information(did, output, overwrite, export)
 tws += t
 uws += s
 vls += v
 elif cmd == 'print_corpus_vector_data':
 print_vector_data(did, output, overwrite, start, finish, export)
 elif cmd == 'viz_corpus_vector_data':
 viz_vector_data(did, output, overwrite, start, finish, export)
 if cmd == 'print_corpus_info':
 total_video_time = get_time_string_from_seconds(vls)
 tuws = len(set(yttc.words()))
 idct = str(len(ids)) + ' videos'
 print('--
------------------')
 print('{:<15} {:<10} {:<10} {:<10} {}'.format(idct, tws, tuws, total_video_time,
''))

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('command',
 help='Command to carry out, e.g. "download:8IiDgZK-Fz4" downloads
the target youtube video id for data extraction.')
 parser.add_argument('-p', '--output', help='The output location for corpus files.')
 parser.add_argument('-o', '--overwrite', help='overwrites existing data',
action='store_true')
 parser.add_argument('-s', '--start', help='The start time for word in corpus files.')
 parser.add_argument('-e', '--stop', help='The stop time for word in corpus files.')
 parser.add_argument('-x', '--export', help='The path of file to export data.')
 args = parser.parse_args()
 out_path = 'corpora'
 begin = ''
 end = ''
 export_path = ''
 if args.output:
 out_path = args.output
 if args.start:

128

 end = args.start
 if args.stop:
 stop = args.stop
 if args.export:
 export_path = args.export
 if args.command:
 main(args.command, out_path, args.overwrite, begin, end, export_path)
 else:
 parser.print_help()

129

130

9 References

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python.

Sebastopol, CA 95472: O’Reilly Media Inc. Retrieved from Natural Language

Toolkit: http://www.nltk.org/book

Bybee, J. (2007). Frequency of Use and the Organization of Language. New York, NY:

Oxford University Press.

Bybee, J. (2010). Language, Usage and Cognition. Cambridge: Cambridge University

Press.

Chafe, W. (1977). The recall and verbalization of past experience. Bloomington: Indiana

University Press.

Chafe, W. (1994). Discourse, consciousness and time: the flow and displacement of

conscious experience in speaking and writing. Chicago: University of Chicago

Press.

Chafe, W. (1996). How consciousness shapes language. Pragmatics and Cognition, 4, 35-

54.

Chemero, A. (2011). Embodied Cognition and Radical Embodied Cognition. In A.

Chemero, Radical Embodied Cognitive Science (pp. 17-44). Cambridge: MIT

Press.

Chemero, A. (2011). Radical Embodied Cognitive Science. Cambridge, Massachusetts:

The MIT Press.

Chilton, P. (2014). Language, Space and Mind. Cambridge, UK: Cambridge University

Press.

131

Comrie, B., Haspelmath, M., & Bickel, B. (2008). The Leipzig Glossing Rules. Retrieved

from Max Planck Institute for Evolutionary Anthropology:

http://www.eva.mpg.de/lingua/pdf/LGR08.02.05.pdf

Coulson, S. (2001). Semantic Leaps, Frame-Shifting and Conceptual Blending in

Meaning Construction. Cambridge: Cambridge University Press.

Croft, W. (2001). Radical Construction Grammar Syntactic Theory in Typological

Perspective. Oxford: Oxford University Press.

Croft, W. (2003). Typology and Universals (2nd ed.). New York, New York, USA:

Cambridge University Press.

Croft, W. (2007, April). Intonation Units and Grammatical Structure in Wardaman and in

Cross-linguistic Perspective. Australian Journal of Linguistics, 27(1), 1-39.

Croft, W. (2012). Verbs, Aspect and Causal Structure. Oxford, United Kingdom: Oxford

University Press.

Croft, W. (2014). Morphosyntax Incomplete Draft. Albuquerque, New Mexico: Not

Specified.

Croft, W., & Cruse, A. D. (2004). Cognitive Linguistics. New York, New York, USA:

Cambridge University Press.

Dale, R. (2015, 7 3). An integrative research strategy for exploring synergies in natural

language performance. Ecological Psychology, 27(3), 190-201. Retrieved from

https://pdfs.semanticscholar.org/da17/49a98ba3d9928acf6730793c60edd1db3b06.

pdf

Dehaene, S. (2014). CONSCIOUSNESS AND THE BRAIN. New York: Penguin Books.

Edelman, G. M. (2006). second nature . New Haven: Yale University Press.

132

Edelman, G. M., & Tononi, G. (2000). Universe of Consciousness. New York: Basic

Books.

Edelman, S. (2007). Bridging Language with the Rest of Cognition. In M. Gonzalez-

Marquez, I. Mittelberg, S. Coulson, & M. J. Spivey, Methods in Cognitive

Linguistics (pp. 424-445). Amsterdam: John Benjamins.

Everett, D. L. (2017). How Language Began. New York: Liveright Publishing Company.

Fried, D., Polajnar, T., & Clark, S. (2015). Low-Rank Tensors for Verbs in Compositional

Distributional Semantics. University of Cambridge, Computer Laboratory.

Cambridge: University of Cambridge. Retrieved from

https://people.eecs.berkeley.edu/~dfried/papers/FPC-verb_tensors.pdf

Friston, K. J., Tononi, G., Reeke Jr., G. N., Sporns, O., & Edelman, G. M. (1994).

VALUE-DEPENDENT SELECTION IN THE BRAIN: SIMULATION IN A

SYNTHETIC NEURAL MODEL. Neuroscience, 59(2), 229-243.

Gärdenfors, P. (2014). Conceptual Spaces. In P. Gärdenfors, The Geometry of Meaning

(pp. 21-52). Cambridge: The MIT Press.

Godfrey-Smith, P. (2016). Other Minds: THE OCTOPUS, THE SEA, and THE DEEP

ORIGINS of CONSCIOUSNESS. New York: Farrar, Straus and Giroux.

Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep Learning. Cambridge, MA,

USA: MIT Press.

Gries, S. T. (2013). Data in Construction Grammar. In T. Hoffmann, & G. Trousdale, The

Oxford Handbook of Construction Grammar (pp. 93-108). New York: Oxford

University Press.

133

Gries, S. T. (2015, 10 16). The role of quantitative methods in cognitive linguistics.

Change of Paradigms–New Paradoxes: Recontextualizing Language and

Linguistics, 31, 311. Retrieved from Google Scholar:

http://www.linguistics.ucsb.edu/faculty/stgries/research/2015_STG_ContingWrds

Cxs_DGFestschrift.pdf

Hagan, M. T., Demuth, H. B., Beale, M. H., & De Jesus, O. (2016). Neural Network

Design (2 ed.). San Bernadino, CA, USA: Hagan and Demuth. Retrieved from

http://hagan.okstate.edu/nnd.html

Hoffmann, T., & Trousdale, G. (2013). The Oxford Handbook of Construction Grammar.

(T. Hoffmann, & G. Trousdale, Eds.) Oxford: Oxford University Press.

doi:10.1093/oxfordhb/9780195396683.001.0001

Labov, W., & Waletzky, J. (1966). Narrative Analysis: Oral Versions of Personal

Experience. New York and Boston: Columbia University and Harvard University.

Lambrecht, K. (1994). Information Structure and Sentence Form, Topic, focus and the

mental representations of discourse referents (Vol. 71). New York, New York:

Cambridge University Press.

Langacker, R. W. (2008). Cognitive Grammar A Basic Introduction. Oxford: Oxford

University Press.

Langacker, R. W. (2008, March). Discourse in Cognitive Grammar. Cognitive Linguistics,

12(2), 143–188. doi: 10.1515/cogl.12.2.143

Langacker, R. W. (2016). Baseline and elaboration. Cognitive Linguistics, 27(3), 405-

439. doi:10.1515/cog-2015-0126

Last Name, F. M. (Year). Article Title. Journal Title, Pages From - To.

134

Last Name, F. M. (Year). Book Title. City Name: Publisher Name.

Longacre, R. E. (2007). Language typology and syntactic description (2nd ed., Vol. 2).

(T. Shopen, Ed.) Cambridge: Cambridge University Press.

Merlan, F. C. (1994). A grammar of Wardaman: a language of the Northern territory of

Australia. In F. C. Merlan, G. Bossong, & W. Chafe (Eds.), Mouton Grammar

Library 11 (Vol. 11, pp. 1-613). Berlin - New York: Walter de Gruyter.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the

ACM, 38(11), 39-41.

Müller, A., & Guido, S. (2016). Introduction to Machine Learning with Python.

Sebastopol: O'Reilly.

Noë, A. (2006). The Enactive Approach to Perception. In A. Noë, Action in Perception

(pp. 1-34). Cambridge: The MIT Press.

Onnis, L., & Spivey, M. J. (2012). Toward a New Scientific Visualization for the

Language Sciences. Information(3), 124-150. doi:10.3390/info3010124

Palmer, F. R. (2001). Mood and Modality (2nd ed.). Cambridge, UK: Cambridge

University Press.

Python Software Foundation. (2001, January 1). Python. Retrieved from Python Software

Foundation: https://www.python.org/

Ruppenhofer, J., Ellsworth, M., Petruck, M. R., Johnson, C. R., Baker, C. F., &

Scheffczyk, J. (2016, 11 1). FrameNet II: Extended Theory and Practice.

Retrieved from Frame Net:

https://framenet.icsi.berkeley.edu/fndrupal/sites/default/files/book2016.11.01.pdf

135

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social

Psychology, 39, 1161-1178.

Smith, C. S. (2003). Modes of Discourse, The Local Structure of Texts (Vol. 103). New

York: Cambridge University Press.

Spivey, M. (2007). THE CONTINUITY OF MIND (Vol. 44). New York: Oxford

University Press.

Steels, L. (2011). Design Patterns in Fluid Construction. Amsterdam: John Benjamins.

Steels, L. (2013). Fluid Construction Grammar. In T. Hoffman, & G. Trousdale, The

Oxford Handbook of Construction Grammar (pp. 153-167). New York: Oxford

University Press.

Steels, L. (2016, 8 30). Basics of Fluid Construction Grammar. Retrieved from Google

Scholar: https://www.fcg-net.org/wp-content/uploads/papers/basics-of-fcg.pdf

Thelen, E., & Smith, L. B. (2000). A Dynamic Systems Approach to the Development of

Cognition and Action. Cambridge: MIT Press.

Thompson, S. A., Longacre, R. E., & Hwang, S. J. (2007). Adverbial clauses. (T. Shopen,

Ed.) Language typology and syntactic description, 2, 237-300.

	University of New Mexico
	UNM Digital Repository
	Summer 7-16-2018

	A Path To Alignment
	Gregory Richard Arnold
	Recommended Citation

	List of Figures
	List of Tables
	Preface
	1 Introduction
	2 Background
	2.1 Neuroscience
	2.2 Philosophy
	2.3 Computational Linguistics

	3 Building a Corpus
	3.1 Collecting YouTube Data and Building a Corpus
	3.2 Building YouTube Symbolic Units and Vectors
	3.3 Producing Useful Information and Visualizations

	4 A Usage Event Data Model
	4.1 The Three Stages of Corpus Data
	4.2 Plain Text
	4.3 Tagged and Categorized Text
	4.4 Words and Frames
	4.5 Words and Hypernyms
	4.6 Vectors and Dimensionality and Domains
	4.7 A Value System Application

	5 Conclusions
	6 Figures
	7 Tables
	8 Appendices
	8.1 Corpus Python Code

	9 References

