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A PATH TO ALIGNMENT 

By 

Gregory R Arnold 

B.A., Linguistics, Seattle Pacific University, 1985 

ABSTRACT 

What is really needed to make a machine into a verisimilitude of a language using 

human? Clearly there are holes in human communication, missing linguistic forms, and 

yet we manage to convey meaning. The under-determinacy of language seems to play an 

integral part in the adaptive system that all humans possess for perceiving, processing and 

producing language with shared semantic value. We invent symbols that index the 

missing contextual elements, allowing partial production of linguistic units. A machine 

would require the same abilities of indexicality and inventiveness. 

In this pilot study, I attempt to understand how semantic values shift and align during 

conversation with the further hope of developing a model for a computer to be able to 

interact with a human. I draw on the data available from YouTube closed-caption text, 

and build a corpus of discourses with the aim of developing meta-data in the form of 

dimensional values. This data represents the temporal flow of usage events with a 

semantic value system that seems to prod the activation of more usage events, align or 

misalign coordinated meaning during the semiotic cycle. I finally propose a usage-based 

data driven application, Chatbot that stores the tokens of conversation between a person 

and the computer as symbolic units for memory and exemplars for construction. 
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Preface 

My thesis asserts that the “meeting of minds”, coordination of meaning, is achieved 

through common lexical knowledge shared between two or more people engaged in 

conversation, i.e. the semiotic cycle (Steels, 2016, pp. 3-4)). Under-determinacy in 

language production (Everett, 2017, pp. 3-4,66,251,256) indicates there is a clear human 

invention of symbols, from the early cave drawings to the present day, which refer to or 

index missing contextual elements and semantic values. There is something else 

“prodding” activation in language processing, however, when attaining “joint attention” 

or a fixpoint in conceptual space (Gärdenfors, 2014, pp. 91,260,272-275).  

Mutual alignment or un-alignment of meaning occurs; linguistic categorization (memory, 

learning and performance) is biased dynamically by a set of one or more value systems 

(dimensions), re-entrant mapping of motor activities on sensory information of an 

individual speaker or hearer (Thelen & Smith, 2000, p. 160). This is evident because 

alignment of meaning can fail even with common lexical knowledge. Also, linguistic 

units of input that are different from linguistic units containing the intended meaning are 

often employed in conversation to activate coordination. The value systems hold the 

linguistic criteria, including indexing missing context for language processing, activation 

and selection of the best adaptive meaning.
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1 Introduction 

If I wanted to build a robot that could communicate with humans very much like a human 

would with all the irrational and variant behaviors that can be attributed to humankind, I 

would need a cognitively sufficient model that considered many forms of input, many 

sensorimotor mechanisms, many use-specific processing units with cooperation abilities, 

value systems that act as biases for processing, and a storage medium where processing 

units can be activated. Figure 1 shows three boxes modelling a body-centric process. The 

first box is the world-environment input that is abundant with various forms of waves and 

particles, e.g. light and sound. The second box contains the bodily sensorimotor 

mechanisms that human evolution has adapted, e.g. the senses, ears, eyes, skin and 

tongue. The third box embodies the human consciousness full of processing units that are 

clustered and inter-connected. Bi-directional arrows connect the three boxes as data flows 

into and out of the human machine. 

Consciousness has been an elusive topic for a very long time in human years. It has been 

a topic of fireside discussion since human predecessors came down out of the trees. More 

recently cognitive and neuroscience research has aided in developing theories about how 

consciousness emerges; what goes on in the brain as part of a human interacting with the 

world. Language is one of the more central emergent observations as it is foundational to 

human communication. In computer science, many algorithms have been applied to 

human interaction via computer interfaces, AKA Natural Language Processing. This has 

been achieved by processing language data using Machine Learning algorithms, and then 
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applying the learned indexical knowledge to software programs like SIRI1 and others. 

Technology has achieved perceptive machine capabilities to analyze and disseminate data 

from spoken, written and kinetic sources. Although this is truly amazing, it is not even 

close to approaching the Human Consciousness level of processing. Each Machine 

Learning algorithm is targeted to solve a specific problem, and then collectively used to 

manifest a verisimilitude of consciousness. 

The human difference is observed when quick decisions are made, and sometimes not the 

most logical ones. There are many theories that show a multi-modal input can be 

processed by a machine quickly and probabilistically, based on massive amounts of 

indexed data, i.e. IBM’s Watson2, even to the extent of competing and winning in a 

popular trivia game show. Another current example is the computer in self-driving cars 

that can process input based on trained data sets, and learn from actual road experience. 

These applications are wondrous examples of modern utopia-driven utilitarian 

technology, but what about a machine that makes mistakes, or makes irrational decisions? 

Is it even possible to create a “Conscious” machine? 

The situation of most interest to my thesis involves, in its simplest form, a three-step 

model for language processing. The first step is the processing of input, which takes as its 

input multiple raw signals (R where R is all the signals [0 to n]), and processes each of 

them into a unit (p where p is the construction (Croft, Radical Construction Grammar 

Syntactic Theory in Typological Perspective, 2001, p. 4) (Steels, 2013, p. 153) in the 

                                                 
 

1 “Siri (pronounced /ˈsɪəri/) is an intelligent personal assistant, part of Apple Inc.'s iOS.” 
https://en.wikipedia.org/wiki/Siri  
2 https://en.wikipedia.org/wiki/Watson_(computer)  

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Intelligent_personal_assistant
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Siri
https://en.wikipedia.org/wiki/Watson_(computer)
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form of a symbolic unit (Langacker, 2008)). The second step is the activation function 

(f(x) where x is the valuation of a product of contextual weight (w) and the indexical 

vector of (p), and summed with the bias or vector of value system calculations (Friston, 

Tononi, Reeke Jr., Sporns, & Edelman, 1994, p. 232)), which takes the processed unit and 

activates its usage against semantic domains (Gärdenfors, 2014, pp. 30-38). The third 

step is the result or output or response, which is a point in conceptual space (Gärdenfors, 

2014, pp. 271-275) that refers or points to a production unit or units. These three 

fundamental steps are repeated in a semiotic cycle (Steels, 2016, pp. 3-4) until the point 

in conceptual space maps onto itself (f(x) = x), or the meaning is coordinated 

(Gärdenfors, 2014, p. 94), of course this mapping may or may not happen in a discourse 

because of any number of interruptions or divergent meanings. Consciousness emerges, 

like foam atop a cold pint of beer3, from the collinear, multi-cued dynamical system of 

usage of this language processing model (Onnis & Spivey, 2012, p. 140). 

My research focuses on what steers or prods (Thelen & Smith, 2000, p. 160) the 

emergences of consciousness for more than one human when they attain joint attention 

(Gärdenfors, 2014, p. 92) while in conversation with each other. Edelman proposes that 

consciousness emerges as part of the re-entrant loop between value-category memory and 

current perceptual categorization, as shown in Figure 2.  

Value systems could be modelled as the input to calculating a bias in the Neural Network 

algorithm affecting the actual linguistic activation as hinted at above in the robot analogy. 

I ask the following questions then to narrow the scope of my research. What is a 

                                                 
 

3 Simile 
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Linguistic Value System, and more specifically what is the “Bias” that steers activation 

and selection? Can we identify sensorimotor sources of linguistic value, e.g. visual 

preference? In the next section I summarize some of the germane research already out 

there.  
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2 Background 

The multi-disciplinary domain of cognitive science research is vast, contemporary-

popular and extremely complex, somewhat overwhelming really. Neuroscience, 

psychology, philosophy, education and linguistics, for example, make up some of the 

areas of study. It is befitting for consciousness to have so much attention because of its 

emergent contribution to human evolution and global communications. The question of 

how a human brain works, by itself, has entire institutional focus yielding many benefits 

to humanity from curing diseases to adaptive technologies applied to sensory 

impairments. In the following sections I try to summarize some relevant studies of 

cognition from various disciplines to provide a stage for my proposed thesis and research. 

2.1 Neuroscience 

Edelman pioneered the TNGS4 model that greatly furthers the study of consciousness. 

Neuronal group selection is the theory that value systems modulate synaptic changes to 

provide constraints for the selection of adaptive behaviors in somatic time. Value systems 

are modified with experience, a feedback loop of selection (re-entrant). Brain functions 

are mediated by: 

i. Selectional events occurring among interacting cells in the developing embryo to 

form large repertoires of variant neural circuits 

ii. Further selectional events occurring among populations of synapses to enhance 

those neuronal responses having adaptive value for the organism 

                                                 
 

4 The Theory of Neuronal Group Selection (Edelman & Tononi, Universe of Consciousness, 
2000, p. 83) 
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iii. re-entrant signals, exchanged via parallel and reciprocal connections, that serve 

through synaptic selection to integrate response patterns among functionally 

segregated brain areas in an adaptive fashion 

Biases (innate values) constrain the selectional system instead of it being governed by 

pre-programmed rules or syntax. “The value of a global pattern of neuronal responses to 

a particular environmental situation (stimulus) is reflected in the capacity of that response 

pattern to increase the likelihood that it will recur in the same context.” (Friston, Tononi, 

Reeke Jr., Sporns, & Edelman, 1994, p. 230) Value is most effective when movement 

becomes part of the learning sequence. “An interesting consequence of value-dependent 

plasticity in afferents to sensory units in the model is that receptive field properties can 

change preferentially to sample cues having potential value.” (Friston, Tononi, Reeke Jr., 

Sporns, & Edelman, 1994, p. 237) 

2.2 Philosophy 

Embodied Cognition 

It is all about a “Theory of Mind”, and two major theoretical camps that branch several 

times only to merge loosely as Radical Embodied Cognition (Chemero, 2011, pp. 17-24). 

The Representational Theory of Mind (RTM) is dialectically followed by the 

Eliminativism Theory of Mind (ETM). RTM has five tenets: 

i. Proposition attitude states are relational 

ii. Some relata are mental representations 

iii. Mental representations are symbols (form and meaning) 

iv. Mental representations have causal roles through form 

v. Propositional attitudes get meaning from other object mental representations 
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A branch of RTM is computational, and asserts that computation is a rule-governed 

manipulation of symbols (CTM). This also involves the traffic of discrete tokens in the 

mind.  

ETM works from a natural, ecological perspective and lays out three main assertions: 

i. Perception is direct, i.e. no computation, no representation, no addition 

ii. Perception is for guidance of action (perhaps a value system) i.e. always an 

action, we perceive to do 

iii. Perception is of affordances, i.e. environmental opportunities for behavior, 

affordances can be both subjective and objective 

A branch from this theory is situated semantics, or embodied cognition which is 

composed of indexicals (here, now, there, I, etc.), and the meaning of thoughts which are 

relationships between thinker and environmental information. The situation or thought is 

continuous in “act and check again” cognition. The applications that have sprung from 

this theory are numerous, including robotics, simulated evolution, developmental 

psychology to name a few.  

Dynamical System Theory (DST), defined in Figure 3, comes out of situated semantics as 

well, and play a fundamental role in Radical Embodied Cognition. DST asserts a multi-

variable input, each with a formula to calculate the action. “The agent produces 

representations that are geared toward the actions it performs from the beginning.” 

(Chemero, 2011, p. 27) The calculations are therefore differential equations that one 

might be tempted to view as part of the RTM camp, but the ETM camp, at this state of 

theory evolution, are not anti-representationalists. Instead they view these perception 

variables in an indexical-functional manner. 
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Radical Embodied Cognition (REC) and Embodied Cognition (EC) differ, therefore, in 

that REC evolves from ETM, and EC evolves from RTM, but both posit that embodied 

cognition is explained by way of tools like DST. REC rejects the idea of mental 

representation maps, and EC is more computationally tolerant. So, EC is defined as 

“Scientific study of perception, cognition, and action as necessarily embodied 

phenomenon, using explanatory tools that don’t posit mental representations.” (Chemero, 

2011, p. 29) This is aligns well with the somatic processing model, Figure 1, where 

perception is the world, action is the body, and cognition is the brain, i.e. it models 

human existence philosophically. 

Enactive Perception 

The basic declaration of the enactivists is that they reject the idea that perception is a 

process inside the brain (Noë, 2006, p. 2). Instead perception is the bodily activity that 

humans engage in because of brain processes. The sensorimotor control in the brain 

enacts perception by usage in the form of embodied movement. Like what Edelman and 

others suggested that a value system maintained in neuronal groups is responsible for the 

apparent patterning of these perception activities. The so-called senses are used by the 

controlling neurons, not the other way around. Adaptive behavior of people with certain 

sensory deficits, such as blindness, shows how usage will shift to other sensual 

mechanisms to achieve the necessary perceptions (Noë, 2006, pp. 7-11). In other words, 

perception is a result of bodily actions. 

Sensorimotor knowledge is then, if I understand this correctly, only the neurological 

pattern that would bodily reenact the perception. The implications are staggering 

regarding memories of what happened. The brain does not record the event itself, but 
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instead records the neuronal paths created by chemicals which provide a guidance, i.e. 

“Perception” for the sensorimotor action. The memory recall then recreates the pathways, 

and provides another, not likely identical, guidance. In other words, “perception” is a 

space in between thought and action that guides the action. 

2.3 Computational Linguistics  

Construction Grammar 

There are three types of linguistic data considered in research by construction 

grammarians: introspective, observational and experimental. For the sake of evaluation of 

data on a continuum, because linguists love continuums, three dimensions of perception 

are considered: setting, stimulus and unit/response (Gries S. T., 2013, p. 94). The 

application of an introspective approach to data in a corpus involves a researcher 

evaluating “what sounds right”. This approach is somewhat prone to personal bias, and 

has been dismissed in favor of the other two approaches. Observational approaches to 

data look mostly at textually analyzable tokens, and provide statistical results for the 

three dimensions using frequencies of (co)occurrence, conditional probabilities, 

association strengths, and multi-factorial and multi-variance analysis. Experimental 

approaches include many studies involving psycholinguistic methods to elicit responses, 

such as priming effects. More recently there have been more uses of measure devices, 

like an EEG, to collect data that arises from production or perception of corpus data. 

These experimental activities would still fall at the natural end of the continuum, but here 

are also artificial dimensions used in studies involving computational linguistics and 

machine learning. 
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The models used in the latter experimental approach vary greatly in how activation, 

simulation and learning occurs in the artificial environment, but still provide for the three 

dimensions. “Finally, with the importance that usage plays in most contemporary 

incarnations of Construction Grammar, computational simulations of first-language 

acquisition or diachronic change will assume a more central role that they have done so 

far and (Edelman S. , 2007) surveys some notions relevant in this context.” (Gries S. T., 

2015, p. 108). It is noted lastly that these approaches provide a richer toolbox for the 

Construction Grammarian. 

Fluid Construction Grammar (FCG) “attempts to capture intuitions and theoretical 

notions from cognitive linguistics in general and Construction Grammar in particular.” 

(Steels, 2013, p. 153) FCG has been computational since 1998, and has yielded two main 

components: FCG-System and FCG-Interpreter. The system is embedded in the 

Common-LISP programming environment, and the interpreter is a web tool for linguists 

to use and interact with. Many computational algorithms are employed; such as those 

employed in machine learning. There are two levels of approaches for constructionists: 

the processing level, which uses transient structures to represent information about what 

is being parsed or produced, and the design level, encompasses the complexity of writing 

grammars by maintaining methods and techniques. 

The processing level looks at a sentence as having two poles (Steels, 2013, p. 155): a 

semantic and a syntactic. The semantic pole contains a transient tree structure that is read 

from left to right, perhaps capturing the schematicity of the linguistic unit. The Syntactic 

pole is also a transient tree structure that is read right to left, and is notionally equivalent 

to the phonological pole in cognitive grammar. Tree structures also represent the unit and 
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sub-unit hierarchies. A matching and merging process occurs during the parsing of a 

construction where the condition already exists in the corpus for a given pole, and the 

contribution is matched to and merged with the condition. The semantic and syntactic 

poles are completely dependent on the design of a construction grammarian. All this is 

very much like a usage-based exemplar (Bybee, 2010, p. 19) in that the construction is 

the same for both parsing and production, and variation is well-represented. The novel 

differences or changes in the construction are called footprints, and are tagged for 

historical reference. Sets and networks are used to determine contextual priority of 

execution. Chunks are also used for construction units that are highly entrenched, which 

provides a more effective triggering. 

The design level is the construction grammarian’s workshop. All constructions work 

more efficiently if there are constraints. The grammar designer starts with the higher-

level abstractions. Over the years of grammar implementation design patterns have been 

uncovered, and now can be used as starting templates. Common sets of features are often 

bundled, and then matrixed to differentiate feature bundle competition. Several human 

steps must be accounted for in the grammar design. “The first step is to embed the 

production of comprehension of sentences in a complete semiotic cycle.” (Steels, 2013, p. 

165). This includes the internal world model of perception and action, the categorization 

of reality, i.e. meaning, application of constructions, and articulation. And then the 

reverse steps for the hearer. FCG emphasizes reversibility of constructions, it goes both 

ways. 
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Conceptual Spaces 

“Il mondo ha la struttura del linguaggio e il linguaggio ha le forme della mente.” (The 

world has the structure of language and language has the form of the mind) (Gärdenfors, 

2014, p. 8). This is profound in that it says language is experiential, and we are not 

disconnected from the world we live in. Gärdenfors lays out the background of 

semantics, and provides a cognitive linguistic understanding of its importance. Two 

conceptual spaces are defined with three important themes: convexity, domains and 

dimensionality. Convexity supports the learnability of categories and effectiveness of 

communication (Gärdenfors, 2014, p. 26). Concepts are learned, we are not born with 

them. It adheres to the semantic hypothesis that the typical meaning is the prototype at 

the center of a convex region assigned to the linguistic unit. Domain is broadly 

interpreted as indicating any kind of conception of realm of experience (Langacker, 2008, 

p. 31). Domains are gradient from basic to abstract and locational to configurational. 

Dimensionality is important in describing the space in which domains exist. Gärdenfors 

argues that all domains can be described dimensionally.  

Gärdenfors explores semantic domains in depth. Basic domains, the ones that are more 

closely tied to sensorimotor processing, are learned early in child development. Thus, the 

value system of “language must be learnable to a child” (Gärdenfors, 2014, p. 54) arises5. 

Gärdenfors refers to it as the epistemological learning criterion. It is easier to explain to a 

child “chartreuse” and “mauve” than it is “inflation” and “mortgage” because the color 

domain is closer to the sensorimotor visual input. The main domain thesis is “a close 

                                                 
 

5 I want to collect any linguistic value system I find, as it will be important to my thesis. 
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parallel exists between the development of intersubjectivity and the development of 

semantic domains. Intersubjectivity is the representation in the mind of the emotions of 

others, the desires of others, the attentions of others, the goals and intentions of others 

and beliefs and knowledge of others. These five components of intersubjectivity are 

crucial to language development (Gärdenfors, 2014, p. 57). Emotions being first as 

shown in Figure 4. 

The emotion domain is the first to be learned by the infant, in the womb with sounds and 

movement, and by the touch of the parents before the eyes open. The development of 

semantic knowledge begins with emotion. This is not the only a semantic domain 

developing, but is the most salient communication occurring for the developing child. 

Metaphors are a blending of conceptual spaces. A mental frame is a conventional bundle 

of ideas (Coulson, 2001, p. 26). A mental space is an array of connected mental elements 

simultaneously activated by a person. A mental web is a set of mental spaces that are 

activated and connected as one is thinking about a topic. Vital relations are the most 

frequent and important connections. Blending mental spaces in a mental web yields a 

blend. Projections are the elements and relations that come into mental spaces and are 

blended. There is an emergent structure in the blend and in the mental web. There is a 

scale of human thought bundles from not tractable and manageable, where they are 

beyond the mental limits, to very tractable and manageable. Blends are tight compression 

of emergent ideas, but with less information than in the entire mental web.  

Blending appears to be a human experience that no one is even partially aware of except 

rarely and it seems elusive to science to measure. This process of frame-shifting 

(Coulson, 2001, p. 34) is critical to creating new concepts and domains experientially. 
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Conceptual blending occurs at all schematic levels, and tends to group in identifiable 

patterns (Coulson, 2001, p. 123) of concepts and domains, like neuronal groupings 

(Edelman G. M., 2006, p. 55). 

Cognitive Grammar 

Cognitive Grammar is a framework (Langacker, 2008, p. 3) from which a comprehensive 

and coherent view of language structure manifests inclusive of all human experiences. In 

this framework, several key concepts are offered, the first and foremost of which is that 

grammar is meaningful and symbolic by nature (Langacker, 2008, pp. 3-5). Another 

important concept is that a linguistic unit is emergent due to its use in language. The 

usage event occurs repeatedly, and as life happens the linguistic unit is entrenched or 

conventionalized within a community of human language users. From the continuous use 

of these linguistic units or the first-time use, the individual processes and stores them 

with other units that are related. The symbolic structure of a unit has both a semantic and 

a phonological pole which are bound together by its use, i.e. meaning and form are bound 

by their relationship. Each pole has varying Schematicity. A new expression is specific. A 

frequently used expression is more abstract. An expression can become more schematic 

over time and with experience (Langacker, 2008, p. 21). “Google” for example, started as 

a name of the search engine, and is now used quite frequently for more than just the name 

of the trademark. All this is mapped as the conventional unit status shown in Figure 5 

Conventional Unit Status. 

Symbolic assemblies are manifest by their gradient schematicity, salience and 

elaboration, which correspond nicely to levels of entrenchment, contextual priming and 

overlap, and could be implemented in a neural network as three axes in a coordinate 
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system, i.e. a vector. The vector could be derived from the unit itself and existing corpus 

data (more on that later). The symbolic assembly, shown in Figure 6 Symbolic Assembly, 

can somewhat easily be written in a format that is amenable to storing data in a corpus 

using a construction grammar framework such a Fluid Construction Grammar6. That will 

not be discussed here, but it is important to note the complexity of the assembly as having 

five symbolic structures using three symbolic units. 

It could represent, for example, the usage event of “Eat your soup”, and the translated 

construction grammar could look like “[[EAT/eat V IMP][[PERSON REFERENCE / 

your 2P POSS][SOUP / soup N]]]”. Notationally this construction is completely 

fabricated on my part, but is based in part by how Langacker has suggested that a 

construction might appear (Langacker, 2008, p. 161). It is important to note the 

disagreement with CG construction ubiquity, i.e. cross-linguistically there is much 

evidence of typological variance in constructions (Croft, 2001, p. 104). Also, Croft 

describes the typological variants using the concept temporal orderings, e.g. de-ranked 

hierarchy as an example of temporal ordering in constructions as related to subordinate 

clauses (Croft, Radical Construction Grammar Syntactic Theory in Typological 

Perspective, 2001, p. 360).  This is however represented, and could allow for variance in 

the nested nature of cognitive grammar symbolic structures. The construction is 

important for our perceptive machine to analyze the input, and properly store data in the 

                                                 
 

6 See https://www.fcg-net.org/tutorial/lectures/ for more information regarding Fluid Construction 
Grammar, an endeavor led by Luc Steels, and his book about FCG design patterns (Steels, Design 
Patterns in Fluid Construction, 2011) 

 
 

https://www.fcg-net.org/tutorial/lectures/
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corpus. With a clean form of construction, the bias can be derived by calculating the level 

of entrenchment, contextual priming or salience and the amount of overlap from each 

symbolic unit in the construction. The sum of unit values for each structure are then 

passed to the function that determines storage, e.g. in the “Eat your soup” example there 

would be five structures passed to the function. 

Language Processing 

If we look at the human body as a perceptive machine, again with the robot analogy, the 

dynamical system then needs to mimic the somatic model shown in Figure 1. Machine 

Learning (ML) is among the vast number of computer science academic pursuits 

currently being researched today. The broad goal of many of these researchers is to 

mimic, or simulate functions of the human brain in its cognitive ability to process 

incoming sensory data, and to store it such that it can be queried again and used in the 

continuous processing of new input. These researchers spend much of their time studying 

and devising computational algorithms to allow a computer to learn. This area of study 

has been called many things, among which is the neural network. It is more recently 

referred to as deep learning in the ML domain, but I will refer to it as neural network. 

This paper is concerned with a small part of the process of matching input with stored 

data, and focusses on the Cognitive Grammar (CG) means of selection, namely the level 

of entrenchment, contextual priming and amount of overlap between target and potential 

categorizing structure or schema.  

Computational linguistics would benefit greatly from a cognitive grammar approach to 

the Deep Learning algorithm. I argue that a neurological value system using the Bias in 

the neural network forward-propagation algorithm could be used to guide the dynamic 
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system matching process. This bias, unlike the typical bias used by researchers in the NN 

algorithm, would be a vector representing the constraints of a multi-modal symbolic 

structure input as mentioned above. It could be used to guide the storage of tokens, their 

symbolic unit relationships and contextual or discourse information in both short-term 

and long-term corpora like what we call “memory”. 

The equation shown in Figure 7 Forward-Propagation, which is computed by 

multiplying a weight (w) by a scalar input (p) and adding it to the bias (b) and this is 

summed for all inputs (R), is passed into a function (f) and yields the activation or output 

(𝛼𝛼). The algorithm, shown in (Figure 7 Forward-Propagation), was developed in the 

1950s, and has since been used in most machine learning and artificial intelligence 

endeavors that are constantly making improvements in speech processing and near 

instantaneous speech translation, for example (Müller & Guido, 2016, p. 364). We can 

think of the NN algorithm as representing a single neuron, and when we consider the 

brain, we can expand this to a vast network of neurons that relate to each other 

dynamically when input is received. Considered by many computer scientists as the black 

box calculation of artificial intelligence, for cognitive linguists with a computational slant 

it is ideal for computationally gathering and evaluating usage events as they are 

perceived, and storing the output in corpora. There is obviously a great deal to this 

algorithm, but in this paper, I want to focus on the Bias, which is often disregarded or 

trivialized in computer science. I believe it is essential to a dynamic system, and even 

more specifically to the matching process where symbolic units are stored following a 

usage event. 
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The perceptive machine, as I am calling it, is on the receiving end of information, i.e. 

sensory data. This fictional machine could, conceivably, be a person’s smart phone, but 

that is not as important as what it could do. As sensory data is perceived it is first 

translated into a machine-readable format. The machine then can parse the token into its 

symbolic units. Each unit is valued and weighted. At this point the machine creates the 

bias vector from data already stored in its corpora. The bias is summed with input value, 

and then passed to the activation function that is responsible for storing the processed 

input, i.e. adding data to the corpora, short-term and long-term. It is therefore critical to 

examine the bias more closely considering neuro and cognitive sciences and cognitive 

grammar ideas. 

Edelman describes the value system in the brain as a selection mechanism that releases 

neurotransmitters such as dopamine to govern behavior. These rewards are pleasurable in 

the sense that learning is facilitated allowing the selection of favorable activities within 

the network of neuronal groups of synapses. “Selection within these networks determines 

the categories of an individual animal’s behavior; value systems provide the biases and 

rewards (Edelman G. M., second nature , 2006, p. 31).” The neuron, shown in (Figure 8 

Neuron), provides a selection process that activates per the neurotransmitters received at 

the synapse. The activation then in turn has relationships with other neurons. “…neurons 

that fire together wire together…no two brains…are wired the same (Edelman G. M., 

2006, p. 55)”.  

Neurotransmitters provide the bias or value system that determine the course of 

activation, and over time, the selection of behaviors. A continual flow of pleasurable 

molecules acts as a reward system enabling memories to exist. The value system is 
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essential to the development of a dynamic system. Temporal association of perception 

and action are foundational to changing skill and behavioral development. Developing 

systems exhibit emergent properties their interactions, and not dependent on preexisting 

codes (Thelen & Smith, 2000, p. 142). “So value systems may jump-start the building of 

oughts in a society, but do not directly determine them.” (Edelman G. M., second nature , 

2006, p. 95) Whether we decide to view the biases as Constraints or Prods or Guides, 

there is an effect on the output that propagates forward to the next usage event that is 

perceived. The bias determines the storage of memories of usage events, which emerge as 

favorable or not per individual. In the NN the bias shifts the activation function output. 

For our purposes in cognitive grammar there is one bias per Symbolic Unit. The NN bias 

is either 1 or -1 in most machine learning algorithms, and it is determined by where the 

input value falls on a threshold curve; “Biases are weights associated with vectors that 

lead from a single node whose location is outside of the main network and whose 

activation is always 1 - Gallant (1993, pp.65-66), Bishop (1995a, p.78), and Reed and 

Marks (1999, pp.15-17)” referenced by (Hagan, Demuth, Beale, & De Jesus, 2016, pp. 2-

2,2-8). In a dynamic system of matching usage events to long-term corpus, and short-

term corpus storage, I propose a cognitive grammar bias vector (level of entrenchment, 

context priming or salience, amount of overlap) because these values can be determined 

from corpus data, a kind of bias feedback loop, or forward propagation. 

Since the bias is typically a value of 1 for most researchers of machine learning, this 

approach is somewhat unorthodox, but not unheard of, e.g. it is used in supervised 

learning algorithms such as the k-nearest neighbor calculation (Müller & Guido, 2016, 
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pp. 30-46), which uses a Support Vector Machine algorithm7. It will however require a 

slower processing time to calculate the three values for our bias vector. In Figure 9 

Symbolic Unit Bias Vector I show the three-dimensional conceptual space of the vector 

for ease of visualization. Each of the axes represents a gradient value between 0 and 1, 

which allows for maximal variation. The conceptual space is like a network of neurons in 

that each coordinate represents a location in memory. The visualization could of course 

be spherical or even better a blob where the distance from the center is boundless, but 

perhaps self organizes into the shape of a brain, (complete conjecture). The point 

however is that locations of vector endpoints can cluster together, and thus represent a 

“wire together, fire together” concept (Edelman G. M., 2006, p. 55). The bias vector then 

serves to guide the storage of the input, and the resulting activated vector becomes an 

address or index of the perceived symbolic unit. Also, other data can be queried easily 

from this storage configuration such as the ever popular “neighborhood density” value. It 

is important to discuss how we can derive each of the values that make the vector. 

Level of entrenchment is gradient from the specific use to the schematic or 

conventionalized use. Salience or contextual priming is gradient from the unit being 

completely novel to very salient. The amount of overlap is gradient from elaborative to 

baseline. The task then is to calculate each of these values such that a vector can be used 

in the matching process. In the perception process shown in Figure 10 Dynamic System 

                                                 
 

7 A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating 
hyperplane. In other words, given labeled training data (supervised learning), the algorithm 
outputs an optimal hyperplane which categorizes new examples. 
https://en.wikipedia.org/wiki/Support_vector_machine  

https://en.wikipedia.org/wiki/Support_vector_machine
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Matching Process, it is the steps where the bias vector is determined, circled in green, 

which needs to be described. 

Starting with the level of entrenchment, I would propose that we could obtain the 

frequency of use from the long-term corpus storage by querying all tokens containing the 

unit and calculating a distributed frequency value. Bybee noted, “the conservative 

behavior of high-frequency forms is related to the faster lexical access of high-frequency 

form: the more form is used, the more its representation is strengthened (Bybee, 2007, p. 

271).” Therefore, by counting use of a symbolic unit among all the tokens a value of 

frequency can be computed to give us the probability of it occurring again. 

The amount of overlap can be computed by looking at the nested level of the unit within 

the symbolic structure, querying for its usage count at that level in the long-term corpus, 

and computing the elaboration percentage of the baseline, i.e. the highest level of nested 

structure. This value will require some experimentation to determine the proper fit, 

maybe employing the Bayesian algorithm8. The gradient is flipped for this value because 

a baseline is more substantive than an elaboration (Langacker, 2016, p. 406). The 

baseline is therefore 1, and any elaboration would be calculated as a percentage of the 

baseline. 

The context priming or salience is a tricky calculation because we are considering how 

meaningful a symbolic unit is within the context of the running discourse. Several 

problems present themselves, for one what is the size a discourse are we looking at, and 

                                                 
 

8 In probability theory and statistics, Bayes' theorem (alternatively Bayes' law or Bayes' rule) 
describes the probability of an event, based on prior knowledge of conditions that might be 
related to the event. https://en.wikipedia.org/wiki/Bayes'_theorem  

https://en.wikipedia.org/wiki/Bayes'_theorem
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two does this cover multiple discourses, and if so, where do we query to obtain a value? I 

would assert that a short-term corpus be maintained along with the long-term. Like our 

short-term memory, it stores the current set of usage events, which could be queried to 

count usage, and determine relevance to the current topic. Obviously, this is not trivial 

either because aside from the same tokens being stored in long-term, it would require the 

storage of primary topic units that might be tagged as part of the construction, including 

the identification of the viewing frame channels which make up the symbolic unit poles 

(Langacker, 2008, p. 146). With this data stored in the short-term along with the 

frequency of use in the long-term, a gradient value could be computed. 

In summary the multi-disciplinary research that has been looking at cognitive processing 

of language is contributing to a better understanding of how the CG selection criteria 

could be applied to a neural network model as the bias for processing language as input. 

More specifically it is my hope that my research will provide data that will allow me to 

compare the bias part of the neural network computation to Edelman’s Value Systems and 

to the selection means of entrenchment, context and overlap in Cognitive Grammar. In 

the next section I describe the methods used to gather the data. 
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3 Building a Corpus 

For a pilot study like this one I felt compelled to gather as much data as I could to be able 

to determine how the alignment of meaning is attained, or not, during the semiotic cycle 

of conversation. The three steps I performed in my research were the collecting discourse 

data from actual conversations between two or more people, coding the conversations 

with the cognitive grammar symbolic unit parts of phonology, which is the word spoken, 

and semantic, which is the domain or frame and the dimensionality (vectors) along with a 

time stamp for temporal ordering, and then analyzing the coded text to determine what 

causes the alignment.  

3.1 Collecting YouTube Data and Building a Corpus 

YouTube is a vast jungle of videos that include content like music, movies, instruction, 

copied media, interviews, discussions, etc. Some videos have subtitles, which are used to 

as a translation mechanism for various language preferences. Subtitles are usually 

embedded in the video, but sometimes is included as metadata and queued as time-

marked text per language preferred by audience. Since the goal was to collect natural 

language data, subtitles don’t work. Closed-captions are also sometimes available, and 

this text is closer to what we want to collect. The video is usually marked with a “CC” 

hyperlink if they are available. When the “CC” link is activated the video then displays 

the Closed Caption text as words and sounds occur. This is not always exactly 

synchronous or entirely accurate, but for acquiring mass amounts of natural language 

discourse data for a corpus intended for semantic analysis it is adequate.  

In order to download the closed-caption text I relied on a scripting language very popular 

among data scientists, Python, mainly because of the extensive useful code libraries 
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available. One such code library is called “youtube-dl”, which when employed can 

download pretty much anything associated with a YouTube video. YouTube videos are 

referenced by a “display id” that part of the YouTube URL like, 

https://www.youtube.com/watch?v=hpDHwfXbpfg. The last series of alpha-numeric 

characters following the “v=” is the display id. My video selection criteria were as 

follows: 

• The speakers in the video should be speaking the English language, and I 

primarily preferred dialects of US based English. 

• The video should contain two or more actively participating speakers such as 

interviews, discussions or conversations. 

• The amount of spoken words should amount to at least 200, but I preferred the 

longer video discussions because my goal was to collect a million of them. 

• The accuracy of the Closed Caption should be close to what is really said, some 

videos are wildly inaccurate, so I preferred the transcript use, which has the 

advantage of being punctuated as well as more accurate in most cases. 

• I tried to collect a diverse range of topics, preferring to not include topical data 

that has been repeated more than 5 times in the corpus. 

• It is important that some of the conversations contain a situation where initially 

there is a misunderstanding between speakers, and then both speakers come to a 

mutual understanding, and some should be a control set of conversations where 

no common understanding is achieved. 

The extraction of closed caption transcripts from YouTube can be accomplished 

by using some Python code libraries, as I mentioned earlier. I wrote a script that I can 

https://www.youtube.com/watch?v=hpDHwfXbpfg
https://www.youtube.com/
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execute from the command line, named “youtube_corpus_maker.py” (8.1). To acquire the 

metadata of a YouTube video I simply pass the command parameter 

“download_youtube:hpDHwfXbpfg” with a colon followed by the display id of the 

video. This downloads the metadata to a folder on the hard drive, which by default is 

“corpora/youtube/hpDHwfXbpfg”. The metadata for the “hpDHwfXbpfg” display id is 

approximately 130 megabytes in size, which includes the video file (mp4 format, largest 

file), annotation files and most importantly the Closed Caption files. Since the discourse 

is in English I am interested in the file named “hpDHwfXbpfgmp4.en.vtt”. This file 

contains the video timed transcript (vtt), i.e. the text is marked with a time stamp 

indicating when the text is displayed during the video playback, shown in Figure 11. 

Next, I wrote some more code to pull the raw text out of the Closed Caption file, and 

write it all to a text file (8.1), which is the first of many corpus files that can be queried 

using a corpus reader. I will briefly describe the Natural Language Toolkit (NLTK) 

library here because everything the code does from this point on depends on it. NLTK 

(Bird, Klein, & Loper, 2009) is an extensive Python code library that can be used to 

analyze text.” We will take Natural Language Processing — or NLP for short — in a 

wide sense to cover any kind of computer manipulation of natural language. At one 

extreme, it could be as simple as counting word frequencies to compare different writing 

styles. At the other extreme, NLP involves "understanding" complete human utterances, 

at least to the extent of being able to give useful responses to them.” (REF p2). Part of 

this library includes a corpus reader, which I have extended for this project to be able to 

query all of the data from all of the video Closed Captions. The plain text file, 

“hpDHwfXbpfg_plain.txt”, is the foundation from which all other files used in analysis 
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are created, and therefore has a plain text corpus reader. The next file I produced with the 

script code is a Part of Speech Tagged corpus file “hpDHwfXbpfg.pos”. I extended the 

Tagged Corpus Reader code to query this file. With these two files added to the corpus it 

is possible to perform many important queries and operations for building the symbolic 

units, and eventually vectors for determining alignment of meaning during the discourse. 

3.2 Building YouTube Symbolic Units and Vectors 

I wrote more code to construct the discourse symbolic units (Langacker, 2008, pp. 16-17) 

in the form of an array of discourse segments that contain the following elements: 

• The word – a phonological representation of the segment uttered by the speaker 

• The Part of Speech – noun, verb, adjective, adverb, etc.  

• The Time – the time at which the segment occurred in the discourse 

• The Frame – a semantic pole representation of the segment  

• The Vector – comprised of three dimensions entrenchment, context and overlap 

These units, especially the ones that index the target understanding with value systems 

(dimensions in a vector) had to be constructed from additional files. The word and parts 

of speech tagged data are now available for use in creating them. It is important that a 

value system is quantifiable to be able to calculate the vector dimension. Dimensions are 

gradient and therefore can be decimal value between 0 and 1, e.g. 0.0 or 0.7899 or 1.0 

would be acceptable values. This can also be done using various Natural Language 

Processing Python libraries9. From these dimensions, the alignment vector is formed, 

                                                 
 

9 The Python libraries that I propose using are youtube-dl and nltk for extracting and coding. 
Other math libraries can be used for calculating dimensions for the vectors, such as multi-variant 
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which can be used to compare against similar usages in the discourse during analysis. 

First however I created some supplementary files such as an array of words and the times 

they occur “hpDHwfXbpfg_time_line.json” and a file containing discourse topical 

information “hpDHwfXbpfg_topics.json”.  

The entrenchment dimension is simply a calculation of frequency distribution for a given 

word within the entire corpus, so the more words in the corpus the more accurate a 

calculation. NLTK provides a function for calculating the distribution values, so that is 

easy. To make a vector dimension scaled from 0.0 to 1.0 it is necessary to calculate the 

percentile across all word distributions. In other words, I took the highest word 

distribution and subtracted the lowest word distribution, and then divided the target word 

distribution by that value, i.e. Percentile = Target Distribution / (Maximum Distribution – 

Minimum Distribution). This becomes the entrenchment dimension. 

The overlap dimension is calculated by looking at the target word in the context of 

synonyms and the percentage of difference between the synonym and its hypernym. The 

schematic distance from elaboration to baseline can be calculate from data that is also 

available for the English language called Word Net. It is a very large corpus synonym 

sets, as one might find in a thesaurus or at the bottom of a dictionary entry. It was 

necessary, therefore, to first create of file of word, synonym, hypernym and distance 

“hpDHwfXbpfg_word_nets.json”. NLTK provides a word net corpus reader that provides 

the ability to query synonym matches of a target word. By querying the word net corpus 

and selecting the synonym that fits best I could write an array to file. An element of the 

                                                 
 

logistic regression. Note: I will explain my methodology for extracting and coding thoroughly in 
final document. 
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array looks like what is shown in Figure 12, which identifies the target word, the part of 

speech tag, an array of possible synsets that best match the target along with the 

hypernym synset and the schematic distance or similarity. This target is in the context of  

“Hey , welcome back to TED It’s great to have you here Thanks for 

having me So , in the next half hour or so we’re going to spend some 

time exploring your vision what an exciting future might look like , 

which I guess makes my first question a little ironic Why are you boring 

Yeah I ask myself that frequently”. 

The best fit could be any of the first three because they have the greatest similarity, 

elaboration compared to baseline. The overlap calculation is simply the best similarity. 

The calculation of the contextual priming or salience dimension requires another file to 

be created “hpDHwfXbpfg_frames.json”.  NLTK also provides a Frame Net corpus 

reader for the English language. With this corpus we can query10 for lexical units in 

frame net that match the target word. My code then selected the lexical unit that matched 

the target word part of speech. The lexical unit has a related frame, which is written to the 

file along with the target word. I also store the distribution of frames used within the 

discourse. The salience calculation uses this distribution similarly to how entrenchment 

uses the corpus word distribution, i.e. Percentile = Target Distribution / (Maximum 

Distribution – Minimum Distribution). Once everything mentioned above has been 

calculated, the vector file “hpDHwfXbpfg_vectors.json” is written. This corpus file gives 

                                                 
 

10 This query was very slow. It could take a couple of minutes for one word. 
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us everything we need to produce analysis information and visualizations. Each element 

in the array contains the symbolic unit with word, frame, time and a three-dimensional 

vector of entrenchment, overlap and context. 

3.3 Producing Useful Information and Visualizations 

I wrote some additional code to export a discourse vector file to a tab-delimited file that 

can be consumed by data analytic tools such as Microsoft Excel. The core objective is to 

be able to look at the words and corresponding frames during the discourse, and look at 

how the vectors change. This can be done by pivoting the data in Microsoft Excel, and 

even charted, but the size of the data can be daunting. I therefore provide for a filtering of 

words, frames or times as part of the export function. This allows me, after watching the 

video, and noting specific segments of interest, to export only those vectors. Targeting 

data in this way gives me something that is visible and easier to analyze. However, this 

doesn’t give me enough to really visualize the alignment.  

Another option would be to visualize the vectors in a cube, like (Figure 9 Symbolic Unit 

Bias Vector), and colorize the dots according to the time scale. I wrote some additional 

code that implements a few more Python libraries, “pygame (for the user interface), 

moviepy (allows playback of video) and pyopengl (for the three-dimensional graphing)”. 

It is a challenge to bring vectors that cluster closely to a visualized state that is 

perceptibly meaningful so scaling is also necessary. 

In summary, the effort is time-consuming to create visualizations, and may be more 

suited for further analysis in the order of a dissertation level of effort. Seeing that time is 

limited for writing this thesis, just acquiring the data is sufficient for the pilot study. The 

vectors show dimensionality in language use, and although only three dimensions were 
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calculated, there are many more, and multi-variant. The tools that I have created using 

Python are useful for extracting any text source, e.g. written text, transcripts from any 

source, including multi-lingual, and synthesized text sources. I chose YouTube as a 

source because it was readily available, and searchable for topics of interest. Of course, 

more metadata, such as the identity of the speaker, could be collected as well to enhance 

the corpus. I will continue to enhance the tool of course, but for now I will focus on the 

data collected from YouTube video closed caption text. In the next section I will show 

some more interesting examples of collected data, and review terminology used. 
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4 A Usage Event Data Model 

The new corpus is comprised of over a million words from over a hundred hours of 

YouTube video closed caption text (Table 2 - YouTube Videos for Corpus). Each word is 

tagged with the part of speech11. The Natural Language Toolkit (NLTK) identifies the 

part of speech by an English lexicon that includes its grammatical usage and its tag that is 

part of the NLTK Tag Set (Table 3 - NLTK Part of Speech Tags). In addition to the corpus 

that is queryable through an extension of the NLTK Corpus Reader, there are data 

structures linking Frame Net and Word Net Lexical entries, as well as for the vector 

calculations. All this corpus data is easily available for analysis of dimensionality and 

value systems that prod the semantic alignment of understandings between interlocutors. 

To analyze the mutual understanding phenomenon, it is necessary to review the 

terminology of data analysis, and show how the corpus can be used to mine the 

analyzable data. Since we know that human language processing is adaptive, and the 

mutual understanding is attained through multiple exchanges of words and gestures, 

multiple inputs, then we can look at the many machine learning algorithms used by data 

scientists as possible ways of processing the corpus data. 

4.1 The Three Stages of Corpus Data 

There are three forms of data that are generally accepted among data scientists, and they 

are raw, transformed and information. Raw data is the data closest to the source, so in my 

corpus of YouTube closed caption text it is the data contained in the closed caption file as 

                                                 
 

11 A list of these tags can be acquired by running a python script “nltk.help.upenn_tagset()” 
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shown in Figure 11 - Closed Caption File Sample. This data could be queried, but would 

take more time to process because the data is encoded for the specific purpose of 

displaying during a YouTube video at a specific time. Therefore, it is necessary to 

transform this data into a format that can be queried. As mentioned earlier it was 

necessary to transform the data into several forms, and utilize other corpora to produce 

the most useful query for my needs, i.e. the symbolic unit including vector. The stages of 

data transformation is shown in (Table 4 - Stages of Corpus Data) for one of the closed 

caption extracts from YouTube (video id: gZKDInabaPM, words: 2305, set: 590, 

duration: 00:11:05.878, title: I debate with Dietitian on LIVE TV this morning - My 

reaction -  People Blogs, the first 44 words). 

Before I describe the data produced in the transformative phase, I would like to quickly 

discuss discourse and how information is packaged. Aside from closed caption data being 

somewhat lacking for several reasons that I will cover in the conclusion, there is some 

value that can be attained, namely the “word” element, the smallest datum in this corpus. 

Each word is therefore important to the discourse as a point in the temporal flow of the 

recorded conversations. I would also assert that the word is the segmental content as part 

of the usage event viewing frame (Langacker, 2008, p. 146). The view frame is divided 

into sets of channels, vocalization and conceptualization, and the segmental content being 

the word as heard in the conversation. The transformation of data then builds upon the 

word in the conceptualization channels. The closed caption discourse is then comprised 

of a temporal flow of usage events containing transformed data where the phonological 

pole contains the word, and the semantic pole contains domains, time, part of speech and 

the dimensions of entrenchment, overlap and contextual priming (or salience). The 
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information channel could also be added with some more effort using parts of speech to 

identify which discourse mode (Smith, 2003) is used. The corpus, however, does not 

include currently discourse modes. 

Following the concepts of the usage event and the bipolar segments and channels as they 

flow through time in a discourse, I have drawn a (Figure 13 - YouTube corpus Symbolic 

Unit). Since Cognitive Grammar considers any aspect of a usage event possibly emergent 

as a linguistic unit (Langacker, 2008, p. 146), then the stages corpus data that I have 

amassed are also relevant. A phonological pole is comprised of the plain text word and 

the part of speech. A semantic pole is comprised of the semantic domain, the part of 

speech, the temporal order of event and the dimensions (entrenchment, overlap and 

context). In the following parts of this section I describe the stage of data, what 

information can be derived from it, and how the corpus data is used in processing from 

the observer’s point of view, i.e. the person watching the YouTube video. 

4.2 Plain Text 

Text is the fundamental structure of closed captions. It is a stream of words marked with 

time stamps indicating when to display them as the video progresses. As stated earlier in 

this paper, closed caption text can be with or without punctuation. It can be transcribed 

accurately, or not so accurately with missing utterances. The YouTube corpus has plain 

text files that contain text only with or without punctuation. This is the basis for building 

everything else. Words and punctuation are delimited by a space, and contracted words 

like “it’s” are split and represented as “it” and “‘s”. With the plain text corpus reader, it is 

then possible to get an accurate list of words. The Natural Language Toolkit functions 

available to derive important linguistic information such as frequency distribution, 
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concordances, n-grams and more, all of which are usable with the plain text part of the 

corpus. Describe how plain text can be queried for frequency and concordances. 

There are many useful queries to be performed on a text only corpus, and can be 

accomplished using the Python Interpreter. For example, if I wanted to know the 

dispersion of several related words in a discourse, I can simply load the discourse as text 

and call a function that creates dispersion plot, using the following Python code: 

• import nltk 
• from nltk import text 
• from corpus import youtube  
• wrds = youtube.words(['y8hy8NxZvFY/y8hy8NxZvFY.pos']) 
• txt = text.Text(wrds) 
• txt.dispersion_plot(['darwin', 'darwinian', 'god', 'christian', 'belief', 

'church', 'creation', 'biology', 'biological', 'evolution', 'science', 'religion', 
'soul', 'language']) 

The dispersion plot, shown in Figure 14 - Dispersion Plot of discourse Creationism vs. 

Evolution, has words that are important to both parties discussing “”, and shows an even 

exchange ending with “belief”. Frequency Distribution is another function available with 

NLTK, so the following shows the frequency of derivations of “belief” from the same 

discourse. 

• import nltk.probability 
• fdist = nltk.FreqDist(txt) 
• fdist['belief'] 
• Out[12]: 8 
• fdist['believe'] 
• Out[13]: 46 
• fdist['believes'] 
• Out[14]: 1 
• fdist['believer'] 
• Out[15]: 0 
• fdist['believed'] 
• Out[16]: 2 
• fdist['believing'] 
• Out[17]: 6 
• fdist['believers'] 
• Out[18]: 0 

The concordance can be generated as well, so the following shows where “belief” is used. 

• txt.concordance('belief') 
• Displaying 8 of 8 matches: 
• he opium of the people today is the belief that they wo n't be judged by God w 
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• question and that is Does religious belief make the world a better place does  
• world a better place does religious belief make the world a better place ? We  
• say on the question does religious belief make the world a better place over  
• led may be Alleviated somewhat by a belief in God Psychosomatic medicine is we 
• ple were killed for their Christian belief in the last century than any other  
• nty-six percent saying no religious belief does not make the world where this  
• does not make the world where this belief does not make the world a better pl 

Another interesting function is collocation, which shows bigrams that are used often in 

the discourse. 

• txt.collocations() 
• Richard Dawkins; George pell; 've got; old testament; better place; 
• natural selection; non theist; wafer turns; religious belief; homo 
• Sapiens; hope nobody; original sin; lawrence krauss; random selection; 
• n't believe; give rise; Catholic church; Darwinian natural; creative 
• intelligence; silly question 

There are also many other functions available to produce additional data and create an 

informational presentation. For this paper, it was necessary to use some of these functions 

to build a corpus viable for semantic analysis, i.e. frequency distribution. The stream of 

plain text is tokenized so that each individual word is packaged as phonological segment 

content in each usage event, and is viewed or heard by the observer as they occur in the 

video, or at least close to the visual utterance or articulation segment. It is also important 

to note, concerning timing, words in conversations are not articulated always “one after 

another”. Interlocutors will often say words at the same time, creating overlapping usage 

events, but closed captioning is delivered as chunks, often after the articulation. 

4.3 Tagged and Categorized Text 

The part-of-speech corpus files have the extension of “.pos”, and each token is 

represented with the word followed by a part-of-speech tag (Table 3 - NLTK Part of 

Speech Tags), and delimited with a “/”, for example:  

“okay/NN let/NN 's/POS start/VB off/RP with/IN what/WP is/VBZ a/DT computer/NN what/WP 
is/VBZ it/PRP computer/NN it/PRP 's/VBZ really/RB simple/NN it/PRP 's/VBZ just/RB a/DT 
simple/JJ machine/NN but/CC it/PRP 's/VBZ a/DT new/JJ type/NN of/IN machine/NN the/DT 
gears/NNS the/DT Pistons/NNS have/VBP been/VBN replaced/VBN with/IN electrons/NNS” 
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From this corpus file, we can also get the words, perform the same NLTK functions as 

with plain text, so in creating other files I have used the part of speech tagged file with 

the corpus reader. The following is frequency distribution of the part-of-speech tags in the 

YouTube corpus. 

• import nltk 
• from nltk import text 
• from corpus import youtube 
• import nltk.probability 
• yt_tagged_words = youtube.tagged_words() 
• tag_fd = nltk.FreqDist(tag for (word, tag) in yt_tagged_words) 
• tag_fd.most_common() 
• Out[8]:  
• [('NN', 147886), ('IN', 126074), ('PRP', 118907), ('DT', 102274), ('NNP', 82888), 

('RB', 79435), 
•  ('VBP', 62287), ('JJ', 59751), ('VB', 52203), ('CC', 51990), ('NNS', 45488), 

('VBZ', 42688), 
•  ('VBD', 29890), ('TO', 29233), ('VBG', 23552), ('MD', 16486), ('VBN', 15911), 

('PRP$', 13747), 
•  ('.', 10562), ('CD', 10403), ('WP', 10048), ('WRB', 9344), ('WDT', 7822), (',', 

6663), (':', 5388), 
•  ('EX', 5257), ('RP', 4963), ('POS', 2981), ('JJR', 2906), ('RBR', 1854), ('JJS', 

1703), ('PDT', 1103), 
•  ('UH', 757), ('NNPS', 630), ('RBS', 563), ("''", 134), ('``', 117), ('FW', 90), 

('$', 73), ('WP$', 56), 
•  ('(', 53), (')', 53), ('SYM', 6), ('#', 4), ('LS', 2)] 

Of all the part-of-speech tags, nouns (NN) win the “most occurrences” award. These tags 

are very useful for parsing grammar according to a pre-defined set of syntax rules, and 

NLTK provides functions to help with that, but I used them mainly to filter results from 

querying Frame-Net and Word-Net corpora, which I will cover in the next part. I would 

also assert that the part-of-speech tag is packaged as part of both the phonological and 

semantic poles in the usage event. In the semantic pole, the classification of a word is at 

play, schematically bound to the English language, in the YouTube corpus, as 

participants, modifiers and events. The entrenched patterns or syntax rules belong in the 

phonological pole as a larger usage event such as noun phrase and verb phrase. For 

example, “always”, a temporal adverb precedes verbs mostly as shown below. 

• bi_tags = [b[1] for (a, b) in nltk.bigrams(yt_tagged_words) if a[0] == 'always'] 
• bi_fd = nltk.FreqDist(bi_tags) 
• bi_fd.tabulate() 
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•   VB  VBN  VBP  VBG  VBD   IN   DT   JJ   NN   RB  VBZ  PRP  NNS PRP$  RBR  WRB     
•  100   94   91   61   57   48   47   40   40   40   32   26   13    5    4    4 

The pattern of the adverb “always” followed by a verb is recognizable by an observer as a 

larger usage event. In the computational area of study of distributional semantics, context 

occurrence prediction relies heavily on word meanings by their contextual representations 

(Fried, Polajnar, & Clark, 2015, p. 1). The part-of-speech tagging allows such analysis. 

Another categorization that is part of the collected YouTube data is the discourse 

categories and tags12. A comparison, for example, of frequencies by category across 

discourses can generated as shown in Table 1 - Modal Verbs Frequency by Category. 

• import youtube_corpus_tool 
• words = ['would', 'could', 'should', 'will', 'can', 'shall', 'must'] 
• output = 'corpora' 
• export = 'tabular_modal_frequencies_by_category.txt' 

• tfdbc = youtube_corpus_tool.get_tabular_frequency_distribution_by_category(words, 
output, export)  

From this simple table, a heat map could be generated to show the hot spots modality 

used in media. Categories are packaged as part of the information structure channel, and 

can be used to correlate words in as much as they are relevant to the discourse topic. For 

example, in terms of event modality, the category of “Education” as shows a high 

frequency for dynamic abilitive modal use, i.e. the word “can”. A usage event, therefore, 

may have high semantic relevance to the topic of “Education” when part of a dynamic 

abilitive modal event (Palmer, 2001, pp. 76-77).  Much more can be done with tags and 

categories, of course, but the main importance is the foundational data is generated, and 

upon this data, semantic data can be generated, which will be described in the remaining 

parts of this section. 

                                                 
 

12 Tags here refer to the annotation words, mostly names of popular people and subjects, 
attributed to a given discourse, similar to “Hash Tags”. 



38 
 

4.4 Words and Frames 

FrameNet is a corpus developed on the theory of Sematic Frames created by Charles 

Fillmore and colleagues. Fillmore’s Semantic Frames model derives its data from lexical 

sets, which in the case of the FrameNet corpus can be queried in many ways. The 

YouTube corpus contains a file for each discourse with frames identified for some of the 

usage events. The files are named with the YouTube video identifier, and suffixed with 

“_frames.json”13. The file is composed of two parts, the frames that are identified as 

framing the lexical unit or word and the frequencies of use for each frame with in the 

discourse. 

• {"frames": [["okay", ""], ["evening", ""], ["everybody", ""], ["and", ""], 
["welcome", ""], ["my", ""], ["name", "Being_named"], ["is", ""], ["slim", 
"Body_description_holistic"], ["Charles", ""]… 

• "counts": {"": 3790, "Being_named": 18, "Body_description_holistic": 2, 
"Compliance": 127, "Statement": 21… 

The symbolic unit’s semantic content packs the frame or domain (Langacker and 

Gärdenfors), and is quantified to calculate the salience dimension. Frames can form an 

intonation group of one to several words (Langacker, 2008, p. 154) forming a 

phonological cohesion, but this corpus data is derived from a single lexical unit. In other 

words, each word in a discourse is singly queried against the FrameNet Corpus using the 

following code. 

• def get_word_frames_from_tagged_words(tagged_words): 
    stopwords = nltk.corpus.stopwords.words('english') 
    word_frames = [] 
    frame_counts = {} 
    for tagged_word in tagged_words: 
        if len(tagged_word) > 1: 
            word = tagged_word[0] 
            pos = get_lexical_unit_pos(tagged_word[1]) 
            frame = '' 
            if word not in stopwords and word.isalpha() and len(pos) > 0: 

                                                 
 

13 The “json” extension indicates that the data is formatted according to the JavaScript Object 
Notation standard. 
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                lexical_units = fn.lus(r'(?i)' + word) 
                frames = [lu.frame.name for lu in lexical_units if 
lu.name.endswith(pos)] 
                if frames and len(frames) > 0: 
                    frame = frames[0] 
            word_frames.append((word, frame)) 
            if frame not in frame_counts.keys(): 
                frame_counts[frame] = 1 
            else: 
                frame_counts[frame] += 1 
    return word_frames, frame_counts 

When FrameNet is queried it returns a list of lexical units that match the word, from 

which a list of frames filtered by part-of-speech is extracted. Although sometimes more 

than one frame is returned, I am only relating the first one in the list to the word. This 

could be changed to allow more than one, but then the salience dimension would be 

multi-variant, and require much more rigor to calculate. Note that I excluded stop words 

from my query. I did this to reduce the time it takes to process a discourse. I am aware 

that by excluding these words I am losing salience, and I may put them back in. Stop 

words can be acquired with the following code. 

• import nltk 
• from nltk.corpus import stopwords 
• stopwords = nltk.corpus.stopwords.words('english') 
• print(stopwords) 
• ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 

'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 
'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 
'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 
'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 
'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 
'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 
'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 
'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 
'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 
'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 
'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 
's', 't', 'can', 'will', 'just', 'don', 'should', 'now', 'd', 'll', 'm', 'o', 
're', 've', 'y', 'ain', 'aren', 'couldn', 'didn', 'doesn', 'hadn', 'hasn', 
'haven', 'isn', 'ma', 'mightn', 'mustn', 'needn', 'shan', 'shouldn', 'wasn', 
'weren', 'won', 'wouldn'] 

These words have a high frequency of use, and do have frames, but are also significant to 

the flow of the discourse. So, they are packaged as segment and semantic content in a 

usage event. The frames profile a lexical unit as it is used (Croft & Cruse, 2004, p. 14) in 

a coherent region of conceptual space. This is also called a domain, and this is why I 

generated a master file of domains present in the YouTube corpus, named 
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“_domains.json”. This file contains the frame, and all vectors associated with it in the 

corpus. I will describe vectors more on page 42. The frames file also counts usage of the 

frame in each discourse. The baseline and elaboration dimension or overlap could also be 

derived from frames, because there is a hierarchy at work. This proved to be less 

information, however, and so I used the WordNet corpus, which I describe in the next 

part of this section. There are too few frames in the FrameNet corpus that profile lexical 

units, i.e. some words do not have frames. 

4.5 Words and Hypernyms  

There is another corpus that provides senses of words as synonyms. WordNet (Miller, 

1995) is a database that holds semantic relations of synonyms, called “synsets” that are 

linked hierarchically. The following shows the synsets for “belief”. 

• import nltk 
• from nltk.corpus import wordnet 
• synonyms = wordnet.synsets('belief') 
• print(synonyms) 
• [Synset('belief.n.01'), Synset('impression.n.01')] 

Each synset is a schematic node in a hierarchy of concepts, where higher level nodes are 

more abstract, and lower level nodes are more specific. The schema can be traversed by 

querying hypernyms and hyponyms. The next level below in the schema for “belief”, for 

example, is shown below. 

• synonyms[0].hyponyms() 
• Out[7]:  
• [Synset('autotelism.n.01'), 
•  Synset('conviction.n.01'), 
•  Synset('doctrine.n.01'), 
•  Synset('expectation.n.01'), 
•  Synset('faith.n.02'), 
•  Synset('fetishism.n.01'), 
•  Synset('geneticism.n.01'), 
•  Synset('individualism.n.02'), 
•  Synset('meliorism.n.01'), 
•  Synset('opinion.n.01'), 
•  Synset('originalism.n.01'), 
•  Synset('pacifism.n.02'), 
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•  Synset('philosophy.n.03'), 
•  Synset('public_opinion.n.01'), 
•  Synset('religion.n.01'), 
•  Synset('revolutionism.n.01'), 
•  Synset('sacerdotalism.n.01'), 
•  Synset('spiritual_being.n.01'), 
•  Synset('spiritual_world.n.01'), 
•  Synset('spiritualism.n.02'), 
•  Synset('suffragism.n.01'), 
•  Synset('supernaturalism.n.01'), 
•  Synset('superstition.n.01'), 
•  Synset('supremacism.n.01'), 
•  Synset('theory.n.03'), 
•  Synset('theosophism.n.01'), 
•  Synset('thought.n.03'), 
•  Synset('totemism.n.01'), 
•  Synset('tribalism.n.02'), 
•  Synset('values.n.01'), 
•  Synset('vampirism.n.01')] 

The hypernym is the next level node above, and for “belief” looks like the following. 

• synonyms[0].hypernyms() 
• Out[8]: [Synset('content.n.05')]  
• synonyms[0].hypernyms()[0].hypernyms() 
• Out[11]: [Synset('cognition.n.01')] 
• synonyms[0].hypernyms()[0].hypernyms()[0].hypernyms() 
• Out[12]: [Synset('psychological_feature.n.01')] 
• synonyms[0].hypernyms()[0].hypernyms()[0].hypernyms()[0].hypernyms() 
• Out[13]: [Synset('abstraction.n.06')] 
• synonyms[0].hypernyms()[0].hypernyms()[0].hypernyms()[0].hypernyms()[0].hypernyms(

) 
• Out[14]: [Synset('entity.n.01')] 

The highest abstraction is “entity”, but the next level up from “belief”, “content” is 

enough to calculate the baseline/elaboration dimension using the distance from the 

hypernym. 

• belief = wordnet.synsets('belief') 
• abstract = belief[0].hypernyms()[0] 
• print(abstract) 
• Synset('content.n.05') 
• print(belief) 
• [Synset('belief.n.01'), Synset('impression.n.01')] 
• distance = 1 - belief[0].wup_similarity(abstract) 
• print(distance) 
• 0.0909090909090909 

The distance is calculated by subtracting the similarity of “belief” to “content” from 1. 

This is included in the YouTube corpus in another file suffixed with “_word_nets.json”.  

For each word in a discourse, an entry contains the word, the part-of-speech, the synsets 

and the synset distances, as shown below. 
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• ["believe", "VB", [["Synset('believe.v.01')", "[Synset('accept.v.01')]", 
0.8571428571428571], ["Synset('think.v.01')", "[Synset('evaluate.v.02')]", 0.8], 
["Synset('believe.v.03')", "[Synset('expect.v.01')]", 0.8571428571428571], 
["Synset('believe.v.04')", "[Synset('believe.v.01')]", 0.8888888888888888], 
["Synset('believe.v.05')", "[Synset('credit.v.04')]", 0.9230769230769231]]] 

Each of the synonyms are senses of the verb “believe”, and could be substituted in a 

usage event with slightly different amounts of schematic elaboration. In the 

conceptualization channels (Langacker, 2008, p. 146) of the semantic pole the schema 

packs information that relates to and coordinates with the usage events before and after, 

but also can be a reference to other parts of the discourse playing a pragmatic role.  With 

the data queried from WordNet, the YouTube corpus becomes stronger, but it still needs 

to be pulled all together into a complete symbolic unit. In the next part of this section I 

describe the vector, a value system, which contains three dimensions of entrenchment, 

overlap and salience. 

4.6 Vectors and Dimensionality and Domains 

The previous corpus files were created with the vector in mind. With these files, we can 

create another file that comprises for each word: the word, the part-of-speech, the time of 

close caption appearance in the video, the domain, and the vector of entrenchment, 

overlap and salience/context priming as shown in (Figure 9 Symbolic Unit Bias Vector). 

For each discourse, the file is the video display identifier suffixed with “_vectors.json”, 

and each entry is stored as follows. 

• {"word": "believe", "pos": "VB", "domain": "Taking_sides", "time": ["believe", 
"00:02:17.195"], "vector": ["0.0130081300813", "0.0769230769231", 
"0.0270700636943"]} 

The symbolic unit as shown in (Figure 13 - YouTube corpus Symbolic Unit) is complete 

with the addition of the topical categories and tags that can be queried for each discourse. 

I can export the vectors to a tabular file that can be imported into Microsoft Excel, and 

then create pivot table and charts, etc. There are some issues with this structure, however, 
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that need to be addressed, such as; not all words have domains, and this limits a 

contiguous representation of conceptual spaces. In other words, there are holes in the 

data. This is a limitation of FrameNet, or ignorance of the writer of this paper in querying 

FrameNet. There is always a part-of-speech present however, and this is a conceptual 

space as well. Another way to perform the contiguous analysis is to remove the vectors 

with blank domains. Part-of-speech is important to the usage event regarding 

dimensionality because we can derive the semantic roles and object categories 

(Gärdenfors, 2014, p. 116). 

Taking vectors a little further, I also created a corpus file, suffixed with “_knn.json” that 

stores the vector, the K-Nearest Neighbor vector and the distance between them where an 

entry looks as follows. 

• {"current": {"word": "biography", "pos": "NN", "domain": "Text", "time": 
["biography", "00:02:46.008"], "vector": ["0.00162601626016", "0.0666666666667", 
"0.0127388535032"]}, "neighbor": {"word": "Island", "pos": "NNP", "domain": 
"Natural_features", "time": ["Island", "01:04:03.515"], "vector": 
["0.00162601626016", "0.0666666666667", "0.0143312101911"]}, "distance": 
0.0015923566878999987} 

I list all words in (Table 5 - K-Nearest Neighbor for Discourse 6NOSD0XK0r8) where 

the distance is greater than zero. The above entry shows that within the corpus and within 

the discourse, the word “biography” has a vector that is closest to the vector of the word 

“island”, and relates the domain of “Text” with the domain of “Natural_features”, and 

they are temporally distant in the discourse.  

In summary, the stages of development of the YouTube corpus leads to the vectors. It is 

the vectors that are important. My thesis is asserting that the value systems, quantified as 

a vector, of the interlocutors are at play, prodding what words get activated next within 

the conceptual domains. NLTK and other Python libraries provide the means for 

visualizing the vector data.  
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4.7 A Value System Application 

An idea for a practical application of a corpus like the YouTube corpus is a “Chatbot”, 

like popular smart phone voice interaction applications. The YouTube corpus serves as 

one of the long-term memory storage areas or corpus, and the current chat conversation is 

stored locally in computer short-term memory, but also stored in a Chatbot corpus, which 

is like the YouTube corpus structure shown in (Figure 13 - YouTube corpus Symbolic 

Unit), so that the same queries could be performed. The Chatbot processes incoming text, 

and generates a response based on the usage event data of each word, chunk and 

sentence. The vectors are summed and compared to the vectors in the Chatbot corpus 

using K-nearest neighbor to determine the best-known response, i.e. the responses are 

activated from the corpus of input-response data, but the usage event vectors are 

calculated from the entire corpora, a value system at work. This, however, is of course 

not as “fait accompli” as described because the values stored and queried would always 

be the same. Although the K-Nearest Neighbor calculation does provide a probabilistic 

result, it still lacks the intuitive connection with another human being. The transformation 

from a canned response to a genuine “aware” exchange of meaning just isn’t there. There 

is obviously still much more to be done to create an “intelligent” Chatbot. 

The corpora design is therefore very important to artificial intelligence research, and the 

conceptual space ontological model (Gärdenfors, 2014, p. 262) plays and important part 

in getting closer to a meaningful conversation with a machine. The Chatbot corpus can 

include sentence structure and chunking, and can be categorized by speaker and 

perceived topic categories. The YouTube closed-caption corpus is inadequate because of 

its lack of structure, and vectors are calculated at the word level only, providing a very 
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restricted value system. There are also holes in the semantic data that could easily lead to 

misunderstanding, or even complete impasse. Thankfully there are many other sources of 

data, e.g. transcripts of live chat sessions, for building corpora. The long-term and short-

term memory corpora data model (Figure 15 - Memory Corpora Data Model) has 

potential, but still has flaws. The relationships of entities are described as follows: 

1. A corpora (database) has one or more corpus entities 
2. A corpus entity has one or more file entities 
3. A file entity can be associated with many topic entities 
4. A topic entity can be associated with many file entities 
5. A file entity has one or more token entities 
6. A token entity can be associated with many classifier entities 
7. A classifier entity can be associated with many token entities 
8. A token entity is associated with one or more sentence entities 
9. A sentence entity has one or more word entities 
10. A word entity is identified as a POS (part-of-speech) entity 
11. A word entity can be associated with many chunk entities 
12. A word entity can be associated with many semantic value entities 
13. A semantic value entity can be associated with many word entities 
14. A chunk entity can be associated with many word entities 
15. A chunk entity is identified as a POS entity 
16. A chunk entity can be associated with many semantic value entities 
17. A semantic value entity can be associated with many chunk entities 

This data abstraction allows each usage event to be stored in a way that can be queried 

using SQL (Structured Query Language)14, and resulting a matrix set of desired 

attributes from any of the joined entities. The memory corpora data model is one of many 

possible data storage and retrieval paradigms, but with this relation database model the 

value system captured as semantic values calculated from extant data at the time of the 

usage event. Semantic values, or dimensions, in turn make up the vector associated to the 

                                                 
 

14 A structured query language is a procedural programming syntax used in obtaining a relational 
data set programmatically that joins entities according to their relationships and allows filtering, 
grouping and ordering of the results (https://en.wikipedia.org/wiki/SQL). 
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word or chunk. This gives us the perception part of the process, but not the production 

part. With the activation of data as a usage event takes place, it is then necessary for the 

Chatbot to construct a response, which means a response data model is required. 

“CONSTRUCTIONS, NOT CATEGORIES AND RELATIONS, ARE THE BASIC, 

PRIMITIVE UNITS OF SYNTACTIC REPRESENTATION. The categories and 

relations found in constructions are derivative…” (Croft, 2001, p. 46). The questions 

become “How and when does the Chatbot learn constructions?”, and “How does the 

activated data relate to possible or probable constructions?”.  

I suggest a cursory construction data model, shown in (Figure 16 – Exemplar 

Construction Data Model), that is not related to the memory data model, but is 

maintained by an independent parallel process that learns the acceptable constructions 

from the memory data model, and when a response is needed the response is constructed 

by passing the activation data to a process that queries the construction data model for the 

most probable construction, and then assembles a response. This model follows the 

usage-based exemplar construction model (Hoffmann & Trousdale, 2013, pp. 60-63) as 

Bybee proposes in her chapter “USAGE-BASED THEORY AND EXEMPLAR 

REPRESENTATIONS OF CONSTRUCTIONS”. The relationships of entities are 

described as follows: 

1. A corpora (database) has one or more exemplar entities 
2. An exemplar entity can be associated with many slot entities 
3. An exemplar slot association can be associated with many lexical unit entities 
4. A slot entity is identified as a POS (part-of-speech) entity  
5. A lexical unit is identified as a POS (part-of-speech) entity 
6. A vector can be associated with many classifier entities 
7. A lexical unit entity can be associated with many vector entities 
8. A vector entity has one or more semantic value entities 
9. A classifier entity can be associated with many vector entities 
10. A vector entity can be associated with many lexical unit entities 
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Chatbot now can pick the best response by querying the trained Exemplar Construction 

Data Model using the activation data from the Memory Corpus Data Model. The data 

flow, shown in (Figure 17 - Chatbot Data Flow), has two independent processes acting on 

interdependent data. The chat process is started with an initial request for information 

about the person who is chatting. The collected data is stored and updated in the 

classifiers entity. Classifiers are important to machine learning because they provide a 

feature-set that can be used in the linear regression calculation, used by many of the 

popular machine learning algorithms. Classifiers such as “age” and “gender” are most 

popular in recent research. It is important to note that the “name” classifier is associated 

with the chat text tokens, but the other classifiers of “age”, “gender”, etc. are associated 

with the answer tokens initially gathered in the chat session. The chat process proceeds 

with a back and forth exchange between person and Chatbot until the person indicates 

they want to quit. The input text from the person is transformed into data of which a 

series of token usage events are comprised, and then stored in Figure 15 - Memory 

Corpora Data Model. This completes the input phase.  

The activation phase is where Chatbot queries the memory for a most probable set of 

activation data for the provided token. Memory activation occurs because of the set-based 

query that joins and filters data in the entire corpora to a smaller dataset. The activation 

data is most important for the last phase of generating a response. The value system 

determines the activation by looking at close vector matches of each lexical unit in a 

token against the entire corpora. The bias is calculated in the previous phase with current 

data, is made up of multiple and various dimensions, dependent on the state of the person 

corpus and the entire corpora of data. The vectors are summed for chunks and sentences. 
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The classifier feature-set could be used to filter the resulting data, but probably isn’t 

necessary. 

The response phase is dependent on Figure 16 – Exemplar Construction Data Model, 

which is maintained and updated with an independent process that builds construction 

exemplars from the corpora. The process is started, and repeats after a configured waiting 

period. Memory is queried for any changes, and then runs adds new exemplars or updates 

existing ones. The construction probabilities are then re-calculated for feature-sets and 

exemplars. By doing this, the response phase of the chat process can identify the best 

construction and corresponding lexical units to use as the response. The response is 

displayed after it has been stored in memory, and the process cycles again. 

In summary, although the YouTube corpus lacks the classifiers necessary for Chatbot to 

act with a modicum of simulated intelligence, the overall effort of building the data by 

extracting, transforming and loading into files has set the stage for an application like 

Chatbot. The use of a database would provide a perhaps better container for the corpora, 

allowing the set-based query to be used. The usage event is abstracted in the database in 

such a way that words, chunks, sentences and tokens are bound to a corpus of files or 

discourses. The database allows any source of data to be added as well, with some extra 

programming, which allows the memory and exemplars to be amended, creating a 

smarter Chatbot. There improvements also that can be made, such as allowing for person 

or Chatbot to input or display multiple tokens at a time, as usually occurs in chatting 

between two or more people, instead of the back and forth conversation. Also, the 

possibility of allowing more than one person to chat with Chatbot could be developed 
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using the same data models. It is my intent to continue my research in this direction, and 

implement this application. 
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5 Conclusions 

I want to say that I have gained a linguistically valid understanding of a value system in 

terms of its influence on coming to, or not coming to, a mutual understanding when two 

or more people engage in conversation. Is “value system” the correct term? If there is a 

bias, with multi-variant dimensions (value systems), is it used by a person when the 

activation occurs, and is the vector really pointing to a location in conceptual space? This 

pilot study, I think, shed light on these questions. The corpora of today are more robust 

than ever, and with semantic analysis tools like FrameNet (Ruppenhofer, et al., 2016) and 

WordNet (Miller, 1995) it will be easier to query for symbolic unit categorization. The 

end goal, although not conclusive, provided a clearer understanding of a cognitively 

sufficient “robot” model that considered many forms of input, i.e. a multi-modal, many 

sensorimotor mechanisms, many use-specific processing units with cooperation abilities, 

value systems that act as biases for language processing, and a storage medium where 

processing units can be activated by the perceptive machine. Again, I should stress that 

this was a pilot study that explored some aspects of how semantic alignment occurs or 

doesn’t occur in discourse. The dimensionality of vectors could be much more complex if 

applied to real world artificial intelligence and robotics. 

A major success of this pilot study was that I built a corpus from internet resources 

(YouTube Closed-Captions) using NLP tools like NLTK and Python. The evolution of the 

corpus structure from plain text to vectors and more demonstrated the potential for 

building corpora that would support applications like Chatbot (4.7). There are many 

Python libraries available now, and more being built, that provide tools for data collection 

from the internet and document sources. Also, as shown with Chatbot, the can be stored 
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in a database, or a combination of flat files and database, and flat files can be in multiple 

formats, such as JSON (Java Script Object Notation) or CSV (Comma Separated Values) 

or XML (eXtensible Markup Language). Extending the NLTK library for querying 

custom values allows the custom corpus creation. A usage-based corpus is practical, and 

could be used to identify semantic alignment. The idea of dimensionality pointing to a 

point in conceptual space is sound because of two things, one dimensions exist, and two 

semantic change occurs. Finding the evidence will require more research and corpus 

building. 

The YouTube corpus that I created was not conclusive, however, because of the missing 

classifiers i.e. if the closed-caption files were to contain who said what, then a classifier 

of who was speaking could be attributed to the spoken token. NLTK lacks access to a 

complete FrameNet, which also leaves holes in the data. WordNet does have a more 

complete corpus for the English language and could be used for obtaining semantic 

domains, but that was not the path I chose. Visualization of the data is lacking because 

most of the discourses were long, and who said what was indistinguishable. YouTube has 

a useful source of linguistic data, but not the closed-captions. Perhaps using the 

comments regarding a video that were contributed by viewers would yield better results. 

If I were to start all over I would create the Chatbot (4.7) application, and agnostically 

approach corpus creation by finding sources of data with identifiable classifiers, and I 

would load them into the Chatbot database using the same processes (Figure 17 - Chatbot 

Data Flow). The most important piece of data that was lacking in this study, but should be 

required, is the classifier both at the chat session level and at the token level. The Chatbot 

data model that I proposed earlier provides a relational storage location for classification. 
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Classifiers are essentially contextual reference points that point to semantic domain in 

conceptual space, they are schematically more abstract, and therefore provide target for 

the dimensional values that bias activation.  

The linguistic value system of an individual allows them to participate in the coordination 

of meaning, which is achieved through common lexical knowledge shared between the 

individual and others who are engaged in conversation. Their value system prods the 

activation of memories in language processing, and maybe alignment or un-alignment of 

meaning occurs; linguistic categorization (memory, learning and performance) is biased 

dynamically by a set of one or more value systems (dimensions). The value systems hold 

the linguistic criteria for language processing, activation and selection of the best 

adaptive meaning. With the activated data the individual can construct a response from 

construction patterns in memory because data is retained for all linguistic experiences as 

exemplars of usage theoretically. Although the pilot study doesn’t show evidence of this, 

it does suggest further research in corpora development. 

In summary, there were a few things that were evident in this study. Closed-caption text is 

not the best source of data due to the lack of classification features. The data does 

however support the idea that language is shared, and when two or more people are 

having a conversation there are missing parts which are pointed to with the shared 

context, shared human experiences. The under-determinacy is evident because mutual 

understanding does occur, and not just with the participants in the conversation, but with 

the viewer of the YouTube video also.  
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6 Figures 
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Figure 1 - Somatic Processing Model 

 

Figure 2 - A Scheme for higher-order consciousness (Edelman & Tononi, 2000, p. 194) 
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Figure 3 - Dynamical Systems Terminology 
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Figure 4 - A two-dimensional emotion space (Russell, 1980) 
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Figure 5 Conventional Unit Status 
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Figure 6 Symbolic Assembly 

 

 

Figure 7 Forward-Propagation 
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Figure 8 Neuron 
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Figure 9 Symbolic Unit Bias Vector 
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Figure 10 Dynamic System Matching Process 
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Figure 11 - Closed Caption File Sample 

 

 

Figure 12 -  Synsets for target word "guess" 
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Figure 13 - YouTube corpus Symbolic Unit 
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Figure 14 - Dispersion Plot of discourse Creationism vs. Evolution 
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Figure 15 - Memory Corpora Data Model 
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Figure 16 – Exemplar Construction Data Model 

 



65 
 

Chatbot Data Flow

Chat Memory Construction

Re
sp

on
se

In
pu

t
Ac

tiv
at

io
n

Start Chat

End

Get Classifier 
information from 

chat person

Classifiers: 
person 

name, age, 
gender, etc.

Store Classifier Data Classifiers

Exemplars

Get chat input from 
chat person

Start Learning

Done Chatting? Input text Transform Input 
Data

Memories

Transformed 
Data

Store Transformed 
Data

Get Activation Data

Activation 
Data

Get Exemplar 
Construction Data

Constructions

Generate Response 
Data

Response 
Data

Display Response

noyes

Check for new 
memories and 

classifiers

Run Machine 
Learning ?Wait 

Update Exemplars

Classifiers 
and 

Memories

Update 
Constructions

Probable 
Response 

Data
Store Response DataResponse 

Data

 

Figure 17 - Chatbot Data Flow 
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7 Tables 

•  

Table 1 - Modal Verbs Frequency by Category 
 

would could should will can shall must 
Nonprofits 384 214 132 189 514 8 18 
People 485 241 209 265 537 3 9 
News 639 321 233 416 789 2 31 
Politics 639 321 233 416 789 2 31 
Style 3 1 0 1 9 0 0 
Sports 59 31 14 11 54 0 3 
Events 57 45 12 19 29 0 0 
Autos 10 13 9 26 36 0 0 
Education 848 516 292 437 1174 14 74 
Howto 3 1 0 1 9 0 0 
Comedy 25 9 17 1 18 0 0 
Animation 53 34 10 17 36 1 4 
Blogs 485 241 209 265 537 3 9 
Activism 384 214 132 189 514 8 18 
Music 157 107 34 49 195 2 7 
Travel 57 45 12 19 29 0 0 
Technology 142 93 53 132 247 2 6 
Vehicles 10 13 9 26 36 0 0 
Science 142 93 53 132 247 2 6 
Entertainment 195 83 84 94 260 1 10 
Film 53 34 10 17 36 1 4 
all 3096 1750 1105 1681 3973 33 165 

 

Table 2 - YouTube Videos for Corpus 

Video Id Words Set Time Description 

-XFaEFNALqU 9,779 1,613 01:07:28.560 
Dawn Eden - Courage 2013 #5 - CONF 222 -  
Education 

0mJXSnpKqJc 5,447 1,457 00:44:13.006 

Art Talks: Dr Loretta Würtenberger and 
Melanie Gerlis discuss 'The Artist's Estate' -  
Nonprofits Activism 

0Ttrb-97tFA 13,293 2,672 01:19:38.945 
Naomi Wolf and Jim Pfaus talk sex -  
Education 

0wGsXO1vzNI 18,600 2,509 01:21:41.144 

SOFREP Radio: Green Beret Terry Schappert 
in studio talking "Hollywood Weapons" -  
Travel Events 
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0xPlja9a2Cs 12,338 1,881 01:00:30.659 

PRO/CON at The Pier: The Return of Civil 
Discourse - Public Education: Is It Broken? -  
Nonprofits Activism 

1LLbCU6QxoM 10,106 1,552 00:54:07.285 
Steve Jobs 1983 Gives A Talk About The 
Future -  Science Technology 

2jtdrIcEXus 1,584 482 00:10:58.002 

Jackie Chan On Why We Seeks Variety In His 
Roles: 'I Want To Be Like Robert De Niro' -  
Entertainment 

2lgvd5wsWG0 16,903 2,254 01:30:25.430 
#037: David & Anna Discuss Amanda Palmer: 
The art of asking -  Music 

2LwaVr_OgZE 10,539 1,537 01:11:15.835 

‘Women in the Arts’ – Siri Hustvedt, Katharina 
Grosse, Nicola Graef at me Collectors Room 
Berlin -  Education 

2ZVA0vwHMQs 15,928 2,153 01:39:02.356 
Same-Sex Marriage Debate: Gallagher vs. 
Corvino -  Education 

3eVclwNQHJo 8,852 1,313 00:57:35.883 
Marcus and Anthony Discuss Polyamory -  
People Blogs 

3PFrdfxdYPI 1,537 478 00:08:09.685 
Richard Dawkins Interview - Sky News -  
Entertainment 

4-4F95jtcxI 6,742 1,283 00:34:15.716 
Warren Buffett Candid Interview 2015 -  
People Blogs 

4C_MLzjb0bI 10,156 1,595 00:52:55.459 
Intelligence to Protect the Homeland and the 
Way Ahead -  Autos Vehicles 

4e2kJhAGPCE 4,006 791 00:24:12.615 

PEACE, LOVE AND MISUNDERSTANDING | 
indieWIRE | TIFF Industry 2011 -  Film 
Animation 

5ir1hhpkwbo 23,994 660 00:19:06.395 
Jimmy Kimmel's FULL INTERVIEW with 
President George W. Bush -  Comedy 

6F4M2tDlAAQ 6,806 1,269 00:32:04.896 
Mark Cuban Interview 2017 - Talks Tech, 
Business, Investing -  Science Technology 

6HffK1ZxVZ4 2,059 687 00:10:36.846 much ado group teaching project -  Music 

6NOSD0XK0r8 18,504 2,162 01:35:26.826 
Fired Google Engineer James Damore (Live 
Interview) -  News Politics 

7M5c71l9tno 1,988 556 00:14:42.085 
The Tango Cafe Legacy - Conversation 
between friends -  Education 

7MlGiL2lgKA 3,703 734 00:19:35.471 

Talking With Tea & Bee: Real Conversation 
between Friends :) - Tianna Thompson -  
People Blogs 

7NMOMscsA2c 1,243 409 00:06:13.187 Heated debate on gun control -  People Blogs 

7PxFnKFFvK4 3,748 822 00:20:58.781 
Women Discuss Being Pro Casual Sex -  
People Blogs 

8IiDgZK-Fz4 21,197 3,015 02:04:44.722 
Sex and Speech on the College Campus - 
Roundtable Discussion -  Education 

9HKlzk4xKl8 2,437 716 00:13:11.555 
Funniest Local News interviews 😀😀😀😀😀😀 -  
People Blogs 
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ad9L3zWcWIo 1,882 613 00:10:25.871 

Sarah Huckabee Heated Exchange vs CNN Jim 
Acosta, San Juan mayor, private jet, Rex 
Tillerson 10/5/17 -  People Blogs 

Alzqh8x9OpI 5,159 953 00:26:43.826 
Caroline Kennedy | CONVERSATIONS AT KCTS 
9 -  People Blogs 

APC2jnOSfhQ 4,207 823 00:21:58.152 
REAL CONVERSATIONS: I'm Pro-Gun | Change 
My Mind -  Comedy 

avlAa4KUm-Y 454 190 00:03:31.035 

#7 Hilarious Language Barrier 
Misunderstanding! : Yurgei Meets Monica -  
Entertainment 

B14uaSxLong 14,609 2,474 01:28:39.428 

What is the Use of Ornament in 
Contemporary Art and Architecture? -  
Nonprofits Activism 

B1EhafsWudQ 13,317 1,913 01:18:02.111 

VIDEO: 8/1/2017 - The Chief talks Climate 
Change with Bailey Hall for Climate Corps -  
Entertainment 

BgBs5BNHYNQ 9,654 1,378 00:47:14.525 

Andy Stanley, Michael Leahy and ex-wife talk 
about Michael's sex addiction -  Nonprofits 
Activism 

bmovaPIsHa0 7990 1,524 00:52:41.762 

EDWARD SNOWDEN EXPOSES DONALD 
TRUMP FULL INTERVIEW 2017 -  News 
Politics 

byT2P4OxaBE 8,538 1,618 00:49:19.078 
The Future of Economy | Panel Discussion -  
Education 

bZYwZDqdsas 4,576 731 00:23:45.847 
Advanced English Conversation About Travel 
[The Fearless Fluency Club] -  Education 

cEProM1NcvU 9805 1741 01:17:34.775 

TRAC2014: Roger Scruton and Odd Nerdrum - 
Contemporary Representational Aesthetics -  
Education 

CkObh3RZKXU 16,368 2,096 01:47:39.051 
CLE812 - Various Panelists - Life After Death 
Life After Life Panel -  Entertainment 

cOzSYkk3ZM0 12,915 2,069 01:23:26.437 
Point-Counterpoint Discussion on Rail Transit 
-  Education 

cYhjo5O-nfg 11,000 2,273 01:15:46.290 
Mastering Style: The Learning and Teaching of 
Writing -  Education 

dLmcZ9dGBk4 5,587 1,057 00:26:44.815 

Colin Goddard & Kristina Anderson | 
CONVERSATIONS AT KCTS 9 -  Nonprofits 
Activism 

dmbSENYk-KI 5,482 1,146 00:40:16.936 
Peter, Paul and Mary's Peter Yarrow candid 
feature interview -  Music 

dqq4TMXxq1E 2,913 657 00:20:02.922 
Real English Conversation: My Wife and I 
Answer Your Questions! -  Entertainment 

e5MD-2GTqto 483 208 00:02:19.829 
Chicken Connoisseur tv interview -  
Entertainment 

EG3Y8Cp-9NA 16,847 2,413 01:48:52.933 
Drinking Water: A Crisis in Every State -  News 
Politics 

Erkp675dLrM 167 102 00:00:56.812 
Hurricane Harvey - Awkward News Interview 
Question -  Comedy 
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eymykfdIIpc 1,545 432 00:07:09.955 Chatting with Friends: Wakfu -  Entertainment 

fe9fZxfsqwM 3,496 773 00:20:38.388 

Connie and Samuel Johnson discuss Love Your 
Sister, unicycles, and mortality -  
Entertainment 

fLcHfHZ1k9A 16,292 2,437 01:38:03.223 

Death at SeaWorld Panel Discussion: Author 
David Kirby, Dr Naomi Rose and Dr Lori 
Marino -  Nonprofits Activism 

FnrJ3jPWG68 2,167 568 00:12:08.437 
We're Cursed w/ Keith Lemelin | Karla's Car 
Conversations -  People Blogs 

g--WzSUmkdk 13,978 1,690 01:11:42.449 

A conversation with Hemant Mehta (ex-Jain, 
editor of the Friendly Äthïest) -  Nonprofits 
Activism 

gd0oSNjHf1A 9,247 1,385 00:38:50.052 
Joe Rogan vs Steven Crowder: Heated 
Argument over Marijuana -  People Blogs 

GDF-8PiM_vg 3,373 729 00:17:34.006 

James O'Keefe Uncovers Evil Machinations Of 
Mainstream Media | Cerno News Interview -  
News Politics 

GhVzaEGxTw4 11,317 1,479 00:58:45.941 
Coach Unplugged Interview ( Mike McGivern) 
-  Sports 

gWT-EWKIR3M 2,114 673 00:10:37.047 

Climate Realist Marc Morano Debates Bill Nye 
the Science Guy on Global Warming -  News 
Politics 

gZKDInabaPM 2,305 590 00:11:05.878 
I debate with Dietitian on LIVE TV this 
morning - My reaction -  People Blogs 

h0962biiZa4 10891 1751 01:00:02.110 
Superintelligence: Science or Fiction? | Elon 
Musk & Other Great Minds -  People Blogs 

h4cSZLP8cwA 1,070 284 00:03:34.293 
Tim and Eric Get Into a Heated Discussion | 
THE ULTIMATE FIGHTER -  Sports 

H4h44yN_QTg 10,708 1,933 01:10:24.799 

39 Leston Havens MD: #3 Patient Interview 
and Discussion: War Neurosis or 
Malingering? -  Education 

hpDHwfXbpfg 6,863 1,409 00:40:40.581 
Elon Musk Interview 2017  | TEDTalk -  
Science Technology 

hRniRF2BAus 12,048 1,533 01:03:11.000 

HOW TO CHANGE YOUR PAST &  YOUR 
FUTURE - CONVERSATION WITH BRIDGET 
NIELSEN -  People Blogs 

Hz9FqepcRUM 17,866 2,358 01:22:37.990 
FULL Steve Bannon Interview with Charlie 
Rose -  News Politics 

IhqDbLPvKsM 10,992 1,595 00:54:14.037 Buffy Panel Discussion -  Film Animation 

IiqAVxT0FUw 1,126 331 00:11:38.112 
Conversations with Curl Friends at Curl Fest! -  
Howto Style 

iOKePIvoNcI 9,591 1,416 01:08:29.578 
Sex Talk: Group Discussion on Sex, Purity, and 
Holiness -  People Blogs 

j1xDizRZw3I 5,367 903 00:31:04.787 
Interview with Vanessa [Featuring Jack from 
ToFluency] -  Education 

Jk0PndXxSoQ 14,670 1,966 01:32:48.613 
Dont Call Me Crazy: How we Fell in Love With 
Outsider Art -  Nonprofits Activism 
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jsJeE9suuBc 70,635 2,481 02:20:25.687 
A Public Discussion About Race in Boston -  
News Politics 

jX86JCbkSUI 13,552 1,622 01:15:01.850 

Fireside Chat #6: Yakov Boyko with Khepra 
Anu. Raw Food. Nutrition. Health. -  
Education 

KCDVEn5Wzmg 12,466 1,860 01:08:00.483 
Every Bot Is a Critic: 03.06.17 at New Lab -  
Science Technology 

KKjKCec8i6c 9,392 1,581 00:52:48.843 
Jeff Bezos - A Candid Interview About The 
Amazon Story -  Science Technology 

KncbeLE9HS0 28,342 3,548 02:54:53.013 
Amazing Interview With Astrophysicist Neil 
deGrasse Tyson -  News Politics 

Kp-wGkzDLSw 14,565 2,202 01:22:08.283 
Jonathan Haidt - Panel Discussion - Future of 
Cities - NYU -  People Blogs 

KRLI42qd_wQ 13,869 1,929 01:13:31.662 
Tech Talk: Marketing to Today's Diner -  
Education 

LduioANhxlA 13,902 2,184 01:25:12.149 
Watch This! Artist Panel Discussion -  
Education 

lgjqYRdgkTw 8,786 1,216 00:42:10.285 
Raising Kids With or Without Religion: The 
Mom's View Live -  People Blogs 

lgK6qLBLVD0 10,539 2,054 01:13:37.539 Counter Terrorism Discussion -  Education 

Lp9zuo52Njo 986 327 00:06:16.238 
Spontaneous Road Trips w/Dayviideo| Karla's 
Car Conversations -  People Blogs 

ltbADstPdek 12,468 2,054 01:16:56.682 
Richard Dawkins & Neil deGrasse Tyson -  
Education 

mhvw0Jrevqk 12,733 2,367 01:24:42.993 
Presidential Leadership Scholars 2017 
Graduation -  Nonprofits Activism 

N4aXeJ3Z29w 2,799 649 00:15:15.622 
Conversations on Death with Kim Mooney -  
People Blogs 

N6m7pWEMPlA 2,682 198 00:03:12.720 
Obamacare vs. Affordable Care Act #2 -  
Entertainment 

n7IHU28aR2E 21,339 3,100 01:57:12.239 
The Four Horseman - Hitchens, Dawkins, 
Dennet, Harris [2007] -  Education 

N8zIiSaETqk 11,343 1,600 01:01:34.369 
Nerd HQ 2016: A Conversation with Zac and 
Friends -  Entertainment 

nEA0oW9TSjw 11,497 1,845 01:00:31.632 
Lowkey In Discussion - #FlipLifeRadio - 
PyroRadio - (15/09/2017) -  Music 

nHHDoywUfCQ 1,481 418 00:08:19.883 
Jimmy Fallon Interview on Live with Kelly and 
Ryan -  People Blogs 

NWdc7PyZNLA 5,023 718 00:18:24.304 
Guest Host Jennifer Lawrence Interviews Kim 
Kardashian West -  Comedy 

oG804t0WG-c 12,921 1,959 01:06:30.359 
Dan Savage vs. Brian Brown: The Dinner Table 
Debate -  News Politics 

ovN6ntFy0zI 5,344 775 00:23:37.703 
SELF LOVE or SELFISH? | The Mom's View -  
People Blogs 

PJIvBeVKoQA 173 111 00:01:22.818 
Anchorman can't stop laughing! - World's 
funniest live news interview -  People Blogs 

QgJPYJ0Jn04 12,815 2,080 01:06:57.547 
Fixing the System: VICE on HBO Special 
Report (Full Episode) -  News Politics 
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qKnBIiIUv9A 7,684 1,421 00:43:41.014 
Bill Maher On The Messy Truth With Van 
Jones - Full Show -  News Politics 

R0HpE1yh_sw 11,529 1,765 01:12:12.366 

GENERAL SESSION: How Transit Agencies are 
Integrating Rideshare and Public 
Transportation -  Nonprofits Activism 

rmpi3uYK3A4 7,223 1,234 00:50:13.586 
Artist and Curator: A Conversation -  
Education 

RSFNe0AowwM 4,865 1,223 00:25:49.055 
Kieser Report: Cryptocurrency Taking Russia 
By Storm? (E1146) -  News Politics 

rtIE5evvHGg 12,098 1,900 01:10:00.899 
Panel Discussion Sustaining Relationships -  
Education 

sT40DH6hdKs 10,401 1,638 01:03:12.109 

Discussion Panel | Blockchain and Bitcoin will 
Disrupt Entire Industries and Governments -  
News Politics 

t4jUQGbHhUw 16,527 2,595 01:42:56.702 

St. John's College Special Panel Discussion - 
"Implications of the Death of Osama Bin 
Laden" -  Education 

tAZGxRmxMH0 14,934 1,968 01:23:44.749 

Bernie Sanders VS. Ted Cruz on The GOP Tax 
Plan. #Breaking #TaxReform #BernieSanders 
#TedCruz -  News Politics 

ThHzIJUm-So 9,627 1,682 00:54:40.883 
Warren Buffett And Bill Gates - January 2017 -  
People Blogs 

Tm6ESsMlvYE 13,042 1,889 01:24:06.929 
Gloria Steinem and Emma Watson in 
Conversation -  People Blogs 

tzzoVNR5wkM 11,635 1,778 01:18:20.689 
The Trouble With Sculpture -  Nonprofits 
Activism 

uBz8uzJEJxI 17,171 1,971 01:27:50.449 
The Trouble With Painting -  Nonprofits 
Activism 

UKM3ac_6CVs 173 113 00:01:30.581 

UPDATE #7 Sgnt. Hurricane Harvey The 
Hunkered Down Hurricane Hawk -  People 
Blogs 

Un0ohUagTWo 6,756 1,118 00:41:05.681 

First Ladies Laura Bush and Michelle Obama 
at Investing in Our Future -  Nonprofits 
Activism 

v9wzw5nFVfc 9,600 1,885 00:55:09.008 
Let’s talk about men sexual abuse – The 
Urban Debate (July 6) -  News Politics 

vln9D81eO60 2,065 583 00:10:06.179 

Ben Affleck, Sam Harris and Bill Maher 
Debate Radical Islam | Real Time with Bill 
Maher (HBO) -  Entertainment 

vqJM80MZQQ8 10,647 1,499 00:49:59.605 
Danny Meyer & Michael Romano, "Family 
Table" | Talks at Google -  Music 

Vv1x4GHpU7E 269 148 00:02:52.625 
UH Thea 1331 "much ado about nothing soap 
opera" -  People Blogs 

W1Sa6CzHpiE 13,044 1,666 01:30:43.659 

My Friends Are Gonna Be Strangers: A 
Conversation with Merle Haggard, Norm 
Hamlet, Don Markham. -  Music 

wLx4DjeMtz8 8,014 1,296 00:55:49.710 
Apple CEO, Tim Cook Interview On Steve Jobs, 
AR, Heros, The Future -  Science Technology 
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xvOtab2vn2Y 299 139 00:02:19.275 
Jurgen Klopp's disagreement with a journalist 
-  Sports 

y2KwVRiuILk 10,300 1,965 01:04:09.140 
Artist panel discussion on Form & Story -  
Education 

y8hy8NxZvFY 9,938 1,887 00:59:56.774 
DEBATE: Atheist vs Christian (Richard Dawkins 
vs Cardinal George Pell) -  Education 

YCuxezFZUVg 4,615 715 00:20:10.933 Cheating?!? -  Entertainment 

yI_h0loITWM 11,087 1,446 00:52:58.187 

Howard Stern and Bill Maher Discuss His 
Romanticization of Al-Qaeda's 9/11 Terror 
Invasion -  Entertainment 

YsQ6Relf7bw 10,586 1,613 00:49:13.168 
The GORUCK Show: Travel Like a Green Beret 
-  People Blogs 

yYeS3gNQnaQ 14,221 2,652 01:40:46.229 
Imagining Queer Justice: Prison Abolition and 
LGBT Hate Crime Legislation -  Education 

z6gB3gA9UZg 43,182 3,715 03:58:51.004 
Debate: Socialism vs Capitalism -  News 
Politics 

ZWE8HUjYf8Q 6,068 1,361 00:47:31.852 
Obama's Full Speech and Q&A with Bill and 
Melinda Gates -  News Politics 

zylMee7xJ0c 2,123 532 00:13:47.706 
Conversations with Friends: The Gender 
Spectrum and Sexuality -  Film Animation 

120 Videos 1, 159,8 43 34,948 105:13:41.000 
 

 

Table 3 - NLTK Part of Speech Tags 

POS DESCRIPTION EXAMPLE 

$ dollar $ -$ --$ A$ C$ HK$ M$ NZ$ S$ U.S.$ US$  

'' closing quotation mark ' ''  

( opening parenthesis ( [ {  

) closing parenthesis ) ] }  

, comma ,  

-- dash --  

. sentence terminator . ! ?  

: colon or ellipsis ; ... 

CC conjunction, coordinating & 'n and both but either et for less minus neither nor or plus so 

therefore times v. versus vs. whether yet  
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CD numeral, cardinal mid-1890 nine-thirty forty-two one-tenth ten million 0.5 one 

forty- seven 1987 twenty '79 zero two 78-degrees eighty-four 

IX '60s .025 fifteen 271,124 dozen quintillion DM2,000 ...  

DT determiner all an another any both del each either every half la many 

much nary neither no some such that the them these this 

those  

EX existential there there  

FW foreign word gemeinschaft hund ich jeux habeas Haementeria Herr K'ang-si 

vous lutihaw alai je jour objets salutaris fille quibusdam pas 

trop Monte terram fiche oui corporis ...  

IN preposition or conjunction, 

subordinating 

astride among uppon whether out inside pro despite on by 

throughout below within for towards near behind atop 

around if like until below next into if beside ...  

JJ adjective or numeral, 

ordinal 

third ill-mannered pre-war regrettable oiled calamitous first 

separable ectoplasmic battery-powered participatory fourth 

still-to-be-named multilingual multi-disciplinary ...  

JJR adjective, comparative bleaker braver breezier briefer brighter brisker broader 

bumper busier calmer cheaper choosier cleaner clearer closer 

colder commoner costlier cozier creamier crunchier cuter ...  

JJS adjective, superlative calmest cheapest choicest classiest cleanest clearest closest 

commonest corniest costliest crassest creepiest crudest cutest 

darkest deadliest dearest deepest densest dinkiest ...  
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LS list item marker A A. B B. C C. D E F First G H I J K One SP-44001 SP-44002 SP-

44005 SP-44007 Second Third Three Two * a b c d first five 

four one six three two  

MD modal auxiliary can cannot could couldn't dare may might must need ought 

shall should shouldn't will would  

NN noun, common, singular or 

mass 

common-carrier cabbage knuckle-duster Casino afghan shed 

thermostat investment slide humour falloff slick wind hyena 

override subhumanity machinist ...  

NNP noun, proper, singular Motown Venneboerger Czestochwa Ranzer Conchita 

Trumplane Christos Oceanside Escobar Kreisler Sawyer Cougar 

Yvette Ervin ODI Darryl CTCA Shannon A.K.C. Meltex 

Liverpool ...  

NNP

S 

noun, proper, plural Americans Americas Amharas Amityvilles Amusements 

Anarcho-Syndicalists Andalusians Andes Andruses Angels 

Animals Anthony Antilles Antiques Apache Apaches 

Apocrypha ...  

NNS noun, common, plural undergraduates scotches bric-a-brac products bodyguards 

facets coasts divestitures storehouses designs clubs fragrances 

averages subjectivists apprehensions muses factory-jobs ...  

PDT pre-determiner all both half many quite such sure this  

POS genitive marker ' 's  

PRP pronoun, personal hers herself him himself hisself it itself me myself one oneself 

ours ourselves ownself self she thee theirs them themselves 

they thou thy us  
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PRP

$ 

pronoun, possessive her his mine my our ours their thy your  

RB adverb occasionally unabatingly maddeningly adventurously 

professedly stirringly prominently technologically magisterially 

predominately swiftly fiscally pitilessly ...  

RBR adverb, comparative further gloomier grander graver greater grimmer harder 

harsher healthier heavier higher however larger later leaner 

lengthier less- perfectly lesser lonelier longer louder lower 

more ...  

RBS adverb, superlative best biggest bluntest earliest farthest first furthest hardest 

heartiest highest largest least less most nearest second 

tightest worst  

RP particle aboard about across along apart around aside at away back 

before behind by crop down ever fast for forth from go high 

i.e. in into just later low more off on open out over per pie 

raising start teeth that through under unto up up-pp upon 

whole with you  

SYM symbol % & ' '' ''. ) ). * + ,. < = > @ A[fj] U.S U.S.S.R * ** ***  

TO to as preposition or 

infinitive marker 

to  

UH interjection Goodbye Goody Gosh Wow Jeepers Jee-sus Hubba Hey Kee-

reist Oops amen huh howdy uh dammit whammo shucks heck 

anyways whodunnit honey golly man baby diddle hush 

sonuvabitch ...  
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VB verb, base form ask assemble assess assign assume atone attention avoid bake 

balkanize bank begin behold believe bend benefit bevel 

beware bless boil bomb boost brace break bring broil brush 

build ...  

VBD verb, past tense dipped pleaded swiped regummed soaked tidied convened 

halted registered cushioned exacted snubbed strode aimed 

adopted belied figgered speculated wore appreciated 

contemplated ...  

VBG verb, present participle or 

gerund 

telegraphing stirring focusing angering judging stalling lactating 

hankerin' alleging veering capping approaching traveling 

besieging encrypting interrupting erasing wincing ...  

VBN verb, past participle multihulled dilapidated aerosolized chaired languished 

panelized used experimented flourished imitated reunifed 

factored condensed sheared unsettled primed dubbed 

desired ...  

VBP verb, present tense, not 3rd 

person singular 

predominate wrap resort sue twist spill cure lengthen brush 

terminate appear tend stray glisten obtain comprise detest 

tease attract emphasize mold postpone sever return wag ...  

VBZ verb, present tense, 3rd 

person singular 

bases reconstructs marks mixes displeases seals carps weaves 

snatches slumps stretches authorizes smolders pictures 

emerges stockpiles seduces fizzes uses bolsters slaps speaks 

pleads ...  

WDT WH-determiner that what whatever which whichever  

WP WH-pronoun that what whatever whatsoever which who whom whosoever  
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WP$ WH-pronoun, possessive whose  

WRB Wh-adverb how however whence whenever where whereby wherever 

wherein whereof why  

`` opening quotation mark ` ``  

 

 

  

Table 4 - Stages of Corpus Data 

Stage Data 

Raw 00:00:00.000 --> 00:00:05.069 align:start position:19% 

I've<00:00:00.149><c> had</c><00:00:00.420><c> 

obese</c><c.colorE5E5E5><00:00:01.199><c> 

nutritionist</c><00:00:02.159><c> try</c><00:00:02.490><c> 

and</c><00:00:02.639><c> tell</c></c> 

 

00:00:02.850 --> 00:00:06.120 align:start position:19% 

me<c.colorCCCCCC><00:00:02.879><c> that</c><00:00:03.120><c> 

my</c></c><c.colorE5E5E5><00:00:03.629><c> diet</c><00:00:04.170><c> 

is</c><00:00:04.380><c> wrong</c><00:00:04.620><c> 

and</c><00:00:04.830><c> I'm</c><00:00:04.890><c> like</c></c> 

 

00:00:05.069 --> 00:00:07.680 align:start position:19% 

hey<c.colorE5E5E5><00:00:05.279><c> just</c><00:00:05.549><c> 

because</c></c><c.colorCCCCCC><00:00:05.700><c> 

you've</c><00:00:05.790><c> got</c><00:00:05.819><c> 

a</c><00:00:05.910><c> bit</c></c><c.colorE5E5E5><00:00:06.029><c> 

of</c></c> 

 

00:00:06.120 --> 00:00:09.360 align:start position:19% 

paper<c.colorE5E5E5><00:00:06.359><c> doesn't</c><00:00:07.109><c> 

mean</c><00:00:07.200><c> I'm</c><00:00:07.290><c> 

going</c><00:00:07.440><c> to</c><00:00:07.500><c> take</c></c> 
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00:00:07.680 --> 00:00:17.640 align:start position:19% 

your<c.colorE5E5E5><00:00:07.830><c> 

advice</c></c><c.colorCCCCCC><00:00:07.919><c> I</c><00:00:08.370><c> 

want</c><00:00:08.580><c> to</c><00:00:08.670><c> 

see</c><00:00:08.820><c> the</c><00:00:08.940><c> results</c></c> 

Plain I 've had obese nutritionist try and tell me that my diet is wrong and I 

'm like hey just because you 've got a bit of paper does n't mean I 'm 

going to take your advice I want to see the results 

Tagged I/PRP 've/VBP had/VBN obese/JJ nutritionist/JJ try/NN and/CC tell/VB 

me/PRP that/IN my/PRP$ diet/NN is/VBZ wrong/JJ and/CC I/PRP 'm/VBP 

like/IN hey/NN just/RB because/IN you/PRP 've/VBP got/VBN a/DT bit/NN 

of/IN paper/NN does/VBZ n't/RB mean/VB I/PRP 'm/VBP going/VBG to/TO 

take/VB your/PRP$ advice/NN I/PRP want/VBP to/TO see/VB the/DT 

results/NNS 

Frames ["I", "Compliance"], ["'ve", ""], ["had", ""], ["obese", 

"Body_description_holistic"], ["nutritionist", ""], ["try", 

"Isolated_places"], ["and", ""], ["tell", "Omen"], ["me", ""], ["that", 

""], ["my", ""], ["diet", ""], ["is", ""], ["wrong", 

"Morality_evaluation"], ["and", ""], ["I", "Compliance"], ["'m", ""], 

["like", "Similarity"], ["hey", ""], ["just", ""], ["because", ""], 

["you", ""], ["'ve", ""], ["got", "Wearing"], ["a", ""], ["bit", 

"Quantified_mass"], ["of", ""], ["paper", "Text"], ["does", ""], ["n't", 

""], ["mean", "Linguistic_meaning"], ["I", "Compliance"], ["'m", ""], 

["going", "Getting_underway"], ["to", ""], ["take", 

"Getting_vehicle_underway"], ["your", ""], ["advice", ""], ["I", 

"Compliance"], ["want", "Possession"], ["to", ""], ["see", "Request"], 

["the", ""], ["results", ""] 

Word Nets ["I", "PRP", []], ["'ve", "VBP", []], ["had", "VBN", 

[["Synset('have.v.01')", "{}", 0], ["Synset('have.v.02')", "{}", 0], 

["Synset('experience.v.03')", "[Synset('undergo.v.01')]", 0.8], 

["Synset('own.v.01')", "{}", 0], ["Synset('get.v.03')", 

"[Synset('make.v.02')]", 0.8], ["Synset('consume.v.02')", "{}", 0], 

["Synset('have.v.07')", "[Synset('interact.v.01')]", 0.8], 

["Synset('hold.v.03')", "[Synset('direct.v.04')]", 0.8571428571428571], 

["Synset('have.v.09')", "{}", 0], ["Synset('have.v.10')", "{}", 0], 
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["Synset('have.v.11')", "[Synset('change.v.02')]", 0.4], 

["Synset('have.v.12')", "[Synset('suffer.v.06')]", 0.8], 

["Synset('induce.v.02')", "{}", 0], ["Synset('accept.v.02')", 

"[Synset('get.v.01')]", 0.4], ["Synset('receive.v.01')", 

"[Synset('get.v.01')]", 0.4], ["Synset('suffer.v.02')", 

"[Synset('experience.v.03')]", 0.8571428571428571], 

["Synset('have.v.17')", "[Synset('score.v.01')]", 0.8], 

["Synset('give_birth.v.01')", "[Synset('produce.v.01')]", 0.8], 

["Synset('take.v.35')", "[Synset('sleep_together.v.01')]", 

0.8888888888888888]]], ["obese", "JJ", [["Synset('corpulent.s.01')", 

"{}", 0]]], ["nutritionist", "JJ", []], ["try", "NN", 

[["Synset('attempt.n.01')", "[Synset('activity.n.01')]", 

0.9230769230769231]]], ["and", "CC", []], ["tell", "VB", 

[["Synset('state.v.01')", "[Synset('express.v.02')]", 0.4], 

["Synset('tell.v.02')", "[Synset('inform.v.01')]", 0.8888888888888888], 

["Synset('tell.v.03')", "[Synset('inform.v.01')]", 0.8888888888888888], 

["Synset('order.v.01')", "[Synset('request.v.02')]", 0.9333333333333333], 

["Synset('tell.v.05')", "[Synset('guess.v.04')]", 0.8571428571428571], 

["Synset('assure.v.02')", "[Synset('affirm.v.02')]", 0.8888888888888888], 

["Synset('tell.v.07')", "[Synset('inform.v.03')]", 0.9090909090909091], 

["Synset('distinguish.v.01')", "[Synset('identify.v.01')]", 0.8]]], 

["me", "PRP", []], ["that", "IN", []], ["my", "PRP$", []], ["diet", "NN", 

[["Synset('diet.n.01')", "[Synset('fare.n.04')]", 0.9230769230769231], 

["Synset('diet.n.02')", "[Synset('legislature.n.01')]", 

0.9333333333333333], ["Synset('diet.n.03')", "[Synset('fare.n.04')]", 

0.9230769230769231], ["Synset('diet.n.04')", "[Synset('fast.n.01')]", 

0.9523809523809523]]], ["is", "VBZ", [["Synset('be.v.01')", "{}", 0], 

["Synset('be.v.02')", "{}", 0], ["Synset('be.v.03')", "{}", 0], 

["Synset('exist.v.01')", "{}", 0], ["Synset('be.v.05')", "{}", 0], 

["Synset('equal.v.01')", "{}", 0], ["Synset('constitute.v.01')", "{}", 

0], ["Synset('be.v.08')", "{}", 0], ["Synset('embody.v.02')", 

"[Synset('typify.v.02')]", 0.9473684210526315], ["Synset('be.v.10')", 

"[Synset('take.v.02')]", 0.8], ["Synset('be.v.11')", "{}", 0], 

["Synset('be.v.12')", "[Synset('stay.v.01')]", 0.8], 

["Synset('cost.v.01')", "[Synset('be.v.01')]", 0.4]]], ["wrong", "JJ", 
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[["Synset('incorrect.a.01')", "{}", 0], ["Synset('wrong.a.02')", "{}", 

0], ["Synset('improper.s.03')", "{}", 0], ["Synset('amiss.s.01')", "{}", 

0], ["Synset('wrong.a.05')", "{}", 0], ["Synset('wrong.s.06')", "{}", 0], 

["Synset('wrong.s.07')", "{}", 0], ["Synset('ill-timed.s.01')", "{}", 0], 

["Synset('faulty.s.02')", "{}", 0]]], ["and", "CC", []], ["I", "PRP", 

[]], ["'m", "VBP", []], ["like", "IN", []], ["hey", "NN", []], ["just", 

"RB", [["Synset('merely.r.01')", "{}", 0], ["Synset('precisely.r.01')", 

"{}", 0], ["Synset('just.r.03')", "{}", 0], ["Synset('just.r.04')", "{}", 

0], ["Synset('barely.r.01')", "{}", 0], ["Synset('just.r.06')", "{}", 

0]]], ["because", "IN", []], ["you", "PRP", []], ["'ve", "VBP", []], 

["got", "VBN", [["Synset('get.v.01')", "{}", 0], 

["Synset('become.v.01')", "[Synset('change_state.v.01')]", 0.8], 

["Synset('get.v.03')", "[Synset('make.v.02')]", 0.8], 

["Synset('receive.v.02')", "[Synset('change.v.02')]", 0.4], 

["Synset('arrive.v.01')", "{}", 0], ["Synset('bring.v.04')", 

"[Synset('transmit.v.04')]", 0.8], ["Synset('experience.v.03')", 

"[Synset('undergo.v.01')]", 0.8], ["Synset('pay_back.v.02')", 

"[Synset('get_even.v.02')]", 0.8571428571428571], ["Synset('have.v.17')", 

"[Synset('score.v.01')]", 0.8], ["Synset('induce.v.02')", "{}", 0], 

["Synset('get.v.11')", "[Synset('seize.v.01')]", 0.8], 

["Synset('grow.v.08')", "[Synset('change.v.02')]", 0.4], 

["Synset('contract.v.04')", "[Synset('sicken.v.02')]", 

0.8888888888888888], ["Synset('get.v.14')", 

"[Synset('communicate.v.02')]", 0.8571428571428571], 

["Synset('make.v.02')", "[Synset('change.v.01')]", 0.4], 

["Synset('drive.v.11')", "[Synset('mean.v.01')]", 0.9411764705882353], 

["Synset('catch.v.18')", "[Synset('understand.v.01')]", 0.4], 

["Synset('catch.v.07')", "[Synset('attract.v.01')]", 0.8571428571428571], 

["Synset('get.v.19')", "[Synset('hit.v.03')]", 0.8], 

["Synset('get.v.20')", "{}", 0], ["Synset('get.v.21')", 

"[Synset('get.v.01')]", 0.4], ["Synset('get.v.22')", 

"[Synset('buy.v.01')]", 0.8], ["Synset('catch.v.21')", 

"[Synset('hear.v.01')]", 0.8], ["Synset('catch.v.22')", 

"[Synset('hurt.v.06')]", 0.8], ["Synset('get.v.25')", "{}", 0], 

["Synset('scram.v.01')", "[Synset('leave.v.01')]", 0.4], 
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["Synset('get.v.27')", "[Synset('catch.v.09')]", 0.8571428571428571], 

["Synset('get.v.28')", "[Synset('annoy.v.01')]", 0.8], 

["Synset('get.v.29')", "[Synset('touch.v.03')]", 0.8], 

["Synset('catch.v.24')", "[Synset('reproduce.v.03')]", 

0.8888888888888888], ["Synset('draw.v.15')", "[Synset('effect.v.01')]", 

0.8571428571428571], ["Synset('get.v.32')", "[Synset('destroy.v.02')]", 

0.4], ["Synset('perplex.v.01')", "[Synset('confuse.v.02')]", 0.8], 

["Synset('get_down.v.07')", "{}", 0], ["Synset('suffer.v.02')", 

"[Synset('experience.v.03')]", 0.8571428571428571], 

["Synset('beget.v.01')", "[Synset('make.v.03')]", 0.4]]], ["a", "DT", 

[]], ["bit", "NN", [["Synset('spot.n.10')", 

"[Synset('small_indefinite_quantity.n.01')]", 0.9090909090909091], 

["Synset('bit.n.02')", "[Synset('fragment.n.01')]", 0.9090909090909091], 

["Synset('moment.n.02')", "[Synset('time.n.03')]", 0.9230769230769231], 

["Synset('piece.n.05')", "[Synset('case.n.01')]", 0.9230769230769231], 

["Synset('bit.n.05')", "[Synset('stable_gear.n.01')]", 

0.9473684210526315], ["Synset('bit.n.06')", 

"[Synset('unit_of_measurement.n.01')]", 0.9090909090909091], 

["Synset('morsel.n.02')", "[Synset('taste.n.05')]", 0.9230769230769231], 

["Synset('snatch.n.01')", "[Synset('fragment.n.03')]", 

0.9411764705882353], ["Synset('act.n.04')", 

"[Synset('performance.n.01')]", 0.9333333333333333], 

["Synset('bit.n.10')", "[Synset('part.n.02')]", 0.8888888888888888], 

["Synset('bit.n.11')", "[Synset('cutting_implement.n.01')]", 

0.9473684210526315]]], ["of", "IN", []], ["paper", "NN", 

[["Synset('paper.n.01')", "[Synset('material.n.01')]", 

0.9230769230769231], ["Synset('composition.n.08')", 

"[Synset('essay.n.01')]", 0.9230769230769231], 

["Synset('newspaper.n.01')", "[Synset('press.n.02')]", 

0.9473684210526315], ["Synset('paper.n.04')", "[Synset('medium.n.01')]", 

0.9333333333333333], ["Synset('paper.n.05')", "[Synset('article.n.01')]", 

0.9411764705882353], ["Synset('newspaper.n.02')", 

"[Synset('publisher.n.01')]", 0.9473684210526315], 

["Synset('newspaper.n.03')", "[Synset('product.n.02')]", 

0.9333333333333333]]], ["does", "VBZ", [["Synset('make.v.01')", "{}", 0], 
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["Synset('perform.v.01')", "{}", 0], ["Synset('do.v.03')", 

"[Synset('carry_through.v.01')]", 0.8888888888888888], 

["Synset('do.v.04')", "[Synset('proceed.v.04')]", 0.8], 

["Synset('cause.v.01')", "[Synset('make.v.03')]", 0.4], 

["Synset('practice.v.01')", "{}", 0], ["Synset('suffice.v.01')", 

"[Synset('satisfy.v.01')]", 0.8888888888888888], ["Synset('do.v.08')", 

"[Synset('create.v.05')]", 0.8], ["Synset('act.v.02')", "{}", 0], 

["Synset('serve.v.09')", "[Synset('spend.v.01')]", 0.4], 

["Synset('do.v.11')", "{}", 0], ["Synset('dress.v.16')", 

"[Synset('groom.v.03')]", 0.8888888888888888], ["Synset('do.v.13')", 

"[Synset('travel.v.01')]", 0.4]]], ["n't", "RB", []], ["mean", "VB", 

[["Synset('mean.v.01')", "[Synset('convey.v.01')]", 0.9333333333333333], 

["Synset('entail.v.01')", "[Synset('necessitate.v.02')]", 

0.9090909090909091], ["Synset('mean.v.03')", "{}", 0], 

["Synset('intend.v.01')", "{}", 0], ["Synset('mean.v.05')", "{}", 0], 

["Synset('think_of.v.04')", "[Synset('associate.v.01')]", 0.8], 

["Synset('mean.v.07')", "[Synset('intend.v.02')]", 0.8571428571428571]]], 

["I", "PRP", []], ["'m", "VBP", []], ["going", "VBG", 

[["Synset('travel.v.01')", "{}", 0], ["Synset('go.v.02')", 

"[Synset('act.v.01')]", 0.4], ["Synset('go.v.03')", 

"[Synset('exit.v.01')]", 0.8], ["Synset('become.v.01')", 

"[Synset('change_state.v.01')]", 0.8], ["Synset('go.v.05')", "{}", 0], 

["Synset('run.v.05')", "[Synset('be.v.01')]", 0.4], 

["Synset('run.v.03')", "[Synset('be.v.03')]", 0.4], 

["Synset('proceed.v.04')", "[Synset('happen.v.01')]", 0.4], 

["Synset('go.v.09')", "[Synset('disappear.v.01')]", 0.4], 

["Synset('go.v.10')", "[Synset('be.v.01')]", 0.4], 

["Synset('sound.v.02')", "[Synset('cause_to_be_perceived.v.01')]", 0.4], 

["Synset('function.v.01')", "{}", 0], ["Synset('run_low.v.01')", 

"[Synset('end.v.01')]", 0.4], ["Synset('move.v.13')", 

"[Synset('change.v.02')]", 0.4], ["Synset('survive.v.01')", "{}", 0], 

["Synset('go.v.16')", "{}", 0], ["Synset('die.v.01')", 

"[Synset('change_state.v.01')]", 0.8], ["Synset('belong.v.03')", 

"[Synset('be.v.03')]", 0.4], ["Synset('go.v.19')", 

"[Synset('compare.v.02')]", 0.8], ["Synset('start.v.09')", "{}", 0], 
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["Synset('move.v.15')", "{}", 0], ["Synset('go.v.22')", "{}", 0], 

["Synset('go.v.23')", "{}", 0], ["Synset('blend.v.02')", 

"[Synset('harmonize.v.01')]", 0.8571428571428571], ["Synset('go.v.25')", 

"[Synset('be.v.03')]", 0.4], ["Synset('fit.v.02')", 

"[Synset('fit.v.07')]", 0.8], ["Synset('rifle.v.02')", 

"[Synset('search.v.04')]", 0.8], ["Synset('go.v.28')", "{}", 0], 

["Synset('plump.v.04')", "[Synset('choose.v.01')]", 0.8], 

["Synset('fail.v.04')", "[Synset('change.v.02')]", 0.4]]], ["to", "TO", 

[]], ["take", "VB", [["Synset('take.v.01')", "[Synset('act.v.01')]", 

0.4], ["Synset('take.v.02')", "[Synset('use.v.03')]", 0.4], 

["Synset('lead.v.01')", "{}", 0], ["Synset('take.v.04')", "{}", 0], 

["Synset('assume.v.03')", "[Synset('change.v.02')]", 0.4], 

["Synset('take.v.06')", "[Synset('interpret.v.01')]", 0.8], 

["Synset('bring.v.01')", "[Synset('transport.v.02')]", 0.8], 

["Synset('take.v.08')", "{}", 0], ["Synset('take.v.09')", 

"[Synset('use.v.01')]", 0.4], ["Synset('choose.v.01')", 

"[Synset('decide.v.01')]", 0.4], ["Synset('accept.v.02')", 

"[Synset('get.v.01')]", 0.4], ["Synset('fill.v.04')", 

"[Synset('work.v.02')]", 0.4], ["Synset('consider.v.03')", 

"[Synset('think_about.v.01')]", 0.8], ["Synset('necessitate.v.01')", 

"{}", 0], ["Synset('take.v.15')", "[Synset('experience.v.03')]", 

0.8571428571428571], ["Synset('film.v.01')", "[Synset('record.v.01')]", 

0.8888888888888888], ["Synset('remove.v.01')", "{}", 0], 

["Synset('consume.v.02')", "{}", 0], ["Synset('take.v.19')", 

"[Synset('undergo.v.01')]", 0.8], ["Synset('take.v.20')", "{}", 0], 

["Synset('take.v.21')", "{}", 0], ["Synset('assume.v.05')", 

"[Synset('move.v.03')]", 0.4], ["Synset('accept.v.05')", 

"[Synset('accept.v.02')]", 0.8], ["Synset('take.v.24')", 

"[Synset('receive.v.02')]", 0.8], ["Synset('learn.v.04')", "{}", 0], 

["Synset('claim.v.05')", "[Synset('necessitate.v.01')]", 0.4], 

["Synset('take.v.27')", "[Synset('head.v.01')]", 0.8571428571428571], 

["Synset('aim.v.01')", "[Synset('position.v.01')]", 0.8571428571428571], 

["Synset('take.v.29')", "[Synset('become.v.01')]", 0.8571428571428571], 

["Synset('carry.v.02')", "[Synset('have.v.02')]", 0.4], 

["Synset('lease.v.04')", "[Synset('get.v.01')]", 0.4], 
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["Synset('subscribe.v.05')", "[Synset('buy.v.01')]", 0.8], 

["Synset('take.v.33')", "[Synset('buy.v.01')]", 0.8], 

["Synset('take.v.34')", "{}", 0], ["Synset('take.v.35')", 

"[Synset('sleep_together.v.01')]", 0.8888888888888888], 

["Synset('claim.v.04')", "[Synset('affirm.v.02')]", 0.8888888888888888], 

["Synset('accept.v.08')", "[Synset('be.v.01')]", 0.4], 

["Synset('contain.v.05')", "[Synset('be.v.01')]", 0.4], 

["Synset('take.v.39')", "{}", 0], ["Synset('drive.v.16')", 

"[Synset('traverse.v.01')]", 0.8571428571428571], ["Synset('take.v.41')", 

"[Synset('win.v.01')]", 0.4], ["Synset('contract.v.04')", 

"[Synset('sicken.v.02')]", 0.8888888888888888]]], ["your", "PRP$", []], 

["advice", "NN", [["Synset('advice.n.01')", "[Synset('proposal.n.01')]", 

0.9090909090909091]]], ["I", "PRP", []], ["want", "VBP", 

[["Synset('desire.v.01')", "{}", 0], ["Synset('want.v.02')", 

"[Synset('be.v.01')]", 0.4], ["Synset('want.v.03')", 

"[Synset('search.v.01')]", 0.4], ["Synset('want.v.04')", 

"[Synset('demand.v.01')]", 0.9230769230769231], ["Synset('want.v.05')", 

"[Synset('miss.v.06')]", 0.4]]], ["to", "TO", []], ["see", "VB", 

[["Synset('see.v.01')", "[Synset('perceive.v.01')]", 0.4], 

["Synset('understand.v.02')", "{}", 0], ["Synset('witness.v.02')", 

"[Synset('experience.v.01')]", 0.8571428571428571], 

["Synset('visualize.v.01')", "[Synset('imagine.v.01')]", 

0.8571428571428571], ["Synset('see.v.05')", "[Synset('think.v.01')]", 

0.8571428571428571], ["Synset('learn.v.02')", "{}", 0], 

["Synset('watch.v.03')", "[Synset('watch.v.01')]", 0.4], 

["Synset('meet.v.01')", "{}", 0], ["Synset('determine.v.08')", "{}", 0], 

["Synset('see.v.10')", "[Synset('verify.v.01')]", 0.8], 

["Synset('see.v.11')", "[Synset('visit.v.03')]", 0.8], 

["Synset('see.v.12')", "[Synset('visit.v.03')]", 0.8], 

["Synset('visit.v.01')", "[Synset('tour.v.01')]", 0.8571428571428571], 

["Synset('attend.v.02')", "[Synset('care.v.02')]", 0.8571428571428571], 

["Synset('see.v.15')", "[Synset('receive.v.05')]", 0.4], 

["Synset('go_steady.v.01')", "[Synset('consort.v.01')]", 

0.8571428571428571], ["Synset('see.v.17')", "[Synset('see.v.01')]", 0.8], 

["Synset('see.v.18')", "[Synset('consider.v.05')]", 0.9333333333333333], 
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["Synset('see.v.19')", "[Synset('detect.v.01')]", 0.8571428571428571], 

["Synset('examine.v.02')", "{}", 0], ["Synset('experience.v.01')", 

"[Synset('undergo.v.01')]", 0.8], ["Synset('see.v.22')", 

"[Synset('accompany.v.02')]", 0.8], ["Synset('see.v.23')", 

"[Synset('bet.v.02')]", 0.8888888888888888], ["Synset('interpret.v.01')", 

"[Synset('understand.v.01')]", 0.4]]], ["the", "DT", []], ["results", 

"NNS", [["Synset('consequence.n.01')", "[Synset('phenomenon.n.01')]", 

0.8888888888888888], ["Synset('solution.n.02')", 

"[Synset('statement.n.01')]", 0.9090909090909091], 

["Synset('result.n.03')", "[Synset('ending.n.04')]", 0.9230769230769231], 

["Synset('resultant_role.n.01')", "[Synset('semantic_role.n.01')]", 

0.9333333333333333]]] 

Vectors {"word": "I", "pos": "PRP", "domain": "Compliance", "time": ["I", 

"00:00:00.000"], "vector": ["1.01219512195", "1.0", "1.01219512195"]}, 

{"word": "'ve", "pos": "VBP", "domain": "", "time": ["'ve", 

"00:00:02.005"], "vector": ["0.0", "1.0", "0.0"]}, {"word": "had", "pos": 

"VBN", "domain": "", "time": ["had", "00:00:03.333"], "vector": ["0.0", 

"0.111111111111", "0.0"]}, {"word": "obese", "pos": "JJ", "domain": 

"Body_description_holistic", "time": ["obese", "00:00:03.075"], "vector": 

["0.0243902439024", "1", "0.0487804878049"]}, {"word": "nutritionist", 

"pos": "JJ", "domain": "", "time": ["nutritionist", "00:00:04.000"], 

"vector": ["0.0731707317073", "1.0", "0.0"]}, {"word": "try", "pos": 

"NN", "domain": "Isolated_places", "time": ["try", "00:00:04.166"], 

"vector": ["0.0243902439024", "0.0769230769231", "0.0487804878049"]}, 

{"word": "and", "pos": "CC", "domain": "", "time": ["and", 

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, {"word": "tell", 

"pos": "VB", "domain": "Omen", "time": ["tell", "00:00:04.375"], 

"vector": ["0.0243902439024", "0.0666666666667", "0.0243902439024"]}, 

{"word": "me", "pos": "PRP", "domain": "", "time": ["me", 

"00:00:02.085"], "vector": ["0.0", "1.0", "0.0"]}, {"word": "that", 

"pos": "IN", "domain": "", "time": ["that", "00:00:05.275"], "vector": 

["0.0", "1.0", "0.0"]}, {"word": "my", "pos": "PRP$", "domain": "", 

"time": ["my", "00:00:06.833"], "vector": ["0.0", "1.0", "0.0"]}, 

{"word": "diet", "pos": "NN", "domain": "", "time": ["diet", 

"00:00:06.487"], "vector": ["0.0853658536585", "0.047619047619", "0.0"]}, 
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{"word": "is", "pos": "VBZ", "domain": "", "time": ["is", 

"00:00:06.073"], "vector": ["0.0", "0.0526315789474", "0.0"]}, {"word": 

"wrong", "pos": "JJ", "domain": "Morality_evaluation", "time": ["wrong", 

"00:00:06.891"], "vector": ["0.0243902439024", "1", "0.0365853658537"]}, 

{"word": "and", "pos": "CC", "domain": "", "time": ["and", 

"00:00:07.714"], "vector": ["0.0", "1.0", "0.0"]}, {"word": "I", "pos": 

"PRP", "domain": "Compliance", "time": ["I", "00:00:07.937"], "vector": 

["1.01219512195", "1.0", "1.01219512195"]}, {"word": "'m", "pos": "VBP", 

"domain": "", "time": ["'m", "00:00:07.161"], "vector": ["0.0", "1.0", 

"0.0"]}, {"word": "like", "pos": "IN", "domain": "Similarity", "time": 

["like", "00:00:07.215"], "vector": ["0.19512195122", "1.0", 

"0.158536585366"]}, {"word": "hey", "pos": "NN", "domain": "", "time": 

["hey", "00:00:05.069"], "vector": ["0.0853658536585", "1.0", "0.0"]}, 

{"word": "just", "pos": "RB", "domain": "", "time": ["just", 

"00:00:06.103"], "vector": ["0.0", "1", "0.0"]}, {"word": "because", 

"pos": "IN", "domain": "", "time": ["because", "00:00:06.448"], "vector": 

["0.0", "1.0", "0.0"]}, {"word": "you", "pos": "PRP", "domain": "", 

"time": ["you", "00:00:06.620"], "vector": ["0.0", "1.0", "0.0"]}, 

{"word": "'ve", "pos": "VBP", "domain": "", "time": ["'ve", 

"00:00:06.724"], "vector": ["0.0", "1.0", "0.0"]}, {"word": "got", "pos": 

"VBN", "domain": "Wearing", "time": ["got", "00:00:06.793"], "vector": 

["0.0731707317073", "0.0588235294118", "0.0731707317073"]}, {"word": "a", 

"pos": "DT", "domain": "", "time": ["a", "00:00:06.842"], "vector": 

["0.0", "1.0", "0.0"]}, {"word": "bit", "pos": "NN", "domain": 

"Quantified_mass", "time": ["bit", "00:00:06.879"], "vector": 

["0.0243902439024", "0.0526315789474", "0.280487804878"]}, {"word": "of", 

"pos": "IN", "domain": "", "time": ["of", "00:00:06.908"], "vector": 

["0.0", "1.0", "0.0"]}, {"word": "paper", "pos": "NN", "domain": "Text", 

"time": ["paper", "00:00:06.012"], "vector": ["0.0609756097561", 

"0.0526315789474", "0.0975609756098"]}, {"word": "does", "pos": "VBZ", 

"domain": "", "time": ["does", "00:00:07.068"], "vector": ["0.0", 

"0.111111111111", "0.0"]}, {"word": "n't", "pos": "RB", "domain": "", 

"time": ["n't", "00:00:08.002"], "vector": ["0.0", "1.0", "0.0"]}, 

{"word": "mean", "pos": "VB", "domain": "Linguistic_meaning", "time": 

["mean", "00:00:08.046"], "vector": ["0.134146341463", "0.0666666666667", 
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"0.0975609756098"]}, {"word": "I", "pos": "PRP", "domain": "Compliance", 

"time": ["I", "00:00:08.616"], "vector": ["1.01219512195", "1.0", 

"1.01219512195"]}, {"word": "'m", "pos": "VBP", "domain": "", "time": 

["'m", "00:00:08.072"], "vector": ["0.0", "1.0", "0.0"]}, {"word": 

"going", "pos": "VBG", "domain": "Getting_underway", "time": ["going", 

"00:00:08.794"], "vector": ["0.0853658536585", "0.142857142857", 

"0.0853658536585"]}, {"word": "to", "pos": "TO", "domain": "", "time": 

["to", "00:00:08.085"], "vector": ["0.0", "1.0", "0.0"]}, {"word": 

"take", "pos": "VB", "domain": "Getting_vehicle_underway", "time": 

["take", "00:00:08.893"], "vector": ["0.0731707317073", "0.111111111111", 

"0.0731707317073"]}, {"word": "your", "pos": "PRP$", "domain": "", 

"time": ["your", "00:00:07.068"], "vector": ["0.0", "1.0", "0.0"]}, 

{"word": "advice", "pos": "NN", "domain": "", "time": ["advice", 

"00:00:13.002"], "vector": ["0.0731707317073", "0.0909090909091", 

"0.0"]}, {"word": "I", "pos": "PRP", "domain": "Compliance", "time": 

["I", "00:00:14.008"], "vector": ["1.01219512195", "1.0", 

"1.01219512195"]}, {"word": "want", "pos": "VBP", "domain": "Possession", 

"time": ["want", "00:00:15.069"], "vector": ["0.0853658536585", 

"0.0769230769231", "0.0853658536585"]}, {"word": "to", "pos": "TO", 

"domain": "", "time": ["to", "00:00:16.224"], "vector": ["0.0", "1.0", 

"0.0"]}, {"word": "see", "pos": "VB", "domain": "Request", "time": 

["see", "00:00:16.058"], "vector": ["0.121951219512", "0.0666666666667", 

"0.121951219512"]}, {"word": "the", "pos": "DT", "domain": "", "time": 

["the", "00:00:16.834"], "vector": ["0.0", "1.0", "0.0"]}, {"word": 

"results", "pos": "NNS", "domain": "", "time": ["results", 

"00:00:17.025"], "vector": ["0.121951219512", "0.0666666666667", "0.0"]} 

K-Nearest 

Neighbor 

{"current": {"word": "I", "pos": "PRP", "domain": "Compliance", "time": 

["I", "00:00:00.000"], "vector": ["1.01219512195", "1.0", 

"1.01219512195"]}, "neighbor": {"word": "I", "pos": "PRP", "domain": 

"Compliance", "time": ["I", "00:00:07.937"], "vector": ["1.01219512195", 

"1.0", "1.01219512195"]}, "distance": 0.0}, {"current": {"word": "'ve", 

"pos": "VBP", "domain": "", "time": ["'ve", "00:00:02.005"], "vector": 

["0.0", "1.0", "0.0"]}, "neighbor": {"word": "and", "pos": "CC", 

"domain": "", "time": ["and", "00:00:04.285"], "vector": ["0.0", "1.0", 

"0.0"]}, "distance": 0.0}, {"current": {"word": "had", "pos": "VBN", 
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"domain": "", "time": ["had", "00:00:03.333"], "vector": ["0.0", 

"0.111111111111", "0.0"]}, "neighbor": {"word": "does", "pos": "VBZ", 

"domain": "", "time": ["does", "00:00:07.068"], "vector": ["0.0", 

"0.111111111111", "0.0"]}, "distance": 0.0}, {"current": {"word": 

"obese", "pos": "JJ", "domain": "Body_description_holistic", "time": 

["obese", "00:00:03.075"], "vector": ["0.0243902439024", "1", 

"0.0487804878049"]}, "neighbor": {"word": "obese", "pos": "JJ", "domain": 

"Body_description_holistic", "time": ["obese", "00:08:49.201"], "vector": 

["0.0243902439024", "1", "0.0487804878049"]}, "distance": 0.0}, 

{"current": {"word": "nutritionist", "pos": "JJ", "domain": "", "time": 

["nutritionist", "00:00:04.000"], "vector": ["0.0731707317073", "1.0", 

"0.0"]}, "neighbor": {"word": "nutritionist", "pos": "JJ", "domain": "", 

"time": ["nutritionist", "00:02:32.011"], "vector": ["0.0731707317073", 

"1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": "try", "pos": 

"NN", "domain": "Isolated_places", "time": ["try", "00:00:04.166"], 

"vector": ["0.0243902439024", "0.0769230769231", "0.0487804878049"]}, 

"neighbor": {"word": "experience", "pos": "NN", "domain": "Expertise", 

"time": ["experience", "00:04:42.065"], "vector": ["0.0243902439024", 

"0.0769230769231", "0.0487804878049"]}, "distance": 0.0}, {"current": 

{"word": "and", "pos": "CC", "domain": "", "time": ["and", 

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word": 

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"], 

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": 

"tell", "pos": "VB", "domain": "Omen", "time": ["tell", "00:00:04.375"], 

"vector": ["0.0243902439024", "0.0666666666667", "0.0243902439024"]}, 

"neighbor": {"word": "fact", "pos": "NN", "domain": "Artifact", "time": 

["fact", "00:00:40.521"], "vector": ["0.0243902439024", 

"0.0666666666667", "0.0243902439024"]}, "distance": 0.0}, {"current": 

{"word": "me", "pos": "PRP", "domain": "", "time": ["me", 

"00:00:02.085"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word": 

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"], 

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": 

"that", "pos": "IN", "domain": "", "time": ["that", "00:00:05.275"], 

"vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word": "and", "pos": 

"CC", "domain": "", "time": ["and", "00:00:04.285"], "vector": ["0.0", 
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"1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": "my", "pos": 

"PRP$", "domain": "", "time": ["my", "00:00:06.833"], "vector": ["0.0", 

"1.0", "0.0"]}, "neighbor": {"word": "and", "pos": "CC", "domain": "", 

"time": ["and", "00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, 

"distance": 0.0}, {"current": {"word": "diet", "pos": "NN", "domain": "", 

"time": ["diet", "00:00:06.487"], "vector": ["0.0853658536585", 

"0.047619047619", "0.0"]}, "neighbor": {"word": "diet", "pos": "NN", 

"domain": "", "time": ["diet", "00:08:50.093"], "vector": 

["0.0853658536585", "0.047619047619", "0.0"]}, "distance": 0.0}, 

{"current": {"word": "is", "pos": "VBZ", "domain": "", "time": ["is", 

"00:00:06.073"], "vector": ["0.0", "0.0526315789474", "0.0"]}, 

"neighbor": {"word": "been", "pos": "VBN", "domain": "", "time": ["been", 

"00:00:28.393"], "vector": ["0.0", "0.0526315789474", "0.0"]}, 

"distance": 0.0}, {"current": {"word": "wrong", "pos": "JJ", "domain": 

"Morality_evaluation", "time": ["wrong", "00:00:06.891"], "vector": 

["0.0243902439024", "1", "0.0365853658537"]}, "neighbor": {"word": 

"wrong", "pos": "JJ", "domain": "Morality_evaluation", "time": ["wrong", 

"00:08:52.085"], "vector": ["0.0243902439024", "1", "0.0365853658537"]}, 

"distance": 0.0}, {"current": {"word": "and", "pos": "CC", "domain": "", 

"time": ["and", "00:00:07.714"], "vector": ["0.0", "1.0", "0.0"]}, 

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and", 

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, 

{"current": {"word": "I", "pos": "PRP", "domain": "Compliance", "time": 

["I", "00:00:07.937"], "vector": ["1.01219512195", "1.0", 

"1.01219512195"]}, "neighbor": {"word": "I", "pos": "PRP", "domain": 

"Compliance", "time": ["I", "00:00:07.937"], "vector": ["1.01219512195", 

"1.0", "1.01219512195"]}, "distance": 0.0}, {"current": {"word": "'m", 

"pos": "VBP", "domain": "", "time": ["'m", "00:00:07.161"], "vector": 

["0.0", "1.0", "0.0"]}, "neighbor": {"word": "and", "pos": "CC", 

"domain": "", "time": ["and", "00:00:04.285"], "vector": ["0.0", "1.0", 

"0.0"]}, "distance": 0.0}, {"current": {"word": "like", "pos": "IN", 

"domain": "Similarity", "time": ["like", "00:00:07.215"], "vector": 

["0.19512195122", "1.0", "0.158536585366"]}, "neighbor": {"word": "like", 

"pos": "IN", "domain": "Similarity", "time": ["like", "00:00:23.855"], 

"vector": ["0.19512195122", "1.0", "0.158536585366"]}, "distance": 0.0}, 
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{"current": {"word": "hey", "pos": "NN", "domain": "", "time": ["hey", 

"00:00:05.069"], "vector": ["0.0853658536585", "1.0", "0.0"]}, 

"neighbor": {"word": "hey", "pos": "NN", "domain": "", "time": ["hey", 

"00:00:17.648"], "vector": ["0.0853658536585", "1.0", "0.0"]}, 

"distance": 0.0}, {"current": {"word": "just", "pos": "RB", "domain": "", 

"time": ["just", "00:00:06.103"], "vector": ["0.0", "1", "0.0"]}, 

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and", 

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, 

{"current": {"word": "because", "pos": "IN", "domain": "", "time": 

["because", "00:00:06.448"], "vector": ["0.0", "1.0", "0.0"]}, 

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and", 

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, 

{"current": {"word": "you", "pos": "PRP", "domain": "", "time": ["you", 

"00:00:06.620"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word": 

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"], 

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": 

"'ve", "pos": "VBP", "domain": "", "time": ["'ve", "00:00:06.724"], 

"vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word": "and", "pos": 

"CC", "domain": "", "time": ["and", "00:00:04.285"], "vector": ["0.0", 

"1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": "got", "pos": 

"VBN", "domain": "Wearing", "time": ["got", "00:00:06.793"], "vector": 

["0.0731707317073", "0.0588235294118", "0.0731707317073"]}, "neighbor": 

{"word": "got", "pos": "VBD", "domain": "Wearing", "time": ["got", 

"00:08:52.095"], "vector": ["0.0731707317073", "0.0588235294118", 

"0.0731707317073"]}, "distance": 0.0}, {"current": {"word": "a", "pos": 

"DT", "domain": "", "time": ["a", "00:00:06.842"], "vector": ["0.0", 

"1.0", "0.0"]}, "neighbor": {"word": "and", "pos": "CC", "domain": "", 

"time": ["and", "00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, 

"distance": 0.0}, {"current": {"word": "bit", "pos": "NN", "domain": 

"Quantified_mass", "time": ["bit", "00:00:06.879"], "vector": 

["0.0243902439024", "0.0526315789474", "0.280487804878"]}, "neighbor": 

{"word": "bit", "pos": "NN", "domain": "Quantified_mass", "time": ["bit", 

"00:08:53.426"], "vector": ["0.0243902439024", "0.0526315789474", 

"0.280487804878"]}, "distance": 0.0}, {"current": {"word": "of", "pos": 

"IN", "domain": "", "time": ["of", "00:00:06.908"], "vector": ["0.0", 
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"1.0", "0.0"]}, "neighbor": {"word": "and", "pos": "CC", "domain": "", 

"time": ["and", "00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, 

"distance": 0.0}, {"current": {"word": "paper", "pos": "NN", "domain": 

"Text", "time": ["paper", "00:00:06.012"], "vector": ["0.0609756097561", 

"0.0526315789474", "0.0975609756098"]}, "neighbor": {"word": "paper", 

"pos": "NN", "domain": "Text", "time": ["paper", "00:06:51.802"], 

"vector": ["0.0609756097561", "0.0526315789474", "0.0975609756098"]}, 

"distance": 0.0}, {"current": {"word": "does", "pos": "VBZ", "domain": 

"", "time": ["does", "00:00:07.068"], "vector": ["0.0", "0.111111111111", 

"0.0"]}, "neighbor": {"word": "does", "pos": "VBZ", "domain": "", "time": 

["does", "00:00:07.068"], "vector": ["0.0", "0.111111111111", "0.0"]}, 

"distance": 0.0}, {"current": {"word": "n't", "pos": "RB", "domain": "", 

"time": ["n't", "00:00:08.002"], "vector": ["0.0", "1.0", "0.0"]}, 

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and", 

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, 

{"current": {"word": "mean", "pos": "VB", "domain": "Linguistic_meaning", 

"time": ["mean", "00:00:08.046"], "vector": ["0.134146341463", 

"0.0666666666667", "0.0975609756098"]}, "neighbor": {"word": "mean", 

"pos": "VBP", "domain": "Linguistic_meaning", "time": ["mean", 

"00:03:19.665"], "vector": ["0.134146341463", "0.0666666666667", 

"0.0975609756098"]}, "distance": 0.0}, {"current": {"word": "I", "pos": 

"PRP", "domain": "Compliance", "time": ["I", "00:00:08.616"], "vector": 

["1.01219512195", "1.0", "1.01219512195"]}, "neighbor": {"word": "I", 

"pos": "PRP", "domain": "Compliance", "time": ["I", "00:00:07.937"], 

"vector": ["1.01219512195", "1.0", "1.01219512195"]}, "distance": 0.0}, 

{"current": {"word": "'m", "pos": "VBP", "domain": "", "time": ["'m", 

"00:00:08.072"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word": 

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"], 

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": 

"going", "pos": "VBG", "domain": "Getting_underway", "time": ["going", 

"00:00:08.794"], "vector": ["0.0853658536585", "0.142857142857", 

"0.0853658536585"]}, "neighbor": {"word": "going", "pos": "VBG", 

"domain": "Getting_underway", "time": ["going", "00:01:25.949"], 

"vector": ["0.0853658536585", "0.142857142857", "0.0853658536585"]}, 

"distance": 0.0}, {"current": {"word": "to", "pos": "TO", "domain": "", 
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"time": ["to", "00:00:08.085"], "vector": ["0.0", "1.0", "0.0"]}, 

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and", 

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, 

{"current": {"word": "take", "pos": "VB", "domain": 

"Getting_vehicle_underway", "time": ["take", "00:00:08.893"], "vector": 

["0.0731707317073", "0.111111111111", "0.0731707317073"]}, "neighbor": 

{"word": "take", "pos": "VB", "domain": "Getting_vehicle_underway", 

"time": ["take", "00:02:55.683"], "vector": ["0.0731707317073", 

"0.111111111111", "0.0731707317073"]}, "distance": 0.0}, {"current": 

{"word": "your", "pos": "PRP$", "domain": "", "time": ["your", 

"00:00:07.068"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word": 

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"], 

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": 

"advice", "pos": "NN", "domain": "", "time": ["advice", "00:00:13.002"], 

"vector": ["0.0731707317073", "0.0909090909091", "0.0"]}, "neighbor": 

{"word": "advice", "pos": "NN", "domain": "", "time": ["advice", 

"00:04:14.618"], "vector": ["0.0731707317073", "0.0909090909091", 

"0.0"]}, "distance": 0.0}, {"current": {"word": "I", "pos": "PRP", 

"domain": "Compliance", "time": ["I", "00:00:14.008"], "vector": 

["1.01219512195", "1.0", "1.01219512195"]}, "neighbor": {"word": "I", 

"pos": "PRP", "domain": "Compliance", "time": ["I", "00:00:07.937"], 

"vector": ["1.01219512195", "1.0", "1.01219512195"]}, "distance": 0.0}, 

{"current": {"word": "want", "pos": "VBP", "domain": "Possession", 

"time": ["want", "00:00:15.069"], "vector": ["0.0853658536585", 

"0.0769230769231", "0.0853658536585"]}, "neighbor": {"word": "want", 

"pos": "VBP", "domain": "Possession", "time": ["want", "00:03:33.022"], 

"vector": ["0.0853658536585", "0.0769230769231", "0.0853658536585"]}, 

"distance": 0.0}, {"current": {"word": "to", "pos": "TO", "domain": "", 

"time": ["to", "00:00:16.224"], "vector": ["0.0", "1.0", "0.0"]}, 

"neighbor": {"word": "and", "pos": "CC", "domain": "", "time": ["and", 

"00:00:04.285"], "vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, 

{"current": {"word": "see", "pos": "VB", "domain": "Request", "time": 

["see", "00:00:16.058"], "vector": ["0.121951219512", "0.0666666666667", 

"0.121951219512"]}, "neighbor": {"word": "see", "pos": "VB", "domain": 

"Request", "time": ["see", "00:00:57.537"], "vector": ["0.121951219512", 
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"0.0666666666667", "0.121951219512"]}, "distance": 0.0}, {"current": 

{"word": "the", "pos": "DT", "domain": "", "time": ["the", 

"00:00:16.834"], "vector": ["0.0", "1.0", "0.0"]}, "neighbor": {"word": 

"and", "pos": "CC", "domain": "", "time": ["and", "00:00:04.285"], 

"vector": ["0.0", "1.0", "0.0"]}, "distance": 0.0}, {"current": {"word": 

"results", "pos": "NNS", "domain": "", "time": ["results", 

"00:00:17.025"], "vector": ["0.121951219512", "0.0666666666667", "0.0"]}, 

"neighbor": {"word": "results", "pos": "NNS", "domain": "", "time": 

["results", "00:03:48.355"], "vector": ["0.121951219512", 

"0.0666666666667", "0.0"]}, "distance": 0.0} 

 

Table 5 - K-Nearest Neighbor for Discourse 6NOSD0XK0r8 

Temporal Flow Nearest Neighbor Distance 

Time Word Domain POS Time Word Domain POS 
 

00:00:24.200 report Statement NN 00:25:55.613 statement Statement NN 0.001626016 

00:00:48.125 room Building_subparts NN 01:02:22.989 AT Calendric_unit NNP 0.003575798 

00:01:05.998 talk Discussion NN 00:20:56.051 show Hostile_encounter NN 0.004436408 

00:01:39.512 hang Cause_change VBP 00:24:40.429 trait Natural_features NN 0.001626016 

00:02:46.008 biography Text NN 01:04:03.515 Island Natural_features NNP 0.001592357 

00:03:19.089 fun Contingency NN 00:36:21.982 cycle Vehicle NN 0.001592357 

00:04:39.443 guys 
 

VBP 00:07:38.085 groups 
 

NNS 0.003252033 

00:06:46.418 corporation Businesses NN 00:38:38.575 friends Personal_relationship NNS 0.001592357 

00:07:07.017 sit Placing VB 00:48:57.355 regret Experiencer_focus VB 0.003575798 

00:07:31.522 sort Hedging RB 00:06:01.005 something Hedging NN 0.009756098 

00:10:05.483 outrage Emotion_directed NN 00:56:30.448 US Calendric_unit NNP 0.003184713 

00:11:02.431 point Appointing VB 00:28:24.803 public Public_services NN 0.005778937 

00:12:49.131 hop Cause_harm VB 01:10:01.882 fix Attaching VB 0.001592357 

00:12:55.032 knows 
 

NNS 00:20:00.188 situation 
 

NN 0.001626016 

00:14:15.431 buddy Attention_getting NN 00:15:19.026 cousin Kinship NN 0.011146497 

00:14:20.666 night Calendric_unit NN 01:33:41.949 cell Building_subparts NN 0.003184713 

00:14:46.924 na Size JJ 00:21:56.629 interesting Mental_stimulus_stimulus_focus JJ 0.001592357 

00:15:02.108 plead Request VB 00:47:18.639 request Request VB 0.01025641 

00:15:19.654 lawyer People_by_vocation NN 01:13:16.862 girlfriend Personal_relationship NN 0.036016413 

00:15:19.026 cousin Kinship NN 00:49:09.716 Terminator Death NNP 0.003184713 
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00:15:42.094 harassment Offenses NN 00:14:19.004 Monday Calendric_unit NNP 0.006369427 

00:17:02.649 got Discussion NNS 00:14:46.924 na Size JJ 0.008126126 

00:17:04.839 little Degree RB 00:14:56.047 public Secrecy_status JJ 0.007151595 

00:17:52.420 compare Evaluative_comparison VB 01:30:08.421 screw Bungling VB 0.001592357 

00:18:13.823 crap Desirability NN 01:20:22.008 read Desirability NN 0.008130081 

00:18:14.558 citizen People_by_jurisdiction NNS 00:22:17.341 nationalist 
 

NN 0.001592357 

00:20:19.061 invites 
 

NNS 00:14:24.036 perpetuating 
 

VBG 0.038095238 

00:20:31.014 Business Documents NNP 01:17:08.629 patron Being_named NN 0.004436408 

00:20:43.002 cut Change_operational_state VB 00:00:17.008 turned 
 

VBD 0.001592357 

00:21:10.007 act Theft VBP 01:13:33.316 bring Cause_to_start VBP 0.001592357 

00:21:10.406 behave Conduct VBP 01:06:46.855 meditate Cogitation VBP 0.006369427 

00:22:03.089 disagree Quarreling NN 00:01:21.999 ideological 
 

JJ 0.001592357 

00:23:11.396 shape Cause_change VB 01:31:02.151 smear Filling VB 0.003184713 

00:23:22.469 fan Body_parts NN 00:55:41.416 market Buildings NN 0.001592357 

00:24:09.246 fear Experiencer_focus VBP 00:29:11.314 set Attack VBN 0.001592357 

00:24:18.957 cut Leadership NN 00:27:34.783 rule Leadership NN 0.001626016 

00:24:40.429 trait Natural_features NN 00:52:06.009 infiltrate Attack VB 0.001592357 

00:25:01.035 glad Biological_area NN 00:23:49.004 names Namesake NNS 0.001626016 

00:27:06.438 study Scrutiny NN 00:03:46.610 puzzle Emotion_directed NN 0.00477707 

00:27:29.065 sure Telling VB 00:09:32.007 feedback 
 

RB 0.001592357 

00:27:58.514 cares Manipulation VBZ 00:48:57.355 regret Experiencer_focus VB 0.002275858 

00:28:43.318 fight Hostile_encounter NN 00:35:37.097 punch Containers NN 0.002275858 

00:29:40.842 decent Offenses NN 00:21:19.036 usually Frequency RB 0.001592357 

00:29:49.056 progressive 
 

NN 00:14:40.348 seen 
 

VBN 0.001626016 

00:30:23.087 ratio Leadership NN 00:00:14.091 engineer People_by_vocation NN 0.007151595 

00:31:08.208 evolve Coming_to_be VB 00:39:21.395 depend Contingency VB 0.001592357 

00:31:27.262 defense Defending NN 00:21:57.745 phrase 
 

NN 0.001592357 

00:33:48.028 suspect Suspicion NN 01:25:24.484 keep 
 

NN 0.001592357 

00:34:53.414 buck Containers NN 01:10:24.541 machine Weapon NN 0.001592357 

00:35:37.097 punch Containers NN 00:28:43.318 fight Hostile_encounter NN 0.002275858 

00:36:22.148 spin Biological_area NN 00:31:27.262 defense Defending NN 0.001592357 

00:36:29.617 accord Documents NN 00:20:10.844 News Organization NNP 0.001592357 

00:36:54.223 tweet Sounds NN 00:16:07.633 employment Being_employed NN 0.001592357 

00:39:44.546 ok Omen VBP 00:32:02.238 publicly Secrecy_status RB 0.001592357 

00:41:33.357 plenty Sufficiency NN 00:41:59.084 require Needing VBP 0.001592357 



95 
 

00:41:40.099 host Aggregate NN 00:06:50.052 population Aggregate NN 0.004761724 

00:41:52.084 allow Statement VB 00:00:24.200 report Statement NN 0.01025641 

00:41:59.084 require Needing VBP 00:41:33.357 plenty Sufficiency NN 0.001592357 

00:42:08.000 hole Medical_conditions NN 00:13:51.039 band Abandonment NN 0.001592357 

00:42:21.034 training 
 

VBG 00:18:50.643 made 
 

VBD 0.001626016 

00:42:55.006 correct Prison NN 00:01:09.811 glad Emotions_by_stimulus JJ 0.001592357 

00:43:15.416 gas Accoutrements NN 01:16:21.873 owner Intoxicants NN 0.002275858 

00:43:29.008 move Intentionally_act NN 00:30:55.395 feelings Feeling NNS 0.001626016 

00:43:41.456 na Being_named NNS 00:03:42.427 got Wearing VBD 0.00816666 

00:47:05.083 dish Experiencer_obj VB 00:24:40.429 trait Natural_features NN 0.00477707 

00:47:18.639 request Request VB 00:16:13.243 treat Request VBP 0.003252033 

00:47:56.931 function Contingency NN 01:12:40.073 challenge Competition NN 0.001592357 

00:48:11.853 throw Weapon NN 00:26:38.135 treatment Abusing NN 0.002275858 

00:48:36.983 Super Leadership NNP 00:27:34.783 rule Leadership NN 0.004140787 

00:48:41.624 courage Emotion_directed NN 01:07:08.830 summer Calendric_unit NN 0.003184713 

00:48:57.355 regret Experiencer_focus VB 00:27:58.514 cares Manipulation VBZ 0.002275858 

00:49:02.092 need Needing NN 00:01:04.769 story Individual_history NN 0.001626016 

00:49:09.716 Terminator Death NNP 00:18:14.558 citizen People_by_jurisdiction NNS 0.001592357 

00:50:50.011 average 
 

NN 00:12:22.046 called 
 

VBN 0.001626016 

00:50:55.001 train Hindering VB 00:20:03.245 repeated Event_instance VBN 0.001592357 

00:50:55.808 kid Attention_getting NN 01:22:46.480 sheep Animals NN 0.008198302 

00:52:06.009 infiltrate Attack VB 00:24:40.429 trait Natural_features NN 0.001592357 

00:52:18.039 tricky Difficulty JJ 01:15:17.425 single Personal_relationship JJ 0.001592357 

00:52:34.981 field Locale_by_use NN 00:31:23.616 ER Medical_conditions NNP 0.001592357 

00:52:34.255 leans Grooming VBZ 00:03:57.465 apply Using VB 0.001592357 

00:52:37.829 libertarian 
 

NN 00:03:25.716 biology 
 

NN 0.003252033 

00:53:25.018 Jersey 
 

NNP 01:14:13.423 grades 
 

NNS 0.001544402 

00:55:03.609 elsewhere Locative_relation RB 00:17:39.025 San Expertise NNP 0.001592357 

00:56:30.448 US Calendric_unit NNP 00:10:05.483 outrage Emotion_directed NN 0.003184713 

00:57:19.000 load Filling VBZ 00:52:06.009 infiltrate Attack VB 0.001592357 

00:57:30.228 drama Text NN 00:21:41.308 hate Buildings NN 0.002275858 

00:57:36.638 cool Containers NN 00:43:55.322 la Commemorative NN 0.001592357 

00:58:57.043 lists 
 

VBZ 00:18:50.643 made 
 

VBD 0.001626016 

00:59:00.001 bill Body_parts NN 00:38:07.551 Bill Body_parts NNP 0.001626016 

00:59:13.435 foundation Body_decoration NN 00:16:45.448 claim Judgment_communication NN 0.002275858 
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00:59:14.007 education Education_teaching NN 01:14:11.003 professor Education_teaching NN 0.003478261 

00:59:44.455 ability Capability NN 00:07:07.017 sit Placing VB 0.00477707 

01:00:24.652 second Measure_duration NN 00:23:22.662 Trump Sounds NNP 0.001592357 

01:01:17.386 role Containers NN 01:10:17.583 weapon Weapon NN 0.001592357 

01:02:27.774 arms Weapon NNS 01:00:24.652 second Measure_duration NN 0.001592357 

01:03:20.011 drug Leadership NN 00:21:52.562 alt Building_subparts NN 0.005046219 

01:03:28.581 increase Change_position_on_a_scale VB 01:11:37.705 choose Choosing VB 0.003184713 

01:04:03.515 Island Natural_features NNP 00:02:46.008 biography Text NN 0.001592357 

01:04:03.613 suck Desirability VBD 00:12:24.756 read Time_vector VBP 0.029469127 

01:04:09.252 Reb Kinship NNP 00:02:30.013 explode Change_position_on_a_scale VB 0.001592357 

01:04:59.583 attempt Attempt NN 00:10:50.001 fine Inhibit_movement NN 0.001592357 

01:05:58.569 action Theft NN 00:30:49.636 heart Part_orientational NN 0.001592357 

01:06:02.581 avenue Roadways NN 00:54:44.801 representative Leadership NN 0.001592357 

01:06:46.855 meditate Cogitation VBP 01:21:14.779 cause Causation VB 0.005778937 

01:07:26.269 visible Obviousness JJ 00:42:40.915 obvious Obviousness JJ 0.003252033 

01:08:34.749 attack Attack VB 00:55:06.007 Valley Natural_features NNP 0.001592357 

01:08:39.065 strike Attack NN 00:09:27.920 phone Word_relations NN 0.001592357 

01:10:01.882 fix Attaching VB 00:12:49.131 hop Cause_harm VB 0.001592357 

01:10:17.583 weapon Weapon NN 01:01:17.386 role Containers NN 0.001592357 

01:10:24.541 machine Weapon NN 00:34:53.414 buck Containers NN 0.001592357 

01:10:43.450 fair Fairness_evaluation VB 00:17:13.179 according 
 

VBG 0.002275858 

01:10:47.650 rate Intoxicants NN 01:08:35.367 mine Intoxicants NN 0.003252033 

01:11:19.811 control Control VBP 00:03:16.769 took 
 

VBD 0.001592357 

01:11:37.705 choose Choosing VB 01:01:58.232 National Military NNP 0.002275858 

01:12:09.083 agree Documents NN 00:31:46.000 exactly Proportional_quantity RB 0.005825612 

01:12:40.073 challenge Competition NN 00:02:21.262 describe Communicate_categorization VB 0.001592357 

01:13:16.862 girlfriend Personal_relationship NN 00:15:19.654 lawyer People_by_vocation NN 0.036016413 

01:13:33.316 bring Cause_to_start VBP 00:21:10.007 act Theft VBP 0.001592357 

01:13:42.380 bit Degree VB 00:34:06.332 come Suitability VB 0.006827573 

01:14:06.062 kids 
 

NNS 01:14:13.423 grades 
 

NNS 0.001731602 

01:14:08.048 say 
 

RB 00:24:47.218 oh 
 

IN 0.006504065 

01:14:13.423 grades 
 

NNS 00:53:25.018 Jersey 
 

NNP 0.001544402 

01:14:11.003 professor Education_teaching NN 00:59:14.007 education Education_teaching NN 0.003478261 

01:14:32.493 CTO Calendric_unit NNP 00:01:46.428 ish Emotion_directed JJ 0.003184713 

01:15:17.425 single Personal_relationship JJ 00:52:18.039 tricky Difficulty JJ 0.001592357 
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01:15:49.760 harm Stimulus_focus NN 01:08:35.367 mine Intoxicants NN 0.0065737 

01:16:02.306 steam Apply_heat NN 01:05:56.474 income Earnings_and_losses NN 0.001592357 

01:16:22.154 Emory Memory NNP 00:01:00.229 away Time_vector RB 0.014423159 

01:16:43.226 community Aggregate NN 00:15:42.094 harassment Offenses NN 0.008003149 

01:17:08.629 patron Being_named NN 00:20:31.014 Business Documents NNP 0.004436408 

01:18:25.044 push Cause_change_of_position_on_a_scale NN 01:18:01.614 fire Setting_back_burn NN 0.002275858 

01:18:33.045 well 
 

IN 00:24:47.218 oh 
 

IN 0.003252033 

01:20:12.411 stop Preventing_or_letting NN 00:12:25.086 attack Attack NN 0.002275858 

01:20:22.008 read Desirability NN 00:18:13.823 crap Desirability NN 0.008130081 

01:20:26.947 name Cause_emotion VB 00:04:37.000 working 
 

VBG 0.002275858 

01:20:49.077 know 
 

RB 01:02:42.058 know Being_named JJ 0.047770701 

01:21:07.626 removal Removing NN 00:58:52.494 exchange Discussion NN 0.002275858 

01:21:14.629 pens Containers NNS 00:34:53.414 buck Containers NN 0.003478261 

01:21:14.779 cause Causation VB 00:27:28.170 join Adjacency VB 0.001592357 

01:22:34.217 past Locative_relation IN 00:26:13.598 biological Weapon JJ 0.001592357 

01:22:46.480 sheep Animals NN 01:02:29.056 monitor Information_display NN 0.007962925 

01:22:54.834 attempt Attempt VB 00:51:10.838 force Enforcing VB 0.001592357 

01:22:59.694 shadow Omen VBP 00:47:05.083 dish Experiencer_obj VB 0.006369427 

01:23:38.964 Image Physical_artworks NNP 00:02:46.008 biography Text NN 0.001592357 

01:24:05.165 infer Coming_to_believe VB 00:51:00.625 engineer People_by_vocation NN 0.003620955 

01:24:47.206 thought Awareness NN 00:27:38.956 believe Taking_sides VBP 0.003575798 

01:24:45.061 attention Attention NN 00:34:27.965 sides Avoiding NNS 0.001592357 

01:25:24.484 keep 
 

NN 00:33:48.028 suspect Suspicion NN 0.001592357 

01:25:33.004 mind Evoking VB 01:08:56.330 remind Evoking VB 0.003252033 

01:25:37.018 religion Co-association NN 00:05:33.523 X Commemorative NNP 0.001592357 

01:25:42.689 house Locale_by_use NN 00:52:27.556 IT People_by_origin NNP 0.001592357 

01:26:42.632 answer Communication_response VB 00:09:57.876 month Measure_duration NN 0.003620955 

01:28:16.035 explore Scrutiny VB 00:07:51.395 start Activity_start VBP 0.042535243 

01:28:27.806 century Measure_duration NN 00:43:11.065 electricity Electricity NN 0.001592357 

01:28:45.497 recognize Becoming_aware VB 01:01:17.386 role Containers NN 0.001592357 

01:29:04.098 country Isolated_places NN 00:43:11.065 electricity Electricity NN 0.001592357 

01:29:47.001 change Undergo_change NN 00:33:48.028 suspect Suspicion NN 0.001592357 

01:30:08.421 screw Bungling VB 00:17:52.420 compare Evaluative_comparison VB 0.001592357 

01:30:57.157 trick Quantified_mass NN 01:04:34.299 number Quantified_mass NN 0.005265152 

01:31:02.151 smear Filling VB 00:23:11.396 shape Cause_change VB 0.003184713 
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01:32:10.095 happen Coincidence NN 00:13:12.337 important Importance JJ 0.001626016 

01:32:32.564 feeling Sensation NN 00:37:50.414 intention Purpose NN 0.001592357 

01:33:00.597 fascinating Stimulus_focus JJ 00:24:15.402 scary Stimulus_focus JJ 0.001626016 

01:33:20.034 come Communication_response NN 00:01:02.478 saw Cause_to_move_in_place VBD 0.004551716 

01:33:23.112 thank Judgment_direct_address VB 00:12:11.669 ton Word_relations NN 0.001626016 

01:33:41.949 cell Building_subparts NN 00:51:29.225 salon Building_subparts NN 0.001626016 

01:33:46.322 skill Expertise NN 00:28:05.098 conversation Chatting NN 0.003575798 

01:34:08.320 message Statement NN 01:23:47.102 explain Statement VB 0.031912165 

01:35:11.058 parent Kinship NN 01:19:02.705 interference Hindering NN 0.001592357 

01:35:24.120 Tuesday Calendric_unit NNP 00:14:19.004 Monday Calendric_unit NNP 0.001626016 
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8 Appendices 

8.1 Corpus Python Code 

import argparse 
import codecs 
import json 
import os 
import sys 
import math 
import time 
import numpy as np 
import unicodedata 
from moviepy.video.io.VideoFileClip import VideoFileClip 
from scipy.spatial import KDTree 
import scipy 
import matplotlib.pyplot as plt 
from matplotlib.ticker import LinearLocator, FormatStrFormatter 
import nltk 
import nltk.probability 
from nltk.corpus import stopwords 
from nltk.corpus import framenet as fn 
from nltk.corpus import wordnet as wn 
import string 
import youtube_dl 
from corpus import youtube as yttc 
import pygame 
from scipy.spatial import convex_hull_plot_2d 
from OpenGL.GL import * 
from pgu import gui 
import re 
import random 
from six.moves import input 
 
reflections = { 
    "i am": "you are", 
    "i was": "you were", 
    "i": "you", 
    "i'm": "you are", 
    "i'd": "you would", 
    "i've": "you have", 
    "i'll": "you will", 
    "my": "your", 
    "you are": "I am", 
    "you were": "I was", 
    "you've": "I have", 
    "you'll": "I will", 
    "your": "my", 
    "yours": "mine", 
    "you": "me", 
    "me": "you" 
} 
 
 
class Chat(object): 
    def __init__(self, pairs, reflections={}): 
        """ 
        Initialize the chatbot.  Pairs is a list of patterns and responses.  Each 
        pattern is a regular expression matching the user's statement or question, 
        e.g. r'I like (.*)'.  For each such pattern a list of possible responses 
        is given, e.g. ['Why do you like %1', 'Did you ever dislike %1'].  Material 
        which is matched by parenthesized sections of the patterns (e.g. .*) is mapped to 
        the numbered positions in the responses, e.g. %1. 
 
        :type pairs: list of tuple 
        :param pairs: The patterns and responses 
        :type reflections: dict 
        :param reflections: A mapping between first and second person expressions 
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        :rtype: None 
        """ 
 
        self._pairs = [(re.compile(x, re.IGNORECASE), y) for (x, y) in pairs] 
        self._reflections = reflections 
        self._regex = self._compile_reflections() 
 
    def _compile_reflections(self): 
        sorted_refl = sorted(self._reflections.keys(), key=len, 
                             reverse=True) 
        return re.compile(r"\b({0})\b".format("|".join(map(re.escape, 
                                                           sorted_refl))), re.IGNORECASE) 
 
    def _substitute(self, str): 
        """ 
        Substitute words in the string, according to the specified reflections, 
        e.g. "I'm" -> "you are" 
 
        :type str: str 
        :param str: The string to be mapped 
        :rtype: str 
        """ 
 
        return self._regex.sub(lambda mo: 
                               self._reflections[mo.string[mo.start():mo.end()]], 
                               str.lower()) 
 
    def _wildcards(self, response, match): 
        pos = response.find('%') 
        while pos >= 0: 
            num = int(response[pos + 1:pos + 2]) 
            response = response[:pos] + \ 
                       self._substitute(match.group(num)) + \ 
                       response[pos + 2:] 
            pos = response.find('%') 
        return response 
 
    def respond(self, str): 
        """ 
        Generate a response to the user input. 
 
        :type str: str 
        :param str: The string to be mapped 
        :rtype: str 
        """ 
 
        # check each pattern 
        for (pattern, response) in self._pairs: 
            match = pattern.match(str) 
 
            # did the pattern match? 
            if match: 
                resp = random.choice(response)  # pick a random response 
                resp = self._wildcards(resp, match)  # process wildcards 
 
                # fix munged punctuation at the end 
                if resp[-2:] == '?.': resp = resp[:-2] + '.' 
                if resp[-2:] == '??': resp = resp[:-2] + '?' 
                return resp 
 
    # Hold a conversation with a chatbot 
    def converse(self, quit="quit"): 
        user_input = "" 
        while user_input != quit: 
            user_input = quit 
            try: 
                user_input = input(">") 
            except EOFError: 
                print(user_input) 
            if user_input: 
                while user_input[-1] in "!.": user_input = user_input[:-1] 
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                print(self.respond(user_input)) 
 
 
class LaunchVizDialog(gui.Dialog): 
    def __init__(self, display_id): 
        title = gui.Label('Launch Visualization') 
        self.value = gui.Form() 
 
        t = gui.Table() 
 
        t.tr() 
        t.td(gui.Label("YouTube Display ID: "), align=0, colspan=2) 
        t.td(gui.Input(name="display_id", value=display_id, size=25)) 
        t.tr() 
        e = gui.Button("Launch") 
        e.connect(gui.CLICK, self.send, gui.CHANGE) 
        t.td(e) 
        ## 
 
        e = gui.Button("Cancel") 
        e.connect(gui.CLICK, self.close, None) 
        t.td(e) 
 
        gui.Dialog.__init__(self, title, t) 
 
 
class ColorDialog(gui.Dialog): 
    def __init__(self, value, **params): 
        self.value = list(gui.parse_color(value)) 
 
        title = gui.Label("Color Picker") 
 
        main = gui.Table() 
 
        main.tr() 
 
        self.color = gui.Color(self.value, width=64, height=64) 
        main.td(self.color, rowspan=3, colspan=1) 
 
        ## The sliders CHANGE events are connected to the adjust method.  The 
        ## adjust method updates the proper color component based on the value 
        ## passed to the method. 
        ## :: 
        main.td(gui.Label(' Red: '), 1, 0) 
        e = gui.HSlider(value=self.value[0], min=0, max=255, size=32, width=128, 
height=16) 
        e.connect(gui.CHANGE, self.adjust, (0, e)) 
        main.td(e, 2, 0) 
        ## 
 
        main.td(gui.Label(' Green: '), 1, 1) 
        e = gui.HSlider(value=self.value[1], min=0, max=255, size=32, width=128, 
height=16) 
        e.connect(gui.CHANGE, self.adjust, (1, e)) 
        main.td(e, 2, 1) 
 
        main.td(gui.Label(' Blue: '), 1, 2) 
        e = gui.HSlider(value=self.value[2], min=0, max=255, size=32, width=128, 
height=16) 
        e.connect(gui.CHANGE, self.adjust, (2, e)) 
        main.td(e, 2, 2) 
 
        gui.Dialog.__init__(self, title, main) 
 
    ##The custom adjust handler. 
    ##:: 
    def adjust(self, value): 
        (num, slider) = value 
        self.value[num] = slider.value 
        self.color.repaint() 
        self.send(gui.CHANGE) 
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    ## 
 
 
class PartsOfSpeech: 
    def __init__(self): 
        self.pos = get_pos_dict() 
 
    def get_description(self, tag): 
        if tag in self.pos.keys(): 
            return self.pos[tag][0] 
        else: 
            return '' 
 
    def get_example(self, tag): 
        if tag in self.pos.keys(): 
            return self.pos[tag][1] 
        else: 
            return '' 
 
    def get_color(self, tag): 
        if tag in self.pos.keys(): 
            return self.pos[tag][2] 
        else: 
            return 255, 255, 255 
 
 
class Polyhedron: 
    def __init__(self, vertices=[]): 
        self.points = np.array([[v.x, v.y, v.z] for v in vertices]) 
        self.volumne = convex_hull_plot_2d(self.points) 
 
 
class Point3D: 
    def __init__(self, x=0, y=0, z=0): 
        self.x, self.y, self.z = float(x), float(y), float(z) 
 
    def rotateX(self, angle): 
        """ Rotates the point around the X axis by the given angle in degrees. """ 
        rad = angle * math.pi / 180 
        cosa = math.cos(rad) 
        sina = math.sin(rad) 
        y = self.y * cosa - self.z * sina 
        z = self.y * sina + self.z * cosa 
        return Point3D(self.x, y, z) 
 
    def rotateY(self, angle): 
        """ Rotates the point around the Y axis by the given angle in degrees. """ 
        rad = angle * math.pi / 180 
        cosa = math.cos(rad) 
        sina = math.sin(rad) 
        z = self.z * cosa - self.x * sina 
        x = self.z * sina + self.x * cosa 
        return Point3D(x, self.y, z) 
 
    def rotateZ(self, angle): 
        """ Rotates the point around the Z axis by the given angle in degrees. """ 
        rad = angle * math.pi / 180 
        cosa = math.cos(rad) 
        sina = math.sin(rad) 
        x = self.x * cosa - self.y * sina 
        y = self.x * sina + self.y * cosa 
        return Point3D(x, y, self.z) 
 
    def project(self, win_width, win_height, fov, viewer_distance): 
        """ Transforms this 3D point to 2D using a perspective projection. """ 
        factor = fov / (viewer_distance + self.z) 
        x = self.x * factor + win_width / 2 
        y = -self.y * factor + win_height / 2 
        return Point3D(x, y, 1) 
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def get_pos_dict(): 
    return {'CC': ('coordinating conjunction', '', (240, 248, 255)), 
            'CD': ('cardinal digit', '', (240, 248, 255)), 
            'DT': ('determiner', '', (245, 255, 250)), 
            'EX': ('existential there', '(like: "there is" ... think of it like "there 
exists")', (255, 255, 255)), 
            'FW': ('foreign word', '', (255, 255, 255)), 
            'IN': ('preposition/subordinating conjunction', '', (240, 248, 255)), 
            'JJ': ('adjective', 'big', (255, 248, 220)), 
            'JJR': ('adjective, comparative', 'bigger', (255, 248, 220)), 
            'JJS': ('adjective, superlative', 'biggest', (255, 248, 220)), 
            'LS': ('list marker', '1)', (245, 255, 250)), 
            'MD': ('modal', 'could, will', (255, 182, 193)), 
            'NN': ('noun, singular', 'desk', (224, 255, 255)), 
            'NNS': ('noun plural', 'desks', (224, 255, 255)), 
            'NNP': ('proper noun, singular', 'Harrison', (224, 255, 255)), 
            'NNPS': ('proper noun, plural', 'Americans', (224, 255, 255)), 
            'PDT': ('predeterminer', 'all the kids', (245, 255, 250)), 
            'POS': ('possessive ending', 'parent\'s', (255, 235, 205)), 
            'PRP': ('personal pronoun', 'I, he, she', (224, 255, 255)), 
            'PRP$': ('possessive pronoun', 'my, his, hers', 
                     (224, 255, 255)), 
            'RB': ('adverb', 'very, silently', (255, 240, 245)), 
            'RBR': ('adverb, comparative', 'better', (255, 240, 245)), 
            'RBS': ('adverb, superlative', 'best', (255, 240, 245)), 
            'RP': ('particle', 'give up', (255, 240, 245)), 
            'TO': ('to', 'go "to" the store', (240, 248, 255)), 
            'UH': ('interjection', 'errrrrrrrm', (255, 255, 255)), 
            'VB': ('verb', 'base form  take', (255, 182, 193)), 
            'VBD': ('verb, past tense', 'took', (255, 182, 193)), 
            'VBG': ('verb, gerund/present participle', 'taking', (255, 182, 193)), 
            'VBN': ('verb, past participle', 'taken', (255, 182, 193)), 
            'VBP': ('verb, sing. present, non-3d', 'take', (255, 182, 193)), 
            'VBZ': ('verb, 3rd person sing. present', 'takes', (255, 182, 193)), 
            'WDT': ('wh-determiner', 'which', (245, 255, 250)), 
            'WP': ('wh-pronoun', 'who, what', (224, 255, 255)), 
            'WP$': ('possessive wh-pronoun', 'whose', (255, 235, 205)), 
            'WRB': ('wh-abverb', 'where, when', (255, 240, 245))} 
 
 
def get_youtube_url(display_id): 
    url = 'https://www.youtube.com/watch?v=' + display_id 
    return url 
 
 
def extract_youtube_data(display_id, output, overwrite): 
    url = get_youtube_url(display_id) 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    folder_exists = os.path.isdir(folder) 
    if not folder_exists or overwrite: 
        ydl = youtube_dl.YoutubeDL({'outtmpl': folder + '%(id)s%(ext)s', 
                                    'writesubtitles': True, 
                                    # 'proxy': 'http://wwwproxy.sandia.gov:80', 
                                    'allsubtitles': True, 
                                    'writedescription': True, 
                                    'writeinfojson': True, 
                                    'writeannotations': True, 
                                    'writeautomaticsub': True, 
                                    'skip_download': False}) 
        with ydl: 
            result = ydl.extract_info( 
                url, 
                download=True 
            ) 
 
 
def write_audio_clip(display_id, output, overwrite): 
    movie_path = get_youtube_video_path(display_id, output) 
    audio_path = movie_path + '.mp3' 
    file_exists = os.path.exists(audio_path) 
    if not file_exists or overwrite: 
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        print('getting clip', movie_path) 
        clip = VideoFileClip(movie_path) 
        clip.audio.write_audiofile(audio_path) 
    return audio_path 
 
 
def check_for_cc_files(folder, display_id, extension): 
    cc_exists = False 
    json_file_path = os.path.join(folder, display_id + extension + '.info.json') 
    with open(json_file_path, 'r') as f: 
        data = json.load(f) 
        if data['automatic_captions']: 
            cc_exists = True 
    return cc_exists 
 
 
def get_url_parameters(url): 
    parameters = {} 
    main_parts = url.split('?') 
    parameter_parts = main_parts[1].split('&') 
    for kv in parameter_parts: 
        kv_parts = kv.split('=') 
        parameters[kv_parts[0]] = kv_parts[1] 
    return parameters 
 
 
def get_start_end_times(time_line): 
    time_parts = time_line.split('-->') 
    clock_time = time_parts[0].strip() 
    parts = clock_time.split(':') 
    sec_parts = parts[2].split('.') 
    start_time = {'time': clock_time, 'hours': parts[0], 'minutes': parts[1], 
                  'seconds': sec_parts[0], 'milliseconds': sec_parts[1]} 
    clock_time = time_parts[1].strip() 
    parts = clock_time.split(':') 
    sec_parts = parts[2].split('.') 
    end_time = {'time': clock_time, 'hours': parts[0], 'minutes': parts[1], 
                'seconds': sec_parts[0], 'milliseconds': sec_parts[1]} 
    return start_time, end_time 
 
 
def get_time_difference(start_time, end_time): 
    hours = int(end_time['hours']) - int(start_time['hours']) 
    minutes = int(end_time['minutes']) - int(start_time['minutes']) 
    seconds = int(end_time['seconds']) - int(start_time['seconds']) 
    milliseconds = int(end_time['hours']) - int(start_time['milliseconds']) 
    total = format(hours, '02') + ':' + format(minutes, '02') + ':' + format(seconds, 
'02') + '.' + format( 
        milliseconds, 
        '03') 
    return {'time': total, 'hours': format(hours, '02'), 'minutes': format(minutes, 
'02'), 
            'seconds': format(seconds, '02'), 'milliseconds': format(milliseconds, '02')} 
 
 
def get_clean_line(line): 
    remove_chr = False 
    clean_line = '' 
    for c in line: 
        if c == '<': 
            remove_chr = True 
        elif c == '>': 
            remove_chr = False 
        if not remove_chr: 
            clean_line += c 
    clean_line = clean_line.replace('>', '') 
    clean_line = clean_line.replace('\r', '') 
    clean_line = clean_line.replace('\n', '') 
    return clean_line + ' ' 
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def get_text_lines_from_cc_file(cc_path): 
    lines = [] 
    with codecs.open(cc_path, 'r', 'ISO-8859-2') as c: 
        clean_line = '' 
        timestamp = '' 
        for line in c.readlines(): 
            if '-->' in line: 
                if timestamp != '': 
                    lines.append((timestamp, clean_line)) 
                time_line = line.replace('\n', '') 
                start_time, end_time = get_start_end_times(time_line) 
                elapsed_time = get_time_difference(start_time, end_time) 
                timestamp = {'stamp': line.replace('\n', ''), 'start': start_time, 'end': 
end_time, 
                             'elapsed': elapsed_time} 
                clean_line = '' 
            else: 
                clean_line += get_clean_line(line) 
    return lines 
 
 
def append_text_line(path, line): 
    with codecs.open(path, 'a+', 'utf-16') as f: 
        f.write(line.strip() + '\r\n') 
 
 
def append_text(path, line): 
    with codecs.open(path, 'a+', 'ISO-8859-2') as f: 
        f.write(line.strip() + " ") 
 
 
def get_youtube_media_extension(display_id, output): 
    extension = 'mp4' 
    for file in os.listdir(output + r'/youtube/' + display_id + r'/'): 
        if file.endswith(".description"): 
            extension = file.replace(display_id, '').replace('.description', '') 
            break 
    return extension 
 
 
def extract_cc_plain_text(display_id, output, overwrite): 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    plain_text_path = os.path.join(folder, display_id + r'_plain.txt') 
    word_time_stamp_json_path = os.path.join(folder, display_id + r'_time_line.json') 
    file_exists = os.path.exists(plain_text_path) 
    extension = get_youtube_media_extension(display_id, output) 
    cc_exist = check_for_cc_files(folder, display_id, extension) 
    text_lines = [] 
    if cc_exist: 
        if not file_exists or overwrite: 
            annotations_path = os.path.join(folder, display_id + extension + 
r'.info.json') 
            with open(annotations_path, 'r') as f: 
                data = json.load(f) 
                if data['automatic_captions']: 
                    youtube_en_auto_url = data['automatic_captions']['en'][0]['url'] 
                    url_parameters = get_url_parameters(youtube_en_auto_url) 
                    lang = url_parameters['lang'] 
                    cc_path = os.path.join(folder, display_id + extension + r'.' + lang + 
'.vtt') 
                    text_lines = get_text_lines_from_cc_file(cc_path) 
    else: 
        plain_text_path = '' 
        word_time_stamp_json_path = '' 
    return plain_text_path, word_time_stamp_json_path, text_lines 
 
 
def write_pos_tagged_to_youtube_corpus(display_id, output, overwrite): 
    plain_text_path, word_time_stamp_json_path, text_lines = 
extract_cc_plain_text(display_id, output, overwrite) 
    plain_exists = os.path.exists(plain_text_path) 
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    time_file_exists = os.path.exists(word_time_stamp_json_path) 
    if plain_text_path == '': 
        print('no captions') 
        return 
    corpora_path = os.path.join(output, r'youtube/' + display_id + r'/' + display_id + 
r'.pos') 
    corpus_file_exists = os.path.exists(corpora_path) 
    if not corpus_file_exists or overwrite: 
        if plain_exists: 
            os.remove(plain_text_path) 
        if time_file_exists: 
            os.remove(word_time_stamp_json_path) 
        if corpus_file_exists: 
            os.remove(corpora_path) 
        count = 0 
        word_time_lines = [] 
        for timestamp, line in text_lines: 
            words = nltk.tokenize.word_tokenize(line) 
            tagged_words = nltk.pos_tag(words) 
            tagged_line = '' 
            plain_line = '' 
            word_time_line = [] 
            for i in range(len(tagged_words)): 
                tagged_line += tagged_words[i][0] + '/' + tagged_words[i][1] + ' ' 
                plain_line += tagged_words[i][0] + ' ' 
                word_time_line.append((tagged_words[i][0], 
get_time_from_timestamp(timestamp, i))) 
                count += 1 
            tagged_line = tagged_line.strip() + '\r\n' 
            append_text(corpora_path, tagged_line) 
            append_text(plain_text_path, plain_line) 
            word_time_lines.append(word_time_line) 
        with codecs.open(word_time_stamp_json_path, 'w+', 'ISO-8859-2') as j: 
            json.dump(word_time_lines, j) 
        print(corpora_path, plain_text_path, word_time_stamp_json_path, count) 
 
 
def get_convex_hull_delaunay_from_vertices(vertices): 
    points = np.array(vertices) 
    ch = None 
    d = None 
    try: 
        if len(points) > 3: 
            ch = scipy.spatial.ConvexHull(points) 
            d = scipy.spatial.Delaunay(points) 
    except: 
        print("Oops!", sys.exc_info()[0], "occurred.") 
    return ch, d 
 
 
def write_domains_to_youtube_corpus(output): 
    folder = os.path.join(output, r'youtube/') 
    display_ids = [sub for sub in os.listdir(folder) if 
os.path.isdir(os.path.join(folder, sub))] 
    domains = {} 
    domain_count = 0 
    total_vertices = 0 
    for display_id in display_ids: 
        vectors = get_vectors(display_id, output) 
        for vector in vectors: 
            domain = vector['domain'] 
            v = vector['vector'] 
            vertex = [float(v[0]), float(v[1]), float(v[2])] 
            if len(domain) > 0: 
                if domain in domains: 
                    if vertex not in domains[domain]['vertices']: 
                        domains[domain]['vertices'].append(vertex) 
                        domain_count += 1 
                else: 
                    domains[domain] = {'vertices': [vertex]} 
                    domain_count += 1 
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        print(display_id, domain_count, 'vertices added') 
        total_vertices += domain_count 
        domain_count = 0 
    # write domains file to corpus 
    domains_path = os.path.join(folder, r'_domains.json') 
    file_exists = os.path.exists(domains_path) 
    if file_exists: 
        os.remove(domains_path) 
    with codecs.open(domains_path, 'w+', 'ISO-8859-2') as j: 
        json.dump(domains, j) 
        print(total_vertices, 'total vertices') 
 
 
def write_topics_to_youtube_corpus(display_id, output, overwrite): 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    topics_json_path = os.path.join(folder, display_id + r'_topics.json') 
    file_exists = os.path.exists(topics_json_path) 
    extension = get_youtube_media_extension(display_id, output) 
    cc_exist = check_for_cc_files(folder, display_id, extension) 
    if cc_exist: 
        if not file_exists or overwrite: 
            annotations_path = os.path.join(folder, display_id + extension + 
r'.info.json') 
            with open(annotations_path, 'r') as f: 
                data = json.load(f) 
                title = '' 
                categories = [] 
                description = '' 
                tags = '' 
                if data['title']: 
                    title = data['title'] 
                if data['categories']: 
                    for cat in data['categories']: 
                        if '&' in cat: 
                            cat_parts = cat.split('&') 
                            for cat2 in cat_parts: 
                                categories.append(cat2.strip()) 
                        else: 
                            categories.append(cat.strip()) 
                if data['description']: 
                    description = data['description'] 
                if data['tags']: 
                    tags = data['tags'] 
                if overwrite and file_exists: 
                    os.remove(topics_json_path) 
                with codecs.open(topics_json_path, 'w+', 'ISO-8859-2') as j: 
                    json.dump({"title": title, "categories": categories, "description": 
description, "tags": tags}, j) 
                print(topics_json_path) 
 
 
def get_corpus_domains(output): 
    domains = None 
    folder = os.path.join(output, r'youtube/') 
    domains_path = os.path.join(folder, r'_domains.json') 
    file_exists = os.path.exists(domains_path) 
    if file_exists: 
        with codecs.open(domains_path, 'r', 'ISO-8859-2') as j: 
            domains = json.load(j) 
    return domains 
 
 
def get_lexical_unit_pos(tag): 
    pos = '' 
    if tag.startswith('V') or tag.startswith('MD'): 
        pos = 'v'  # v - verb 
    elif tag.startswith('N') or tag.startswith('PRP') or tag.startswith('WP'): 
        pos = 'n'  # n - noun 
    elif tag.startswith('J'): 
        pos = 'a'  # a - adjective 
    elif tag.startswith('R') or tag == 'WRB': 
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        pos = 'adv'  # adv - adverb 
    elif tag.startswith('IN'): 
        pos = 'prep'  # prep - preposition 
    elif tag.startswith('CD'): 
        pos = 'num'  # num - numbers 
    elif tag.startswith('UH'): 
        pos = 'intj'  # intj - interjection 
    elif tag.endswith('DT'): 
        pos = 'art'  # art - article 
    elif tag.startswith('CC'): 
        pos = 'c'  # c - conjunction 
    elif tag.startswith('IN'): 
        pos = 'scon'  # scon - subordinating conjunction 
    return pos 
 
 
def penn2morphy(penntag, returnNone=False): 
    morphy_tag = {'NN': wn.NOUN, 'JJ': wn.ADJ, 
                  'VB': wn.VERB, 'RB': wn.ADV} 
    try: 
        return morphy_tag[penntag[:2]] 
    except: 
        return None if returnNone else '' 
 
 
def get_word_frames_from_tagged_words(tagged_words): 
    stopwords = nltk.corpus.stopwords.words('english') 
    word_frames = [] 
    frame_counts = {} 
    for tagged_word in tagged_words: 
        if len(tagged_word) > 1: 
            word = tagged_word[0] 
            pos = get_lexical_unit_pos(tagged_word[1]) 
            frame = '' 
            if word not in stopwords and word.isalpha() and len(pos) > 0: 
                lexical_units = fn.lus(r'(?i)' + word) 
                frames = [lu.frame.name for lu in lexical_units if lu.name.endswith(pos)] 
                if frames and len(frames) > 0: 
                    frame = frames[0] 
            word_frames.append((word, frame)) 
            if frame not in frame_counts.keys(): 
                frame_counts[frame] = 1 
            else: 
                frame_counts[frame] += 1 
    return word_frames, frame_counts 
 
 
def write_word_frames_to_youtube_corpus(display_id, output, overwrite): 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    word_frame_path = os.path.join(folder, display_id + r'_frames.json') 
    file_exists = os.path.exists(word_frame_path) 
    if not file_exists or overwrite: 
        fileid = display_id + r'/' + display_id + r'.pos' 
        tagged_words = yttc.tagged_words([fileid]) 
        frames, counts = get_word_frames_from_tagged_words(tagged_words) 
        if overwrite and file_exists: 
            os.remove(word_frame_path) 
        with codecs.open(word_frame_path, 'w+', 'ISO-8859-2') as j: 
            json.dump({"frames": frames, "counts": counts}, j) 
        print(word_frame_path) 
 
 
def get_word_net_synsets_from_tagged_words(tagged_words): 
    syns = [] 
    counts = {} 
    for word, pos in tagged_words: 
        ss = {} 
        syn = wn.synsets(word, pos=penn2morphy(pos)) 
        sss = [] 
        for s in syn: 
            abstract = {} 
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            similarity = 0 
            if s: 
                hyps = {} 
                if isinstance(s, list): 
                    hyps = s[0].hypernyms() 
                    if hyps: 
                        if isinstance(hyps, list): 
                            abstract = hyps[-1:] 
                            similarity = s[0].wup_similarity(abstract[0]) 
                        else: 
                            abstract = hyps 
                            similarity = s[0].wup_similarity(abstract) 
                else: 
                    hyps = s.hypernyms() 
                    if hyps: 
                        if isinstance(hyps, list): 
                            abstract = hyps[-1:] 
                            similarity = s.wup_similarity(abstract[0]) 
                        else: 
                            abstract = hyps 
                            similarity = s.wup_similarity(abstract) 
            sss.append((str(s), str(abstract), similarity)) 
        syns.append((word, pos, sss)) 
        if word not in counts.keys(): 
            counts[word] = len(sss) 
        else: 
            counts[word] += len(sss) 
    return syns, counts 
 
 
def write_word_nets_to_youtube_corpus(display_id, output, overwrite): 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    word_net_path = os.path.join(folder, display_id + r'_word_nets.json') 
    file_exists = os.path.exists(word_net_path) 
    if not file_exists or overwrite: 
        fileid = display_id + r'/' + display_id + r'.pos' 
        tagged_words = yttc.tagged_words([fileid]) 
        syns, counts = get_word_net_synsets_from_tagged_words(tagged_words) 
        if overwrite and file_exists: 
            os.remove(word_net_path) 
        with codecs.open(word_net_path, 'w+', 'ISO-8859-2') as j: 
            json.dump({"syns": syns, "counts": counts}, j) 
        print(word_net_path) 
 
 
def get_seconds_from_time_string(time_stamp): 
    tp = time_stamp.split(':') 
    seconds = 0 
    if tp and len(tp) > 2: 
        tps = tp[2].split('.') 
        seconds = (int(tp[0]) * 60 * 60) + (int(tp[1]) * 60) + int(tps[0]) 
    return seconds 
 
 
def get_time_string_from_seconds(word_seconds): 
    t = '' 
    ts = str(word_seconds).split('.') 
    h = 60 * 60 
    m = 60 
    hms = int(ts[0]) 
    if hms >= h: 
        hs = int(hms / h) * h 
        t += str(int(hms / h)).zfill(2) + ':' 
        hms = hms - hs 
    else: 
        t += '00:' 
    if hms >= m: 
        hm = int(hms / m) * m 
        t += str(int(hms / m)).zfill(2) + ':' 
        hms = hms - hm 
    else: 
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        t += '00:' 
    if hms > 0: 
        t += str(hms).zfill(2) 
    else: 
        t += '00' 
    if len(ts) > 1: 
        t += '.' + str(int(ts[1])).zfill(3)[:3] 
    else: 
        t += '.000' 
    return t 
 
 
def get_time_from_timestamp(timestamp, i): 
    start_hours = int(timestamp['start']['hours']) 
    start_minutes = int(timestamp['start']['minutes']) 
    start_seconds = int(timestamp['start']['seconds']) 
    start_milliseconds = abs(int(timestamp['start']['milliseconds'])) 
    word_seconds = (start_seconds + (start_hours * 60 * 60) + (start_minutes * 60) + 
(start_milliseconds / 1000)) 
    hours = int(timestamp['elapsed']['hours']) 
    minutes = int(timestamp['elapsed']['minutes']) 
    seconds = int(timestamp['elapsed']['seconds']) 
    milliseconds = abs(int(timestamp['elapsed']['milliseconds'])) 
    word_seconds += ((seconds + (hours * 60 * 60) + (minutes * 60) + (milliseconds / 
1000)) / (i + 1)) * i 
    t = get_time_string_from_seconds(word_seconds) 
    return t 
 
 
def get_word_times(display_id, output): 
    word_times = [] 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    word_time_stamp_json_path = os.path.join(folder, display_id + r'_time_line.json') 
    file_exists = os.path.exists(word_time_stamp_json_path) 
    if file_exists: 
        with codecs.open(word_time_stamp_json_path, 'r', 'ISO-8859-2') as j: 
            word_time_lines = json.load(j) 
            for word_time_line in word_time_lines: 
                for word, timestamp in word_time_line: 
                    t = (word, timestamp) 
                    word_times.append(t) 
    return word_times 
 
 
def get_topic(display_id, output): 
    topic = None 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    word_topic_json_path = os.path.join(folder, display_id + r'_topics.json') 
    file_exists = os.path.exists(word_topic_json_path) 
    if file_exists: 
        with codecs.open(word_topic_json_path, 'r', 'ISO-8859-2') as j: 
            topic = json.load(j) 
    return topic 
 
 
def get_corpus_fileids(output): 
    folder = os.path.join(output, r'youtube/') 
    ids = [item for item in os.listdir(folder) if os.path.isdir(os.path.join(folder, 
item))] 
    fileids = [] 
    for id in ids: 
        fileid = id + '/' + id + '.pos' 
        fileids.append(fileid) 
    return fileids 
 
 
def get_discourse_categories(output): 
    folder = os.path.join(output, r'youtube/') 
    ids = [item for item in os.listdir(folder) if os.path.isdir(os.path.join(folder, 
item))] 
    discourse_categories = {} 
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    for id in ids: 
        topic = get_topic(id, output) 
        discourse_categories[id] = topic['categories'] 
    return discourse_categories 
 
 
def get_category_discourses(output): 
    dcs = get_discourse_categories(output) 
    cs = [] 
    for d in dcs.keys(): 
        for c in dcs[d]: 
            cs.append(c) 
    cats = set(cs) 
    category_discourses = {} 
    for c in cats: 
        category_discourses[c] = [d + '/' + d + '.pos' for d in dcs.keys() if c in 
dcs[d]] 
    return category_discourses 
 
 
def get_tabular_frequency_distribution_by_category(words, output, export=None): 
    discourse_categories = get_discourse_categories(output) 
    category_discourses = get_category_discourses(output) 
    tfdbc = {} 
    for c in category_discourses.keys(): 
        dws = yttc.words(category_discourses[c]) 
        dts = nltk.Text(dws) 
        fds = nltk.FreqDist(dts) 
        wfs = {} 
        for word in words: 
            wfs[word] = (fds[word], fds.freq(word)) 
        tfdbc[c] = wfs 
    all_words = yttc.words() 
    all_text = nltk.Text(all_words) 
    all_fd = nltk.FreqDist(all_text) 
    all_word_frequencies = {} 
    for word in words: 
        all_word_frequencies[word] = (all_fd[word], all_fd.freq(word)) 
        tfdbc['all'] = all_word_frequencies 
    if export: 
        header = '' 
        for word in words: 
            header += '\t\t' + word 
        if os.path.exists(export): 
            os.remove(export) 
        append_text_line(export, header) 
        for c in tfdbc.keys(): 
            line = c 
            for w in tfdbc[c].keys(): 
                line += '\t{}\t{}'.format(tfdbc[c][w][0], tfdbc[c][w][1]) 
            append_text_line(export, line) 
    return tfdbc 
 
 
def get_frames(display_id, output): 
    frames = {} 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    word_frames_json_path = os.path.join(folder, display_id + r'_frames.json') 
    file_exists = os.path.exists(word_frames_json_path) 
    if file_exists: 
        with codecs.open(word_frames_json_path, 'r', 'ISO-8859-2') as j: 
            frames = json.load(j) 
    return frames 
 
 
def get_knns(display_id, output): 
    knns = {} 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    word_frames_json_path = os.path.join(folder, display_id + r'_knn.json') 
    file_exists = os.path.exists(word_frames_json_path) 
    if file_exists: 
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        with codecs.open(word_frames_json_path, 'r', 'ISO-8859-2') as j: 
            knns = json.load(j) 
    return knns 
 
 
def get_word_nets(display_id, output): 
    word_nets = [] 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    word_word_nets_json_path = os.path.join(folder, display_id + r'_word_nets.json') 
    file_exists = os.path.exists(word_word_nets_json_path) 
    if file_exists: 
        with codecs.open(word_word_nets_json_path, 'r', 'ISO-8859-2') as j: 
            word_nets = json.load(j) 
    return word_nets 
 
 
def get_entrenchment(tagged_word, word_freq_dists): 
    entrenchment = 0.0 
    c = len(word_freq_dists) 
    sfd = word_freq_dists.most_common() 
    wfd = [(sfd[i], i) for i in range(0, len(sfd) - 1) if sfd[i][0] in [tagged_word[0]]] 
    arr = [sfd[i][1] for i in range(len(sfd) - 1)] 
    min = np.min(arr) 
    max = np.max(arr) 
    if wfd and len(wfd) > 0: 
        dst = wfd[0][0][1] 
        entrenchment = dst / (max - min) 
    return entrenchment 
 
 
def get_overlap(word_net, i): 
    overlap = 0.0 
    syns = word_net['syns'] 
    syn = syns[i] 
    if len(syn[2]) > 0: 
        arr = [syn[2][i][2] for i in range(0, len(syn[2]))] 
        overlap = np.max(arr) 
    return 1 - overlap 
 
 
def get_salience(frames, i): 
    salience = 0.0 
    frame = frames['frames'][i] 
    domain = frame[1] 
    if len(domain) > 0: 
        counts = frames['counts'] 
        domain_counts = [] 
        for key in counts.keys(): 
            if len(key) > 0: 
                domain_counts.append((key, counts[key])) 
        arr = [domain_counts[i][1] for i in range(len(domain_counts) - 1)] 
        min = np.min(arr) 
        max = np.max(arr) 
        d = [domain_counts[i][1] for i in range(0, len(domain_counts) - 1) if domain == 
domain_counts[i][0]] 
        if d and len(d) > 0: 
            dct = d[0] 
            salience = dct / (max - min) 
    return salience, frame[1] 
 
 
def get_clean_frequency_distributions_from_tagged_words(tagged_words): 
    stop_words = set(stopwords.words('english')) 
    punctuations = str.maketrans('', '', string.punctuation) 
    words = [word for word in [w.translate(punctuations) for w, p in tagged_words] if 
             word not in stop_words and word.isalpha()] 
    freq_dist_list = nltk.FreqDist(words) 
    return freq_dist_list 
 
 
def get_word_vectors_from_tagged_words(display_id, output, tagged_words): 



114 
 

    vectors = [] 
    word_times = get_word_times(display_id, output) 
    frames = get_frames(display_id, output) 
    word_nets = get_word_nets(display_id, output) 
    clean_word_freq_dists = 
get_clean_frequency_distributions_from_tagged_words(tagged_words) 
    for i in range(0, len(tagged_words) - 1): 
        # get entrenchment as frequency of word in entire corpus 
        entrenchment = get_entrenchment(tagged_words[i], clean_word_freq_dists) 
        # get overlap as similarity of synset to abstract hypernym 
        overlap = get_overlap(word_nets, i) 
        # get salience as usage of frames in discourse 
        salience, frame = get_salience(frames, i) 
        vectors.append({'word': tagged_words[i][0], 'pos': tagged_words[i][1], 'domain': 
frame, 'time': word_times[i], 
                        'vector': (str(entrenchment), str(overlap), str(salience))}) 
    return vectors 
 
 
def write_word_vectors_to_youtube_corpus(display_id, output, overwrite): 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    word_vectors_path = os.path.join(folder, display_id + r'_vectors.json') 
    file_exists = os.path.exists(word_vectors_path) 
    if not file_exists or overwrite: 
        fileid = display_id + r'/' + display_id + r'.pos' 
        tagged_words = yttc.tagged_words([fileid]) 
        vectors = get_word_vectors_from_tagged_words(display_id, output, tagged_words) 
        if overwrite and file_exists: 
            os.remove(word_vectors_path) 
        with codecs.open(word_vectors_path, 'w+', 'ISO-8859-2') as j: 
            json.dump(vectors, j) 
        print(word_vectors_path) 
 
 
def get_vectors(display_id, output): 
    vectors = [] 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    word_vectors_path = os.path.join(folder, display_id + r'_vectors.json') 
    file_exists = os.path.exists(word_vectors_path) 
    if file_exists: 
        with codecs.open(word_vectors_path, 'r', 'ISO-8859-2') as j: 
            vectors = json.load(j) 
    return vectors 
 
 
def get_knns_from_vectors(vectors): 
    knns = [] 
    data = [[float(d['vector'][0]), float(d['vector'][1]), float(d['vector'][2])] for d 
in vectors] 
    point_array = np.array(data) 
    kdt = KDTree(point_array, 100000) 
    for i in range(len(vectors)): 
        distances, indices = kdt.query(point_array[i], 2) 
        neighbors = {'current': vectors[i], 'neighbor': vectors[indices[1]], 'distance': 
float(distances[1])} 
        knns.append(neighbors) 
    return knns 
 
 
def write_k_nn_word_vectors_to_youtube_corpus(display_id, output, overwrite): 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    word_knn_path = os.path.join(folder, display_id + r'_knn.json') 
    file_exists = os.path.exists(word_knn_path) 
    if not file_exists or overwrite: 
        vectors = get_vectors(display_id, output) 
        knns = get_knns_from_vectors(vectors) 
        if overwrite and file_exists: 
            os.remove(word_knn_path) 
        with codecs.open(word_knn_path, 'w+', 'ISO-8859-2') as j: 
            json.dump(knns, j) 
        print(word_knn_path) 
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def print_file_id_and_topic_information(display_id, output, overwrite, export): 
    fileid = display_id + r'/' + display_id + r'.pos' 
    words = yttc.words(fileid) 
    t = len(words) 
    s = len(set(words)) 
    title = display_id 
    description = '' 
    vl = "unknown" 
    vls = 0 
    word_times = get_word_times(display_id, output) 
    if word_times and len(word_times) > 0: 
        wt = word_times[-1] 
        vl = wt[1] 
        vls = get_seconds_from_time_string(vl) 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    topics_json_path = os.path.join(folder, display_id + r'_topics.json') 
    file_exists = os.path.exists(topics_json_path) 
    if file_exists: 
        with open(topics_json_path, 'r') as f: 
            data = json.load(f) 
            if data['title'] and len(data['title']) > 0: 
                title = data['title'] 
            if data['categories'] and len(data['categories']) > 0: 
                title += ' - ' 
                for cat in data['categories']: 
                    title += ' ' + cat 
            print('{:<15} {:<10} {:<10} {:<10} {}'.format(display_id, t, s, vl, title)) 
            if export and len(export) > 4: 
                if data['description'] and len(data['description']) > 0: 
                    description = data['description'] 
                append_text_line(export, '{}\t{}\t{}\t{}\t{}'.format(display_id, t, s, 
vl, title)) 
    return t, s, vls 
 
 
def print_vector_data(display_id, output, overwrite, start, stop, export): 
    folder = output + r'/youtube/' + display_id + r'/' 
    word_vectors_path = folder + display_id + r'_vectors.json' 
    file_exists = os.path.exists(word_vectors_path) 
    if file_exists: 
        with codecs.open(word_vectors_path, 'r', 'ISO-8859-2') as j: 
            word_vectors = json.load(j) 
            r = range(0, len(word_vectors)) 
            if start != '': 
                seconds = get_seconds_from_time_string(start) 
                for i in r: 
                    i_seconds = get_seconds_from_time_string(word_vectors[i]['time'][1]) 
                    if seconds >= i_seconds: 
                        r = range(i, len(word_vectors)) 
                        break 
            if stop != '': 
                seconds = get_seconds_from_time_string(stop) 
                for i in r: 
                    i_seconds = get_seconds_from_time_string(word_vectors[i]['time'][1]) 
                    if seconds <= i_seconds: 
                        r = range(i, len(word_vectors)) 
                        break 
            for i in r: 
                word = word_vectors[i]['word'] 
                frame = word_vectors[i]['domain'] 
                pos = word_vectors[i]['pos'] 
                time = word_vectors[i]['time'][1] 
                entrenchment = word_vectors[i]['vector'][0] 
                overlap = word_vectors[i]['vector'][1] 
                salience = word_vectors[i]['vector'][2] 
                print( 
                    '{:<15} {:<30} {:<30} {:<5} <{:<15}, {:<15}, {:<15}> '.format(time, 
word, frame, pos, entrenchment, 
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overlap, 
                                                                                  
salience)) 
                if export and len(export) > 4: 
                    append_text_line(export, 
                                     '{}\t{}\t{}\t{}\t{}\t{}\t{}'.format(time, word, 
frame, pos, entrenchment, overlap, 
                                                                         salience)) 
 
 
def plot_3d_surface_from_corpus_vectors(display_id, output, overwrite): 
    vectors = get_vectors(display_id, output) 
    fig = plt.figure() 
    ax = fig.gca(projection='3d') 
    X = [] 
    Y = [] 
    Z = [] 
    max_t = float(get_seconds_from_time_string(vectors[-1]['time'][1])) 
    min_t = float(get_seconds_from_time_string(vectors[0]['time'][1])) 
    for v in vectors: 
        t = float(get_seconds_from_time_string(v['time'][1])) / (max_t - min_t) 
        x = [float(v['vector'][0]), t] 
        y = [float(v['vector'][1]), t] 
        z = [float(v['vector'][2]), t] 
        X.append(x) 
        Y.append(y) 
        Z.append(z) 
    cmhot = plt.get_cmap('coolwarm') 
    surf = ax.plot_surface(X, Y, Z, cmap=cmhot, linewidth=0, antialiased=False) 
    ax.set_zlim(0.00, 1.00) 
    ax.zaxis.set_major_locator(LinearLocator(10)) 
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) 
    fig.colorbar(surf, shrink=0.5, aspect=5) 
    plt.show() 
 
 
def draw_vector_viz_surface(vertices, edges, surfaces): 
    glBegin(GL_QUADS) 
    for surface in surfaces: 
        glColor3fv(vertices[surface[0]]) 
        for vertex in surface: 
            glVertex3fv(vertices[vertex]) 
    glEnd() 
    glBegin(GL_LINES) 
    for edge in edges: 
        for vertex in edge: 
            glVertex3fv(vertices[vertex]) 
    glEnd() 
 
 
def draw_knn_viz(screen, knns): 
    vertices = [] 
    edges = [] 
    for i in range(len(knns)): 
        if len(knns[i]['current']['domain']) > 0 and len(knns[i]['neighbor']['domain']) > 
0: 
            v1 = knns[i]['current']['vector'] 
            v2 = knns[i]['neighbor']['vector'] 
            vertices.append((float(v1[0]), float(v1[1]), float(v1[2]))) 
            vertices.append((float(v2[0]), float(v2[1]), float(v2[2]))) 
    for i in range(0, len(vertices), 2): 
        edges.append((i, i + 1)) 
    # draw 
    glBegin(GL_LINES) 
    for edge in edges: 
        glColor3fv(vertices[edge[0]]) 
        for vertex in edge: 
            glVertex3fv(vertices[vertex]) 
    glEnd() 
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def draw_vector_viz(screen, cubes, edges, labels, colors, surfaces): 
    # draw cubes 
    glBegin(GL_QUADS) 
    for i in range(len(cubes)): 
        glColor3fv(colors[i]) 
        for surface in surfaces: 
            for vertex in surface: 
                glVertex3fv(cubes[i][vertex]) 
    glEnd() 
    glBegin(GL_LINES) 
    for i in range(len(cubes)): 
        glColor3fv(colors[i]) 
        for edge in edges: 
            for vertex in edge: 
                glVertex3fv(cubes[i][vertex]) 
    glEnd() 
    glBegin(GL_LINES) 
    for i in range(len(cubes)): 
        glColor3fv(colors[i]) 
        glVertex3fv((cubes[i][0][0], 0, 0)) 
        glVertex3fv(cubes[i][0]) 
    glEnd() 
    # draw labels 
    for i in range(len(cubes)): 
        x = cubes[i][0][0] 
        y = cubes[i][0][1] + 0.02 
        z = cubes[i][0][2] 
        gl_draw_text((x, y, z), labels[i][0]) 
        gl_draw_text((x, y - 0.04, z), labels[i][1]) 
 
 
def get_cubes_edges_labels_colors_surfaces_from_vectors(vectors, domains): 
    labels = [] 
    colors = [] 
    surfaces = [] 
    cubes = [] 
    vertices = [] 
    wait_times = [] 
    edges = [(0, 1), (1, 3), (3, 2), (2, 6), (6, 7), (7, 5), (5, 4), (4, 0), (0, 2), (4, 
6), (3, 7), (1, 5)] 
    surfaces = [(0, 1, 2, 3), (1, 5, 7, 3), (2, 3, 7, 6), (0, 2, 6, 4), (0, 1, 5, 4), (4, 
6, 7, 5)] 
    vecs = [vectors[i] for i in range(len(vectors))] 
    # if vectors[i]['domain'] in domains 
    if len(vecs) > 0: 
        inc = 0 
        for i in range(len(vecs)): 
            if i < len(vecs) - 1: 
                it = get_seconds_from_time_string(vecs[i]['time'][1]) 
                nt = get_seconds_from_time_string(vecs[i + 1]['time'][1]) 
                wait_times.append((nt - it) * 1000) 
                inc = (nt - it) / 1000 
            # corner vertices 
            v = vecs[i]['vector'] 
            x = float(v[0]) 
            xi = (float(v[0]) + (inc * i)) 
            y = float(v[1]) 
            z = float(v[2]) 
            vertices.append((xi, y, z)) 
            colors.append((x, y, z)) 
            # labels 
            if vectors[i]['domain'] in domains: 
                label = ( 
                    '[' + vecs[i]['domain'].upper() + ' / ' + vecs[i]['word'] + ']', 
                    '<' + str(round(x, 4)) + ', ' + str(round(y, 4)) + ', ' + 
str(round(z, 4)) + '>') 
            else: 
                label = ('', '') 
            labels.append(label) 
        # cubes and edges 
        for i in range(len(vertices)): 
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            x = vertices[i][0] 
            y = vertices[i][1] 
            z = vertices[i][2] 
            d = 0.01 
            cube = ((x, y, z), (x, y, z - d), (x, y + d, z), (x, y + d, z - d), (x + d, 
y, z), (x + d, y, z - d), 
                    (x + d, y + d, z), (x + d, y + d, z - d)) 
            cubes.append(cube) 
    return cubes, edges, labels, colors, surfaces, wait_times 
 
 
def get_conceptual_spaces(vectors, x_scale=100, y_scale=100, z_scale=100): 
    spaces = {} 
    for vector in vectors: 
        domain = vector['domain'] 
        v = vector['vector'] 
        x = int(float(v[0]) * x_scale) 
        y = int(float(v[1]) * y_scale) 
        z = int(float(v[2]) * z_scale) 
        vertex = Point3D(x, y, z) 
        if len(domain) > 0: 
            if domain in spaces: 
                spaces[domain]['vertices'].append(vertex) 
            else: 
                spaces[domain] = {'vertices': [vertex]} 
    return spaces 
 
 
def gl_draw_text(position, textString): 
    font = pygame.font.Font(None, 12) 
    textSurface = font.render(textString, True, (0, 0, 0, 255), (245, 245, 220, 255)) 
    textData = pygame.image.tostring(textSurface, "RGBA", True) 
    glRasterPos3d(*position) 
    glDrawPixels(textSurface.get_width(), textSurface.get_height(), GL_RGBA, 
GL_UNSIGNED_BYTE, textData) 
 
 
def draw_single_vector_viz(screen, edges, cube, label, vec_color, surfaces): 
    # draw cubes 
    glBegin(GL_QUADS) 
    glColor3fv(vec_color) 
    for surface in surfaces: 
        for vertex in surface: 
            glVertex3fv(cube[vertex]) 
    glEnd() 
    glBegin(GL_LINES) 
    glColor3fv(vec_color) 
    for edge in edges: 
        for vertex in edge: 
            glVertex3fv(cube[vertex]) 
    glEnd() 
    glBegin(GL_LINES) 
    glColor3fv(vec_color) 
    glVertex3fv((cube[0][0], 0, 0)) 
    glVertex3fv(cube[0]) 
    glEnd() 
    # draw labels 
    x = cube[0][0] 
    y = cube[0][1] + 0.02 
    z = cube[0][2] 
    gl_draw_text((x, y, z), label[0]) 
    gl_draw_text((x, y - 0.04, z), label[1]) 
 
 
def draw_conceptual_spaces(screen, vectors): 
    conceptual_spaces = get_conceptual_spaces(vectors) 
    angleX, angleY, angleZ = 0, 0, 0 
    for d in conceptual_spaces.keys(): 
        f = len(conceptual_spaces[d]['vertices']) 
        if f > 2: 
            t = [] 
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            vs = conceptual_spaces[d]['vertices'] 
            for i in range(f): 
                # Rotate the point around X axis, then around Y axis, and finally around 
Z axis. 
                r = vs[i].rotateX(angleX).rotateY(angleY).rotateZ(angleZ) 
                # Transform the point from 3D to 2D 
                p = r.project(screen.get_width(), screen.get_height(), 256, 4) 
                # Put the point in the list of transformed vertices 
                t.append(p) 
            for j in range(0, len(t), 2): 
                if j == len(t) - 1: 
                    pygame.draw.line(screen, (255, 255, 255), (t[j].x, vs[j].y), (t[0].x, 
t[0].y)) 
                else: 
                    pygame.draw.line(screen, (255, 255, 255), (t[j].x, t[j].y), (t[j + 
1].x, t[j + 1].y)) 
 
 
def draw_vector_word_domain_text(surface, offset, position, word, domain, part_of_speech, 
vector_string, timestamp, 
                                 fore_color=(0, 0, 0), back_color=(255, 255, 255)): 
    indent = 5 
    basic_font = pygame.font.SysFont(None, 24) 
    word_text = basic_font.render(word, True, fore_color, back_color) 
    domain_text = basic_font.render(domain, True, fore_color, back_color) 
    pos_text = basic_font.render(part_of_speech, True, fore_color, back_color) 
    vector_text = basic_font.render(vector_string, True, fore_color, back_color) 
    time_text = basic_font.render(timestamp, True, fore_color, back_color) 
    time_text_rect = time_text.get_rect() 
    time_text_rect.left += (offset * position) + indent 
    time_text_rect.centery = surface.get_height() - time_text_rect.height 
    surface.blit(time_text, time_text_rect) 
    pos_text_rect = pos_text.get_rect() 
    pos_text_rect.left += (offset * position) + indent 
    pos_text_rect.centery = surface.get_height() - pos_text_rect.height - 
time_text_rect.height 
    surface.blit(pos_text, pos_text_rect) 
    vector_text_rect = vector_text.get_rect() 
    vector_text_rect.left += (offset * position) + indent 
    vector_text_rect.centery = surface.get_height() - vector_text_rect.height - 
pos_text_rect.height - time_text_rect.height 
    surface.blit(vector_text, vector_text_rect) 
    domain_text_rect = domain_text.get_rect() 
    domain_text_rect.left += (offset * position) + indent 
    domain_text_rect.centery = surface.get_height() - domain_text_rect.height - 
vector_text_rect.height - pos_text_rect.height - time_text_rect.height 
    surface.blit(domain_text, domain_text_rect) 
    word_text_rect = word_text.get_rect() 
    word_text_rect.left += (offset * position) + indent 
    word_text_rect.centery = surface.get_height() - word_text_rect.height - 
domain_text_rect.height - vector_text_rect.height - pos_text_rect.height - 
time_text_rect.height 
    surface.blit(word_text, word_text_rect) 
    return word_text_rect.left, word_text_rect.top 
 
 
def get_vertex_from_string_vector(v): 
    vertex = (float(v[0]), float(v[1]), float(v[2])) 
    return vertex 
 
 
def draw_origin_vector_line(surface, origin, vertex, offset, colors): 
    w_scale = offset - 10 
    h_scale = origin[1] - 30 
    salience_scale = len(colors) 
    start_pos = (origin[0], origin[1]) 
    end_pos = (round(vertex[0] * w_scale) + origin[0], origin[1] - round(vertex[1] * 
h_scale)) 
    line_color = get_color_from_vertex(vertex, colors) 
    line_width = round(vertex[2] * (salience_scale / 5)) + 1 
    pygame.draw.line(surface, line_color, start_pos, end_pos, line_width) 
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    radius = round(vertex[2] * salience_scale) + 1 
    end_circle = pygame.draw.circle(surface, line_color, end_pos, radius) 
 
 
def get_color_from_vertex(vertex, colors): 
    c = int(vertex[2] * len(colors)) - 1 
    if c < 0: 
        c = 0 
    if c > len(colors) - 1: 
        c = len(colors) - 1 
    return colors[c] 
 
 
def draw_domain_vertices_scatter(surface, origin, vertices, offset, colors): 
    w_scale = offset - 10 
    h_scale = origin[1] - 30 
    salience_scale = len(colors) 
    for vertex in vertices: 
        point = (round(vertex[0] * w_scale) + origin[0], origin[1] - round(vertex[1] * 
h_scale)) 
        circle_color = get_color_from_vertex(vertex, colors) 
        radius = round(vertex[2] * salience_scale) + 1 
        pygame.draw.circle(surface, circle_color, point, radius, 1) 
 
 
def get_short_vector_string(vector_tuple, decimal_places=4): 
    precision = decimal_places * 4 
    x = round(float(vector_tuple[0]) / precision) / precision 
    y = round(float(vector_tuple[1]) * precision) / precision 
    z = round(float(vector_tuple[2]) * precision) / precision 
    return str(x) + ',' + str(y) + ',' + str(z) 
 
 
def draw_rainbow(surface, colors, x, y, w=5, h=15, indent=5): 
    for c in range(len(colors)): 
        x = (w * c) + indent 
        pygame.draw.rect(surface, colors[c], (x, y, w, h)) 
 
 
def get_viz_colors(): 
    colors = [] 
    red_frequency = .1 
    green_frequency = .2 
    blue_frequency = .3 
    center = 128 
    width = 127 
    phase1 = 0 
    phase2 = 2 
    phase3 = 4 
    length = 50 
    for i in range(length): 
        red = int(math.sin(red_frequency * i + phase1) * width + center) 
        green = int(math.sin(green_frequency * i + phase2) * width + center) 
        blue = int(math.sin(blue_frequency * i + phase3) * width + center) 
        colors.append((red, green, blue)) 
    return colors 
 
 
def fill_rect_surface_with_color(surface, pos_color, x, y, w, h): 
    rect = pygame.draw.rect(surface, pos_color, (x, y, w, h)) 
 
 
def draw_prev_curr_next_vectors(surface, vectors, domain_vertices, i, lv, rv, colors): 
    parts_of_speech = PartsOfSpeech() 
    v_cnt = 1 + lv + rv 
    w = surface.get_width() 
    h = surface.get_height() 
    offset = round(w / v_cnt) 
    curr_pos = 0 
    for vi in range(i - lv, i + rv + 1): 
        if -1 < vi < len(vectors): 
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            vector_string = get_short_vector_string(vectors[vi]['vector']) 
            tag = vectors[vi]['pos'] 
            pos_descr = parts_of_speech.get_description(tag) 
            pos_color = parts_of_speech.get_color(tag) 
            fill_rect_surface_with_color(surface, pos_color, (offset * curr_pos), 0, 
offset, h) 
            x, y = draw_vector_word_domain_text(surface, offset, curr_pos, 
vectors[vi]['word'], vectors[vi]['domain'], 
                                                pos_descr, vector_string, 
vectors[vi]['time'][1], back_color=pos_color) 
            origin = (x, y - 10, 0) 
            if vectors[vi]['domain'] in domain_vertices.keys(): 
                vertices = domain_vertices[vectors[vi]['domain']]['vertices'] 
                draw_domain_vertices_scatter(surface, origin, vertices, offset, colors) 
            vertex = get_vertex_from_string_vector(vectors[vi]['vector']) 
            draw_origin_vector_line(surface, origin, vertex, offset, colors) 
        curr_pos += 1 
 
 
def get_youtube_video_path(display_id, output): 
    folder = os.path.join(output, r'youtube/' + display_id + r'/') 
    extension = get_youtube_media_extension(display_id, output) 
    movie_path = os.path.join(folder, display_id + extension) 
    return movie_path 
 
 
def get_youtube_audio_path(display_id, output): 
    audio_path = get_youtube_video_path(display_id, output) 
    audio_path += '.mp3' 
    return audio_path 
 
 
def get_domain_convex_hulls(output, vectors): 
    hulls = None 
    domains = get_corpus_domains(output) 
    if domains is not None: 
        hulls = {} 
        for vector in vectors: 
            domain = vector['domain'] 
            if domain in domains.keys(): 
                vertices = domains[domain]['vertices'] 
                ch, d = get_convex_hull_delaunay_from_vertices(vertices) 
                if ch is not None: 
                    points = [(x, y, z) for x, y, z in ch.simplices] 
                    if domain not in hulls.keys(): 
                        hulls[domain] = points 
    return hulls 
 
 
def imdisplay(imarray, screen=None): 
    """Splashes the given image array on the given pygame screen """ 
    a = pygame.surfarray.make_surface(imarray.swapaxes(0, 1)) 
    if screen is None: 
        screen = pygame.display.set_mode(imarray.shape[:2][::-1]) 
    screen.blit(a, (0, 0)) 
    pygame.display.flip() 
 
 
def draw_text_to_surface(surface, text, x, y, max_width, text_color, back_color, 
indent=5): 
    basic_font = pygame.font.SysFont(None, 24) 
    txt = text + ' ' 
    new_text = basic_font.render(txt, True, text_color, back_color) 
    new_text_rect = new_text.get_rect() 
    if (x + new_text_rect.width) > max_width: 
        x = indent 
        y = y + new_text_rect.height 
    new_text_rect.left = x 
    new_text_rect.top = y 
    surface.blit(new_text, new_text_rect) 
    return new_text_rect 
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def draw_topic(surface, topic_info, total_time, total_words, colors): 
    indent = 5 
    x = indent 
    y = 290 
    title = topic_info['title'] 
    title_words = title.split() 
    categories = topic_info['categories'] 
    tags = topic_info['tags'] 
    total_time_text = 'Total Time: ' + total_time 
    total_words_text = 'Total Words: ' + str(total_words) 
    colors_text = 'Salience Scale: (' + str(len(colors)) + ') 0.0 to 1.0' 
    max_width = 270 
    last_rect_height = 0 
    for i in range(len(title_words)): 
        try: 
            rect = draw_text_to_surface(surface, title_words[i], x, y, max_width, (0, 0, 
0), (255, 255, 255)) 
            x = rect.right 
            y = rect.top 
            last_rect_height = rect.height 
        except: 
            pass 
    x = indent 
    y = y + last_rect_height 
    rect = draw_text_to_surface(surface, 'Categories:', x, y, max_width, (0, 0, 0), (255, 
255, 255)) 
    last_rect_height = rect.height 
    x = indent 
    y = y + last_rect_height 
    for i in range(len(categories)): 
        try: 
            rect = draw_text_to_surface(surface, categories[i], x, y, max_width, (0, 0, 
0), (255, 255, 255)) 
            x = rect.right 
            y = rect.top 
            last_rect_height = rect.height 
        except: 
            pass 
 
    x = indent 
    y = y + last_rect_height 
    rect = draw_text_to_surface(surface, 'Tags:', x, y, max_width, (0, 0, 0), (255, 255, 
255)) 
    last_rect_height = rect.height 
    x = indent 
    y = y + last_rect_height 
    for i in range(len(tags)): 
        try: 
            rect = draw_text_to_surface(surface, tags[i], x, y, max_width, (0, 0, 0), 
(255, 255, 255)) 
            x = rect.right 
            y = rect.top 
            last_rect_height = rect.height 
        except: 
            pass 
    x = indent 
    y = y + last_rect_height 
    rect = draw_text_to_surface(surface, total_time_text, x, y, max_width, (0, 0, 0), 
(255, 255, 255)) 
    last_rect_height = rect.height 
    x = indent 
    y = y + last_rect_height 
    rect = draw_text_to_surface(surface, total_words_text, x, y, max_width, (0, 0, 0), 
(255, 255, 255)) 
    last_rect_height = rect.height 
    x = indent 
    y = y + last_rect_height 
    rect = draw_text_to_surface(surface, colors_text, x, y, max_width, (0, 0, 0), (255, 
255, 255)) 
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    last_rect_height = rect.height 
    x = indent 
    y = y + last_rect_height 
    draw_rainbow(surface, colors, x, y) 
 
 
def get_vector_index_from_current_time(t, vectors): 
    remaining = [i for i in range(len(vectors)) if 
get_seconds_from_time_string(vectors[i]['time'][1]) > t] 
    if len(remaining) > 0: 
        return remaining[0] 
    else: 
        return None 
 
 
def draw_time_stamp(surface, t, indent=5): 
    time_stamp = get_time_string_from_seconds(t) 
    x = indent 
    y = surface.get_height() - 20 
    draw_text_to_surface(surface, time_stamp, x, y, 270, (0, 255, 0), (255, 255, 255)) 
 
 
def get_adjusted_video_time(key, t, first, last): 
    tt = t 
    if pygame.key.get_mods() & pygame.KMOD_SHIFT: 
        modification = 10.0 
    elif pygame.key.get_mods() & pygame.KMOD_CTRL: 
        modification = 60.0 
    elif pygame.key.get_mods() & pygame.KMOD_ALT: 
        modification = 300.0 
    elif pygame.key.get_mods() & pygame.KMOD_CTRL & pygame.KMOD_SHIFT: 
        modification = 600.0 
    elif pygame.key.get_mods() & pygame.KMOD_CTRL & pygame.KMOD_ALT: 
        modification = 1800.0 
    else: 
        modification = 1.0 
    if key == pygame.K_RIGHT: 
        tt = tt + modification 
        if tt > last: 
            tt = last 
    elif key == pygame.K_LEFT: 
        tt = tt - modification 
        if tt < first: 
            tt = first 
    elif key == pygame.K_END: 
        tt = last 
    elif key == pygame.K_HOME: 
        tt = first 
    return tt 
 
 
def restart_audio_at_position(t, audio_path): 
    pygame.mixer.quit() 
    pygame.mixer.init() 
    pygame.mixer.music.load(audio_path) 
    pygame.mixer.music.play(-1, t) 
 
 
def draw_analysis_legend(surface): 
    fore_color = (255, 255, 255) 
    back_color = (0, 0, 0) 
    basic_font = pygame.font.SysFont(None, 24) 
    baseline_text = basic_font.render('BASELINE', True, fore_color, back_color) 
    baseline_text_rect = baseline_text.get_rect() 
    baseline_text_rect.centerx = round(surface.get_width() / 2) + 165 
    baseline_text_rect.centery = 25 
    surface.blit(baseline_text, baseline_text_rect) 
    elaboration_text = basic_font.render('ELABORATION', True, fore_color, back_color) 
    elaboration_text_rect = elaboration_text.get_rect() 
    elaboration_text_rect.centerx = round(surface.get_width() / 2) + 165 
    elaboration_text_rect.centery = surface.get_height() - 25 
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    surface.blit(elaboration_text, elaboration_text_rect) 
    frequent_text = basic_font.render('FREQUENT', True, fore_color, back_color) 
    frequent_text = pygame.transform.rotate(frequent_text, 90) 
    frequent_text_rect = frequent_text.get_rect() 
    frequent_text_rect.centerx = surface.get_width() - 25 
    frequent_text_rect.centery = round(surface.get_height() / 2) 
    surface.blit(frequent_text, frequent_text_rect) 
    novel_text = basic_font.render('NOVEL', True, fore_color, back_color) 
    novel_text = pygame.transform.rotate(novel_text, -90) 
    novel_text_rect = novel_text.get_rect() 
    novel_text_rect.centerx = 305 
    novel_text_rect.centery = round(surface.get_height() / 2) 
    surface.blit(novel_text, novel_text_rect) 
 
 
def viz_vector_data(display_id, output, overwrite, start, stop, export): 
    # prep data 
    white = (255, 255, 255) 
    colors = get_viz_colors() 
    vectors = get_vectors(display_id, output) 
    topic_info = get_topic(display_id, output) 
    topic_total_words = len(vectors) 
    topic_time_length = vectors[-1]['time'][1] 
    # domain_hulls = get_domain_convex_hulls(output, vectors) 
    domain_vertices = get_corpus_domains(output) 
    # start presentation 
    os.environ['SDL_VIDEO_WINDOW_POS'] = "%d,%d" % (10, 100) 
    pygame.init() 
    display = (1850, 900) 
    screen = pygame.display.set_mode(display, pygame.RESIZABLE) 
    pygame.display.set_caption('Path to Alignment - Semantic change in discourse') 
    icon = pygame.image.load('assets/exu.png') 
    pygame.display.set_icon(icon) 
    viz_surface = pygame.display.get_surface() 
    analysis_surface = pygame.Surface((1470, 800)) 
    draw_analysis_legend(viz_surface) 
    # set up movie surface 
    fps = 15 
    video_surface = pygame.Surface((280, 900)) 
    video_surface.fill((255, 255, 255)) 
    movie_path = get_youtube_video_path(display_id, output) 
    movie = VideoFileClip(movie_path, target_resolution=(280, 280)) 
    img = movie.get_frame(0) 
    imdisplay(img, video_surface) 
    result = [] 
    t0 = time.time() 
    first = 1.0 / fps 
    last = movie.duration - .001 
    if len(start) > 0: 
        first = get_seconds_from_time_string(start) 
    if len(stop) > 0: 
        last = get_seconds_from_time_string(stop) 
    # sound 
    pygame.mixer.init() 
    audio_path = get_youtube_audio_path(display_id, output) 
    pygame.mixer.music.load(audio_path) 
    pygame.mixer.music.play(-1, first) 
    fts = [t1 for t1 in np.arange(first, last, 1.0 / fps)] 
    pausing = False 
    while True: 
        mt = pygame.mixer.music.get_pos() 
        remaining = [t2 for t2 in fts if t2 > (mt / 1000)] 
        if len(remaining) > 0: 
            t = remaining[0] 
        else: 
            pygame.quit() 
            quit() 
        img = movie.get_frame(t) 
        # handle events 
        for event in pygame.event.get(): 
            if event.type == pygame.QUIT: 
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                pygame.quit() 
                quit() 
            elif event.type == pygame.KEYDOWN: 
                if event.key == pygame.K_ESCAPE: 
                    print("Keyboard interrupt") 
                    return result 
                elif event.key == pygame.K_SPACE: 
                    pausing = not pausing 
                    if pausing: 
                        pygame.mixer.music.pause() 
                    else: 
                        pygame.mixer.music.unpause() 
                elif event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT or 
event.key == pygame.K_END \ 
                        or event.key == pygame.K_HOME: 
                    tt = get_adjusted_video_time(event.key, t, first, last) 
                    if tt is not t: 
                        t = tt 
                        restart_audio_at_position(t, audio_path) 
                elif event.key == pygame.K_F1: 
                    dialog = ColorDialog("#00ffff") 
                    dialog.open() 
            elif event.type == pygame.MOUSEBUTTONDOWN: 
                x, y = pygame.mouse.get_pos() 
        t1 = time.time() 
        time.sleep(max(0, t - (t1 - t0))) 
        imdisplay(img, video_surface) 
        draw_topic(video_surface, topic_info, topic_time_length, topic_total_words, 
colors) 
        draw_time_stamp(video_surface, t) 
        # draw analysis viz 
        i = get_vector_index_from_current_time(t, vectors) 
        if i is not None: 
            analysis_surface.fill(white) 
            draw_prev_curr_next_vectors(analysis_surface, vectors, domain_vertices, i, 1, 
1, colors) 
            viz_surface.blit(analysis_surface, (331, 51)) 
        viz_surface.blit(video_surface, (0, 0)) 
        # update and wait 
        pygame.display.update() 
 
 
def viz_launcher(ids, output, overwrite, start, finish): 
    app = gui.Desktop() 
    app.connect(gui.QUIT, app.quit, None) 
    title = gui.Label('Path to Alignment - Launch Visualization') 
    app.add(title, 50, 5) 
    icon = pygame.image.load('assets/exu.png') 
    pygame.display.set_icon(icon) 
    c = gui.Table(width=640, height=900) 
 
    def onchange(value): 
        script = r'C:\ProgramData\Anaconda3\python.exe C:/LING/599-
Thesis/code/youtube_corpus_tool.py' 
        cmd = 'viz_corpus_vector_data:' + value.value['display_id'].value 
        os.system(script + ' ' + cmd) 
 
    def tab(): 
        box.widget = g.value 
 
    g = gui.Group() 
    g.connect(gui.CHANGE, tab) 
    c.tr() 
 
    t1 = gui.Table(width=1800, height=900) 
    b = gui.Tool(g, gui.Label("Visualizations", width=25), t1) 
    c.td(b, align=-1) 
 
    def launch_viz_dialog(display_id): 
        dialog = LaunchVizDialog(display_id) 
        dialog.connect(gui.CHANGE, onchange, dialog) 
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        dialog.open() 
 
    t1.tr() 
    t1.td(gui.Label('VIDEO')) 
    t1.td(gui.Label('WORDS')) 
    t1.td(gui.Label('SET')) 
    t1.td(gui.Label('DURATION')) 
    t1.td(gui.Label('DESCRIPTION')) 
 
    for display_id in ids: 
        fileid = display_id + r'/' + display_id + r'.pos' 
        words = yttc.words(fileid) 
        t = len(words) 
        s = len(set(words)) 
        title = display_id 
        description = '' 
        vl = "unknown" 
        vls = 0 
        word_times = get_word_times(display_id, output) 
        if word_times and len(word_times) > 0: 
            wt = word_times[-1] 
            vl = wt[1] 
            vls = get_seconds_from_time_string(vl) 
        folder = os.path.join(output, r'youtube/' + display_id + r'/') 
        topics_json_path = os.path.join(folder, display_id + r'_topics.json') 
        file_exists = os.path.exists(topics_json_path) 
        if file_exists: 
            with open(topics_json_path, 'r') as f: 
                data = json.load(f) 
                if data['title'] and len(data['title']) > 0: 
                    title = data['title'] 
                if data['categories'] and len(data['categories']) > 0: 
                    title += ' - ' 
                    for cat in data['categories']: 
                        title += ' ' + cat 
                t1.tr() 
                btn = gui.Button(display_id) 
                btn.connect(gui.CLICK, launch_viz_dialog, display_id) 
                t1.td(btn, align=-1) 
                t1.td(gui.Label(str(t))) 
                t1.td(gui.Label(str(s))) 
                t1.td(gui.Label(str(vl))) 
                t1.td(gui.Label(unicodedata2.normalize('NFKD', title).encode('ascii', 
'ignore')), align=-1) 
 
    c.tr() 
    spacer = gui.Spacer(1850, 900) 
    box = gui.ScrollArea(spacer, height=900) 
    c.td(box) 
    app.run(c) 
 
 
def main(command, output, overwrite, start, finish, export): 
    folder = os.path.join(output, r'youtube/') 
    ids = [item for item in os.listdir(folder) if os.path.isdir(os.path.join(folder, 
item))] 
    command_parts = command.split(':') 
    cmd = command_parts[0] 
    val = '' 
    if len(command_parts) > 1: 
        val = command_parts[1] 
    if val != '': 
        ids = [val] 
    # header for print 
    tws = 0 
    uws = 0 
    vls = 0 
    if cmd == 'make_all_domain_vertices': 
        write_domains_to_youtube_corpus(output) 
        return 
    elif cmd == 'viz_launcher': 
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        viz_launcher(ids, output, overwrite, start, finish) 
        return 
    if cmd == 'print_corpus_info': 
        print('{:<15} {:<10} {:<10} {:<10} {}'.format('Display ID', 'Total Words', 
'Unique Words', 'Total Time', 
                                                      'Title')) 
    elif cmd == 'print_corpus_vector_data': 
        print('{:<15} {:<30} {:<30} {:<5} <{:<15}, {:<15}, {:<15}> '.format('Time', 
'Word', 'frame', 'POS', 
                                                                            
'Entrenchment', 'Overlap', 
                                                                            'Salience')) 
    if export and len(export) > 4 and os.path.exists(export): 
        os.remove(export) 
    for did in ids: 
        if cmd == 'download_youtube': 
            extract_youtube_data(did, output, overwrite) 
        elif cmd == 'make_audio_file': 
            write_audio_clip(did, output, overwrite) 
        elif cmd == 'make_pos_text': 
            write_pos_tagged_to_youtube_corpus(did, output, overwrite) 
        elif cmd == 'make_topic_list': 
            write_topics_to_youtube_corpus(did, output, overwrite) 
        elif cmd == 'make_word_frames': 
            write_word_frames_to_youtube_corpus(did, output, overwrite) 
        elif cmd == 'make_word_net': 
            write_word_nets_to_youtube_corpus(did, output, overwrite) 
        elif cmd == 'make_word_vectors': 
            write_word_vectors_to_youtube_corpus(did, output, overwrite) 
        elif cmd == 'make_word_k_nn_vectors': 
            write_k_nn_word_vectors_to_youtube_corpus(did, output, overwrite) 
        elif cmd == 'plot_vector_surface': 
            plot_3d_surface_from_corpus_vectors(did, output, overwrite) 
        elif cmd == 'print_corpus_info': 
            t, s, v = print_file_id_and_topic_information(did, output, overwrite, export) 
            tws += t 
            uws += s 
            vls += v 
        elif cmd == 'print_corpus_vector_data': 
            print_vector_data(did, output, overwrite, start, finish, export) 
        elif cmd == 'viz_corpus_vector_data': 
            viz_vector_data(did, output, overwrite, start, finish, export) 
    if cmd == 'print_corpus_info': 
        total_video_time = get_time_string_from_seconds(vls) 
        tuws = len(set(yttc.words())) 
        idct = str(len(ids)) + ' videos' 
        print('--------------------------------------------------------------------------
------------------') 
        print('{:<15} {:<10} {:<10} {:<10} {}'.format(idct, tws, tuws, total_video_time, 
'')) 
 
 
if __name__ == '__main__': 
    parser = argparse.ArgumentParser() 
    parser.add_argument('command', 
                        help='Command to carry out, e.g. "download:8IiDgZK-Fz4" downloads 
the target youtube video id for data extraction.') 
    parser.add_argument('-p', '--output', help='The output location for corpus files.') 
    parser.add_argument('-o', '--overwrite', help='overwrites existing data', 
action='store_true') 
    parser.add_argument('-s', '--start', help='The start time for word in corpus files.') 
    parser.add_argument('-e', '--stop', help='The stop time for word in corpus files.') 
    parser.add_argument('-x', '--export', help='The path of file to export data.') 
    args = parser.parse_args() 
    out_path = 'corpora' 
    begin = '' 
    end = '' 
    export_path = '' 
    if args.output: 
        out_path = args.output 
    if args.start: 
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        end = args.start 
    if args.stop: 
        stop = args.stop 
    if args.export: 
        export_path = args.export 
    if args.command: 
        main(args.command, out_path, args.overwrite, begin, end, export_path) 
    else: 
        parser.print_help() 
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