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Abstract— Commuting matrix methods furnish a full basis of orthog-
onal eigenvectors for the discrete Fourier transform or its centered
version needed for computing the discrete fractional Fourier transform
and multicomponent chirp signal analysis. However, these approaches
suffer from ill-conditioning issues at higher matrix sizes, and require a
computationally expensive eigenvalue decomposition.

In this paper, ill-conditioning issues associated with the QMFD
approach developed previously by the authors are addressed via diagonal
modification. Further symmetries of the eigenvectors are used to reduce
the size of the underlying eigenvalue problem. These modifications are
then incorporated into the real-arithmetic implementation of the QMFD
approach that is shown to be significantly superior to the conventional
implementation and the corresponding MSE of the chirp parameter
estimates are shown to approach their Cramer Rao lower bounds.

I. INTRODUCTION

Chirp signals are quite ubiquitous in various areas of applications
in radar and sonar [2] and have recently gained popularity with the
LIGO project [3] where gravitational signals from the merger of two
black holes are modeled as chirps. Estimating the parameters of the
underlying chirp signal model is therefore a problem of significant
interest. One such popular tool for multicomponent chirp signal
analysis is the DFRFT [5].

The discrete fractional Fourier Transform (DFRFT) of a sequence
defined as the fractional power of the DFT matrix, formally requires
an eigenvalue decomposition [4]

Xα = W
2α
π x = VΛVTx, (1)

where W is the DFT matrix, V is the orthogonal matrix of DFT
eigenvectors and Λ is the diagonal matrix of eigenvalues. Commuting
matrix approaches towards furnishing a fully orthogonal basis of
DFT/CDFT eigenvectors seek to remove the eigenvalue degeneracy
inherent in the DFT: [8], [7], [6]

Tc = VcΛcV
T
c ,

where Vc is the fully orthogonal basis of DFT/CDFT eigenvectors
that serve as discrete versions of the Gauss-Hermite functions. In the
case of the QMFD approach, the commuting matrix Tc is obtained
via:

Tc = PHP + QHQ, P = WQWH , (2)

where P and Q are the finite dimensional equivalents of the position
and momentum operators in continuous quantum mechanics, and W
is the CDFT/DFT matrix [6]. Computation of the eigenvectors Vc,
requires an eigenvalue decomposition, has significant computational
complexity, and becomes a major bottleneck for larger matrix sizes.

These orthogonal eigenvectors are then used to compute the
multiangle CDFRFT (MA-CDFRFT) [5]:

Xr[k] =

N−1∑
p=0

zk[p]e−
2π
N
pr, (3)

where the sequence zk[p] is given by:

zk[p] = vkp

N−1∑
n=0

x[n]vnp

and {Vc}kp = vkp are derived from the eigenvectors. A monocom-
ponent chirp signal of the form:

x[n] = A cos
(
ωon+ crm

2)+ w[n], m = n− (N − 1)/2

with a specified center-frequency ωo and chirp-rate cr , and w[n]
is additive white Gaussian noise that is statistically independent of
the chirp, manifests as a sharp peak in the MA-CDFRFT spectrum
Xr[k] at coordinates (kp, rp) that are related to the chirp parameters
via [11]:

ω̂o = − π
N

cot

(
2π

N
rp −

π

N

)
ĉr =

(
2π

N
kp −

π

N

)
csc

(
2π

N
rp −

π

N

)
. (4)

The corresponding CRLB for the chirp parameter estimates are [12]:

σ2
ω̂o ≥

( σ
A

)2 90

N(N2 − 1)(N2 − 4)

σ2
ĉr ≥

( σ
A

)2 6

N(N2 − 1)
, (5)

where σ2 is the variance of the zero mean AWGN sequence w[n].
As evident, at its foundation, the QMFD approach relies upon the

computation of a fully orthogonal basis of CDFT/DFT eigenvectors
for chirp parameter estimation. However, for large matrix orders
this approach and other commuting matrix approaches encounter ill-
conditioning issues causing problems in eigenvalue decomposition.
Furthermore as the matrix size increases the complexity of the
approach increases significantly.

In this paper, we introduce refinements to the QMFD approach
towards chirp parameter estimation approach by:

1) diagonal modification to address the ill-conditioning problems
encountered by the QMFD approach at large matrix orders,

2) incorporating symmetry and anti-symmetry of the eigenvectors
are also used to reduce the complexity of computing the needed
eigenvectors

3) exploiting symmetries in the commuting matrix to develop a
real-arithmetic implementation.



These refinements are further applied to the QMFD chirp parameter
estimation technique to: (a) compare the real-arithmetic version with
the standard implementation of the commuting matrix approach, and
(b) compare the performance of the refined QMFD approach with
the Grunbaum approach in terms of the associated MSE.

II. QMFD REFINEMENTS

A. Improved Matrix Conditioning

As shown in Fig. (1), the condition number of the commuting
matrix associated with the Grunbaum method [7], [9], the QMFD
approach [6], and the S matrix [8] approach increases and all three
approaches suffer from bad conditioning at larger matrix orders. This
specifically causes a loss of orthogonality in the eigenvectors obtained
from the MATLAB eig.m function.

The conditioning of the matrices can be improved by simply adding
a multiple of identity to the commuting matrix. While this modifies
the eigenvalues of the commuting matrices, this does not affect the
underlying eigenvectors since the underlying commuting matrices are
symmetric:

Tnew = Told + cI = V (Λ + cI) VT (6)

The condition number of the diagonally modified matrix is given by:

ηn =
λmax + c

λmin + c
=
ηo + c

1 + c
, (7)

where ηn is the desired condition number and ηo is the old condi-
tion number. Other approaches such as rescaling and permutations
for improving matrix conditioning with the objective of solving
a linear system of equations embodied in the MATLAB function
equilibrate.m will affect the underlying the underlying eigen-
vectors. Since the objective of the commuting matrix approach is
the orthogonal set of CDFT/DFT eigenvectors, we will not take this
approach and instead use the diagonal modification approach.

B. Reduction of the Eigenvalue Problem

The CDFT eigenvectors are solutions to the eigenvalue problem:

TcVc = ΛcVc,

where Tc is the commuting matrix that is devoid of eigenvalue
degeneracy and Vc is the matrix of CDFT eigenvectors, whose
columns resemble discrete versions of Gauss-Hermite functions. In
the case of the Grunbaum commuting matrix, Tc is a symmetric
tridiagonal matrix, while for the QMFD approach the commuting
matrix is a full symmetric matrix. In both these cases, the matrix of
eigenvectors has even and odd symmetry.

Consequently the eigenvalue problem can be reduced to a smaller
eigenvalue problem for the even and odd eigenvectors. Upon in-
corporating the symmetry and anti-symmetry into the matrix of
eigenvectors we obtain the reduced eigenvector systems as described
in [10]:

(Ta + Tb) Ve = ΛeVe

(Ta −Tb) Vo = ΛoVo, (8)

where Ve is the matrix containing half of the symmetric eigenvec-
tors and Vo is the matrix containing half of the skew-symmetric
eigenvectors. The matrices Ta and Tb are given by:

Ta =


T (1, 1) T (1, 2) . . . T (1, N

2
)

T (2, 1) T (2, 2) . . . T (2, N
2

)
...

... . . .
...

T (N
2
, 1) T (N

2
, 2) . . . T (N

2
, N

2
)



and

Tb =


T (1, N) T (1, N − 1) . . . T (1, N

2
+ 1)

T (2, N) T (2, N − 1) . . . T (2, N
2

+ 1)
...

... . . .
...

T (N
2
, N) T (N

2
, N − 1) . . . T (N

2
, N

2
+ 1)


These matrices can in turn be expressed in terms of the exchange
matrix as [10]:

Te = Ta + Tb = Ta + TcJ,

To = Ta −Tb = Ta −TcJ, (9)

where Tc is the principal minor:

Tc =


T (1, N

2
+ 1) T (1, N

2
+ 2) . . . T (1, N)

T (2, N
2

+ 1) T (2, N
2

+ 2) . . . T (2, N)
...

... . . .
...

T (N
2
, N

2
+ 1) T (N

2
, N

2
+ 2) . . . T (N

2
, N)

 ,

and J is the exchange matrix with the same dimension as these
matrices, Both of these matrices Ta and Tc are principal minor
matrices of T, are of dimension N

2
× N

2
, so the effective eigenvalue

problem has been reduced to 2 smaller eigenvalue problems. Once
Ve and Vo are extracted from Eq. (8), Vc can be constructed from
even and odd symmetry.

C. Real-Arithmetic Implementation

The standard QMFD commuting matrix has elements defined via
the almost Toeplitz operator[13]:

T (1)
rs =


4π

N2

N−1∑
l=0

(l −m)2 +
2π

N
(r −m)2 r = s

4π

N2

N−1∑
l=0

(l −m)2W
(l−m)(r−s)
N r 6= s,

(10)

where m = (N − 1)/2. In our implementations N is even and
specifically N = 2ν , since we employ radix-2 FFT algorithms [1].
The quadratic factors in the above expression are symmetric about the
midpoint: l = m. This means that the sums in the above expression
can be simplified further to yield:

T (2)
rs =


4π

N2

m∑
l=0.5

(l −m)2 +
2π

N
(r −m)2 r = s

4π

N2

m∑
l=0.5

(l −m)2 cos(2π(l −m)(r − s)/N) r 6= s,

(11)
These expressions are equivalent from a infinite precision arithmetic
viewpoint, the primary difference between the two expressions is that
the original QMFD commuting matrix is defined via N -point sums,
while the real-arithmetic version only has N

2
-point sums, resulting in

lesser round-off error. As we will see, the resulting chirp parameter
estimates will have significantly different performances from a MSE
point of view.

If we further incorporate windowing of the diagonal position
operator Q with Kaiser windowing [13]:

T (2)
rs =


4π

N2

m∑
l=0.5

(l −m)2w2[l] +
2π

N
(r −m)2w2[r], r = s

4π

N2

m∑
l=0.5

(l −m)2 cos(
2π

N
(l −m)(r − s))w2[l], r 6= s,

(12)
where w[r] is the window used to mitigate truncation effects.
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Fig. 1. Improved matrix conditioning: (a) Condition numbers for various CDFT commuting matrix approaches and (b) condition numbers before and after
diagonal modification with c = 5, depicting a significant decrease in condition number.
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Fig. 2. Difference between T1 and T2: (a) norm of the difference between columns of T1 and T2 and (b) symmetric difference of. the eigenvalue spectrum
of T2. These clearly depict the equivalence between the two matrices.

Fig. (2)(a) depicts the norm of the difference between the columns
of the two versions of the QMFD commuting matrix and Fig. (2)(b)
depicts the symmetric difference of the eigenvalue spectrum of the
matrix T2 confirming that they are indeed the same apart from
numerical precision differences.

Fig. (3)(a,b) depict the MSE of the center-frequency and chirp-rate
estimators of both the original and the real-arithmetic implementation
of the QMFD commuting matrix for N = 128 and M = 256
averaged over 2400 experiments. Fig. (3)(c,d) depict the MSE of
the parameter estimates for N = 128 and M = 512. These results
clearly indicate a significant improvement of about 20 dB for the
center-frequency estimates and 40 dB for the chirp-rate estimates in
terms of the MSE between the original QMFD and its real-arithmetic
implementation for the former setting and about a 25 dB improvement
for both parameter estimates in the latter setting. Henceforth in this
paper, we will use the real-arithmetic QMFD implementation.

III. DISCUSSION

Upon incorporating diagonal modification with c = 5, the eigen-
value reduction technique into the real-arithmetic implementation of
the QMFD approach to chirp parameter estimation, we can now study
its performance for large matrix orders M , where M is the duration
of the signal after zero-padding symmetrically on both sides. We
specifically apply the refined approach for M = 4096 and 8192,

large values for the matrix size, that would have normally resulted in
orthogonality issues in the computed eigenvectors and computational
bottlenecks due to the size of the eigenvalue problem.

Fig. (4)(a,b) depict the MSE of the QMFD chirp parameter esti-
mates using the proposed approach for smaller values of M , clearly
showing a steady movement of the MSE of the chirp parameter
estimates towards the corresponding CRLB values as the matrix size
increases. Fig. (4)(c,d) depict the performance of the QMFD approach
for larger matrix sizes using the approach presented here. Simulation
results depict a clear and steady movement of the MSE of the QMFD
chirp parameter estimates towards the CRLB for both estimators and
a clear improvement in the MSE performance at lower SNR’s with
increased zero-padding length M .

Figure (5) depicts the performance of the Grunbaum commuting
matrix approach chirp parameter estimates for M = 2048, M =
4096, and M = 8192 using the refinements presented in this work
averaged over 2000 experiments. Simulation results depict a similar
movement of the MSE of the parameter estimates towards the CRLB,
as observed with the refined QMFD approach, with improvement at
lower SNR values and a slight increase in the MSE at higher SNR
values, with increase in M , for both parameter estimates. For the
same chirp parameter set, it can be seen that the QMFD approach
produces smaller MSE’s, at larger matrix sizes in comparison to the
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Fig. 3. Comparison between QMFD implementations: (a,b) MSE of center-frequency estimators in relation to the CRLB and (b) MSE of the chirp-rate
estimators for N = 128 and M = 256 in relation to the CRLB, (c,d) MSE of estimators for N = 128 and M = 512.

Grunbaum approach.

IV. CONCLUSIONS

In this paper, we have presented several refinements to the basic
QMFD approach towards chirp parameter estimation intended to
address commuting matrix ill-conditioning issues and computational
complexity issues associated with eigenvalue decomposition for large
matrix orders. These refinements were incorporated into the QMFD
approach and used to show that the MSE performance of the QMFD
real-arithmetic version is significantly superior to that obtained via
the standard QMFD implementation. It was also shown that with the
aid of these refinements, the MSE’s of the QMFD chirp parame-
ter estimates approach the corresponding CRLBs for larger matrix
orders.
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Fig. 5. Comparison of the MSE performance of the chirp parameter estimates of the Grunbaum approach for M = 2048, 4096, 8912 with c = 5, in
comparison to the CRLB, obtained by averaging over 2000 experiments.
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