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Abstract

Current methods for combining different images produce visible artifacts when the sources

have very different textures and structures, come from far view points, or capture dynamic

scenes with motions. In this thesis, we propose a patch-based synthesis algorithm to plau-

sibly combine different images that have color, texture, structural, and geometric incon-

sistencies. For some applications such as cloning and stitching where a gradual blend is

required, we present a new method for synthesizing a transition region between two source

images, such that inconsistent properties change gradually from one source to the other.

We call this process image melding. For gradual blending, we generalized patch-based

optimization foundation with three key generalizations: First, we enrich the patch search

space with additional geometric and photometric transformations. Second, we integrate

image gradients into the patch representation and replace the usual color averaging with a

screened Poisson equation solver. Third, we propose a new energy based on mixed L2/L0

norms for colors and gradients that produces a gradual transition between sources without

sacrificing texture sharpness. Together, all three generalizations enable patch-based solu-

tions to a broad class of image melding problems involving inconsistent sources: object
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cloning, stitching challenging panoramas, hole filling from multiple photos, and image

harmonization.

We also demonstrate another application which requires us to address inconsistencies

across the images: high dynamic range (HDR) reconstruction using sequential exposures.

In this application, the results will suffer from objectionable artifacts for dynamic scenes

if the inconsistencies caused by significant scene motions are not handled properly. In

this thesis, we propose a new approach to HDR reconstruction that uses information in all

exposures while being more robust to motion than previous techniques. Our algorithm is

based on a novel patch-based energy-minimization formulation that integrates alignment

and reconstruction in a joint optimization through an equation we call the HDR image

synthesis equation. This allows us to produce an HDR result that is aligned to one of the

exposures yet contains information from all of them.

These two applications (image melding and high dynamic range reconstruction) show that

patch based methods like the one proposed in this dissertation can address inconsistent

images and could open the door to many new image editing applications in the future.
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Chapter 1

Introduction

1.1 Motivation

Recently due to popularity of digital photography, much research has been dedicated to

image editing. Consequently, the variety of applications for editing images has grown

considerably. We can divide these applications into two main categories: first, the ones

operating on a single image as their input to generate a new one based on a task; and

second, the ones that take extra images and combine their inputs to generate new ones. See

Figure 1.1 for some image editing examples. Image completion is an instance that fits into

the first category where the algorithm has to remove part of an input image and synthesize

new content to fill the missing region. For the second category, there is image cloning

where the goal is to transfer part of content of an image into another one, seamlessly. In

the rest of this thesis, many more applications will be shown for both categories.

Although several popular tools exist for many existing image editing tasks that often work

well in their target applications, they each have limitations in a general image manipu-

lation framework. These tools cannot be applied to problems other than those for which

they have been designed and they are usually fundamentally limited to consistent sources

1



Chapter 1. Introduction

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Image editing examples. (a-c) Image completion as an example for single
source image editing (a) an original image (the butterfly is covered by the grass)(b) mask
image (the magenta shows the “hole” regions (c) hole filled image (the algorithm used
the rest of the image to reconstruct the missing region.) (d-f) Object cloning, instance of
multi-image editing category (d) source image, (e) target image, (f) the hole from source
is seamlessly cloned into the target image and colors and structures are adjusted.

where the source have geometric and photometric similarities. In this thesis, we are trying

to solve the inconsistency problem that may exist between the input sources. By “incon-

sistent”, we mean that the image contents can have different orientations, scales, exposure,

color palettes, or textures, making the matching and combination processes difficult. This

inconsistency can happen even in a single image where the content inside that cannot be

used without any extra steps. By applying the new introduced framework on several differ-

ent applications, we will demonstrate how we can improve the quality of state-of-the-art

methods specifically designed for those problems. In this thesis, we will also demonstrate

several types of image combinations. In applications such as stitching the goal is to spa-

tially blending different sources together with a seamless and gradual spatial transition

from one source to the other(s). In applications such as morphing, a temporal blend hap-

2



Chapter 1. Introduction

Figure 1.2: Chain of patches. illustrating how constraints flow through all patches. The
circles represent pixels and the shaded ones show the ones that have constraints like the
ones located at boundaries. The patches overlapping each other share some pixels and for
the good match all the pixels have to well-present the patches consisting that pixel so the
patches are now connected with these pixels and through this, data propagates through
the chain of pathes (taken from Wexler et al. [1]).

pens between sources in a way that when the frames for synthesis get closer to each of the

sources, they have to look more similar to them and therefore the combination appears in

time. Also, for High Dynamic Range (HDR) reconstruction, we will show how we can

look at the problem as a mixture problem in the irradiance domain. We will present many

of these combinations as an unified energy optimization framework and generate state-of-

the-art quality result by optimizing that target function. See Figure 1.3 for some examples

of different types of blending.

1.2 What is patch-based image synthesis?

This thesis is based on the patch-based family of algorithms which means that instead of

looking at individual pixels we examine w×w patches where w is the width of the patch.

Unlike the blocks of pixels used in many image processing applications (e.g., graph cut

textures [2]), these patches can and do overlap because every pixel is considered to have

a w × w patch around it. The patch is a block of local pixels and has been proven to be

3



Chapter 1. Introduction

a successful tool in solving many existing problems as we will describe later. Here, we

always approach the problems by first defining an energy function for that problem and

then developing an algorithm to optimize that function in order to generate a plausible

result. As we will explain later, in all of the applications we solve the problem by going

down-hill to a local minimum by reducing the function iteratively. The convergence is

guaranteed in this method because we always enforce the algorithm not to increase the

energy function. Our energy minimization technique is built upon an existing work [3] but

we altered the strategy to adapt it to our new proposed energy function.

In Section 2.5 , we will briefly represent the history of patch-based methods and discuss

how they have evolved until they get to their current state. Figure 1.2 which was taken

from the seminal work by Wexler et al. [3] shows how the constraints flow in a chain of

patches. Intuitively speaking, the good match/synthesis happens when each patch agrees

with its neighbors on every pixel it shares with them. Because the neighbors themselves

need to be consistent to their own neighbors, the consistency constraint flows over all the

patches so in the end if the algorithm can come up with a good solution, it usually produces

a plausible result for the problem.

Most of the patch-based algorithms have two main stages: 1) nearest neighbor search, and

2) synthesis stage. In the first stage, the algorithm looks for the best suited patches for

the target regions and in the second stage it uses the found patches and combine them

to produce content for the region. In this thesis, we are mostly interested in the second

part and we rely on existing fast search algorithm that introduced in [4]. In the Ph.D.

thesis by Connelly Barnes [5], he introduced new fast randomized algorithm to search

nearest neighbor patch(es) but in that work the concentration was around the first stage

(the search) and the synthesis part was kept the same as before. Instead, in this thesis

we are mostly looking into the synthesis part as we generalize the current techniques to

broaden the applicability of this family of algorithms. We will show how we can reduce

many existing problems in computer graphics and computer vision areas into a simple
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energy minimization optimization framework and produce similar and in many cases better

results comparing to the state-of-the-art existing method that was developed to solve that

specific problem.

1.3 Overview

Here, we give a brief overview of the remainder of this thesis.

1.3.1 Previous work

In Chapter 2, we will review the most common existing editing tools for image editing

and blending. Image pyramids, gradient based techniques, graph cuts, texture synthesis,

and patch-based methods are involved in most of the advanced image editing tasks. In

this chapter, we do a short literature review for those techniques and will talk about the

strengths and shortcomings of each of them.

1.3.2 Image Melding

In Chapter 3, we will explain our new approach for novel way to combine images using

image synthesis concepts. There we will introduce the new concept of “image melding”

which is about a new texture interpolation technique that can be applied on natural images

without any assumption on homogeneity of underlying texture. Our synthesis is based

on generalizing existing methods by changing their core energy function. There are three

main differences between the proposed algorithm and its ancestors. First, we allow the

algorithm to apply many geometrical or photometrical operations in addition to simple

translation to let the algorithm cope with the large appearance and textural differences in

our examples. Second, we will show how by adding gradient channels into our features,
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we could incorporate advantages of using Poisson blending inside patch-based techniques.

Finally, we will show how we can enforce gradual textural transfer by adding a term into

our optimization function.

1.3.3 Patch-based High Dynamic Range image reconstruction

In Chapter 4, we will talk about an alternative way for blending images together. We will

introduce a novel way of looking at HDR image reconstruction. In the proposed approach,

the combination happens in irradiance domain and we will show how we can reduce HDR

reconstruction to be a patch-based image summary problem. In this way, we could produce

high quality HDR images despite the existence of motion of non-rigid objects. There, we

will compare our technique with many existing algorithms in the area and show superior

result for many challenging examples.

1.3.4 Conclusion and future work

We conclude by discussing future work that could be done using our core ideas in synthe-

sis, and potential future applications. Also, we will discus some of the problems of our

technique and suggest some of the solutions that can improve our algorithm results. We

believe our framework can solve many more existing challenging problems in the field and

we will name some of the possible applications in this chapter.

1.4 Contributions of this thesis

The contribution of this dissertation is the first demonstration that patch-based optimiza-

tion algorithms can be used to address the synthesis problem when images have incon-

sistencies. To do this, we extend traditional patch-based optimization by making it more
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flexible to allow for rotation, scale, exposure differences, and other inconsistencies. We

demonstrate two general set of applications:

1. Proposing a patch-based synthesis algorithm, to plausibly combine different im-

ages that have color, texture, structural, and geometric inconsistencies and gradually

transforming one to another.

2. To address the problem of HDR image reconstruction from a set of LDR bracketed

exposures, we introduce a novel patch-based energy-minimization formulation that

integrates alignment and reconstruction in a joint optimization through an equation

we call the HDR image synthesis equation.
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Exposure

(c)

Time(b)

Spatial coordinate

(a)

Figure 1.3: Different examples of mixing images. (a) Stitching as an example of spatial
blending; (b) Morphing as an example of temporal blending , and (c) HDR reconstruction
as an example of blending images in the irradiance domain.
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Previous work in image editing

In this chapter we review the previous work for image editing that is related to the subject

of this dissertation, such as graph-cut, patch based, gradient, texture synthesis, and image

pyramids.

2.1 Image pyramids for blending

The seminal image stitching work by Burt and Adelson [6] introduced the process of

combining images by a pyramidal image decomposition, merging its levels and collapsing

back to obtain a fused/blended result. One known limitation of the methods in this family

is the artifacts around strong edges due to inconsistent treatment of the different levels, but

these limitations have recently been addressed [7, 8].

Currently, this family of algorithms have been used mostly for image tonal adjustment as

well as detail enhancement/reduction [7]. Also, these methods can be applied as a post pro-

cessing filter to make the details hidden in irradiance (that has high dynamic range) more

stand out when mapping it back to a regular low dynamic range format for display [7].

Recent work by Wu et al. [9], smartly used Laplacian filters both temporally and spatially
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to exaggerate temporal differences between video frames and as the result it could reveal

many hidden details such as blood flow changes due to heart beat in a regular video clip.

Image Harmonization [8] improved the combination process by smoothing the histogram

matching edits across the pyramid levels, and they finally add the noise of one sources to

the other one to make the composition more coherent. The technique shows impressive

results of transferring the reference coarse structure and blending it nicely with the sur-

rounding colors, as well as rendering similar noise patterns to the target image. However,

their ability to render textures is limited to matching statistics of the very fine textural fre-

quencies. Our method shows similar or better results in typical examples but can handle

more challenging textures and structures all the way to “pure” texture interpolation.

2.2 Gradient-based image editing

Gradient-domain compositing was introduced to the imaging community by Pérez et al. [10]

and has since become the standard for seamless compositing for image stitching [11] and

object cloning [12]. As we will show later, this family of algorithms is a strong tool for hid-

ing the color differences when compositing images with different color palettes. Relying

on gradients for synthesis constrains the algorithm to distribute the errors uniformly over

all parts of the image. Because human are more sensitive to abrupt changes comparing to

gradual variations, it is harder for us to see the errors in gradient-based technique.

Pérez et al. [10] showed different ways for blending using gradients. For instance, in the

cloning application, the composite gradients is set to be the gradients of the source image

for the parts coming from the source. Also, at boundaries the colors have to be colors

of target image. In this way, target image and cloned part will have the same color at

boundaries and the the correction of the colors we transfer form the other image will be

smoothly interpolated over the hole area. This algorithm works well when the source and

target have no high frequency details like hard edges. Color bleeding is a well-known
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artifact for this technique when the boundary happens at edges because in this case the

difference is big and this error affects big region of the image. Some researches has tried to

address this issue such as in Farbman et al.’s paper [13] where it allows user interaction and

where with some strokes he/she can tell where not to propagate the errors. Tao et al. [14]

proposed an adaptive method to hide the error at parts with more details where the users

are less sensitive on the error.

Due to the wide usage of this family of algorithms, numerous acceleration techniques

have been developed [12, 13, 15]. Agarwala et al. [12] proposed quad tree structures to

solve the Poisson linear equation. Farbman et al. [13] suggests that instead of solving

the least square problem, simple interpolation can give a similar result. They proposed to

use Mean-Value coordinates for error interpolation. They also used an adaptive triangu-

lation to accelerate the the process. Also, parallel computation using GPU was explored

by McCann and Pollard [16]. They reached real-time performance and therefore they

enabled users to draw with gradients and get real-time feedback about the result. Later,

Farbman et al. [15] also reached real-time performance with only using CPU. In their ap-

proach, instead of solving the least square problem for the whole image, they break the

solver to the recursively filtering an image with a filter that has small footprint. As we will

explain later, we approached to our problem in similar way as they did to solve our least

square equation.

Beyond blending applications, gradients have a wide range of uses for image editing area.

Many de-blurring techniques use a regularization for gradients of the output such as [17].

Usually, these regularizers put a norm lower than two-norm on the gradients to get a

sharper result.

If the linear equation for editing contains a function and its gradient at the same time,

the equation is called the screened Poisson equation. Bhat et al. [18] showed impressive

results when applying different functions on color and gradients separately and then com-

bine them together suing screened Poisson. Similar filtering effects have been shown by

11



Chapter 2. Previous work in image editing

Xu et al. [19] when applying L0 term on gradients.

In addition to being a powerful synthesis tool, gradients are also commonly used for fea-

ture extraction due to their invariance to the lighting conditions [20]. Also, in texture syn-

thesis community, gradients have been commonly selected as feature mostly to find a good

warp field [21]. To our knowledge, however, gradients have not been used for synthesis

in texture synthesis algorithms. Also, gradients are efficient guidelines for segmentation

algorithms in applications that separating different regions of an image is of users interest

such the work in [2].

2.3 Graph cuts

In computer vision, graph cuts were first applied by Gerig et al. [22]. Although graph cuts

were originally designed for binary labeling problems, Boykov et al. [23] showed that it

could also be extended to more general cases. In the general case, the solution is not the

global minimum answer and it is an approximation, but it has been proven to be a strong

tool for solving computer vision problems.

Graph cuts were introduced to graphics by Kwatra et al. [2] to seamlessly combine textures

and stitch images. Kwatra et al. include a search for only a few discrete rotations, scales

and a reflection. This search helped the algorithm alleviate repetition artifacts. In contrast,

our method includes the continuous-domain transformation search as part of our global

optimization formulation.

Agarwala et al. [24] combined gradient domain blending with graph cuts to seamlessly

combine different sources together at interactive rates for a variety of compositing appli-

cations. This framework has been successfully used for stitching unrelated photos with

roughly similar overlapping regions [25]. The main limitation of these methods is their

inability to deform the inputs when combining images with large viewpoint, textural or
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structural differences. As mentioned before, misalignments can cause “color bleeding”

artifacts in the gradient blending step [14].

ShiftMap [26] is a recent graph cut based image editing method that showed some im-

pressive image completion, retargeting and reshuffling results but it can not be extended to

general transformations of the source data. This method uses graph labeling to decide how

to rearrange and image to put it in a new context and also uses gradients as an extra feature

for labeling. ShiftMap and PatchMatch can produce similar results when carefully tuned,

but ShiftMap cannot be extended to general transformations of the source data. Similar

algorithm has been proposed by Gal et al. [27] to seamlessly blend different sides of a

texture taken from different views.

2.4 Patch-based synthesis

Patch-based synthesis methods have become a popular tool for image and video synthesis

and analysis. Applications include texture synthesis, image and video completion, retar-

geting, image reshuffling, image stitching, new view synthesis, morphing, denoising and

more. We will next review some of these applications.

Efros and Leung [28] introduced a simple non-parametric texture synthesis method that

samples patches from a texture example and pasting them in the synthesized image. Later

research modified the search and sampling approaches for better structure preservation [2,

29, 30, 31]. The greedy fill-in order of these algorithms sometimes introduces inconsis-

tencies when completing large holes with complex structures, but Wexler et al. [32] (and

later Kwatra et al. [33]) formulated the completion problems as a global optimization, thus

obtaining more globally consistent fills in larger missing regions. All of the synthesis ap-

proaches in this thesis belong to this family, but addresses robustness to the presence of

slight orientation, scale, illumination or color deviations of the source patterns with re-

spect to their desired appearance inside the hole. By adding an additional objective term
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Figure 4.12: This scene (from Gallo et al. [2009]) has moving people that are different in
every frame. We show the results of the deghosting methods of Gallo et al. (left) and Pece
and Kautz [2010] (middle) using images provided by the authors. The former has visible
block artifacts because of the way they detect motion in a per-block basis, and the latter
leaves much of the ghosting. Our method (top and right) can remarkably reconstruct most
of the moving people, but it has artifacts as well. These appear as “washed out” regions
where our algorithm only had information from one LDR image because the people in the
reference disappeared.
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Input reference Input high Zimmer reconstruction high Our reconstruction high Zimmer HDRI Our HDRI

Figure 4.13: Here we compare the reconstruction and HDRI results of our method with
Zimmer et al. [1] method. We gave the images to the authors and they ran their code on
them. Zimmer et al. method is not able to reconstruct the moving objects (e.g. the man
and reflection of him on the piano) which appears as ghosting in the final HDR image.
Our method, however, can produce high quality results.

Our HDRI Zimmer HDRI

Figure 4.14: This image shows the comparison of our results with Zimmer et al. method
on their failure case. Our method can reconstruct the people and cars well, but Zimmer
et al. method cannot handle these regions because of the large motion. Furthermore, our
method is able to bring more HDR information which can be seen by comparing the details
on the clouds.
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Conclusions

We showed a general patch-based synthesis framework that handles inconsistencies within

and across image sources. It combines principles from patch-based synthesis with gradient

domain blending and texture interpolation into a unified powerful synthesis engine. We

also show that the different components work in harmony and complement each other.

For example, when using only translations, the use of the L2 norm on gradients might

lead to blurry results due to lack of accurate matches. However by allowing geometric

and appearance deformations this problem goes away - L2 on gradients works well and

results in a much simpler and faster optimization. We originally designed the method to

handle multiple sources with substantial inconsistencies for challenging stitching, cloning

and morphing problems, however it was found extremely useful also for single source task

such as image completion and warping.

We have also presented a novel framework for HDR reconstruction based on a new energy-

minization equation called HDR image synthesis equation that crystalizes the objective of

many HDR imaging approaches: to produce an HDR image that coherently uses all the

content in the input exposures but is properly matched to one of them. We have shown that

this approach is more robust than previous work in cases where the motion is complex,

such as when a moving object is reflected of a surface, and can handle a wide range of
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natural images succesfully.

In summary, the contributions of this thesis include:

• Introducing a general patch-based synthesis framework that can handle inconsistent

sources in color, texture, local orientations and scale.

• Combining patch-based and gradient domain techniques in a unified optimization

framework.

• A new patch-based blending method which can be used to spatially and/or tempo-

rally interpolate textures and general images.

• Introducing a novel patch-based energy-minimization formulation that integrates

alignment and reconstruction in a joint optimization through an equation we call

the HDR image synthesis equation.

• Extending the operating range of many existing image editing techniques through

our general framework: same-source hole filling, multi-source hole filling, texture

interpolation, stitching, image cloning, image warping, and automatic morphing,

HDR reconstruction.
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[2] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut textures: image
and video synthesis using graph cuts,” in SIGGRAPH, SIGGRAPH, (New York,
NY, USA), pp. 277–286, ACM, 2003.

[3] Y. Wexler, E. Shechtman, and M. Irani, “Space-time completion of video,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 29, pp. 463 –476,
march 2007.

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “PatchMatch: A ran-
domized correspondence algorithm for structural image editing,” ACM Transactions
on Graphics (Proc. SIGGRAPH), vol. 28, Aug. 2009.

[5] C. Barnes, PatchMatch: A Fast Randomized Matching Algorithm with Application
to Image and Video. PhD thesis, Princeton University, USA, 2011.

[6] P. J. Burt and E. H. Adelson, “A multiresolution spline with application to image
mosaics,” ACM Trans. Graph., vol. 2, pp. 217–236, October 1983.

[7] S. Paris, S. W. Hasinoff, and J. Kautz, “Local laplacian filters: edge-aware image
processing with a laplacian pyramid,” in SIGGRAPH, SIGGRAPH, (New York, NY,
USA), pp. 68:1–68:12, ACM, 2011.

[8] K. Sunkavalli, M. K. Johnson, W. Matusik, and H. Pfister, “Multi-scale image
harmonization,” in SIGGRAPH, SIGGRAPH, (New York, NY, USA), pp. 125:1–
125:10, ACM, 2010.

[9] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. T. Freeman, “Eu-
lerian video magnification for revealing subtle changes in the world,” ACM Trans.
Graph. (Proceedings SIGGRAPH 2012), vol. 31, no. 4, 2012.

81



References
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