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ABSTRACT 

This community-based research project examined the geospatial and temporal grazing patterns of 

domesticated livestock to model individual-level exposure potential to abandoned uranium mine 

(AUM) waste in an Tribal community in the southwest United States. Lotek Litetrack Global 

Positioning System (GPS) collars collected data at a 20-minute-interval for 2 flocks of sheep and 

goats during the Spring and Summer of 2019. Depending on the flock and individual animals, 

tracking time ranges from 10 days to four months. This research developed a GIS-based  

exposure potential framework that built on existing methodologies in time geography, GIS, and 

exposure mapping. The aims were to: 1) classify GPS data from livestock into into three 

behavior subgroups - grazing, traveling or resting;  2) estimate the potential environmental 

exposure for each animal, informed by behavior classifications, using GIS-modeling and parallel 

computing methods; and 3) quantify the uncertainty in both livestock behavior classification and 

modeled exposure potential. Results demonstrated no significant difference in individual   



iv 

cumulative exposure potential within each flock when behaviors were considered. When daily 

cumulative exposure potential was calculated without consideration of animal behavior 

significant differences among animals within a herd were observed, which does not reflect 

animal grazing behaviors reported by livestock owners. This suggests that the proposed method 

more closely resembled hypothesized exposure potentials for animals within each flock – 

livestock within the same flock share similar cumulative potential environmental exposures, 

based on observation and livestock owner’s accounts. Therefore, this research demonstrated a 

reliable and robust GIS-based framework to estimate cumulative exposure potential to 

environmental contaminants. This research advances GIS-based research methods for spatial-

temporal GPS analysis in conjunction with environmental health and provides critical 

information to address community questions on livestock exposure to AUMs. Results from the 

research may be used for future intervention and policy making on remediation efforts in 

communities where livestock grazing may encounter environmental contaminants. 
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1. Introduction 

1.1 Hard rock mining history in Cove 

Abandoned hard rock mines are prevalent throughout the western United States. 

These abandoned mines have caused public health concerns because they are 

known sources of deleterious environmental metals such as uranium, lead, 

cadmium, and arsenic. While many different types of ore were mined there remain 

more than 4,000 abandoned uranium mine sites (AUMs) throughout the western 

United States, many of which are proximal to indigenous communities. For 

example, it is reported that “mining companies blasted 4 million tons of uranium 

out of Navajo land between 1944 and 1986. The federal government was the 

primary buyer of the ore to make atomic weapons. As the Cold War threat petered 

out the companies left, abandoning more than 500 mines.” (Laurel, 2016). On the 

Navajo Nation, there are 523 AUMs (Lewis et al., 2017), among which about 50 

are located on Cove Wash watershed. The presence of AUMs in the Cove Wash 

Watershed has caused concerns about exposure to heavy metals and radiation from 

these sites. Local residents are not only worried about their own health but also 

their livestock’s health because livestock remain a critical component of Navajo 

culture. 
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1.2 Health concern of AUM waste 

Previous research has examined health outcomes and human exposure to AUM 

waste (Hund et al., 2015). Living in an area close to AUMs will increase the 

probability of getting cardiovascular disease, decrease the pregnancy among 

Navajo women, and affect the immune system, etc. (Harmon et al., 2017; Hoover 

et al., 2020; Erdei et al., 2019). Some studies used the chemical method (neutron 

activation analysis) to detect the concentration of uranium inside human body 

(Nozaki et al., 1970; Hernández et al., 2018, Saini et al. 2015) while other studies 

measured environmental concentrations in water, soil to determine how serious 

uranium exposure was for people living or working in the proximity of AUMs 

(Kurttio et al,. 2002; Fitzpatrick et al., 2007; Kheir et al., 2019).  

Previous research also investigated dietary sources of uranium exposure, which 

suggested that 41% of uranium ingested by adults are delivered through beverages, 

33% through vegetable and 26% from animal foodstuff (Anke et al., 2009). Living 

in the Cove, which is aggrieved by the historical reasons, residents are concerned 

about their health if they intake too much uranium through the animal foodstuff 

since they consume their livestock as a food source. Meanwhile, they are also 

concerned about the health of livestock because many people consider their 

livestock to be family members. To answer theses concerns, this research develops 
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a workflow to measure the livestock individual’s environmental exposure potential 

to AUMs. 

1.3 Environmental exposure potential measurement  

To measure exposure accurately among livestock, it is important to consider the 

risk rate of different behavior patterns (Lu et al., 2015).  According to previous 

work, exposure pathways to uranium can be generally classified as respiratory 

exposure, oral exposure, and dermal exposure (Tannenbaum et al. 1948).  

Earlier researchers followed animals to track their behaviors, which encountered 

problems like observer fatigue (Turner et al. 2000). To solve these problems, 

researchers recorded animals’ locations using GPS tracker and classified their 

behaviors using location, time, and the environmental information (Handcock et 

al., 2009; Augustine et al., 2013; Wang et al., 2018). However, the above 

approaches suffered uncertainty issues, which is usually generated from the 

unknown geographic context or inaccuracy in GPS data (Brown 2004). 

In previous studies about exposure to uranium for both human and animals, most 

work does not take individual activities and the time spent in contaminated areas 

into consideration. In recent years, scholars have integrated theories from time 

geography into individual behavior research to estimate the cumulative exposure. 

The cumulative exposure is an indicator describing the total exposure in a long 
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period that the target gets from the contaminated source. It is related to the time 

that the target spends in one place and the risk value in that place. Space-time path 

is one of the approaches to visualize and help understand the total exposure (Lu et 

al., 2015). However, nobody has applied such method for livestock and also 

considered uncertainties when estimating exposure. To answer how much each 

individual livestock is exposed to AUM waste in the study area of Cove watershed, 

this thesis, at the intersection of time geography, GIS/GPS methods, parallel 

computing, and environmental exposure assessment, developed a GIS-based 

exposure assessment framework for livestock through examining the geospatial 

and temporal behavior patterns of domesticated livestock and modeling potential 

cumulative exposure to AUM waste at the individual animal level with 

corresponding uncertainty quantified.  

1.4 Research goals  

The objectives of this thesis were to: 1) examine and visualize the GPS data 

patterns based on environmental factors (e.g. topographic, landcover, distance to 

AUMs); 2) classify livestock behavior patterns using the fuzzy logic; and 3) 

estimate the cumulative exposure risk to AUMs for each animal with probabilities 

information in behavior pattern using high performance computing. The results 

from this study will help answer questions in a larger ongoing community-based 
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research study on potential human health risk from consuming meat and organs 

from livestock grazing in the Cove Wash watershed and therefore inform 

interventions and remediation efforts to address community environmental health 

concerns.   
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2. Literature Review 

2.1 Health effect from AUMs 

Uranium is the heaviest metal in nature. It is silvery white with strong hardness, 

high density, extensibility, and radioactivity. The most common uranium isotopes 

found in the natural environment are: 234U (0.005%), 235U (0.720%) and 238U 

(99.274%). The uranium atom can produce fission reaction and release energy, 

which can be used in power generation, nuclear weapon manufacturing and other 

applications. At present, 22 uranium isotopic forms have been identified, which are 

mainly related to the operation of nuclear reactors or high-energy physical 

experiments (Katz et al., 1961). Due to the extremely important role that uranium 

plays in the nuclear reaction, uranium mining had come to the stage in the middle 

of 20th century (Voyles, 2015).  

The first mining project in Navajo Nation, USA began in February 1944. Oljato 

Mesa, part of Monument Valley, was mined from June to December 1944, which 

produced more than 4,000 pounds of uranium and nearly 6,000 pounds of 

vanadium (Eichstaedt, 1994). In 1948, the US Atomic Energy Commission (AEC) 

announced a price for all uranium ore mined in the United States (Holaday, 1969; 

Brugge and Goble, 2002). Also, as deposits had been discovered near Poison 

Canyon, Shiprock, Launa Pueblo, and other locations, more large companies were 

involved in the mining process including Kerr-McGee Oil Industries, Homestake 
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Mining Company, Phillips Petroleum Company, and the Anaconda Copper 

Company (Eichstaedt, 1994). Mining activities reached the peak between the late 

1950s and the late 1970s. It was not until the mid-1980s that this craze gradually 

calmed down, when the demand of uranium ore declined, and those industries 

began to close (Fettus et al., 2012). Although uranium mining projects ceased, the 

effect of uranium extraction did not stop, as uranium and other chemical 

compositions continued to flow into the food chain to animals and humans. 

According to a report by United States Environmental Protection Agency (EPA), 

the mining projects extracted nearly 30 million tons of uranium ore on or near the 

Navajo Nation from 1944 to the 1986. After the mining industries left Navajo 

Nation and closed the mines, more than 500 mine sites were abandoned in the land, 

among which about 50 abandoned uranium mine (AUM) sites are within Cove 

Wash watershed, a small community of Navajo Nation located in northeastern 

Arizona.  

The health impacts of waste from AUMs comes from radiation and chemical 

exposures. Although natural uranium ore has certain radioactivity, the radiation 

level is very low due to the 4.5-billion-years half-life of the most common isotope. 

For AUM sites, the transport and accumulation uranium and other elements with 

chemical toxic effects constitute the primary environmental health hazard, while 

the radioactivity of uranium is a secondary concern (Meinrath et al., 2003).  
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The average adult body contains about 100 μg of uranium. Most of the uranium 

comes from ingestion of food (especially vegetables, cereals, and edible salt) and 

drinking water, which is about 1.5 μg per day. Metabolic processes result in the 

elimination of 90% of ingested uranium via excreta, while up to 2% is retained in 

organs and other tissues (Priest, 2001). The organ burdens of uranium include the 

skeleton principally with additional accumulation in  muscle and soft tissue, lungs, 

kidney, liver, and heart. Previous research reported that uranium is toxic to these 

organs (Dang, 1995; Craft et al., 2004).  

Rodrigues et al. demonstrated that the uranium accumulation phase in Wistar rats 

would transfer from anabolic to catabolic. And the incorporated uranium’s 

radiation would increase the death rate of bone cells, which is harmful to skeleton 

(Rodrigues et al., 2013). In muscle and soft tissue of Wistar rats, there is no 

significant association between small-sized uranium pellets (2.0 x 1.0 mm) and 

tumor incidence, but large-scale uranium (2.5 x 2.5 mm) significantly increased 

local proliferative response and soft-tissue sarcoma (Hahn, 2002). As for humans, 

the chronic ingestion of uranium in drinking water significantly increased the 

urinary glucose, alkaline phosphatase, and β2-microglobulin in urine after 24 

hours. Greater diastolic and systolic blood pressures are also related to uranium 

exposure and cumulative uranium intake (Zamora et al., 1998; Kurttio et al., 2006). 

Long-term exposure to uranium may increase the possibility of developing chronic 
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kidney disease (Soderland et al., 2010; Semenova etal., 2020). In addition to 

uranium, radon and arsenic, which are generated along with the process of uranium 

mining, are also serious hazards to human health. In different regions, researchers 

have found that the radon and arsenic content near abandoned uranium mines is 

generally high (Vaupotić, 2001; Mudd, 2008; Fijałkowska, 2016; Hoover et al., 

2017; Yazzie et al., 2020). There are sufficient research results demonstrating that 

uranium mining and AUMs are causes of multiple cancers, such as lung cancer, 

bone cancer, and skin cancer (Samet et al., 1984; Gottlieb and Husen, 1982; 

Hornung and Meinhardt, 1987; Mulloy et al., 2001). Living in an area close to 

AUMs may also influence pregnancy outcomes (Hoover, 2020), which is an active 

area of research through the Navajo Birth Cohort Study. In light of these findings 

Cove Community members requested a study investigating the accumulation of 

uranium in animal tissue. In response to this community concern, this study aimed 

to use geospatial technology to determine the cumulative environmental exposure 

potential of livestock that might graze in proximity to AUMs and waste.  

2.2 Adapting time geography and behavior patterns for exposure potential 

assessment 

Geography information system (GIS) provides powerful tools for assessing 

potential exposure to AUMs among the livestock. Tobler’s first law of geography 

has revealed relationship in the spatial dimension -- all things are related, but near 
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things are more strongly related than distant ones (Tobler 1970). With this law, 

researchers could analyze potential exposure to AUMs in different geographic area 

with location-based methods. Simple location-based methods could be point-in-

polygon, buffering, and other distance functions (Moolgavkar 2000; Barbone et al., 

1995; Harrison et al., 1999; Jenelius et al., 2006). Additionally, there are other 

methods like Kriging, inverse distance weighting, regression mapping, etc. to 

create a exposure map with limited data (Zhan et al., 2018; Gong et al., 2014; 

Leelasakultum and Kim 2017). Other scholars have identified limitations in 

traditional methodologies and developed approaches to study exposure, like GIS-

based multi-criteria model, land-use regression model, etc. (Lin et al., 2020; Ryan 

2007; Lu and Fang 2015). However, all these methods were only based on spatial 

dimensions without considering temporal dimensions when applied to livestock 

study, which resulted in less accurate representation or assessment of exposure. 

Moreover, existing approaches suffered uncertainty issues, which is usually 

generated from the unknown geographic context, behaviors,  or inaccuracy in GPS 

data (Brown 2004). As Figure 2.1 shows, an environmental risk map could be 

generated with one of the above methods. When only spatial dimension is 

considered, the total exposure along the livestock pathway could simply be the sum 

of the environmental risk values along the pathway (e.g. E1=R1+R2+R3+R4, where 

E is the total exposure of a livestock and R is environmental risk value at a 
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location). However, in the actual scenario, travel speed is different, and time spent 

at different locations might vary, resulting in a higher cumulative exposure if the 

individual livestock spends a longer time inside a higher-risk area, and vice versa 

(e.g. E2=R1+(T2-T1)*R2+(T4-T3)*R3+R4, where T is time at a location). Thus, the 

total exposure could be different for the same route when time dimension is 

considered. To more accurately estimate potential exposure of livestock, it is 

necessary to apply time dimensions here which is an important concept in time 

geography. Also, livestock behavior patterns need to be considered into because 

different behavior patterns are associated with different exposure routes/rate which 

might further adapt the exposure estimates (e.g. E3=W1*R1+W2*(T2-

T1)*R2+W3*(T4-T3)*R3+W4*R4, where Wi represents the weight of different 

behavior patterns based on their relative contribution to exposure). However, none 

of the above scenarios considered underlying uncertainties in the exposure, 

including but not limited to, GPS locational accuracy, temporal uncertainty, and 

livestock behavior uncertainty. The uncertainties need to be considered for 

accurate representation and assessment of exposure (Kwan, et al., 2018). 
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Figure 2.1 The exposure assessment in spatial-temporal dimension 

 

A Swedish geographer, Hägerstrand, applied the concept of lifeline in demography 

to study population movement with the spatial axes, which then became the 

concept of time geography (Hägerstraand, 1970). With the advocacy of 

Hägerstrand and the Lunde School under his leadership, time geography was 

introduced and popularized at the international scale (Pred, 1981; Raubal et al., 

2004). Miller first developed a network-based space-time prism and accessibility 
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algorithm in 1991(Miller, 1991). For the first time, Kwan used the geographical 

data of transportation network and urban facilities to realize accessibility 

measurement under the geospatial dimension (Kwan, 1998). Weber improved the 

algorithm and the simulation of human activities. According to him, it was 

believed that traffic congestion in the morning and evening rush hours and the 

opening time of urban facilities might become an important restriction on residents' 

activities (Weber, 2003). However, there was still a distance between activity 

simulation and real activity (Kim and Kwan, 2003). It is necessary to both identify 

the behaviors and measure the uncertainty. This thesis is taking behavior patterns 

into consideration, because different behavior patterns are related to different 

exposure rate (𝐸3 = 𝑊1 ∗ 𝑅1 + 𝑊2 ∗ ሺ𝑇2 − 𝑇1ሻ ∗ 𝑅2 + 𝑊3 ∗ ሺ𝑇4 − 𝑇3ሻ ∗ 𝑅3, where 

𝑊𝑖 
represents the weight of different behavior patterns). In this thesis, we focus on 

three behaviors: grazing, travelling, and resting. To identify weights of those three 

behaviors, we need to find out how those three behaviors affect exposure rate. 

Exposure to AUMs could be specified as respiratory, oral, and dermal exposure 

(Brugge et al.,2005). In general, more soluble compounds are less toxic to the 

lungs but more toxic to the inhalation system due to easier absorption from the 

lungs into the blood and transportation to distal organs (Tannenbaum et al., 1948). 

The oral toxicity of uranium compounds has been evaluated in several animal 

species following exposure in drinking water or via grazing. Soil and water 
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contaminated by AUMs are integrated into arable land or absorbed by perennial 

pasture plants, which may be used for cropping, grazing, and hunting. Thus, 

predators who ingest contaminated prey may also be affected by heavy metals and 

radionuclides (Gramss and Voigt, 2014; Anke et al., 2009; Zamora et al., 1998; 

Kurttio et al., 2006). The dermal exposure is related to the length of time of 

exposure, the size of the area that is exposed, and other physical and physiological 

conditions (Craft et al., 2004).  

Because exposure routes are associated with different adverse health outcomes, it 

is necessary to distinguish behavior patterns, especially among grazing, resting, 

and travelling (Brugge et al.,2005). When livestock are grazing, possible exposure 

routes might involve respiratory, oral, and dermal exposure. When the individual is 

resting, exposure route might only include oral and respiratory exposure. When 

travelling the route might also contain oral and respiratory exposure.  

Once those three different behavior patterns have been classified, methods from 

time-geography can be integrated to further analyze the potential accumulation risk 

of exposure to AUMs at each time. Previous work investigating the accumulation 

of uranium and other radioactive chemicals in animal tissue identified significantly 

higher concentrations in cattle from mining areas (Lapham, 1989). This work, 

however, did not account for animal movements throughout a contaminated area. 

In the Cove Wash Watershed, grazing animals may move throughout the 
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watershed suggesting various exposure pathways with different duration and 

intensity. Not only the degree of environmental pollution, but also the 

accumulation of mine wastes in livestock are related to time each livestock spends, 

therefore it is very important to consider time dimension and methodology from 

time geography in this thesis.  

2.3 Apply fuzzy logic to behavior pattern classification  

The first attempt to track animals and record their behaviors is in situ investigation. 

Early methods relied on human observation of natural (color patterns) or artificial 

features (colored collar or tag) to identify the individual animal. Problems occurred 

in these methods, including observer fatigue and associated error, study area 

accuracy and physical limitations, external factors, and observer proximity effects 

on animals (Turner et al., 2000).  

It was challenging to discern an individual livestock from a herd based on its 

natural features (like color patterns, height or special spot) (Rife et al., 2001). 

Therefore, new methods have been developed to address the above issues, 

including attaching a marker to an animal which had no or limited influences on 

animals to make animals recognizable. However, disadvantages still exist in such 

methods. For example, observer proximity effects would arise because animals 

would sense that there was an intruder to their habitat and would change their 

routine such as switching places for preying, migrating to other areas to build a 
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new “home”, or being more vigilant to prepare for any emergency caused by the 

“intruder”. Strategies were developed to limit such observer proximity effects by 

decreasing the frequency of occurrence in the animal’s territory and by increasing 

the distance from the animals for minimum disturbance. This method, however, 

would impair the accuracy of results such as missing important behavior patterns 

due to a lower frequency of observation as well as more fatigue due to observing 

from a farther distance.  Therefore, there is a trade-off between accuracy and 

observer proximity effects (Mech, 1983).  

Global Position System (GPS) is one of the best solutions. GPS was initially 

designed for the military and users could obtain positions through earth-orbiting 

satellites. Because there are more than 24 satellites distributed in orbits where at 

least 5 satellites are reachable and generate/transmit signals from any area on the 

earth at any time, regardless of the influence of external factors such as terrain and 

weather, GPS can achieve global full-time accurate positioning. Due to these 

advantages in GPS, research has replaced the livestock markers discussed above 

with GPS collars. 

A previous study developed different time intervals to record animal behaviors 

with GPS collars (Hull et al., 1960). It revealed that major behavior patterns — 

grazing, ruminating, and idling —observed animals to remain in a particular 

behavior pattern until the next time interval. It was noticed that there were highly 
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significant differences in individual animal behavior patterns over a 24-hour 

period. According to previous research, the best interval to observe animal was 15 

to 30 minutes. Normally, GPS devices can send and receive signals at an interval 

from every few seconds to every few hours, which suits the requirement for 

obtaining accurate data.  

GPS collars have been used to record animal locations at high temporal frequency, 

which allows detecting animal behavior patterns and interactions between animals 

and the environment (Allan, 2013). Previous studies have overlain animal locations 

with land use types to find out frequencies of staying at different places (Turner, 

2000). For example, animal GPS locational points are clustered at two places, of 

which one is already known as the fence and the other is known as a camp, then it 

can be concluded about how much time animals spend in resting, grazing and other 

behavior patterns. 

Some researchers explored the concept of wireless sensor networks (Handcock et 

al., 2009; Xu, 2014). Wireless sensor networks are consisted of groups of devices 

which are distributed around a research area and can generate various variables as 

well as the correlation with nearby devices. This method can monitor animals’ 

behavioral preferences, quantify social behavior, and integrate coordinates and 

environmental information to understand animal-landscape interactions.  
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GPS points can also be used to detect the home range of species. Home range 

identifies where the animals are, why they are there and where else they could be 

using methods such as kernel function, classification tree, etc. (Aarts et al., 2008; 

Augustine and Justine, 2013; Fleming et al., 2015). With long-time period data, 

home range generates animals’ migration pattern and answers questions about 

where the origin is, where the destination is and the route between them. With 

short-time period data, the home range can classify active area into different 

regions such as resting, drinking, or eating area.  

However, the behavior classifications based on the GPS points have a certain 

inaccuracy, since using GPS points cannot completely restore the scene. Thus, 

scholars adapt fuzzy logic to help identify different behavior patterns from 

locational points and quantify the uncertainty. Fuzzy logic is used to discern 

between types of classification – in this case it is behavioral. Fuzzy logic allows us 

to make inference while allowing for potential alternatives. Deterministic 

categorical counting requires that patterns be clearly classified into categories, just 

like sets in mathematics, without ambiguity. However, many things are often not 

accurately described, and sometimes do not need to be so precise. The correct 

division of things is either because problems can be accurately described, or 

because people can grasp the essence of fuzzy things to summarize. For computers, 

it is extremely difficult to design a computable way to describe things. Therefore, 
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Zadeh, an American cybernetic expert, introduced the concept of fuzzy subset from 

the set theory and gave birth to fuzzy mathematics, which was introduced into the 

field of pattern recognition (Zadeh, 1965). 

Models are used to simulate the real world, but they cannot completely reproduce 

the past events. Animal’s behavior is not 100% sure at a certain place.  Even if a 

pasture owner leads the herds to a grazing area from 9:00 AM to 12:00 AM and 

records the time every day, it does not mean that one individual livestock would 

keep eating grass during that period. Instead, the individual livestock may spend 

some time idling, hanging around or resting. Meaning, livestock behaviors based 

on GPS data might involve some uncertainties. Fuzzy logic, however, is a form of 

multivalued logic and the output can be any real number between 0 and 1, which 

means result can be partially true or partially false with probability information 

which could potentially address uncertainties. Therefore, the fuzzy logic, which 

can set rules to define each behavior’s probability, is necessary in this research 

(Oren et al., 2003; Wan and Lin, 2016). This research will manipulate data 

collected from GPS collars with the fuzzy logic to generate behavior patterns and 

the corresponding possibility.  
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3. Data 

3.1 Overview of this thesis research 

Figure 3.1.1 shows the workflow of this research. We first collected data with GPS 

collars to obtain locational and other relevant information of individual livestock at 

a 20-minute time interval. Then we removed  invalid records. Details are discussed 

in 3.3.  

Using valid records, we ran a fuzzy logic analysis to classify livestock behaviors 

with probability information. To do that, we first created the fuzzy rules and then 

set the thresholds of membership functions. We derived probabilities of three 

behavior patterns: grazing, resting and travelling. Details are discussed in 3.4. 

With a previously generated environmental risk surface (Lin et al. 2020), we 

uploaded data with behavior and probability information to the high-performance 

computers with parallel computing capacities (Center for Advanced Research 

Computing) to calculate the cumulative environmental exposure (discussed in 3.5 

and 3.6).  

 

Figure 3.1.1 The workflow of this research 
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3.2 Study area 

The Cove Chapter of the Navajo Nation, with 420 residents (2010 U.S. Census), 

was named for its remote location in the foothills of the Chuska mountain range, 

tucked away in the Carrizo and Lukachukai mountains in northeastern Arizona. 

Cove Wash watershed is in the Northern Agency of the Navajo Nation, which lays 

in the intersection of Utah, Arizona and New Mexico (Fig 3.2.1). The watershed 

contains approximately 52 miles of tributaries and receives 12 -16 inches of 

precipitation annually.  

As mentioned in the Introduction section, there are 523 mines on Navajo Nation 

and 52 of them are located in Cove (Fig 3.2.2). 
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Figure 3.2.1 Location of Cove Chapter 

  



23 
 

 

The US EPA had sent a team to conduct an aerial radiation and image survey of 

the abandoned Navajo uranium mines in the Cove Chapter. In December 2014, the 

team used a low-flying airplane to determine the potential radiation from old mines 

distributed around the Cove Chapter area. In June 2015, EPA and Dine College 

Environmental Institute collected soil, sediment and water samples across the Cove 

Wash Watershed to identify the extent of contamination around the land (Weston 

Solution Inc, 2014). 

Figure 3.2.2 Abandoned uranium mines on Navajo Nation  
Produced by EPA 

https://www.epa.gov/navajo-nation-uranium-cleanup/abandoned-mines-cleanup 
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3.3 Data preprocessing 

After we had a conversation with livestock owners in the Cove Community, in 

which we came out the most suitable plan of tracking animal and collecting data 

together, we had permissions and assistants from livestock owners to attach Lotek 

GPS collars to livestock (4 sheep and 4 goats) to collect information such as 

location, elevation, and ambient temperature at a 20-minute interval. The battery 

life of the collars could support tracking for up to 1 year. Depending on the flock, 

tracking time was between 10 days to four months, which was fully determined by 

livestock owners as a community-based research.  

Due to terrain effects, some positional coordinates records were invalid, which are 

far away from the true location. For example, tree canopy effect and buildings 

could result in inaccurate GPS records because they can block signal transmission 

between satellites and GPS devices or even reflect the signals before they are 

received by the devices. Therefore, it is necessary to remove inaccurate data points. 

Table 3.3.1 shows a sample GPS dataset for one goat. It contains Greenwich Mean 

Time (GMT Time), coordinates (Lat, Lon) and the information of environment 

(Alt, Temp) and satellites (Duration, DOP, and Sat). 
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Table 3.3.1 GPS data sample 

GMT 

Timea Latb Lonb 
Alt c  

(meter) 

Durationd 

(second) 

Tempe 

(°C) 
DOPf Satg 

6/24/2019 

4:42:12 

PM 

0 0 0 2 24.5 0 0 

6/24/2019 

5:01:10 

PM 

0 0 0 70 29.5 0 0 

6/24/2019 

5:20:27 

PM 

35.09131 -106.617 1556.96 41 27 1.6 5 

6/24/2019 

5:40:28 

PM 

35.09127 -106.617 1542.07 27 25.5 1.6 5 

Note: a. “GMT Time” shows the Greenwich Mean Time when this device generates the 

coordinates.  
b. “Lat, Lon” are latitude and longitude in decimal degrees.  
c. “Alt” is the elevation with the unit of meter. 
d. “Duration” is the time that the device spends to connect to all satellites with the unit of 

second. 
e. “Temp” is the temperature with the unit of degrees in Celsius. 
f. “DOP” is dilution of precision. 
g. “Sat” shows how much satellites are connected with the device.  

Table 3.3.2 gives the definition and unit of each field.  The GMT time shows the 

Greenwich Mean Time when this device generates the coordinates, which is 6 

hours earlier than  local time of the study area. The coordinates are represented by 

latitude and longitude in decimal degrees. The units of elevation and temperature 

are meters and degrees in Celsius respectively. The duration field gives time the 

GPS device takes to get connected with all satellites (the maximum time is set by 

the manufacturer to be 70s). Normally, it takes less than 70 seconds for the device 

to connect to satellites. If the duration reaches 70 seconds, it means that the device 

has a trouble of connecting to satellites. Thus, records with duration values of 70s 

are considered invalid. The DOP (Dilution of Precision) is a metric used to inform 



26 
 

users about the accuracy of the coordinates, which is influenced by the position of 

connected satellites. Also, the GPS accuracy could be influenced by topography, 

canopy cover and other factors. With a smaller DOP value, the coordinates are 

likely more accurate and reliable. The “Sat” field shows how many satellites are 

connected and used when calculating coordinates. 

Table 3.3.2 Fields' definitions 

Field Definition 

GMT Time Greenwich Mean Time 

Temperature The unit is °C 

Altitude Elevation. The unit is meters 

Coordinate Latitude & Longitude 

Duration The time it takes to connect to satellite in seconds 

DOP Dilution of precision 

Sat Number of connected satellites 

 

In theory, at least 4 satellites are needed to estimate the 3D position. Thus, GPS 

data with 3 or fewer satellites number are considered invalid. Because the lowest 

elevation of Cove is over 1000 meters, GPS data with altitude below 800 meters 

are also considered invalid. After filtering out all invalid records, drifting points no 

longer existed in the map (Figure 3.3.3). To protect data privacy, Figure 3.3.3 only 

uses points of one sheep to represent the locations and uses the lines to connect 

those points.  
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Figure3.3.2 Points before and after the data preprocessing 
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4. Methodology 

4.1 Classify behavior pattern 

As discussed in the literature review section, it is important to analyze animal 

behavior patterns because different patterns would have different effects on 

exposure to AUMs. For example, there are three animals at the same place at the 

same time. One of them is eating grass, one is drinking water and the other one is 

resting. In this case, the uranium intake is different for each livestock because the 

exposure route to AUM wastes is different. Inhalation would be the major route for 

the one that is resting. Oral intake is more significant for the ones that are grazing 

or drinking. Contamination in grass and water are different so that grazing and 

drinking would also contribute differently to the exposure.  

This research, focusing on cumulative exposure potential to AUMs in livestock, 

requires both spatial and temporal information. Because GPS data did not directly 

provide behavior information or patterns, further analysis/classification on the GPS 

data was needed to reveal the patterns. We cannot guarantee that the automatic 

classification result is 100% correct unless we have tracked the animal from 

beginning to end, which is impossible. Fortunately, fuzzy logic can both discern 

individual behavior patterns and quantify the corresponding likelihood for a certain 

behavior. Therefore, we applied the fuzzy logic method to process GPS data and 
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calculated the possibilities of three different behavior patterns for each GPS data 

point. 

In fuzzy logic, the genre of a target is not either A or B, instead, it can be partially 

A and partially B in the same time. The key is how much possibility the target 

belongs to A and how much belongs to B. Figure 4.1.1 gives the brief process of 

how fuzzy logic works. Given two sets – input 1 and input 2, fuzzy logic adapts the 

membership of each one, which is calculated firstly with the membership function, 

to the fuzzy rules, then get the fuzzy classification as an output. The membership 

itself represent the likelihood of a certain characteristic.  

 

 

Figure 4.1.1 Fuzzy logic's workflow 

In this research, the two inputs variables are velocity and the distance to livestock 

owner’s house. The velocity, calculated from the coordinates and the time stamp, 

represents the average velocity that an individual livestock travels within a 20-min 

time interval. The membership 1 – speed – is used to specify whether the speed is 

high or low. With a higher value, the chance of moving around or travelling to 

other places is higher, while the chance of staying at one spot for grazing is lower, 

vice versa.  
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The membership 2 – status of active or inactive – is used to specify whether 

distance to the house is long or short. With a small distance, the membership 2 is 

considered to be “inactive zone”, where the animals are held inside a corral. With a 

large distance, the membership 2 is considered to be “active zone”, where the 

animals are shepherded outside to graze, drink or to do other things. The Fuzzy 

rules are shown in the Table 4.1.2. 

Table 4.1.2 Fuzzy rules 

Pattern probability Speed: High Speed: Low 

Status: 

Inactive 

Grazing 

Resting 

Travelling 

Low 

Mid 

High 

Grazing 

Resting 

Travelling 

Low 

High 

Low 

Status: 

Active 

Grazing 

Resting 

Travelling 

Mid 

Low 

High 

Grazing 

Resting 

Travelling 

High 

Mid 

Mid 

 

If speed is high and the animal is at inactive zone, the grazing possibility is low, 

the resting possibility is medium and the travelling possibility is high. If speed is 

low and the animal is at inactive zone, the grazing possibility is low, the resting 

possibility is high and the travelling possibility is low. If speed is high and the 

animal is at active zone, the grazing possibility is medium, the resting possibility is 

low and the travelling possibility is high. If speed is low and the animal is at active 
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zone, the grazing possibility is high, the resting possibility is medium and the 

travelling possibility is medium.  

The membership functions of speed and status are shown in Figure 4.1.3 and 

Figure 4.1.4. The thresholds of speed were confirmed with points recoded inside 

the fence and along the road. After conversations with livestock owners, it was 

clear that the animals were held inside the fence from 12:00 pm to 4:00 am next 

morning. When the livestock were held inside the corral, the average speed was 

0.787 meters per minute. When the livestock were travelling from the home to the 

camping area, the average speed was 30.12 meters per minute. Thus, those two 

values were set to be the threshold of the speed. Also, the average distance to the 

house is 82.58 meters when the sheep and goats are held inside the fence, but the 

average distance is 477.6 meters when they are out from 9:00 am to 11:00 am. 

Thus, 82.58 and 477.6 were set to be the threshold of the inactive and active status. 
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Figure 4.1.3 Membership function of speed 

 

Figure 4.1.4 Membership function of status 
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4.2 Cumulative exposure 

With fuzzy logic, we could derive the degree of occurrence of each behavior 

pattern. Even if the probability of grazing is higher than the other two behavior 

patterns, we cannot deny the possibility of grazing or resting resulted from the 

automatic classification method. As long as one behavior pattern doesn’t take over 

90% of the total probability, we cannot ignore the other behavior patterns.  

The cumulative environmental exposure risk was estimated based on the formula 

below: 

𝐶𝑟 =  ∫ ∫ 𝑊𝑖𝑅ሺ𝑡, 𝑙ሻ 𝑑𝑙 𝑑𝑡
𝑙2

𝑙1

𝑡2

𝑡1
                                           (1) 

where 𝑊𝑖 represents the weight of the behavior i based on the relative importance 

of each behavior pathway in producing the final exposure potential, and R 

represents the modeled potential for environmental exposure at location l and time 

t. This equation is adapted from a previous research (Lu and Fang 2015). The 

uncertainty introduced by livestock behavior classification is quantified into 

probability:  

𝑃 =  ∏ ∫ 𝑃𝐵                                                         (2) 

where 𝑃𝐵 is the probability of certain livestock behavior derived from fuzzy logic. 

The uncertainty introduced by modeled potential for environmental exposure is 

quantified through Monte Carlo Simulation of criteria weights.  



34 
 

For example, Figure 4.2.1 shows the animal movement in the time sequence 

traveling from A to B and then to C. The exposure level, derived from previous 

work (Lin et al. 2020), is R1 at location A, R2 at location B and R3 at location C. 

The exposure map used multi-criteria model to take wind-index, topography, soil 

sample, etc. into consideration.  

 

Figure 4.2.1 Animal’s movement 

As discussed in the literature review section, an animal may be exposed through 

respiratory intake, oral intake, and dermal exposure (Brugge et al.,2005). Since the 

pasture owners were aware of the risk of AUMs, they would avoid getting close to 

AUM area and not spend too much time staying there. Also, the skin generally 

protects deeper tissues from those harmful chemicals from AUMs (Yazzie, 2017). 

In all, dermal exposure is negligible compared to respiratory exposure and oral 

exposures. However, the mechanism of respiratory and oral exposures involves the 

whole-body system of living creatures. It is difficult to tell the relative importance 

of those two pathways with limited research on it. To simplify the process, this 
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A 

R2 

B 

R3 
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study assumed that the respiratory and oral exposure were equally important in 

exposure. For example, when an individual livestock is grazing, it will be exposed 

to AUMs from both oral and respiratory exposure. When it is resting, the exposure 

pathway will be primarily respiratory since the food source was the hay grown that 

the owner purchased in the market and the water came from the portable water 

system. When it is travelling, the exposure pathway is respiratory but with a higher 

breathing rate. Hence, this research assigned the weight of grazing as 2, the weight 

of resting as 1, and the weight of travelling as 2 considering the contribution of 

each behavior to exposure.  

The results should have 27 combination in theory because the animal may graze or 

rest in all these three places discussed in Figure 4.2.1. A demo is shown in Table 

4.2.2. Then the daily cumulative environmental exposure risk would be 𝐸 =  𝐶1 ∗

𝑃1 + 𝐶2 ∗ 𝑃2 + ⋯ + 𝐶26 ∗ 𝑃26 + 𝐶27 ∗ 𝑃27. 
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Table 4.2.2 Calculation of cumulative risk and corresponding probability 

Behavior combination 

(G: grazing; R: resting; T: travelling) 

Risk 

(𝑊𝐺  =  2; 𝑊𝑅  =  1; 𝑊𝑇  =  2) 
Corresponding possibility 

GGG 𝐶1 = 2𝑅1 + 2𝑅2 + 2𝑅3 𝑃1 = 𝑃𝐺𝐴 ∗ 𝑃𝐺𝐵 ∗ 𝑃𝐺𝐶 

GGR 𝐶2 = 2𝑅1 + 2𝑅2 + 1𝑅3 𝑃2 = 𝑃𝐺𝐴 ∗ 𝑃𝐺𝐵 ∗ 𝑃𝑅𝐶  

GGT 𝐶3 = 2𝑅1 + 2𝑅2 + 2𝑅3 𝑃3 = 𝑃𝐺𝐴 ∗ 𝑃G𝐵 ∗ 𝑃T𝐶 

. . . 

. . . 

. . . 

RRG 𝐶25 = 1𝑅1 + 1𝑅2 + 2𝑅3 𝑃25 = 𝑃𝑅𝐴 ∗ 𝑃𝑅𝐵 ∗ 𝑃𝐺𝐶 

RRR 𝐶26 = 1𝑅1 + 1𝑅2 + 1𝑅3 𝑃26 = 𝑃𝑅𝐴 ∗ 𝑃𝑅𝐵 ∗ 𝑃𝑅𝐶 

RRT 𝐶27 = 1𝑅1 + 1𝑅2 + 2𝑅3 𝑃27 = 𝑃𝑅𝐴 ∗ 𝑃𝑅𝐵 ∗ 𝑃T𝐶 

 

4.3 High-performance computing strategy 

Theoretically, the Lotek GPS collars collected data every 20 minutes, so there were 

3 points per hour and 72 points per day for each individual. We have tracked two 

flocks A and B in 2019. We have collected 1-month data for flock A and 4-month 

data for flock B determined by livestock owner as discussed in the methods 

section. In total, there were around 2000 points per animal for flock A and 8000 

points per animal for flock B. Thus, if we were to use one final number to 

represent the cumulative environmental exposure for an individual livestock, the 

calculation completeness would be 32000 for flock A and 38000 for flock B. This 

amount of computational task was impossible based on current computing 

capacity. Thus, we converted the above analysis to daily scale. However, even at 
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the daily scale, computing the cumulative exposure has 372 calculation 

completeness, which was still impossible for any current computing recourses. 

Meanwhile, we had a conversation with the livestock owners and knew that the 

livestock were kept inside the fence after 7:00 PM and were not going out until 

8:00 AM the next day. Thus, this study only focused on time from 8:00 AM to 

7:00 PM. Still, the calculation completeness of 336 was too large. We decided to 

use one out of three GPS points (within every hour) to represent the hourly status 

of one individual livestock (Figure 4.7). We used the time xx:40 as the first choice 

to avoid the complexity from the past hour and the following hour. Then the 

computational complexity was 312 per day (Du and Ko 2011). This situation that 

the calculation times increase exponentially with the increasement of the number 

of points is called NP-hardness problem (Fortnow 2009). Decreasing the number 

of selected points has been a typical way to overcome such problem.  
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Figure 4.7 Workflow of data filtering 

 

A personal computer usually has 4, 6 or 8 cores. The random-access memory 

(RAM) is usually 8, 16 or 32 GB. However, due to the power supply system and 

cooling system restrictions of personal computers, it is often unable to support the 

full load calculation for a long time, and daily use demand also reduces the full 

load calculation time, so it is difficult for the personal computer to complete the 

task. Thus, this data processing was conducted at the Center for Advanced 

Research Computing (CARC) through loading the code on the high-performance 

computers via parallel computing technologies. This paper generated results of the 

hourly behavior probabilities with the fuzzy logic package provided by Matlab in 

the local computer. Then inside Jupyter Notebook application, python codes 

calculating the daily cumulative exposure were uploaded on CARC machine – 
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…… 
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Wheeler – with 40 cores (each core with 8 nodes) which provides parallel 

computing capacities to complete the task.  
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5. Results 

Cove Wash Watershed is located in mountain area with high elevation, complex 

terrain and moderate vegetation coverage. As discussed in the methods section, the 

satellites signals were most likely to be blocked if the livestock happened to be 

under a tree or on a steep slope when the GPS device send/receive signals to/from 

the satellites, which caused inaccurate position of the point. Thus, records with 

invalid duration, number of satellites or altitude were removed in the data cleaning 

stage. Table 5.1 gives the numbers of total original GPS data points before data 

preprocessing, number of invalid and valid points for each livestock after cleaning. 

In sum, more than 90% records were valid in this study. Only livestock A720 and 

livestock B715 have less than 90% valid records. Around 60% of those invalid 

points lied in the time period from 8:00 AM to 7:00 PM, which was the study time 

of this research. However, this research only extracted one point among the three 

points to represent that hour (there are 3 points in one hour). If there was no point 

in hour, the author would look for the closest point in the previous hour and 

afterwards hour to represent it, which only accounted for 5.27% in the whole 

points.    
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Table 5.1 Basic Information of Data Sets 

Livestock 
Total Points 

Collected 
Duration >= 70s 

Number of 

Satellites < 4 

Altitude < 800 

m 

Number of 

Valid Points 

A715 2122 147 (6.93%) 81 (3.82%) 70 (3.30%) 1961 (92.41%) 

A716 2091 181 (8.66%) 86 (4.11%) 80 (3.83%) 1902 (90.96%) 

A719 2137 150 (7.02%) 73 (3.42%) 66 (3.09%) 1978 (92.56%) 

A720 2098 204 (9.72%) 100 (4.77%) 86 (4.10%) 1878 (85.44%) 

B715 7572 1201 (15.86%) 592 (7.82%) 610 (8.06%) 6214 (82.06%) 

B716 8143 330 (4.05%) 116 (1.42%) 120 (1.47%) 7767 (95.38%) 

B720 8085 453 (5.60%) 189 (2.34%) 187 (2.31%) 7561 (93.52%) 

B80295 7957 650 (8.17%) 297 (3.73%) 279 (3.51%) 7204 (90.54%) 

 

According to the National Land Cover Data, Cove Chapter contains 12 different 

land cover classes (Figure 5.2): open water, developed open space, developed low 

intensity, barren land, deciduous forest, evergreen forest, mixed forest, shrub and 

scrub, herbaceuous, wetlands and emergent herbaceuous wetlands. The majority of 

plants in Cove are trees (evergreen and deciduous) and shrubs. There are 50.98% 

of the area are covered with evergreen forest while 47.75% of the area are covered 

with shrub or scrub. The other land types only take less than 1.27% of the area. 

With different plants type, the canopy percentage varies from 0% to 64%. Where 

the plants are shrubs/scrubs, the canopy cover is near 0%, but the value will grow 

up to 64% where trees are more prominent (Figure 5.2).  
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Topographic slope values were calculated using a digital elevation model (DEM) 

and results were used to calculate the percentage of visible sky. Visible sky is a 

metric used to measure potential GPS signal interference with satellites regarding 

the landforms blocking portions of the sky and impeding the communication 

between the GPS device and satellites. Most of the study area’s surface is flat 

Figure 5.2 Land cover and canopy percentage in Cove  
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terrain; while in the southwestern portion of the study area the terrain becomes 

steeper. In general, the slope varies from 0° to 70°, and the average slope is 12°. If 

the slope is approaching 0 degree, all angle of the sky will be visible; with the 

slope being steeper, the sky is less visible. (Figure 5.3) 

  
Figure 5.3 Slope and Visible Sky in Cove  
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To better understand whether the cleaned data sets are sufficient for the proposed 

analysis, this research did a further statistical analysis of the points against canopy 

coverage and visible sky based on the original data. The Cove Chapter was 

classified into 9 different habitats and terrain classes. Areas with canopy cover less 

than 10% were classified as open; canopy cover between 10 and 40% was 

classified as partial cover; and canopy cover exceeding 40% was classified as 

moderate cover. If more than 60% of the sky was visible from a location it was 

classified as unobstructed; if between 30 and 60% was visible the location was 

classified as partially obstructed; and if less than 30% of the sky was visible the 

location was classified as mostly obstructed. After data preprocessing, all records 

from two flocks based on terrain are completely unobstructed. The habitat classes 

of all records are mostly open, while only a few are partial covered, and few 

records are moderate covered (Table 5.4). Thus, we concluded that the valid data 

records were generated based on a well connection between the GPS device and 

the satellites. 
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Table 5.4 Visible Sky and Canopy Cover 

Visible Sky & Canopy 

Coverage 
B715 B716 B720 B80295 A715 A716 A719 A720 

Unobstructed terrain 

(Visible sky > 60%) 

 

100% 

00% 

100% 

% 

100% 

00% 

100% 

% 

100% 

00% 

100% 

% 

100% 

00% 

100% 

% 

Open habitat 

(Canopy < 10%) 

 

97.46% 97.85% 97.98% 97.50% 99.59% 99.57% 99.59% 99.57% 

Partial cover habitat 

(10% ≤ Canopy ≤ 40%) 

 

2.25% 2.14% 2.04% 2.49% 0.3% 0.3% 0.4% 0.3% 

Moderate cover habitat 

(Canopy > 40%) 
0.03% 0.02% 0% 0.02% 0.1% 0.1% 0.05% 0.1% 

 

To protect livestock owners’ privacy, locational information of the livestock is 

presented with 500 meters buffer (Figure 5.5). For flock A, they spent most time in 

two places, the owners home and a summer camp in the mountains. They were 

kept inside the corral before July 8th, and then were held at the summer camp until 

July 19th. More specifically, they only spent one or two hours in proximity to 

AUMs while they were travelling from the farm to summer camp. For flock B, 

most locations were far away from AUMs. A few were intersected with 

250m/500m buffers of the AUMs. In fact, only 0.44% of the data points were 

inside a 500m buffer of the AUMs, with 0.03% of the points inside the 250m 

buffer and none points inside the 100m buffer. 
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As mentioned in the Methods section, the general cumulative environmental 

exposure potential of each livestock over a long time period was impossible to be 

Figure 5.5 Livestock’s Location and Proximity to AUMs  
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calculated due to the computing capability. Only daily exposure was generated 

from this study. 

  

 

The daily values for individual animals in flock A are shown in Figure 5.6. 

“as.facotor(flock)” indicated that this was the flock A. And fCategory 

distinguished different individual inside the flock A with different colors. The 

cumulative environmental exposure potential values range from 2.1 to 2.6. A 

higher value means that the livestock has a relatively higher exposure potential to 

AUMs and waste from AUMs. From July 8th to July 18th, Flock A were kept in 

the Summer camp which is in the upstream portion of the Watershed. The 

exposure values of the three individual livestock A715, A716 and A720 increased 

slightly from July 8th to July 13th, while exposure of another individual livestock 

A719 decreased first from July 8th to July 10th then increased to its highest value 

on July 11th. Two of the target livestock – A716 and A720 – had an increase from 

Figure 5.6 Daily Exposure potential of A’s Livestock 
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July 14th to July 15th. Estimated exposure of all  four livestock decreased to their 

lowest on July 16th and increased again thereafter.  

Cumulative exposure potential results of Flock B are shown in Figure 5.7. For one 

livestock animal B715, 6 days of the cumulative exposure potential could not be 

calculated for Aug 5th, Aug 20th, Aug 25th, Sep 9th, Sep 23rd and Oct 14th due to 

insufficient points on these days.  

 

Figure 5.7 Daily Exposure of J’s Livestock 

 

In terms of temporal pattern, Flock B had a higher exposure on Aug 4th, Aug 6th, 

Aug 9th, Aug 12th, Aug 13th, Aug 17th, Aug 21st, Aug 23rd, Sep 5th and Sep 

19th, with exposure values higher than 2.5. Lower exposure values occur in 

October with values lower than 2. In general, the cumulative exposure decreased 

from August to October and followed the similar trend.  
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Additional statistical analysis was conducted about the daily cumulative exposure 

among the two flocks. The results of Analysis of Variance (ANOVA) were used to 

test whether there were significant differences in daily cumulative exposure within 

or between flocks (Table 5.8 and Table 5.9). For flock A, because the p-value is 

0.79 and it is greater than 0.05, it was concluded that no significant differences of 

daily cumulative exposure were observed among the four livestock within the 

flock . For flock B, the p-value is 0.68 which is also larger than 0.05. So, there was 

no significant differences of daily cumulative exposure within this flock either. 

When comparing results between two flocks, flock A has an overall statistically 

significantly higher exposure potential when compared with flock B except for the 

month of August. However, flock A has lower variations in daily exposure than 

flock B. These results, however, need to be corroborated by animal tissue and 

biomonitoring analysis results.  
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Table5.8 ANOVA of Flock A 

SUMMARY      

Groups Count Sum Average Variance   

A715 11 25.08773 2.280703 0.003391   

A716 11 25.4287 2.3117 0.00883   

A719 11 25.28953 2.299048 0.006336   

A720 10 22.81007 2.281007 0.010306   

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.007344 3 0.002448 0.343046 0.79432 2.845068 

Within Groups 0.278313 39 0.007136    

       

Total 0.285658 42         
 

Table 5.9 ANOVA of Flock B 

SUMMARY      

Groups Count Sum Average Variance   

B715 86 186.7362 2.171351 0.053534   

B716 92 196.541 2.136315 0.039733   

B720 92 196.7698 2.138802 0.041972   

B80295 92 197.4158 2.145824 0.043076   

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.067638 3 0.022546 0.507472 0.677362 2.629846 

Within Groups 15.90537 358 0.044428    

       

Total 15.97301 361         

 

  



51 
 

6. Discussion  

This study is built on theory and methods in time geography and GIS to analyze 

livestock’s daily cumulative environmental exposure potential to AUMs and 

elements found in AUM waste. We intended to quantify the cumulative exposure 

potential as a sum of the product of probability of livestock behavior and 

environmental contamination for every GPS point location. To overcome the N-P 

problem, we shrank our research focus to the time window from 8:00 AM to 7:00 

PM when the animals might be out for grazing, and selected only one GPS point 

every hour to represent the behavior pattern for that hour. The fuzzy rules were 

then applied to categorize the behavior patterns of animals, i.e., grazing or resting, 

and the possibilities of corresponding behaviors.  

According to the results, the daily cumulative exposure of flock A ranges from 2.1 

to 2.6, the average value was approximately 2.3, which means more evidence was 

needed to confirm that there were significant differences in the potential exposure. 

For flock B, the daily cumulative exposure varied from 1.8 to 2.8. The average 

value was approximately 2.1. These results, however, need to be corroborated by 

animal tissue and biomonitoring analysis results. 

As shown in Figure 4.2.1 in the methods section, the daily cumulative exposure is 

the weighted sum of the environmental contamination risk value of each possible 

behavior pattern sequence (Table 4.2.2). However, if we did not take the behavior 
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patterns into consideration, the cumulative exposure would be the sum of the 

environmental contamination risk value along the travel route, which would be R1 

+ R2 + R3 (see the methods section for detail).  In order to demonstrate the 

robustness of the methods framework used in the thesis, another analysis based on 

the method without considering behavior patterns was conducted here. Results of 

the daily cumulative exposure for flock B is presented in Figure 6.1. Statistic 

results are shown in Table 6.2. 

 

Figure 6.1 Daily cumulative exposure of flock B without considering behavior patterns 
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Table 6.2 ANOVA of Livestock B without considering behavior patterns 

SUMMARY      

Groups Count Sum Average Variance   

B716 91 719.2331 7.90366 0.001698   

B720 92 724.9652 7.880056 0.002441   

B80295 92 719.599 7.821729 0.003855   

       

       

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 0.326032 2 0.163016 61.0947 
1.22E-

22 3.02897 

Within Groups 0.725765 272 0.002668    

       

Total 1.051798 274         

 

We only considered three animals in the comparison due to missing data in one 

animal. After conversations with the livestock owner, we were aware that the flock 

tended to stay together when they were outside of livestock owner’s house. Since 

they stayed as a group, they shared the same place when they were grazing, resting, 

or travelling. Thus, the environmental contamination risk value of those three 

individual livestock was likely to be similar based on GPS data. Also, they were 

likely to share similar behavior patterns.  

After the fuzzy logic analysis, a table was generated to present fuzzy membership 

results of each behavior pattern (Table 6.3), where the FM_G refers to the fuzzy 

membership of grazing, the FM_R refers to the fuzzy membership of resting and 

the FM_T refers to the fuzzy membership of travelling. Based on this table, kriging 
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interpolation method was used to generate a map showing areas where these three 

individuals graze, rest, and travel (Figure 6.4). It is clear from the maps that these 

three individuals shared similar places of grazing, resting, and travelling. Thus, 

weights used associated with each behavior for each GPS data point in the 

calculation (1) was also similar among livestock in this flock.  

Table 6.3 Result of fuzzy logic for behavior classification 

FID Local_time FM_G FM_R FM_T 

0 7/25/2019 15:40 0.3 1 0 

1 7/25/2019 16:00 0.3 1 0 

2 7/25/2019 16:21 0.3 1 0 

3 7/25/2019 16:40 0.3 1 0 

4 7/25/2019 17:00 0.3 1 0 

5 7/25/2019 18:20 0.96591 0.329212 0.290145 

6 7/25/2019 18:40 0.907084 0.260179 0.392916 

7 7/25/2019 19:00 0.855618 0.238122 0.444382 

8 7/25/2019 19:20 0.025429 0.359334 0.274571 

… … … … … 
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Figure 6.4 Geographic distribution of area associated with grazing, resting and travelling 

Based on the above discussion as well as conversations with livestock owners, we 

could assume a ground truth that livestock daily environmental cumulative 

exposure potential is similar within the flock if effects like ages, weight, health 

conditions, or other biological characteristics (these factors would affect the travel 

speed and willingness to stay in the group of the individual) are ignored here. 

Based on this ground truth, a comparison between Figure 6.1 and Figure 5.8 

indicated that results from current methods used in this study showed more similar 
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patterns of environmental cumulative exposure within the same flock (p-value > 

0.05, ANOVA test), while results from a prior method without behaviors included 

showed significantly different patterns of environmental cumulative exposure (p-

value = 1.2×10^(-22), ANOVA test). Therefore, the present methods framework 

resulted in more robust results that are closer to the expectation that livestock daily 

environmental cumulative exposure potential is similar within the flock, since they 

stayed as a group and shared the same place when they were grazing, resting, or 

travelling (Figure 6.4), while the previous method resulted in significantly different 

environmental cumulative exposure which could not explain the fact that these 

animals tended to stay in one group. 
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7. Limitations of the research 

Due to the uncontrollable environmental influences, the GPS device performance, 

recent computing abilities, etc., this research has several limitations. 

First,  this research used a filtering strategy to solve the N-P problem, which was 

discussed in the methodology section. However, this could raise another problem: 

Could selected GPS points fully represent all GPS data during that hour? 

Additional sensitivity analysis need to be conducted to assess the impact of the 

selected point per hour to the result.  

The recording interval of the GPS devices were set to be 20 minutes, which meant 

that we only had 3 points at most for every hour. However, when all 3 GPS records 

from one hour period were invalid, we had to switch to the previous hour or the 

next hour to search for a point to represent the current hour (less than 5% of data 

were under this scenario).  

The second limitation is related to behavior pattern, we firstly intended to use 4 

behavior patterns – eating, resting, travelling, and drinking – to calculate the 

cumulative exposure, but this would raise the calculation up to 4n times (n is the 

points number we selected). To decrease the burden of the computing and cover as 

much time in a day as possible, we used three most representative behavior 

patterns of livestock – grazing, resting, and travelling – among which eating and 



58 
 

drinking are not separated from each other. Thus, the accuracy of the results might 

be reduced.  

Third, this research set weights of grazing, resting and traveling as 2:1:2 when 

estimating the cumulative exposure based on an assumption that the oral exposure 

and respiratory exposure were equally accumulated inside livestock’s body. And 

the quantifying of the ratio among these three behavior patterns need more 

biological research to verify.  

Fourth, this research did not have a control set of livestock, from non-contaminated 

places for the whole studying period. Therefore, we could not compare our results 

against that from any control flock. We could not exclude any possible influence 

from prior exposing either due to a lack of data before collaring. 

Lastly, results from this study will need to be verified by animal tissue and organ 

sample analysis. As  a collaborative research project, results form this study will be 

compared with uranium level found in tissue and organ of individual livestock 

analyzed by our research partner. Nevertheless, this geospatial research provides a 

useful and reliable methods framework for livestock exposure assessment potential 

in geographic areas with environmental contamination to understand and address 

environmental health questions.  
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8. Implication for future study 

This is the first study combining time geography, GIS, and behavior pattern 

classification to create a new workflow to estimate livestock cumulative exposure 

potential. Results from this study can be further used to guide livestock owners to 

optimize grazing or pasturing to reduce potential exposure. Besides applied to the 

study area the workflow could potentially be adapted or extended to other areas of 

Navajo Nation and other geographic regions with other types of environmental 

contamination. This study has potential to guide researchers to study about  living 

creature’s exposure to the environment.  
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