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Abstract

In our study, we have extended the Neyman smooth-type goodness of fit tests by

Eubank (1997) from simple random sample to complex surveys (Methodologies have

been provided for complex surveys, and theorems have been provided only for strat-

ified random samples.) by incorporating consistent estimators under the survey de-

sign, which is accomplished by a data-driven nonparametric order selection method.

Simulation results show that these proposed methods potentially improve the statis-

tical power while controlling the type I error very well compared to those commonly

used existing test procedures, especially for the cases with slow-varying probabilities.

We also derived the large sample properties of the test statistics in stratified sam-

pling. Several practical examples are provided to illustrate the usage and advantages

of our proposed methods.

KEY WORDS: Goodness of fit, Neyman smooth, Order selection, The first order

and second order corrected tests, Stratification, Clustering, Simple Random Sample.
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gory of multinomial data, 0 otherwise.

E(·) Function of expected values.
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cov(·) Function of covariance.

P Product of covariance matrix of p̃ and n.

P0 Product of covariance matrix of p̃ and n under null hypothesis.
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X2
W Test statistic of Wald test.

δi The ith eigenvalue of P0V under null hypothesis.

δ. The mean value of all δi’s.
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C Test statistic of goodness of fit tests with the first order correction.

X2
S Test statistic of goodness of fit tests with the second order correc-

tion.
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f̃(k) Estimator of f(k) under Simple Random Sample.
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βj The jth Fourier coefficients of f(k).
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xxii



Glossary
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Wr A random variable dependent with r.
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GOF Goodness of Fit.
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Chapter 1

Introduction

In finite population sampling, probability sampling is used to select a sample from

a directory or map of units called a sampling frame. The selected sample is used to

make inferences about the finite population. Most large surveys such as the National

Victimization Survey (NCVS) (Dodge & Lentzner, 1980) and the Current Population

Survey (CPS) (U.S. Census Bureau, 2002) adopt complex sampling designs. For a

simple example, we may consider each state as a stratum, and counties within the

states as clusters or primary sampling units (psu). We then take a simple random

sample (SRS) of the counties within each state respectively to create a stratified

cluster sample. The complex designs take advantage of stratification and clustering,

and are usually more efficient than a SRS under a fixed cost.

As Rao and Thomas (1988) noted, “the need to perform statistical analyses of

categorical data is frequently encountered in quantitative sociological research”. For

example, a company wants to find out levels of satisfaction of one of their prod-

ucts. Survey questionnaires are sent out to the customers according to some certain

sampling design. Levels of satisfaction may vary from “Very Dissatisfied”, “Dissat-

isfied”, “OK”, “Satisfied” to “Very Satisfied”. Categorical data analyses based on
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Chapter 1. Introduction

these survey data can be used to draw statistical conclusions, and therefore to pro-

vide guidance for business decisions and policy making. Pearson’s chi-squared test

(Pearson, 1900) and the likelihood ratio test are both well known for assessing model

fit and testing hypotheses of interest for categorical data. Cressie and Read (1984)

describes various goodness of fit (GOF) tests for multinomial data. However, these

methods rely on the assumption of independence, and the data is obtained by SRS

from a finite population, where the independence assumption is usually met. Most

large scale surveys are complex with stratification and clustering, where the inde-

pendence assumption is violated. In Lohr (2010, pg. 401, 407), examples 10.1 and

10.4 are given to illustrate the effects of clustering. A husband and wife in the same

household are considered as a cluster. If we ignore the cluster effects and consider

the husband and wife as two independent individuals who give exactly the same an-

swers to the survey questions, the observed counts in each cell will be doubled and

the resulting Pearson’s test statistic will be twice the value of the test statistic if we

consider a household as one unit. Consequently, we have a low p-value and are more

likely to reject the null hypothesis than we should do.

GOF tests in complex surveys have been studied for a while. Wald’s test (Wald,

1943) is one of the earliest methods proposed to assess model fit in complex surveys.

Brier (1978) proposed a model for clustering, and studied general hypothesis on cell

probabilities. Fay (1979, 1985) proposed a jackknifed chi-squared test for complex

surveys. Both Wald’s test and Fay’s jackknifed test require detailed survey informa-

tion from which the covariance matrix can be estimated. Such detailed information

is often not available in practice. Rao and Scott (1981, 1984) proposed corrections

to chi-squared tests for assessing GOF and testing independence in two-way and

multi-way tables. Bedrick (1983) and Rao and Scott (1987) also studied the use of

limited information on cell and marginal design effects to provide approximate tests.

Thomas, Singh, and Roberts (1996) “described a Monte Carlo study of competing

procedures for testing row-column independence in a two-way table under cluster-

2



Chapter 1. Introduction

ing”. Lu and Lohr (2010) and Lu (2014) extended chi-squared tests to dual frame

surveys.

One of the problems of the GOF tests in the literature is that they are usually not

sensitive to the slow-varying probability problem. For example, we throw an unfair

die repeatedly for 150 times, with numbers 1 − 6 appearing for 23, 26, 26, 25, 23,

27 times respectively. With this outcome, it is difficult for those existing methods

to detect the fact that the die is not fair, unless a larger sample size is attempted.

Eubank (1997) introduced an interesting example: some abnormal outcomes were

observed for the Pick 3 game from some Texas Lottery machines. The machine was

taken off-line and subjected to 150 testing draws. The ten balls (numbered 0 to 9)

didn’t pop up randomly as expected, but with the higher numbered balls having

lower chances of selection as depicted in Figure 1.1. Unfortunately, Pearson’s chi-

squared tests failed to identify this non-randomness problem at a regular level of

significance. This required new methods of GOF tests for detecting the slow varying

frequencies, which motivated one of Eubank’s research projects.

The Neyman smooth-type test incorporated with order selection is one of the solu-

tions to the slow varying problem. The Neyman smooth-type test was first proposed

by Neyman (1937). Lancaster (1969) discussed the decomposition of the Pearson’s

chi-squared test statistic. Rayner, Best, and Dodds (1985) assessed the similar-

ities and differences between Pearson’s chi-squared test and the Neyman smooth

test. Rayner and Best (1986) then extended the Neyman smooth-type tests for

location-scale families. Further, Rayner and Best (1989, 1990) and Rayner, Thas,

and Best (2009) provided a comprehensive overview of Neyman smooth-type GOF

tests. Ledwina (1994) proposed a data-driven order selection method for Neyman

smooth-type GOF test. Inglot, Jurlewicz, and Ledwina (1990) discuss the situation

when the number of categories go to infinity. Fan and Huang (2001) proposed sev-

eral GOF tests for “examining the adequacy of a family of parametric models against

3
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Figure 1.1: Estimated proportions of selected balls of the Pick 3 game.

large nonparametric alternatives”.

Order selection can be incorporated with Neyman smooth-type GOF tests. The

chi-squared test statistics can be decomposed into ordered components. Since the

main information is usually contained in the first few components, not all of the

components are necessary to construct the test statistic. Thus, order selection is

needed to determine the optimal number of components. In this case, since the last

few components only carry negligible information of the data, they can be omitted,
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Chapter 1. Introduction

which results in more degrees of freedom for the tests. Order selection is well dis-

cussed in Eubank and Hart (1992) and a comprehensive discussion can be found in

Eubank (1999). Eubank (1997) introduced Neyman smooth-type GOF tests incorpo-

rated with order selection, which successfully detected the Pick 3 machine problem

at level 0.1 by using the 150 draws. Eubank’s methods showed more statistical

power than existing chi-squared type tests, especially for the cases with slow varying

probabilities.

Our research problem is inspired by Eubank (1997)’s work. In complex surveys,

the existing GOF tests are not sensitive to slow varying probabilities either. For

example, we are interested in the hypothesis that there is no difference in age groups

of nonwhite families who support legalized abortion in Section 5.1 of Chapter 5.

Both first order and second order corrected tests (Rao & Scott, 1981, 1984) fail to

reject the null hypothesis, although we observed a decreasing trend of the rate of

supporting legalized abortion from older age groups, as shown in Figure 5.1. We

will extend Eubank’s work to the field of complex surveys. One challenge of our

research is that we no longer have the independence assumption as in SRS, because

most of the survey data are correlated due to clustering. We need to incorporate the

correlation and the survey weights into the estimators, order selection procedures and

asymptotic properties derivation etc. Our proposed GOF tests have the advantage

that they only require a small or moderate sample size for detecting the differences,

which is essential in many practical examples when a large sample size is not feasible.

For example, a new treatment recently developed is in phase 3 of clinical trials. We

observe that the effects of the new treatment are not obvious compared to the existing

one, but definitely show improvement. In order to determine statistical significant

treatment effects, the budget may not be enough for recruiting more objects for

the clinical trial. Another example is discussed in Section 5.2 of Chapter 5. If we

are interested in research on some minorities, such as Asians, American Indians, or

Alaska Natives, their sample sizes are usually limited. In fact, there are only 973

5
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Asians and 338 American Indians/Alaska Natives in that data, whose total number

of observations is 22, 007. The proposed tests work well for complex survey data with

slow varying probabilities, and also work well with non-slow varying probability data.

Our methods provide greater statistical power than existing GOF tests in complex

surveys while controlling the Type I error at the pre-specified level.

This dissertation is organized as follows. In Chapter 2, we give a background re-

view of some commonly used GOF tests for SRS and complex surveys. In Chapter 3,

we develop the Neyman smooth-type GOF test incorporated with order selection for

use in complex surveys. We also investigate the large sample properties of the pro-

posed estimators for stratified random samples. In Chapter 4, we perform simulation

studies to evaluate our methods and to compare our methods with some existing test

procedures. In Chapter 5, we use some examples to illustrate our methods. Finally

we give conclusions and further research work in Chapter 6.
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Chapter 2

Background

Consider a random experiment of tossing a coin with possible outcomes heads or

tails. Suppose that we want to investigate whether a coin is “fair” or not, i.e., to

test if the probability of getting a head is 50%. The test statistics are usually some

measurement of the “distance” between the observed counts and the expected counts

under the hypothesis. If the distance is large enough, we reject the null hypothesis.

Such tests are usually mentioned as goodness of fit tests (GOF tests).

In this chapter, we will review some classical GOF tests, such as Pearson’s chi-

squared test and the likelihood ratio test for use in independent data. We then

review Neyman smooth-type GOF tests in SRS, with introduction of the Fourier

transformation and order selection. Since most of the survey data are correlated, the

independence assumption in SRS is usually violated. Several corrected GOF tests

in complex surveys will also be reviewed, such as the Wald test, the first order and

second order corrected tests.
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Chapter 2. Background

2.1 Chi-Squared GOF Tests in SRS

In a GOF test of multi-outcome data, the statement to be tested is called a null

hypothesis. The test statistics are usually used to measure the “distance”between the

expected counts under the null hypothesis and the observed counts. If the “distance”

is large enough, we reject the null hypothesis.

A variety of test statistics, such as Pearson’s chi-squared test and likelihood ratio

test etc., have been developed based on this idea. It has been discovered that these

test statistics follow a chi-squared or a function of chi-squared distribution. As a

result, these tests are often called chi-squared type GOF tests. One concept in the

statistical tests is known as the Type I error. The Type I error is an event that the

null hypothesis is rejected while it is true. The pre-specified tolerance of rejecting

a true hypothesis is then measured by the probability of the Type I error, which is

well known as level of significance α. The most widely used α values are 0.01, 0.05,

and 0.1. Notice that this value should be determined before the tests.

Suppose a random experiment has been repeated for n times with K possible

different outcomes. The Pearson’s test statistic, denoted as X2, is of the form

X2 =
(O1 − E1)

2

E1

+ · · ·+ (OK − EK)2

EK
=

K∑

k=1

(Ok − Ek)2
Ek

, (2.1)

where K is the total number of categories, Ok is the observed number of outcomes

that fall into the kth category, and Ek is the expected number of outcomes that fall

into the kth category under the null hypothesis.

2.1.1 Pearson’s Chi-Squared Test

Pearson’s chi-squared GOF test (Pearson, 1900) is one of the most commonly used

chi-squared type tests for multinomial data. In survey data, it can also be applied

8



Chapter 2. Background

to SRS where the independence assumption is usually met. Suppose there are K

categories and a total of n outcomes for multinomial data. The null hypothesis is as

follows

H0 : p(k) = p0(k), for k = 1, · · · , K, (2.2)

where p(k) and p0(k) are the unknown and hypothesized probability that an outcome

may fall into the kth category, respectively. Let Ok and Ek denote the observed and

expected counts of outcomes under the null hypothesis (2.2) in the kth category, the

estimated proportion of the kth category is p̃(k) = Ok
n

, and the expected counts of

the kth category is Ek = np0(k) for k = 1, · · · , K. Based on the “distance” test

statistic X2, the Pearson’s chi-squared test statistic is

X2
SRS =

K∑

k=1

(Ok − Ek)2
Ek

=
K∑

k=1

(np̃(k)− np0(k))2

np0(k)
= n

K∑

k=1

(p̃(k)− p0(k))2

p0(k)
(2.3)

If H0 is true, this test statistic follows a central chi-squared distribution with (K−1)

degrees of freedom, that is

X2
SRS ∼ χ2

K−1, under H0 (Pearson, 1900).

Therefore, for a pre-specified level of significance α, the value of the test statistic

X2
SRS is compared with the (1 − α) quantile of the chi-squared distribution with

centrality parameter 0 and degrees of freedom (K−1), which is denoted as χ2
K−1(1−

α). One may reject H0 at level α, if

X2
SRS > χ2

K−1(1− α).

9
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2.1.2 Likelihood Ratio Test

Another widely used GOF test for multinomial data is the likelihood ratio test (LRT).

The test statistic is defined as

Λ(O) =
sup {L(p|O) : p ∈ Θ0}
sup {L(p|O) : p ∈ Θ} ,

where L(·) indicates likelihood function, p and O are vector of probabilities and

vector of observed counts for multinomial data, Θ0 and Θ are the parameter spaces

under the null hypothesis and the general parameter space. For the null hypothesis

(2.2) and multinomial data, the numerator and denominator are

sup {L(p|x) : p ∈ Θ0} =
n!

O1! · · ·OK !

K∏

k=1

p0(k)Ok

and

sup {L(p|x) : p ∈ Θ} =
n!

O1! · · ·OK !

K∏

k=1

p̃(k)Ok .

Consequently, the test statistic becomes

Λ(O) =
sup {L(p|O) : p ∈ Θ0}
sup {L(p|O) : p ∈ Θ} =

K∏

k=1

[
p0(k)

p̃(k)

]Ok
.

By applying the function −2ln(·), the LR test statistic for GOF test in SRS is given

by

G2
SRS = −2ln(Λ(O)) = −2

K∑

k=1

Okln

[
p0(k)

p̃(k)

]

= 2n
K∑

k=1

p̃(k)ln

[
p̃(k)

p0(k)

]
.

10
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It is well known that the asymptotic distribution of G2
SRS is χ2

K−1 under the null

hypothesis (2.2). Therefore, H0 should be rejected at level α, if

G2
SRS > χ2

K−1(1− α).

2.1.3 Matrix Form of Chi-Squared Test Statistics

Suppose there are K categories and a total of n outcomes in a multinomial data set.

Define

O =




O1

O2

...

OK−1



, p0 =




p0(1)

p0(2)
...

p0(K − 1)



, p =




p(1)

p(2)
...

p(K − 1)



, p̃ =




p̃(1)

p̃(2)
...

p̃(K − 1)




(2.4)

where O denotes a (K − 1)× 1 vector of observed counts Oi (the counts of category

i), and p0, p, p̃ represent the vector of hypothesized, underlying, and estimated

proportions of a multinomial data set, respectively. All of these vectors are (K−1)×1

dimension, because the proportion of the Kth category can be a function of the

previous K − 1 ones with the following relationship,

p0(K) = 1− p0(1)− p0(2)− · · · − p0(K − 1) = 1−
K−1∑

k=1

p0(k).

Similarly, p(K) = 1−∑K−1
k=1 p(k), p̃(K) = 1−∑K−1

k=1 p̃(k), and OK = n−n∑K−1
k=1 p̃(k)

since Ok = np̃(k) , for k = 1, · · · , K − 1.

Based on these definitions, the null hypothesis (2.2) can be written as

H0 : p = p0, (2.5)
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and its corresponding alternative is

H1 : p 6= p0.

Now, define a series of independent random variables as follows

yj(k) =





1 if outcome j is in category k,

0 otherwise,
for j = 1, · · · , n and k = 1, · · · , K.

Notice the observed counts in the kth category can be Ok =
∑n

j=1 yj(k). Hence the

estimated proportion of the kth category can be written as

p̃(k) =
Ok

n
=

∑n
j=1 yj(k)

n
, for k = 1, · · · , K.

It can be seen that p̃(k) is an unbiased estimator of the unknown parameter p(k) for

all k = 1, · · · , K − 1,

E(p̃(k)) = E

(∑n
j=1 yj(k)

n

)
=

∑n
j=1 E[yj(k)]

n
=
np(k)

n
= p(k)

In addition, the variance of p̃(k) is

var(p̃(k)) = var

(∑n
j=1 yj(k)

n

)
=

∑n
j=1 var[yj(k)]

n

=
np(k)(1− p(k))

n2
=
p(k)(1− p(k))

n
,

because all yj(k)’s are independent from each other for j = 1, · · · , n. Now, we work

on the covariance between p̃(k) and p̃(l), for all k 6= l and k, l = 1, · · · , K.

cov(p̃(k), p̃(l)) = cov

(
Ok

n
,
Ol

n

)
= cov

(∑n
j=1 yj(k)

n
,

∑n
j=1 yj(l)

n

)

=
1

n2
cov

(
n∑

j=1

yj(k),
n∑

j=1

yj(l)

)

12
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Notice that the ith and jth observations are independent, for i 6= j, so their covari-

ance is always 0. By this result, the covariance equation can be simplified as

cov(p̃(k), p̃(l)) =
1

n2

n∑

j=1

cov [yj(k), yj(l)]

Now, we consider the covariance cov[yj(k), yj(l)] for j = 1, · · · , n,

cov(yj(k), yj(l)) = E [yj(k)yj(l)]− E [yj(k)] E [yj(l)]

= −E [yj(k)] E [yj(l)]

= −p(k)p(l),

because the jth observation can not fall into both the kth and lth category at the

same time, i.e., E [yj(k)yj(l)] = 0 is always true. So the covariance between p̃(k) and

p̃(l) is

cov(p̃(k), p̃(l)) =
1

n2
n[−p(k)p(l)] = −p(k)p(l)

n
, for k 6= l.

We now define

P =




p(1)(1− p(1)) −p(1)p(2) · · · −p(1)p(K − 1)

−p(2)p(1) p(2)(1− p(2)) · · · −p(2)p(K − 1)
...

...
. . .

...

−p(K − 1)p(1) −p(K − 1)p(2) · · · p(K − 1)(1− p(K − 1))




a (K − 1)× (K − 1) matrix. One can easily see that

E(p̃) = p and cov(p̃) =
P

n
.
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We also notice that, under the null hypothesis (2.2), p(k) equals the hypothesized

proportion p0(k) for k = 1, · · · , K. Define

P0 =




p0(1)(1− p0(1)) −p0(1)p0(2) · · · −p0(1)p0(K − 1)

−p0(2)p0(1) p0(2)(1− p0(2)) · · · −p0(2)p0(K − 1)
...

...
. . .

...

−p0(K − 1)p0(1) −p0(K − 1)p0(2) · · · p0(K − 1)(1− p0(K − 1))




a (K−1)×(K−1) matrix, then p0 and P0/n are the expectation and the covariance

matrix of p̃ under the null hypothesis (2.5). The Pearson’s chi-squared test statistic

can be written in matrix form as

X2
SRS = n

K∑

k=1

(p̃(k)− p0(k))2

p0(k)

= n(p̃− p0)
TP−10 (p̃− p̃0). (2.6)

We now verify (2.6). We define D(p0) a (K − 1) × (K − 1) matrix with kth

diagonal element p0(k) and off-diagonal entries 0. Then, P0 can be written as

P0 = D(p0)− p0p
T
0 .

According to property B. 56 of Christensen (2011), the inverse of P0 is

P−10 =
[
D(p0)− p0p

T
0

]−1

= D

(
1

p0

)
+D

(
1

p0

)
p0

[
1− pT

0D

(
1

p0

)
p0

]−1
pT
0D

(
1

p0

)

= D

(
1

p0

)
+ J

[
1− pT

0 J
]−1

JT,
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where J is a (K − 1) vector with all elements 1. Therefore, (2.6) can be verified as

follows.

X2
SRS = n(p̃− p0)

TP−10 (p̃− p̃0)

= n(p̃− p0)
T

{
D

(
1

p0

)
+ J

[
1− pT

0 J
]−1

JT

}
(p̃− p̃0)

= n(p̃− p0)
TD

(
1

p0

)
(p̃− p̃0) +

n(p̃− p0)
TJJT(p̃− p0)

1− pT
0 J

= n

K−1∑

k=1

(p̃(k)− p0(k))2

p0(k)
+ n

(∑K−1
k=1 p̃(k)−∑K−1

k=1 p0(k)
)2

1−∑K−1
k=1 p0(k)

= n

K−1∑

k=1

(p̃(k)− p0(k))2

p0(k)
+ n

(p0(K)− p̃(K))2

p0(K)

= n

K∑

k=1

(p̃(k)− p0(k))2

p0(k)

2.2 Neyman Smooth-Type GOF Tests in SRS

The Neyman smooth-type GOF tests provide directional tests by taking advantage

of Fourier transformation so that the Pearson’s chi-squared test statistic can be

decomposed into several components.

2.2.1 Fourier Transformation

According to Fourier transformation, some functions can be written as a combina-

tion of cosine and sine functions, i.e., a sum of the trigonometric functions. This

relationship is built according to Euler’s formula (Euler, 1743),

e2πiθ = cos(2πθ) + isin(2πθ)
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where i is the complex number with i2 = −1.

Let f(x) be a function that is not constantly zero on its domain. If x is continuous,

its continuous Fourier coefficients can be written as

ct =

∫ ∞

−∞
f(x)e−itxdx.

If x is discrete, its discrete Fourier coefficient is of the form

ct =
∞∑

x=−∞
f(x)e−itx.

On the other hand, the inverse Fourier transformation of ct is

f(x) =
∞∑

t=−∞
cte

itx,

under appropriate conditions, according to Fourier inversion theorem in Fourier

(1822, pg. 525) and Fourier and Freeman (1878, pg. 408). In addition, f(x) and ct

are also considered to be a Fourier integral pair or Fourier transform pair in Rahman

(2011, pg. 10).

2.2.2 Decomposing Pearson’s Chi-Squared Test Statistic

We first introduce one of the general decompositions, which has been well studied in

Lancaster (1969), Nair (1987, 1988), Rayner et al. (1985), Rayner and Best (1986),

Rayner and Best (1989) and so on. Suppose there areK categories and n observations

in multinomial data from SRS.

Define a series of basis functions h1(·), · · · , hK−1(·), with orthogonality condition

K−1∑

k=1

hj(Ok)hi(Ok)p̃(k) = δji

16
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where δji is an indicator function with value 1 if j = i and value 0 if j 6= i. Let

Lj =
K∑

k=1

hj(Ok),

By Parseval’s relation (Arfken, 1985, pg. 425), the Pearson’s chi-squared test statistic

can be decomposed as

X2
SRS =

K−1∑

j=1

L2
j .

Another decomposition is introduced in Eubank (1997). For j = 1, · · · , K − 1,

let the basis function xj(k) satisfy the following orthogonality conditions

K∑

k=1

xj(k)xi(k) = δji =





1 if j = i,

0 if j 6= i,

and

K∑

k=1

xj(k)
√
p0(k) = 0,

Let

f̃(k) =
p̃(k)− p0(k)√

p0(k)
, for k = 1, · · · , K, (2.7)

with associated (discrete) generalized Fourier coefficients

bj =
K∑

k=1

f̃(k)xj(k), for j = 1, · · · , K − 1. (2.8)

17
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It is trivial to show that f̃(k) is an unbiased estimator of

f(k) =
p(k)− p0(k)√

p0(k)
, for k = 1, · · · , K, (2.9)

with associated Fourier coefficients

βj =
K∑

k=1

f(k)xj(k), for j = 1, · · · , K − 1, (2.10)

because p̃(k) is an unbiased estimator of p(k). By Parseval’s relation (Arfken, 1985,

pg. 425), the test statistic of Pearson’s chi-squared test statistic can be re-organized

as

X2
SRS = n

K∑

k=1

(p̃(k)− p0(k))2

p0(k)
= n

K∑

k=1

(f̃(k))2 =
K−1∑

j=1

nb2j , (2.11)

which is a sum of ordered terms. For example, nb21 is the most important term that

includes the most information from the data, while nb2K−1 is the least important term

that may not carry as much information as previous terms.

2.2.3 Order Selection

Order selection is an important technique in nonparametric regression. We now

use the polynomial regression as an example to introduce the idea of order selec-

tion. Suppose there are n pairs of data points, (x1, y1), · · · , (xn, yn) with xi and yi

the realizations of covariates and responses. Assume one wants to fit a polynomial

regression model for this data set, that is,

yi = β0 + β1xi + β2x
2
i + · · ·+ βpx

p
i + εi, i = 1, · · ·n,

where εi’s are independent random variables with E(εi) = 0 and var(εi) = σ2 < ∞,

and βi’s are regression coefficients. The next problem is to select an appropriate
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value for order p by some appropriate criteria. One of the most commonly used

methods is the mean squared error (MSE). Let’s use p = 2 as an example to illustrate

the order selection process by MSE criterion. In this case, the regression model is

yi = β0 + β1xi + β2x
2
i + εi, and MSE is given by 1

n

∑n
i=1

(
yi − β̂0 − β̂1xi − β̂2x2i

)2
.

By using cross-validation method, the predicted value of yi, i.e., ŷi is β̂0(j)− β̂1(j)xi−
β̂2(j)x

2
i , where β̂i(j)’s are calculated using all observations except the jth one. For

j = 1, · · · , n, there are n MSE’s calculated and the average MSE can be computed

for p = 2. Similarly, average MSE’s for p = 3, p = 4, · · · can also be computed. The

selected order p is the one associated with the smallest average MSE.

MSE and cross validation method can be applied to many order selection prob-

lems, including GOF tests in regression. However, it may be computationally ex-

pensive if the data set is large. Eubank and Hart (1992) developed a novel order

selection criterion for GOF test in regression, which considers the regression model

yj = f(xj) + εj, j = 1, · · · , n,

for observed data (x1, y1), · · · , (xn, yn), where 0 ≤ x1 < x2 < · · · < xn ≤ 1 and f is

an arbitrary function. The null hypothesis of interest is

H0 : f(x) =

p∑

j=1

βjtj(x), (2.12)

where βj’s are unknown regression coefficients and tj’s are some unknown functions.

Its corresponding alternative hypothesis is

H1 : f(x) =

p∑

j=1

βjtj(x) + g(x),

where g is a function that is not a combination of the tj’s. Next, Eubank and Hart

(1992) defines the estimates of g as bjn with Fourier coefficients bj for j = 1, · · · , n−p,
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so that the null hypothesis (2.12) becomes

H∗0 : b1 = · · · = bn−p = 0.

As a result, the test statistic q̂ is the maximizer of the criterion

J(q) =

q∑

j=1

b2jn −
qaασ̂

2

n
, for q = 1, · · · , n− p, (2.13)

where H(0) = 0, σ̂2 is the estimator of σ2 = var(εi), aα is a constant that is deter-

mined by the level of significance α. In practice, aα is the solution of (3.14) or (3.15).

The null hypothesis H∗0 is rejected at level α if q̂ > 0 is found.

Eubank and Hart (1992) also mention that if aα = 2 is selected for (2.13), q̂ is

equivalent to the minimizer of an unbiased estimator of the risk function

R(q) = E

[
1

n

n∑

i=1

(ĝq(xi)− g(xi))
2

]
.

This approach is different from previous work, such as Eubank and Spiegelman

(1990), because it is data-driven. This method is later chosen to be the order selection

method in Eubank (1997) and in this dissertation.

2.2.4 Neyman Smooth-Type GOF tests with Order Selec-

tion

In Eubank (1997), some abnormal outcomes were observed for the Pick 3 game from

the Texas Lottery machines. The game was described by Eubank as follows. For

each game, 3 machines are used. Each has 10 ping-pong-type balls numbered from

0 to 9. In every machine, there is a mixing chamber and a vertical tube. When the

game starts, balls enter in the vertical tube one by one, with ball numbered 0 at
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the bottom and ball numbered 9 at the top. Then, all the balls go to the mixing

chamber and are mixed by air. Finally, only one ball is selected to go through the

exit hole. A player wins the game if the pre-chosen numbers match the numbers

selected randomly by the machines in daily draws. If the machines are working

properly, the probability of any ball that is selected is supposed to be around 0.1,

that is, the null hypothesis is H0 : p(1) = · · · = p(10) = 0.1. However, the owner

of the machines found that one particular machine was not performing as expected.

Thus, this machine was taken offline for further investigation. According to 150

draws, the results are shown in Figure 1.1, where the X-axis is the number of the

balls (10 discrete numbers from 0 to 9), and the Y-axis is the observed probability

of each ball obtained through the 150 draws. If the machine worked properly, the

anticipated observed probabilities of the 10 balls should be randomly distributed

around 0.1. However, it is observed that balls with larger numbers (7, 8, and 9) tend

to have lower probabilities of selection, while small number balls (0, 1, 3, and 4)

are more likely to be chosen. Besides those values of observed probabilities, one can

also observe that there is an overall decreasing trend for the estimated probabilities,

instead of randomly distributed around 0.1. In addition, this figure also illustrates

that the selection probabilities are close to each other (range from 0.06 to 0.13),

which can be described as slow varying probabilities despite the selection probability

trend.

As shown in Eubank (1997), it was found that the Pearson’s chi-squared test

statistic is X2
SRS = 7.73, which failed to identify this non-randomness problem at

level of 0.1 or 0.05, because the critical values of χ2
9 are 14.68 and 16.92 for α = 0.1

and α = 0.05, respectively. In fact, the p-value is approximately 0.48, which can’t

reject the null hypothesis even at level 0.48. This is a contradiction against what

was observed. Thus, Eubank (1997) proposed a data-driven Neyman smooth-type

goodness of fit tests incorporated with order selection, which successfully rejected

the null hypothesis between level 0.05 and 0.1, i.e., detected the non-randomness
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problem. We now review these methods.

Suppose there are K categories and n observations for a multinomial data from

SRS. The null hypothesis is the same as (2.2). The Pearson’s chi-squared test statistic

is then decomposed as in (2.11). According to Eubank (1997), one of the choices of

the basis function for X2
SRS =

∑K−1
j=1 nb2j is

xj(k) =

√
2

K
cos

(
jπ(k − 0.5)

K

)
, for j = 1, · · · , K − 1, (2.14)

The basis function (2.14) is chosen for the particular null hypothesis H0 : p(1) =

· · · = p(10) = 0.1. Eubank (1999, pg. 75) gives a detailed description of how to

construct this basis function.

Notice that, f(k) in (2.9) is 0 under H0, for k = 1, · · · , K. Therefore, the

null hypothesis (2.2) is now equivalent to H∗0 : β1 = · · · = βK−1 = 0, with the

corresponding alternative H∗1 : βq 6= 0 and βq+1 = · · · = βK−1 = 0 for q = 1, · · · , K−
1, according to Lehmann (1986, sec. 8.8 and ex. 37 in pg. 495). It was found that

√
n




b1 − β1
b2 − β2

...

bK−1 − βK−1



→ NK−1(0,V), as n→∞,

where V = {vij − βiβj} is a (K − 1) × (K − 1) covariance matrix with (vij − βiβj)
as the ijth entry and vij =

∑K
k=1 xi(k)xj(k)p(k)/p0(k) for i, j = 1, · · · , K − 1. The

test statistic of order q is X2
q =

∑q
j=1 nb

2
j , for q = 1, · · · , K − 1. The test can be

conducted by comparing X2
q with χ2

q.

Suppose the underlying order is q0. The next task is to find out a good estimator

of q0 according to data. Eubank (1997) argued that an appropriate value of q0 should
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be the minimizer of the criterion
∑K

k=1 (fq(k)− f(k))2, or equivalently, the maximizer

of M(q) = −∑q
j=1 b

2
j + 2

∑q
j=1 βjbj with respect to q, where fq =

∑q
j=1 bjxj.

According to Hart (1985), an unbiased estimator of M(q) is

M̃(q) =
n+ 1

n− 1

q∑

j=1

b2j −
2

n− 1

q∑

j=1

ṽjj, for q = 1, · · · , K − 1,

where ṽjj =
∑K

k=1 xj(k)2p̃(k)/p0(k) for j = 1, · · · , K − 1. If q̃ is the maximizer

of M̃(q) with M̃(0) = 0, the first test statistic (Eubank, 1997) is given by W =

(X2
q̃ − q̃)/

√
2q̃ for q̃ 6= 0 with W = 0 if q̃ = 0. The distribution of W under H∗0 , say

W0, is obtained through simulation. Then, the level α test is performed by comparing

the value of W and the 1− α quantile of W0.

Another estimator of q0 at level α, denoted as q̃α, is the maximizer of

M̃α(q) =
n+ 1

n− 1

q∑

j=1

b2j −
aα

n− 1

q∑

j=1

ṽjj, for q = 1, · · · , K − 1,

with M̃α(0) = 0, where ṽjj =
∑K

k=1 x
2
j(k)p̃(k)/p0(k), for j = 1, · · · , K − 1, and the

number aα is chosen so that it is the solution of 1 − α = exp
{
−∑∞k=1

P (χ2
k>kaα)

k

}

according to Eubank and Hart (1992) or P
(

max1≤k≤K−1
[
1
k

∑k
j=1 Z

2
j

]
≥ aα

)
= α

according to Eubank (1997). For example, if α = 0.05 is chosen, the corresponding

solution is a0.05 = 4.18. Note that χ2
k is a central chi-squared random variable with k

degrees of freedom, and the Zj’s are independent standard normal random variables.

Because of the transformed null and alternative hypothesis H∗0 and H∗1 , the null

hypothesis should be rejected if q̃α > 0, for example, if q̃α = 1 is found, at least we

know that β1 6= 0 and thus the null hypothesis does not hold.

Now, recall the previous Pick 3 game example. It was found that q̃ = 1, X2
q̃ =

X2
1 = 5.186 and W = 2.96. The critical values of W0 are 2.99 and 2.3 for level

0.05 and 0.1, respectively. It was also found that q̃0.05 = 0 and q̃0.1 = 0. Both
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methods suggest that the null hypothesis should be rejected at a level between 0.05

and 0.1, that is, the 10 balls didn’t pop up randomly. This is consistent with what

we observed from the 150 draws.

In Eubank (1997), both Neyman smooth-type GOF tests and order selection are

utilized to get rid of redundant components of the test statistics, so that we have

more degrees of freedom for the test. As a result, these methods are more sensitive

in detecting slow varying probabilities in multinomial data.

2.3 Chi-Squared GOF Tests in Complex Surveys

A complex survey usually consists of stratification and clustering in order to increase

the precision of the estimator and to decrease the survey cost. Data from a complex

survey is usually correlated, where the assumption of independence is no longer met.

The existing GOF tests need to be modified to accommodate the correlated structure

of the survey data. In this section, we will review a few sampling designs as well as

some GOF tests for use in complex surveys.

2.3.1 Sampling Designs

Sampling designs play an important role in data collection and related statistical

analyses. The frequently used and popular designs include simple random sampling,

stratified random sampling and cluster sampling.

For an SRS, suppose that there are N students in the University of New Mexico

(UNM). We randomly select n students from the population (N students). Therefore,

each student represents N/n students, called sampling weight of the selected student.

For some other type of surveys, for example, we want to survey the attitude
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towards immigration among the students in UNM. If we use an SRS, we may miss

the minorities such as those international students. We may divide the students into

several strata such as local students (New Mexico students), with population a total

of N1, students from other areas of the country (with population a total of N2),

and international students (with population a total of N3). We then take an SRS

from each stratum respectively with sample sizes of n1, n2, and n3. This is called

stratified random sampling. Sampling weights for the three strata are N1/n1, N2/n2,

and N3/n3, respectively.

For cluster sampling, we illustrate one example from Lohr (2010, pg. 171). A

student is interested in estimating the average GPA of all students in his dormitory.

There are 100 suites in the dorm and every suite contains 4 students. A sample of

20 students is determined to conduct the survey. If SRS is used, all 400 students

should be listed and 20 should be randomly picked up from the list. In this case,

the student investigator may need to go to many suites to complete the survey.

Therefore, cluster sampling is used. Each suite is considered as a primary sampling

unit (psu) and students in each suite are secondary sampling units (ssu). The student

investigator randomly selects 5 suites and conducts surveys of all 4 students in the

chosen suite. The sampling strategy in this example is called cluster sampling, which

usually decreases precision, but is less expensive.

Lohr (2010, pg. 407) gives an example about the effects of clustering on GOF

tests. In that example, the husband and wife give exactly the same answer to the

survey questionnaire, thus they are perfectly correlated. If we ignore the clustering

effects and treat husband and wife as independent individuals, the resulting test

statistic X2
SRS in (2.6) will be doubled. Therefore, we are more likely to reject the

null hypothesis than we should do. This requires new methods for GOF tests in

complex surveys.
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2.3.2 Wald Test

The Wald test (Wald, 1943) is named after Abraham Wald. It can be considered as

a correction to Pearson’s chi-squared GOF test that can be used in both SRS and

complex surveys. Recall vectors in (2.4)

p0 =




p0(1)

p0(2)
...

p0(K − 1)



, p =




p(1)

p(2)
...

p(K − 1)



, p̂ =




p̂(1)

p̂(2)
...

p̂(K − 1)



.

with the restriction that
∑K

k=1 p0(k) =
∑K

k=1 p(k) =
∑K

k=1 p̂(k) = 1. p̂ is calculated

based on the sampling design. Denote V the (K − 1) × (K − 1) covariance matrix

of p̂ and V̂ the estimator of V. Rao and Scott (1981) discussed several approaches

to calculated V̂. The Wald test statistic is of the matrix form

X2
W = n(p̂− p0)

TV̂−1(p̂− p0),

whose asymptotic distribution under the null hypothesis (2.2) is a central chi-squared

distribution with (K − 1) degrees of freedom. The Wald test statistic is equivalent

to Pearson’s chi-squared test statistic if V = P0. Therefore, Pearson’s chi-squared

test statistic may be considered as a special case of the Wald test statistic. Wald

test can be used in both complex surveys and simple random sample. The major

drawback of the Wald test statistic is the instability of the estimator of V−1, which

may result in poor control of the Type I error in some situations (Thomas and Rao

(1987)).
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2.3.3 Corrections to Chi-Squared Test Statistic

In this section, we review the first order and second order corrected chi-squared type

GOF tests proposed by Rao and Scott (1981, 1984) and Bedrick (1983) for use in

complex surveys. Rao and Thomas (1988) compared many chi-squared type tests

in complex surveys and concluded that both first order and second order corrected

tests (Rao & Scott, 1981, 1984 and Bedrick, 1983) work well for complex surveys.

Let

X2 = n

K∑

k=1

(p̂(k)− p0(k))2

p0(k)

be the test statistic for multinomial data from complex surveys. Notice that the un-

weighted estimated proportion p̃(k) is replaced by the weighted estimated proportion

p̂(k) to incorporate the design information. The corresponding matrix form of this

test statistic is

X2 = n(p̂− p0)
TP−10 (p̂− p0).

Rao and Scott (1981) found that the asymptotic distribution of X2 under the null

hypothesis (2.2) was a linear combination of central chi-squared distribution with 1

degrees of freedom, that is,

X2 ∼
K−1∑

i=1

δiχ
2
1,

where δi’s, for i = 1, · · · , K− 1 are eigenvalues of the design effects matrix P−10 V. If

the sampling design is SRS, all the eigenvalues equal 1 under the null hypothesis (2.2)

because V = P0. As a result, X2 = X2
SRS follows central chi-squared distribution

with (K − 1) degrees of freedom under the null hypothesis (2.2). At this point, the

critical values need to be simulated, which brings difficulty in the calculation. Thus,
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Rao and Scott (1981), Bedrick (1983), and Rao and Scott (1984) proposed the first

order and second order corrected tests to accelerate the test procedures.

For the first order corrected test, let

δ. =

∑K−1
i=1 δi
K − 1

denote the average of the (K − 1) eigenvalues of the design effects matrix P−10 V.

Since the expected value of
∑K−1

i=1 δiχ
2
1 is

∑K−1
i=1 δi = (K−1)δ., the expected value of

X2/δ. is (K − 1) under the null hypothesis (2.2). In practice, δ. can be estimated by

δ̂. =
n

K − 1

K∑

k=1

V̂kk
p0(k)

,

where V̂kk = p̂(k)(1 − p̂(k)) is the kth diagonal element of the matrix V̂, for k =

1, · · · , K − 1. Hence, under the null hypothesis (2.2), the test statistic of the first

order corrected test is

X2
C =

X2

δ̂.
, with E(X2

C) = K − 1. (2.15)

Therefore, by matching the mean of the test statistic, under the null hypothesis (2.2),

X2/δ. can be compared with a central chi-squared distribution with (K − 1) degrees

of freedom.

In addition, the second order test statistic is given by

X2
S =

X2

δ̂.(1 + â2)
=

X2
C

(1 + â2)
, (2.16)

where

â2 =
K−1∑

i=1

δ̂2i /[(K − 1)δ̂2. ]− 1 (2.17)
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and
∑K−1

i=1 δ̂2i can be calculated by

K−1∑

i=1

δ̂2i = n2

K∑

i=1

K∑

i=1

V̂ij/p0(i)p0(j),

if the full estimated covariance matrix is known. The test statistic of the second

order corrected test is then compared with central chi-squared distribution with

(K − 1)/(1 + â2) degrees of freedom under the null hypothesis (2.2).
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Neyman Smooth-Type GOF Tests

in Complex Surveys

In complex survey, observations are usually correlated due to clustering, where the

independence assumption is no longer met. Therefore, Pearson’s chi-squared test, the

likelihood ratio test, and Neyman smooth-type GOF tests, etc. don’t have χ2(K−1)

distributions. A number of methods were proposed to account for the survey design

information when testing goodness of fit, such as Wald test, Fay’s Jackknived chi-

squared test, the Rao-Scott approaches, and so on. But none of the research address

the slow varying probability problem corresponding to the null hypothesis (3.1). In

this chapter, we extend Neyman smooth-type GOF test (Eubank, 1997) to complex

surveys. We first propose two GOF tests in complex surveys in Section 3.1. Next,

we discuss the asymptotic properties of the estimators in Section 3.2 for stratified

sampling.
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3.1 Proposed Tests in Complex Surveys

Consider a complex survey, n observations are classified into K categories according

to certain factor levels. In this section, we first give the framework of the tests,

then we propose two Neyman smooth-type GOF tests with order selection for use in

complex surveys.

3.1.1 Framework

Suppose the null hypothesis of interest is

H0 : p(k) = p0(k) =
1

K
, k = 1, · · · , K, (3.1)

that is, the probability of each category p(k) is a fixed number p0(k) with restriction
∑K

k=1 p0(k) = 1. Note that observations from a survey data are weighted, i.e., each

observation yi represents wi observations.

We first define the basis function xj(k) that satisfies the following orthogonality

conditions:

K∑

k=1

xj(k)xi(k) = δji =





1 if j = i,

0 if j 6= i,
i, j = 1, · · · , K − 1 (3.2)

and

K∑

k=1

xj(k)
√
p0(k) = 0, j = 1, · · · , K − 1. (3.3)

There are many choices of the basis function. Following Eubank (1997), the basis

function (3.4) for the null hypothesis (3.1) is used in our proposed tests,

xj(k) =

√
2

K
cos

(
jπ(k − 0.5)

K

)
, k = 1, · · · , K and j = 1, · · · , K − 1. (3.4)
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In general, it is possible to chose different basis functions for an arbitrary null

hypothesis H0 : p(k) = p0(k) for k = 1, · · · , K. The basis functions should satisfy the

orthogonality conditions (3.2) and (3.3). To do that, we can use the Gram-Schmidt

process to orthonormalize the polynomials of degree K − 1 under the inner product

< w, v >=
∑K

k=1w(k)v(k)
√
p0(k). For example, if K = 3 and p0 = (0.5, 0.3, 0.2)T,

we can chose the two basis functions as x1 = (−0.6031023, 0.1369881, 0.7858129) and

x2 = (0.3691445,−0.8253692, 0.4271979), which satisfy the orthogonality conditions

(3.2) and (3.3). In our research, we focus on the simple uniform hypothesis (3.1)

and use the basis function (3.4) for j = 1, · · · , K − 1 and k = 1, · · · , K. It is easy

to check that the basis function (3.4) satisfy the orthogonality conditions (3.2) and

(3.3).

Now, let

yj(k) =





1 if outcome j is in category k,

0 otherwise,

and wj be the sampling weight of yj(k), for j = 1, · · · , n and k = 1, · · · , K. The

general form of the consistent estimated proportion of the kth category is

p̂(k) =

∑n
j=1wjyj(k)∑n

j=1wj
, k = 1, · · · , K.

Let

f̂(k) =
p̂(k)− p0(k)√

p0(k)
, (3.5)

with associated (discrete) generalized Fourier coefficients

bj =
K∑

k=1

f̂(k)xj(k), j = 1, · · · , K − 1. (3.6)
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By the fact that E[p̂(k)] = p(k), we can prove that f̂(k) is an unbiased estimator of

f(k) =
p(k)− p0(k)√

p0(k)
, (3.7)

with associated Fourier coefficients

βj =
K∑

k=1

f(k)xj(k). (3.8)

As a result of Parseval’s relation (Arfken, 1985, pg. 425), the GOF test statistic in

complex surveys can be re-written as

X2 = n

K∑

k=1

(p̂(k)− p0(k))2

p0(k)
= n

K∑

k=1

(f̂(k))2 =
K−1∑

j=1

nb2j ,

which consists of (K − 1) orthogonal components. Notice that, f(k) is 0 under the

null hypothesis (3.1). By sec. 8.8 and ex. 37 of Lehmann (1986, pg. 495), the null

hypothesis (3.1) is equivalent to

H∗0 : β1 = · · · = βK−1 = 0, (3.9)

and its corresponding alternative becomes

H∗1 : βq 6= 0 and βq+1 = · · · = βK−1 = 0, for q = 1, · · · , K − 1. (3.10)

The proposed Neyman smooth-type GOF test statistic is

X2
q =

q∑

j=1

nb2j , q = 1, · · · , K − 1,

where order q is selected by data.
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If the underlying order is q0, an optimal estimator of q0 should be the minimizer

of the criterion

K∑

k=1

(fq(k)− f(k))2 , where fq =

q∑

j=1

bjxj.

This is equivalent to maximize

M(q) = −
q∑

j=1

b2j + 2

q∑

j=1

βjbj

with respect to q (Eubank, 1997). In the next two sections, we will discuss the two

proposed GOF tests for complex surveys.

3.1.2 Proposed Test W

We first propose an estimator for q0, say q̂, which is the maximizer of the following

equation

M̂(q) =
n+ 1

n− 1

q∑

j=1

b2j −
2δ̂.
n− 1

q∑

j=1

v̂jj, q = 1, · · · , K − 1, (3.11)

where M̂(0) = 0, v̂jj =
∑K

k=1 xj(k)2p̂(k)/p0(k), for j = 1, · · · , K − 1, and δ̂. is the

estimator of average of the eigenvalues of the design effects matrix P−10 V introduced

in Section 2.3.3.

Because of the transformed hypotheses H∗0 (3.9) and H∗1 (3.10), q̂ may be a

natural test statistic and the null hypothesis can be rejected if q̂ > 0 is obtained

through data. For example, if q̂ = 1, at least we know that β1 6= 0, thus reject of

H∗0 . However, as shown in Spitzer (1956) and Zhang (1992), and also by simulation,

the limiting probability of the Type I error of such a test is

lim
K→∞

lim
n→∞

P (q̂ > 0|q0 = 0) = 0.29,
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which implies that the level of significance is approximately 0.29.

In order to perform the test at a pre-specified level α, our first proposed test

statistic based on Eubank (1997) is

W =





X2
q̂−q̂√
2q̂
, q̂ > 0,

0, q̂ = 0,
(3.12)

where X2
q̂ =

∑q̂
j=1 nb

2
j for q = 1, · · · , K − 1 and X2

q̂ = 0 for q̂ = 0.

Since the chance of overselection for q0 is almost 30% if q0 = 0, there is a high

chance that X2
q̂ is a large number. For example, if q0 = 0 is true and the selected q̂

is K − 1, then X2
K−1 may be relatively much larger than the true value X2

0 = 0 and

thus can be considered as an outliers. For this reason, the test statistic W in (3.12)

is a normalized X2
q̂ so that potential outliers may be avoid.

The distribution of W under null model (3.1) or (3.9) is obtained through sim-

ulations, which is denoted as W0. For an arbitrary pre-specified level of significance

α, the test can be performed by comparing the value of W and the 1−α quantile of

W0.

3.1.3 Proposed Test q̂α

We now change the Equation (3.11) slightly as the following

M̂α(q) =
n+ 1

n− 1

q∑

j=1

b2j −
aαδ̂.
n− 1

q∑

j=1

v̂jj, q = 1, · · · , K − 1 (3.13)

where M̂α(0) = 0 and v̂jj =
∑K

k=1 xj(k)2p̂(k)/p0(k), for j = 1, · · · , K−1. The second

proposed estimator of q0, say q̂α, is the maximizer of Equation (3.13).
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Comparing with the maximizing criterion (3.11), one may notice that the constant

2δ̂. is replaced by the constant aαδ̂., which is a function of the level of significance α

and the estimated average of the eigenvalues δ̂.. That is because we want to conduct

the test using the maximizer q̂α directly for a pre-specified level of significance α.

Recall that the limiting probability of the Type I error for the proposed estimator

q̂ is 0.29. Thus, aα is used to control the Type I error in this test. According to

Eubank and Hart (1992) and Eubank (1997), the value of aα, for a given α, is the

solutions of the equations

1− α = exp

{
−
∞∑

k=1

P (χ2
k > kaα)

k

}
(3.14)

or

P

(
max

1≤k≤K−1

[
1

k

k∑

j=1

Z2
j

]
≥ aα

)
= α (3.15)

where χ2
k indicates the central chi-squared random variable with k degrees of freedom

and Zj’s are independent standard normal random variables. Notice that a large K

approximation is needed for equation (3.14). However, we noticed by simulations

that aα converges to the desired value quickly for K > 10. Finally, the level α test

is conducted by rejecting the null hypothesis (3.1) or (3.9) if q̂α > 0 is obtained.

3.2 Asymptotic Properties of Estimators in Strat-

ified Sampling

In Section 3.1, we proposed two Neyman smooth-type GOF tests incorporated with

order selection for use in complex surveys. In this section, we will examine the

asymptotic properties of these two estimators in stratified sampling. We will first

36



Chapter 3. Neyman Smooth-Type GOF Tests in Complex Surveys

discuss the effective sample size, then we discuss the limiting distribution of the

Fourier coefficients and the asymptotic properties of the estimators. The asymptotic

properties of the estimators in cluster sampling will be examined in the future.

3.2.1 Effective Sample Size

In this section, we will investigate the relationship between the effective sample size

and the design effects matrix P−10 V, where P0 and V are defined in (2.6) and (B.5).

Recall that the Kish’s effective sample size introduced in (B.3) is as follows,

ñ =

(∑n
j=1wj

)2
∑n

j=1, w
2
j

.

We want to build a relationship between the Kish’s effective sample size ñ and the

observed sample size n. We start with the test statistic of the first order corrected

test X2
C = X2

δ.
. The following equations can be derived,

E

(
X2

δ.

)
= E

(
n

δ.

K∑

k=1

(p̂(k)− p0(k))2

p0(k)

)

=
n

δ.

K∑

k=1

E (p̂(k)− p0(k))2

p0(k)

=
n

δ.

K∑

k=1

E [(p̂(k)− p(k)) + (p(k)− p0(k))]2

p0(k)

=
n

δ.

K∑

k=1

{
E [p̂(k)− p(k)]2

p0(k)
+

E [p(k)− p0(k)]2

p0(k)

+2
E [(p̂(k)− p(k))(p(k)− p0(k))]

p0(k)

}
.
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Since p̂(k) is an unbiased estimator of p(k), we have

E [(p̂(k)− p(k))(p(k)− p0(k))] = (p(k)− p0(k))E(p̂(k)− p(k))

= (p(k)− p0(k))[E(p̂(k))− p(k)]

= (p(k)− p0(k))[p(k)− p(k)]

= 0.

The following equations also hold

E [p̂(k)− p(k)]2 = var(p̂(k))

=
p(k)(1− p(k))

ñ
.

Thus,

E

(
X2

δ.

)
=

n

δ.

K∑

k=1

var(p̂(k)) + (p(k)− p0(k))2

p0(k)

=
n

δ.

K∑

k=1

p(k)(1−p(k))
ñ

+ (p(k)− p0(k))2

p0(k)
.

Under the null hypothesis (3.1) H0 : p(k) = p0(k) for k = 1, · · · , K, we have

(p(k)− p0(k))2 = (p0(k)− p0(k))2 = 0,

and

p(k)(1− p(k))

ñ
=
p0(k)(1− p0(k))

ñ
.
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As a result, under the null hypothesis (3.1), we have

E

(
X2

δ.

)
=

n

δ.

K∑

k=1

p0(k)(1− p0(k))

ñ

1

p0(k)

=
n

δ.

K∑

k=1

(1− p0(k))

ñ

=
n

δ.

1

ñ

K∑

k=1

(1− p0(k))

=
n

δ.

1

ñ
(K −

K∑

k=1

p0(k))

=
n

δ.

1

ñ
(K − 1).

Under the null hypothesis (3.1), the asymptotic distribution of X2 is a linear com-

bination of χ2
1,

X2 ∼
K−1∑

j=1

δjχ
2
1,

where χ2
1 indicates independently central chi-squared random variable with 1 degree

of freedom. We now have

E(X2) = E

[
K−1∑

j=1

δjχ
2
1

]

= δ1E(χ2
1) + · · ·+ δK−1E(χ2

1)

= δ1 + · · ·+ δK−1

=
K−1∑

j=1

δj = (K − 1)δ..
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Hence,

E

(
X2

δ.

)
=

E (X2)

δ.
= K − 1.

Therefore, under the null hypothesis (3.1), it can be proved that

E

(
X2

δ.

)
=

n

δ.

1

ñ
(K − 1)

= K − 1.

By solving the equation above, it can be derived that

ñ =
n

δ.
. (3.16)

This relationship plays a crucial role when proving the theorems proposed in this

chapter. In practice, our tests can be conducted using the observed sample size n

with the estimator of δ.. In proofs of the asymptotic properties of the test statistics,

Kish’s effective sample size is used. The connection between ñ and n is a bridge for

the theorems and the proposed test procedures.

3.2.2 Limiting Distribution of The Fourier Coefficients bj’s

Theorem 1. Assume that there is a sequence of superpopulations U1 ⊂ U2 ⊂ · · · ⊂
Ut ⊂ · · · as defined in Isaki and Fuller (1982). Let

πit = p(psu i is in the sample, using population Ut)

and

πijt = p(psu i and psu j are both in the sample, using population Ut)
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be the inclusion and joint inclusion probabilities for the samples from population Ut.
Assume there are constants c1 and c2 such that

0 < c2 < πit < c1 < 1 (3.17)

for all i and any superpopulation in the sequence. Also assume there exists an αt

with αt = o(1) such that

πitπjt − πijt ≤ αtπitπjt. (3.18)

Let wj denote the sampling weight of the jth observation, for j = 1, · · · , n and denote

the Kish’s effective sample size as ñ =
(
∑n
j=1 wj)

2

∑n
j=1 w

2
j

. We have

√
ñ




b1 − β1
b2 − β2

...

bK−1 − βK−1



→ NK−1(0,V), as ñ→∞,

where V = {vij − βiβj} is a (K − 1) × (K − 1) covariance matrix with ijth entry

(vij − βiβj) and

vij =
K∑

k=1

xi(k)xj(k)p(k)

p0(k)
, i, j = 1, · · · , K − 1.

Proof. In this proof, we will first derive the variance-covariance matrix of the bj’s.

Next, we use the finite population Central Limit Theorem (CLT) to show the asymp-

totic distribution.

In stratified sampling, the estimated proportion of the kth category is

p̂(k) =

∑n
j=1wjyj(k)∑n

j=1wj
, for k = 1, · · · , K,
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where wj is the sampling weight of the jth observation and yj(k)’s are uncorrelated

random variables defined as follows,

yj(k) =





1 If jth observation falls in the kth category,

0 Otherwise,
j = 1, · · · , n.

In stratified sampling, it has been shown in Appendix B that

E[p̂(k)] = p(k), var[p̂(k)] =
p(k)(1− p(k))

ñ
,

and

cov(p̂(k), p̂(l)) = −p(k)p(l)

ñ
, k 6= l.

Now, in order to decompose the chi-squared test statistic to perpendicular com-

ponents, we need a basis function that satisfies the orthogonality conditions (3.2)

and (3.3). Following Eubank (1997), we choose equation (3.4) for the null hypoth-

esis (3.1), which satisfies both of the orthogonality conditions and changes sign j

times for each k = 1, · · · , K − 1.

It can be shown that f̂(k) defined in equation (3.5) is an unbiased estimator of

f(k) in equation (3.7) for k = 1, · · · , K, and the associated (discrete) generalized

Fourier coefficients bj in equation (3.6) of f̂(k) is also unbiased for βj in equation (3.8),

the associated (discrete) generalized Fourier coefficients of f(k) for j = 1, · · · , K−1.

E[f̂(k)] = E

[
p̂(k)− p0(k)√

p0(k)

]
=

E[p̂(k)]− p0(k)√
p0(k)

=
p(k)− p0(k)√

p0(k)
= f(k),
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and

E(bj) = E

[
K∑

k=1

f̂(k)xj(k)

]
=

K∑

k=1

E[f̂(k)]xj(k)

=
K∑

k=1

f(k)xj(k) = βj.

Now, we want to derive the covariance matrix V of bj’s. Suppose there are a

total of K categories in multinomial data under stratified sampling, so that there are

(K − 1) bj’s, that are all consistent with their corresponding parameters βj’s, that

is, E[bj] = βj for j = 1, · · · , K − 1. Since bj can be expanded as

bj =
K∑

k=1

f̂(k)xj(k)

= f̂(1)xj(1) + · · ·+ f̂(K)xj(K)

=
p̂(1)− p0(1)√

p0(1)
xj(1) + · · ·+ p̂(K)− p0(K)√

p0(K)
xj(K),

the variance of bj can be written as

var(bj) = var

[
p̂(1)− p0(1)√

p0(1)
xj(1) + · · ·+ p̂(K)− p0(K)√

p0(K)
xj(K)

]

=
[xj(1)]2

p0(1)
var [p̂(1)− p0(1)] + · · ·+ [xj(K)]2

p0(K)
var [p̂(K)− p0(K)]

+2
∑

k 6=l
cov

[
p̂(k)− p0(k)√

p0(k)
xj(k),

p̂(l)− p0(l)√
p0(l)

xj(l)

]

=
K∑

m=1

[xj(m)]2

p0(m)
var [p̂(m)− p0(m)]

+2
∑

k 6=l
cov

[
p̂(k)− p0(k)√

p0(k)
xj(k),

p̂(l)− p0(l)√
p0(l)

xj(l)

]
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Note that

var [p̂(m)− p0(m)] = var [p̂(m)] =
p(m)(1− p(m))

ñ
, m = 1, · · ·K, (3.19)

and

cov

[
p̂(k)− p0(k)√

p0(k)
xj(k),

p̂(l)− p0(l)√
p0(l)

xj(l)

]

=
xj(k)xj(l)√
p0(k)p0(l)

cov[p̂(k), p̂(l)]

= − xj(k)xj(l)√
p0(k)p0(l)

p(k)p(l)

ñ
, k 6= l. (3.20)

(3.19) and (3.20) results in

var(bj) =
K∑

m=1

[xj(m)]2

p0(m)

p(m)(1− p(m))

ñ
− 2

∑

k 6=l

xj(k)xj(l)√
p0(k)p0(l)

p(k)p(l)

ñ
.

By expanding p(m)(1− p(m)), var(bj) turns out to be

var(bj) =
1

ñ

{
K∑

m=1

[xj(m)]2

p0(m)
p(m)

}
− 1

ñ

{
K∑

m=1

[xj(m)]2

p0(m)
(p(m))2

}

− 1

ñ

{
2
∑

k 6=l

xj(k)xj(l)√
p0(k)p0(l)

}
,

and again, the last two terms form a complete square. Thus,

var(bj) =
1

ñ





K∑

k=1

[xj(k)]2

p0(k)
p(k)−

[
K∑

k=1

xj(k)√
p0(k)

p(k)

]2
 .

By the second orthogonality condition,

0 =
K∑

k=1

xj(k)
√
p0(k) =

K∑

k=1

xj(k)√
p0(k)

p0(k), for p0(k) 6= 0,
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the variance maintains the same if 0 is subtracted

var(bj) =
1

ñ





K∑

k=1

[xj(k)]2

p0(k)
p(k)−

[
K∑

k=1

xj(k)√
p0(k)

p(k)− 0

]2


=
1

ñ





K∑

k=1

[xj(k)]2

p0(k)
p(k)−

[
K∑

k=1

xj(k)√
p0(k)

p(k)−
K∑

k=1

xj(k)√
p0(k)

p0(k)

]2


=
1

ñ





K∑

k=1

[xj(k)]2

p0(k)
p(k)−

[
K∑

k=1

xj(k)√
p0(k)

(p(k)− p0(k))

]2
 .

By the definitions of

K∑

k=1

[xj(k)]2

p0(k)
p(k) = vjj

and

K∑

k=1

xj(k)√
p0(k)

(p(k)− p0(k)) =
K∑

k=1

p(k)− p0(k)√
p0(k)

xj(k)

=
K∑

k=1

f(k)xj(k)

= βj,

the variance is then summarized as

var(bj) =
1

ñ





K∑

k=1

[xj(k)]2

p0(k)
p(k)−

[
K∑

k=1

xj(k)√
p0(k)

(p(k)− p0(k))

]2


=
1

ñ
(vjj − β2

j ),

and the variance of bj is derived for all j = 1, · · · , K − 1.

45



Chapter 3. Neyman Smooth-Type GOF Tests in Complex Surveys

The next step is to derive the covariance between bi and bj for i 6= j and i, j =

1, · · · , K − 1.

cov(bi, bj) = cov

(
K∑

k=1

f̂(k)xi(k),
K∑

k=1

f̂(k)xj(k)

)

= cov

(
K∑

k=1

p̂(k)− p0(k)√
p0(k)

xi(k),
K∑

k=1

p̂(k)− p0(k)√
p0(k)

xj(k)

)

=
K∑

m=1

cov

(
p̂(m)− p0(m)√

p0(m)
xi(k),

p̂(m)− p0(m)√
p0(m)

xj(k)

)

+
∑

k 6=l
cov

(
p̂(k)− p0(k)√

p0(k)
xi(k),

p̂(l)− p0(l)√
p0(l)

xj(l)

)
,

with the first term

K∑

m=1

cov

(
p̂(m)− p0(m)√

p0(m)
xi(m),

p̂(m)− p0(m)√
p0(m)

xj(m)

)

=
xi(m)xj(m)

p0(m)

K∑

m=1

cov (p̂(m)− p0(m), p̂(m)− p0(m))

=
xi(k)xj(m)

p0(m)

K∑

m=1

var[p̂(m)]

=
K∑

m=1

xi(m)xj(m)

p0(m)

p(m)(1− p(m))

ñ
,

and the second term

∑

k 6=l
cov

(
p̂(k)− p0(k)√

p0(k)
xi(k),

p̂(l)− p0(l)√
p0(l)

xj(l)

)

=
∑

k 6=l

xi(k)xj(l)√
p0(k)p0(l)

cov(p̂(k), p̂(l))

= −
∑

k 6=l

xi(k)xj(l)√
p0(k)p0(l)

p(k)p(l)

ñ
.
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Consequently, the covariance is as follows,

cov(bi, bj)

=
K∑

k=1

xi(m)xj(m)

p0(m)

p(m)(1− p(m))

ñ
−
∑

k 6=l

xi(k)xj(l)√
p0(k)p0(l)

p(k)p(l)

ñ
.

By opening the parentheses of p(m)(1− p(m)), we observe that

cov(bi, bj) =
1

ñ

K∑

m=1

xi(m)xj(m)p(m)

p0(m)
−
{

1

ñ

K∑

m=1

xi(m)xj(m)(p(m))2

p0(m)

+
1

ñ

∑

k 6=l

xi(k)xj(l)√
p0(k)p0(l)

p(k)p(l)

}
,

whose terms in the curly brackets can be a product of two factors. As a result, the

covariance is

cov(bi, bj) =
1

ñ

K∑

k=1

xi(k)xj(k)p(k)

p0(k)

− 1

ñ

[
K∑

k=1

p(k)√
p0(k)

xi(k))

][
K∑

k=1

p(k)√
p0(k)

xj(k)

]
.

By the second orthogonality condition again,

0 =
K∑

k=1

xj(k)
√
p0(k) =

K∑

k=1

p0(k)√
p0(k)

xj(k)
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for p0(k) 6= 0, it turns out that

cov(bi, bj) =
1

ñ

K∑

k=1

xi(k)xj(k)p(k)

p0(k)

− 1

ñ

[
K∑

k=1

p(k)√
p0(k)

xi(k)−
K∑

k=1

p0(k)√
p0(k)

xi(k)

]

×
[

K∑

k=1

p(k)√
p0(k)

xj(k)−
K∑

k=1

p0(k)√
p0(k)

xj(k)

]

=
1

ñ

K∑

k=1

xi(k)xj(k)p(k)

p0(k)

− 1

ñ

[
K∑

k=1

p(k)− p0(k)√
p0(k)

xi(k)

][
K∑

k=1

p(k)− p0(k)√
p0(k)

xj(k)

]

Since vij =
∑K

k=1 xi(k)xj(k)p(k)/p0(k) and (3.8), the covariance is finalized as

cov(bi, bj) =
1

ñ
{vij − βiβj} , for all i 6= j, i, j = 1, · · · , K − 1.

Now we want to show the asymptotic distributions of the bj’s. We will first show

the conditions in the consistency and asymptotic normality theorem of Isaki and

Fuller (1982) are met for the samples. Conditions (3.17) and (3.18) imply that the

inclusion probabilities πit and joint probabilities πijt are uniformly bounded away

from 0, and the inverses of the inclusion probabilities (πit)
−1 are uniformly bounded

away from 0. This ensures that every psu in a sampling frame has a positive proba-

bility of being included in the sample.

In our situation, observed values yi’s are 0 or 1. Therefore, under conditions

(3.17) and (3.18), |(πi)−1yi| is bounded. Thus, the condition in Lemma 1 and 2 of

Isaki and Fuller (1982) are met. As a result, bj’s are consistent and asymptotically
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normal with

√
ñ




b1 − β1
b2 − β2

...

bK−1 − βK−1



→ NK−1(0,V), as ñ→∞,

where the ijth entry of the (K − 1) × (K − 1) covariance matrix V is (vij − βiβj)
with

vij =
K∑

k=1

xi(k)xj(k)p(k)

p0(k)
, for i, j = 1, · · · , K − 1.

In addition, we replace ñ with n/δ. by (3.16), and the Theorem 1 can be written

as

√
n

δ.




b1 − β1
b2 − β2

...

bK−1 − βK−1



→ NK−1(0,V), as n→∞,

which is equivalent to

√
n




(b1 − β1)/
√
δ.

(b2 − β2)/
√
δ.

...

(bK−1 − βK−1)/
√
δ.



→ NK−1(0,V), as n→∞. (3.21)

If the sampling design is SRS, δ. is 1, and this theorem can go back to the

statement in Eubank (1997). The proof of the this theorem is thus completed.
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3.2.3 Asymptotic Distribution of X2
q Under H∗0

Theorem 2. Under stratified sampling, the conditions of Theorem 1, and the null

hypothesis H0 (3.1) or H∗0 (3.9), the Neyman smooth-type GOF test statistic X2
q =

∑q
j=1 ñb

2
j is asymptotically distributed as the central chi-squared distribution with q

degrees of freedom.

Proof. According to Theorem 1, the asymptotic distribution of the vector ñ(b1 −
β1, · · · , bK−1−βK−1)T is a multivariate normal distribution with mean 0 and covari-

ance matrix V = {vij − βiβj} where vij =
∑K

k=1
xj(k)xj(k)p(k)

p0(k)
for i, j = 1, · · · , K − 1

under stratified sampling. Since all βj’s are 0 and p(k) = p0(k) under the null

hypothesis, by the orthogonality condition (3.2) , it can be calculated that

vjj =
K∑

k=1

xj(k)2p(k)

p0(k)
=

K∑

k=1

xj(k)2p0(k)

p0(k)
=

K∑

k=1

xj(k)2

= 1, for i = j,

and

vij =
K∑

k=1

xi(k)xj(k)p(k)

p0(k)
=

K∑

k=1

xi(k)xj(k)p0(k)

p0(k)
=

K∑

k=1

xi(k)xj(k)

= 0, for i 6= j.

As a result, the entries on the diagonal of the covariance matrix V are

vjj − β2
j = 1,

and those off the diagonal are

vij − βiβj = 0.
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Thus, under the null hypothesis H∗0 : β1 = · · · βK−1 = 0,

√
ñ




b1 − β1
b2 − β2

...

bK−1 − βK−1




=
√
ñ




b1

b2
...

bK−1



→ NK−1(0,V), as ñ→∞,

where the (K − 1)× (K − 1) covariance matrix is

V =




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



.

Therefore,
√
ñbj is asymptotically distributed as a standard normal distribution, that

is

√
ñbj → N(0, 1), as ñ→∞, for j = 1, · · · , K − 1.

Also, since cov(
√
ñbi,
√
ñbj) = 0,

√
ñbi and

√
ñbj are asymptotically independent

normal random variables, which implies that ñb2i and ñb2j are asymptotically inde-

pendent central chi-squared random variables with 1 degree of freedom, for i 6= j

and i, j = 1, · · · , K − 1.

Consequently, the Neyman smooth-type test statistic X2
q =

∑q
j=1 ñb

2
j is asymp-

totically distributed as central chi-squared distribution with q degrees of freedom,

that is,

X2
q =

q∑

j=1

ñb2j → χ2
q, as ñ→∞

under the null hypothesis (3.9) and stratified sampling.
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Furthermore, consider the asymptotic distribution (3.21). Under the null hy-

pothesis (3.9), V is an (K − 1) × (K − 1) identity covariance matrix. Therefore,
√
n(bj/

√
δ.)’s are asymptotically independent standard normal random variables, for

j = 1, · · · , K − 1. As a result, n(b2j/δ.)’s are asymptotically independent central

chi-squared random variables with 1 degree of freedom, for j = 1, · · · , K − 1. So,

under the null hypothesis (3.9),

q∑

j=1

n
b2j
δ.
→ χ2

q, as n→∞,

which is the same result as proposed in Theorem 2 because n/δ. = ñ. Under the null

hypothesis (3.9) and stratified sampling, this result can also be written as

∑q
j=1 nb

2
j

δ.
→ χ2

q, as n→∞,

if the sampling design is SRS, i.e. δ. = 1, the asymptotic distribution goes back to

the one in Eubank (1997).

3.2.4 Asymptotic Properties of q̂

As discussed in Section 3.1.1, suppose the unknown order of the test statistic X2
q =

∑q
j=1 ñb

2
j is denoted by q0. A good estimation of q is the minimizer of

∑K
k=1(fq(k)−

f(k))2, where fq =
∑q

j=1 bjxj, or equivalently, according to Eubank (1997), the

maximizer of the criterion M(q) = −∑q
j=1 b

2
j + 2

∑q
j=1 βjbj. Hart (1985) shows that

an unbiased estimator of M(q) is

M̂(q) =
ñ+ 1

ñ− 1

q∑

j=1

b2j −
2

ñ− 1

q∑

j=1

v̂jj, for q = 1, · · · , K − 1, (3.22)

with M̂(0) = 0 and v̂jj =
∑K

k=1
xj(k)

2p̂(k)

p0(k)
. The estimator of q0, denoted as q̂, is

obtained by the maximizer of the criterion M̂(q).
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In this section, we derive the asymptotic properties of q̂ used in our proposed test

W in Section 3.1.2 under stratified sampling.

Theorem 3. Following Eubank (1999, pg. 51), let

cr =
∗∑

r

{
r∏

k=1

1

Nk!

(
P (χ2

k > 2k)

k

)Nk}
,

and

dr =
∗∑

r

{
r∏

k=1

1

Nk!

(
P (χ2

k < 2k)

k

)Nk}
,

where c0 = d0 = 1, χ2
k denotes a central chi-squared random variable with k degrees of

freedom, and
∑∗

r denotes the sum extending over all r-tuples of integers (N1, · · · , Nr),

such that N1 + 2N2 + · · ·+ rNr = r.

Under the null hypothesis (3.9),

lim
ñ→∞

P (q̂ = q) = cqdK−1−q, for q = 0, · · · , K − 1.

In addition, under alternative hypothesis (3.10),

lim
ñ→∞

P (q̂ < q0) = 0, and lim
ñ→∞

P (q̂ = q0 + r) = P (r∗ = r), r = 0, · · · , K − q0 − 1,

(3.23)

where r∗ is the maximizer of the criterion,

R(r) =
r∑

j=1

v(j+q0)(j+q0)(Z
2
j − 2), for r = 1, · · · , K − q0 − 1,

with R(0) = 0, and (Z1, · · · , ZK−q0−1)T a vector of normal random variables with

mean 0 and covariance

cov(Zi, Zj) =
v(i+q0)(j+q0)√

v(i+q0)(i+q0)v(j+q0)(j+q0)
.
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Proof. Let q∗ be the maximizer of the criterion

M∗(q) =

q∑

j=1

(ñb2j − avjj), (3.24)

where a is a pre-specified positive number that may increase with ñ. As argued in

the appendix of Eubank (1997), the maximizer q̂ of M̂(q) in (3.11) has the same

limiting distribution as q∗ when a = 2. We will prove the theorem by three cases:

case 1, q < q0 for q0 > 0; case 2, q ≥ q0 for q0 = 0; and case 3, q ≥ q0 for q0 > 0.

Case 1: we first work on the underselection case q < q0 for q0 > 0. Since q∗ is the

maximizer of M∗(q), we have

P (q∗ = q) = P (M∗(q) ≥M∗(l), l = 0, · · · , K − 1)

= P

(
q∑

j=1

ñb2j −
l∑

j=1

ñb2j ≥
q∑

j=1

avjj −
l∑

j=1

avjj, l = 0, · · · , K − 1

)

= P

(
q∑

j=1

(ñb2j − avjj)−
l∑

j=1

(ñb2j − avjj) ≥ 0, l = 0, · · · , K − 1

)

= P

(
q∑

j=l+1

(ñb2j − avjj) ≥ 0, l = 0, · · · , q − 1, i.e., l < q,

l∑

j=q+1

(ñb2j − avjj) ≤ 0, l = q + 1, · · · , K − 1, i.e., l > q

)
. (3.25)

Notice fact that P (A ∩B) ≤ P (A) for any subsets A and B, which results in

P (q∗ = q) ≤ P

(
l∑

j=q+1

(ñb2j − avjj) ≤ 0, l = q + 1, · · · , K − 1(i.e., l > q)

)

= P

(
q0∑

j=q+1

(ñb2j − avjj) ≤ 0, l = q0 > q

)

= P

(
q0∑

j=q+1

ñb2j ≤
q0∑

j=q+1

avjj, q < q0

)
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Since all ñb2j ’s are non-negative,

P

(
q0∑

j=q+1

ñb2j ≤
q0∑

j=q+1

avjj, q < q0

)
≤ P

(
ñb2q0 ≤

q0∑

j=q+1

avjj, q < q0

)
.

Now, let D =
∑q0

j=q+1 avjj for q < q0. According to Theorem 1,

√
ñ(bq0 − βq0) → N(0, vq0q0), as ñ→∞.

Consequently, for q < q0,

P

(
ñb2q0 ≤

q0∑

j=q+1

avjj

)
= P

(
ñb2q0 ≤ D

)

= P
(
−
√
D ≤

√
ñbq0 ≤

√
D
)

= P
(
−
√
D −

√
ñβq0 ≤

√
ñbq0 −

√
ñβq0 ≤

√
D −

√
ñβq0

)

= P

(
−
√

D

vq0q0
−
√
ñβq0√
vq0q0

≤
√
ñbq0 −

√
ñβq0√

vq0q0
≤
√

D

vq0q0
−
√
ñβq0√
vq0q0

)

= P

(
−
√

D

vq0q0
−
√
ñβq0√
vq0q0

≤ Z ≤
√

D

vq0q0
−
√
ñβq0√
vq0q0

)

≤ P

(
Z ≤

√
D

vq0q0
−
√
ñβq0√
vq0q0

)
.

At this point, for q < q0, we have

P (q∗ = q) ≤ P
(
nb2q0 ≤ D

)
≤ P

(
Z ≤

√
D

vq0q0
−
√
ñβq0√
vq0q0

)
.

Now, we need to use a result given in Feller (1968, pg. 175), which states that, for

x > 0,

(x−1 − x−3)exp(−x2

2
)√

2π
≤ P (Z > x) ≤ x−1exp(−x2

2
)√

2π
.
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Thus, by the symmetry of the normal distribution, we have

P

(
Z ≤

√
D

vq0q0
−
√
ñβq0√
vq0q0

)

= P

(
Z ≥

√
ñβq0√
vq0q0

−
√

D

vq0q0

)

≤ x−1exp(−x2

2
)√

2π
,

where

x =

√
ñβq0√
vq0q0

−
√

D

vq0q0
.

for our case. Therefore, for q < q0,

P (q∗ = q) = O

(
ñ−

1
2 exp

(
− ñβ2

q0

2vq0q0

))
,

which decays to 0 exponentially as ñ → ∞. As a result, for q < q0 and q0 > 0, we

have

lim
ñ→∞

P (q∗ = q) = 0.

Case 1 is proved, which implies that the limiting probability of underselecting q0 is

0 under alternative hypothesis.

Case 2: We then move on to the case with q ≥ q0 under null hypothesis (q0 = 0),

In this proof, Lemma 2.1 in Eubank (1999, pg. 54) is needed, which states that

If {An} and {Bn} are sequences of sets with P (Bn) → 1 as n → ∞, then P (An) −
P (An ∩Bn)→ 0, as n→∞.
Now, define

Añ = {M∗(q) ≥M∗(l), l = q0, · · · , K − 1}
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and

Bñ = {M∗(q) ≥M∗(l), l = 0, · · · , q0 − 1} .

It is trivial that P (Bñ) → 1 as ñ → ∞, since M∗(q) is definitely larger than M∗(l)

for l = 0, · · · , q0− 1 with q ≥ q0. As shown in the proof of the case 1, and according

to the lemma above, it turns out that

lim
ñ→∞

P (q∗ = q) = lim
ñ→∞

P (Añ ∩Bñ)

= lim
ñ→∞

P (Añ).

Thus, the probability of set Añ can be decomposed as follow,

P (Añ) = P (M∗(q) ≥M∗(l), l = q0, · · · , K − 1)

= P

(
q∑

j=1

(ñb2j − avjj) ≥
l∑

j=1

(ñb2j − avjj), l = q0, · · · , K − 1

)

= P

(
q∑

j=l+1

(ñb2j − avjj) ≥ 0, l = q0, · · · , q − 1,

l∑

j=q+1

(ñb2j − avjj) ≤ 0, l = q + 1, · · · , K − 1

)

= P

(
q∑

j=l+1

ñb2j ≥
q∑

j=l+1

avjj, l = q0, · · · , q − 1

)

×P
(

l∑

j=q+1

ñb2j ≤
l∑

j=q+1

avjj, l = q + 1, · · · , K − 1

)
.

The last step of the equation works, because all
√
ñbj’s are independent standard

normal random variables under null hypothesis by Theorem 2.

57



Chapter 3. Neyman Smooth-Type GOF Tests in Complex Surveys

To accomplish the proof, we now define a sequence of sets Sj’s as follows

Sj =

j∑

i=1

(χ2
1i − a)

where χ2
1i’s are independent central chi-squared distributions with 1 degree of free-

dom. Then, after re-indexing the expression of P (Añ), it can be seen that

P (Añ) = P (Sj ≥ 0, j = 1, · · · , q − q0)

×P (Sj ≤ 0, j = 0, · · · , K − 1− q) .

As a result, by Spitzer (1956, pg. 329-330) and Shibata (1976), it turns out that

lim
ñ→∞

P (q∗ = q) = lim
ñ→∞

P (An)

= lim
ñ→∞

P (Sj ≥ 0, j = 1, · · · , q − q0)

× lim
ñ→∞

P (Sj ≤ 0, j = 0, · · · , K − 1− q)

= cq−q0dK−1−q

= cqdK−1−q, for q = 0, · · · , K − 1,

where cr and dr are defined as

cr =
∗∑

r

{
r∏

k=1

1

Nk!

(
P (χ2

k > ak)

k

)Nk}

and

dr =
∗∑

r

{
r∏

k=1

1

Nk!

(
P (χ2

k < ak)

k

)Nk}
,

with c0 = d0 = 1. The last step of the equation holds, since q0 = 0 and q ≥ q0 are

conditions in this case. Case 2 is then proved as a special case with a = 2, which
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provides the limiting probabilities of overselection and correct selection under the

null model.

Case 3: our last case of the proof of this theorem involves the conditions q ≥ q0

and q0 > 0. Let

q = q0 + r, for r = 0, 1, · · · , K − q0 − 1.

Then, M∗(q) can be decomposed into two terms,

M∗(q) =

q∑

j=1

(
ñb2j − avjj

)

=

q0+r∑

j=1

(
ñb2j − avjj

)

=

q0∑

j=1

(
ñb2j − avjj

)
+

q0+r∑

j=q0+1

(
ñb2j − avjj

)
,

where the first term is for r = 0 and the second term is for r = 1, · · · , K − q0 − 1.

Note that the first term
∑q0

j=1

(
ñb2j − avjj

)
is actually fixed with respect to q0, since

q0 is a constant.

Consequently, maximizing M∗(q) is now equivalent to maximize the second term
∑q0+r

j=q0+1

(
ñb2j − avjj

)
with respect to r, which implies that the maximizer r∗ needs

to be found so that the second term reaches its maximum. Therefore, for r =

1, · · · , K − q0 − 1, we organize the second term into the following form,

second term =

q0+r∑

j=q0+1

(
ñb2j − avjj

)

=

q0+r∑

j=q0+1

vjj

(
ñb2j
vjj
− a
)
.

59



Chapter 3. Neyman Smooth-Type GOF Tests in Complex Surveys

Now, recall that the conditions of this case are q ≥ q0 and q0 > 0 which imply that

βq0 = 0 and βq0+1 = βq0+2 = · · · = βK−1 = 0. According to Theorem 1, it can be

obtained that

√
ñ




bq0+1

bq0+2

...

bK−1



→ NK−q0−1(0,V),

as ñ→∞, where V = {vij} is a (K − q0− 1)× (K − q0− 1) covariance matrix with

vij =
K∑

k=1

xi(k)xj(k)p(k)

p0(k)
, for i, j = q0 + 1, · · · , K − 1.

Let

Zj =

√
ñbj√
vjj

, for j = q0 + 1, · · · , K − 1,

and define

R(r) =

q0+r∑

j=q0+1

vjj

(
ñb2j
vjj
− a
)
, for r = 1, · · · , K − q0 − 1.

Then, R(r) is of the form

R(r) =

q0+r∑

j=q0+1

vjj

(
ñb2j
vjj
− a
)

=
r∑

j=1

v(j+q0)(j+q0)



[ √

ñb(j+q0)√
v(j+q0)(j+q0)

]2
− a




=
r∑

j=1

v(j+q0)(j+q0)
(
Z2
j − a

)
, for r = 1, · · · , K − q0 − 1,
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with

E(Zj) = E

(√
ñbj√
vjj

)
= 0,

var(Zj) = var

(√
ñbj√
vjj

)
= 1,

and

cov(Zi, Zj) = cov

(√
ñbi√
vii
,

√
ñbj√
vjj

)

=
v(i+q0)(j+q0)√

v(i+q0)(i+q0)v(j+q0)(j+q0)
.

Notice that if r = 0, M∗(q) = M∗(q0) is fixed for q = q0, so it is reasonable to set

R(0) = 0. Therefore, it is verified that

lim
ñ→∞

P (q∗ = q0 + r) = lim
ñ→∞

P (q∗ − q0 = r)

= P (r∗ = r), for r = 0, 1, · · · , K − q0 − 1,

where r∗ is the maximizer of function R

R(r) =
r∑

j=1

v(j+q0)(j+q0)
(
Z2
j − a

)

with R(0) = 0. When a = 2 is chosen, case 3 is proved. Similar to case 2, this part

of the theorem also provides the limiting probability of overselection and correct

selection, but under alternative hypothesis.

This proof provides theoretical support to our proposed test W in Section 3.1.2

under stratified sampling. But we use the observed sample size n in the test, instead

61



Chapter 3. Neyman Smooth-Type GOF Tests in Complex Surveys

of the Kish’s effective sample size ñ. Based on (3.16) ñ = n
δ.

, we now build the

connection between this theorem and the proposed test W .

Note that, q̂ has the same asymptotic properties as q∗, the maximizer of (3.24).

If q∗ is the maximizer of (3.24), it is also the maximizer of

δ.M
∗(q) = δ.

q∑

j=1

(ñb2j − avjj) =

q∑

j=1

(δ.ñb
2
j − δ.avjj)

=

q∑

j=1

(nb2j − δ.avjj)

because δ. is always a positive real number. We consider the general maximizing

criterion (3.25), which can be written as

P (q∗ = q) = P (M∗(q) ≥M∗(l), l = 0, · · · , K − 1)

= P (δ.M
∗(q) ≥ δ.M

∗(l), l = 0, · · · , K − 1)

= P

(
q∑

j=1

(nb2j − δ.avjj)−
l∑

j=1

(nb2j − δ.avjj) ≥ 0, l = 0, · · · , K − 1

)

= P

(
q∑

j=l+1

(nb2j − δ.avjj) ≥ 0, l = 0, · · · , q − 1, i.e., l < q,

l∑

j=q+1

(nb2j − δ.avjj) ≤ 0, l = q + 1, · · · , K − 1, i.e., l > q

)
.

Therefore, the following steps of the proof still hold if we replace ñ and a by n and

δ.a respectively. As a result, when a = 2, the maximizer of (3.11) and (3.22) are

essentially the same, and we use (3.11) for the proposed test W because the observed

sample size n is more accessible.

As a result of Theorem 3, the following corollary can be revealed.
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Corollary 1. Under both null (3.9) and alternative (3.10) hypotheses,

X2
q̂ −X2

q0

d−→ Wr∗ , where Wr =
r∑

j=1

v(j+q0)(j+q0)Z
2
j ,

and r∗ is the maximizer of the criterion (3.23), in which the vector of normal random

variables (Z1, · · · , ZK−q0−1)T is also defined in Theorem 3.

In addition, for any fixed, finite constant C,

lim
ñ→∞

P
(
X2
q̂ ≥ C|q0 6= 0

)
= 1.

Proof. According to Theorem 3, the limiting probability of underselection is 0 under

both null and alternative hypotheses, in other words, asymptotically it is almost

impossible that the selected q̂ is less than q0 in any situation.

Since q̂ ≥ q0, let

q̂ = q0 + r, for r = 0, 1, · · · , K − q0 − 1.

If r = 0, then q̂ = q0, hence

X2
q̂ −X2

q0
= 0.

If r > 0, we have

X2
q̂ −X2

q0
=

q0+r∑

j=1

ñb2j −
q0∑

j=1

ñb2j =

q0+r∑

j=q0+1

ñb2j

=

q0+r∑

j=q0+1

vjj

(√
ñbj√
vjj

)2

=

q0+r∑

j=q0+1

vjjZ
2
j
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if we define Zj =
√
ñbj√
vjj

for j = q0 +1, · · · , K−1. Again, for a fixed constant q0 > 0, it

is provided by the alternative hypothesis that βq0 6= 0 and βq0+1 = · · · = βK−1 = 0.

Then, by Theorem 1,

√
ñ




bq0+1 − βq0+1

bq0+2 − βq0+2

...

bK−1 − βK−1




=
√
ñ




bq0+1

bq0+2

...

bK−1



→ NK−q0−1(0,V), as ñ→∞,

where V = {vij} is the (K − q0 − 1)× (K − q0 − 1) covariance matrix with

vij =
K∑

k=1

xi(k)xj(k)p(k)

p0(k)
, for i, j = q0 + 1, · · · , K − 1.

Therefore, after re-indexing, (Z1, · · · , ZK−q0−1)T is a vector of random variables with

mean 0 and covariance

cov(Zi, Zj) = cov

(√
ñbi√
vii
,

√
ñbj√
vjj

)

=
v(i+q0)(j+q0)√

v(i+q0)(i+q0)v(j+q0)(j+q0)
.

So, If we define Wr∗ =
∑r∗

j=1 v(j+q0)(j+q0)Z
2
j for r∗ > 0 and Wr∗ = 0 for r∗ = 0, it

turns out that

X2
q̂ −X2

q0
=

q0+r∑

j=q0+1

vjj

(√
ñbj√
vjj

)2

d−→
r∑

j=1

v(j+q0)(j+q0)Z
2
j

= Wr∗ , as ñ→∞, for q0 ≥ 0.

64



Chapter 3. Neyman Smooth-Type GOF Tests in Complex Surveys

The first part of the corollary is then proved, which indicates that the overselection

chance is not negligible for a = 2 in both null and alternative hypotheses.

Now, according to the first part of the corollary, we have

X2
q̂

d−→ X2
q0

+Wr∗ .

where Wr is a random variable that does not depend on sample size. For q0 6= 0,

X2
q0

= ñ
∑q0

j=1 b
2
j → ∞ as ñ → ∞, which results in X2

q̂ → ∞ as ñ → ∞. Therefore,

for any fixed, finite constant C,

P (X2
q̂ ≥ C|q0 6= 0)→ 1, as ñ→∞.

The proof of this corollary is then accomplished. The second part of the corollary

implies that the power of the test goes to 1 when the sample size is large enough.

3.2.5 Asymptotic Properties of q̃

In Section 3.1.2, we mention that the limiting probability of the Type I error is about

0.29 for a = 2 through simulation, which is already verified theoretically by Theorem

3 and Corollary 1. One reason may be that a = 2 is not large enough. In this sense,

a may be considered as a penalty term, which controls the Type I error of the tests.

Therefore, we now consider another maximizing criterion

M̃(q) =
ñ+ 1

ñ− 1

q∑

j=1

b2j −
añ

ñ− 1

q∑

j=1

v̂jj

for q = 1, · · · , K − 1 and M̃(q) = 0 for q = 0 with

v̂jj =
K∑

k=1

x2j(k)p̂(k)

p0(k)
,
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where añ is allowed to grow with the effective sample size ñ at an appropriate rate.

In the next theorem, we prove that the estimator q̃ (maximizer of M̃(q)) is consistent

with q0 in any situation if añ is large enough.

Theorem 4. If añ = o(
√
ñ) and añ > 2ln(ln(ñ)), we have

q̃
P−→ q0, for q0 ≥ 0.

Proof. The proof of this theorem utilizes the general maximizing criterion (3.24)

M∗(q) =

q∑

j=1

(ñb2j − avjj)

with q∗ as the maximizer. As shown in (3.25) (in the proof of Theorem 3)

P (q∗ = q) = P

(
q∑

j=l+1

(ñb2j − avjj) ≥ 0, l = q0, · · · , q − 1,

l∑

j=q+1

(ñb2j − avjj) ≤ 0, l = q + 1, · · · , K − 1

)
.

For q0 = 0 and q ≥ 1, since vjj = 1 for all j’s, by the law of the iterated logarithm,

P (q∗ = q) ≤ P (ñb2q ≥ a)→ 0, as ñ→∞ and a > 2ln(ln(ñ)).

This result implies that, under the null hypothesis (3.9), P (q∗ = q)→ 0 for q ≥ 1, as

ñ→∞ and a > 2ln(ln(ñ)). This limiting probability is equivalent to P (q∗ = 0)→ 1

under the null hypothesis, as ñ→∞ and a > 2ln(ln(ñ)).

Now, for q0 > 0, i.e., under an alternative hypothesis (3.10), by the law of iterated

logarithm, we also have

P (q∗ = q) ≤ P
(
ñb2q ≥ avjj

)
= P (Z2

q ≥ a)→ 0, for ñ→∞ and a > 2ln(ln(ñ)).
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Thus, for q > q0 > 0,

P (q∗ = q0) = 1− P (q∗ = q)→ 1, for ñ→∞ and a > 2ln(ln(ñ)).

This theorem implies that the maximizer q̃ is always a consistent estimator of q0

when the effective sample size is large enough.

Now, consider the relationship between ñ and n in (3.16). As shown in the proof

of Theorem 3 in Section 3.2.4, the maximizer of M∗(q) in (3.25) is the same as the

maximizer of δ.M
∗(q), which results in the same maximizer of (3.11) and (3.22).

Therefore, the maximizer q̃ of

M̃(q) =
ñ+ 1

ñ− 1

q∑

j=1

b2j −
añ

ñ− 1

q∑

j=1

v̂jj

is the same as the maximizer of

M̃ ′(q) =
n+ 1

n− 1

q∑

j=1

b2j −
δ.an
n− 1

q∑

j=1

v̂jj.

In both of the above maximizing criteria, q̃ is consistent with the underlying order

q0 for n→∞ and a > 2ln(ln(n)).

3.2.6 Asymptotic Properties of q̂α

Before the Theorem 5 is illustrated, we first examine Theorem 3 in Section 3.2.4

again, from which there are several useful conclusions. First, the limiting probabil-

ity that q̂ is underselected goes to 0, under both null (3.9) and alternative (3.10)

hypotheses. Second, the limiting probability that q̂ is overselected is not negligible

in both null and alternative hypotheses. If the maximizing criterion with a = 2 is
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taken in Theorem 3, it is known that the limiting probability of the Type I error is

P (q̂ 6= 0|q0 = 0)→ 0.29, as K →∞ and ñ→∞.

Also, Theorem 4 in Section 3.2.5 indicates that under both null and alternative

hypotheses, the estimator q̃ is consistent with q0 , as K → ∞, ñ → ∞ and a >

2ln(ln(ñ)). This implies that

P (q̃ = 0|q0 = 0)→ 1, as K →∞, ñ→∞ and a > 2ln(ln(ñ)). (3.26)

Thus, the limiting probability of the Type I error is, for a > 2ln(ln(ñ)),

P (q̂ 6= 0|q0 = 0) = 1− P (q̃ = 0|q0 = 0)→ 0, as K →∞, and ñ→∞. (3.27)

Based on (3.26) and (3.27), it is reasonable that there exists an value aα such that

the limiting probability of the Type I error is between 0 and 0.29, that is, for a

pre-specified level of significance 0 ≤ α ≤ 0.29,

P (q̂α 6= 0|q0 = 0)→ α, as K →∞ and ñ→∞,

where the estimator q̂α is determined by aα. Therefore, Theorem 5 gives the asymp-

totic behaviors of q̂α in Section 3.1.3.

Theorem 5. Let q̂α be maximizer of the criterion

M̂α(q) =
ñ+ 1

ñ− 1

q∑

j=1

b2j −
aα

ñ− 1

q∑

j=1

v̂jj, for q = 1, · · · , K − 1, (3.28)

where M̂α(0) = 0,

v̂jj =
K∑

k=1

x2j(k)p̂(k)

p0(k)
, for j = 1, · · · , K − 1,
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and aα is chosen so that it is the solution of

1− α = exp

{
−
∞∑

k=1

P (χ2
k > kaα)

k

}
(3.29)

or

P

(
max

1≤k≤K−1

[
1

k

k∑

j=1

Z2
j

]
≥ aα

)
= α. (3.30)

The limiting probabilities of the maximizer q̂α are shown as follows, for ñ→∞,

P (q̂α > 0|q0 = 0)→ α

and

P (q̂α > 0|q0 6= 0)→ 1

Proof. As discussed above, when aα = 2, the limiting probability of the Type I

error is 0.29, and when aα grows with the effective sample size with an appropriate

rate, the limiting probability of the Type I error reduces to 0. Thus, there exists

an appropriate value for the penalty term aα so that the limiting probability of the

Type I error of the test is a value between 0 and 0.29.

Based on Theorem 3.1 of Eubank and Hart (1992) and random walk theory in

Spitzer (1956), if aα is the solution of

1− α = exp

{
−
∞∑

k=1

P (χ2
k > kaα)

k

}
,

then

P (q̂α = 0|q0 = 0) = 1− α, as ñ→∞,
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which results in

P (q̂α > 0|q0 = 0)→ α, as ñ→∞.

Furthermore, consider the general maximizing criterion (3.24),

M∗(q) =

q∑

j=1

(ñb2j − avjj)

=

q∑

j=1

vjj



(√

ñbj√
vjj

)2

− a




Under the null hypothesis (4.1), vjj = 1 by the orthogonality condition (3.2), and
√
nbj’s are asymptotically independent standard normal random variables for all

j = 1, · · · , q by Theorem 1 in Section 3.2.2 Thus,

M∗(q) =

q∑

j=1

[(√
ñbj

)2
− a
]

→
q∑

j=1

[
Z2
j − a

]
, as ñ→∞

=

q∑

j=1

Z2
j − qa =

1

q

q∑

j=1

Z2
j − a

where Zj denotes
√
nbj. Since the limiting probability of underselection is 0 according

to Theorem 3 in Section 3.2.4 and Theorem 4 in Section 3.2.5, overselection is the

only source for the Type I error. Under null hypothesis (3.1), since the maximizer

must be a value greater than 0 for overselection, M∗(q) must be equal or greater
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than 0 (if M∗(q) < 0, the maximizer is q = 0 with M(0) = 0). Therefore,

max
1≤q≤K−1

(
1

q

k∑

q=1

Z2
j

)
− a ≥ 0, or equivalently, max

1≤q≤K−1

(
1

q

k∑

q=1

Z2
j

)
≥ a

Since it is desired that the overselection is controlled in a pre-specified level, we

restrict the probability as

P

(
max

1≤k≤K−1

[
1

k

k∑

j=1

Z2
j

]
≥ aα

)
= α,

where we replace q by k and a by aα. Consequently, if aα is the solution of

P

(
max

1≤k≤K−1

[
1

k

k∑

j=1

Z2
j

]
≥ aα

)
= α,

for a pre-specified level α, the limiting probability of the Type I error is

P (q̂α > 0|q0 = 0) = α, as ñ→∞.

This result can also be found in Eubank (1997). The solutions of aα are the uniform

for (3.29) and (3.30), which is verified by solving them numerically.

In addition, under the alternative hypothesis (3.10), i.e., q0 > 0, since the limiting

probability of underselection is still 0 according to Theorem 3 in Section 3.2.4, we

have P (q̂α < q0|q0 6= 0)→ 0 or P (q̂α = 0|q0 > 0)→ 0, as ñ→∞, As a result,,

P (q̂α ≥ q0|q0 > 0) = P (q̂α > 0|q0 > 0) = 1− P (q̂α = 0|q0 > 0)

= 1− P (q̂α = 0|q0 6= 0)

→ 1, as ñ→∞,
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or equivalently

P (q̂α > 0|q0 6= 0)→ 1, as ñ→∞.

and the theorem is proved, which implies that the probability of overselection can

be controlled within level α when q0 = 0, and the estimator q̂α is consistent to the

real order q0 when q0 > 0, at the same time.

Similarly, because of the relationship between ñ and n that ñ = n
δ.

, if q̂α is

the maximizer of (3.24), it is the maximizer of δ.M
∗(q) = δ.

∑q
j=1(ñb

2
j − avjj) =

∑q
j=1(nb

2
j − δ.avjj) for δ. > 0. So, if the observed sample size n is used (more

accessible), δ̂.aα in (3.13) is used in the proposed test q̂α.
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Simulation Studies

To evaluate our proposed methods, in this chapter, we proceed with limited simula-

tion studies. We consider the general null hypothesis as in (4.1) and three alternatives

as in (4.3 ), (4.4) and (4.5). First, we show that our proposed tests control the Type

I error at the pre-specified level well. In other words, the rate of incorrect conclusion

against null hypothesis does not exceed the pre-determined tolerance. Second, we

compare the empirical statistical powers of our proposed tests with some existing

methods. Finally, we examine the influence of the data patterns on the proposed

tests.

4.1 Simulation Set Up

In our simulation studies, the level of significance α = 0.05 is chosen for all of

the simulation settings. To compare with the simulation studies in Eubank (1997),

K = 10 are selected as the total number of categories in multinomial data under

complex surveys. 50 clusters (psus) are considered, and 15 individuals (ssus) are

sampled within each cluster. Thus, there are a total of 750 units that are observed.
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As discussed before, observations in complex surveys are not independent, and the

dependency is reflected by ICC (Intraclass Correlation Coefficient, Lohr, 2010, pg.

174-176) within each cluster. In order to model the correlation among ssus in a

cluster, ICC is set to be 0.1, 0.3, and 0.6 to show the performance of the proposed test

procedures under low, medium, and high levels of correlation, respectively. Notice

that if ICC is 0, all the observations are uncorrelated as in SRS. If ICC is 1, the ssus

in the the same cluster are perfectly correlated to each other, i.e., the individuals

within the cluster will give exactly the same answers to the survey questionnaire

related to the response of interest.

The generation of multinomial data under complex surveys involves four inputs,

number of psu, number of ssu, ICC, and a set of given probabilities of categories

in our simulation studies. The total population is calculated by the product of

the number of psu and the number of ssu. In each of the psu, we first randomly

permute the categories with their probabilities such that the order of the categories

does not determine the clustering. With the permuted categories, the cumulative

probabilities of the first 9 categories are calculated. After that, the quantiles of

these cumulative probabilities are found under standard normal distribution. Then,

a clustered standard normal random variable is created by N(0, ICC) + N(0, 1 −
ICC), which represent standard normal random variables with mean 0 and standard

deviation ICC and 1 − ICC respectively. After that, 15 quantiles of this clustered

standard normal random variable are generated randomly, because we have 15 ssus

in each psu. These 15 values are then compared with the previously calculated 9

cumulative probabilities. For example, if one of the values is less the first cumulative

probability, this ssu is categorized to the first permuted category. If another value is

less than the fifth cumulative probability, then the corresponding ssu is grouped to

the fifth permuted category. If the value is greater than all 9 cumulative probability,

the corresponding ssu goes to the last permuted category. Such a process is repeated

for all psus, hence all the observations will be eventually categorized.
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The null hypothesis in the simulation studies for K = 10 is

H0 : p(1) = · · · = p(10) = 0.1, (4.1)

which is equivalent to

H∗0 : β1 = · · · = β9 = 0. (4.2)

For the proposed test W , q̂ is obtained such that it maximizes equation (3.11), then

the test statistic is calculated by (3.12). The critical value is obtained by simulation

of the same process under the null hypothesis (4.1). For the proposed test q̂α, the

test statistic q̂α is the maximizer of the equation (3.13).

In order to find the estimator of δ., say δ̂., 100, 000 complex multinomial data

under the null hypothesis (4.1) are generated. For each of the generated data, the

sample covariance matrix is calculated. Then, covariance matrix (B.5) under com-

plex surveys and null hypothesis (4.1) is estimated by the average of the 100, 000

covariance matrix (V̂). Note that, the covariance matrix under SRS and the null

hypothesis (4.1) is known. Therefore, δ̂. is obtained by averaging the eigenvalues of

the matrix P−10 V.

For the proposed test W in Section 3.1.2, the empirical distribution of W0 (W

under the null hypothesis 4.2) is obtained through 100, 000 iterations, and then the

critical value is calculated at the pre-specified level of significance α. For proposed

test q̂α, instead of finding the solution of aα (a0.05 in our cases) for each estimated

δ̂., the values of aα with several commonly used levels of significance in SRS are

obtained through 10, 000 iterations for (3.14) and (3.15), and then the values of aα

in complex surveys can be obtained by the product of δ̂. and the values of aα in SRS.

The advantage of doing this is that only the estimation of δ. needs to be calculated

for each value of ICC’s, which is much faster than calculating corresponding aα for
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every simulated data. According to Eubank and Hart (1992) and our verifications,

the values of aα in SRS can be summarized in Table 4.1. Notice that the solution of

Equation 3.14 requires large K approximations. But in fact, solution converges to

the same value as long as K > 10. Also, we verified these values numerically and it

is found that both equations (3.14) and (3.15) give the same solution for aα.

α 0.01 0.05 0.10 0.20 0.29
aα 6.74 4.18 3.22 2.38 2

Table 4.1: Values of aα of corresponding level of significance under SRS.

In our simulation studies, Pearson’s chi-squared test, the first order and second

order corrected tests are included to compare with both of our proposed tests. Pear-

son’s chi-squared GOF test is one of the GOF tests for SRS. The first order and

second order corrected tests are two of the commonly used GOF tests in complex

surveys, which are efficient (Rao & Thomas, 1988) compared with other approaches

and only require relatively small amount of computation. Thus, they are good com-

petitors of our proposed tests.

Following Eubank (1997), three alternatives of (4.1) are used to examine our

proposed tests. They are

p(k) =
1

10
+ β(k − 5.5)/10, for k = 1, · · · , 10, (4.3)

p(k) =
1

10
+ βcos(

jπ(k − 0.5)

10
), for k = 1, · · · , 10, (4.4)

and

p(k) = Φ

[
βΦ−1

(
k

10

)]
− Φ

[
βΦ−1

(
k − 1

10

)]
, for k = 1, · · · , 10. (4.5)

Following are the steps of our simulation for an arbitrary alternative.

76



Chapter 4. Simulation Studies

1. We generate 100, 000 multinomial data under complex surveys and the null

hypothesis (4.1). For each generated data, the (K − 1) vector of estimated

proportions p̂ = (p̂(1), · · · , p̂(K − 1)) is recorded. The estimated mean of p̂ is

calculated by averaging the 100, 000 generated p̂’s and denoted as p̄. Then, the

estimated covariance matrix V̂ is obtained by (p̂− p̄)(p̂− p̄)T/(100, 000− 1).

The eigenvalues of the the matrix P−10 V are calculated using the eigen()

function in R. In the meanwhile, â2 can be calculated by (2.17).

2. Under the null hypothesis (4.1), we search for the maximizer of the equation

(3.11) to get q̂ and then a value of W0 is obtained using (3.12). This process

is repeated 100, 000 time and the empirical distribution of W0 is discovered.

Therefore, the 95% quantile of W0 is found out.

3. Under the given alternative, Pearson’s chi-squared test statistic, the first order

and the second order corrected test statistics are calculated by (2.3), (2.15)

and (2.16), respectively. Next, by searching all q = 1, · · · , K − 1, q̂ is found

out if it maximizes equation (3.11). W is calculated by equation (3.12). We

then search q̂0.05 among q = 1, · · · , K − 1 to maximize equation (3.13), where

a0.05 = 4.18 is chosen from Table 4.1 and δ̂. is from Step 1.

4. We compare the test statistics in Step 3 with their corresponding rejection

criteria. The test statistics of Pearson’s chi-square test statistic and the first

order and the second order corrected test statistics are compared with the 95%

quantile of the central chi-squared distribution with 9 degrees of freedom. W

is compared with the 95% critical value of W0 obtained in Step 2. q̂0.05 is

compared with 0. If a method rejects the alternative, the count of the rejection

of this method is 1, otherwise, 0.

5. Step 3 and 4 are repeated for 10, 000 times. The number of rejection of each

method, divided by 10, 000, is the empirical power of each method for the given

alternative.
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6. Step 1-5 can be repeated if other alternatives are given.

4.2 Simulation Results

In this section, we report the simulation results. Empirical power comparisons are

given by three alternatives (4.3), (4.4), and (4.5). Alternative (4.3) generates slow

varying probabilities, alternative (4.4) is generates bot slow varying and non-slow

varying probabilities, and alternative (4.5) focuses on certain data patterns.

4.2.1 Simulation Results by Alternative (4.3)

We examine the simulation results starting with alternative (4.3). The null hypoth-

esis is true when β = 0. For β from 0 to 0.14 with step 0.01, 15 sets of probabilities

(including the null hypothesis) are generated as in Table 4.2 and Figure A.1. Two

sample probabilities are plotted in Figure 4.1 for β = 0.01 and β = 0.14. These

probabilities are treated as the underlying parameters to generate the multinomial

data. One can verify that the sum of p(1) through p(10) is 1. The generated prob-

abilities are very similar when β = 0.01, and become moderately slow varying as β

increases.

Figures 4.2, 4.3, and 4.4 plot the empirical powers of the five tests, our proposed

tests q̂0.05 and W , Pearson’s chi-squared GOF test, and the first order and the sec-

ond order corrected tests, versus β in alternative (4.3) under ICC = 0.1, 0.3, 0.6,

respectively. As discussed previously, ICC = 0 means that all the observations are

independent, and ICC = 1 stands for the perfect correlation among observations

within the same cluster. Thus, for ICC varies from 0.1 to 0.3, and to 0.6, observa-

tions within the same cluster are more correlated.
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HHHHHHβ
p(k)

p(1) p(2) p(3) p(4) p(5)

0.00 0.1 0.1 0.1 0.1 0.1
0.01 0.0955 0.0965 0.0975 0.0985 0.0995
0.02 0.091 0.093 0.095 0.097 0.099
0.03 0.0865 0.0895 0.0925 0.0955 0.0985
0.04 0.082 0.086 0.09 0.094 0.098
0.05 0.0775 0.0825 0.0875 0.0925 0.0975
0.06 0.073 0.079 0.085 0.091 0.097
0.07 0.0685 0.0755 0.0825 0.0895 0.0965
0.08 0.064 0.072 0.08 0.088 0.096
0.09 0.0595 0.0685 0.0775 0.0865 0.0955
0.10 0.055 0.065 0.075 0.085 0.095
0.11 0.0505 0.0615 0.0725 0.0835 0.0945
0.12 0.046 0.058 0.07 0.082 0.094
0.13 0.0415 0.0545 0.0675 0.0805 0.0935
0.14 0.037 0.051 0.065 0.079 0.093

HHHHHHβ
p(k)

p(6) p(7) p(8) p(9) p(10)

0.00 0.1 0.1 0.1 0.1 0.1
0.01 0.1005 0.1015 0.1025 0.1035 0.1045
0.02 0.101 0.103 0.105 0.107 0.109
0.03 0.1015 0.1045 0.1075 0.1105 0.1135
0.04 0.102 0.106 0.11 0.114 0.118
0.05 0.1025 0.1075 0.1125 0.1175 0.1225
0.06 0.103 0.109 0.115 0.121 0.127
0.07 0.1035 0.1105 0.1175 0.1245 0.1315
0.08 0.104 0.112 0.12 0.128 0.136
0.09 0.1045 0.1135 0.1225 0.1315 0.1405
0.10 0.105 0.115 0.125 0.135 0.145
0.11 0.1055 0.1165 0.1275 0.1385 0.1495
0.12 0.106 0.118 0.13 0.142 0.154
0.13 0.1065 0.1195 0.1325 0.1455 0.1585
0.14 0.107 0.121 0.135 0.149 0.163

Table 4.2: Simulated probabilities of 10 categories generated by alternative (4.3) for
β from 0 to 0.14 with step 0.01.

79



Chapter 4. Simulation Studies

● ● ● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Alternative (4.3) with beta= 0.01

Category

P
ro

ba
bi

lit
y

●
●

●
●

●
●

●
●

●
●

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Alternative (4.3) with beta= 0.14

Category

P
ro

ba
bi

lit
y

Figure 4.1: Probabilities in simulation studies generated by alternative (4.3) for
β = 0.01 (left) and β = 0.14 (right). Probabilities vary slowly when β = 0.01, but
vary great when β = 0.14.

We first look at the control of the Type I error, which is equivalent to the powers

of the tests under the null hypothesis (4.2) given by β = 0. Pearson’s chi-squared

test shows poor control of the Type I error at the pre-determined level α = 0.05,

especially with higher value of ICC. The larger the ICC is, the more off the Type I

error is for Pearson’s chi-squared test. Notice that when ICC = 0.1, Pearson’s test

controls the probability of the Type I error around 0.05. However, when ICC = 0.3,

probability of the Type I error of Pearson’s test is around 0.18 and is around 0.76

when ICC = 0.6. This is evident that GOF tests for multinomial data in SRS

should not be directly applied to multinomial data in complex surveys, and thus

their empirical statistical powers in the following points should not be considered to

be compared with other approaches.

We then examine the empirical powers of our proposed tests and the first order
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and second order corrected tests. For the three figures 4.2, 4.3, and 4.4, both of our

proposed tests (using W and q̂0.05) are superior to the first order and second order

corrected tests when the underlying probabilities are varying slowly (β ≤ 0.07). On

the other hand, when the probabilities diverge enough (β > 0.07), our proposed

tests are as good as the first order and second order corrected tests with regard to

empirical statistical powers. Meanwhile, one can see that our proposed tests and the

first order and second order corrected tests control the Type I error at the desired

level (0.05 in this simulation). In addition, the test q̂0.05 has the best empirical

statistical power , and the test W has the second best empirical statistical power for

alternative 4.3. In sum, our proposed tests have great improved statistical powers

compared with the first order and second order corrected tests, especially when the

underlying probabilities vary slowly for multinomial data in complex surveys.
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Figure 4.2: The power curves of selected methods for simulated complex survey data
with respect to the alternative (4.3) p(k) = 1

10
+β(k−5.5)/10, for k = 1, · · · , 10. The

simulations consist of 50 psus, 15 ssus and 10 categories, with ICC 0.1. The Type I
error of Pearson’s test is a little off and all other four tests control the Type I error
well. The proposed test q̂0.05 has the best empirical power, followed by the proposed
test W . Both of our proposed tests are better than the first order and second order
corrected tests when the probabilities vary slowly. Powers of all tests converge to 1
when the probabilities vary greatly.
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Figure 4.3: The power curves of selected methods for simulated complex survey data
with respect to the alternative (4.3) p(k) = 1

10
+β(k−5.5)/10, for k = 1, · · · , 10. The

simulations consist of 50 psus, 15 ssus and 10 categories, with ICC 0.3. Pearson’s
test doesn’t control the Type I error well and all other four tests control the Type
I error well. The proposed test q̂0.05 has the best empirical power, followed by the
proposed test W . Both of our proposed tests are better than the first order and
second order corrected tests when the probabilities vary slowly. Powers of all tests
converge to 1 when the probabilities vary greatly.
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Figure 4.4: The power curves of selected methods for simulated complex survey data
with respect to the alternative (4.3) p(k) = 1

10
+β(k−5.5)/10, for k = 1, · · · , 10. The

simulations consist of 50 psus, 15 ssus and 10 categories, with ICC 0.6. Pearson’s
test is not able to control the Type I error and all other four tests control the Type
I error well. The proposed test q̂0.05 has the best empirical power, followed by the
proposed test W . Both of our proposed tests are better than the first order and
second order corrected tests when the probabilities vary slowly. Powers of all tests
converge to 1 when the probabilities vary greatly.
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4.2.2 Simulation Results by Alternative (4.4)

For alternative (4.4), j is the parameter to govern how different the underlying

probabilities are. With j = 1, the underlying probabilities (Table 4.3 and Figure

A.2) are very close to each other. In contrast, the underlying probabilities vary

dramatically with j = 9 (Table 4.6 and A.5). For j = 1, the empirical statistical

power curves are similar to those in figures plotted with alternative (4.3). As a result,

we choose j = 2 and j = 4 to examine the performance of our proposed tests with

medium and high varying underlying probabilities. For each selected j, 11 value of β

from 0 to 0.1 are used with step 0.01. The exact values of probabilities are shown in

Table 4.4 and Table 4.5 for j = 2 and j = 4, respectively. Two sample probabilities

are plotted in Figure 4.5 and 4.6 for j = 2 and j = 4. In addition, Figure A.3 and

A.4 show all probabilities for j = 2 and j = 4 respectively. It can also be verified

that the sum of generated probabilities is 1 for each β and each j.

For the alternative (4.4) with j = 2, figures 4.7, 4.8, and 4.9 plot the powers of

the five tests versus β ranged from 0.00 to 0.07 for ICC = 0.1, 0.3, 0.6, respectively.

Notice that the null hypothesis (4.1) is true when β = 0. It can be seen that

our proposed tests are able to control the level of significance at the nominal level

(α = 0.05), so do the first order and second order corrected tests. However, not

surprisingly, the Pearson’s chi-squared test fails to control the Type I error at the

desired level when ICC = 0.3, 0.6, i.e., observations within the cluster are correlated,

and the independence assumption is no longer met.

For j = 2, both of our proposed tests outperform the first order and second

order corrected tests, when the underlying probabilities are varying slowly (β ≤
0.03). All of the four tests demonstrate very similar empirical statistical powers

when the underlying probabilities vary greatly (β > 0.03). In this setting, the two

proposed tests are both competitive, with the proposed test W slightly better than
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HHHHHHβ
p(k)

p(1) p(2) p(3) p(4) p(5)

0.00 0.1 0.1 0.1 0.1 0.1
0.01 0.109876883 0.108910065 0.107071068 0.104539905 0.101564345
0.02 0.119753767 0.11782013 0.114142136 0.10907981 0.103128689
0.03 0.12963065 0.126730196 0.121213203 0.113619715 0.104693034
0.04 0.139507534 0.135640261 0.128284271 0.11815962 0.106257379
0.05 0.149384417 0.144550326 0.135355339 0.122699525 0.107821723
0.06 0.1592613 0.153460391 0.142426407 0.12723943 0.109386068
0.07 0.169138184 0.162370457 0.149497475 0.131779335 0.110950413
0.08 0.179015067 0.171280522 0.156568542 0.13631924 0.112514757
0.09 0.188891951 0.180190587 0.16363961 0.140859145 0.114079102
0.10 0.198768834 0.189100652 0.170710678 0.14539905 0.115643447

HHHHHHβ
p(k)

p(6) p(7) p(8) p(9) p(10)

0.00 0.1 0.1 0.1 0.1 0.1
0.01 0.098435655 0.095460095 0.092928932 0.091089935 0.090123117
0.02 0.096871311 0.09092019 0.085857864 0.08217987 0.080246233
0.03 0.095306966 0.086380285 0.078786797 0.073269804 0.07036935
0.04 0.093742621 0.08184038 0.071715729 0.064359739 0.060492466
0.05 0.092178277 0.077300475 0.064644661 0.055449674 0.050615583
0.06 0.090613932 0.07276057 0.057573593 0.046539609 0.0407387
0.07 0.089049587 0.068220665 0.050502525 0.037629543 0.030861816
0.08 0.087485243 0.06368076 0.043431458 0.028719478 0.020984933
0.09 0.085920898 0.059140855 0.03636039 0.019809413 0.011108049
0.10 0.084356553 0.05460095 0.029289322 0.010899348 0.001231166

Table 4.3: Simulated probabilities of 10 categories generated by alternative (4.4)
with j = 1 for β from 0 to 0.1 with step 0.01.

the proposed test q̂0.05, but both of them show higher empirical statistical powers

than the first order and second order corrected tests.

Next, we investigate the simulation results with j = 4 for alternative (4.4). Fig-

ures 4.10, 4.11, and 4.12 plot the empirical powers of the five tests versus β in alter-

native (4.4) with ICC 0.1, 0.3, and 0.6, respectively. The case of the null hypothesis

(4.1) is simulated when β = 0. Both of our proposed tests and first order and second
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HHHHHHβ
p(k)

p(1) p(2) p(3) p(4) p(5)

0.00 0.1 0.1 0.1 0.1 0.1
0.01 0.109510565 0.105877853 0.1 0.094122147 0.090489435
0.02 0.11902113 0.111755705 0.1 0.088244295 0.08097887
0.03 0.128531695 0.117633558 0.1 0.082366442 0.071468305
0.04 0.138042261 0.12351141 0.1 0.07648859 0.061957739
0.05 0.147552826 0.129389263 0.1 0.070610737 0.052447174
0.06 0.157063391 0.135267115 0.1 0.064732885 0.042936609
0.07 0.166573956 0.141144968 0.1 0.058855032 0.033426044
0.08 0.176084521 0.14702282 0.1 0.05297718 0.023915479
0.09 0.185595086 0.152900673 0.1 0.047099327 0.014404914
0.10 0.195105652 0.158778525 0.1 0.041221475 0.004894348

HHHHHHβ
p(k)

p(6) p(7) p(8) p(9) p(10)

0.00 0.1 0.1 0.1 0.1 0.1
0.01 0.090489435 0.094122147 0.1 0.105877853 0.109510565
0.02 0.08097887 0.088244295 0.1 0.111755705 0.11902113
0.03 0.071468305 0.082366442 0.1 0.117633558 0.128531695
0.04 0.061957739 0.07648859 0.1 0.12351141 0.138042261
0.05 0.052447174 0.070610737 0.1 0.129389263 0.147552826
0.06 0.042936609 0.064732885 0.1 0.135267115 0.157063391
0.07 0.033426044 0.058855032 0.1 0.141144968 0.166573956
0.08 0.023915479 0.05297718 0.1 0.14702282 0.176084521
0.09 0.014404914 0.047099327 0.1 0.152900673 0.185595086
0.10 0.004894348 0.041221475 0.1 0.158778525 0.195105652

Table 4.4: Simulated probabilities of 10 categories generated by alternative (4.4)
with j = 2 for β from 0 to 0.1 with step 0.01.

order corrected tests control the Type I error well, while the Pearson’s chi-squared

tests can not even get the correct pre-specified level of significance α = 0.05.

Since j = 4 generates highly varying underlying probabilities as seen in Table

4.5, the results of power comparison are different from those in j = 2. One can see

that our proposed test W is now competitive with the first order and second order

corrected tests, but the power of the test q̂0.05 has decreased. In addition, as the
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Figure 4.5: Probabilities in simulation studies generated by alternative (4.4) with
j = 2 for β = 0.01 (left) and β = 0.1 (right). Probabilities vary slowly when
β = 0.01, but vary greatly when β = 0.1.

ICC goes up, our test W becomes the best. These results show that our proposed

test W is very stable in both slow varying and non-slow varying cases. When the

underlying probabilities are varying slowly, our proposed test W is superior to the

first order and second order corrected tests. When the underlying probabilities are

varying greatly, method based on W is at least as good as the existing approaches.
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HHHHHHβ
p(k)

p(1) p(2) p(3) p(4) p(5)

0.00 0.1 0.1 0.1 0.1 0.1
0.01 0.10809017 0.09690983 0.09 0.09690983 0.10809017
0.02 0.11618034 0.09381966 0.08 0.09381966 0.11618034
0.03 0.12427051 0.09072949 0.07 0.09072949 0.12427051
0.04 0.13236068 0.08763932 0.06 0.08763932 0.13236068
0.05 0.14045085 0.08454915 0.05 0.08454915 0.14045085
0.06 0.14854102 0.08145898 0.04 0.08145898 0.14854102
0.07 0.15663119 0.07836881 0.03 0.07836881 0.15663119
0.08 0.16472136 0.07527864 0.02 0.07527864 0.16472136
0.09 0.172811529 0.072188471 0.01 0.072188471 0.172811529
0.10 0.180901699 0.069098301 0 0.069098301 0.180901699

HHHHHHβ
p(k)

p(6) p(7) p(8) p(9) p(10)

0.00 0.1 0.1 0.1 0.1 0.1
0.01 0.10809017 0.09690983 0.09 0.09690983 0.10809017
0.02 0.11618034 0.09381966 0.08 0.09381966 0.11618034
0.03 0.12427051 0.09072949 0.07 0.09072949 0.12427051
0.04 0.13236068 0.08763932 0.06 0.08763932 0.13236068
0.05 0.14045085 0.08454915 0.05 0.08454915 0.14045085
0.06 0.14854102 0.08145898 0.04 0.08145898 0.14854102
0.07 0.15663119 0.07836881 0.03 0.07836881 0.15663119
0.08 0.16472136 0.07527864 0.02 0.07527864 0.16472136
0.09 0.172811529 0.072188471 0.01 0.072188471 0.172811529
0.10 0.180901699 0.069098301 0 0.069098301 0.180901699

Table 4.5: Simulated probabilities of 10 categories generated by alternative (4.4)
with j = 4 for β from 0 to 0.1 with step 0.01.

89



Chapter 4. Simulation Studies

●
● ● ●

● ●
● ● ●

●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Alternative (4.4) with j=4 and beta= 0.01

Category

P
ro

ba
bi

lit
y

●

●

●

●

● ●

●

●

●

●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Alternative (4.4) with j=4 and beta= 0.1

Category

P
ro

ba
bi

lit
y

Figure 4.6: Probabilities in simulation studies generated by alternative (4.4) with
j = 4 for β = 0.01 (left) and β = 0.1 (right). Probabilities vary slowly when
β = 0.01, but vary greatly when β = 0.1.
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HHHHHHβ
p(k)

p(1) p(2) p(3) p(4) p(5)

0.00 0.1 0.1 0.1 0.1 0.1
0.01 0.101564345 0.095460095 0.107071068 0.091089935 0.109876883
0.02 0.103128689 0.09092019 0.114142136 0.08217987 0.119753767
0.03 0.104693034 0.086380285 0.121213203 0.073269804 0.12963065
0.04 0.106257379 0.08184038 0.128284271 0.064359739 0.139507534
0.05 0.107821723 0.077300475 0.135355339 0.055449674 0.149384417
0.06 0.109386068 0.07276057 0.142426407 0.046539609 0.1592613
0.07 0.110950413 0.068220665 0.149497475 0.037629543 0.169138184
0.08 0.112514757 0.06368076 0.156568542 0.028719478 0.179015067
0.09 0.114079102 0.059140855 0.16363961 0.019809413 0.188891951
0.10 0.115643447 0.05460095 0.170710678 0.010899348 0.198768834

HHHHHHβ
p(k)

p(6) p(7) p(8) p(9) p(10)

0.00 0.1 0.1 0.1 0.1 0.1
0.01 0.090123117 0.108910065 0.092928932 0.104539905 0.098435655
0.02 0.080246233 0.11782013 0.085857864 0.10907981 0.096871311
0.03 0.07036935 0.126730196 0.078786797 0.113619715 0.095306966
0.04 0.060492466 0.135640261 0.071715729 0.11815962 0.093742621
0.05 0.050615583 0.144550326 0.064644661 0.122699525 0.092178277
0.06 0.0407387 0.153460391 0.057573593 0.12723943 0.090613932
0.07 0.030861816 0.162370457 0.050502525 0.131779335 0.089049587
0.08 0.020984933 0.171280522 0.043431458 0.13631924 0.087485243
0.09 0.011108049 0.180190587 0.03636039 0.140859145 0.085920898
0.10 0.001231166 0.189100652 0.029289322 0.14539905 0.084356553

Table 4.6: Simulated probabilities of 10 categories generated by alternative (4.4)
with j = 9 for β from 0 to 0.1 with step 0.01.
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Figure 4.7: The power curves of selected methods for simulated complex survey data
with respect to the alternative (4.4) p(k) = 1

10
+ βcos( jπ(k−0.5)

10
), for k = 1, · · · , 10

with j = 2. The simulations consist of 50 psus, 15 ssus, and 10 categories, with ICC
0.1. The Type I error of Pearson’s test is a little off and all other four tests control
the Type I error well. The proposed test W has the best empirical power, followed
by the proposed test q̂0.05. Both of our proposed tests are better than the first order
and second order corrected tests when the probabilities vary slowly. Powers of all
tests converge to 1 when the probabilities vary greatly.
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Figure 4.8: The power curves of selected methods for simulated complex survey data
with respect to the alternative (4.4) p(k) = 1

10
+βcos( jπ(k−0.5)

10
), for k = 1, · · · , 10 with

j = 2. The simulations consist of 50 psus, 15 ssus, and 10 categories, with ICC 0.3.
Pearson’s test doesn’t control the Type I error well and all other four tests control
the Type I error well. The proposed test W has the best empirical power, followed
by the proposed test q̂0.05. Both of our proposed tests are better than the first order
and second order corrected tests when the probabilities vary slowly. Powers of all
tests converge to 1 when the probabilities vary greatly.

93



Chapter 4. Simulation Studies

ICC= 0.6 j= 2

beta

P
ow

er

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

q
Pearson
W
1st
2nd

Figure 4.9: The power curves of selected methods for simulated complex survey data
with respect to the alternative (4.4) p(k) = 1

10
+ βcos( jπ(k−0.5)

10
), for k = 1, · · · , 10

with j = 2. The simulations consist of 50 psus, 15 ssus, and 10 categories, with ICC
0.6. Pearson’s test is not able control the Type I error and all other four tests control
the Type I error well. The proposed test W has the best empirical power, followed
by the proposed test q̂0.05. Both of our proposed tests are better than the first order
and second order corrected tests when the probabilities vary slowly. Powers of all
tests converge to 1 when the probabilities vary greatly.
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Figure 4.10: The power curves of selected methods for simulated complex survey data
with respect to the alternative (4.4) p(k) = 1

10
+ βcos( jπ(k−0.5)

10
), for k = 1, · · · , 10

with j = 4. The simulations consist of 50 psus, 15 ssus, and 10 categories, with ICC
0.1. The Type I error of Pearson’s test is a little off and all other four tests control
the Type I error well. The proposed test W is competitive with the first order and
second order corrected tests. But the proposed test q̂0.05 has the lowest empirical
power. Powers of all tests converge to 1 when the probabilities vary greatly.
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Figure 4.11: The power curves of selected methods for simulated complex survey data
with respect to the alternative (4.4) p(k) = 1

10
+ βcos( jπ(k−0.5)

10
), for k = 1, · · · , 10

with j = 4. The simulations consist of 50 psus, 15 ssus, and 10 categories, with
ICC 0.3. Pearson’s test doesn’t control the Type I error well and all other four tests
control the Type I error well. The proposed test W has the best empirical power, but
the first order and second order corrected tests are competitive with the proposed
test W . But the proposed test q̂0.05 has the lowest empirical power. Powers of all
tests converge to 1 when the probabilities vary greatly.
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Figure 4.12: The power curves of selected methods for simulated complex survey data
with respect to the alternative (4.4) p(k) = 1

10
+ βcos( jπ(k−0.5)

10
), for k = 1, · · · , 10

with j = 4. The simulations consist of 50 psus, 15 ssus, and 10 categories, with ICC
0.6. Pearson’s test is not able to control the Type I error and all other four tests
control the Type I error well. The proposed test W has the best empirical power,
followed by the first order and second order corrected tests. But the proposed test
q̂0.05 has the lowest empirical power. Powers of all tests converge to 1 when the
probabilities vary greatly.
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Figure 4.13: Probabilities in simulation studies generated by alternative (4.5) for
β = 0.6 (left) and β = 1.4 (right). Maximum probabilities are p(1) and p(10) for
β = 0.6, and maximum probabilities are p(5) and p(6) for β = 1.4.

4.2.3 Simulation Results by Alternative (4.5)

For alternative (4.5), the null hypothesis (4.1) is simulated when β = 1 for alternative

(4.5). β is chosen from 0.6 to 1.4 with step 0.1. Φ(·) and Φ(·)−1 are Cumulative

Distribution Function and inverse Cumulative Distribution Function of standard

normal random variable, respectively. There are 9 sets of probabilities generated for

the simulated multinomial data listed in Table 4.7, which are fully plotted in Figure

A.6. Notice that, the maximum probability usually locates at the first and the last

categories for β between 0.6 and 1.0, for example, when β = 0.6, the maximum

probabilities are p(1) and p(10), which are both about 0.221 shown in the left graph

of Figure 4.13. On the other side, the largest probabilities show up in a middle

categories for β between 1.0 and 1.4, for example, when β = 1.4, p(5) = p(6) = 0.139

are the maximum probabilities, which is shown in the right graph of Figure 4.13.
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HHHHHHβ
p(k)

p(1) p(2) p(3) p(4) p(5)

0.6 0.220967155 0.085821837 0.069728394 0.063072824 0.06040979
0.7 0.184836489 0.093048915 0.078894135 0.072839961 0.070380501
0.8 0.152624684 0.097754501 0.087038736 0.082275563 0.080306516
0.9 0.124373857 0.10001357 0.094090078 0.091340798 0.090181697
1.0 0.1 0.1 0.1 0.1 0.1
1.1 0.07931315 0.09796614 0.104744293 0.108220928 0.10975549
1.2 0.062041195 0.094219511 0.108321974 0.115974971 0.119442349
1.3 0.047855011 0.089098883 0.110753904 0.123237313 0.129054889
1.4 0.036392845 0.082951702 0.11208085 0.129987045 0.138587559

HHHHHHβ
p(k)

p(6) p(7) p(8) p(9) p(10)

0.6 0.06040979 0.063072824 0.069728394 0.085821837 0.220967155
0.7 0.070380501 0.072839961 0.078894135 0.093048915 0.184836489
0.8 0.080306516 0.082275563 0.087038736 0.097754501 0.152624684
0.9 0.090181697 0.091340798 0.094090078 0.10001357 0.124373857
1.0 0.1 0.1 0.1 0.1 0.1
1.1 0.10975549 0.108220928 0.104744293 0.09796614 0.07931315
1.2 0.119442349 0.115974971 0.108321974 0.094219511 0.062041195
1.3 0.129054889 0.123237313 0.110753904 0.089098883 0.047855011
1.4 0.138587559 0.129987045 0.11208085 0.082951702 0.036392845

Table 4.7: Simulated probabilities of 10 categories generated by alternative (4.5) for
β from 0.6 to 1.4 with step 0.1.

Figures 4.14, 4.15, and 4.16 plot the empirical powers of the five tests versus

β with ICC 0.1, 0.3, and 0.6 separately. Note that the null hypothesis (4.1) is now

simulated when β = 1, which is located in the middle of the graphs. Again, Pearson’s

chi-squared test is not able to reach the nominal level of significance α = 0.05, and

when ICC increases, the control of the Type I error is even worse. On the other

hand, our proposed tests W and q̂0.05 can easily control the desired Type I error.

Alternative (4.5) simulates a set of moderately slow varying probabilities, and

two major results can be observed. First, our proposed test W outperforms the first

order and second order corrected tests, and it is superior than our proposed test q̂0.05
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when β < 1. Second, when β > 1, our proposed test q̂0.05 becomes almost as good

as the proposed test W , and both of them are better than first order and second

order corrected tests. Overall, all the four tests, W , q̂0.05, first order and second order

corrected tests are competitive in complex surveys, because the simulated underlying

probabilities are neither too slow varying, nor varying dramatically.

As we mentioned, the maximum of these generated probabilities by alternative

(4.5) is usually in category 1 or 10 for 0.6 ≤ β < 1, or in a middle category for

1 < β ≤ 1.4. Though all methods (not including Pearson’s chi-squared test) perform

similarly with each other, it can be seen that our proposed test q̂0.05 works best when

the largest probability is shown in a middle category, though the differences between

these two cases are not very obvious.
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Figure 4.14: The power curves of selected methods for simulated complex survey
data with respect to the alternative (4.5) p(k) = Φ

[
βΦ−1

(
k
10

)]
− Φ

[
βΦ−1

(
k−1
10

)]
,

for k = 1, · · · , 10. The simulations consist of 50 psus, 15 ssus, and 10 categories,
with ICC 0.1. Notice that the null hypothesis is obtained when β = 1.0 in this case.
The Type I error of Pearson’s test is a little off and all other four tests control the
Type I error well. The proposed test W has the best empirical power. The first order
and second order corrected tests are better than the proposed test q̂0.05 when β < 1,
but the proposed test q̂0.05 becomes better than the first order and second order
corrected tests when β ≥ 1. Powers of all tests converge to 1 when the probabilities
vary greatly.
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Figure 4.15: The power curves of selected methods for simulated complex survey
data with respect to the alternative (4.5) p(k) = Φ

[
βΦ−1

(
k
10

)]
− Φ

[
βΦ−1

(
k−1
10

)]
,

for k = 1, · · · , 10. The simulations consist of 50 psus, 15 ssus, and 10 categories,
with ICC 0.3. Notice that the null hypothesis is obtained when β = 1.0 in this
case. Pearson’s test doesn’t control the Type I error well and all other four tests
control the Type I error well. The proposed test W has the best empirical power.
The first order and second order corrected tests are better than the proposed test
q̂0.05 when β < 1, but the proposed test q̂0.05 becomes better than the first order and
second order corrected tests when β ≥ 1. Powers of all tests converge to 1 when the
probabilities vary greatly.
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Figure 4.16: The power curves of selected methods for simulated complex survey
data with respect to the alternative (4.5) p(k) = Φ

[
βΦ−1

(
k
10

)]
− Φ

[
βΦ−1

(
k−1
10

)]
,

for k = 1, · · · , 10. The simulations consist of 50 psus, 15 ssus, and 10 categories,
with ICC 0.6. Notice that the null hypothesis is obtained when β = 1.0 in this case.
Pearson’s test is not able to control the Type I error and all other four tests control
the Type I error well. The proposed test W has the best empirical power. The first
order and second order corrected tests are better than the proposed test q̂0.05 when
β < 1, but the proposed test q̂0.05 becomes as good as the proposed test W , both of
which are better than the first order and second order corrected tests when β ≥ 1.
Powers of all tests converge to 1 when the probabilities vary greatly.
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4.3 Summary

To sum up, our proposed tests have been examined by the simulation studies, and

have been proved to work well in different settings. First of all, our proposed tests

demonstrate strong ability to control the Type I error at the pre-specified level of

significance under all settings. Second, our proposed tests substantially improve

the empirical statistical powers for multinomial data in complex surveys, comparing

with the first order and second order corrected tests (Rao & Scott, 1981, 1984),

especially when the underlying probabilities vary slowly. Third, our proposed test

W shows a great stability in both slow varying and non-slow varying cases, which

usually outperforms the first order and second order corrected tests in cases with

slow varying provabilities, and performs competitively in cases with medium or high

varying probabilities. Fourth, our proposed test q̂α work best when the maximum of

the underlying probabilities appears in a middle category of the multinomial data.

Finally, as a result of the comparison between alternative (4.3) and (4.4), we conclude

that our proposed test q̂α is the most powerful one for slow varying probabilities, but

it may not be as stable as the proposed test W when the probabilities do not vary

slowly. In another perspective of view, the proposed test q̂α is more sensitive to

detect small differences among the underlying probabilities, but the proposed test

W is more stable for various cases. In practice, the selected approach should be

determined by the characteristics of the multinomial data.
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Application

In this chapter, we apply our proposed Neyman smooth-type GOF tests in complex

surveys to real life problems. For comparison purpose, the results of GOF tests, such

as Pearson’s chi-squared test, the first order and second order corrected tests (Rao &

Scott, 1981, 1984), are also reported. The first example considers an artificial data

set, where the responses are perfectly correlated. The second example is from the

National Youth Tobacco Survey (NYTS). We are interested in testing the difference

among the age/grade and severity groups on tobacco usage for Asian and American

Indian/Alaska Native students.

5.1 Example 1

Data is obtained from Christensen (1997, pg. 111, Table 3.1). All individuals are

randomly selected from some certain population. Information about race, sex, age

and opinions on legalized abortion is recorded. Detailed description of the factors

can be seen in Table 5.1. The original data is listed in Table 5.2. We define 18-25

years as the first category, 26-35 years as the second category, 36-45 years as the
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third category, 46-55 years as the fourth category, 56-65 years as the fifth category,

and 65+ years as the last category. The corresponding counts of each age group for

nonwhite females who support legalized abortion is summarized in Table 5.3.

Factor Levels
Race White, Nonwhite
Sex Male, Female
Opinion Yes=Supports Legalized Abortion

No=Opposed to Legalized Abortion
Und=Undecided

Age 18-25, 26-35, 36-45, 46-55, 56-65, 66+ years

Table 5.1: Description of factors from Christensen (1997, pg. 111, Table 3.1).

Age
Race Sex Opinion 18-25 26-35 36-45 46-55 56-65 66+

Yes 96 138 117 75 72 83
Male No 44 64 56 48 49 60

Und 1 2 6 5 6 8
White

Yes 140 171 152 101 102 111
Female No 43 65 58 51 58 67

Und 1 4 9 9 10 16

Yes 24 18 16 12 6 4
Male No 5 7 7 6 8 10

Und 2 1 3 4 3 4
Nonwhite

Female Yes 21 25 20 17 14 13
No 4 6 5 5 5 5

Und 1 2 1 1 1 1

Table 5.2: Abortion opinion data from Christensen (1997, pg. 111, Table 3.1).

In this example, we first perform the Pearson’s chi-squared test on the data in

Table 5.3, to see if there are age group differences for nonwhite females who support

legalized abortion. We then modify the data by treating a female’s response as
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Age 18-25 26-35 36-45 46-55 56-65 66+ Total
Counts 21 25 20 17 14 13 110

Table 5.3: Observed age data for nonwhite females who support legalized abortion
(original data is from Christensen (1997, pg. 111, Table 3.1)).

a family’s response (response from the female and her husband). The counts in

each group are therefore doubled and the husband and wife’s responses are perfectly

correlated (assume husband and wife are in the same age group). We will use the

modified data to illustrate the clustering effects, our proposed GOF tests, and the

first order and second order corrected tests.

5.1.1 Pearson’s Chi-squared Test in SRS

The null hypothesis of interest is that there is no age group difference for nonwhite

females who support legalized abortion. The corresponding counts of people who

support legalized abortion within each age group are shown in Table 5.3. The original

survey is an SRS, therefore, the independence assumption is met. The null hypothesis

can be written as

H0 : p0(1) = · · · = p0(6) =
1

6
, (5.1)

and the corresponding alternative hypothesis is

H1 : at least one p0(k) 6= 1

6
, k = 1, · · · , 6. (5.2)

Figure 5.1 shows the estimated proportions of all age groups. It can be seen that

there is a decreasing trend of supporting legalized abortion, as the nonwhite females

get older. Furthermore, all estimated proportions are also very close to each other

(they vary between 0.118 and 0.227).
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Figure 5.1: Estimated proportions of 6 age groups in Table 5.3.

We first apply Pearson’s chi-squared test to test the hypothesis (5.1). The ex-

pected counts for each age group under the null hypothesis are shown in Table 5.4.

The test statistic is calculated by

Age 18-25 26-35 36-45 46-55 56-65 66+
Expected Counts 18.33 18.33 18.33 18.33 18.33 18.33

Table 5.4: Age data for nonwhite females who support legalized abortion, under the
null hypothesis (5.1).
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X2
SRS =

K∑

k=1

(Ok − Ek)2
Ek

= 5.6364,

which is compared with central chi-squared distribution with 5 degrees of freedom.

We get the p-value as 0.3432, which fails to reject the null hypothesis at level of

significance 0.05 and 0.1. This indicates that there is no difference between the age

groups for nonwhite females who support legalized abortion.

5.1.2 Apply Proposed GOF Tests on Correlated Data

Now, suppose the surveys are given to both these females and their spouses, and

assume their spouses give the same answers as these females and each couple is

in the same age group. Mathematically, this implies that these females and their

spouses are perfectly correlated (ICC = 1). The modified data is shown in Table 5.5.

Notice that, based on this table, the estimated proportions of all age groups remain

Age 18-25 26-35 36-45 46-55 56-65 66+ Total
Counts 42 50 40 34 28 26 220

Table 5.5: Observed data for nonwhite females and their spouses who support le-
galized abortion, assuming that both these females and their spouses give identical
answers (ICC = 1).

the same, but the sample size and counts of all categories are doubled.

Suppose that we are interested in testing if there are differences in the rate of

supporting legalized abortion among the age groups of the nonwhite families. If

Pearson’s chi-squared test is utilized again, because the sample size is twice as before,

the value of the test statistic is also doubled,

X2 = n
K∑

k=1

(p̂(k)− p0(k))2

p0(k)
= 11.2728,
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We find that the p-value is 0.04625, and thus we reject the null hypothesis at level

0.05. In a further investigation, this result is not correct, because each couple forms

a natural cluster with ICC 1 and thus the sampling design is no longer SRS. As a

result, we are more likely to reject the null hypothesis than we should do. The first

order and second order corrected tests may be a better fit for such a situation. We

then re-examine the hypothesis test using the first order and second order corrected

tests.

In order to get δ̂. in (2.15), 100, 000 complex multinomial data under the null

hypothesis (5.1) are generated. For each of the generated data, the sample covariance

matrix is found out. Then, covariance matrix under the null hypothesis (5.1) is

estimated by the average of the 100, 000 covariance matrix (V̂). Note that, the

covariance matrix under SRS and the null hypothesis (5.1) is known. Therefore, δ̂.

can be obtained by averaging the eigenvalues of the matrix P−10 V. In addition, â2 is

calculated by (2.17).

The test statistics of the first order and second order corrected tests are

X2
C =

X2
SRS

δ̂.
= 5.68865

and

X2
S =

X2

δ̂.(1 + â2)
=

X2
C

(1 + â2)
= 5.684551.

The test statistic of the first order corrected test (X2
C) is compared with central chi-

squared distribution with 5 degrees of freedom and the test statistic of the second

order corrected test (X2
S) is compared with central chi-squared distribution with

5/(1 + â2) degrees of freedom. The p-values for these two test statistics are both

about 0.34, which implies that the null hypothesis should not be rejected by both

tests at either level 0.05 or level 0.1. However, we do observe an decreasing trend
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from age groups 2 to 6. Next, we will use our proposed Neyman smooth-type GOF

tests to investigate the problem again.

For our first proposed test W , under the null hypothesis (5.1), we search for the

maximizer of the equation (3.11) to get q̂ and use (3.12) to find a value of W0. This

process is repeated 100, 000 times and the empirical distribution of W0 is discovered.

q̂ is the one that maximizes equation (3.11) for q = 1, · · · , K − 1. For the data in

Table 5.5, it is found that

q̂ = 1,

which results in, according to (3.12),

W =
X2

1 − 1√
2

= 6.109525.

The simulated critical values of W0 are 5.226383 and 6.561806 for α = 0.1 and

α = 0.05, respectively. With a p-value of 0.065, the null hypothesis (5.1) should be

rejected at a level between 0.1 and 0.05.

For our second proposed test q̂0.05, a0.05 in (3.15) is found to be

â0.05 = 4.18,

and the the test statistic is

q̂0.05 = 1.

As a result, the null hypothesis (5.1) should be rejected at level 0.05 using this

method.

In this example, the estimated probabilities of the age groups are slow varying

with a sample size of 110. Though the differences among the age groups are observed,
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existing methods, such as the first order and the second order corrected tests, are not

able to reach a consistent conclusion with the observed phenomenon. Our proposed

tests successfully detect the heterogeneity among age groups, which confirms the

observed phenomenon by using a limited sample size. We conclude that there is

significant difference among the six age groups in nonwhite families who support

legalized abortion.

5.2 Example 2

The National Youth Tobacco Survey (NYTS) is to provide data support for research

related to the use of tobacco among middle- and high- school students. A variety of

tobaccos are included, such as cigarettes, cigars, hookahs, electronic cigarettes, and

so on. NYTS started in 1999, and continued in 2000, 2002, 2004, 2006, 2011, 2012,

2013, and 2014. The Centers for Disease Control and Prevention (CDC) and the

Food and Drug Administration (FDA) have involved in the management of NYTS

since 2011.

The latest published data is for the year 2014 (Office on Smoking and Health,

2014). According to the Office on Smoking and Health (2014), the 2014 NYTS

sampling design involved stratification and three-stage clustering so that students in

middle schools and high schools in 50 U. S. states and the District of Columbia could

be mostly represented. 16 strata were created in U.S. based on predominant minority

(non-Hispanic Black and Hispanic) and the factor urban/nonurban, as shown in Table

5.6 (Office on Smoking and Health, 2014, pg. 9). A psu was defined as a county,

a combination of several small counties, or part of a large county. More detailed

information on the psu can be obtained from the Office on Smoking and Health

(2014, pg. 7). Middle schools and high schools were considered as ssus in each psu.

In each selected school, 1 or 2 classes were selected for every grade. All students in
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Predominant
Minority

Urban /
Nonurban

Density
Group

Number

Stratum
Code

Student
Population

Number
of Sample
PSUs

1 BU1 2,720,181 9
2 BU2 975,490 3Non-
3 BU3 908,299 3Hispanic

Urban

4 BU4 516,712 2Black
1 BR1 3,937,157 12
2 BR2 1,503,403 5
3 BR3 1,026,612 4

Nonurban
4 BR4 313,063 2

1 HU1 3,530,556 11
2 HU2 2,429,442 7
3 HU3 1,865,988 5

Urban

4 HU4 2,106,242 7
1 HR1 4,427,215 14
2 HR2 1,284,402 4
3 HR3 988,655 3

Hispanic

Nonurban
4 HR4 523,491 2

Table 5.6: Definitions of 16 strata from Exhibit 2-2 in Office on Smoking and Health
(2014, pg. 9).

the selected classes were eligible for the survey. Sampling steps are shown as follows

and in Figure 5.2, according to the Office on Smoking and Health (2014, pg. 5).

1. The U.S. is divided into 16 strata according to predominant minority (non-

Hispanic Black and Hispanic) and the factor urban/nonurban.

2. A total of 93 psus/counties were randomly chosen from the 16 strata with pre-

determined probabilities, which are proportional to the number of students in

psus.

3. Schools in each selected psu/county were stratified as large, medium, and small

schools. Within each psu, 170 large schools, 20 medium schools, and 30 small
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schools were randomly selected.

4. Within each selected large school, 2 classes of each grade (grades 6-12) were

randomly selected; within each selected medium or small school, 1 class of each

grade (grades 6-12) was randomly selected.

5. All students in selected classes were eligible for the interviews.

U.S. 

Stratum 1 Stratum i Stratum 16 

Psu n1 Psu 1 Psu 1 Psu j Psu ni Psu 1 Psu n16 

Large  
School 
170 

Medium 
School 
20 

Small 
School 
30 

2 classes/grade 1 class/grade 1 class/grade 

. . . . . . . . . . . . 

. . . . . . . . . . . . 

. . . 

. . . 

Figure 5.2: NYTS 2014 sampling design chart.

All sampling was without replacement. More details can be found in Chapter 2 of

Office on Smoking and Health (2014).

There are about 81 questions in the questionnaire. Students were required to

answer these questions using pencils. The collected data was trimmed and the sam-

pling weights of the individuals were calculated based on the sampling design and the

nonresponse adjustments. Office on Smoking and Health (2014) introduces the sam-

pling weights calculation in detail in Chapter 4. The final 2014 NYTS data consists

of 157 variables (including weight variable) and a total of 22, 007 observations.
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5.2.1 Age Differences Among Asian Students Who Smoked

In this section, we focus on Asian students who have tried cigarette smoking before,

even a puff or two. There are a total of 973 Asian students who participated in

NYTS 2014 and 114 of them admitted that they had cigarette smoking experience

before. The age of the first try ranges from ≤ 8 years old to 18 years old. In this

example, we define 8 groups for the age of the first try, ≤ 8 years old, 9 − 10 years

old, 11 − 12 years old, 13 years old, 14 years old, 15 years old, 16 years old and

17− 18 years old.

The null hypothesis of interest is that there are no differences in age groups of

the first cigarette try, which is seated in (5.3). The observed data from NYTS 2014

is listed in Table 5.7 and the weighted data is shown in Table 5.8.

H0 : p(1) = · · · = p(8) =
1

8
(5.3)

Age ≤ 8 9-10 11-12 13 14 15 16 17-18 Total
Counts 19 12 17 18 14 13 17 4 114

Table 5.7: Observed data for Asian students who have tried cigarette smoking from
NYTS 2014. Age indicates the age of a student’s first try of cigarette smoking, even
a puff or two.

Age 8 9-10 11-12 13 Total
Counts 18121.18 8111.43 15323.68 20617.98

Age 14 15 16 17-18
Counts 13362.30 11764.84 11408.68 2306.368 101016.5

Table 5.8: Weighted data for Asian students who have tried cigarette smoking from
NYTS 2014. Age indicates the age of a student’s first try of cigarette smoking, even
a puff or two.

The estimated proportions of the weighted counts in Table 5.8 are plotted in
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Figure 5.3. The estimated proportions p̂(k)’s in (B.1) using the weighted counts are

given in Table 5.9.
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Figure 5.3: Estimated proportions of 8 age groups using weighted data in Table 5.8.

The observed sample size in Table 5.7 and Kish’s effective sample size (B.3) are

n = 114 and ñ = 88.96, respectively. δ̂. in (2.15) is obtained using (3.16). In addition,

â2 is calculated by (2.17). With p0(k) = 1
8

for k = 1, · · · , 8, the test statistics of the
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Age ≤ 8 9-10 11-12 13 14 15 16 17-18 Total
p̂(k) 0.179 0.08 0.152 0.204 0.132 0.116 0.113 0.023 1

Table 5.9: Estimated proportions using weighted data in Table 5.8 for Asian students
who have tried cigarette smoking from NYTS 2014. Age indicates the age of a
student’s first try of cigarette smoking, even a puff or two.

first order and second order corrected tests are

X2
C =

X2

δ̂.
=

K∑

k=1

n
(p̂(k)− p0(k))2

p0(k)
/δ̂. = 16.1093

and

X2
S =

X2

δ̂.(1 + â2)
=

X2
C

(1 + â2)
= 16.11.

Thus, the null hypothesis (5.3) should be rejected at level α = 0.05, because the

p-values of both the first order and the second order corrected tests are 0.024 < 0.05.

Next, we will use our proposed methods to re-examine the data again. For the

proposed test W , under the null hypothesis (5.3), we search for the maximizer of

the equation (3.11) to get q̂ and then a value of W0 is obtained using (3.12). This

process is repeated 100, 000 times and the empirical distribution of W0 is simulated.

Then, by searching all q = 1, · · · , K−1, q̂ is found out to be the one that maximizes

equation (3.11). For the data in Table 5.7, it is found that

q̂ = 5,

which results in, according to (3.12),

W =
X2

1 − 1√
2

= 4.92.
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Compared with the simulated distribution W0 under the null hypothesis (5.3), the

p-value of the proposed test W is 0.0078, which rejects the null hypothesis (5.3) at

level α = 0.05.

For the proposed test q̂α, a0.022 and a0.023 in (3.15) are found to be

â0.022 = 5.44 and â0.023 = 5.37.

The corresponding test statistics are

q̂0.022 = 0 and q̂0.023 = 1,

which implies that p-value of the proposed test q̂α is about 0.023, so the null hypoth-

esis (5.3) should be rejected at level α = 0.05.

In this example, all four tests reject the null hypothesis (5.3) at level α = 0.05.

The p-value of the proposed test q̂α is similar to those of the first order and the

second order corrected tests. However, the p-value of the proposed test W is smaller

than those of all other three tests. If the level of significance is chosen to be α = 0.01,

only our proposed test W is able to reject the null hypothesis.

5.2.2 Grade Differences Among American Indian and Alaska

Native Students Who Smoked

In this section, the target population is American Indian and Alaska Native (AIAN)

students who have tried cigarette smoking before, even a puff or two. A total of 338

students participated in NYTS 2014 and 77 of them have had cigarette smoking ex-

perience before. These students were in grades 6-12 and each grade forms a category

in our data analysis. For example, grade 6 is the first category, and grade 12 is the

7th category.
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The null hypothesis of interest is that there are no differences in grades for these

students, which can be written mathematically as in (5.4). The observed counts are

shown in Table 5.10 and the weighted counts are listed in Table 5.11.

H0 : p(1) = · · · = p(7) =
1

7
(5.4)

Grade 6 7 8 9 10 11 12 Total
Counts 11 8 17 10 19 6 6 77

Table 5.10: Observed data for AIAN students who have tried cigarette smoking from
NYTS 2014. Grade indicates the current grade when a student was in the survey.

Grade 6 7 8 9 Total
Counts 3198.14 2094.63 5560.12 6843.18
Grade 10 11 12
Counts 14394.36 6383.73 6157.99 44632.14

Table 5.11: Weighted data for AIAN students who have tried cigarette smoking from
NYTS 2014. Grade indicates the current grade when a student was in the survey.

Figure 5.4 plots the estimated proportions of the weighted data in Table 5.11.

The estimated proportions p̂(k)’s in (B.1) using the weighted counts are given in

Table 5.12.

Grade 6 7 8 9 10 11 12 Total
p̂ 0.072 0.047 0.125 0.153 0.323 0.143 0.138 1

Table 5.12: Estimated proportions using weighted data in Table 5.11 for AIAN
students who have tried cigarette smoking from NYTS 2014. Grade indicates the
current grade when a student was in the survey

Following the steps shown in Section 5.2.1, the test statistics of the first order

and second order corrected tests are

X2
C = X2

S = 16.47,
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Figure 5.4: Estimated proportions of 7 grades in Table 5.10.

which results in the p-values of 0.011 for both of the tests.

In addition, for the proposed test W , it is found that

q̂ = 3 and W = 6.62

which results in a p-value of 0.0017.

For the proposed test q̂α, with a0.012 = 6.44 and a0.011 = 6.58, the test statistics
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are

q̂0.012 = 1 and q̂0.011 = 0,

equivalently, the p-value is about 0.012.

In this example, the null hypothesis (5.4) is rejected by all four tests at level

α = 0.05. The p-value of the proposed test q̂α is close to those of the first order and

second order corrected tests. But the proposed test W has a smaller p-value than

the other three tests. Only our proposed test W can reject the null hypothesis at

level α = 0.01.

5.2.3 Severity Differences Among Asian Students Smokers

In this example, we focus on Asian students who smoked during the past 30 days

in the survey. 25 out of 973 Asian students reported that they smoked in the past

30 days. In addition, they also reported the number of cigarettes smoked per day,

which was categorized into 5 levels, < 1/day (light smokers), 1/day (moderately light

smokers), 2−5/day (medium smokers), 6−10/day (moderately heavy smokers), and

≥ 11/day (heavy smokers).

We are interested in examining the differences of smoking severity among these

students. The null hypothesis is

H0 : p(1) = · · · = p(5) =
1

5
. (5.5)

The observed and the weighted counts of the 5 levels are shown in Table 5.13 and

5.14.

The estimated proportions of the weighted counts in Table 5.14 are listed in Table

5.15 and plotted in Figure 5.5.
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Number Group < 1 1 2-5 6-10 ≥ 11 Total
Counts 7 6 8 2 2 25

Table 5.13: Observed data for Asian students who reported smoking during the past
30 days of the survey from NYTS 2014. Number group indicates the number of
cigarettes smoked per day.

Number Group < 1 1 2-5 Total
Counts 6840.261 5818.418 6595.912

Number Group 6-10 ≥ 11
Counts 1391.909 1907.703 22554.2

Table 5.14: Weighted data for Asian students who reported smoking during the past
30 days of the survey from NYTS 2014. Number group indicates the number of
cigarettes smoked per day.

Number Group < 1 1 2-5 6-10 ≥ 11 Total
p̂(k) 0.303 0.258 0.292 0.062 0.085 1

Table 5.15: Estimated proportions using weighted data in Table 5.14 for Asian stu-
dents who reported smoking during the past 30 days of the survey from NYTS 2014.
Number group indicates the number of cigarettes smoked per day.

Following the steps shown in Section 5.2.1, the test statistics of the first order

and second order corrected tests are

X2
C = X2

S = 5.62,

with p-values 0.23 for both tests.

For the proposed test W , it is found that

q̂ = 1, W = 2.99, and p− value = 0.039.
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Figure 5.5: Estimated proportions of the 5 smoking severity levels using weighted
data in Table 5.14.

For the proposed test q̂α, we have

q̂0.05 = 1 and p− value = 0.033.

In this example, the first order and second order corrected tests fail to reject the

null hypothesis (5.5) at level of significance 0.05, though it was observed that the

proportions of Asia students who smoked 6 − 10 and ≥ 11 cigarettes per day were
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low. On the other hand, both of our proposed test W and q̂α are able to reject

the null hypothesis at level 0.05, indicating that the numbers of light, moderately

light, medium, moderately heavy, and heavy smokers are different among the Asian

students (grades 6-12) in the U.S., which is consistent to what was observed.
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Conclusion

Categorical data analysis is widely used in sociological, behavioral, economical, and

medical research studies. For categorical data, one of the interests is to measure the

“goodness of fit” between the observed frequencies and the frequencies under the

null hypothesis. Pearson’s chi-squared test is one of the most commonly used tools

for such purpose. It is noticed that simple random sampling may not be suitable for

complicated practical situations. Therefore, sampling designs, such as stratification

and clustering, are often used to accommodate the needs of data collection that

fits the real situations. A complex survey is considered as a combination of several

sampling designs, where observations are usually correlated. Existing GOF tests,

which require the assumption of independence, no longer work for the complex survey

data. Rao and Scott (1981, 1984) proposed the first order and second order corrected

tests for use in complex categorical data. Rao and Thomas (1988) reviewed 25 GOF

tests for use in complex surveys. They found that the Rao-Scott approaches are

efficient.

Another problem of the classical GOF tests is that they may not provide enough

statistical power in order to detect differences among categories, especially when the
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probabilities of categories vary slowly with respect to the null hypothesis (3.1) and

the sample size is relatively small. Eubank (1997) proposed a Neyman smooth-type

GOF tests by incorporating the order selection. Eubank’s proposed tests show im-

provements over classical GOF tests in detecting some types of slow-varying alterna-

tives. However, Eubank’s tests are also only applied to data under the independence

assumption.

As we have discussed before, in complex surveys, data are often correlated. For

example, we are interviewing husband and wife for their opinion of legalized abortion.

The couple usually will have the same opinion and therefore, they are perfectly

correlated. Further, as we can see from Figure 5.1, the rate at which legalized

abortion is supported vary slowly among the different age groups in nonwhite families.

Such data will require new methods for detecting slow varying differences among the

groups with correlated responses.

In our research, we have proposed two Neyman smooth-type GOF tests for use in

complex surveys. These methods show improved statistical powers, compared with

classical methods, especially when the sample size is relatively small and the differ-

ences of the estimated proportions of categories are not great. In the procedures of

our approaches, chi-squared type test statistic is decomposed into ordered orthogonal

components with the first few terms carrying the principal information of the data.

Then, order selection is utilized to choose the dominant components such that more

degrees of freedom are released. Hence, our proposed tests are more sensitive to the

cases of slow varying probabilities. Simulation results reveal that the test using q̂α is

the most powerful test for the data with slow varying probabilities compared to some

existing methods. The proposed test W is a stable test, which outperforms the first

order and second order tests when the probabilities are slow varying, or is as good

as the first order and second order corrected tests when the probabilities are varying

greatly. We also investigated the asymptotic properties of the proposed estimators in
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stratified sampling or unequal probability sampling with one observation from each

psu. First, the asymptotic distribution of the test statistics (bj’s and X2
q ) are found.

Second, asymptotic properties of q̂ are derived. Finally, asymptotic properties of q̂α

are examined so that the test using order directly at level α is developed. Several

real-life data examples are used to illustrate our proposed methods.

Our research can be applied to broader areas, where the GOF tests of H0 :

p(1) = · · · = p(k) = 1
K

for correlated observations are of interest. Our methods are

potentially more powerful than the existing methods, which means that our methods

need smaller sample sizes to reach similar power than the existing methods. This is

important in many real applications. For example, in clinical trials, the experimental

unit and the experiment itself may be too expensive to increase the sample size.

Our proposed methods in this dissertation can be considered as the first order

correction to the tests proposed by Eubank (1997). One of the future research

directions is to integrate the second order corrected test with the Neyman smooth-

type GOF test. We are also interested in working on the general cases with the

null hypothesis H0 : p(k) = p0(k), where p0(k) is an arbitrary probability. Another

future research is to derive the asymptotic properties of the estimators in cluster

sampling. Since our proposed methods can be implemented in any programming

language, we plan to develop an R package first, and then SAS macro and Python

package for use by the readers. We also plan to extend our research to assess GOF

of multi-dimensional multinomial data.

The idea of the Fourier transformation and order selection can also be extended

to test for no effect in nonparametric regression in survey data. By introducing the

basis function, the estimator of the regression parameters is the weighted least square

estimator with the tuning parameter λ, and weight matrix W, where λ = 0 means

no effect. A similar procedure in this dissertation can be applied to choose the tuning

parameter λ to complete the test.
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Probabilities Generated by

Alternatives (4.3), (4.4) and (4.5)
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Figure A.1: Probabilities in simulation studies generated by alternative (4.3) for β
range from 0 to 0.14 with step 0.01. Probabilities vary greater when beta increases.
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Figure A.2: Probabilities in simulation studies generated by alternative (4.4) for β
range from 0 to 0.1 with step 0.01 when j = 1. Probabilities vary greater when beta
increases.
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Figure A.3: Probabilities in simulation studies generated by alternative (4.4) for β
range from 0 to 0.1 with step 0.01 when j = 2. Probabilities vary greater when beta
increases.
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Figure A.4: Probabilities in simulation studies generated by alternative (4.4) for β
range from 0 to 0.1 with step 0.01 when j = 4. Probabilities vary greater when beta
increases.
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Figure A.5: Probabilities in simulation studies generated by alternative (4.4) for β
range from 0 to 0.1 with step 0.01 when j = 9. Probabilities vary greater when beta
increases.
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Figure A.6: Probabilities in simulation studies generated by alternative (4.5) for β
range from 0.6 to 1.4 with step 0.1. Maximum probabilities are p(1) and p(10) when
β < 1, and maximum probabilities are p(5) and p(6) when β > 1.
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Appendix B

Estimators from Contingency

Tables in Stratified Sampling

In this appendix, we discuss the properties of the estimators from contingency ta-

bles under stratified sampling. We will derive the expected values, variance, and

covariance of the estimators.

Consider a multinomial data with K categories and n observations. Suppose the

hypothesis of interest is the same as (2.2)

H0 : p(k) = p0(k), for k = 1, · · · , K.

Define a series of uncorrelated random variables as follows

yj(k) =





1 if unit j in cell k is selected,

0 otherwise,
for j = 1, · · · , n.

Let wj denote the sampling weight of the jth observation, for j = 1, · · · , n. The
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estimated proportion for kth category is

p̂(k) =

∑n
j=1wjyj(k)∑n

j=1wj
, for k = 1, · · · , K, (B.1)

a weighted average of the observations. It can be proved that p̂(k) is a consistent

estimator of the unknown parameter p(k). We can show that

E(p̂(k)) = E

(∑n
j=1wjyj(k)∑n

j=1wj

)
=

∑n
j=1wjE[yj(k)]∑n

j=1wj

=
1∑n

j=1wj

(
n∑

j=1

wjp(k)

)

= p(k)

The variance of p̂(k) can be derived as follows,

var(p̂(k)) = var

(∑n
j=1wjyj(k)∑n

j=1wj

)
=

1
(∑n

j=1wj

)2var

(
n∑

j=1

wjyj(k)

)

=
1

(∑n
j=1wj

)2

[
n∑

j=1

w2
jvar(yj(k))

]

=
1

(∑n
j=1wj

)2

[
n∑

j=1

w2
jp(k)(1− p(k))

]

=

∑n
j=1w

2
j(∑n

j=1wj

)2p(k)(1− p(k)). (B.2)

The reciprocal of the coefficient of equation (B.2) is Kish’s approximate formula for

computing effective sample size, which was originally defined in Kish (1965). Denote

the Kish’s effective sample size as

ñ =

(∑n
j=1wj

)2
∑n

j=1w
2
j

, (B.3)
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The variance of the weighted estimated proportion is

var(p̂(k)) =

∑n
j=1w

2
j(∑n

j=1wj

)2p(k)(1− p(k)) =
p(k)(1− p(k))

ñ
. (B.4)

In stratified sampling, Kish’s effective sample size ñ is usually different from the ob-

served sample size n, so the variances of the weighted and unweighted estimated pro-

portions are usually different. In SRS, it is trivial that ñ = n and thus, var(p̂(k)) =

var(p̃(k)), for k = 1, · · · , K.

Next, we derive the covariance between p̂(k) and p̂(l), for all k 6= l and k, l =

1, · · · , K.

cov(p̂(k), p̂(l))

= cov

(∑n
j=1wjyj(k)∑n

j=1wj
,

∑n
j=1wjyj(l)∑n

j=1wj

)

=
1

(∑n
j=1wj

)2 cov

(
n∑

j=1

wjyj(k),
n∑

j=1

wjyj(l)

)

=
1

(∑n
j=1wj

)2 [cov(w1y1(k), w1y1(l)) + · · ·+ cov(w1y1(k), wnyn(l))

+cov(w2y2(k), w1y1(l)) + · · ·+ cov(w2y2(k), wnyn(l))

+ · · ·

+cov(wnyn(k), w1y1(l)) + · · ·+ wncov(yn(k), wnyn(l))]

Notice that observations are uncorrelated, so their covariance is 0. Hence,

cov(p̂(k), p̂(l)) =
1

(∑n
j=1wj

)2

[
n∑

j=1

w2
j cov(yj(k), yj(l))

]
.
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Similarly, since the jth observation can not fall into two different categories simul-

taneously, E (yj(k)yj(l)) = 0 holds. As a result,

cov(yj(k), yj(l)) = E [yj(k)yj(l)]− E [yj(k)] E [yj(l)]

= −E [yj(k)] E [yj(l)]

= −p(k)p(l).

Consequently, the covariance between p̂(k) and p̂(l) is

cov(p̂(k), p̂(l)) =
1

(∑n
j=1wj

)2

[
−

n∑

j=1

w2
jp(k)p(l)

]

=

∑n
j=1w

2
j(∑n

j=1wj

)2 (−p(k)p(l))

= −p(k)p(l)

ñ
, for k 6= l,

where ñ is Kish’s effective sample size defined in (B.3).

Let

V =




p(1)(1− p(1)) −p(1)p(2) · · · −p(1)p(K − 1)

−p(2)p(1) p(2)(1− p(2)) · · · −p(2)p(K − 1)
...

...
. . .

...

−p(K − 1)p(1) −p(K − 1)p(2) · · · p(K − 1)(1− p(K − 1))




(B.5)

be a (K − 1) × (K − 1) matrix. According to the variance and covariance of the

estimated proportions of multinomial data in complex surveys, V/ñ is the covariance

matrix of p̂. If we denote V̂ to be the estimator of V, then V̂/ñ is the estimator of

the covariance matrix p̂.
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