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Abstract

This report provides a comprehensive treatment of the time-to-graduation (TTG) problem.
The goal of this problem is to make predictions about the time it takes for a student to gradu-
ate from a particular institution. We develop a complete mathematical description of the TTG
problem which includes data synthesis models that reveal details of the problem that are often
hidden or overlooked in the literature. This report explores two vastly different approaches to
this problem, including detailed algorithmic descriptions and practical examples where specific
solution methods are applied to both synthetic data and real UNM student data. The first
approach is based on survival analysis methods which are the dominant approach in the educa-
tional literature. While these methods might appear to be well matched to the TTG problem,
their blind application often overlooks important aspects of this problem. One goal of this re-
port is to identify some of these aspects and describe modifications to accommodate them. The
second approach is based on semi-supervised learning, a type of machine learning that builds
models using both labeled and unlabeled data. In particular we introduce a specially designed
semi-supervised likelihood function tailored to the TTG problem, and then apply the maximum
likelihood (ML) method to build the model. We derive an Expectation-Maximization (EM)
algorithm to carry out this optimization. Finally, the application of these methods to UNM
data reveals numerous important characteristics of the time-to-graduation for UNM students.

Keywords: graduation and dropout times, survival analysis, semi-supervised learning
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1 Introduction

The goal of the time-to-graduation (TTG) problem is to make predictions about the time it takes
for a student to graduate from a particular institution. This report explores two vastly different
approaches to this problem. The first approach is based on survival analysis methods. Survival
analysis is a type of longitudinal data analysis where the goal is to make predictions about the time
at which a particular event is likely to occur. A classic example is a clinical trial where the event
of interest is death, and the goal is to make predictions about the survival time (i.e. time-to-death)
for subjects under different procedures/treatments/drugs (hence the name survival analysis). At
first glance it would appear that survival analysis is well matched to the TTG problem. Indeed,
the literature contains many examples where survival analysis has been applied to graduation and
retention problems in education (e.g. see Appendix A). However, blind application of survival
analysis methods often overlooks important aspects of the TTG problem. One goal of this report is
to identify some of these aspects and describe modifications to accommodate them. Some of these
modifications were introduced elsewhere (e.g. see [23]), while others are original contributions. A
brief literature review of survival analysis and its application to educational data analysis can be
found in Appendix A.

The second approach that we explore is based on semi-supervised learning, which is a machine
learning method that exploits two types of data samples that are generally referred to as labeled
and unlabeled. There are numerous approaches to semi-supervised learning. Our approach here is
to build a probability model using the maximum-likelihood (ML) method with a specially designed
semi-supervised likelihood function that is tailored to the unique type of “unlabeled” data found in
the TTG problem. To carry out the likelihood optimization we derive an Expectation-Maximization
(EM) algorithm.

This report is organized as follows. We develop the full-blown TTG problem one step at a time,
starting with the simplest non-trivial version and adding real world attributes as we go. With each
version we provide the following.

1. A complete mathematical description of the problem.

2. A synthesis method which provides a way to generate synthetic data, and sometimes reveals
details of the problem that are often hidden or overlooked in the literature.

3. A simple survival analysis solution method that can be implemented with minimal effort.

4. An example (or examples) where the survival analysis solution method is applied to real
and/or synthetic data.

In the end there are a total of 6 versions of the TTG problem, where each version is slightly
more complex than the previous. Once we have developed the full-blown TTG problem and a
corresponding survival analysis solution, we develop the semi-supervised approach. But before we
start all of this development we first discuss the ways time will be treated in this report and provide
two different definitions of event time.

2 Event Time Definitions

All times in this report are specified in units of semesters. In addition we assume two semesters per
year. We accommodate summer semesters by grouping them with the previous spring semester,
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unless the summer semester corresponds to the student’s very first semester in which case it is
grouped with the subsequent fall semester.

This report makes reference to two types of times: absolute and relative. Absolute times corre-
spond to calendar times. For example Fall 2015 and Spring 2020 are examples of absolute times.
Absolute times may be specified in their natural form, e.g. Fall 2015 and Spring 2020, or in nu-
merical form with an arbitrary starting point. For example if Fall 2010 is declared to be absolute
semester 1 then Fall 2015 would be absolute semester 9. Relative times are numerical values com-
puted relative to a student’s starting semester. For example, suppose Fall 2015 is the starting
semester for student A and Fall 2016 is the starting semester for student B. Then Spring 2017 is
relative semester number 4 for student A and 2 for student B. The event times that we analyze in
this report are all relative times, and because of their ubiquity we refer to them simply as “times”
without the qualifier “relative”. On the other hand, absolute times will be referred to either in
their natural form, e.g. Fall 2015, or by using the qualifier “absolute”.

We require event times to correspond to a semester in which the student was enrolled, i.e. we
deem it impossible to experience an event (grad or drop) at the end of a semester where the student
was not enrolled. With this there are two obvious ways to quantify the event time:

1. NSS = total number of semesters from the absolute start semester to the absolute event
semester, and

2. NSE = number of semesters enrolled from the absolute start semester to the absolute event
semester.

The relation NSE ≤ NSS holds because students may not enroll in every semester. There are
several factors to consider when choosing one of these definitions [23].

1. If we are interested in total cost of education, university planning for financial aid, support
services, teaching loads, housing demand, etc. then NSE is more appropriate.

2. If we want to examine the wall clock time to a degree (e.g. to project flows of new students
into the job market) then NSS is more appropriate.

3. The NSS option produces event time probability estimates that are consistent with the stan-
dard definition of graduation and retention rates.

4. If we want to predict future enrollments using the method described in Section 9 then the
event time must be NSS.

5. From a technical perspective we will see that NSS leads to a simpler data synthesis model.

Much of the development in this report is the same regardless of which definition we choose, but
when the development differs due to the event time definition we clearly highlight the differences.

3 TTG Version 1

It turns out that if we wish to make accurate predictions about the time-to-graduate then we must
include dropout events in our analysis. Furthermore, dropout statistics are just as important as
graduation statistics when it comes to monitoring student progress. Thus, in the TTG problem
our goal is to make predictions about both the event type, i.e. grad or drop, and the time it takes
to experience the event. Eventually we will want to know how various student attributes, such as
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gender, ethnicity, High School GPA, and financial aid influence these predictions, i.e. we will want
to add covariates to our model. But for now we omit covariates and seek only to make predictions
about the event type and event time for the general student population. To this end we model the
(event time, event type) tuple as a random variable where

• (Te, B) is the (event time, event type) random variable, and (te, b) denotes a specific realization
(i.e. a sample) of the random variable,

• the event time te ∈ {1, 2, ...,Te} = T is a positive integer that represents the semester number
at which an event occurs,

• the event type b ∈ {G,D} = B is a categorical variable where b = G represents the grad event,
b = D represents the drop event, and

• PTe,B is the probability distribution on T ×B that characterizes the random variable (Te, B).

Note that PTe,B is a discrete probability distribution that takes only 2Te distinct values. The joint
distribution can be decomposed as

PTe,B = PTe|BPB

We will use the short-hand notation
PTe|b = PTe|B=b

for the distribution given a specific event type b. A more detailed description of the notational
conventions used for probability functions in this report can be found in Appendix B.

Next we define the specific predictions we want to make. Numerous possibilities are considered
in the list below.

1. Classification: One goal might be to predict the most likely (event time, event type) value.
The discrete nature of PTe,B means that this can be cast as a standard multi-class classification
problem where the number of classes is 2Te. However, this prediction has limited utility, since
the most likely graduation and drop semesters for the general population are known to be 8
and 2 (or 10 and 2), and this knowledge provides limited insight into the TTG process. Even
when we add covariates to allow different (event time, event type) predictions for students
with different characteristics, knowing the most likely (event time, event type) often has
limited utility. This is partly because there are often several (event time, event type) values
with large (and nearly equal) probabilities, so that the most likely (event time, event type)
value is often a poor prediction, i.e. it is like knowing the most likely class in a multi-class
problem that has a very high classification error rate so that predicting the most likely class
often leads to an incorrect prediction. Knowing the (event time, event type) probabilities
themselves, instead of just knowing which is largest, provides much more useful information
to the end user.

2. Probability: In this case we want to estimate the (event time, event type) probabilities
as mentioned above, i.e. we want to estimate the probability function PTe,B. This means
estimating the probability of both events, grad and drop, at each semester t ∈ T . This
function provides complete statistical knowledge of the random variable (Te, B), and provides
the end user with a useful characterization of student behavior. An example of PTe,B for
UNM FTFT fall cohorts 2013-2017 is shown below1.

1Note that even though these are discrete-valued probability functions the plots in this report connect adjacent
probability values with a line to help the reader visualize the probability value trends.
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This plot confirms that the most likely graduation semester is 8 and the most likely drop
semester is 2. But it also shows other semesters where these events are likely, and more
generally provides a complete assessment of the grad and drop probabilities.

3. Cessation: In this case we want to estimate the probability that a student will experience
one of the events (grad or drop) on or before the t-th semester, i.e. we want to estimate the
cumulative probability function

C(t, b) =

t∑
t′=1

PTe,B(t′, b) (1)

This is sometimes referred to as the cumulative influence function, e.g. see [23], but we call it
the cessation function to emphasize its complementary role to the survival function described
next. For convenience we define the two cumulative distribution functions

Cgrad(t) = C(t,G) =
t∑

t′=1

PTe,B(t′,G) Cdrop(t) = C(t,D) =
t∑

t′=1

PTe,B(t′,D)

Cgrad(t) is often called the t-th semester graduation rate, and Cgrad(8) and Cgrad(12) (i.e.
the 4 and 6 year grad rates) are two of the most common measures of performance for an
education institution. Furthermore, 1 − Cdrop(t) is often called the t-th semester retention
rate, and 1−Cdrop(2) (i.e. 1 year retention) is also a common measure of performance for an
education institution. An example of Cgrad and Cdrop for UNM FTFT fall cohorts 2013-2017
is shown below
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From this plot we see that the 4, 5, and 6 year graduation rates are 32%, 47%, and 51%
respectively, and the second semester retention rate is 80% (i.e. 100(1.0−0.2)). It also shows
that in the end, 53.5% of these students will graduate (and 46.5% will drop).

4. Survival: In this case we want to estimate the probability that the student will experience
one of the events (grad or drop) on or after the t-th semester, i.e. we want to estimate the
complementary cumulative distribution function

S(t, b) =

Te∑
t′=t

PTe,B(t′, b) (2)

Once again, for convenience we define the two survival functions

Sgrad(t) =

Te∑
t′=t

PTe,B(t′,G) Sdrop(t) =

Te∑
t′=t

PTe,B(t′,D)

The survival function S(t) = Sgrad(t) + Sdrop(t) gives the probability of not graduating or
dropping until after semester t, i.e. the probability of “surviving” to semester t. This function
can be used to make predictions about future enrollments as described in Section 9. An
example of Sgrad and Sdrop for UNM FTFT fall cohorts 2013-2017 is shown below
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This plot tells us that at the completion of year 5, 15% of the students are still active and
will eventually graduate and 5% of the students are still active and will eventually drop.

5. Hazard: In this case we want to estimate the probability that a student will graduate or
drop at the t-th semester given that they have not yet graduated or dropped, i.e. we want to
estimate the so-called hazard function

h(t, b) =
PTe,B(t, b)∑Te

t′=t

∑
b∈B PTe,B(t′, b)

(3)

Once again, for convenience we define the two hazard functions

hgrad(t) =
PTe,B(t,G)∑Te

t′=t (PTe,B(t′,G) + PTe,B(t′,D))
hdrop(t) =

PTe,B(t,D)∑Te
t′=t (PTe,B(t′,G) + PTe,B(t′,D))

These functions play a dominant role in survival analysis which will be described later in
Section 4 after we introduce the notion of censoring. An example of hgrad and hdrop for UNM
FTFT fall cohorts 2013-2017 is shown below.
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These functions tell us that, for students who make it to semester 8, the probability of
graduating at semester 8 is 45% and the probability of dropping at semester 8 is 3%. The
sawtooth pattern of hgrad tells us that currently active students are much more likely to
graduate during an even semester than an odd semester. The rising trend in hdrop in later
semesters tells us that currently active students are more likely to drop the longer they remain
in school.

Note that the cessation, survival, and hazard functions are all defined in terms of the probability
function, so that once we have PTe,B the other functions can be computed directly. It turns out
that the reverse is also true, i.e. the probability function can be derived from each of the other
functions. This is trivial in the case of the cessation and survival functions, and in Section 4.3 we
show how to derive the probability function from the hazard function. Consequently, if any one of
these functions is known (or estimated) then the others can be determined (or estimated) using a
straightforward (closed form) computation.

All of the functions above have some utility for the end user, except possibly classification.
However, the cessation function may provide the type of information most often sought by the end
user. The formal problem statement for TTG Version 1 is as follows.
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TTG-V1: Given a collection DN = ((te1 , b1), (te2 , b2), ..., (teN , bN )) of N iid samples from PTe,B
that represent event times and event types for students from a particular institution, estimate the
prediction functions (hazard, cessation, survival, and probability) for the institution.

Remark 1. It is important to emphasize that in this report our goal is to produce one or more
of the prediction functions: probability, cessation, survival, and hazard. We call these prediction
functions because we plan to use them to make predictions about future students, or about the
future of current students that have not yet finished. Furthermore, this will continue to be our goal
when we introduce covariates to model student attributes, i.e. we will seek to make predictions that
depend on student attributes. In contrast, traditional survival analysis is often more concerned
with the problem of determining which student attributes have the most influence on the time-
to-graduation (or which attributes are superfluous). This type of analysis is often referred to
as factor analysis, analysis of covariance, feature selection, or sensitivity analysis. In this type of
analysis the parameterization of the prediction functions is often more important than the prediction
functions themselves, i.e. the analysis is concerned more with the parameter estimates than the
function estimates. For example, this is overtly clear in the traditional survival analysis development
of hazard functions for time-varying covariates where the hazard functions themselves are not
time-varying and therefore cannot be used to make future predictions2, but the hazard function
coefficients are used to assess the influence of student attributes.

3.1 A Simple Nonparametric Estimator for TTG-V1

As stated in the TTG-V1 problem above, let DN = ((te1 , b1), (te2 , b2), ..., (teN , bN )) be a collection
of N iid samples from PTe,B. Then a simple non-parametric estimate of PTe,B can be formed as
follows

P̂Te,B(t, b) =
n(t, b)

N
, ∀(t, b) ∈ T × B (4)

where
n(t, b) = number of samples from DN where (tei , bi) = (t, b)

This estimate is unbiased, consistent, and reliably accurate when N is sufficiently large. Estimates
of the other prediction functions can be obtained by substituting P̂Te,B for PTe,B into (1), (2), and
(3).

Example 1. Consider the UNM FTFT cohort that started in the Fall of 2006. The total number
of students in this cohort is 3026. A record of their grad/drop status is kept in a UNM data table
for 10 years (20 semesters) and is shown below.

ngrad: 0 0 1 0 2 12 36 330 338 399 108 156 59 55 34 34 28 30 7 10

ndrop: 257 291 140 146 73 71 42 46 39 37 34 33 17 33 17 19 13 15 10 54

semester: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Note that the ndrop value in the last semester is suspiciously large, probably because some of
these students have not yet dropped or graduated. That is, some of them remain active after 20
semesters, but the UNM table fails to keep track of their enrollment beyond 20 semesters. Future
sections of this report provide mechanisms to correct for this phenomenon, but for this example we

2That is, a static hazard function cannot be used to predict the time-varying behavior of an incoming student.
Instead a time-varying function, such as a Markov model, is required to make such predictions.
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accept the data at face value. The probability estimate in (4) can be computed directly from the
data table. For example the estimate of the probability of graduating at semester 8 is

P̂Te,B(8,G) =
330

3026
≈ .11

By first estimating the complete probability function, and then substituting these estimates into
(1)-(3) we obtain the estimates of probability, cessation, survival and hazard functions shown below.
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Remark 2. In addition to producing estimates of the probability, cessation, survival, and hazard
functions it is important to quantify the accuracy of these estimates. For example the accuracy
of the estimate in (4) might be obtained as follows. Equation (4) produces 2Te estimates, one for
each distinct value of (t, b). These estimates n(t, b)/N are the sample means from N trials of a
multinomial random variable with 2Te distinct values. Thus the true means, i.e. the true values
of PTe,B(t, b), are contained within intervals [Lα(t, b), Uα(t, b)] with some confidence 1 − α, where
Lα(t, b) and Uα(t, b) are derived using the standard confidence interval analysis for multinomial
distributions, e.g. see [18]. The accuracy of the estimates P̂Te,B are then determined by the size
of these confidence intervals [Lα(t, b), Uα(t, b)]. To determine the accuracy of the other function
estimates we first determine the distribution of the random variables obtained by passing the
multinomial random variables through the computations used to determined the other function
estimates. Then we apply a standard confidence interval analysis based on these distributions.
Many of the function estimates developed later in this report also take on a simple sample mean
form like (4), and so their accuracy analysis will follow a very similar path. The details of this
analysis is beyond the scope of this report.
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4 TTG Version 2 (Censoring)

One of the unique and distinguishing characteristics of the time-to-graduation problem is that a
complete set of ground truth samples for a cohort of students is not available until all the students
have either graduated or dropped, i.e. several years after they start. The problem with waiting long
enough (or going back far enough in historic data) to get a complete set of ground truth samples is
that the statistics may have changed during this time, so that the results obtained with this data
may not be representative of current student behavior (and therefore have little predictive value).
On the other hand, the problem with using more recent student data is that ground truth is not
available for all the students, i.e. many students have not yet graduated or dropped. Nevertheless,
once a student has reached semester k we know that their NSS event time is greater than or equal
to k, and this is useful information regarding the timing of events. The question is how to use
this information to produce reliable estimates of the prediction functions. It is important to note
that simply discarding the students that have not yet experienced an event, and then producing
function estimates using only the remaining student data (e.g. by employing the estimation method
in Section 3) produces biased results that are both inaccurate and unreliable.

Consider the students that have not yet graduated or dropped. The number of semesters they
have completed so far is called the censor time3. Note that this is either an NSS time or NSE time
depending on the type of event time chosen. To incorporate censoring, the data samples now take
the form (t, c, b) where c ∈ {0, 1} is a censor flag defined as follows.

c =

{
0, t = te is the actual (uncensored) event time
1, t = tc is the censor time (i.e. number of semesters so far)

(5)

Note that if c = 1 then the event type value b has no meaning. Following the traditional survival
analysis approach we let Tc be the censor time random variable taking values tc ∈ {1, 2, ...,Te− 1}.
Then we define PTe,Tc,B to be the joint (event time, censor time, event type) distribution model.
With this we assume that the observed samples (t, c, b) are formed according to the sample plan
below.

Sample Plan 1: First generate N (unobserved) iid samples of the form (te, tc, be) according
to the distribution PTe,Tc,B. Then compute the observed samples (t, c, b) using

(t, c, b) =

{
(te, 0, be), te ≤ tc
(tc, 1, be), te > tc

(6)

Note that the observed time satisfies t = min(te, tc). Also, if c = 1 then the true value of the
event type b is not observed in practice even though it is produced as a part of this synthesis
process.

Remark 3. Note that the censor time tc cannot exceed Te − 1, since Te is the last possible event
time and tc = Te would imply a true event time larger than Te. Note also that in practice the true
value of Te is generally unknown, but finite. Indeed, most universities allow students to remain
active for a very long time. For example, in some cases students remain active for such a long
time that they may be forced to repeat early classes that have become outdated, and this kind of
behavior can extend the true value of Te substantially. Such cases make it difficult to know the true

3The true event time is viewed as having been censored.
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value of Te, even though it is obviously finite because all students will eventually become inactive,
through death if nothing else.

The formal problem statement for the TTG problem with censored data is as follows.

TTG-V2: Let DN = ((t1, c1, b1), (t2, c2, b2), ..., (tN , cN , bN )) be a collection of N samples that
represent (time, censor flag, event type) values for students from a particular institution. As-
sume that these samples are generated according to Sample Plan 1 with an unknown distribution
PTe,Tc,B. Given DN the goal is to estimate the prediction functions (hazard, cessation, survival,
and probability) for the institution.

Before developing a solution to this problem it is worth mentioning some simple, but flawed,
methods.

1. The first flawed method simply discards the censored samples and estimates PTe,B using only
the uncensored samples.

2. The second flawed method assumes that the event type is either known or can be reliably
estimated for every censored sample. It then treats the censor times as true event times and
estimates PTe,B using the full set of samples.

In both cases the modified data set contains only (event time, event type) samples so that the
method described in Section 3.1 could be used to estimate PTe,B. Both of these methods produce
biased estimates that artificially inflate the probabilities of smaller event times.

Successful solution methods must include both censored and uncensored samples, and must be
able to extract the relevant information from them in an unbiased way. This report describes two
vastly different approaches that are capable of producing such solutions.

1. independent censoring: If censoring is independent then we can prove that the observed
hazard function (defined below) is equal to the true hazard function, and since an unbiased
estimate of the observed hazard function can be obtained directly from the observed data
DN , an unbiased estimate of the true hazard function follows. Definitions of independent
censoring and the observed hazard function are provided in Section 4.1, and a method for
producing an unbiased estimate of the observed hazard function is provided in Section 4.2.
Once we have (an estimate of) the hazard function the other prediction functions (probability,
cessation, and survival) can be obtained using simple closed form computations (see Section
4.2). The equivalence of the observed and true hazard functions under the independent
censoring assumption is a very powerful result that is heavily exploited in survival analysis.
Indeed, the exploitation of this result by employing methods that estimate the observed
hazard function dominates virtually all traditional methods of survival analysis. In fact this
approach is so well developed that it is often used even when censoring cannot be shown to be
independent. This helps explain the dominance of the hazard function in the survival analysis
literature.

2. semi-supervised learning: This approach produces an estimate of PTe,B using the max-
imum likelihood (ML) method with a so-called semi-supervised likelihood function. This
approach does not require independent censoring, but typically does require a parametric
model of PTe,B

4. The censored data samples represent a type of missing information that can

4It is generally believed that the ML method can only be applied when the distribution model is parametric, and
while this is not strictly true, application of the ML method with a nonparametric model is often problematic.
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be inferred through the use of the Expectation-Maximization (EM) algorithm to optimize
the likelihood function. Indeed, in addition to estimating the parameters of PTe,B, the EM
algorithm also estimates the probability of each event type (grad and drop) at each event
time for each censored data sample. An example of this approach is developed in detail in
Section 10.

This report starts by developing solution methods using the first approach that relies on in-
dependent censoring. To this end, the next section (Section 4.1) provides a formal definition of
independent censoring, and explains why this assumption enables the use of censored (plus uncen-
sored) data samples to estimate the hazard function. Then, in Section 4.2, we show how to exploit
the independent censoring assumption to develop a simple hazard estimation algorithm. We also
show how to derive the other prediction functions from the hazard. In Section 4.4 we take a closer
look at the censoring mechanism in TTG problem and conclude that it does not conform to the
traditional probabilistic censoring model assumed in the survival analysis literature. Instead the
TTG problem exhibits a type of censoring that we call staged censoring, which satisfies the inde-
pendent censoring assumption, but admits an alternative synthesis model which plays an important
role in the development of advanced estimation algorithms needed to overcome some of the other
nontraditional aspects of the TTG problem described later in this report. The development of
advanced estimation algorithms begins in Section 5.

4.1 Independent Censoring

Independent censoring is vaguely defined in the literature. Indeed, excerpts from the literature are
more likely to describe consequences of the definition rather than provide the definition itself. Most
of these descriptions rely on the notion of at-risk samples which are defined as follows. A sample
(t, c, b) is at-risk at time t′ if t ≥ t′. Simply put, an at-risk student is a student that is still active.
Three of the better descriptions of independent censoring from the literature are provided below.

• (Singer and Willett [24]) “Independent censoring is the assumption that censoring is unrelated
to event occurrence. Under independent censoring, each year’s risk set is representative of all
students who would be in school in that year; censored individuals do not differ from those
who remain. If censoring is not independent, individuals in the risk set differ systematically
from censored individuals, and the generalization may be incorrect.”

• (John Fox [11]) “By considering only those subjects that are at-risk, unbiased estimates of
survival times, survival probabilities, etc., can be made, as long as those at-risk are repre-
sentative of all subjects. This implies that the censoring mechanism is unrelated to survival
time. That is, the distribution of survival times of subjects who are censored at a particular
time is no different from that of subjects who are still a-risk at this time. When this is the
case, censoring is said to be noninformative (i.e. about survival time).”

• (Scott and Kennedy [23]) “We define the ignorability condition for censoring as the condition
that these two probabilities are the same

Pr(event k at t)

Pr(nothing before t)
=

Pr(k at t and not censored by t)

Pr(nothing before t and not censored by t)

If a particular censoring event satisfies the above, we say that it is noninformative with respect
to event k. One of the strengths of working with hazard estimates is that, if the ignorability
conditions are satisfied, we can ignore censoring, which we define as (1) using data form a
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censored subject until the censoring occurs, and then allowing that subject to disappear from
subsequent periods, and (2) interpreting hazard estimates in each period just as we would if
censoring never occurred.”(In this description k is an event type, i.e. in the TTG problem
k = b.)

These descriptions highlight the most heavily exploited consequence of the independence assump-
tion: namely that the collection of observed at-risk samples (t, c, b) at time t′ are representative of
the collection of all unobserved samples (te, b) : te ≥ t′. This implies that if the (hazard) estimates
at time t′ are based (exclusively) on the observed at-risk samples at time t′ then the censoring
mechanism can be ignored because it is irrelevant. Thus, the independence assumption is often
referred to as the ignorability condition or the noninformative assumption.

(Scott and Kennedy [23]) attempt to provide additional insight into the censoring mechanism by
describing the following data synthesis process (note that K is the number of event types, so that
in the TTG problem K = |B| = 2).

• (Scott and Kennedy [23]) “A common description of such a noninformative censoring process
is that it is independent of events. If we articulate how we imagine our data to be generated,
we can make this criterion precise. One possibility is the following. Imagine that, in each
period, two experiments take place: a (K+1)-tomous experiment deciding which event occurs
to each subject, and a dichotomous experiment determining whether or not the student is
censored (K = number of event types). The noncensored students who receive event 0 go to
the next stage, where the two experiments occur again, independent of earlier stages. Under
this data-generating mechanism, a criterion for censoring to be ignorable is that the censoring
experiment and the event experiment are independent at every stage.”

None of the descriptions above provide a definition of the independence assumption, but the
definition we provide here is quite simple.

Definition 1. Censoring is independent if

PTe,Tc,B = PTe,BPTc

i.e. the censor times are independent of the (event time, event type) values.

This definition implies that data can be synthesized according to the following sample plan.

Sample Plan 2 (independent censoring): Generate N (unobserved) iid samples of the form
(te, tc, be) where the (te, be) values are generated according to the distribution PTe,B, and the
tc values are generated according to the distribution PTc . Then compute the observed samples
(t, c, b) using

(t, c, b) =

{
(te, 0, be), te ≤ tc
(tc, 1, be), te > tc

(7)

Note that the observed time satisfies t = min(te, tc). Also, if c = 1 then the true value of the
event type b is not observed in practice even though it is produced as a part of this synthesis
process.

Appendix C shows the equivalence between Sample Plan 2 and the synthesis method described by
(Scott and Kennedy [23]) above.

Independent censoring has many consequences, but perhaps the most important is the equivalence
between the true and observed hazard functions established by the theorem below. First note that,
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by definition, the marginal distribution PTe is given by

PTe(t) =
∑
b∈B

PTe,B(t, b)

and this allows us to rewrite the hazard function in (3) as follows

h(t, b) =
PTe,B(t, b)∑Te

t′=t

∑
b∈B PTe,B(t′, b)

=
PTe,B(t, b)∑Te
t′=t PTe(t

′)

=
PTe,B(t, b)

PTe(Te ≥ t)

(8)

Also, let To = min(Te, Tc) be the observed time random variable, C be the observed censor flag
random variable, and PTo,C,B be the probability distribution of the observed samples. Then the
marginal distribution PTo is given by

PTo(t) =

1∑
c=0

∑
b∈B

PTo,C,B(t, c, b)

and the observed hazard function is defined

ho(t, b) =
PTo,C,B(t, 0, b)

PTo(To ≥ t)
(9)

The numerator represents the probability that a student experiences event b at time t and that this
event is uncensored. The denominator is the probability that a student is still active at time t and
not censored before time t.

Theorem 1. If censoring is independent then

ho = h

i.e. the true and observed hazard functions are identical.

Proof. See Appendix D.

Theorem 1 tells us that the following equality holds under the independent censoring assumption.

PTe,B(t, b)

PTe(Te ≥ t)
=
PTo,C,B(t, 0, b)

PTo(To ≥ t)

There is little doubt that (Scott and Kennedy [23]) were referring to this relationship when they
said “these two probabilities are the same” in the description above, even though their probability
functions were not clearly defined. Once again we emphasize that Theorem 1 is a consequence of
Definition 1, not the definition itself.
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4.2 The Discrete-time Kaplan-Meier (DKM) Method

Let DN = ((t1, c1, b1), (t2, c2, b2), ..., (tN , cN , bN )) be a collection of N iid samples generated accord-
ing to Sample Plan 2. If we define

n(t, c, b) = number of samples from DN where (ti, ci, bi) = (t, c, b)
nrisk(t) = number of samples from DN where ti ≥ t

(10)

then direct sample estimates of PTo,C,B(t, 0, b) and PTo(To ≥ t) are simply

P̂To,C,B(t, 0, b) =
n(t, 0, b)

N

P̂To(To ≥ t) =
nrisk(t)

N
Thus, a direct sample estimate of the observed hazard, and by Theorem 1 the true hazard, is simply

ĥ(t, b) =
n(t, 0, b)

nrisk(t)
(11)

This hazard estimate is ubiquitous in the survival analysis literature, e.g. see [1, 6, 15, 25, 23].
Specifically it has been used to analyze the TTG problem in [25, 23]. This hazard estimate is often
unnamed, but in this report we will refer to it as the discrete-time Kaplan-Meier (DKM) estimate
because of its connection to the continuous-time survival analysis method proposed and analyzed
by (Kaplan and Meier [16]) in 1958.

4.3 Hazard to Probability

As we have seen, independent censoring allows a simple, direct, and unbiased estimate of the
hazard function. But our main goal is to estimate the cessation (or survival) function. This can be
accomplished by converting the hazard function estimate into a probability function estimate, and
then substituting the probability function estimate into (1) (or (2)). To this end we now develop
an expression for the probability function in terms of the hazard function.

First we write the hazard function in (3) as follows

h(t, b) =
PTe,B(t, b)

PTe(Te ≥ t)
and then we solve for PTe,B(t, b) giving

PTe,B(t, b) = h(t, b)PTe(Te ≥ t) = h(t, b)(1− PTe(Te < t)).

Note that we have replaced PTe(Te ≥ t) by (1− PTe(Te < t)) to emphasize that the probability of
an event at time t or greater is equivalent to the probability of a non-event at all times less than
t. Next we express (1 − PTe(Te < t)) in terms of the hazard. We start by defining the aggregate
hazard function

h(t) =
∑
b∈B

h(t, b). (12)

Since h(t) is the conditioned probability of an event at time t it follows that 1−h(t) is the conditioned
probability of a non-event at time t. Thus, we can express the probability of a non-event at all
times less than t in the form of a product of conditioned non-events at times 1, 2, ..., t−1 as follows

(1− PTe(Te < t)) =
t−1∏
t́=1

(
1− h(t́)

)
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Substituting this into the expression for PTe,B(t, b) above gives

PTe,B(t, b) = h(t, b)
t−1∏
t́=1

(
1− h(t́)

)
which holds for all t > 1. At t = 1 we have the identity h(1, b) = PTe,B(1, b) which follows from the
definition of h(t, b) above and the fact that PTe(Te ≥ 1) = 1. Thus the probability function can be
expressed in terms of the hazard function as follows

PTe,B(t, b) =

{
h(t, b), t = 1

h(t, b)
∏t−1
t′=1(1− h(t′)), t > 1

(13)

Probability function estimates can now be obtained by substituting hazard function estimates
into (13). Then the cessation (or survival) function estimate can be obtained by substituting the
probability function estimate into (1) (or (2)).

4.4 Staged Censoring (independent censoring for TTG)

The data synthesis model in Sample Plan 2 above, where the censor time is modeled as an
independent random variable, is consistent with a vast majority of the survival analysis literature,
but does not adequately model the type of censoring that occurs in the TTG problem. In the
TTG problem the data consists of multiple cohorts of students, each starting at a different absolute
semester so they progress through the institution in a staged fashion as illustrated below.

Cohort 1: start semester = 1
Cohort 2: start semester = 2
Cohort 3: start semester = 3
Cohort 4: start semester = 4

1   2   3   4    5    6   7    8    9  10  11  12  13

measurement time

The measurement time corresponds to the absolute semester at which the student data is collected.
Each cohort is observed for a different length of time L, and censoring occurs for students whose
event semester is greater than the cohort observation length. This type of censoring is independent
because the cohort observation length is independent of the event semester.

The censor mechanism works a little bit differently for the NSS and NSE event times. Let the
event semester se be the semester at which the event occurs. Note that se = te for NSS, but may
differ from te for NSE. For both the NSS and NSE, a sample is censored when se > L. But their
censor times are determined differently.

NSS : tc = L
NSE : tc = number of semesters enrolled over the observation length L

Note that the NSS censor time may correspond to a semester where the student is not enrolled,
but this is okay because we know that the true NSS event time must be greater than this value5.

5Note also that the NSS censor time is deterministic. However it can be modeled probabilistically using a (trivial)
probability model

PTc(t) =

{
1, t = L
0, otherwise

where L is the cohort observation length, i.e. there will be one such probability model for each cohort.
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Thus, unlike event times, censor times do not necessarily correspond semesters where the students
are enrolled. To implement the NSE censor mechanism we must know more than just the event
semester, event time, and observation length, we must also know the student’s enrollment status
at each semester. Thus, this censor mechanism is not as simple as comparing an event time to an
independently generated censor time, and so the traditional data synthesis model in Sample Plan
2 is inadequate.

We now present a unified staged censoring synthesis model that accommodates both NSS and
NSE. Let et be a binary-valued variable that denotes a student’s enrollment status at semester t
according to

et =

{
0, not enrolled in semester t
1, enrolled in semester t

and let e = (e1, e2, ..., eTe) be the corresponding enrollment vector that represents the student’s
enrollment over all time. Now let PE,B be the probability distribution of the corresponding (en-
rollment vector, event type) random variable. Let L be the cohort observation length. The event
semester se for a student with enrollment vector e is given by

se = (largest value of t where et = 1) = max {t : et = 1} . (14)

Regardless of the type of event time, the student’s event will be censored if se > L. Furthermore,
for NSS the event and censor times are given by

te = se, tc = L (NSS) (15)

and for NSE the event and censor times are given by

te =

Te∑
t=1

et, tc =
L∑
t=1

et (NSE) (16)

With this characterization we can now present the unified staged censoring synthesis model in
Sample Plan 3 below.

Remark 4. This unified staged censoring model essentially replaces PTe,B with PE,B in the syn-
thesis process. But this does not preclude the existence of the probability model PTe,B for this
process. Indeed, the event time random variable Te is derived from the enrollment vector random
variable E = (E1, E2, ..., ETe) as follows

Te =

{
max{T : ET = 1}, NSS∑Te

T=1ET , NSE

and the corresponding probability model PTe,B is obtained by transforming PE,B through this
process. Thus, the definitions of the hazard, cessation, and survival functions are unchanged, i.e.
they continue to be defined in terms of the probability model PTe,B. The difference here is that
synthesis cannot be accomplished by simply comparing an event time to an independently generated
censor time.
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Sample Plan 3 (staged censoring):
- Let K = number student cohorts, and let κ1 ≤ κ2 ≤ ... ≤ κK be the ordered cohort labels.
- Let Lκi be the observation length of cohort κi.
- Let Nκi be the number of students in cohort κi. The values of Nκi may be determined by
drawing K iid samples from a cohort size distribution PN . If this is the case then we assume
that this distribution is independent of all other distributions.
for (each cohort κi) do

- draw Nκi iid (enrollment vector, event type) samples (e, be) from distribution PE,B

- for each e compute the event semester se = max {t : et = 1}
- for each sample, compute the (event time, censor time) values (te, tc) as follows

te = se, tc = Lκi (NSS)

te =

Te∑
t=1

et, tc =

Lκi∑
t=1

et (NSE)

- for each sample (se, te, tc, be) generate an observed sample of the form (κ, t, c, b) = (cohort
label, time value, censor flag, event type) by applying the following operation

(κ, t, c, b) =

{
(κi, te, 0, be), se ≤ Lκi
(κi, tc, 1, be), se > Lκi

end for
The total number of observed samples from all cohorts is N = Nκ1 +Nκ2 + ...+NκK and the
complete data set is denoted DN . Note that if c = 1 then the true value of the event type b
is not observed in practice even though it is produced as a part of this synthesis process.

4.5 TTG V2 Examples

This section shows two examples, one for NSS and one for NSE. These examples use synthetic
data generated according to Sample Plan 3. Because the data is synthetic the true prediction
functions are known, and this allows us to compare true and estimated functions. These examples
also introduce a visualization for TTG data called the staged data table.

4.5.1 Example with the NSS Option

In this example we generate 5 cohorts of data, each with 800 samples. This data was generated
according to Sample Plan 3 with the NSS event time. A summary of this data is presented in
the staged data table below.
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-------------------------------------------------------------

Cohort 1: nsamples 800

ngrad: 0 0 76 107 65 128 52 22 30 0

ndrop: 54 52 18 15 17 16 14 41 44 49

ncensor: 0 0 0 0 0 0 0 0 0 0

nrisk: 800 746 694 600 478 396 252 186 123 49

Cohort 2: nsamples 800

ngrad: 0 0 75 127 68 117 53 19 - -

ndrop: 66 43 19 13 14 22 11 40 - -

ncensor: 0 0 0 0 0 0 0 113 - -

nrisk: 800 734 691 597 457 375 236 172 0 0

Cohort 3: nsamples 800

ngrad: 0 0 52 139 73 139 - - - -

ndrop: 71 53 12 14 8 15 - - - -

ncensor: 0 0 0 0 0 224 - - - -

nrisk: 800 729 676 612 459 378 0 0 0 0

Cohort 4: nsamples 800

ngrad: 0 0 66 120 - - - - - -

ndrop: 57 52 13 20 - - - - - -

ncensor: 0 0 0 472 - - - - - -

nrisk: 800 743 691 612 0 0 0 0 0 0

Cohort 5: nsamples 800

ngrad: 0 0 - - - - - - - -

ndrop: 67 53 - - - - - - - -

ncensor: 0 680 - - - - - - - -

nrisk: 800 733 0 0 0 0 0 0 0 0

Semester 1 2 3 4 5 6 7 8 9 10

-------------------------------------------------------------

The tth column of the table corresponds to the tth semester of each cohort. In this example each
cohort starts 2 semesters after the previous cohort. If the first semester of Cohort 1 is assigned
the absolute semester number 1 then the absolute starting semester numbers for cohorts 1,2,3,4,5
are 1,3,5,7,9 and all cohorts are measured after absolute semester 10. The event and censor times
in the TTG analysis are expressed as relative semester numbers which correspond to the column
numbers in the table, i.e. the 3rd semester of Cohort 4 (in column 3) corresponds to absolute
semester number 9. Each cohort contains four rows of aggregate counts:

• ngrad = number of cohort students that graduate at each semester,

• ndrop = number of cohort students that drop at each semester,

• ncensor = number of censored cohort students at each semester, and

• nrisk = number of at-risk cohort students at each semester.

This table reveals numerous insights into the data.

• Cohort 1 has no censored samples because its last semester is equal to the largest possible
event time in the synthesis model (Te = 10), i.e. Cohort 1 is observed for all possible event
times. (This is unlikely to be the case with real world data.)

• All censored samples appear in a Cohort’s last semester because it is not possible to have
censored samples in earlier semesters with the NSS event time.

21



• The number of censored samples increases as the Cohort observation length decreases (as
expected).

• The least likely graduation semesters are 1 and 2 as evidenced by the fact that no students
in this data set graduate during these semesters.

• The most likely graduation semesters are 4 and 6, and the most likely drop semesters are 1
and 2.

• It is easy to produce a cohort-specific unbiased estimate of probability function values directly
from the table entries. For example, from Cohort 3 we can produce the estimates

P̂Te,B(4,G) =
139

800
P̂Te,B(4,D) =

14

800

It is also easy to produce more accurate estimates by combining the contribution from multiple
cohorts. For example we can combine the data from Cohorts 1,2,3 to produce the estimate

P̂Te,B(6,G) =
128 + 117 + 139

800 + 800 + 800

This type of direct estimate omits the potential contribution of censored samples. In addition
it is not valid for NSE event times, as explained in the next section.

• Regardless of how function estimates are produced, it is clear that estimates at later semesters
will be derived from fewer samples, and therefore be less accurate.

• The entries in this table correspond to the sample counts in (10) as follows

n(t, 0,G) =
∑

all cohorts

ngrad(t)

n(t, 0,D) =
∑

all cohorts

ndrop(t)

nrisk(t) =
∑

all cohorts

nrisk(t)

Thus, it is easy to produce hazard estimates by plugging the table entries directly into (11).
For example,

ĥ(8,G) =
22 + 19

186 + 172
=

41

358

Prediction function estimates are obtained using the DKM method in (11) to estimate the hazard,
then substituting into (13) to obtain the probability, and finally substituting into (1) and (2) to
obtain the cessation and survival function estimates. These estimates, along with the true function
values, are shown below. Note that the estimates are very close to the true functions with the
largest differences occurring at later semesters.
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Remark 5. It might be interesting to compare the DKM probability estimates with the direct
probability estimates from the table. The direct estimates are simpler, but the DKM estimates
incorporate the censored samples, so it is not clear which would be more accurate. This issue is
only relevant when the data is formed with the NSS event time.

4.5.2 Example with the NSE Option

In this example we generate 5 cohorts of data, each with 800 samples. This data was generated
according to Sample Plan 3 with the NSE event time. A summary of this data is presented in
the staged data table below.
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-------------------------------------------------------------

Cohort 1: nsamples 800

ngrad: 29 29 84 106 71 85 37 28 13 0

ndrop: 87 31 22 18 18 11 16 38 47 30

ncensor: 0 0 0 0 0 0 0 0 0 0

nrisk: 800 684 624 518 394 305 209 156 90 30

Cohort 2: nsamples 800

ngrad: 19 27 80 110 73 83 29 18 0 0

ndrop: 98 31 15 21 17 22 15 21 0 0

ncensor: 0 0 0 2 7 12 26 74 0 0

nrisk: 800 683 625 530 397 300 183 113 0 0

Cohort 3: nsamples 800

ngrad: 22 36 93 102 73 66 0 0 0 0

ndrop: 80 40 15 20 7 7 0 0 0 0

ncensor: 1 3 17 11 39 168 0 0 0 0

nrisk: 800 697 618 493 360 241 0 0 0 0

Cohort 4: nsamples 800

ngrad: 9 28 80 77 0 0 0 0 0 0

ndrop: 93 35 12 10 0 0 0 0 0 0

ncensor: 13 22 62 359 0 0 0 0 0 0

nrisk: 800 685 600 446 0 0 0 0 0 0

Cohort 5: nsamples 800

ngrad: 0 0 0 0 0 0 0 0 0 0

ndrop: 75 30 0 0 0 0 0 0 0 0

ncensor: 81 614 0 0 0 0 0 0 0 0

nrisk: 800 644 0 0 0 0 0 0 0 0

Semester 1 2 3 4 5 6 7 8 9 10

-------------------------------------------------------------

Numerous insights can be gleaned from this table.

• Cohort 1 has no censored samples because it is observed for all possible event times. (This is
unlikely to be the case with real world data.)

• The censored samples appear across all semesters because the number of semesters enrolled
is less than the number of semesters since the start for some students.

• The appearance of censored samples across all semesters prevents us from forming direct
estimates of the probability function as we did in the previous section. For example, the
direct estimate

P̂Te,B(6,G) =
85 + 83 + 66

800 + 800 + 800

is biased low because the numerator is missing some counts which are currently “hidden” in
the censored sample counts from earlier semesters.

• The number of censored samples increases as the Cohort observation length decreases (as
expected).

• The least likely graduation semesters are at the beginning and end, while the most likely
graduation semesters are in the middle.

• The most likely drop semesters are at the beginning and the end, while the least likely drop
semesters are in the middle.
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• Regardless of how function estimates are produced, it is clear that estimates at later semesters
will be derived from fewer samples, and therefore be less accurate.

• The entries in this table correspond to the sample counts in (10) in the same way as the
previous section. Thus, it is easy to produce hazard estimates by plugging the table entries
directly into (11). For example,

ĥ(8,G) =
28 + 18

156 + 113
=

41

269

Prediction function estimates are obtained from this data using the DKM method in (11) to estimate
the hazard, then substituting into (13) to obtain the probability, and finally substituting into (1)
and (2) to obtain the cessation and survival function estimates. These estimates, along with the
true function values, are shown below. Note that the estimates are very close to the true functions
with the largest differences occurring at later semesters.
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5 TTG Version 3 (drop estimation and labeling errors)

In this next version of the TTG problem we address labeling errors that occur because of the
ambiguity in determining the dropout label. We start with the following definitions.

• Stopout: A stopout is a disruption in enrollment, i.e. one or more semesters of non-enrollment
followed by one or more semesters of enrollment.
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• Dropout: A dropout is a termination of enrollment6.

Note that it is impossible to distinguish between stopouts and dropouts with perfect accuracy
because we never know if a student will enroll again in the future. Thus a dropout estimation
procedure is required, and knowledge of its accuracy it is essential if we wish to assess the accuracy
of inferences drawn from this data. The following is a rather obvious dropout estimation procedure
proposed by (Scott and Kennedy [23]).

Dropout Estimation Procedure: A student is labeled as drop if the student has not
graduated and not enrolled in the most recent K semesters.

This procedure introduces a K semester delay in the determination of the drop label relative to
the grad label. Indeed, while the grad label can be correctly assigned for all semesters up to the
most recent, the drop label will be unknown for the past K semesters. The choice of K involves a
trade-off between the amount of label error and the amount of data loss, and is discussed in more
detail in Section 5.2.

The procedure above produces the following two types of labeling errors.

1. drop-to-censor: In this case a student who has already dropped is mislabeled as censored be-
cause the student has not yet met the criterion of non-enrollment for K consecutive semesters.
This leads to an under-representation of dropouts, i.e. a dropout bias, that is described in
detail in Section 5.1 below. Sections 5.1.2-5.1.4 describe methods for mitigating this bias.

2. censor-to-drop: In this case a student has failed to enroll over the past K (or more)
semesters but enrolls in a future semester and so is mislabeled as drop, but should be labeled
as censor. This student will eventually drop or grad, but we won’t know which until later. It
turns out that most students that exhibit this type of behavior will eventually drop, so the
drop label is usually correct, but the drop time may be premature resulting in a bias towards
earlier drop times. This type of labeling error is analyzed in detail in Section 5.2.

The synthesis model for data produced with this estimation procedure differs from the previous
staged censoring model (i.e. Sample Plan 3) in two ways. First, the effective observation time
for drop samples is now L − K instead of L, but it remains at L for grad samples. Second, the
determination of observed samples is complicated by the fact that any student that hasn’t graduated
and experiences non-enrollment over the past K semester will be assigned the drop label, regardless
of their actual status. Let e = [e1, e2, ..., eTe ] be a student enrollment vector, and let

d =

{
1, if et = 0 for all t satisfying L−K < t ≤ L
0, otherwise

be a flag that detects the assigned drop situation. If the student’s event semester se exceeds the
effective observation length and d = 0 then the censor times are the same as before

tc = L, (NSS)

tc =

L∑
t=1

et, (NSE)

6Dropouts typically occur when a student decides to abandon the quest for a degree, at least for the time being. In
this report however, dropouts also include cases where a student transfers to another institution (prior to completing
a degree at the current institution).
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but if d = 1 then the assigned drop times will be

td = most recent enrolled semester = max {t : et = 1, t ≤ L} , (NSS)

td =
L∑
t=1

et, (NSE)

Note that tc = td for the NSE option, but tc is not necessarily equal to td for the NSS option
because a drop event time must correspond to an enrolled semester. With these definitions an
observed sample (t, c, b) is produced by one of the following six cases.

(t, c, b) =



(te, 0, be), (be = G) and (se ≤ L) (a)
(tc, 1, be), (be = G) and (se > L) and (d = 0) (b)
(td, 0,D), (be = G) and (se > L) and (d = 1) (c)
(te, 0, be), (be = D) and (se ≤ L−K) (d)
(tc, 1, be), (be = D) and (se > L−K) and (d = 0) (e)
(td, 0,D), (be = D) and (se > L−K) and (d = 1) (f)

(17)

Cases (a) and (d) correspond to situations where the true event is observed. Note that the value
of d in case (a) is irrelevant since the student has already graduated, and the value of d in case (d)
is always equal to 1 because the student has dropped prior to the last K semesters. Cases (b) and
(e) correspond to situations where the student is censored because the event semester exceeds the
effective observation length. Case (e) produces to a drop-to-censor error if the event semester
satisfies L−K < se ≤ L. Cases (c) and (f) correspond to situations where the assigned drop always
produces a censor-to-drop error. Specifically, case (c) erroneously assigns a drop label instead of
a censor label to some students whose true label is grad and whose event semester satisfies se > L,
and case (f) assigns an erroneous (premature) time value for students whose event semester satisfies
se > L 7.

If we define the effective observation time L̃ to be

L̃ =

{
L, be = G
L−K, be = D

(18)

then the six cases above can be simplified to the three cases below.

(t, c, b) =


(te, 0, be), (se ≤ L̃)

(tc, 1, be), (se > L̃) and (d = 0)

(td, 0,D), (se > L̃) and (d = 1)

With this, the complete synthesis model for data produced with the dropout estimation procedure
is shown below.

7Note that se > L for all samples in case (f) because d = 1 implies that et = 0 for L−K < t ≤ L.
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Sample Plan 4 (staged censoring with dropout estimation):
- Let K = number student cohorts, and let κ1 ≤ κ2 ≤ ... ≤ κK be the ordered cohort labels.
- Let Lκi be the observation length of cohort κi.
- Let Nκi be the number of students in cohort κi. The values of Nκi may be determined by
drawing K iid samples from a cohort size distribution PN . If this is the case then we assume
that this distribution is independent of all other distributions.
for (each cohort κi) do

- draw Nκi iid (enrollment vector, event type) samples (e, be) from distribution PE,B

- for each e compute the event semester se = max {t : et = 1}
- for each sample, compute the (event time, censor time) values (te, tc) as follows

te = se, tc = Lκi , td = max {t : et = 1, t ≤ Lκi} (NSS)

te =

Te∑
t=1

et, tc =

Lκi∑
t=1

et, td =

Lκi∑
t=1

et (NSE)

- for each e compute the drop estimation flag

d =

{
1, if et = 0 for all t satisfying Lκi −K < t ≤ Lκi
0, otherwise

- for each sample (se, te, tc, td, be, d) generate an observed sample of the form (κ, t, c, b) =
(cohort label, time value, censor flag, event type) by applying the following operation

(κ, t, c, b) =


(κi, te, 0, be), (se ≤ L̃κi)
(κi, tc, 1, be), (se > L̃κi) and (d = 0)

(κi, td, 0,D), (se > L̃κi) and (d = 1)

where L̃κi given by (18).
end for
The total number of observed samples from all cohorts is N = Nκ1 +Nκ2 + ...+NκK and the
complete data set is denoted DN . Note that if c = 1 then the true value of the event type b
is not observed in practice even though it is produced as a part of this synthesis process.

The formal problem statement for the TTG problem with staged censoring and dropout estimation
is as follows.

TTG-V3: Let DN = ((κ1, t1, c1, b1), (κ2, t2, c2, b2), ..., (κN , tN , cN , bN )) be a collection of N
samples that represent (cohort label, time, censor flag, event type) values for students from a
particular institution. Assume that these samples are generated according to Sample Plan 4
with an unknown distribution PE,B. Given DN the goal is to estimate the prediction functions
(hazard, cessation, survival, and probability) for the institution.

5.1 Drop-to-Censor Error and Drop Label Delay Bias

The dropout estimation procedure above introduces a delay in the determination of the drop label
relative to the grad label. This means that dropout samples will be under-represented relative to
grad samples. Indeed, dropout samples will be completely missing from the last K semesters of
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each cohort.
The staged data table below shows UNM FTFT Cohorts 2012 through 2017 with the NSS option

and with drop samples estimated using K = 2 semesters. The missing drop values in the last
K = 2 semesters of each cohort are denoted by the * symbol. It is obvious that some of the
censored samples should be drop samples instead. For example, (Cohort 2012, semester 9) and
(Cohort 2013, semester 9) have 57 and 48 drop samples respectively, and therefore we expect a
similar number from Cohort 20148, that is we expect approximately 50 of the 644 censored samples
from (Cohort 2014, semester 9) to be drops. This data set is clearly biased in favor of grad over
drop.
---------------------------------------------------------------------------

UNM FTFT Data (Option NSS,K=2)

Cohort Fall 2012: nsamples 3424

ngrad: 0 0 0 3 6 41 53 644 351 379 96 126 36

ndrop: 260 392 169 191 123 98 56 59 57 50 29 * *

ncensor: 0 0 0 0 0 0 0 0 0 0 0 36 169

nrisk: 3424 3164 2772 2603 2409 2280 2141 2032 1329 921 492 367 205

Cohort Fall 2013: nsamples 3518

ngrad: 0 0 0 0 6 48 106 886 313 340 86 - -

ndrop: 293 347 187 189 87 102 60 58 48 * * - -

ncensor: 0 0 0 0 0 0 0 0 0 48 314 - -

nrisk: 3518 3225 2878 2691 2502 2409 2259 2093 1149 788 400 - -

Cohort Fall 2014: nsamples 3132

ngrad: 0 0 0 1 2 64 121 891 220 - - - -

ndrop: 272 278 152 167 105 86 56 * * - - - -

ncensor: 0 0 0 0 0 0 0 73 644 - - - -

nrisk: 3132 2860 2582 2430 2262 2155 2005 1828 864 - - - -

Cohort Fall 2015: nsamples 3327

ngrad: 0 0 0 4 7 92 143 - - - - - -

ndrop: 258 342 204 178 130 * * - - - - - -

ncensor: 0 0 0 0 0 97 1872 - - - - - -

nrisk: 3327 3069 2727 2523 2341 2204 2015 - - - - - -

Cohort Fall 2016: nsamples 3402

ngrad: 0 0 0 9 13 - - - - - - - -

ndrop: 290 404 233 * * - - - - - - - -

ncensor: 0 0 0 207 2246 - - - - - - - -

nrisk: 3402 3112 2708 2475 2259 - - - - - - - -

Cohort Fall 2017: nsamples 3219

ngrad: 0 0 0 - - - - - - - - - -

ndrop: 386 * * - - - - - - - - - -

ncensor: 0 437 2396 - - - - - - - - - -

nrisk: 3219 2833 2396 - - - - - - - - - -

Semester 1 2 3 4 5 6 7 8 9 10 11 12 13

---------------------------------------------------------------------------

We now explore various bias mitigation strategies. First we show how a simple modification to the
DKM method can produce unbiased estimates from the biased representation. Then we present
three different methods that modify the data in an attempt to create unbiased representations that
can be incorporated into any inference method.

8Actually we expect a slightly smaller number of drops because Cohort 2014 starts with slightly fewer students.
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5.1.1 Bias Mitigation via Modified DKM Method

Consider the staged data table above. Note that the bias in this representation is a by-product of
the errors in the ndrop and ncensor counts in the last K = 2 time slots of each cohort. Recall that
the DKM hazard estimates can be formed by plugging the staged data table entries directly into
(11). For example, DKM estimates of hgrad at t = 8, 10, 12 can be formed from the staged data
table above as follows

ĥgrad(12) =
n(12, 0,G)

nrisk(12)
=

126

367

ĥgrad(10) =
n(10, 0,G)

nrisk(10)
=

379 + 340

921 + 788

ĥgrad(8) =
n(8, 0,G)

nrisk(8)
=

644 + 886 + 891

2032 + 2093 + 1828

Note that these estimates are independent of the ndrop and ncensor counts, i.e. they depend only
on the ngrad and nrisk counts which are uncorrupted. Thus, these estimates are unbiased. Indeed,
all such estimates of hgrad from this table are unbiased, accurate, and able to exploit all available
data.

Note also that there is unbiased evidence for hdrop at nearly every semester. For example, even
though the Cohort 2013 drop values are missing at t = 11, an unbiased estimate of the drop hazard
value for this semester can be obtained by applying the DKM method to Cohort 2012 data and is
given by hdrop(11) ≈ 29/492 = .06. This estimate is unbiased because the ndrop value for Cohort
2012 is uncorrupted. Similarly, we can form unbiased estimates at t = 7, 9 by using uncorrupted
cohort data and ignoring corrupted cohort data as follows

ĥdrop(9) =
57 + 48

1329 + 1149

ĥdrop(7) =
53 + 106 + 121

2141 + 2259 + 2005

This approach can be used to produce unbiased estimates of hdrop at all semesters except the
very last K = 2 semesters on the far right, i.e. t = 12, 13, because these semesters contain no
uncorrupted drop data.

This modified DKM method is extremely simple, exploits all available ground truth information,
and produces a nearly complete set of unbiased hazard estimates. However, this approach does not
produce an unbiased representation, it simply manipulates the biased representation, and there-
fore it is not compatible with most other estimation methods. Therefore, the next three sections
present different methods that modify the individual data samples in an attempt to create unbiased
representations that can be incorporated into any inference method.

5.1.2 Bias Mitigation via Sample Deletion

In this section we describe a bias mitigation strategy proposed by (Scott and Kennedy [23]) who
where the first to draw attention to the dropout delay bias issue. Here is an excerpt from their
paper that describes their strategy. (Note that they have chosen K = 4 semesters, i.e. 2 years.)

(Scott and Kennedy [23]) “We make an important point here: given our dropout standard,
it is impossible for us to detect a dropout semester during any student’s last 2 years of
data (i.e., during the last four calendar-time semesters for which data are available).
Accordingly, while we can use these last 2 years to identify dropouts, we must disregard,
for example, degrees attained in these years.”
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This excerpt suggests discarding all students who have graduated in the last K semesters so that
the remaining data contains students whose grad and the drop labels are determined over the same
time intervals. While this may sound like a reasonable approach, it has several disadvantages.

• First, it results in a loss of good data. Consider discarding all students who have graduated
in the last K = 2 semesters from the UNM data above. This results in the loss of a significant
fraction of the data set.

• Second, it has its own particular type of bias.

• Third, it is unclear what to do with the censored samples in the last K semesters.

We address the second and third issues simultaneously. First let us assume that, prior to the
sample discard, the last K semesters contain both grad and censored samples. Then deleting the
grad samples and keeping the censored samples will result in a biased representation because it
suggests none of the samples in the last K semesters are grad samples, and we know this is not true.
For example, if we restrict to a single cohort of data, the DKM estimate of hgrad would be zero for
the last K semesters, and we know that this is not correct. Now let us assume that, prior to the
sample discard, the last K semesters contain only censored samples, some of which are actually
mislabeled drop samples. Then simply keeping these censored samples will also result in a biased
representation because it suggests that there are no dropouts in the last K semesters, and we know
this is not true. For example, if we restrict to a single cohort of data, the DKM estimate of hdrop
would be zero for the last K semesters, and we know that this is not correct.

Another option would be to delete both the grad and censored samples from the last K semesters.
This may be what (Scott & Kennedy) intended. The UNM FTFT Cohort staged data table for this
case is shown below, where deleted samples are indicated by the # symbol. A comparison with the
previous table reveals that the total number of deleted samples is quite large. Unfortunately even
this approach provides a biased representation because the number of at-risk samples is smaller
than it should be at every semester, causing the hazard estimates to be biased high. In addition,
under the NSS option this approach removes all censored samples from the data set, and since we
know there are students with censored event times this representation is clearly incorrect. Next
we explore an alternative bias mitigation strategy that, instead of deleting samples, reassigns their
label and time values.
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----------------------------------------------------------------------------

UNM FTFT Data (Option NSS,K=2)

Cohort Fall 2012: nsamples 3424

ngrad: 0 0 0 3 6 41 53 644 350 380 96 # #

ndrop: 260 392 169 191 123 98 56 59 57 50 29 * *

ncensor: 0 0 0 0 0 0 0 0 0 0 0 # #

Cohort Fall 2013: nsamples 3518

ngrad: 0 0 0 0 6 48 106 886 313 # # - -

ndrop: 293 347 187 189 87 102 60 58 48 * * - -

ncensor: 0 0 0 0 0 0 0 0 0 # # 0 0

Cohort Fall 2014: nsamples 3132

ngrad: 0 0 0 1 2 64 121 # # - - - -

ndrop: 272 278 152 167 105 86 56 * * - - - -

ncensor: 0 0 0 0 0 0 0 # # 0 0 0 0

Cohort Fall 2015: nsamples 3327

ngrad: 0 0 0 4 7 # # - - - - - -

ndrop: 258 342 204 178 130 * * - - - - - -

ncensor: 0 0 0 0 0 # # 0 0 0 0 0 0

Cohort Fall 2016: nsamples 3402

ngrad: 0 0 0 # # - - - - - - - -

ndrop: 290 404 233 * * - - - - - - - -

ncensor: 0 0 0 # # 0 0 0 0 0 0 0 0

Cohort Fall 2017: nsamples 3219

ngrad: 0 # # - - - - - - - - - -

ndrop: 386 * * - - - - - - - - - -

ncensor: 0 # # 0 0 0 0 0 0 0 0 0 0

Semester 1 2 3 4 5 6 7 8 9 10 11 12 13

----------------------------------------------------------------------------

5.1.3 Bias Mitigation via Sample Reassignment

The main idea here is to process the data so that all samples have the same effective observation
length. This means artificially shortening the observation length from L to L−K for samples that
were originally assigned the grad and censor labels. This has the following effect.

• For the NSS option all the grad and censored samples in the last K semesters are moved to
semester (L −K), and they are all now labeled as censored samples. This means that their
time values are changed to L−K and their censor flags are set to c = 1.

• For the NSE option all grad and censor samples from the last K semesters are reassigned
by processing their enrollment vectors e using observation length L −K instead of L. This
means that their censor flags will be set to c = 1 so they are all now labeled as censored
samples, and their new time values are computed using

tc =
L−K∑
t=1

et

Application of this method to UNM FTFT Cohorts with the NSS option produces the staged data
table below, where the original location of reassigned samples is shown with the r character. This
table differs from the previous staged data table produced using the sample deletion method because
of the ncensor values. This method gives an unbiased representation with a balanced depiction of
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grad and drop samples and correct censor sample placement throughout. But it provides no data
for the last K semesters (i.e. semesters 12 and 13 in the table below). It also reduces the number
of samples that contribute to the hazard estimates at later times.
---------------------------------------------------------------------------

UNM FTFT Data (Option NSS,K=2)

Cohort Fall 2012: nsamples 3424

ngrad: 0 0 0 3 6 41 53 644 350 380 96 r r

ndrop: 260 392 169 191 123 98 56 59 57 50 29 * *

ncensor: 0 0 0 0 0 0 0 0 0 0 367 r r

Cohort Fall 2013: nsamples 3518

ngrad: 0 0 0 0 6 48 106 886 313 r r - -

ndrop: 293 347 187 189 87 102 60 58 48 * * - -

ncensor: 0 0 0 0 0 0 0 0 788 r r 0 0

Cohort Fall 2014: nsamples 3132

ngrad: 0 0 0 1 2 64 121 r r - - - -

ndrop: 272 278 152 167 105 86 56 * * - - - -

ncensor: 0 0 0 0 0 0 1828 r r 0 0 0 0

Cohort Fall 2015: nsamples 3327

ngrad: 0 0 0 4 7 r r - - - - - -

ndrop: 258 342 204 178 130 * * - - - - - -

ncensor: 0 0 0 0 2204 r r 0 0 0 0 0 0

Cohort Fall 2016: nsamples 3402

ngrad: 0 0 0 r r - - - - - - - -

ndrop: 290 404 233 * * - - - - - - - -

ncensor: 0 0 2475 r r 0 0 0 0 0 0 0 0

Cohort Fall 2017: nsamples 3219

ngrad: 0 r r - - - - - - - - - -

ndrop: 386 * * - - - - - - - - - -

ncensor: 2833 r r 0 0 0 0 0 0 0 0 0 0

Semester 1 2 3 4 5 6 7 8 9 10 11 12 13

---------------------------------------------------------------------------

5.1.4 Bias Mitigation via Data Weighting

This section develops a method for producing an unbiased representation without discarding any
information from the original data, e.g. no samples are deleted or reassigned. Instead, it compen-
sates for missing drop samples by increasing the contribution of non-missing drop samples from
previous cohorts. This method has two key ingredients.

• To compensate for missing drop data in a given cohort the weight of non-missing drop data
from previous cohorts is increased, and

• to compensate for the inflated number of censored samples in a given cohort (because of the
drop-to-censor error) the weight of censored samples for that cohort is decreased.

We refer to this as the weighted data (WD) method. The intuition and reasoning behind the
specifics of the WD method can be developed by focusing on the highlighted data in semester 8 of
the staged data table below.
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The method in Section 5.1.1 can be used to produce the following unbiased estimate of hdrop at
semester t = 8

ĥdrop(8) =
ndrop(2012, 8) + ndrop(2013, 8)

nrisk(2012, 8) + nrisk(2013, 8)
=

117

4125
≈ .028

This estimate can be used to predict that the missing ndrop value for (cohort 2014, semester 8) as
follows

ndropimpute(2014, 8) = ĥdrop(8) · nrisk(2014, 8) = (.028)(1828) ≈ 51

and therefore the true ncensor value for (cohort 2014, semester 8) is estimated to be

ncensortrue(2014, 8) = 73− 51 = 22

To generalize this analysis let κ represent the cohort label and let

Km(t) = the set of labels for cohorts whose drop values are missing at time t
Ku(t) = the set of labels for cohorts whose drop values are uncorrupted at time t

Then, in the general case, the missing drop value for every missing drop location (κ, t) : κ ∈ Km(t)
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in the table is estimated to be

ndropimpute(κ, t) = ĥdrop(t) · nrisk(κ, t)

=

(∑
κ′∈Ku(t) ndrop(κ′, t)∑
κ′∈Ku(t) nrisk(κ′, t)

)
· nrisk(κ, t)

=

(
nrisk(κ, t)∑

κ′∈Ku(t) nrisk(κ′, t)

)
·
∑

κ′∈Ku(t)

ndrop(κ′, t)

= wimpute(κ, t) ·
∑

κ′∈Ku(t)

ndrop(κ′, t)

where

wimpute(κ, t) =
nrisk(κ, t)∑

κ′∈Ku(t) nrisk(κ′, t)

is the imputation weight. This result tells us that an unbiased estimate of the missing ndrop value
at location (κ, t) can be obtained by applying the weight wimpute(κ, t) to all (uncorrupted) drop
samples in table locations (κ′, t) : κ′ ∈ Ku(t) and then summing these sample weights. Given the
imputed ndrop value, an estimate of the true ncensor count at table location (κ, t) : κ ∈ Km(t) is
given by

ncensortrue(κ, t) = ncensor(κ, t)− ndropimpute(κ, t)

In the example above, only one cohort contributes missing drop values at any given time t, but in
general there can be multiple cohorts with missing drop values at a given time t. For example, if
we change the drop estimation parameter to K = 4 then we obtain the staged data table below
which has two cohorts that contribute missing drop values for most of the times. In cases like these,
where |Km(t)| > 1, the formulas above can be used to compute values for ndropimpute, wimpute, and
ncensortrue for all table locations (κ, t) : κ ∈ Km(t).

At this point we could form a complete staged data table by replacing the missing ndrop values
with imputed values, and replacing the corresponding ncensor values with the “true” values. Then
we could apply the (original unmodified) DKM method directly to the completed staged data table
to produce unbiased hazard estimates. It turns out that this would give the same result as the
method in Section 5.1.1. However, our goal here is to produce a sample data set that is unbiased. So
instead of imputing the missing ndrop values, we use sample weights to increase the contribution
of drop samples from the uncorrupted cohorts so that the net effect is the same. In addition,
instead of decreasing the ncensor counts of the current cohort we use sample weights to decrease
the contribution of the censor samples from this cohort.

To implement this method we must know the cohort membership for each data sample, so the
input data samples now take the form (κ, t, c, b) (instead of (t, c, b)). Our plan is to convert each
original data sample (κi, ti, ci, bi) into a weighted data sample (ti, ci, bi, wi) where the results above
are used to determine the weight wi according to the procedure below. Then, hazard functions can
be estimated using any procedure that accepts weighted data.
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--------------------------------------------------------------------------------

UNM FTFT Data (Option NSS,K=4)

Cohort Fall 2012: nsamples 3424

ngrad: 0 0 0 4 7 47 76 656 372 365 97 95 26 14

ndrop: 260 407 193 205 126 95 52 64 48 31 * * * *

ncensor: 0 1 0 3 7 9 10 17 6 18 14 33 19 28

nrisk: 3424 3164 2756 2563 2351 2211 2060 1922 1185 759 345 216 87 42

Cohort Fall 2013: nsamples 3518

ngrad: 0 0 2 3 9 54 110 892 337 319 80 52 - -

ndrop: 293 364 209 197 90 89 56 45 * * * * - -

ncensor: 0 5 2 5 7 8 11 20 30 50 64 82 0 0

nrisk: 3518 3225 2856 2643 2438 2332 2181 2004 1047 647 278 134 - -

Cohort Fall 2014: nsamples 3132

ngrad: 0 0 0 3 4 67 134 886 227 228 - - - -

ndrop: 272 293 179 169 98 77 * * * * - - - -

ncensor: 0 3 6 8 12 14 27 74 74 232 0 0 0 0

nrisk: 3132 2860 2564 2379 2199 2085 1927 1726 761 460 - - - -

Cohort Fall 2015: nsamples 3327

ngrad: 0 0 0 6 10 92 139 808 - - - - - -

ndrop: 258 353 219 177 * * * * - - - - - -

ncensor: 0 0 6 17 31 128 143 820 0 0 0 0 0 0

nrisk: 3327 3069 2716 2491 2291 2136 1910 1628 - - - - - -

Cohort Fall 2016: nsamples 3402

ngrad: 0 0 0 9 15 43 - - - - - - - -

ndrop: 290 412 * * * * - - - - - - - -

ncensor: 0 2 23 237 195 1940 0 0 0 0 0 0 0 0

nrisk: 3402 3112 2698 2443 2193 1983 - - - - - - - -

Semester 1 2 3 4 5 6 7 8 9 10 11 12 13 14

--------------------------------------------------------------------------------

The procedure for determining the data weights is specified in the three steps below.

• All grad samples, i.e. all samples where (ci, bi) = (0,G), are assigned a weight wi = 1.

• All drop samples, i.e. all samples where (ci, bi) = (0,D), are assigned a weight value based on
their time location in the staged data table. Specifically, the weight value for all drop samples
with ti = t is

wdrop(t) = 1.0 +
∑

κ∈Km(t)

wimpute(κ, t)

That is, the initial weight of 1.0 is increased by a value wimpute for each cohort with missing
drop samples at time t. Note that this weight is the same for all cohorts κ ∈ Ku(t) with
uncorrupted drop samples at time t.

• All censored samples, i.e. all samples where ci = 1, are assigned a weight value based on
their (cohort, time) location in the staged data table. Specifically, the weight value for censor
samples with (κi, ti) = (κ, t) is

wcensor(κ, t) =
ncensor(κ, t)− ndropimpute(κ, t)

ncensor(κ, t)

i.e. we decrease their weight value so that the sum of censored sample weights in location
(κ, t) is equal to the estimated number of true censor samples in this location. Note, as a
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practical matter in the rare case where this computation produces a negative value we set the
weight value to 0.

In summary, the weight values for individual samples (κi, ti, ci, bi) are determined as follows

wi =


wdrop(t), (ti, ci, bi) = (t, 0,D)
wcensor(κ, t), (ti, ci) = (t, 1) and κi = κ
1.0, otherwise

An example of the drop and censor weights for the K = 2 staged data table above is shown below.
In the table dwt = wdrop and cwt = wcensor.
---------------------------------------------------------------------------

UNM FTFT Data (Option NSS,K=2)

Cohort Fall 2012: nsamples 3424

ngrad: 0 0 0 3 6 41 53 644 350 380 96 126 36

ndrop: 260 392 169 191 123 98 56 59 57 50 29 * *

dwt: 1.00 1.18 1.18 1.24 1.24 1.32 1.31 1.44 1.35 1.85 1.81 - -

ncensor: 0 0 0 0 0 0 0 0 0 0 0 36 169

cwt: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Cohort Fall 2013: nsamples 3518

ngrad: 0 0 0 0 6 48 106 886 313 340 86 - -

ndrop: 293 347 187 189 87 102 60 58 48 * * - -

dwt: 1.00 1.18 1.18 1.24 1.24 1.32 1.31 1.44 1.35 - - - -

ncensor: 0 0 0 0 0 0 0 0 0 48 314 0 0

cwt: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.11 0.92 - -

Cohort Fall 2014: nsamples 3132

ngrad: 0 0 0 1 2 64 121 891 220 - - - -

ndrop: 272 278 152 167 105 86 56 * * - - - -

dwt: 1.00 1.18 1.18 1.24 1.24 1.32 1.31 - - - - - -

ncensor: 0 0 0 0 0 0 0 73 644 0 0 0 0

cwt: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.29 0.94 - - - -

Cohort Fall 2015: nsamples 3327

ngrad: 0 0 0 4 7 92 143 - - - - - -

ndrop: 258 342 204 178 130 * * - - - - - -

dwt: 1.00 1.18 1.18 1.24 1.24 - - - - - - - -

ncensor: 0 0 0 0 0 97 1872 0 0 0 0 0 0

cwt: 1.00 1.00 1.00 1.00 1.00 0.05 0.97 - - - - - -

Cohort Fall 2016: nsamples 3402

ngrad: 0 0 0 9 13 - - - - - - - -

ndrop: 290 404 233 * * - - - - - - - -

dwt: 1.00 1.18 1.18 - - - - - - - - - -

ncensor: 0 0 0 207 2246 0 0 0 0 0 0 0 0

cwt: 1.00 1.00 1.00 0.15 0.95 - - - - - - - -

Cohort Fall 2017: nsamples 3219

ngrad: 0 0 0 - - - - - - - - - -

ndrop: 386 * * - - - - - - - - - -

dwt: 1.00 - - - - - - - - - - - -

ncensor: 0 437 2396 0 0 0 0 0 0 0 0 0 0

cwt: 1.00 0.26 0.93 - - - - - - - - - -

Semester 1 2 3 4 5 6 7 8 9 10 11 12 13

---------------------------------------------------------------------------
Note that this method compensates for all missing drop values except the last two semester drop
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counts in the first cohort 2012 (because there is no previous cohort data to draw from). Note
also that the censor sample weights in the next-to-last semester for each cohort are near 0. These
censor samples represent students who did not enroll in the most recent semester, but we are
unable to assign a drop label until we know their enrollment status for the upcoming semester.
Based on the evidence from previous cohorts these students are likely to drop, so reducing the
censor sample weight to near 0 makes sense. On the other hand the censor sample weights in the
last semester for each cohort are typically close to 1. These censor samples represent students who
did enroll in the most recent semester, and are therefore more likely to continue than to drop.

Remark 6. Note that the WD method assumes that all cohort data are generated according to the
same distribution which is the same assumption made by virtually all survival analysis methods.

Remark 7. In Section 8 we add covariates to the model so that we can make predictions based
on student attributes, i.e. we build models whose predictions depend on the covariate value. In
this case the potential variability of the drop distribution across covariate values will have a direct
affect on the censor weights wcensor, and so these weights must depend on the covariate value.
On the other hand, the drop weight wdrop relies only on the relative number of samples between
cohorts and is unaffected by this variability. Therefore, the drop weight wdrop does not depend on
the covariate value.

5.1.5 The DKM Method for Weighted Data

The DKM method in Section 4.2 is easily extended to accommodate weighted data by replacing
“sample counts” by “sample weight sums” as follows. The new hazard function estimate is given
by

ĥ(t, b) =
ω(t, 0, b)

ωrisk(t)
,

where
ω(t, c, b) =

∑
i:(ti,ci,bi)=(t,c,b)wi

ωrisk(t) =
∑

i:ti≥twi

It is easy to see that this reverts to the traditional DKM estimate when the sample weights are all
wi = 1. Once the hazard function is determined, the other prediction functions are computed in
the same way as before.

5.1.6 Experimental Comparison of Drop Label Delay Bias Mitigation Methods

This section provides an experimental comparison of the drop delay bias mitigation methods de-
scribed in previous sections. Synthetic data is used so ground truth comparisons can be made. The
data set is generated using the synthesis model in Sample Plan 4 with the following parameters.

• Event and censor times are determined using the NSS option.

• The student enrollment vectors e contain no stopouts. Therefore the data contains no censor-
to-drop errors. It contains only drop-to-censor errors that produce the bias we’re trying to
correct. This makes it easier to isolate the efficacy of the bias mitigation methods.

• The maximum data synthesis time is Te = 10 semesters.

• The data consists of four cohorts that start at absolute times 1, 3, 5, and 7. A total of 1000
samples are synthesized for each of the four cohorts.
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• The measurement time is T = 8 semesters. With this choice, all four cohorts will have
censored data.

• Two versions of the synthetic data are generated.

– ideal: In this version all grad, drop, and censored samples are labeled correctly as if
there was no drop delay issue. This data is used to obtain the ideal results below.

– realistic: In this version drop samples are determined using the drop estimation pro-
cedure with K = 2 semesters as they would be in the real world. The staged data table
for this data set is shown below.

---------------------------------------------------

Cohort 1: start time 1, nsamples 1000

ngrad: 0 0 65 112 77 101 63 90

ndrop: 17 30 15 25 11 45 22 46

ncensor: 0 0 0 0 0 0 0 281

nrisk: 1000 983 953 873 736 648 502 417

Cohort 2: start time 3, nsamples 1000

ngrad: 0 0 65 109 61 110 0 0

ndrop: 13 42 10 32 19 36 0 0

ncensor: 0 0 0 0 0 503 0 0

nrisk: 1000 987 945 870 729 649 0 0

Cohort 3: start time 5, nsamples 1000

ngrad: 0 0 79 98 0 0 0 0

ndrop: 21 27 17 28 0 0 0 0

ncensor: 0 0 0 730 0 0 0 0

nrisk: 1000 979 952 856 0 0 0 0

Cohort 4: start time 7, nsamples 1000

ngrad: 0 0 0 0 0 0 0 0

ndrop: 16 30 0 0 0 0 0 0

ncensor: 0 954 0 0 0 0 0 0

nrisk: 1000 984 0 0 0 0 0 0

Semester 1 2 3 4 5 6 7 8

---------------------------------------------------

We compare the prediction functions produced by the following five methods.

1. ideal: The DKM method is applied to the ideal data to provide an unbiased hazard estimate
that represents represents a “best possible” empirical result.

2. ignore: The DKM method is applied to the (unmodified) realistic data to show what happens
if we simply ignore the drop delay bias.

3. delete: The DKM method is applied to the realistic data set that has been modified by
deleting samples as described in Section 5.1.2.

4. reassign: The DKM method is applied to the realistic data set that has been modified by
reassigning samples as described in Section 5.1.3.

5. weight: The (weighted) DKM method is applied to the realistic data set that has been
modified by adding sample weights as described in Section 5.1.4.

The estimates of hgrad are shown in the plot below.
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We make the following observations.

• The ideal, ignore, and dwt estimates are identical, i.e. the ignore and dwt methods exhibit no
bias when estimating hgrad.

• The reassign estimate is almost identical to ideal for semesters 1-6, i.e. it produces an unbiased
estimate until the last K = 2 semesters. No estimate is provided for the last K = 2 semesters
because this method leaves no data for these semesters.

• The delete estimate is biased high for semesters 3-6. This happens because the nrisk table
values are deflated due to sample deletion. No estimate is provided for the last K = 2
semesters because this method leaves no data for these semesters.

The estimates of hdrop are shown in the plot below.
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We make the following observations.

• The ideal, dwt, and reassign estimates are nearly identical for semesters 1-6, i.e. the dwt and
reassign methods produce unbiased estimates until the last K = 2 semesters. No drop data
is provided for the last K semesters so the hdrop estimates are 0.

• The ignore estimate is biased low because of the missing drop samples in last K = 2 semesters.

• The delete estimate is biased high for semesters 1-6. This happens because the nrisk table
values are deflated due to sample deletion. No estimate is provided for the last K = 2
semesters because this method leaves no data for these semesters.

We draw the following conclusions from this experiment.

• The ignore and delete estimates will produce biased results for real world data.

• The dwt and reassign methods provide unbiased estimates up to the last K semesters, with
the dwt method also producing an unbiased estimate of hgrad for the last K semesters.

• No method can produce reliable estimates of the last K semesters of hdrop due to the complete
lack of drop data for this period.

5.2 Censor-to-Drop Error Analysis

Recall that the drop estimation procedure produces a censor-to-drop error when a student has failed
to enroll over the past K (or more) semesters but decides to enroll again in a future semester. In
this case the student is mislabeled as drop, but should be labeled as censor. This type of error
can be reduced by increasing the value of K, but increasing K also increases the information loss.
In particular, there is a complete loss of information about student drop behavior for the last K
semesters, so increasing K increases this loss. Thus, the choice of K involves a trade-off between
the amount of error and the amount of information loss. A good practical approach might be to
choose the value of K where the censor-to-drop error rate curve begins to levels off. This choice
will be data dependent, and therefore may vary from one institution to the next. In this section
we use the methods described below to estimate the censor-to-drop error rate for UNM data.

We treat the two types of censor-to-drop errors separately. The first type erroneously assigns a
drop label instead of a censor label to some students whose true label is later determined to be
grad. This type of error is represented by case (c) of Equation (17). The second type erroneously
assigns a drop label instead of a censor label to some students whose true label is later determined
to be drop. This is an error because the assigned time corresponds to a censor time instead of the
true drop time. This type of error is represented by case (f) of Equation (17).

5.2.1 Analysis of Type 1 Errors

To analyze the first censor-to-drop error type we extract a group of UNM students that have
graduated, i.e. students whose event type label is known with certainty. We analyze the stopout
statistics of this group to produce an estimate of the censor-to-drop error rate as a function of
K. This is accomplished by artificially varying the observation length from 1 to te (i.e. from 1 to
the grad semester) for each student, and tracking censor-to-drop errors that would be made by the
drop estimation procedure. Accumulating this information over all students allows us to produce
a censor-to-drop error rate for each semester. Then we retain the average and worst error rates
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across the semesters. This entire procedure is repeated for K = 1, 2, 3, ... to provide average and
worst case error rates as a function of K.

The data used in this analysis was gathered during the Fall 2020 semester. It consists of grad-
uating students from UNM cohorts from fall 2012 through fall 2016, including the spring cohorts
inbetween. All types of students were included, e.g. FTFT, part-time, and transfer students. This
group was comprised of 15227 students. A total of 2149 (14 %) experienced at least one stopout
semester before graduating. The left plot below shows a histogram of the stopout run lengths for
this group. A vast majority of the stopouts are only 1 semester long, so choosing K ≥ 2 would
prevent most of these stopouts from becoming censor-to-drop errors. The right plot below shows
the censor-to-drop error rate for this group as a function of observation length when K = 2. The
average (nonzero) error rate is 0.4% and the maximum error rate is 1.25%. The next plot below
shows the average and maximum error rates as a function of K. These curves suggest that K = 3
might be a good choice, and that this choice yields a censor-to-drop error rate well below 1%.
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5.2.2 Analysis of Type 2 Errors

The second type of censor-to-drop error occurs when a drop label is assigned at time td to a student
whose true event type is drop, but whose true event time is greater than td. To analyze this
second error type we extract a group of UNM students who started over ten years ago, but still
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have not graduated9. Because of the extended observation length the true event type for a vast
majority of these students is likely to be drop (with most of them having dropped prior to the data
collection time). Thus, the censor-to-drop errors in this group could be viewed as correctly labeled
samples with erroneous (premature) event times, instead of incorrectly labeled samples with correct
censored time values.

The data used in this analysis was gathered during the Fall 2020 semester. It consists of students
from UNM cohorts fall 2008, spring 2009, and fall 2009 that have not graduated by the Fall 2020
semester. All types of students were included, e.g. FTFT, part-time, and transfer students. This
group was comprised of 7343 students. A total of 1676 (23 %) experienced at least one stopout
semester. The same stopout analysis described in the previous section was used to obtain a censor-
to-drop error rate for each semester, and to produce average and worst error rates as a function
of K. The left plot below shows a histogram of the stopout run lengths for this group. It is
very similar to the histogram for graduating students in the previous section. A vast majority of
the stopouts are only 1 semester long, so choosing K ≥ 2 would prevent most of these stopouts
from becoming censor-to-drop errors. The right plot below shows the censor-to-drop error rate for
this group as a function of observation length when K = 2. This plot is also similar to the plot
for graduating students in the previous section except that it has larger error rates at the longer
observation lengths, which simply reflects the fact that students who drop experience more stopouts
in later semesters than students who graduate. The average (nonzero) error rate is 0.6% and the
maximum error rate is 1.72%. The next plot below shows the average and maximum error rates
as a function of K. Once again these curves suggest that K = 3 might be a good choice, and that
this choice yields a censor-to-drop error rate well below 1%.
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9This is the complement set to the students in the previous section.
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5.2.3 Summary of Censor-to-Drop Errors

Choosing K = 2 or 3 provides a good trade-off between the amount of censor-to-drop error and
the amount of information loss for UNM data. Both choices yield an expected censor-to-drop error
rate well below 1%. Approximately half of these errors (i.e. the type 2 errors) can be viewed
as event time errors instead of label errors. Indeed, all censor-to-drop errors assign a premature
event time that will bias inferences towards slightly lower event times. But this bias will be small
because of the extremely low error rates. Finally, censor-to-drop errors are most likely to occur
during observation lengths 3-6, suggesting (slightly) more accurate results when the data consists
entirely of student cohorts that started more than three years before the data was gathered.

5.3 Grad Label Delay

Sections 5.1 and 5.2 described a delay in the determination of the drop label relative to the grad
label. In this section we describe a delay in the opposite direction, i.e. a delay in the determination
of the grad label relative to the drop label. This delay stems from the fact that a student’s enrollment
status for a given semester is known well before a student’s graduation status for that same semester.

The existence of this delay depends on the measurement time, and one of the most likely mea-
surement times is right after the first six weeks of the semester when the enrollment data for the
current semester is known, and the graduation data for the previous semester is known. In this
case there is a one semester difference between the latest semester for which graduation results are
valid and the latest semester for which enrollment results are valid. Thus, relative to the current
semester there is a one semester delay in determining the grad label, and a K semester delay in
determining the drop label. So the only label available for students enrolled in the current semester
is censor. But, as we have discussed previously, labeling current semester times as censor when
some of these samples should be labeled drop or grad results in a biased representation.

This issue is resolved as follows. The current semester enrollment data is used to determine drop
labels and the previous semester graduation data is used to determine the grad labels. Then all
samples are processed as if the data was gather during the previous semester, i.e. measurement
time = previous semester, and the effective value of K is reduced by 1. In particular, observation
lengths L for all cohorts are based on the number of semesters up to and including the previous
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semester. This means that there will be no samples with event times that correspond to the current
semester. An example of UNM FTFT cohorts that have been processed in this way is shown in
the a staged data table below. This data was collected during the Spring 2019 semester, but the
last semester in the table now corresponds to the previous semester, i.e. Fall 2018.
---------------------------------------------------------------------------

UNM FTFT Data (Option NSS,K=2)

Cohort Fall 2012: nsamples 3424

ngrad: 0 0 0 3 6 41 53 644 351 379 96 126 36

ndrop: 260 392 169 191 123 98 56 59 57 50 29 36 *

ncensor: 0 0 0 0 0 0 0 0 0 0 0 0 169

Cohort Fall 2013: nsamples 3518

ngrad: 0 0 0 0 6 48 106 886 313 340 86 - -

ndrop: 293 347 187 189 87 102 60 58 48 48 * - -

ncensor: 0 0 0 0 0 0 0 0 0 0 314 - -

Cohort Fall 2014: nsamples 3132

ngrad: 0 0 0 1 2 64 121 891 220 - - - -

ndrop: 272 278 152 167 105 86 56 73 * - - - -

ncensor: 0 0 0 0 0 0 0 0 644 - - - -

Cohort Fall 2015: nsamples 3327

ngrad: 0 0 0 4 7 92 143 - - - - - -

ndrop: 258 342 204 178 130 97 * - - - - - -

ncensor: 0 0 0 0 0 0 1872 - - - - - -

Cohort Fall 2016: nsamples 3402

ngrad: 0 0 0 9 13 - - - - - - - -

ndrop: 290 404 233 207 * - - - - - - - -

ncensor: 0 0 0 0 2246 - - - - - - - -

Cohort Fall 2017: nsamples 3219

ngrad: 0 0 0 - - - - - - - - - -

ndrop: 386 437 * - - - - - - - - - -

ncensor: 0 0 2396 - - - - - - - - - -

Semester 1 2 3 4 5 6 7 8 9 10 11 12 13

---------------------------------------------------------------------------

6 TTG Version 4 (modifying the start and end times)

In this version of the TTG problem we add the option to change the prediction function start and
end times. First we consider changing the start time.

Up to now the prediction functions start at the very first semester t = 1. These functions
are useful for making predictions about students who are just now starting their degree program.
But the time-to-event statistics will be different for students who have already completed τs > 1
semesters, and we would like to estimate prediction functions for these students as well, i.e. we would
like to estimate prediction functions that start at a time τs > 1. The new prediction functions are
characterized by the distribution PTe,Tc,B|Te≥τs (instead of PTe,Tc,B), and the independent censoring
assumption now implies that

PTe,Tc,B|Te≥τs = PTe,B|Te≥τsPTc . (independent censoring)

The new hazard function is defined

h(t, b) =
PTe,B|Te≥τs(t, b)

PTe|Te≥τs(Te ≥ t)
, t ≥ τs
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Note that this function is only defined for times t ≥ τs. Now since

PTe,B|Te≥τs(t, b) =
PTe,B(t, b)

PTe(Te ≥ τs)
and PTe|Te≥τs(Te ≥ t) =

PTe(Te ≥ t)
PTe(Te ≥ τs)

the hazard becomes

h(t, b) =
PTe,B(t, b)/PTe(Te ≥ τs)
PTe(Te ≥ t)/PTe(Te ≥ τs)

=
PTe,B(t, b)

PTe(Te ≥ t)
t ≥ τs

which is the same as before, except that it is only defined for t ≥ τs. This means that we can use
the exact same formula in (11) to produce a DKM estimate this “new” hazard function. Once we
have this hazard function, the probability function can be computed as follows,

PTe,B|Te≥τs(t, b) =

{
h(t, b), t = τs
h(t, b)

∏t−1
t′=1 (1− h(t′)) , t > τs

where h(t′) = h(t,G) + h(t,D). Also, the cessation and survival functions can be computed using

C(t, b) =
t∑

t′=τs

PTe,B|Te≥τs(t
′, b) t ≥ τs

S(t, b) =

Te∑
t′=t

PTe,B|Te≥τs(t
′, b) t ≥ τs

We illustrate this method with the following example. The data for this example consists of
UNM FTFT students from the fall cohorts 2013 - 2017. This data was collected in the summer of
2019, so that ground truth labels for both grad and drop students are known through the end of
the Spring 2019 semester. The plot below compares the cessation functions for the original group
of students that are active in semester 1, to the subset of students that are still active in semester
3, i.e. the subset that make it past their first year. This result shows a substantial increase in
graduation rate, and corresponding decrease in drop rate, for the students who make it past the
first year.
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Now we consider changing the end time. In practice the prediction functions are typically esti-
mated out to the largest time in the current data set, but this time may vary from one data set
to the next, and so it might be useful to allow the user to specify a common end time τe that is
less than the largest time in a data set. In addition, the largest time slots tend to have very few
samples, so the prediction function estimates are less accurate for these times. For this reason it
might be useful to specify an end time τe that guarantees a sufficient number of at-risk samples for
all time slots t ≤ τe.

Implementation of this option is straightforward and can be accomplished by decreasing the
effective observation length for selected cohorts, similar to bias mitigation method described in
Section 5.1.3. For the NSS option this is accomplished by converting all data samples with event or
censor time ti > τe to censored samples with time ti = τe, and then proceeding with the standard
estimation method(s). For the NSE option, all data samples with event or censor time ti > τe
are converted to censored samples whose censor times are determined by counting the number of
enrolled semesters that would be observed with an earlier measurement time that is chosen so that
all adjusted data times satisfy ti ≤ τe. This typically means retreating the measurement time by
(max{ti} − τe) semesters.

7 TTG Version 5 (extending the prediction functions)

Truncating the end time (as described in the previous section) produces an incomplete probability
model where

τe∑
t=1

∑
b∈B

P̂Te,B(t, b) < 1

Even when the end time is not truncated, most modeling methods (including DKM and the multino-
mial logistic regression model) produce an incomplete probability model. There are several reasons
for this.

• First recall from Remark 3 that the true end time Te for the distribution PTe,B may never
actually be known. Although there is a practical limit on the number of semesters that a
student can remain in a program, this limit is not always clearly defined. Furthermore it is
often difficult to infer a hard limit from empirical data because there always seems to be a few
students that remain in the system longer than the maximum time allotted by the monitoring
system.

• In practice, when the end time is not truncated, prediction functions are typically estimated
out to the largest time in the current data set. But most data sets contain censored samples
in the last time slot, which indicates that Te is larger than the largest time in the data set.
Most modeling methods, including DKM, will produce an incomplete probability model in
this case.

• Even when the data contains no censored samples in the last time slot, many popular survival
methods will produce incomplete probability estimates simply because of the model structure.
To see this, first note that the aggregate hazard definition in (12) can be expressed as

h(t) =
PTe(t)

PTe(Te ≥ t)

and this implies that
h(Te) = 1.
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Thus, if T is the largest (finite) time for which a model is defined and if h(T) < 1 then the
corresponding probability model will be incomplete. Consider one of the most popular hazard
models for multiple event types, the multinomial logistic regression model below (Scott and
Kennedy [23])10

hx(t, b) =
exp [(αt,b + βββb · x)]

1 +
∑

b∈B exp [(αt,b + βββb · x)]
(19)

where x is a real-valued covariate vector11. The corresponding aggregate hazard function
takes the form

hx(t) =
∑
b∈B

hx(t, b) =

∑
b∈B exp [(αt,b + βββb · x)]

1 +
∑

b∈B exp [(αt,b + βββb · x)]

and as long as the model parameters {αt,b,βββb} are finite this hazard function will satisfy
hx(T) < 1, and the corresponding probability model will be incomplete.

Incomplete function estimates are not necessarily inaccurate at their estimated times, they simply
provide no estimate for the extended time slots beyond the last time T. In fact, incomplete function
estimates may be acceptable in some cases. For example, if our main goal is to estimate the 4-
year and 6-year graduation rates then estimates beyond t = 12 may not be important. On the
other hand, if we want to make predictions about future enrollments (as described in Section 9)
then an incomplete survival function estimate will produce biased enrollment predictions, which is
undesirable.

Our goal in this section is to extend the prediction function estimates beyond the previously
estimated times so that they form a complete probability model that satisfies

T̂e∑
t=1

∑
b∈B

P̂Te,B(t, b) ≈ 1

where T̂e is the estimated value of Te. Our approach is to use a simple model that exploits
the characteristics of a typical TTG hazard function to extrapolate the tail values. Consider the
group of FTFT students with entry semesters Fall 2006, Fall 2007, and Fall 2008 whose status was
collected more than 11 years later in the summer of 2019 so that the data contains no missing drop
or censored samples. We will refer to the hazard values after semester 10 (year 5) as the tail values.
Over half of the students have either graduated or dropped by semester 10.

10In the single event case this model reduces to the logistic regression model first proposed in (Cox [5]) and developed
extensively in (Singer and Willett [25]).

11The incorporation of covariates is described in more detail in Section 8.
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We seek to exploit the following characteristics of these functions.

• Tail Trends: The tail of hgrad trends downward and the tail of hdrop trends upward. This
suggests that after 10 semesters students become less and less likely to graduate, and more
and more likely to drop, even though at any given semester they are more likely to graduate
than drop, at least up to semester 17.

• Sawtooth Pattern: The tail of both hazard functions exhibits a sawtooth pattern with saw-
tooth peaks at even numbered semesters. This suggests that students are more likely to
graduate or drop in the spring semester of a given year rather than the fall semester. This
effect is more pronounced in the hgrad function.

• Tooth Size: In the tail region, the tooth size of the hgrad sawtooth decreases over time, while
the tooth size of the hdrop sawtooth increases over time.

We propose two TTG hazard extrapolation models which extrapolate the first part of the tail
to the extended part of the tail. Let Tfirst be the time values associated with the first part of
the tail where the hazard functions have already been reliably estimated, and let Text be the time
values associated with the extended part of the tail. For example Tfirst = {10, 11, 12, 13} and

Text = {14, 15, 16, ..., T̂e}. Also, let T odd and T even be the set of odd and even values from T
respectively.

1. Linear: This approach fits the trends in the first part of the tail with a linear model, and
uses a proportional offset parameter to create the teeth. Specifically, the tail estimates at
even times are computed starting at t = min{t′ : t′ ∈ T evenext } as follows,

h(t, b) = [ h(t− 2, b) + δb ]0:1 , t ∈ T evenext

where [ · ]0:1 is a clipping function

[ α ]0:1 =


0, α < 0
α, 0 ≤ α ≤ 1
1, α > 1
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that restricts the estimates to the range [0, 1]. Once the even-time tail estimates have been
computed the odd-time tail estimates are computed starting at t = min{t′ : t′ ∈ T oddext } as
follows,

h(t, b) = [ ρbh(t− 1, b) ]0:1 , t ∈ T oddext

The parameters δb and ρb are estimated as follows

δb =
1

(|Tfirst| − 2)

∑
(t−2)∈Tfirst

(h(t, b)− h(t− 2, b))

ρb =
1

|T oddfirst|
∑

t∈T oddfirst

h(t, b)

h(t− 1, b)

Note that the linear slope δb is estimated from both the even time hazard trend and the odd
time hazard trend in the first part of the tail, and the proportional offset parameter ρb is
estimated from the adjacent “odd time over even time” hazard values in the first part of the
tail.

2. Exponential: This approach models the two transitions from even-to-odd and odd-to-even
semesters as proportional changes. Specifically, the tail estimates are computed as follows.

t← min{t′ : t′ ∈ Text}
while (t ∈ Text) do
h(t, b)← [ ρb,1h(t− 1, b) ]0:1
if ((t+ 1) ∈ Text) then
h(t+ 1, b)← [ ρb,2h(t, b) ]0:1

end if
t← t+ 2

end while

The proportionality parameters ρb,1 and ρb,2 are estimated using the hazard values in the first
part of the tail as follows. Let t∗ = max{t′ : t′ ∈ Tfirst} be the largest time in Tfirst, and let

T = {t∗, t∗ − 2, t∗ − 4, ...} ∩ Tfirst

be every other time in Tfirst starting with t∗ and counting backwards. Then

ρb,1 =
1

n1

∑
(t−2)∈T

h(t− 1, b)

h(t− 2, b)
, where n1 =

⌊
|Tfirst| − 1

2

⌋

ρb,2 =
1

n2

∑
(t−1)∈T

h(t, b)

h(t− 1, b)
, where n2 =

⌊
|Tfirst|

2

⌋
With this method the estimate at any extended time t can be expressed as

h(t, b) = ρb,1ρb,2h(t− 2, b) = ρbh(t− 2, b).

Thus if ρb > 1 then h is exponentially increasing and if ρb < 1 then h is exponentially
decreasing.
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The size of the extension, i.e. the estimated value of T̂e, is determined by extrapolating the
hazard tail values to larger and larger times until the corresponding probability function satisfies∑T̂e

t=1

∑
b∈B P̂Te,B(t, b) ≈ 1. The details are shown in the algorithm below.

t← max{t′ : t′ ∈ Tfirst}
T̂e ← t+ 1
Text = {T̂e} {(initialize the extended time set)}
ĥ← hazard estimate extended to the times in Text using linear or exponential method
P̂Te,B ← probability function estimate using (13)

Sum =
∑T̂e

t=1

∑
b∈B P̂Te,B(t, b)

while (Sum < 1) do
T̂e ← T̂e + 1
Text ← Text ∪ {T̂e} {(extend by one)}
ĥ← hazard estimate extended to the times in Text
P̂Te,B ← probability function estimate using (13)

Sum =
∑T̂e

t=1

∑
b∈B P̂Te,B(t, b)

end while
Return(ĥ, T̂e)

Consider the following example where we compare extended hazard values with the DKM hazard
estimates from UNM FTFT 2006-2008 data shown above. Specifically, we estimate the parameters
for the exponential model using the DKM hazard estimates at Tfirst = {10, 11, 12}. Then we use
these parameters to estimate the extended tail values, including extended estimates for t = 13− 17
which can be compared with the original DKM estimates. The results for the hazard estimates,
and the corresponding cessation estimates, are shown in the plots below.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  5  10  15  20  25  30

ha
za

rd

semester number

Extended Hazard Function Estimates 2006 through 2008

grad-hazard-2006-2008
drop-hazard-2006-2008

grad-hazard-2006-2008-extend
drop-hazard-2006-2008-extend

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  5  10  15  20  25  30

ha
za

rd

semester number

Extended Cessation Function Estimates 2006 through 2008

grad2006-2008
drop2006-2008

grad2006-2008-extend
drop2006-2008-extend

Note that the extended hgrad estimates at t = 13, 14, 16 are nearly identical to the previous
DKM estimates. But the extended hgrad estimates at t = 15, 17 are different from the previous
DKM estimates because of the slight change in the behavior of the odd time DKM estimates. The
extended hdrop values are very similar to the previous DKM estimates at all times t = 13−17. The
extended hazard estimates beyond t = 17 are needed to form a complete model, and their behavior
is consistent with expectations. In addition, the extended cessation functions at t = 13 − 17 are
nearly identical to the previous DKM estimates, and beyond t = 17 their behavior is consistent
with expectations.
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In the next example we extend a hazard function whose largest time value is limited because
the data is so recent. The data consists of UNM FTFT fall cohorts for 2013-2017 where only 12
semesters of data are available. In addition drop labels are estimated using K = 2 semesters.
Thus, the DKM method is used to produce a hazard estimate of hgrad for t =1-12 and hdrop for
t =1-10. Parameters for the exponential models are estimated using the DKM hazard estimates at
Tfirst = {8, 9, 10, 11, 12}. Parameters for the hdrop extension use only hdrop values at times 8-10
(since the values at t =11-12 are missing). The plot below shows the DKM hazard estimates and
their extensions. Note that the first extension of hgrad is at t = 13 and the first extension of hdrop
is at t = 11. This example shows how the extension method can be used to compensate for the
missing drop values, as well extend the hazard values beyond t = 12. Both extensions are consistent
with expectations.
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8 TTG Version 6 (adding covariates)

In this section we add covariates to the model so that the time-to-event predictions are based on
student attributes such as gender, ethnicity, HS GPA, and financial aid. Student attributes will
be represented by a d-tuple x = (x1, x2, ..., xd) where each component xi represents a different
student attribute. In practice most of these attributes are discrete and finite valued, e.g. gender,
residency, ethnicity, and chosen major. However some attributes, such as HS GPA, are continuous
valued. Nevertheless, the continuous valued attributes can often be quantized into a finite number
of discrete bins without losing their dominant influence on the timing of events. Thus, the inference
methods developed in this section are designed exclusively for discrete and finite valued covariates.

Prior to censoring, the ground truth data associated with this problem is a collection of samples,
one for each student, that take the form of a (covariate, event time, event type) tuple (x, te, b)
which we model as a specific realization of the random variable (X,Te, B). Thus, the probability
distribution that defines the covariate-dependent prediction functions is now PX,Te,B (instead of
PTe,B). In the unified staged censor model the initial probability distribution that defines the
covariate-dependent prediction functions is PX,E,B, where E is the the enrollment vector random
variable. Application of the staged sensor mechanism to samples (x, e, b) from PX,E,B produces
samples (x, te, b) distributed according to a distribution PX,Te,B. The joint distribution can be
written

PX,Te,B = PTe,B|XPX

and we will use the short-hand notation

PTe,B|x = PTe,B|X=x
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for the distribution given a specific covariate value x.
In the survival analysis literature it is conventional to define conditional prediction functions

based on the conditional distribution PTe,B|X instead of the joint distribution PX,Te,B. This means
that there is little interest in modeling the the contribution or influence of PX , and it implies that
the prediction functions treat all values of x equally, regardless of their likelihood. We will adopt
this convention in most of our work, although some of the methods described later will produce
estimates of PX in addition to PTe,B|X . Also, the data synthesis model will require a mechanism
for generating the covariates and we will incorporate a distribution PX for this purpose.

The covariate dependent prediction functions are defined as follows.

• Probability: The core probability function is PTe,B|X .

• Hazard:

hgrad,x(t) = hx(t,G) =
PTe,B|x(t,G)∑Te

t′=t

(
PTe,B|x(t′,G) + PTe,B|x(t′,D)

)
hdrop,x(t) = hx(t,D) =

PTe,B|x(t, 0)∑Te
t′=t

(
PTe,B|x(t′,G) + PTe,B|x(t′,D)

) (20)

• Cessation:

Cgrad,x(t) = Cx(t,G) =

t∑
t′=1

PTe,B|x(t′,G)

Cdrop,x(t) = Cx(t,D) =

t∑
t′=1

PTe,B|x(t′,D)

(21)

• Survival:

Sgrad,x(t) = Sx(t,G) =

Te∑
t′=t

PTe,B|x(t′,G)

Sdrop,x(t) = Sx(t,D) =

Te∑
t′=t

PTe,B|x(t′,D)

(22)

The probability function can be expressed in terms of the hazard as follows (similar to (13))

PTe,B|x(t, b) =

{
hx(t, b), t = 1

hx(t, b)
∏t−1
t′=1 (1− hx(t′)) , t > 1

(23)

where
hx(t) = hx(t,G) + hx(t,D) (24)

We can view our inference task as follows: for each distinct value of x we seek to estimate the same
functions as before.

The covariate dependent censoring and synthesis models take the following form.

• Random Censoring: In the case of random censoring the joint probability distribution
that defines the data synthesis process is PX,Te,Tc,B which, under the independent censoring
assumption satisfies
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PX,Te,Tc,B = PX,Te,BPTc

Unobserved (ground truth) samples of the form (x, te, tc, be) are generated as follows:

– generate tc according to PTc

– generate x according to PX

– generate (te, be) according to PTe,B|x

Then the observed samples are obtained using

(x, t, c, b) =

{
(x, te, 0, be), te ≤ tc
(x, tc, 1, be), te > tc

• Staged Censoring: In the case of staged censoring, samples are first generated according
the joint probability distribution PX,E,B and then filtered by the staged censoring mechanism
(same as before). The “ideal” covariate-dependent staged censoring model that generates
samples with error free values of (t, c, b) is shown in Sample Plan 5 below. Similarly, the
covariate-dependent staged censoring with dropout estimation model is shown in Sample Plan
6 below.

Sample Plan 5 (covariate-dependent staged censoring):
- Let K = number student cohorts, and let κ1 ≤ κ2 ≤ ... ≤ κK be the ordered cohort labels.
- Let Lκi be the observation length of cohort κi.
- Let Nκi be the number of students in cohort κi. The values of Nκi may be determined by
drawing K iid samples from a cohort size distribution PN . If this is the case then we assume
that this distribution is independent of all other distributions.
for (each cohort κi) do

- draw Nκi iid covariate samples xe from the distribution PX
- foreach xe draw an iid (enrollment vector, event type) sample (e, be) from PE,B|xe
- for each e compute the event semester se = max {t : et = 1}
- for each sample, compute the (event time, censor time) values (te, tc) as follows

te = se, tc = Lκi (NSS)

te =

Te∑
t=1

et, tc =

Lκi∑
t=1

et (NSE)

- for each sample (xe, se, te, tc, be) generate an observed sample of the form (κ,x, t, c, b) =
(cohort label, covariate value, time value, censor flag, event type) by applying the following
operation

(κ,x, t, c, b) =

{
(κi,xe, te, 0, be), se ≤ Lκi
(κi,xe, tc, 1, be), se > Lκi

end for
The total number of observed samples from all cohorts is N = Nκ1 +Nκ2 + ...+NκK and the
complete data set is denoted DN . Note that if c = 1 then the true value of the event type b
is not observed in practice even though it is produced as a part of this synthesis process.
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Sample Plan 6 (covariate-dependent staged censoring with dropout estimation):
- Let K = number student cohorts, and let κ1 ≤ κ2 ≤ ... ≤ κK be the ordered cohort labels.
- Let Lκi be the observation length of cohort κi.
- Let Nκi be the number of students in cohort κi. The values of Nκi may be determined by
drawing K iid samples from a cohort size distribution PN . If this is the case then we assume
that this distribution is independent of all other distributions.
for (each cohort κi) do

- draw Nκi iid covariate samples xe from the distribution PX
- foreach xe draw an iid (enrollment vector, event type) sample (e, be) from PE,B|xe
- for each e compute the event semester se = max {t : et = 1}
- for each sample, compute the (event time, censor time) values (te, tc) as follows

te = se, tc = Lκi , td = max {t : et = 1, t ≤ Lκi} (NSS)

te =

Te∑
t=1

et, tc =

Lκi∑
t=1

et, td =

Lκi∑
t=1

et (NSE)

- for each e compute the drop estimation flag

d =

{
1, if et = 0 for all t satisfying L−K < t ≤ L
0, otherwise

- for each sample (xe, se, te, tc, td, be, d) generate an observed sample of the form (κ,x, t, c, b)
= (cohort label, covariate value, time value, censor flag, event type) as follows

(κ,x, t, c, b) =


(κi,xe, te, 0, be), (se ≤ L̃κi)
(κi,xe, tc, 1, be), (se > L̃κi) and (d = 0)

(κi,xe, td, 0,D), (se > L̃κi) and (d = 1)

where L̃κi given by (18).
end for
The total number of observed samples from all cohorts is N = Nκ1 +Nκ2 + ...+NκK and the
complete data set is denoted DN . Note that if c = 1 then the true value of the event type b
is not observed in practice even though it is produced as a part of this synthesis process.

The formal problem statement for the covariate-dependent TTG problem with staged censoring
and dropout estimation is as follows.

TTG-V6: Let DN = ((κ1,x1, t1, c1, b1), (κ2,x2, t2, c2, b2), ..., (κN ,xN , tN , cN , bN )) be a collec-
tion of N samples that represent (cohort label, covariate value, time value, censor flag, event
type) values for students from a particular institution. Assume that these samples are generated
according to Sample Plan 6 with an unknown distribution PX,E,B. Given DN the goal is to es-
timate the prediction functions (hazard, cessation, survival, and probability) for the institution.

The consequence of independent censoring for the covariate-dependent case is similar to before.
In particular, if we let To = min(Te, Tc) be the observed time random variable, C be the observed
censor flag random variable, and PTo,C,B|x be the probability distribution of the observed samples,

55



then the marginal distribution PTo|x is given by

PTo|x(t) =
1∑
c=0

∑
b∈B

PTo,C,B|x(t, c, b)

and the observed hazard function is defined

ho,x(t, b) =
PTo,C,B|x(t, 0, b)

PTo|x(To ≥ t)

Then independent censoring implies that ho,x = hx, i.e.

PTe,B|x(t, b)

PTe|x(Te ≥ t)
=
PTo,C,B|x(t, 0, b)

PTo|x(To ≥ t)

This allows the same type of hazard estimation algorithms as before. Indeed, possible methods for
estimating the covariate-dependent hazard functions include the following.

1. Distinct Covariate Groups: Partition the data into a separate group of samples for each
distinct value of x, and apply the DKM method (or any other covariate-free method) to each
group separately to estimate the covariate-dependent hazard functions.

2. Local Interpolation: Form the hazard estimate at each distinct x by including the data
samples from the nearest neighbors of x in the DKM estimate.

3. Global Interpolation: Fit the full data set to a parametric (or semi-parametric) model
which takes on a mathematical form that interpolates across values of x. Possible models
include the multinomial logistic regression model (for continuous- and discrete-valued covari-
ates), and the multinomial probability model (for discrete-valued covariates) [2, 4, 23, 27].

This report explores the first two methods above, starting with an example of the distinct covariate
groups method in the next section.

Remark 8. Note that regardless of the hazard estimation method, if weighted data are used to
mitigate the drop delay bias then the weights must be determined for each distinct value of x
separately (perhaps using information from the nearest neighbors of x).

8.1 Distinct Covariate Groups Example

This section produces hazard and cessation estimates for UNM students as a function of HS-GPA
using the distinct covariate groups method. We also seek to compare the cessation functions of
students from the following two demi-decades.

• UNM FTFT fall cohorts 2006-2011: These students sought degrees before UNM required all
four-year programs across campus to reduce the total number of credit hours to 120.

• UNM FTFT fall cohorts 2013-2017: These students sought degrees after UNM required all
four-year programs across campus to reduce the total number of credit hours to 120.

Specifically, the HS-GPA values are mapped into the four groups in the table below. This table
also shows the population size for each group for each of the two demi-decades.
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Group Label HS-GPA Range 2006-2011 population 2013-2017 population

A 3.75-4.50 2601 1608
B 3.25-3.75 6332 4933
C 2.75-3.23 6783 6078
D 0.00-2.75 3788 3977

Prediction functions are produced for each group using data from the students that populate the
group. Missing HS-GPA values are imputed as follows. One of the other performance scores (ACT,
SAT, or Units-GPA) is mapped to an imputed HS-GPA value using a linear predictor that is fit to
historical data. The imputation is performed with the first non-missing score, starting with ACT,
then SAT, and finally Units-GPA.

A DKM model is built for each of the four HS-GPA groups in each of the two demi-decade
categories yielding a total of 8 models. Each of the 8 models contains hazard and cessation functions
for both the grad and drop event types. These models are built using the following parameters.

• Event times are determined using the NSS option.

• Drop labels are estimated using K = 2 semesters.

• The weighted data (WD) method is used to mitigate the drop delay bias.

• The exponential model is used to extend each hazard model. The plots below only show the
extended values out to 20 semesters.

The first two plots show the 8 grad cessation functions Cgrad on the left and the 8 drop cessation
functions Cdrop on the right.
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We make the following observations.

• There is a substantial difference in graduation timing and success for different HS-GPA cate-
gories. Indeed, the long term graduation rate differs approximately 50% between the lowest
and highest HS-GPA categories. In addition, students in higher HS-GPA categories tend to
graduate sooner.

• There is also a substantial difference in dropout behavior for different HS-GPA categories.

• The 2013-2017 cohort graduates sooner than the 2006-2011 cohort, regardless of HS-GPA.
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• The 2006-2011 cohort in HS-GPA categories B-D appear to have a slightly better chance
of eventually graduating than the 2013-2017 cohort (according to the current extrapolation
model).

• The largest dropout probability increases occur in the first few semesters.

• Dropout rates are much higher for the 2013-2017 cohort than the 2006-2011 cohort.

The two plots below show the 8 grad hazard functions hgrad on the left and the 8 drop hazard
functions hdrop on the right. Note that hazard function extrapolation begins after semester 12 for
the 2013-2017 cohort.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

ha
za

rd

number semesters since start

Compare 2006-2011 to 2013-2017

hgrad-06-11-A
hgrad-06-11-B
hgrad-06-11-C
hgrad-06-11-D
hgrad-13-17-A
hgrad-13-17-B
hgrad-13-17-C
hgrad-13-17-D

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

ha
za

rd

number semesters since start

Compare 2006-2011 to 2013-2017

hdrop-06-11-A
hdrop-06-11-B
hdrop-06-11-C
hdrop-06-11-D
hdrop-13-17-A
hdrop-13-17-B
hdrop-13-17-C
hdrop-13-17-D

8.2 Local Interpolation with Nearest Neighbor DKM (NN-DKM)

This section develops the Nearest Neighbor DKM (NN-DKM) method which forms a DKM hazard
estimate at each distinct x by including data samples from the nearest neighbors of x. Because
each covariate attribute takes on a finite number of values, the total number of distinct x values is
finite.

We start by defining the dictionary of distinct covariate values as follows. Let d be the number
of covariate components (i.e. the dimension of the covariate vector). Let Xm be the set of distinct
values for the mth component of x. Then the dictionary of distinct x values is given by X =
X1 × X2 × ... × Xd. We will use the notation ξ to refer to distinct members of X , and retain the
notation x for covariate samples. Both ξ and x are members of X . Let Dξ be the set of individual
data samples (κ,x, t, c, b) whose covariate value satisfies x = ξ.

Nearest neighbors are determined as follows. Let ∆(·, ·) be a function such that ∆(ξi, ξj) gives
the distance between any two values ξi and ξj from X . Specific examples of ∆ are described below.
Then the neighbors of any ξ ∈ X can be ordered by their distance to ξ. Let Nξ,k = {ξ1, ξ2, ..., ξk}
be the k nearest neighbors of ξ from X , and let DNξ,k

= Dξ ∪Dξ1
∪Dξ2

∪ ...∪Dξk be the collection
of data samples corresponding to ξ and its nearest neighbors.

The NN-DKM method computes hgrad and hdrop hazard functions for each ξ ∈ X by applying
the DKM method to the data in DNξ,k

12. Then the other prediction functions are derived from
the hazard in the same way as before. To determine the value of k for the NN-DKM method we
choose k to be the smallest value such that

• the number of individual samples in DNξ,k
is at least Nmin, and

12Note that the weighted data method must be applied separately to the data at each value of ξ.
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• all neighbors at distance ∆(ξ, ξk) are included in Nξ,k.

This guarantees that the DKM estimates at each value of ξ are formed with at least Nmin samples,
and that all covariates not in Nξ,k are strictly further away from ξ than the covariates in Nξ,k.

To complete the NN-DKM method we must specify a distance function ∆(·). Many conventional
distance functions are designed for continuous data (e.g. Euclidean distance, Mahalanobis distance,
Hausdorff distance, ...) and are not the best choice in our case. If all the individual covariates were
binary then the Hamming distance would be a suitable choice. The distance function we choose
can be viewed as an extension of the Hamming distance. Let ξi,m be the mth component of ξi. We
define the distance function

∆(ξi, ξj) =
d∑

m=1

δm(ξi,m, ξj,m)

where δm(·, ·) is a distance between any two values ξ1 and ξ2 from Xm. One possibility is to choose
δm(·, ·) to be

δm(ξ1, ξ2) =

{
0, ξ1 = ξ2

1, ξ1 6= ξ2

for every m = 1, 2, ..., d. This gives the Hamming distance for binary components, and a same/not-
same distance for the others. This is a special case of the generalized covariate distance δm defined
next.

Without loss of generality, let each component dictionary take the form Xm = {1, 2, ...|Xm|}, i.e.
integer values starting at 1. Then δm can be defined by an |Xm| by |Xm| matrix where δm(ξ1, ξ2) is
simply the (ξ1, ξ2)th component of the matrix. For example, if |Xm| = 3 then the matrix

δm =

 0 1 1
1 0 1
1 1 0


will implement the same/not-same distance function above. When the covariates have a natural
order then δm can be specified in a way that reflects this order. For example, if the mth component
corresponds to grades from {A,B,C,D} and Xm = {1, 2, 3, 4} (so that A = 1, B = 2, C = 3 and
D = 4), then the matrix might take the form

δm =


0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0


Although the δm matrix can be specified in any way that is appropriate for the end application,
the following restrictions will ensure that δm (and ∆) are proper distance functions (i.e. metrics).

• all entries in the δm matrix are nonnegative

• the diagonal entries in the δm matrix are 0

• the δm matrix is symmetric

• δm satisfies δm(ξ1, ξ2) ≤ δm(ξ1, ξ3) + δm(ξ3, ξ2) for all ξ1, ξ2, ξ3.
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8.2.1 TTG at UNM as a function of ETHNICITY

This example uses the NN-DKM method to estimate prediction functions for UNM students as a
function of ETHNICITY. The data consists of UNM FTFT fall cohorts 2013-2017, and the data
was collected during the summer of 2019. The nine ETHNICITY categories tracked at UNM are
listed in the table below, along with the population size for each category.

Group Label ETHNICITY FTFT 2013-2017 population

0 Hispanic 8593
1 American-Indian 609
2 Asian 676
3 Black 391
4 Hawaiian 31
5 White 5260
6 Two-or-more-races 655
7 Unknown-race 128
8 Non-res-alien 261

Although there is no natural order to these categories, we impose an order based on population size.
The motivation for this is two-fold. First we hypothesize that categories with similar population
sizes are (slightly) more likely to have a common experience at UNM. Second, this type of ordering
ensures that the closest neighbors have a similar size so that the nearest neighbor data set DNξ,k

for
a smaller category is not overwhelmed by samples from a larger category. Specifically, the distances
between categories take values 0, 1, ..., 8 based on population size difference, and are determined as
follows. For each category xi

• ai,j = absolute population size difference between category xi and each xj

• order the absolute distances ai,j , j = 0, 1, ..., 8 from smallest to largest

• the distance δ(xi, xj) is equal to the location of ai,j in this ordered list

The resulting distance matrix for the UNM data above is

0 4 2 5 8 1 3 7 6
8 0 2 3 6 7 1 5 4
8 2 0 3 6 7 1 5 4
8 2 5 0 6 7 4 3 1
8 4 6 3 0 7 5 1 2
1 4 2 5 8 0 3 7 6
8 2 1 3 6 7 0 5 4
8 4 6 3 1 7 5 0 2
8 4 6 1 3 7 5 2 0

The minimum number of neighborhood samples is set to Nmin = 390 so that only three of the nine
categories require neighborhood sizes k > 0 to achieve |DNξ,k

| ≥ Nmin. These categories, their
neighbors, and their neighborhood populations are shown in the table below.

Category Nearest Neighbor Categories Neighborhood Population

Hawaiian Unknown-race, Non-res-alien 31+128+261 = 421
Unknown-race Non-res-alien 128+261 = 390
Non-res-alien Unknown-race 261+128 = 390
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Note that the last two categories end up with the exact same neighborhood samples, so the pre-
diction estimates for these two categories will be identical.

A DKM model is built for each of the 9 categories using nearest neighbor data determined with
the distance matrix above. Each of the 9 models contains hazard and cessation functions for both
the grad and drop event types. These models are built using the following parameters.

• Event times are determined using the NSS option.

• Drop labels are estimated using K = 2 semesters.

• The weighted data (WD) method is used to mitigate the drop delay bias.

• The exponential model is used to extend each hazard model. The plots below only show the
extended values out to 20 semesters.

The plots below show the 9 grad cessation functions Cgrad on the left and the 9 drop cessation
functions Cdrop on the right.
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We make the following observations.

• There is a substantial difference in both event timing and success rate for the different ETH-
NICITIES.

• The ranking from most successful to least successful category is as follows: Asian, Non-
res-alien & unknown-race (tied), Hawaiian, White, Hispanic, Two-or-more-races, Black,
American-Indian

8.2.2 TTG at UNM as a function of (GENDER, HS-GPA, ETHNICITY)

This example uses the NN-DKM method to estimate prediction functions for UNM students as a
function of covariates (GENDER, HS-GPA, ETHNICITY). The data consists of UNM FTFT fall
cohorts 2013-2017, and the data was collected during the summer of 2019.

The ETHNICITY covariate consists of the same nine categories with the same distance matrix
described in Section 8.2.1. The HS-GPA covariate is processed and quantized into the same four
categories as in Section 8.1 with the following distance matrix

0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0
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The GENDER covariate takes on two values, Male and Female, with distance matrix[
0 1
1 0

]
The total number of distinct covariate values is 2 × 4 × 9 = 72 and the 2013-2017 data set maps
into these categories according to the following statistics.

• 71 (out of 72) covariate values are witnessed by at least 1 data sample.

• 35 (out of 72) covariate values are witnessed by < 50 data samples.

• 24 (out of 72) covariate values are witnessed by > 100 data samples.

A DKM model is built for each of the 71 categories using nearest neighbor samples to ensure that
each model is built with at least Nmin = 300 samples. These models are built using the following
parameters.

• Event times are determined using the NSS option.

• Drop labels are estimated using K = 2 semesters.

• The weighted data (WD) method is used to mitigate the drop delay bias.

• The exponential model is used to extend each hazard model. The plots below only show the
extended values out to 20 semesters.

Each of the 71 models contains hazard and cessation functions for both the grad and drop event
types.

The first two plots show the 71 grad cessation functions Cgrad on the left and the 71 drop
cessation functions Cdrop on the right. These plots show a significant difference in event timing and
success rate for the different covariate values. A more detailed analysis of these results is presented
below, but first we explore the inner workings of the nearest neighbor method to develop a better
understanding of this local interpolation method.
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First we investigate the the relative influence of covariate samples versus neighbor samples on the
individual prediction functions. This influence will depend on

1. the distance to the furthest neighbor,
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2. the number of neighbors, and

3. the relative number of covariate samples to neighbor samples

The plot below shows the number of samples associated with each distinct covariate value. Neighbor
samples are used only when the number of covariate samples is less than Nmin = 300, which is the
case for a majority of 71 covariate values.
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A histogram of the distance to the furthest neighbor is shown below. Only covariates witnessed by
a very small number of samples have furthest neighbor distances greater than 2.
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A histogram of the number of neighbors k is shown below. Covariate values with a large number of
neighbors have a small number of witness samples, and are surrounded by neighbors with a small
number of witness samples, while covariates with a small number of neighbors have a large number
of witness samples, or are surrounded by neighbors with a large number of witness samples.
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A histogram of the ratio
number of covariate samples

number of neighbor samples

is shown below. Smaller ratios imply that the neighbors have a larger influence on the prediction
functions.
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Consider the covariate value (Male, American-Indian, gpa=0.0-2.75) which is witnessed by only 34
samples in the data set. The nearest neighbors for this covariate are as follows.

(ID=0) Male, American-Indian, gpa=0-2.75

Number of Samples: 34

Nearest Neighbors: (8)

(dist=1.00,ns= 27) : (ID=52) Female American-Indian gpa=0-2.75

(dist=1.00,ns= 88) : (ID= 9) Male American-Indian gpa=2.75-3.25

(dist=1.00,ns= 41) : (ID=58) Male Black gpa=0-2.75

(dist=2.00,ns= 29) : (ID=14) Female Black gpa=0-2.75

(dist=2.00,ns= 78) : (ID=45) Male American-Indian gpa=3.25-3.75

(dist=2.00,ns= 15) : (ID=65) Male Asian gpa=0-2.75

(dist=2.00,ns= 85) : (ID=18) Male Black gpa=2.75-3.25

(dist=2.00,ns= 127) : (ID=36) Female American-Indian gpa=2.75-3.25
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A plot of the grad cessation function estimates Cgrad for this covariate and its nearest neighbors is
shown below. This results suggests that the covariate (Male, American-Indian, gpa=0.0-2.75) has
a nontrivial influence on the prediction function even though it is only witnessed by 34 samples.
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Now we present more detailed results of the cessation modeling results for UNM FTFT fall
cohorts 2013-2017. For convenience (and accuracy) we restrict to covariates that are witnessed by
at least 100 samples. The next few plots show cessation estimates for (a) the best and worst cases,
(b) the top 5 cases, (c) the bottom 7 cases, and (d) the middle 10 cases.
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1. Best Case: Female, White, gpa=3.75-4.5

2. Worst Case: Male, Hispanic, gpa=0-2.75
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Bottom 7: In Order of Increasing Performance:

0. Male Hispanic gpa=0-2.75

1. Female Hispanic gpa=0-2.75

2. Female American-Indian gpa=2.75-3.25

3. Male Black gpa=2.75-3.25

4. Male White gpa=0-2.75

5. Female White gpa=0-2.75

6. Female American-Indian gpa=3.25-3.75
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2. Female Hispanic gpa=2.75-3.25
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4. Male Hispanic gpa=3.25-3.75

5. Male White gpa=3.25-3.75

6. Female Hispanic gpa=3.25-3.75

7. Male Asian gpa=3.25-3.75

8. Female White gpa=3.25-3.75

9. Female Asian gpa=3.25-3.75

9 Predicting Future Enrollments

In this section we show how prediction functions can be used to estimate future enrollments. One
advantage of this approach is that it allows the user to investigate the impact of various system
changes on future enrollments. Examples include

• changes in the incoming student cohort size,

• changes in the 4-year and/or 6-year graduation rates, and

• changes in the 3rd semester retention rate.

We start by defining an absolute staged data table whose columns are aligned by absolute time
instead of relative time, e.g. the first semester of cohort 2014 is aligned with the fourth semester
of cohort 2012. For example, a portion of the absolute staged data table of nrisk values for UNM
FTFT students in fall cohorts 2006-2018 is shown below.
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Let
Nsum(ta) =

∑
all past cohorts

nrisk(ta)

be the sum of nrisk values from all cohorts with entry times in the past (i.e. all entry times prior to
and including ta). If there were no stopouts then Nsum(ta) would be equal to the total enrollment
at semester ta. Let ρ be the fraction of at-risk students that are stopped out at a given semester. If
ρ is the same for all semesters, then an estimate of the total enrollment at semester ta is

Nenroll(ta) = (1− ρ)Nsum(ta)

The Survival function S(t) = Sgrad(t) + Sdrop(t) gives the probability of not experiencing an event
(grad or drop) until after semester t, i.e. the probability of still being active at semester t. This
function can be used to make predictions about future enrollments. Given a cohort of N students
that all start at the same semester, the expected nrisk value at a future semester t is given by
N · S(t). This formula can be used to extend the nrisk values beyond the current semester for
cohorts that have already started and still have active students. It can also be used to extend the
nrisk values for future cohorts once a starting population size is given. Thus, future enrollment
estimates can be obtained using the following steps.

1. Choose starting population sizes for future cohorts. Possible choices include the largest,
smallest, or average over the most recent cohorts.

2. For all cohorts, past and future, use the survival function S and the formula N ·S(t) to extend
the nrisk values into future semesters.

3. Compute Nsum values for future semesters.

4. Compute Nenroll = (1− ρ)Nsum for future semesters.

An example of an absolute staged data table resulting from this method is shown below. This table
includes data from UNM FTFT fall cohorts 2006-2018 from the past, and imputes future cohorts
2019-2023 using starting populations that are the average of past starting populations. Note that
this method requires that S be a complete function, i.e. it must be estimated out to the final event
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time T̂e where the corresponding probability function satisfies

T̂e∑
t=1

∑
b∈B

P̂Te,B(t, b) ≈ 1

If S is incomplete then this method will fail to impute some of the trailing nrisk values for each
cohort and the corresponding enrollment estimates will be biased low.

Absolute Semester: 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

-------------------------------------------------------------------------------------------------------------------------

Stage 1 (Fall 2006): nrisk: 81 64 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0

Stage 3 (Fall 2007): nrisk: 131 110 79 58 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0

Stage 5 (Fall 2008): nrisk: 247 188 142 113 77 53 0 | 0 0 0 0 0 0 0 0 0 0 0

Stage 7 (Fall 2009): nrisk: 393 326 250 207 158 133 89 | 63 0 0 0 0 0 0 0 0 0 0

Stage 9 (Fall 2010): nrisk: 694 542 357 284 203 143 96 | 77 52 37 0 0 0 0 0 0 0 0

Stage 11 (Fall 2011): nrisk: 1427 1017 579 458 299 234 152 | 118 88 71 48 34 0 0 0 0 0 0

Stage 13 (Fall 2012): nrisk: 2141 2032 1329 921 492 367 205 | 166 121 94 70 56 38 27 0 0 0 0

Stage 15 (Fall 2013): nrisk: 2502 2409 2259 2093 1149 788 400 | 312 208 169 123 96 71 57 38 27 0 0

Stage 17 (Fall 2014): nrisk: 2582 2430 2262 2155 2005 1828 864 | 628 377 295 196 160 116 90 67 54 36 26

Stage 19 (Fall 2015): nrisk: 3327 3069 2727 2523 2341 2204 2015 | 1895 1310 952 572 447 298 242 176 137 102 82

Stage 21 (Fall 2016): nrisk: 0 0 3402 3112 2708 2475 2259 | 2164 2046 1925 1330 967 581 454 302 246 178 139

Stage 23 (Fall 2017): nrisk: 0 0 0 0 3219 2833 2396 | 2252 2088 2001 1892 1780 1230 894 537 420 280 227

Stage 25 (Fall 2018): nrisk: 0 0 0 0 0 0 2653 | 2425 2142 2014 1867 1789 1692 1591 1100 799 480 375

-------------------------------------------------------------------------------------------------------------------------

Stage 27 (Fall 2019): nrisk: 0 0 0 0 0 0 0 0 3245 2966 2620 2463 2284 2188 2069 1946 1345 978

Stage 29 (Fall 2020): nrisk: 0 0 0 0 0 0 0 0 0 0 3245 2966 2620 2463 2284 2188 2069 1946

Stage 31 (Fall 2021): nrisk: 0 0 0 0 0 0 0 0 0 0 0 0 3245 2966 2620 2463 2284 2188

Stage 33 (Fall 2022): nrisk: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3245 2966 2620 2463

Stage 35 (Fall 2023): nrisk: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3245 2966

sum these columns to get predicted future enrollments

Summing the columns in the table above and then multiplying these sums by (1 − ρ) yields
the enrollment values in the plot below. This plot shows a slight decline in enrollment for recent
cohorts, with a substantial dip in 2018. It also shows an enrollment recovery after 2018 as long as
the future starting populations are equal to the historical average.
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By changing the future starting populations the user can easily investigate the impact of changes
in the incoming student cohort size on future enrollments. Similarly, by adjusting the grad and drop
probability functions the user can explore the impact of changes in graduation and retention rates
on future enrollments. One of the simplest ways to do this is by shifting some of the probability
mass from one probability function to the other while maintaining the shape of both.
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10 Semi-supervised Learning

This section takes a very different approach to the estimation of TTG prediction functions. This
approach produces an estimate of PTe,B|X using the maximum likelihood (ML) method with a
semi-supervised likelihood function13. This approach does not require independent censoring, but
typically does require a parametric model for PTe,B|X (or PX,Te,B). The censored data samples
represent a type of missing information that can be inferred through the use of the Expectation-
Maximization (EM) algorithm to optimize the likelihood function. Indeed, in addition to estimating
the parameters of PTe,B|X , the EM algorithm also estimates the probability of each event type (grad
and drop) at each event time for each censored data sample. In addition, unlike the methods in
the previous sections this approach produces an estimate of PX . Thus, it provides a more complete
assessment of the data, even though PX may not be used in the TTG problem. Furthermore, since
this approach does not require independent censoring it estimates the probability function directly,
and then infers the hazard, cessation, and survival functions using (20), (21), and (22).

Using the product rule of probability we can write

PTe,B|X =
PX,Te,B
PX

=
PTe,BPX|Te,B

PX

=
PTe,BPX|Te,B∑

(Te,B)∈T ×B PTe,BPX|Te,B

(25)

We will use the ML method to estimate PTe,B and PX|Te,B, and then substitute these estimates
into (25) to obtain PTe,B|X . Note that PX =

∑
(Te,B)∈T ×B PTe,BPX|Te,B can be viewed as a mixture

distribution with |T × B| mixture components. It is analogous to a multi-class classification dis-
tribution where the number of classes is |T × B|, the individual class labels take the form (Te, B),
and the individual class distributions are PX|Te,B.

Covariates are treated in the same way as Section 8. Covariate samples will be represented by a
d-tuple x = (x1, x2, ..., xd) where each component xi represents a different student attribute. We
restrict to case where the covariate vectors are discrete and finite valued and let X be the dictionary
of distinct x values. We will use the notation ξ to refer to distinct members of X , and retain the
notation x for covariate samples. Both ξ and x are members of X .

Note that both PTe,B and PX|Te,B are discrete distributions with a finite number of values. Thus,
if we know all these values then we know the distributions. If we let

πte,b = PTe,B(te, b)

πξ|te,b = PX|Te=te,B=b(ξ)
(26)

then our task is to estimate the complete set of parameters14

φ =
{
πte,b, πξ|te,b

}
for all ξ ∈ X and (te, b) ∈ T × B

13The term semi-supervised learning refers to a data driven modeling method that exploits two types of data
samples, generally referred to as labeled and unlabeled. For example, in a pattern classification problem the labeled
and unlabeled data samples take the form (covariate, class label) and (covariate) respectively. In the TTG problem
the uncensored and censored samples play the role of labeled and unlabeled samples respectively. There are numerous
approaches to semi-supervised learning, but the one we pursue in this section builds a probability model using the
maximum-likelihood (ML) method. We design a likelihood function specifically for the TTG data, and since it is
similar to likelihood functions used in missing data problems, the TTG likelihood function lends itself to optimization
via a so-called expectation maximization (EM) algorithm.

14This could be viewed as a nonparametric probability model because it has a separate parameter for every argument
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These parameters can be displayed in matrix form as follows

π1,G πξ1|1,G πξ2|1,G ... πξM |1,G
π2,G πξ1|2,G πξ2|2,G ... πξM |2,G
. . . ... .

πTe,G πξ1|Te,G πξ2|Te,G ... πξM |Te,G

π1,D πξ1|1,D πξ2|1,D ... πξM |1,D
π2,D πξ1|2,D πξ2|2,D ... πξM |2,D
. . . ... .

πTe,D πξ1|Te,D πξ2|Te,D ... πξM |Te,D

where M = |X |.
Using (25) the hazard, cessation, and survival functions can be expressed as a function of these

parameters as follows. The cessation function is given by

Cx(t, b) =

t∑
t′=1

PTe,B|x(t′, b)

=

t∑
t′=1

(
PTe,B(t′, b)PX|t,b(x)∑

(τ,β)∈T ×B PTe,B(τ, β)PX|τ,β(x)

)

=

∑t
t′=1 PTe,B(t′, b)PX|t,b(x)∑

(τ,β)∈T ×B PTe,B(τ, β)PX|τ,β(x)

=

∑t
t′=1 πt′,bπx|t′,b∑

τ∈T
∑

β∈B πτ,βπx|τ,β

The survival function is given by

Sx(t, b) =

Te∑
t′=t

PTe,B|x(t′, b)

=

Te∑
t′=t

(
PTe,B(t′, b)PX|t,b(x)∑

(τ,β)∈T ×B PTe,B(τ, β)PX|τ,β(x)

)

=

∑Te
t′=t PTe,B(t′, b)PX|t,b(x)∑

(τ,β)∈T ×B PTe,B(τ, β)PX|τ,β(x)

=

∑Te
t′=t πt′,bπx|t′,b∑

τ∈T
∑

β∈B πτ,βπx|τ,β

of the probability function. Indeed, knowing the probability at one value (ξ, te, b) says nothing about the probability
at a neighboring value. In particular this model does not capture the ordering of the time values and the possible
relationship between covariate values.
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The hazard function is given by

hx(t, b) =
PTe,B|x(t, b)∑

β∈B PTe,B|x(Te ≥ t, β)

=
PTe,B|x(t, b)∑Te

t′=t

∑
β∈B PTe,B|x(t′, β)

=

PTe,B(t,b)PX|t,b(x)

PX(x)∑Te
t′=t

∑
β∈B

PTe,B(t′,β)PX|t′,β(x)

PX(x)

=
PTe,B(t, b)PX|t,b(x)∑Te

t′=t

∑
β∈B PTe,B(t′, β)PX|t′,β(x)

=
πt,bπx|t,b∑Te

t′=t

∑
β∈B πt′,βπx|t′,β

We assume that data supplied to the algorithms below consists of iid data samples that are
generated and preprocessed as follows.

1. First a total of N samples of the form (κ,x, t, c, b) are generated according to Sample Plan
6. In practice these are samples of student data whose drop labels have been determined
using the dropout estimation procedure in Section 5.

2. Then, to compensate for the drop delay bias, the samples are processed using one of the
following two options.

• reassign: The data is modified using the sample reassignment method described in
Section 5.1.3. This data is then processed by the EM algorithm in Section 10.2 below
to obtain estimates of the distribution parameters φ.

• weighted data: Sample weights are added as described in Section 5.1.4 so that the data
samples now take the form (κ,x, t, c, b, w). Note that with this option the weights must
be determined separately for each distinct value of ξ ∈ X . For example, the weights
for each ξ can be determined by applying the weighted data method in Section 5.1.4 to
the nearest neighbor data DNξ,k

formed as described in Section 8.2. This data is then
processed by the Weighted EM algorithm in Section 10.3 below to obtain estimates of
the distribution parameters φ.

10.1 Standard ML Approach

We assume the the data set DN consists of iid data samples of the form (κ,x, t, c, b) generated
according to Sample Plan 6 with the dropout estimation procedure in Section 5 and the sample
reassignment method in Section 5.1.315. First we note that stage label κ is not used by the method
developed in this section. In addition, if c = 1 then b has no meaning so the information content of
a censored data sample is simply (x, t) where t = tc is a censored time. Similarly the information
content of an uncensored data sample is (x, t, b) where t = te is an event time.

Let IU and IC be the index sets for uncensored and censored samples respectively, i.e.

IU = {i : ci = 0}, IC = {i : ci = 1}
15The method developed in this section and the next is also applicable to data generated according to Sample

Plan 5.
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Then the likelihood for the uncensored data (where ti = tei) is

lU (φ) =
∏
i∈IU

PX,Te,B(xi, ti, bi)

=
∏
i∈IU

PTe,B(ti, bi)PX|Te=ti,B=bi(xi)

=
∏
i∈IU

πti,biπxi|ti,bi

(27)

Censoring masks both the true event time and the event type, so the likelihood for the censored
data (where tei > ti and b is unknown) is

lC(φ) =
∏
i∈IC

PX,Te(xi, Te > ti)

Note that the marginal distribution can be written

PX,Te =
∑
b∈B

PB=bPX,Te|B=b

=
∑
b∈B

PB=bPTe|B=bPX|Te,B=b

=
∑
b∈B

PTe,B=bPX|Te,B=b

and so the likelihood for the censored samples becomes

lC(φ) =
∏
i∈IC

PX,Te(xi, Te > ti)

=
∏
i∈IC

[∑
b∈B

PTe,B=b(Te > ti)PX|Te>ti,B=b(xi)

]

This can be simplified using

PTe,B=b(Te > ti) = PB=b

Te∑
te=ti+1

PTe|B=b(te)

=

Te∑
te=ti+1

PB=bPTe=te|B=b

=

Te∑
te=ti+1

PTe=te,B=b

=

Te∑
te=ti+1

πte,b

and

PX|Te>ti,B=b(xi) =

∑Te
te=ti+1 πte,bπxi|te,b∑Te

te=ti+1 πte,b
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where πte,b and πxi|te,b are defined in (26). This gives

lC(φ) =
∏
i∈IC

[∑
b∈B

PTe,B=b(Te > ti)PX|Te>ti,B=b(xi)

]

=
∏
i∈IC

[∑
b∈B

(
Te∑

te=ti+1

πte,b

)(∑Te
te=ti+1 πte,bπxi|te,b∑Te

te=ti+1 πte,b

)]

=
∏
i∈IC

[∑
b∈B

(
Te∑

te=ti+1

πte,bπxi|te,b

)]

=
∏
i∈IC

[
Te∑

te=ti+1

(∑
b∈B

πte,bπxi|te,b

)]

The total likelihood is the product of the uncensored and censored likelihoods, and so the corre-
sponding log likelihood takes the form

L(φ) = log (lC(φ)lU (φ))

= log

∏
i∈IC

PX,Te(xi, Te > ti)

 + log

∏
i∈IU

PX,Te,B(xi, ti, bi)


= log

∏
i∈IC

[
Te∑

te=ti+1

(∑
b∈B

πte,bπxi|te,b

)] + log

∏
i∈IU

πti,biπxi|ti,bi


=
∑
i∈IC

log

(
Te∑

te=ti+1

(∑
b∈B

πte,bπxi|te,b

))
+

∑
i∈IU

log
(
πti,biπxi|ti,bi

)
(28)

The standard ML method would employ an optimization algorithm to find the parameters{
πte,b, πξ|te,b

}
that maximize L subject to constraints such as 0 ≤ πte,b ≤ 1, 0 ≤ πξ|te,b ≤ 1,∑

te

∑
b πte,b = 1, and

∑
ξ∈X πξ|te,b = 1. But maximizing the log of a sum is a complicated non-

linear optimization problem. The EM algorithm in the next section gives a way to mitigate this
complexity, possibly at the price of an increase in estimation error due to the additional hidden
variables that are introduced.

10.2 The EM Algorithm

The EM approach treats the (te, b) values of censored samples as missing data whose values are
estimated as part of the learning algorithm (in addition to the estimation of the model parameters).
The EM algorithm iterates the following two steps:

1. estimate the missing values with the model parameters fixed

2. solve for the model parameters with the missing values fixed

Under some very general conditions this algorithm is known to converge to a ML solution.
To employ the EM algorithm we must derive an expression for the expected value of the joint

log likelihood with respect to the conditional distribution of missing data given the observed data
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and the current parameter values φk. We start by constructing the conditional distribution of the
missing random variables given the observed data and the current model parameters φk.

Let m = |IC | and n = |IU | be the number of censored and uncensored samples respectively.
Without loss of generality let IC = {1, 2, ...,m} and IU = {m+ 1,m+ 2, ..., n}. Then the missing
data are (

(te1 , b1), (te2 , b2), ..., (tem , bm)
)

Let (
(Te1 , B1), (Te2 , B2), ..., (Tem , Bm)

)
be the random variable corresponding to the m censored samples. Since the samples are iid we
denote this random variable by (Te, B)m. Similarly the observed censored samples are(

(x1, tc1), (x2, tc2), ..., (xm, tcm)
)

which we write as (x, tc)
m. Let (

(X1, Tc1), (X2, Tc2), ..., (Xm, Tcm)
)

be the random variable corresponding to these m observations. Since the samples are iid we denote
this random variable by (X,Tc)

m. Similarly the observed uncensored samples are(
(xm+1, tem+1 , bm+1), (xm+2, tcm+2 , bm+2), ..., (xm+n, tcm+n , bm+n)

)
which we write as (x, te, b)

n. Let(
(Xm+1, Tem+1 , Bm+1), (Xm+2, Tem+2 , Bm+2), ..., (Xm+n, Tem+n , Bm+n)

)
be the random variable corresponding to these m observations. Since the samples are iid we
denote this random variable by (X,Te, B)n. Now, the distribution of the missing random variables
conditioned on the observed data and the current model parameters φk is

P(Te,B)m|(X,Tc)m=(x,tc)m,(X,Te,B)n=(x,te,b)n,φk

Using our short-hand notation this distribution can be written

P(Te,B)m|(x,tc)m,(x,te,b)n,φk

To employ the EM algorithm we must derive an expression for the expected value of the joint log
likelihood with respect to this distribution, i.e. we seek an expression for

Qφk(φ) = E(Te,B)m|(x,tc)m,(x,te,b)n,φk

[
log

(
m+n∏
i=1

PX,Te,B(xi, tei , bi)

)]

Qφk(·) is a function of φ that is expressed in terms of the expected values of the missing random
variables conditioned on the observed data and the current model parameters φk. Now we develop
an expression for the log likelihood. Note that the likelihood can be written

m+n∏
i=1

PX,Te,B(xi, tei , bi) = l̄C(φ)lU (φ)
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where
l̄C(φ) =

∏m
i=1 PX,Te,B(xi, tei , bi)

lU (φ) =
∏m+n
i=m+1 PX,Te,B(xi, tei , bi)

Thus, Qφk can be written

Qφk(φ) = E(Te,B)m|(x,tc)m,(x,te,b)n,φk
[
log
(
l̄C(φ)lU (φ)

)]
Using (27) the uncensored likelihood lU can be written

lU (φ) =
m+n∏
i=m+1

PX,Te,B(xi, ti, bi) =
∏
i∈IU

PX,Te,B(xi, tei , bi) =
∏
i∈IU

πtei ,biπxi|tei ,bi

where we have replaced ti with tei for uncensored samples to help distinguish between event and
censor times in this derivation. Similarly, l̄C is given by

l̄C(φ) =
m∏
i=1

PX,Te,B(xi, tei , bi) =
∏
i∈IC

πtei ,biπxi|tei ,bi

Thus, the log likelihood is

log
(
l̄C(φ)lU (φ)

)
= log(l̄C(φ)) + log(lU (φ))

=
∑
i∈IC

log
(
πtei ,biπxi|tei ,bi

)
+

∑
i∈IU

log
(
πtei ,biπxi|tei ,bi

)
For each censored sample i ∈ IC define the |T × B| dimensional ground truth vector

zi =


0
.
1
.
0


which has a 1 in the ground truth position and a 0 in all other positions, i.e. the (te, b)

th position
of zi is given by

zi,te,b =

{
1, ti = te, bi = b
0, ti 6= te

for i ∈ IC

Then we can write

log
(
πtei ,biπxi|tei ,bi

)
=

Te∑
te=1

∑
b∈B

zi,te,b log
(
πte,bπxi|te,b

)
so that the log likelihood becomes

log
(
l̄C(φ)lU (φ)

)
=
∑
i∈IC

Te∑
te=1

∑
b∈B

zi,te,b log
(
πte,bπxi|te,b

)
+
∑
i∈IU

log
(
πtei ,biπxi|tei ,bi

)
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Note that we have replaced the missing values (tei , bi) for each censored sample with the missing
vector zi

16. Now we form the function Qφk by taking the expected value,

Qφk(φ) = E(Te,B)m|(x,tc)m,(x,te,b)n,φk
[
log
(
l̄C(φ)lU (φ)

)]
= E(Te,B)m|(x,tc)m,(x,te,b)n,φk

∑
i∈IC

Te∑
te=1

∑
b∈B

zi,te,b log
(
πte,bπxi|te,b

) +
∑
i∈IU

log
(
πtei ,biπxi|tei ,bi

)

=
∑
i∈IC

Te∑
te=1

∑
b∈B

E(Te,B)m|(x,tc)m,(x,te,b)n,φk [zi,te,b] log
(
πte,bπxi|te,b

)
+

∑
i∈IU

log
(
πtei ,biπxi|tei ,bi

)

=
∑
i∈IC

Te∑
te=1

∑
b∈B

z̄i,te,b log
(
πte,bπxi|te,b

)
+

∑
i∈IU

log
(
πtei ,biπxi|tei ,bi

)
where

z̄i,te,b = E(Te,B)m|(x,tc)m,(x,te,b)n,φk [zi,te,b] =

{
0, te ≤ tci
PTei ,Bi|(xi,tci ),φk(te, b), te > tci

and17

PTei ,Bi|(xi,tci ),φk(te, b) =
PX|te,b,φk(xi)PTe,B,φk(te, b)∑

v>tci

∑
β∈B PX|v,β,φk(xi)PTe,β,φk(v, β)

=
πte,bπxi|te,b∑

v>tci

∑
β∈B πv,βπxi|v,β

Now that we have Qφk(φ) the EM algorithm works as follows:

E–Step: Form Qφk(φ). With φ fixed, and (x, tc)
m, (x, te, b)

n given, compute the expected value of
the missing variables z̄i,y,b

z̄i,te,b =

{
0, te ≤ tci

πte,bπxi|te,b∑
v>tci

∑
β∈B πv,βπxi|v,β

, te > tci
, ∀ i ∈ IC , (te, b) ∈ T × B (29)

M–Step: Find φ∗ that maximizes Qφk(φ) with respect to φ, subject to constraints

Te∑
te=1

∑
b∈B

πte,b = 1

∑
ξ∈X

πξ|te,b = 1 for each (te, b) ∈ T × B

We now derive a solution to the optimization problem in the M–Step. For the uncensored samples
we define the index set Ite,b as follows

Ite,b = {i : i ∈ IU and tei = te and bi = b}, (te, b) ∈ T × B (30)

16This is a key step in the EM derivation. It means that the expected value now operates on zi instead of tei , bi.
17Using PA|B,C = PB|A,CPA,C/PB .
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and we define nte,b = |Ite,b| to be the number of samples in each of these index sets. Now, the
objective function can be written

Qφk(φ) =
∑
i∈IC

Te∑
te=1

∑
b∈B

z̄i,te,b log
(
πte,bπxi|te,b

)
+

∑
i∈IU

log
(
πtei ,biπxi|tei ,bi

)

=
∑
i∈IC

Te∑
te=1

∑
b∈B

z̄i,te,b log (πte,b) +
∑
i∈IC

Te∑
te=1

∑
b∈B

z̄i,te,b log
(
πxi|te,b

)
+

∑
i∈IU

log
(
πtei ,bi

)
+
∑
i∈IU

log
(
πxi|tei ,bi

)
=
∑
te,b

∑
i∈IC

z̄i,te,b log (πte,b) +
∑
te,b

∑
i∈IC

z̄i,te,b log
(
πxi|te,b

)
+
∑
te,b

∑
i∈Ite,b

log (πte,b) +
∑
te,b

∑
i∈Ite,b

log
(
πxi|te,b

)

=
∑
te,b

∑
i∈IC

z̄i,te,b log (πte,b) +
∑
i∈Ite,b

log (πte,b)

 +
∑
te,b

∑
i∈IC

z̄i,te,b log
(
πxi|te,b

)
+

∑
i∈Ite,b

log
(
πxi|te,b

)
=
∑
te,b

∑
i∈IC

z̄i,te,b log (πte,b) + nte,b log (πte,b)

 +
∑
te,b

∑
i∈IC

z̄i,te,b log
(
πxi|te,b

)
+

∑
i∈Ite,b

log
(
πxi|te,b

)
Note the πte,b parameters are isolated to the first summation above and the πξ|te,b parameters are
isolated to the second sum above.

First we solve for the πte,b parameters. These parameters are the solution to the constrained
optimization problem

max
{πte,b}

Te∑
te=1

∑
b∈B

∑
i∈IC

z̄i,te,b log (πte,b) + nte,b log (πte,b)


subject to

Te∑
te=1

∑
b∈B

πte,b = 1

The Lagrangian is

l =

Te∑
te=1

∑
b∈B

∑
i∈IC

z̄i,te,b log (πte,b) + nte,b log (πte,b)

− λ( Te∑
te=1

∑
b∈B

πte,b − 1

)

Taking the derivatives wrt πte,b and λ, and setting to zero gives

∂l

∂πte,b
=

∑
i∈IC

z̄i,te,b
πte,b

+
nte,b
πte,b

− λ = 0

∂l

∂λ
=

Te∑
te=1

∑
b∈B

πte,b − 1 = 0

Simplifying these two expressions yields

1

πte,b

nte,b +
∑
i∈IC

z̄i,te,b

 = λ
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Te∑
te=1

∑
b∈B

πte,b = 1

Solving the first for πte,b and substituting into the second gives

1

λ

Te∑
te=1

∑
b∈B

nte,b +
∑
i∈IC

z̄i,te,b

 = 1

or equivalently

λ =

Te∑
te=1

∑
b∈B

nte,b +

Te∑
te=1

∑
b∈B

∑
i∈IC

z̄i,te,b

= n+
∑
i∈IC

Te∑
te=1

∑
b∈B

z̄i,te,b

= n+
∑
i∈IC

1

= n+m

= N

where the third line follows directly from the expression for z̄i,te,b in (29) above. Now solving the
first for πte,b and substituting λ = n+m gives

πte,b =
nte,b +

∑
i∈IC z̄i,te,b

N
(31)

Next we solve for the parameters πξ|te,b. These parameters are the solution to the constrained
optimization problem

max
{πξ|te,b}

Te∑
te=1

∑
b∈B

∑
i∈IC

z̄i,te,b log
(
πxi|te,b

)
+

∑
i∈Ite,b

log
(
πxi|te,b

)
subject to

∑
ξ∈X

πξ|te,b = 1, for every (te, b) ∈ T × B

Note that the optimization for each value of (te, b) can be performed separately. Thus, for each
(te, b) ∈ T × B we want to solve the optimization problem

max
πξ|te,b

∑
i∈IC

z̄i,te,b log
(
πxi|te,b

)
+

∑
i∈Ite,b

log
(
πxi|te,b

)
subject to

∑
ξ∈X

πξ|te,b = 1
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This criterion can be written

criterion =
∑
i∈IC

z̄i,te,b log
(
πxi|te,b

)
+

∑
i∈Ite,b

log
(
πxi|te,b

)

=
∑
ξ∈X

 ∑
i:i∈IC ,xi=ξ

z̄i,te,b log
(
πxi|te,b

) +
∑
ξ∈X

 ∑
i:i∈Ite,b,xi=ξ

log
(
πxi|te,b

)
=
∑
ξ∈X

 ∑
i:i∈IC ,xi=ξ

z̄i,te,b log
(
πxi|te,b

)
+

∑
i:i∈Ite,b,xi=ξ

log
(
πxi|te,b

)
This can be simplified as follows

criterion =
∑
ξ∈X

χξ(te, b) log
(
πξ|te,b

)
where

χξ(te, b) =

 ∑
i:i∈IC ,xi=ξ

z̄i,te,b +
∑

i:i∈Ite,b,xi=ξ

1


=

 ∑
i:i∈IC ,xi=ξ

z̄i,te,b

 + nte,b,ξ

with
nte,b,ξ = |{i : i ∈ Ite,b,xi = ξ}|

Thus, the Lagrangian for this problem is

l(πξ|te,b, λ) =

∑
ξ∈X

χξ(te, b) log
(
πξ|te,b

)− λ
∑

ξ∈X
πξ|te,b − 1


Taking the gradient and setting to zero yields

∂l

∂πξ|te,b
=
χξ(te, b)

πξ|te,b
− λ = 0

∂l

∂λ
=
∑
ξ∈X

πξ|te,b − 1 = 0

Solving the first equation for πξ|te,b gives

πξ|te,b =
χξ(te, b)

λ

and substituting this into the second equation gives∑
ξ∈X

χξ(te, b)

λ
= 1.

80



Solving for λ gives

λ =
∑
ξ∈X

χξ(te, b)

and therefore

πξ|te,b =
χξ(te, b)∑

ξ′∈X χξ′(te, b)
(32)

Equations (31) and (32) provide the closed form solution φ∗ = {πte,b, πξ|te,b} for the optimization
problem in the M–Step.

The complete EM algorithm for computing ML estimates of the probability distribution param-
eters {πte,b, πξ|te,b} is shown in Algorithm 1. This algorithm terminates when a stopping condition
is met. There are many way of specifying this stopping condition. The following is a common
approach. It terminates the algorithm when the changes in both the log-likelihood criterion value
and the parameter values are sufficiently small. Let L be the log-likelihood criterion in (28). At
each iteration k compute

θk1 =
L(φk+1)− L(φk)

1.0 + L(φk+1)

θk2 =

(
‖φk−1 − φk‖
1.0 + ‖φk‖

)2

and take the max
θk = max(θk1 , θ

k
2).

Stop when
θk < τ

where τ is on the order of the number of significant digits.
Note that in addition to estimating the parameters φ, the EM algorithm also estimates the

probability of each event type (grad and drop) at each event time for each censored data sample.
Indeed each z̄i,te,b is an estimate of the probability that the true (event time, event type) for
uncensored sample i is equal to (te, b).

10.3 The Weighted EM Algorithm

In this section we develop the Weighted EM algorithm, i.e. an EM algorithm for weighted data of
the form (κ,x, t, c, b, w). As in the previous section, the stage label κ will not be used here. Similar
to the previous section a weighted censored data sample will take the form (x, t, w) where t = tc is
a censored time, and a weighted uncensored data sample will take the form (x, t, b, w) where t = te
is an event time.

In a weighted data collection we assume that the weights are proportional to the empirical
probability mass of a sample value. For example in a weighted data collection with a total of ń
samples, the sample (xi, ti, bi, wi) has an empirical probability mass of wi∑ń

i=1 wi
. Furthermore, if

this collection was derived from an unweighted collection in the manner describe in Section 5.1.5
then ń = N and

∑ń
i=1wi = N and the empirical probability mass of (xi, ti, bi, wi) becomes wi

N .
In contrast, every sample in the unweighted data collection has an empirical probability mass of
1/N . These weighted and unweighted data collections provide different representations of the same
empirical distribution. The weighted EM algorithm derived in this section is valid for any weighted
data set where the weights form a legitimate representation of an empirical distribution.
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Algorithm 1 EM Algorithm for computing ML Estimates of the probability distribution param-
eters φ = {πte,b, πξ|te,b}

Inputs: censored samples (xi, tci), i ∈ IC = {1, 2, ...,m}
uncensored samples (xi, tei , bi), i ∈ IU = ∪(te,b)Ite,b
and Te

Assign initial values to the parameters {πte,b, πξ|te,b}. The initial values must satisfy∑Te
te=1

∑
b∈B πte,b = 1 and

∑
ξ∈X πξ|te,b = 1 for each (te, b) = {1, 2, ...,Te} × {G,D}

for (ξ ∈ X ) do
nte,b,ξ = |{i : i ∈ Ite,b,xi = ξ}|

end for

repeat

{E-Step:}
for (i = 1, 2, ...,m) do

for (b = G,D) do
for (te = 1, 2, ...,Te) do

z̄i,te,b =

{
0, te ≤ tci

πte,bπxi|te,b∑
v>tci

∑1
β=0 πv,βπxi|v,β

, te > tci

end for
end for

end for

{M-Step:}
for (te = 1, 2, ...,Te) do

for (b = G,D) do

πte,b ←
nte,b+

∑
i∈IC

z̄i,te,b

N
for (ξ ∈ X ) do
χξ(te, b) = nte,b,ξ +

∑
i:i∈IC ,xi=ξ z̄i,te,b

end for
for (ξ ∈ X ) do

πξ|te,b =
χξ(te,b)∑

ξ′∈X χξ′ (te,b)

end for
end for

end for

until (stopping condition is met)

Return({πte,b, πξ|te,b})
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Recall that the likelihood function for unweighted data is the product of probabilities evalu-
ated at the samples. Thus, the contribution of a sample value (x, t, b) that is repeated w times
is PX,Te,B(x, t, b)w. Similarly, a weighted sample (x, t, b, w) that appears once would contribute
PX,Te,B(x, t, b)w. Thus, the uncensored and censored likelihoods now take the form

lU (φ) =
∏
i∈IU

PwiX,Te,B(xi, tei , bi)

lC(φ) =
∏
i∈IC

PwiX,Te(xi, te > tci)

Then, after applying the exact same steps as in Section 10.1, the log-likelihood takes the form

L(φ) =
∑
i∈IC

wi log

 Te∑
te=tci+1

(∑
b∈B

πte,bπxi|te,b

) +
∑
i∈IU

wi log
(
πtei ,biπxi|tei ,bi

)
(33)

The development of the EM algorithm proceeds along the same steps as in Section 10.2. In partic-
ular, the missing data likelihood takes the form

l̄C(φ) =
∏
i∈IC

PwiX,Te,B(xi, tei , bi)

and the log likelihood is

log
(
l̄C(φ)lU (φ)

)
= log(l̄C(φ)) + log(lU (φ))

=
∑
i∈IC

wi log
(
πtei ,biπxi|tei ,bi

)
+

∑
i∈IU

wi log
(
πtei ,biπxi|tei ,bi

)
Then, with the same definition of zi,te,b as before, the log-likelihood can be written

log
(
l̄C(φ)lU (φ)

)
=
∑
i∈IC

Te∑
te=1

∑
b∈B

wizi,te,b log
(
πte,bπxi|te,b

)
+
∑
i∈IU

wi log
(
πtei ,biπxi|tei ,bi

)
The E–Step derivation ends the same exact result for z̄i,te,b. The M–Step derivation yields

πte,b =
Wte,b +

∑
i∈IC wiz̄i,te,b

WC +WU
(34)

where
Wte,b =

∑
i∈Ite,b

wi

WC =
∑
i∈IC

wi

WU =
∑
i∈IU

wi

and

πξ|te,b =
χξ(te, b)∑

ξ′∈X χξ′(te, b)
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where

χξ(te, b) =

 ∑
i:i∈IC ,xi=ξ

wiz̄i,te,b

 + Wte,b,ξ

and
Wte,b,ξ =

∑
i:i∈Ite,b,xi=ξ

wi

The complete weighted EM algorithm is shown in Algorithm 2.

10.4 Example with Synthetic Data

This example applies the semi-supervised approach with the EM algorithm in Section 10.2 to a
collection of synthetic data. We compare this approach with the DKM Distinct Covariate Groups
method in Section 8. The synthetic data was generated according to Sample Plan 5 with the
following parameters.

• The largest possible event time is Te = 10.

• The drop delay is K = 2.

• The NSS option is used to determine the event time.

• The covariate vector x has only one binary-valued component. This is the simplest nontrivial
choice for a synthetic covariate.

• The data contains four cohorts with 1000 samples each. Each cohort starts 2 semesters after
the previous cohort.

To mitigate the drop delay bias the sample reassignment method was applied to the synthesized
data. Thus, with Te = 10 and K = 2 the largest time in the reassigned data is t = 8.

The true prediction functions, along with estimates from the EM and DKM methods, are shown
in the six plots below. The first two plots show the probability function estimates for x = 0 and
x = 1. The EM and DKM estimates are labeled pem and pkm respectively. It is difficult to
differentiate between these two estimates because they are essentially identical. In addition, they
are good estimates of the true probability function. The same observations hold for the hazard and
cessation function estimates in the next four plots. Note that the EM and DKM hazard estimates
are labeled hem and hkm respectively, and the EM and DKM cessation estimates are labeled cem
and ckm respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

pr
ob

ab
ili

ty

semester

TTG-synthetic:True vs DKM vs EM Probability Estimates:x=0

ptrue-grad-x0
pkm-grad-x0
pem-grad-x0

ptrue-drop-x0
pkm-drop-x0
pem-drop-x0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

pr
ob

ab
ili

ty

semester

TTG-synthetic:True vs DKM vs EM Probability Estimates:x=1

ptrue-grad-x1
pkm-grad-x1
pem-grad-x1

ptrue-drop-x1
pkm-drop-x1
pem-drop-x1

84



Algorithm 2 Weighted EM Algorithm for computing ML Estimates of the probability distribution
parameters φ = {πte,b, πξ|te,b}

Inputs: censored samples (xi, tci , wi), i ∈ IC = {1, 2, ...,m}
uncensored samples (xi, tei , bi, wi), i ∈ IU = ∪(te,b)Ite,b
and Te

Assign initial values to the parameters {πte,b, πξ|te,b}. The initial values must satisfy∑Te
te=1

∑
b∈B πte,b = 1 and

∑
ξ∈X πξ|te,b = 1 for each (te, b) = {1, 2, ...,Te} × {G,D}

for ((te, b) ∈ T × B) do
Wte,b =

∑
i∈Ite,b

wi
for (ξ ∈ X ) do
Wte,b,ξ =

∑
i:i∈Ite,b,xi=ξ wi

end for
end for

WC =
∑

i∈IC wi, WU =
∑

i∈IU wi
repeat

{E-Step:}
for (i = 1, 2, ...,m) do

for (b = G,D) do
for (te = 1, 2, ...,Te) do

z̄i,te,b =

{
0, te ≤ tci

πte,bπxi|te,b∑
v>tci

∑1
β=0 πv,βπxi|v,β

, te > tci

end for
end for

end for

{M-Step:}
for (te = 1, 2, ...,Te) do

for (b = G,D) do

πte,b ←
Wte,b+

∑
i∈IC

wiz̄i,te,b

WC+WU

for (ξ ∈ X ) do
χξ(te, b) = Wte,b,ξ +

∑
i:i∈IC ,xi=ξ wiz̄i,te,b

end for
for (ξ ∈ X ) do

πξ|te,b =
χξ(te,b)∑

ξ′∈X χξ′ (te,b)

end for
end for

end for

until (stopping condition is met)

Return({πte,b, πξ|te,b})
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10.5 TTG at UNM as a function of (GENDER, RESIDENCY)

This section uses semi-supervised and DKM methods to produce prediction function estimates for
UNM students as a function GENDER and RESIDENCY. Both GENDER and RESIDENCY are
binary valued covariates that are coded as follows.

• GENDER takes the values Female (F) and Male (M)

• RESIDENCY takes the values Resident (R) and Nonresident (N)

The data consists of students from UNM FTFT fall cohorts 2012-2017. The number of students
in each of the four covariate value groups is summarized in the table below.

Covariate Value Number of Students

Female Resident 9630
Female NonResident 1684
Male Resident 7171
Male NonResident 1537

The data is processed using the following parameters.

• Event times are determined using the NSS option.

• Drop labels are estimated using K = 2 semesters.
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The corresponding staged data table is shown below.
--------------------------------------------------------------------------------

UNM FTFT Data (Option NSS,K=2)

Cohort Fall 2012: nsamples 3424

ngrad: 0 0 0 3 4 41 46 639 338 377 93 125 37 56

ndrop: 260 392 169 191 123 98 56 59 57 48 30 38 * *

ncensor: 0 0 0 0 0 0 0 0 0 0 0 0 28 116

Cohort Fall 2013: nsamples 3518

ngrad: 0 0 0 0 6 48 95 879 309 335 82 104 - -

ndrop: 293 347 187 189 87 102 60 56 47 48 * * - -

ncensor: 0 0 0 0 0 0 0 0 0 0 51 193 - -

Cohort Fall 2014: nsamples 3132

ngrad: 0 0 0 1 1 63 116 882 216 270 - - - -

ndrop: 272 278 152 167 105 86 56 71 * * - - - -

ncensor: 0 0 0 0 0 0 0 0 65 331 - - - -

Cohort Fall 2015: nsamples 3327

ngrad: 0 0 0 4 7 92 132 820 - - - - - -

ndrop: 258 342 204 178 130 96 * * - - - - - -

ncensor: 0 0 0 0 0 0 101 963 - - - - - -

Cohort Fall 2016: nsamples 3402

ngrad: 0 0 0 9 13 45 - - - - - - - -

ndrop: 290 404 233 207 * * - - - - - - - -

ncensor: 0 0 0 0 154 2047 - - - - - - - -

Cohort Fall 2017: nsamples 3219

ngrad: 0 0 1 7 - - - - - - - - - -

ndrop: 386 437 * * - - - - - - - - - -

ncensor: 0 0 239 2149 - - - - - - - - - -

Semester 1 2 3 4 5 6 7 8 9 10 11 12 13 14

--------------------------------------------------------------------------------

Models are built using the following parameters.

• Both the reassign (Section 10.5.1) and weighted data (WD) (Section 10.5.2) methods are used
to mitigate the drop delay bias.

• DKM models are built using the Distinct Covariate Groups method, i.e. by applying the
DKM method, or the weighted DKM method, separately to each of the four covariate value
groups.

• EM models are built using either the the EM algorithm in Section 10.2 or the weighted EM
algorithm in Section 10.3.

• Models are built for each of the four (GENDER, RESIDENCY) values. Each of the four
models contains prediction function estimates for both the grad and drop event types.

The next section shows results for data that has been pre-processed using the reassign method.

10.5.1 Estimates using the Reassign Method

This section shows prediction function estimates obtained by applying the unweighted EM and
DKM methods to data that has been pre-processed with the reassign method. The first two plots
show the four grad probability functions on the left and the four drop probability functions on the
right. The EM estimates are denoted by pem and the DKM estimates by pkm, and the covariate
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values are denoted by F=Female, M-Male, R=Resident, N=Nonresident. Note that the EM and
DKM estimates are similar, but not identical. Differences between these two estimates are more
pronounced in hazard function estimates in the second two plots below, especially at the later
semester values. The differences between the two methods can be explained by the fact that the
EM algorithm always produces a complete model18 within the specified number of time slots, while
the DKM method does not.
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However, the differences between the two methods can be mitigated by adding one extra time slot
to the EM algorithm, i.e. adding a time slot at the end where there is no data. In this example the
extra time slot corresponds to semester 13. This modification allows the EM algorithm to place
excess probability mass in the extra slot so that it can produce a complete model, but have the
exact same estimates as DKM in the first 12 time slots. The corresponding probability estimates
are shown in the two plots below. Note that the EM and DKM estimates are identical for semesters
1-12. The EM probability estimates in time slot 13 are probably not meaningful extrapolations,
they simply allow the algorithm to form complete model. Estimates of the corresponding hazard
and cessation functions are shown in the next four plots below. The cessation plots indicate that
the (Female, Resident) group has the highest final graduation rate and the (Male, Nonresident)
group as the lowest final graduation rate (approximately 14% lower). These results also indicate
that the final graduation rate is approximately the same for the (Female, Nonresident) and (Male,
Resident) groups, but the four-year graduation rate is much higher for the (Female, Nonresident)
group.

18Recall that a complete model is one where the probability functions integrate to 1.
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10.5.2 Estimates using the Weighted Data Method

This section shows prediction function estimates obtained by applying the weighted EM and DKM
methods to data that has been pre-processed with the weighted data method. The weighted data
method allows predictions out to semester 14 (instead of 12), and we have added an extra time
slot t = 15 for the EM algorithm as described in the previous section. The first two plots show
the four grad probability functions on the left and the four drop probability functions on the right.
The EM estimates are denoted by pem and the DKM estimates by pkm, and the covariate values
are denoted by F=Female, M-Male, R=Resident, N=Nonresident. Once again the EM and DKM
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estimates are identical for semesters 1-14. The same is true for the estimates of the hazard and
cessation functions in the next four plots below.
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A Survival Analysis Literature Review

A good introduction to survival analysis can be found in [11], and an excellent description of its
application to educational data analysis can be found in [24]. Singer and Willett also provide a much
more detailed description in their book [25]. The use of survival analysis to study student graduation
and retention in education is ubiquitous, e.g. see [2, 4, 7, 8, 9, 10, 13, 12, 14, 19, 20, 21, 22, 29].
Many of these papers treat survival analysis as if it is a turn-key method that is so well understood
that a detailed description is not needed. But this can lead to a miss-match between the application
and the solution method.

Perhaps the most common survival analysis problem is the clinical trial where the event of
interest is death, and the goal is to make predictions about the survival time (i.e. time-to-death)
for subjects under different procedures/treatments/drugs (hence the name survival analysis). This
problem is so ubiquitous, and the medical community has such a stringent requirement for a unified
approach to analysis, that this problem is nearly always solved using a turn-key method based on
the continuous-time model in Cox’s famous paper [5]. But the TTG problem differs from the clinical
trial problem in at least two important ways.

First, in the clinical trial there is a single type of event that all subjects will eventually experience
(e.g. death), but in the TTG problem graduation is not the only type of event that a student may
experience. Instead the student may drop out of the institution. It turns out that if we wish to
make accurate predictions about the time-to-graduate then we must include dropout events in our
analysis. Problems with more than one type of event are generally referred to as competing events
problems. Although there are prominent examples where a single event type model has been used to
study student graduation or retention [7, 24, 25], it is generally recognized that a competing events
model is more appropriate [2, 4, 23, 27]. Furthermore, dropout statistics are just as important as
graduation statistics when it comes to monitoring student progress. Thus, in the TTG problem
our goal is to make predictions about both the event type, i.e. grad or drop, and the time it takes
to experience the event.

A second difference is that the clinical trial solution assumes that time takes on a continuous
range of positive values, and that it is rare for multiple subjects to experience the exact same event
time. In the TTG problem however, where time = number of semesters, the time value is clearly
discrete (i.e. a finite positive integer), and it is extremely common for large numbers of subjects
to experience the exact same event time. Indeed, in any given semester there are typically a large
number of students that either graduate or drop. Problems like this require discrete-time survival
analysis methods. Cox introduced a discrete-time method in his original paper, although his main
focus was on a continuous-time proportional hazards model [5]. The use of discrete-time methods
for educational data analysis is now well recognized [2, 4, 23, 27]. In the TTG problem we restrict
our scope to discrete-time survival analysis methods. A more general treatment of discrete-time
competing events survival analysis methods can be found in [1, 3].

There are numerous additional aspects of the TTG problem that require special attention. Several
of these are mentioned in the excellent paper by (Scott and Kennedy [23]). Examples of the unique
aspects that are addressed in the body of this report include drop delay bias, staged censoring,
label error analysis, and incomplete prediction functions.

Finally we mention that there has been some interest in the application of machine learning
methods to survival analysis problems. The survey in [28] provides one perspective. The emphasis
of that work appears to be on continuous-time single event type problems, and so is not directly
relevant to the TTG problem in this report.
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B Notation

This report adopts the following notational conventions. Probability distributions will be denoted
with a capital P . Subscripts will be used to identify the specific distribution, e.g. PX is used
to denote the probability distribution for the random variable X, and PX|T or PX|T=t is used to
denote a conditional distribution. Furthermore we will use the common short-hand notation for
distribution function arguments19, i.e. we use the short-hand notation PT (t) to mean PT ({t}).
Similarly we use the short-hand notation PX(f(x) > 0) to mean PX({x : f(x) > 0}). In addition,
for conditional distributions we use the shorthand notation PX|t to mean PX|T=t.

C Synthesis Issues

This section addresses a number of miscellaneous issues related to the synthesis of TTG data. For
example, we show the equivalence between Sample Plan 2 and the synthesis method described by
(Scott and Kennedy [23]). We also discuss synthesis from an incomplete distribution, the impacts
of the NSS versus NSE options, and the difference between random and staged censoring. We
adopt a covariate dependent model throughout this section, but because the covariate samples xi
are synthesized separately it is easy to make direct comparisons to the covariate free Sample Plans
2, 3, and 4 in the main text.

C.1 Synthesis from a Hazard Model

Assume for the moment that there is no censoring. Then samples of the form (x, te, b) can be gener-
ated according to the distribution PX,Te,B. Since PX,Te,B = PTe,B|XPX these samples can be created
by first generating x according to PX , and then generating (te, b) according to PTe,B|x. However, be-
cause of the dominant influence of the hazard function much of the survival literature emphasizes a
different approach that generates data according to a hazard model hx(·, ·), instead of PTe,B|x. Now
consider censoring. Given a collection of covariate samples (x1,x2, ...,xN ) generated from PX we
want to generate a corresponding collection of observations ((t1, c1, b1), (t2, c2, b2), ..., (tN , cN , bN ))
that are consistent with a hazard model hx(·, ·) and a censor probability function pc, where the
function pc : {1, 2, ...,T} → [0, 1] specifies the probability pc(t) that an at-risk sample will be cen-
sored at time t. Since the hazard probability is conditioned on samples that survive to time t it
would appear that the synthesis method must keep track of the samples that survive each time
step (i.e. the at-risk samples). One such method is described in (Scott and Kennedy [23]). Their
description is repeated here for convenience (recall that K is the number of event types, so that in
the TTG problem K = |B| = 2).

“A common description of such a noninformative censoring process is that it is indepen-
dent of events. If we articulate how we imagine our data to be generated, we can make
this criterion precise. One possibility is the following. Imagine that, in each period, two
experiments take place: a (K + 1)-tomous experiment deciding which event occurs to
each subject, and a dichotomous experiment determining whether or not the student is
censored (K = number of event types). The noncensored students who receive event 0 go
to the next stage, where the two experiments occur again, independent of earlier stages.
Under this data-generating mechanism, a criterion for censoring to be ignorable is that
the censoring experiment and the event experiment are independent at every stage.”

19Strictly speaking the argument of the distribution is a subset of the Borel set that corresponds to the pre-image
of the domain subset. This paper adopts the standard notational convention where this relationship is implied.
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This method can be implemented using an outer loop over t and an inner loop over the samples
that remain at-risk at each time step as shown below.

Given covariates x1,x2, ...,xN .
Irisk(1)← {1, 2, ..., N} {initialize index set for at-risk samples at initial time t = 1}
for (t = 1, 2, 3, ...) do

for (each data sample i ∈ Irisk(t)) do
if (random binary sample with success probability hxi(t) is successful) then

(ti, ci)← (t, 0) {event is triggered}
else if (random binary sample with success probability pc(t) is successful) then

(ti, ci)← (t, 1) {censor is triggered}
else

insert sample i into Irisk(t+ 1)
end if

end for
end for

We can eliminate the need to track at-risk samples at each time step by exchanging the inner and
outer loops, i.e. by creating an outer loop over the N data samples and an inner loop that steps
through the time values until an event or censor is triggered. A complete realization of this method
is shown in Algorithm 3. The inputs to this algorithm are the (marginal) covariate distribution PX ,
the hazard model hx, the censor probability function pc, and the largest time value T. Note that pc
is not necessarily a probability distribution function, i.e. its values do not necessarily sum to one.
This algorithm starts by generating all N covariate values, and then uses the method just described
to generate an observation (ti, ci) corresponding to each xi value. The structure of this algorithm
is essentially the same as one described in [26], but here it is adapted for the discrete-time problem
and we add code to accommodate incomplete hazard models.

Lines 17-20 determine if an event is triggered at time t by drawing a sample b from a three-
category multinoulli distribution F3 with success probabilities hx(t,G), hx(t,D) and then triggering
the event if b > 0. That is, F3(ρG, ρD) takes the value b = G with probability ρG, b = D with
probability ρD, and b = 0 with probability 1 − (ρG + ρD). Similarly lines 23-26 determine if a
censor is triggered at time t by drawing a sample c from a Bernoulli distribution F2 with success
probability pc(t) and then triggering the censor when c = 1. That is, F2(ρ) is equal to 1 with
probability ρ and a 0 with probability 1− ρ. If the hazard function hx and the censor probability
function pc are independent then the event decision on line 18 and the censor decision on line 24
will be independent, and the independent censoring assumption will hold. To generate dependently
censored samples we need only choose a censor probability function pc that depends on hx. Note
that lines 22-27 prevent an observed event from being censored by requiring b = 0 before a sample
is considered for censoring.

Lines 29-31 handle the special case where the hazard function is incomplete, i.e. when hx(T) < 1.
Without lines 29-31 the loop over t could proceed past the last time value T. If hx is complete then
hx(T) = 1 will guarantee that all samples that reach the last event time T will experience the event
with probability 1 (in line 18), and lines 29-31 will be superfluous. But hx(T) < 1 suggests the
existence of event times greater than T for which the hazard is unknown. In this case the samples
that reach event time T but do not trigger an event in line 18 (or censor in line 24) are labeled as
censored and assigned the observation time T.

Note that Algorithm 3 assigns event and censor times according to the NSS option. To implement
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Algorithm 3 Synthesize TTG data according to a hazard model.

1: Inputs:
2: 1. covariate distribution PX
3: 2. hazard functions hx for each x ∈ X
4: 3. censor probability function pc
5: 4. largest time value T
6:

7: {generate covariate data}
8: for (i = 1 to N) do
9: xi ← sample from distribution PX

10: end for
11:

12: {generate event and censor times}
13: for (i = 1 to n) do
14: t← 1, trigger ← 0
15: while (trigger = 0) do
16: {determine if the event occurs at the current time t for this sample}
17: b← sample from multinoulli distribution F3(hxi(t,G), hxi(t,D))
18: if (b 6= 0) then
19: (ti, ci, bi)← (t, 0, b), trigger ← 1
20: end if
21: {determine if this sample is censored ... but only if the event time has not occurred}
22: if (b = 0) then
23: c← sample from Bernoulli distribution F2(pc(t))
24: if (c 6= 0) then
25: (ti, ci, bi)← (t, 1, b), trigger ← 1
26: end if
27: end if
28: {In case of incomplete hazard, force a censor at the last time}
29: if ((b = 0) AND (c = 0) AND (t = T)) then
30: (ti, ci, bi)← (t, 1, b), trigger ← 1
31: end if
32: t← t+ 1
33: end while
34: end for
35: Return({(xi, ti, ci, bi)})
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the NSE option we would need to synthesize an enrollment flag that determines the student’s
enrollment status at each time. Then we would need to keep track of the number of enrolled
semesters in the loop. Implementation of the NSE option would require another stochastic model,
possibly a state-space model such as a Markov model.

Note also that Algorithm 3 implements a random censor model. To implement a staged censor
model lines 23-26 would be replaced by

if (t = L) then
(ti, ci, bi)← (t, 1, b), trigger ← 1

end if

where L is the observation length for the cohort to which xi belongs.

C.2 Synthesis from a Distribution Model

Algorithm 3 uses a hazard model to determine the event time. The hazard function plays such
a dominant role in survival analysis that this may seem natural, or even imperative. But it is
not essential. In this section we describe a synthesis algorithm that uses a distribution model
instead of a hazard model to determine the event time. We also generalize the censor mechanism
in two ways. First we use a distribution model instead of an (unnormalized) probability model
to determine the censor time, and second we compute a censor time for every sample and then
set the output observation time to the smaller of the event and censor times. These changes have
several advantages. First they allow a direct computation of the event and censor times without
having to loop over time values until one of them is triggered. Second they provide more flexibility
in the model choice and synthesis method. Third they make the choice of independent versus
non-independent censoring more transparent. Fourth they make the unobserved event times for
censored samples available for subsequent analysis.

Let Te be the event time random variable taking values from {1, 2, ...,Te}, and Tc be the censor
time random variable taking values from {1, 2, ...,Te−1}. Let PX,Te,Tc,B be a joint (covariate, event
time, censor time, event type) distribution. Then to synthesize an observation (x, t, c, b) we first
generate a sample (x, te, tc, be) from PX,Te,Tc,B, and then set (e.g. see [17])

(x, t, c, b) =

{
(x, te, 0, be), te ≤ tc
(x, tc, 1, be), te > tc

(35)

Note that the observed time satisfies t = min(te, tc). Also, if c = 1 then the true value of the event
type b is not observed in practice even though it is produced as a part of this synthesis process. Note
that if we were to modify Algorithm 3 by splitting the loop over t (lines 14-33) into two separate
loops over t, one that computes an (event time, event type) (te, be) and another that computes a
(censor time, default event type) (tc, be∗), then the subsequent application of (35) would provide
an equivalent result20.

In the case of independent censoring we assume that the censor time is independent of the
(covariate value, event time, event type) so that

PX,Te,Tc,B = PX,Te,BPTc (independent censoring)

Using PX,Te,B = PTe,B|XPX we obtain the decomposition

PX,Te,Tc,B = PTe,B|XPXPTc

which is the foundation for the synthesis method in Algorithm 4.

20Of course this assumes that PTe,Tc,B|x and hx are two different representations the same random process.
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Algorithm 4 Synthesize TTG data according to a distribution model.

1: Inputs:
2: covariate distribution PX
3: censor time distribution PTc
4: conditional distribution PTe,B|X
5:

6: for (i = 1 to N) do
7:

8: {generate (covariate, event time, censor time, event type) sample}
9: x← generate a covariate sample according to PX

10: (te, be)← generate an (event time, event type) sample according to PTe,B|x
11: tc ← generate a censor time sample according to PTc
12:

13: {generate observed sample}
14: if (te ≤ tc) then
15: (xi, ti, ci, bi)← (x, te, 0, be)
16: else
17: (xi, ti, ci, bi)← (x, tc, 1, be)
18: end if
19:

20: end for
21:

22: Return({(xi, ti, ci, bi)})

Note that Algorithm 4 implements a random censor model. To implement a staged censor model
we would set tc ← L in line 11, where L is the observation length for the cohort to which x belongs.

Note also that Algorithm 4 assigns event and censor times according to the NSS option. To
implement the NSE option we would need to synthesize an enrollment vector e = (e1, e2, ..., eTe)
that represents the student’s enrollment over all time. Then we would compute the event semester

se = (largest value of t where et = 1) = max {t : et = 1}

and the event and censor times
te =

∑Te
t=1 et

tc =
∑L

t=1 et

and replace the test on line 14 with se ≤ L. In the end lines 8-18 would be replaced with the
following.
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x← generate a covariate sample according to PX
(e, be)← generate an (enrollment vector, event type) sample according to PE,B|x
se ← max {t : et = 1}
te =

∑Te
t=1 et

tc =
∑L

t=1 et

{generate observed sample}
if (se ≤ L) then

(xi, ti, ci, bi)← (x, te, 0, be)
else

(xi, ti, ci, bi)← (x, tc, 1, be)
end if

D Proof of Theorem 1

Given the probability distribution of the observed samples PTo,C,B, the marginal distribution PTo,B
is given by

PTo,B(t, b) =
1∑
c=0

PTo,C,B(t, c, b)

and the marginal distribution PTo is given by

PTo(t) =
∑
b∈B

PTo,B(t, b)

The expressions for h and ho in (8) and (9) are

h(t, b) =
PTe,B(t, b)

PTe(Te ≥ t)
ho(t, b) =

PTo,C,B(t, 0, b)

PTo(To ≥ t)

Our task is to prove that if censoring is independent then

PTo,C,B(t, 0, b)

PTo(To ≥ t)
=

PTe,B(t, b)

PTe(Te ≥ t)

This will be accomplished by proving that the distribution of observed uncensored samples satisfies

PTo,C,B(t, 0, b) = PTe,B(t, b)PTc(Tc ≥ t) (36)

and the complementary cumulative distribution of observed times satisfies

PTo(To ≥ t) = PTe(Te ≥ t)PTc(Tc ≥ t) (37)

so that substituting (36) and (37) into the expression for ho will will produce the expression for h.
This proof is divided into two parts. The first part derives key relations between the probability

functions of observed and unobserved times when conditioned on a fixed value of b, and the second

97



part uses these relations to prove the general case. The first part uses the following simplified
notation

pTo = PTo|B=b = distribution of observed time for fixed b

pToe = PTo,C=0|B=b = distribution of uncensored observed time for fixed b

pToc = PTo,C=1|B=b = distribution of censored observed time for fixed b

pTe,Tc = PTe,Tc|B=b = joint distribution of unobserved (event, censor) times for fixed b

pTe = PTe|B=b = distribution of unobserved event time for fixed b

The goal for the first part is to develop expressions for the observed time functions pToe and
pTo(To ≥ t) in terms of the unobserved time functions pTe and PTc under the independent censoring
assumption.

We begin by developing an expression for the distribution of the observed time random variable
when b is fixed. The diagram below shows a grid of (te, tc) values. The (te, tc) pairs that lead to
censored observation times are surrounded in blue, and the pairs that lead to uncensored observation
times are surrounded in magenta. Consider a particular observation time to as shown in the diagram.
The event and censor time values (te, tc) that map to to = min(te, tc) are highlighted in the black
rectangles.

Thus, the value of pTo(to) is given by two sums, one sum over the samples in each of the two black
rectangles. In general the distribution of To is given by the following two sums

pTo(t) =

Te∑
τ=t+1

pTe,Tc(τ, t) +

Te−1∑
τ=t

pTe,Tc(t, τ)

Let Toc be the random variable corresponding to the observed time for censored samples (e.g.
samples in the lower right portion of the diagram above). Then the distribution of Toc is given by
the first sum21

pToc (t) =

Te∑
τ=t+1

pTe,Tc(τ, t), t = 1, 2, ...,Te − 1

Let Toe be the random variable corresponding to the observed time for uncensored samples (e.g.
samples in the upper left portion of the diagram above). Then the distribution of Toe is given by
the second sum

pToe (t) =

Te−1∑
τ=t

pTe,Tc(t, τ), t = 1, 2, ...,Te

21Recall the the distribution of censored times is only defined for times up to Te − 1.
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Our next step is to develop expressions for pToe (t) and pTo(To ≥ t) under the independent censoring
assumption. First we note that

pTo(To ≥ t) =

Te∑
t′=t

pTo(t
′)

=

Te∑
t′=t

pToe (t′) +

Te−1∑
t′=t

pToc (t
′)

= pToe (Toe ≥ t) + pToc (Toc ≥ t)

(38)

Now, if censoring is independent then22

pToe (t) =

Te−1∑
τ=t

pTe,Tc(t, τ) =

Te−1∑
τ=t

pTe(t)PTc(τ) = pTe(t)

Te−1∑
τ=t

PTc(τ) = pTe(t)PTc(Tc ≥ t) (39)

pToc (t) =

Te∑
τ=t+1

pTe,Tc(τ, t) =

Te∑
τ=t+1

pTe(τ)PTc(t) = PTc(t)

Te∑
τ=t+1

pTe(τ) (40)

and therefore

pToe (Toe ≥ t) =

Te∑
t′=t

pToe (t′) =

Te∑
t′=t

(
pTe(t

′)

Te−1∑
τ=t′

PTc(τ)

)
=

Te∑
t′=t

Te−1∑
τ=t′

pTe(t
′)PTc(τ) (41)

pToc (Toc ≥ t) =

Te−1∑
t′=t

pToc (t
′) =

Te−1∑
t′=t

(
PTc(t

′)

Te∑
τ=t′+1

pTe(τ)

)
=

Te−1∑
t′=t

Te∑
τ=t′+1

PTc(t
′)pTe(τ) (42)

Swapping the dummy variables τ and t′ in (41) gives

pToe (Toe ≥ t) =

Te∑
τ=t

Te−1∑
t′=τ

pTe(τ)PTc(t
′) (43)

22Note that if censoring is independent then PTe,Tc|B=b = PTe|B=bPTc , which takes the form pTe,Tc = pTePTc . in
our simplified notation.
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The sums in (42) can be rearranged as follows

pToc (Toc ≥ t) =

Te−1∑
t′=t

(
PTc(t

′)

Te∑
τ=t′+1

pTe(τ)

)

=

Te−1∑
t′=t

Te∑
τ=t′+1

PTc(t
′)pTe(τ)

= PTc(t) (pTe(t+ 1) + pTe(t+ 2) + ...+ pTe(Te)) +

PTc(t+ 1) (pTe(t+ 2) + pTe(t+ 3) + ...+ pTe(Te)) +

...

PTc(Te − 1)pTe(Te)

= pTe(Te) (PTc(t) + PTc(t+ 1) + ...+ PTc(Te − 1)) +

pTe(Te − 1) (PTc(t) + PTc(t+ 1) + ...+ PTc(Te − 2)) +

...

pTe(t+ 1)PTc(t)

=

Te∑
τ=t+1

τ−1∑
t′=t

pTe(τ)PTc(t
′)

(44)

Combining (43) and (44) gives

pToe (Toe ≥ t) + pToc (Toc ≥ t) =

Te∑
τ=t

Te−1∑
t′=τ

pTe(τ)PTc(t
′) +

Te∑
τ=t+1

τ−1∑
t′=t

pTe(τ)PTc(t
′)

=

(
pTe(t)

Te−1∑
t′=t

PTc(t
′)

)
+

Te∑
τ=t+1

Te−1∑
t′=τ

pTe(τ)PTc(t
′) +

Te∑
τ=t+1

τ−1∑
t′=t

pTe(τ)PTc(t
′)

=

(
pTe(t)

Te−1∑
t′=t

PTc(t
′)

)
+

Te∑
τ=t+1

Te−1∑
t′=t

pTe(τ)PTc(t
′)

=

(
pTe(t)

Te−1∑
t′=t

PTc(t
′)

)
+

Te∑
τ=t+1

pTe(τ)

Te−1∑
t′=t

PTc(t
′)

=

(
pTe(t)

Te−1∑
t′=t

PTc(t
′)

)
+

(
Te∑

τ=t+1

pTe(τ)

)(
Te−1∑
t′=t

PTc(t
′)

)

=

(
Te∑
τ=t

pTe(τ)

)(
Te−1∑
t′=t

PTc(t
′)

)
= pTe(Te ≥ t)PTc(Tc ≥ t)

Substituting this result into (38) gives

pTo(To ≥ t) = pToe (Toe ≥ t) + pToc (Toc ≥ t) = pTe(Te ≥ t)PTc(Tc ≥ t) (45)
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This completes the first part of the proof. We start the second part by rewriting the key results
from (39) and (45) in our original notation. To this end (39) and (45) become

PTo,C=0|B=b(t) = pToe (t) = pTe(t)PTc(Tc ≥ t) = PTe|B=b(t)PTc(Tc ≥ t)

PTo|B=b(To ≥ t) = pTo(To ≥ t) = pTe(Te ≥ t)PTc(Tc ≥ t) = PTe|B=b(Te ≥ t)PTc(Tc ≥ t)

Now we multiply both results by PB(b) and use the relation PB(b)PT |B=b(t) = PT,B(t, b) to obtain

PTo,C=0,B(t, b) = PTo,C,B(t, 0, b) = PTe,B(t, b)PTc(Tc ≥ t) (46)

PTo,B(To ≥ t, b) = PTe,B(Te ≥ t, b)PTc(Tc ≥ t) (47)

The result in (46) proves the conjecture in (36), and the result in (47) can be used to prove the
conjecture in (37) as follows

PTo(To ≥ t) =
∑
b∈B

PTo,B(To ≥ t, b)

= PTc(Tc ≥ t)
∑
b∈B

PTe,B(Te ≥ t, b)

= PTc(Tc ≥ t)PTe(Te ≥ t)

The proof is completed by substituting the results above into (9) to obtain

ho(t, b) =
PTo,C,B(t, 0, b)

PTo(To ≥ t)
=

PTe,B(t, b)PTc(Tc ≥ t)
PTe(Te ≥ t)PTc(Tc ≥ t)

=
PTe,B(t, b)

PTe(Te ≥ t)
= h(t, b)

QED
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