


spectral radius information is summarized in Table 4.4.

Figure 4.9: SRK - η = 2.836× 10−4 - FPSA - MPD - P1-S2 Error Modeled Accurately
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Figure 4.10: SRK - η = 2.836× 10−4 - FPSA - MPD

Figure 4.11: SRK - η = 2.836× 10−4 - FPSA - WFD - P1-S2 Error Modeled Accurately
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Figure 4.12: SRK - η = 2.836× 10−4 - FPSA - WFD

L N FPSA-MPD ρ FPSA-WFD ρ

1 2 1.7594× 10−13 1.7594× 10−13

15 16 0.5123 0.3156
31 32 0.5163 0.4500
63 64 0.5163 0.4995
127 128 0.5163 0.5122

Table 4.4: Spectral Radius - SRK η = 2.836× 10−4

Note the near-zero spectral radius value for the L = 1, N = 2 run. This is because the first two

scattering moments are represented exactly by the Fokker-Planck operator. Therefore, as long as

N = 2, we get convergence in one iteration. Another way to look at this is through FPSA-PL

acceleration equivalence condition we described in Sec. 3.3. We note that Eq. (3.96) always holds

for the first two scattering moments. Therefore, for any cross-section kernel, L1 − S2 solution will

always have a zero spectral radius. Moreover we see increasing spectral radius until convergence
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with increasing L. This represents convergence in the quality of FP representation of transport

error with increasing L for the given scattering cross-section data.

Screening parameter - η = 2.836× 10−5

Next, we choose a smaller screening parameter - η = 2.836 × 10−5. The scattering cross-section

moments for this screening parameter is given in Table 4.5.

Parameter Value

SN order 16, 32, 64
σa 1

σt 13761.18804 cm−1

σs,0 13760.18804 cm−1

σs,1 13752.79625 cm−1

σs,2 13740.35284 cm−1

σs,3 13723.63610 cm−1

σs,4 13703.16340 cm−1

σs,5 13679.32132 cm−1

σs,6 13652.41778 cm−1

σs,7 13622.70811 cm−1

σs,8 13590.40995 cm−1

σs,9 13555.71257 cm−1

σs,10 13518.78311 cm−1

σs,11 13479.77096 cm−1

σs,12 13438.81090 cm−1

σs,13 13396.02553 cm−1

σs,14 13351.52706 cm−1

σs,15 13305.41882 cm−1

Table 4.5: Problem Parameters - SRK - η = 2.836× 10−5

L = 15; N = 16, 32, 64

Again, we keep L constant and vary N . The plots obtained from Fourier analyses are presented in

Fig. (4.13), (4.14), (4.15), and (4.16). Spectral radius data has been summarized in Table 4.6.
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Figure 4.13: SRK - η = 2.836× 10−5 - Unaccelerated - L = 15

Figure 4.14: SRK - η = 2.836× 10−5 - FPSA - L = 15

73



Figure 4.15: SRK - η = 2.836× 10−5 - FPSA - MPD - L = 15

Figure 4.16: SRK - η = 2.836× 10−5 - FPSA - WFD - L = 15
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N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9992 0.4706
16 0.4706 0.2123
32 0.4706 0.3793
64 0.4706 0.4466

Table 4.6: Spectral Radius - SRK η = 2.836× 10−5 - L = 15

We note similar behavior to what we saw for η = 2.836 × 10−4. However, one difference we see is

a reduction in the spectral radius. This can be attributed to the fact that reducing η results in

cross-section coming closer to actually having a Fokker-Planck limit. This means the Fokker-Planck

equation will represent the error equation more accurately with decreasing η.

N (= 64) constant and vary L (= 1, 7, 15, 31, 63)

Now, we keep N constant and vary L like before. The plots obtained from Fourier analyses are

presented in Fig. 4.17, and 4.18. The information obtained from Fourier analyses is summarized

in Table 4.7.
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Figure 4.17: SRK - η = 2.836× 10−5 - FPSA - MPD - N = 64
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Figure 4.18: SRK - η = 2.836× 10−5 - FPSA - WFD - N = 64

L FPSA-MPD ρ FPSA-WFD ρ

1 0.1978 0.1978
7 0.3307 0.3237
15 0.4706 0.4466
31 0.5697 0.4972
63 0.5877 0.4972

Table 4.7: Spectral Radius - SRK η = 2.836× 10−5 - N = 64

Again, note convergence in ρ with increasing L. We see exactly the same behavior as we saw before.

Vary N , and L s.t. L = N − 1

Now, we vary N and L together. Eigenvalue plots obtained by Fourier analyses have been presented

in Fig. 4.19, 4.20, 4.21 and 4.22. The spectral radius information is summarized in Table 4.8.
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Figure 4.19: SRK - η = 2.836× 10−5 - FPSA - MPD - P1-S2 Error Modeled Accurately

Figure 4.20: SRK - η = 2.836× 10−5 - FPSA - MPD
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Figure 4.21: SRK - η = 2.836× 10−5 - FPSA - WFD - P1-S2 Error Modeled Accurately

Figure 4.22: SRK - η = 2.836× 10−5 - FPSA - WFD
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L N FPSA-MPD ρ FPSA-WFD ρ

1 2 1.268× 10−12 1.2683× 10−12

15 16 0.4706 0.2123
31 32 0.5697 0.3676
63 64 0.5877 0.4972
127 128 0.5877 0.5622

Table 4.8: Spectral Radius - SRK η = 2.836× 10−5

Increasing L results in increasing spectral radius until convergence of spectral radius in L just like

before. We also see a zero spectral radius for the L1 − S2 problem for the reasons we have already

discussed previously.

Screening parameter - η = 2.836× 10−6

Now we choose a smaller screening parameter - η = 2.836 × 10−6. The scattering cross-section

moments for this screening parameter is given in Table 4.9.

Parameter Value

SN order 16, 32, 64
σa 1

σt 1.376053926 ×105 cm−1

σs,0 1.376053925 ×105 cm−1

σs,1 1.375962036×105 cm−1

σs,2 1.375801671×105 cm−1

σs,3 1.375580632×105 cm−1

σs,4 1.375304120×105 cm−1

σs,5 1.374976030×105 cm−1

σs,6 1.374599480×105 cm−1

σs,7 1.374177065×105 cm−1

σs,8 1.373711006×105 cm−1

σs,9 1.373203248×105 cm−1

σs,10 1.372655515×105 cm−1

σs,11 1.372069359×105 cm−1

σs,12 1.371446189×105 cm−1

σs,13 1.370787293×105 cm−1

σs,14 1.370093861×105 cm−1

σs,15 1.369366996×105 cm−1

Table 4.9: Problem Parameters - SRK - η = 2.836× 10−6
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Keep L(= 15) Constant, and Vary N (= 16, 32, 64)

First, we keep L constant and vary N . The plots obtained from Fourier analyses are presented in

Fig. (4.23), (4.24), (4.25), and (4.26). Spectral radius data has been summarized in Table 4.10.

Figure 4.23: SRK - η = 2.836× 10−6 - Unaccelerated - L = 15

Figure 4.24: SRK - η = 2.836× 10−6 - FPSA - L = 15
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Figure 4.25: SRK - η = 2.836× 10−6 - FPSA - MPD - L = 15

Figure 4.26: SRK - η = 2.836× 10−6 - FPSA - WFD - L = 15
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N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9999 0.4266
16 0.3906 0.3215
32 0.3982 0.4072
64 0.3921 0.3773

Table 4.10: Spectral Radius - SRK - η = 2.836× 10−6 - L = 15

We note the further decrease in spectral radius, for a given (low) L, than for the previous two η’s.

This is because the lower FP moments, now, represent the transport moments more closely.

N(= 64) constant and vary L(= 1, 7, 15, 31, 63)

Again, we will vary L while keeping N constant. The plots obtained from Fourier analyses are

presented in Fig. 4.27, and 4.28. The information obtained from Fourier analyses is summarized

in Table 4.11. We note convergence in ρ with increasing L.
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Figure 4.27: SRK - η = 2.836× 10−6 - FPSA - MPD - N = 64
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Figure 4.28: SRK - η = 2.836× 10−6 - FPSA - WFD - N = 64

L FPSA-MPD ρ FPSA-WFD ρ

1 0.1976 0.1920
7 0.2681 0.2807
15 0.3921 0.3773
31 0.5048 0.4356
63 0.5990 0.4018

Table 4.11: Spectral Radius - SRK η = 2.836× 10−6 - N = 64

The scattering kernel is so forward-peaked in this case that the number of flux moments (15) is

not enough to accurately represent the angular dependence of the angular flux. As we discussed

in previous section, in continuous case, there are residual terms that do not cancel out in the

derivation of Fokker-Planck equation if sufficient number of moments are not accounted for. These

residual terms do not exist in the discrete case, however. Therefore, the continuous FPSA analysis
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will be inherently inconsistent with the angularly-discrete case when sufficient number of moments

are not considered. This is the reason behind the behavior we see here.

Vary N , and L s.t. L = N − 1

Finally, we vary N and L together. Eigenvalue plots obtained by Fourier analyses have been

presented in Fig. 4.29, 4.30, 4.31 and 4.22. The spectral radius information is summarized in Table

4.12.

Figure 4.29: SRK - η = 2.836× 10−6 - FPSA - MPD - P1-S2 Error Modeled Accurately
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Figure 4.30: SRK - η = 2.836× 10−6 - FPSA - MPD

Figure 4.31: SRK - η = 2.836× 10−6 - FPSA - WFD - P1-S2 Error Modeled Accurately
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Figure 4.32: SRK - η = 2.836× 10−6 - FPSA - WFD

L N FPSA-MPD ρ FPSA-WFD ρ

1 2 3.1132× 10−12 1.2683× 10−12

15 16 0.3906 0.3215
31 32 0.5048 0.2727
63 64 0.5990 0.4018
127 128 0.6395 0.5205

Table 4.12: Spectral Radius - SRK η = 2.836× 10−6

We see similar behavior as before. However, here, we see a high spectral radius value for the highest

represented L. This is a result of higher error moments not being represented accurately by FP.

In summary we see that for screened Rutherford kernel, FPSA can potentially provide a good speed

up (at least with respect to number of iteration to convergence) irrespective of N , L and η.
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4.4.2 Exponential Kernel (EK)

Now, we look at the the exponential kernel. we choose parameter ∆ [8] to be 10−6, and 10−9. We

calculate σs,0 using Screened Rutherford Kernel where σs,0 = 13761.95103. Like for the screened

Rutherford kernel, run convergence rate calculations where we keep L constant while increasing N .

We will also vary L and N together such that L = N − 1. However, we will not present data where

we keep N constant and increase L for convenience.

∆ = 10−6

First we choose ∆ = 10−6. The scattering cross-section moments for these parameters are given in

Table 4.13. Note that we only present data for the first 16 moments. Higher moments are presented

in Appendix B.

Parameter Value

SN order 16, 32, 64
σa 1

σt 13762.95103 cm−1

σs,0 13761.95103 cm−1

σs,1 13761.93727 cm−1

σs,2 13761.90975 cm−1

σs,3 13761.85470 cm−1

σs,4 13761.81341 cm−1

σs,5 13761.75837 cm−1

σs,6 13761.67579 cm−1

σs,7 13761.60699 cm−1

σs,8 13761.52442 cm−1

σs,9 13761.41432 cm−1

σs,10 13761.31799 cm−1

σs,11 13761.20790 cm−1

σs,12 13761.07029 cm−1

σs,13 13760.94644 cm−1

σs,14 13760.80883 cm−1

σs,15 13760.64370 cm−1

Table 4.13: Problem Parameters - EK - ∆ = 10−6
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Keep L (= 15) Constant, and Vary N(= 16, 32, 64)

We keep L constant and vary N . The plots obtained from Fourier analyses are presented in Fig.

4.33, 4.34, 4.35, and 4.36. The information obtained from Fourier analyses is summarized in Table

4.14.

Figure 4.33: EK - ∆ = 10−6 - Unaccelerated - L = 15

Figure 4.34: EK - ∆ = 10−6 - FPSA - L = 15
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Figure 4.35: EK - ∆ = 10−6 - FPSA - MPD - L = 15

Figure 4.36: EK - ∆ = 10−6 - FPSA - WFD - L = 15
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N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9999 0.4291
16 0.1053 0.3135
32 0.4203 0.4204
64 0.4279 0.4288

Table 4.14: Spectral Radius - EK ∆ = 10−6 - L = 15

We see converging spectral radius with N . Moreover, they converge to the analytical spectral radius

because EK has a valid FP limit.

Vary N , and L s.t. L = N − 1

Now, we vary N and L together. N = 2, 16, 32, 64, 128 and L = 1, 16, 31, 63, 127. Eigenvalue plots

obtained by Fourier analyses have been presented in Fig. 4.37, 4.39, 4.39 and 4.40. The spectral

radius information is summarized in Table 4.15.

Figure 4.37: EK - ∆ = 10−6 - FPSA - MPD - P1-S2 Error Modeled Accurately
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Figure 4.38: EK - ∆ = 10−6 - FPSA - MPD

Figure 4.39: EK - ∆ = 10−6 - FPSA - WFD - P1-S2 Error Modeled Accurately
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Figure 4.40: EK - ∆ = 10−6 - FPSA - WFD

L N FPSA-MPD ρ FPSA-WFD ρ

1 2 2.9131× 10−12 2.9131× 10−12

15 16 0.1053 0.3135
31 32 0.2230 0.5131
63 64 0.2882 0.6142
127 128 0.3143 0.6352

Table 4.15: Spectral Radius - EK ∆ = 10−6

We see an increasing spectral radius with increasing L just like for SRK. The spectral radii are

significantly different for MPD and WFD because, for this particular cross-section set because of

the difference in the number of FP moments accurately represented by MPD and WFD.
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∆ = 10−9

Now, we choose parameter ∆ [8] to be 10−9. Note that as ∆→ 0, transport limits to FP because the

exponential kernel has a valid FP limit. The scattering cross-section moments for these parameters

are given in Table 4.16. Note that we only present data for the first 16 moments. Higher moments

are presented in Appendix B.

Parameter Value

SN order 16, 32, 64
σa 1

σt 13762.95103 cm−1

σs,0 13761.95103 cm−1

σs,1 13761.95102 cm−1

σs,2 13761.95099 cm−1

σs,3 13761.95094 cm−1

σs,4 13761.95089 cm−1

σs,5 13761.95084 cm−1

σs,6 13761.95076 cm−1

σs,7 13761.95069 cm−1

σs,8 13761.95061 cm−1

σs,9 13761.95050 cm−1

σs,10 13761.95040 cm−1

σs,11 13761.95029 cm−1

σs,12 13761.95015 cm−1

σs,13 13761.95003 cm−1

σs,14 13761.94989 cm−1

σs,15 13761.94972 cm−1

Table 4.16: Problem Parameters - EK - ∆ = 10−9

Keep L(= 15) Constant, and Vary N(= 16, 32, 64)

First, we keep L constant and vary N . The plots obtained from Fourier analyses are presented in

Fig. 4.41, 4.42, 4.43, and 4.44. The information obtained from Fourier analyses is summarized in

Table 4.17.
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Figure 4.41: EK - ∆ = 10−9 - Unaccelerated - L = 15

Figure 4.42: EK - ∆ = 10−9 - FPSA - L = 15
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Figure 4.43: EK - ∆ = 10−9 - FPSA - MPD - L = 15

Figure 4.44: EK - ∆ = 10−9 - FPSA - WFD - L = 15

97



N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9999 0.4291

16 1.8898 ×10−4 5.503 ×10−4

32 0.4206 0.4206
64 0.4303 0.4303

Table 4.17: Spectral Radius - EK ∆ = 10−6 - L = 15

Vary N , and L s.t. L = N − 1

Now, we vary N and L together. N = 2, 16, 32, 64, 128 and L = 1, 16, 31, 63, 127. Eigenvalue plots

obtained by Fourier analyses have been presented in 4.45 and 4.40. The spectral radius information

is summarized in Table 4.18.

Figure 4.45: EK - ∆ = 10−9 - FPSA - MPD
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Figure 4.46: EK - ∆ = 10−9 - FPSA - WFD

L N FPSA-MPD ρ FPSA-WFD ρ

1 2 1.8800× 10−12 1.8800× 10−12

15 16 1.8898 ×10−4 5.5038 ×10−4

31 32 0.0010 0.0020
63 64 0.0047 0.0076
127 128 0.0210 0.0289

Table 4.18: Spectral Radius - EK ∆ = 10−9

We note the extremely small spectral radii with simultaneous increase of N and L such that

N = L + 1. This is attributed to the fact that the FP approximation, in this case, represents

transport error accurately in limit ∆→ 0 because EK has a valid FP limit.
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4.4.3 Henyey-Greenstein Kernel (HGK)

The Henyey-Greenstein kernel famously does not have a Fokker-Planck limit [4] as g → 1. First,

we choose the asymmetry parameter, g = 0.5 and 0.9999. The scattering cross-section moments for

these parameters are given in Table 4.19. Note that we only present data for the first 16 moments.

Parameter Value

SN order 16, 32, 64
σa 0.00001

σt 1.00001 cm−1

σs,0 1.0 cm−1

σs,1 0.5000000000 cm−1

σs,2 0.2500000000 cm−1

σs,3 0.1250000000 cm−1

σs,4 0.6250000000e-1 cm−1

σs,5 0.3125000000e-1 cm−1

σs,6 0.1562500000e-1 cm−1

σs,7 0.7812500000e-2 cm−1

σs,8 0.3906250000e-2 cm−1

σs,9 0.1953125000e-2 cm−1

σs,10 0.9765625000e-3 cm−1

σs,11 0.4882812500e-3 cm−1

σs,12 0.2441406250e-3 cm−1

σs,13 0.1220703125e-3 cm−1

σs,14 0.6103515625e-4 cm−1

σs,15 0.3051757812e-4 cm−1

Table 4.19: Problem Parameters - HGK - g = 0.5

Keep L(= 15) Constant, and Vary N(= 16, 32, 64)

First, we keep L constant and vary N . The plots obtained from Fourier analyses are presented in

Fig. 4.47, 4.48, 4.49, and 4.50. The information obtained from Fourier analyses is summarized in

Table 4.20.
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Figure 4.47: EK - g = 0.5 - Unaccelerated - L = 15

Figure 4.48: HGK - g = 0.5 - FPSA - L = 15
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Figure 4.49: HGK - g = 0.5 - FPSA - MPD - L = 15

Figure 4.50: HGK - g = 0.5 - FPSA - WFD - L = 15
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N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9999 0.4966
16 0.1249 0.1234
32 0.1249 0.1246
64 0.1249 0.1248
128 0.1249 0.1249

Table 4.20: Spectral Radius - HGK - g = 0.5 - L = 15

Note the drastic difference between the angularly continuous and angularly discrete spectral radii.

The scattering kerner, here, does not have a valid FP limit which results in inconsistency between

continuous and discrete representation of transport and FP equation. This is the reason behind

the difference in spectral radii.

Vary N , and L s.t. L = N − 1

Now, we vary N and L together. N = 2, 16, 32, 64, 128 and L = 1, 16, 31, 63, 127. Eigenvalue plots

obtained by Fourier analyses have been presented in Fig. 4.51 and. The spectral radius information

is summarized in Table 4.21.
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Figure 4.51: Spectral Radius - HGK - g = 5 - FPSA - MPD

Figure 4.52: HGK - g = 0.5 - FPSA - WFD
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L N FPSA-MPD ρ FPSA-WFD ρ

1 2 8.5543× 10−12 8.5543× 10−12

15 16 0.1249 0.1234
31 32 0.1249 0.1246
63 64 0.1249 0.1248
127 128 0.1249 0.1249

Table 4.21: Spectral Radius - HGK - g = 0.5

We note that for the cross-section set, here, the higher cross-section moments reduce to sufficiently

low magnitudes for them to have any significant effect on the spectral radii with increasing L.

Therefore, we don’t see the spectral radius increase with increasing L. Next we look at a much

more Forward-Peaked scattering cross-section.

g = 0.9999

Now, we choose parameter g = 0.9999. The scattering cross-section moments for these parameters

are given in Table 4.22.
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Parameter Value

SN order 16, 32, 64
σa 0.00001

σt 1.00001 cm−1

σs,0 1.0 cm−1

σs,1 0.9999000000000000 cm−1

σs,2 0.9998000100000000 cm−1

σs,3 0.9997000299990000 cm−1

σs,4 0.9996000599960001 cm−1

σs,5 0.9995000999900005 cm−1

σs,6 0.9994001499800015 cm−1

σs,7 0.9993002099650035 cm−1

σs,8 0.9992002799440070 cm−1

σs,9 0.9991003599160126 cm−1

σs,10 0.9990004498800210 cm−1

σs,11 0.9989005498350330 cm−1

σs,12 0.9988006597800495 cm−1

σs,13 0.9987007797140715 cm−1

σs,14 0.9986009096361001 cm−1

σs,15 0.9985010495451365 cm−1

Table 4.22: Problem Parameters - HGK - g = 0.9999

Keep L(= 15) Constant, and Vary N(= 16, 32, 64)

First, we vary N while keeping L constant. The plots obtained from Fourier analyses are presented

in Fig. 4.53, 4.54, 4.55, and 4.56. The information obtained from Fourier analyses is summarized

in Table 4.23.
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Figure 4.53: HGK - g = 0.9999 - Unaccelerated - L = 15

Figure 4.54: HGK - g = 0.9999 - FPSA - L = 15
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Figure 4.55: HGK - g = 0.9999 - FPSA - MPD - L = 15

Figure 4.56: HGK - g = 0.9999 - FPSA - WFD - L = 15
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N Unaccelerated ρ FPSA PN -based ρ FPSA-MPD ρ FPSA-WFD ρ

∞ 0.9999 0.8709
16 0.8709 0.7466
32 0.8709 0.8469
64 0.8709 0.8669

Table 4.23: Spectral Radius - HGK - g = 0.9999 - L = 15

Vary N , and L s.t. L = N − 1

Now, we vary N and L together. N = 2, 16, 32, 64, 128 and L = 1, 16, 31, 63, 127. Eigenvalue

plots obtained by Fourier analyses have been presented in Fig. 4.57 and 4.58. The spectral radius

information is summarized in Table 4.24.

Figure 4.57: Spectral Radius - HGK - g = 0.9999 - FPSA - MPD
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Figure 4.58: HGK - g = 0.9999 - FPSA - WFD

L N FPSA-MPD ρ FPSA-WFD ρ

1 2 1.8692× 10−12 6.4026× 10−12

15 16 0.8709 0.7466
31 32 0.9338 0.8671
63 64 0.9624 0.9291
127 128 0.9719 0.9579

Table 4.24: Spectral Radius - HGK - g = 0.9999

Note the sudden increasse in spectral radius for this particular cross-section set. This is because

Henyey-Greenstein kernel does not have a valid FP limit. This means, the FP approximation does

not attenuate transport error moments effectively for source iteration.

To summarize this section, we saw how spectral radius evolves with increasing L, and N for various

scattering kernels and corresponding parameters. We note that FP approximation can potentially
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be used to precondition SN equations with SRK and EK. For HGK, FP may not necessarily be an

effective preconditioner in case of source iteration. For GMRES, however, this may or may not be

the case. We will evaluate the performance of GMRES and FP-preconditioned GMRES solves for

fully discretized (LD-SN ) transport equation in the next chapter.

4.5 Summary

In this chapter, we present all the relevant derivations for numerical implementation, testing, and

assessment FPSA. We discretized the transport and FP equations in angle and space. We also

presented an SN -based framework for assessing FPSA. We presented spectral radius predictions for

FPSA with SRK, EK, and HGK. We note that Fourier analysis predicts FPSA to perform well with

SRK, and EK but not with HGK. This is attributed to the conditions under which the FP-limit is

valid for different scattering cross-section kernels. In the next chapter, we will present numerical

data obtained by analysis of FPSA with different scattering kernels and compare solution run-times

of accelerated and unaccelerated solves.
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Chapter 5

Numerical Experiments

In this chapter, we will talk about the numerical implementation of FPSA. We compare conver-

gence rates and runtimes for unaccelerated and FPSA-accelerated transport solutions. We will use

source iteration, and GMRES for solving the transport equation. We will do our study using three

different scattering kernels - exponential kernel, screened Rutherford kernel, and Henyey-Greenstein

kernel.

5.1 Solution Setup

In order to setup the problem up such that Krylov methods can be used, we write the matrix system

in its operator form. We write spatially-discretized SN equations in operator form by introducing

mass matrix, Mm, which results from the linear-discontinuous finite element discretization from

previous chapter, discrete-to-moment operator, D, to convert the angular flux vector into the

moment vector, cross-section operator, Σ that holds relevant scattering cross-section moments in

the correct order, and a moment-to-discrete operator, M , to the moment vector into the angular

flux vector. We rewrite the operator S in Eq. (2.34) as MMmΣD. L will again represent the
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streaming-plus-removal operator but this time it will be discretized in space and angle.

Lψ = MMmΣDψ + q. (5.1)

We write the transport equation in the standard linear system form, Ax = b, where x is the solution

vector, b is the source, and A is the global matrix representing the discretized system. We rearrange

Eq. (5.1):

Lψ −MMmΣDψ = q. (5.2)

Now, we multiply Eq. (5.2) by DL−1 to obtain:

DL−1Lψ −DL−1MMmΣDψ = DL−1q, (5.3)

which reduces to:

(I −DL−1MMmΣ)φ = DL−1q. (5.4)

Eq. (5.4) is analogous to the standard linear system form of the transport equation, where:

A = (I −DL−1MMmΣ), (5.5)

x = φ, (5.6)

b = DL−1q. (5.7)

We can apply any linear solver to Eq. (5.4) in order to obtain an estimate of φ. Obviously, some

solvers may be more effective than others. Source iteration, as we showed in previous chapters, will

be extremely slow to converge for problems with highly forward-peaked scattering kernel. Other,
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more sophisticated Krylov methods, like GMRES, often, but not always converge more rapidly than

source iteration. Geometric multigrid method (in space) is not expected to be useful because the

transport equation we are solving is not elliptic, however, it may be useful if we use the second order

even-parity (elliptic) form or Self-Adjoint-Angular-Flux form of the transport equation. Angular

multigrid has been attempted and it has proven to be effective [24]. We have implemented transport

solve using source iteration and GMRES. We have verified our implementations thoroughly but we

do will not present verification data here for convenience.

In order to solve the Fokker-Planck error equation, we will use GMRES and direct inversion. The

spatial discretization of the Fokker-Planck error equation is analogous to that of the transport

equation. The standard linear system form of the Fokker-Planck error equation is also analogous

to that of the transport equation.

5.1.1 Comparison of Measured and Theoretical Spectral Radii

Here, we will compare the measured [1] and theoretical (from discrete-in-angle Fourier analysis)

spectral radii. We will do analysis for SRK, EK and HGK. We choose L = 15, N = 16. We

use a slab of length, 100 cm, discretize it using 100 elements. We will use vacuum boundaries for

numerical measurements of spectral radius. The spectral radii have been presented in Table 5.1.

Kernel/Parameter ρMPD
FPSA-FA ρMPD

FPSA-Measured ρWFD
FPSA-FA ρWFD

FPSA-Measured

SRK/η = 2.85× 10−5 0.4706 0.4706 0.2121 0.2120

SRK/η = 2.85× 10−6 0.3906 0.3898 0.3213 0.3215

EK/∆ = 10−4 0.2101 0.1975 0.6299 0.6301

EK/∆ = 10−5 0.1932 0.1954 0.6246 0.6327
HGK/g = 0.9 0.4304 0.4303 0.4177 0.4177

HGK/g = 0.9999 0.8709 0.8688 0.7439 0.7369

Table 5.1: Comparison of Numerical and Theoretical Spectral Radii
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We obtain similar theoretical and measured spectral radii values for various scattering kernels with

varying parameters. The numbers are not exactly the same because the numerical implementation

does measurements on a finite slab with vacuum boundaries. As long as we get good-enough

agreement between theoretical and numerical spectral radii, like we do here, we can say that our

analysis is accurate.

5.2 Efficiency Study

In this section we will assess how the reduction in spectral radius (as seen in previous chapter)

results in reduction in runtime of source iteration (SI) and GMRES solves. We run all problems

using MATLAB [20] and track runtime using the tic-toc functionality in MATLAB. We will place

tic and toc before and after the solver function calls respectively. This means we will not include

the stiffness matrix generation time in our calculation. We will only account for the solver runtime.

Specifically, choose problems with L = 15, and N = 16, 32. We use beam and vacuum boundaries.

We will have a unit distributed source for problems with vacuum boundaries and a unit beam source

with the beam boundary. We will do this for SRK with η = 2.83 × 10−5, for EK with ∆ = 10−5,

and for HGK with g = 0.9999. We will solve the Fokker-Planck error equation (invert the precon-

ditioner) using LU factorization via factorize object [6] in MATLAB, and GMRES [20, 33].

First, we compare unpreconditioned SI and GMRES solves. In order to compare these solves, we

choose η = 2.83× 10−5, L = 15, N = 16, H = 1cm, K = 100, tol = 10−10. We do this to contrast

source iteration and GMRES solves. Table 5.2 and 5.3 present this data. It is clear that GMRES

is far superior to source iteration for forward-peaked transport problems.
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BC/Source Restart GMRES SI

Vacuum/Distributed 168160
50 3305
100 2445
150 1875
200 1540

Beam/Zero did not converge
50 2602
100 2200
150 1895
200 1735

Table 5.2: SRK - Number of Iterations

BC/Source Restart GMRES SI

Vacuum/Distributed 3197.49
50 64.97
100 50.41
150 37.76
200 32.71

Beam/Zero did not converge
50 50.68
100 43.99
150 41.29
200 36.11

Table 5.3: SRK - Solver Runtime [s]

For problems with extremely forward-peaked scattering and with beam sources, there can be dif-

ferences between measured and theoretical spectral radius values. The measured spectral radius

values may be greater than unity even when the theoretical value aren’t. This is due inadequate

representation of delta function (scattering and/or source) in the numerical implementation. This

precision issue can be remedied by using Galerkin quadrature [23], which integrates delta functions

exactly. We have not implemented it here so we see that problems with beam sources diverge with

SI.

Next, we will compare solution rutimes and iteration counts. We will compare these for unpre-
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conditioned GMRES, FPSA-preconditioned SI, and FPSA-preconditioned GMRES solves. We will

not include unpreconditioned source iteration in this study because its ineffectiveness with highly

forward-peaked transport problems has already been demonstrated quite elaborately . We will

arbitrarily choose our restart parameter for this study to be 150.

Screened Rutherford Kernel

We will compare efficiency data for SRK in this section. We will choose a slab of unit length

discretized using hundred elements. We will choose η = 2.83 × 10−5 and σa = 1. Scattering

cross-section moments are calculated using SRK. Finally, L = 15, and N = 16 and 32. Number of

iterations and overall runtime data has been presented in Table 5.4, 5.5, 5.6, and 5.7.

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 1487 9 6 14 10
15/32 1499 9 7 14 12

Factorize 15/16 9 7 14 10
15/32 9 8 14 12

Table 5.4: SRK - Vacuum Boundaries/Unit Distributed Source - Number of Iterations

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 28.75 8.79 6.15 12.01 5.98
15/32 28.12 36.76 18.36 54.13 19.77

Factorize 15/16 1.62 2.45 0.3373 0.2501
15/32 2.75 4.73 0.4244 0.3392

Table 5.5: SRK - Vacuum Boundaries/Unit Distributed Source - Runtime [s]

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 1357 12 8 21 13
15/32 1335 13 10 23 19

Factorize 15/16 12 9 21 13
15/32 13 11 23 19

Table 5.6: SRK - Beam Source - Number of Iterations

117



FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 26.54 11.39 6.975 9.69 5.403
15/32 27 42.59 20.50 58.3 20.26

Factorize 15/16 1.687 2.547 0.4475 0.3074
15/32 2.927 5.061 0.611 0.4828

Table 5.7: SRK - Beam Source - Runtime [s]

We observe a significant decrease (almost three orders of magnitude compared to unpreconditioned

GMRES and five orders of magnitude compared to SI) in the number of transport-iterations required

for convergence due to preconditioning. We also observe a decrease in overall solver runtimes due

to preconditioning when FP-solve is done using LU factorization (by upto two orders of magnitude

compared to unpreconditioned GMRES). The FP-solve, however, can be extremely expensive and

render this preconditioner ineffective with respect to problem’s overall runtime if iterative solution

schemes are used without proper preconditioning. Here, the number of iterations required for

one FP-solve using GMRES was of the same order as an unpreconditioned transport solve using

GMRES. It is imperative that we find an effective preconditioner for FP-solves. We will look into

this in future. The potential, however, of using FP as preconditioner for transport solves is amply

evident from the data presented in this section. Next, we look at efficiency data for similar problems

with the exponential kernel.

Exponential Kernel

We calculate scattering cross-section moments using EK for ∆ = 10−5. The zeroth moment is

calculated using SRK like we did in the previous section. The study, here, is done exactly like we

did in the case of SRK. The same parameters are used as we used for SRK except for scattering

cross-section moments. Number of iterations and overall runtime data has been presented in Table

5.8, 5.9, 5.10, and 5.11.
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FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 2217 7 8 9 15
15/32 2256 10 9 17 19

Factorize 15/16 7 9 9 15
15/32 10 10 17 19

Table 5.8: EK - Vacuum Boundaries/Unit Distributed Source - Number of Iterations

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 51.73 10.32 13.34 11.91 18.49
15/32 56.10 31.14 25.06 42.82 27.85

Factorize 15/16 2.3754 4.5586 0.3762 0.454
15/32 4.155 8.463 0.6098 0.6424

Table 5.9: EK - Vacuum Boundaries/Unit Distributed Source - Runtime [s]

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 2086 9 10 12 35
15/32 1932 14 12 24 28

Factorize 15/16 14 13 12 35
15/32 14 13 24 28

Table 5.10: EK - Beam Source - Number of Iterations

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 39.55 9.45 11.63 8.335 19.42
15/32 36.14 24.89 18.57 34.74 24.87

Factorize 15/16 2.842 6.657 0.2929 0.6853
15/32 2.898 6.799 0.6329 0.6585

Table 5.11: EK - Beam Source - Runtime [s]

We see similar behavior to what we saw in the case of SRK. The solver runtimes differ due to differ-

ence in rate at which FP-solve converges for this particular problem. Again, we note a significant

decrease in number of iterations but a decrease in solver runtime strongly depends on the efficiency

of the FP-solve. Next we will look at the Henyey-Greenstein kernel.
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Henyey-Greenstein Kernel

In this section, we let the asymmetry parameter, g = 0.9999. The study is carried out in the same

way as the previously for SRK and EK. For this section, we will choose σa = 0.00001 cm−1. The

scattering cross-section moments are calculated using HGK. We will choose slab length of 50 cm

disretized using 200 elements. Number of iterations and overall runtime data has been presented

in Table 5.12, 5.13, 5.14, and 5.15.

FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 1150 10 7 28 18
15/32 1461 14 12 32 31

Factorize 15/16 10 8 28 18
15/32 14 13 32 31

Table 5.12: HGK - Vacuum Boundaries/Unit Distributed Source - Number of Iterations

Invert FP L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 83.66 288.1 160.9 931.9 373.4
15/32 102.5 1055 572.7 2618 1428

Factorize 15/16 6.390 12.27 2.193 1.385
15/32 11.75 28.820 2.651 2.5778

Table 5.13: HGK - Vacuum Boundaries/Unit Distributed Source - Runtime [s]

Invert FP L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 597 16 12 29 17
15/32 1634 21 19 32 31

Factorize 15/16 12 9 29 17
15/32 17 16 32 31

Table 5.14: HGK - Beam Source - Number of Iterations
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FP-Solve L/N GMRES FPSAMPD
GMRES FPSAWFD

GMRES FPSAMPD
SI FPSAWFD

SI

GMRES 15/16 42.29 479.9 331.2 1040 285.7
15/32 115.1 1804 990.6 2408 1315

Factorize 15/16 6.795 12.41 2.131 1.316
15/32 12.59 29.69 2.945 2.452

Table 5.15: HGK - Beam Source - Runtime [s]

We note that, just like for SRK and EK, preconditioned schemes have significantly less iteration

counts. However depending on how the Fokker-Planck error equation is solved, the preconditioning

may or may not be effective with respect to runtime reduction. Solving the FP equation with

GMRES renders FPSA scheme unviable, however use of factorization reduces to overall runtime

significantly.

5.3 Summary

In this chapter we described how to numerically solve the transport equation. We ran several

numerical experiments and assessed the speed-ups in iteration count and solver runtime. We saw

that preconditioning transport solve using FP resulted in reduction in iteration count by upto

three orders (when compared to unpreconditioned GMRES solves). The overall runtime, however,

depended completely on how efficiently the FP preconditioner was solved. Direct factorization

resulted in a runtime reduction by upto two orders of magnitude. We noted that FP can be a very

effective preconditioner for transport solves with highly forward-peaked scattering. However, we

must develop an effective solver for FP-solve itself in order to make this an attractive preconditioning

method.
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Chapter 6

Conclusion and Future Work

We began this dissertation with a basic literature review and introducing the problem at hand.

We then went on to provide background required for development of the method presented in this

thesis - we went over the transport equation, derived its basic mono-energetic, slab-geometry form.

We then described basic source iteration and presented how it can be arbitrarily slow using Fourier

analysis. Further, we introduced the idea of synthetic acceleration and demonstrated its equiva-

lence with preconditioning. The first two chapters thoroughly introduced the problem at hand and

basic background required to solve it.

In the third chapter, we introduced FPSA. First, we derived the limit of error equation as average

scattering angle approached zero. This returned the Fokker-Planck approximation. This led us to

the idea of using the Fokker-Planck approximation as a preconditioner (it has already been used

widely as an approximation to the transport equation; now we want to accelerate transport using

Fokker-Planck). Further we went on to describe where the Fokker-Planck approximation is a valid

limit of the transport equation. We introduced the idea of FPSA in this chapter. We presented a

PN based Fourier analysis framework in order to assess FPSA. We also presented how FPSA was
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equivalent to PL acceleration. Under the specific constraint presented in Sec. 3.3, where FPSA

became equivalent to PL acceleration, we expect convergence of transport in one iteration.

In the fourth chapter, we described spatial (LD) and angular (SN ) discretization for the transport

equation and the Fokker-Planck equation. We went over WFD and MPD discretizations for the

angular Laplacian term in the FP equation. Towards the end of this chapter, we presented an

SN based framework for analysis of FPSA with WFD and MPD and all the convergence rate

predictions for SRK, EK, and HGK under with varying parameters - L, N , η, ∆, and g. The fifth

chapter constituted the fully numerical part of this dissertation. We also presented a speed-up study

towards the end of the chapter for screened Rutherford kernel, exponential kernel, and the Henyey-

Greenstein kernel. Essentially, in Ch. 4, and 5, we presented an in-depth study on the viability of

using FP as preconditioner for transport problems with highly forward-peaked scattering. In this

chapter, we will present our conclusions.

6.1 Conclusion

Information presented in the previous five chapters leads us to believe that a forward-peaked scat-

tering kernel presents significant difficulties in obtaining an efficient solution. Standard techniques

including SI and unpreconditioned GMRES can be slow to converge and even diverge. Fokker-

Planck approximation is an effective preconditioning tool to accelerate such problems. However, it

is imperative that we develop an effective preconditioner to make Fokker-Planck solves efficient.
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6.2 Future Work

In future, we would like to develop effective preconditioning techniques for Fokker-Planck solves.

We were unable to include that in this dissertation. We have been looking, specifically, at nonlinear

techniques for Fokker-Planck solve but nothing conclusively effective has been observed yet. There-

fore this was not included in this dissertation. It would be an extremely interesting problem to solve.

Other than that, we note the high spectral radius for FPSA with SI. We note that for kernels with

no Fokker-Planck limit, we must incorporate higher order FP operators in our approximation of

the error equation. We want to use Generalized Fokker-Planck equation to approximate the error

equation. We expect extremely good convergence rates at least with GMRES. The problem, here

also would be the solve time of GFP equation since this time we solve a coupled set of equations

[17]. If we go this route, we would definitely need an efficient solution technique for the GFP solve.

Other than that we wish to extend and analyze the FPSA technique to multi-D, energy-dependent

problems. We would also like to develop a moment-preserving discretization for the angular Lapla-

cian term of the Fokker-Planck equation in multi-D settings.

124



Appendices

125



Appendix A

Screened Rutherford Scattering
Cross-section Moments

C = 0.7805; η = 2.836× 10−4; L = 127; l = 0, 1, ...L

σs,l = [1375.667689, 1370.072664, 1361.213931, 1349.856033, 1336.498659, 1321.507580, 1305.167316,

1287.707638, 1269.318837, 1250.161346, 1230.372215, 1210.069693, 1189.356585, 1168.322808, 1147.047368,

1125.599937, 1104.042120, 1082.428503, 1060.807519, 1039.222176, 1017.710679, 996.3069614, 975.0411392,

953.9399137, 933.0269180, 912.3230238, 891.8466119, 871.6138124, 851.6387190, 831.9335802, 812.5089707,

793.3739463, 774.5361826, 756.0021013, 737.7769840, 719.8650759, 702.2696799, 684.9932423, 668.0374310,

651.4032071, 635.0908903, 619.1002182, 603.4304017, 588.0801750, 573.0478416, 558.3313168, 543.9281667,

529.8356436, 516.0507192, 502.5701149, 489.3903292, 476.5076638, 463.9182469, 451.6180551, 439.6029328,

427.8686112, 416.4107251, 405.2248278, 394.3064060, 383.6508928, 373.2536796, 363.1101269, 353.2155749,

343.5653525, 334.1547857, 324.9792054, 316.0339545, 307.3143944, 298.8159108, 290.5339186, 282.4638676,

274.6012458, 266.9415843, 259.4804601, 252.2134994, 245.1363807, 238.2448371, 231.5346582, 225.0016926,

218.6418492, 212.4510984, 206.4254742, 200.5610740, 194.8540605, 189.3006619, 183.8971723, 178.6399522,

173.5254291, 168.5500970, 163.7105166, 159.0033154, 154.4251873, 149.9728927, 145.6432574, 141.4331729,

137.3395954, 133.3595457, 129.4901081, 125.7284302, 122.0717219, 118.5172546, 115.0623609, 111.7044333,

108.4409232, 105.2693415, 102.1872553, 99.1922891, 96.2821230, 93.4544919, 90.7071847, 88.0380431,

85.4449608, 82.9258828, 80.4788041, 78.1017690, 75.7928699, 73.5502467, 71.3720855, 69.2566182,
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67.2021207, 65.2069129, 63.2693575, 61.3878584, 59.5608610, 57.7868503, 56.0643510, 54.3919255,

52.7681737].

C = 0.7805; η = 2.836× 10−5; L = 127; l = 0, 1, ...L

σs,l = [13760.18804, 13752.79625, 13740.35284, 13723.63610, 13703.16340, 13679.32132, 13652.41778,

13622.70811, 13590.40995, 13555.71257, 13518.78311, 13479.77096, 13438.81090, 13396.02553, 13351.52706,

13305.41882, 13257.79638, 13208.74850, 13158.35792, 13106.70201, 13053.85332, 12999.88004, 12944.84643,

12888.81313, 12831.83748, 12773.97383, 12715.27368, 12655.78600, 12595.55733, 12534.63200, 12473.05223,

12410.85833, 12348.08877, 12284.78032, 12220.96812, 12156.68584, 12091.96567, 12026.83848, 11961.33386,

11895.48018, 11829.30467, 11762.83347, 11696.09166, 11629.10336, 11561.89174, 11494.47907, 11426.88676,

11359.13541, 11291.24482, 11223.23408, 11155.12151, 11086.92478, 11018.66090, 10950.34622, 10881.99651,

10813.62695, 10745.25216, 10676.88621, 10608.54268, 10540.23461, 10471.97460, 10403.77475, 10335.64676,

10267.60186, 10199.65088, 10131.80426, 10064.07204, 9996.463883, 9928.989115, 9861.656697, 9794.475260,

9727.453109, 9660.598238, 9593.918336, 9527.420799, 9461.112740, 9395.000997, 9329.092143, 9263.392494,

9197.908118, 9132.644840, 9067.608253, 9002.803724, 8938.236402, 8873.911222, 8809.832914, 8746.006010,

8682.434848, 8619.123579, 8556.076173, 8493.296423, 8430.787952, 8368.554218, 8306.598519, 8244.923997,

8183.533641, 8122.430298, 8061.616669, 8001.095318, 7940.868679, 7880.939051, 7821.308610, 7761.979411,

7702.953388, 7644.232362, 7585.818041, 7527.712026, 7469.915813, 7412.430796, 7355.258269, 7298.399431,

7241.855389, 7185.627157, 7129.715664, 7074.121753, 7018.846184, 6963.889638, 6909.252717, 6854.935949,

6800.939788, 6747.264618, 6693.910754, 6640.878444, 6588.167872, 6535.779158, 6483.712364, 6431.967489,

6380.544478].

C = 0.7805; η = 2.836× 10−6; L = 127; l = 0, 1, ...L

σs,l = [1.376053925×105, 1.375962036×105, 1.375801671×105, 1.375580632×105, 1.375304120×105,

1.374976030×105, 1.374599480×105, 1.374177065×105, 1.373711006×105, 1.373203248×105, 1.372655515×105,
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1.372069359×105, 1.371446189×105, 1.370787293×105, 1.370093861×105, 1.369366996×105, 1.368607725×105,

1.367817010×105, 1.366995756×105, 1.366144814×105, 1.365264992×105, 1.364357053×105, 1.363421724×105,

1.362459699×105, 1.361471638×105, 1.360458174×105, 1.359419914×105, 1.358357438×105, 1.357271306×105,

1.356162055×105, 1.355030204×105, 1.353876252×105, 1.352700682×105, 1.351503960×105, 1.350286538×105,

1.349048852×105, 1.347791325×105, 1.346514370×105, 1.345218383×105, 1.343903752×105, 1.342570853×105,

1.341220052×105, 1.339851706×105, 1.338466160×105, 1.337063752×105, 1.335644811×105, 1.334209658×105,

1.332758606×105, 1.331291960×105, 1.329810018×105, 1.328313072×105, 1.326801406×105, 1.325275298×105,

1.323735021×105, 1.322180840×105, 1.320613015×105, 1.319031802×105, 1.317437450×105, 1.315830202×105,

1.314210299×105, 1.312577975×105, 1.310933459×105, 1.309276977×105, 1.307608750×105, 1.305928994×105,

1.304237923×105, 1.302535743×105, 1.300822662×105, 1.299098878×105, 1.297364590×105, 1.295619991×105,

1.293865272×105, 1.292100620×105, 1.290326218×105, 1.288542247×105, 1.286748884×105, 1.284946304×105,

1.283134678×105, 1.281314174×105, 1.279484960×105, 1.277647197×105, 1.275801046×105, 1.273946665×105,

1.272084210×105, 1.270213833×105, 1.268335684×105, 1.266449912×105, 1.264556663×105, 1.262656080×105,

1.260748305×105, 1.258833476×105, 1.256911730×105, 1.254983204×105, 1.253048029×105, 1.251106336×105,

1.249158256×105, 1.247203914×105, 1.245243437×105, 1.243276947×105, 1.241304567×105, 1.239326416×105,

1.237342613×105, 1.235353274×105, 1.233358514×105, 1.231358447×105, 1.229353185×105, 1.227342836×105,

1.225327511×105, 1.223307316×105, 1.221282357×105, 1.219252738×105, 1.217218562×105, 1.215179931×105,

1.213136944×105, 1.211089700×105, 1.209038297×105, 1.206982830×105, 1.204923395×105, 1.202860085×105,

1.200792993×105, 1.198722209×105, 1.196647823×105, 1.194569925×105, 1.192488601×105, 1.190403938×105,

1.188316023×105, 1.186224938×105, 1.184130767×105].
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Appendix B

Exponential Kernel Scattering
Cross-section Moments

∆ = 10−6; L = 127; l = 0, 1, ...L

σs,l = [13761.95103687960, 13761.93727492856, 13761.90975106778, 13761.85470331868, 13761.81341774080,

13761.75837066604, 13761.67579974425, 13761.60699136524, 13761.52442217744, 13761.41432921141,

13761.31799935237, 13761.20790964787, 13761.07029626143, 13760.94644673881, 13760.80883860928,

13760.64370692158, 13760.49234004714, 13760.32721607954, 13760.13456870500, 13759.95568728571,

13759.76305056222, 13759.54289061045, 13759.33649794843, 13759.11635204636, 13758.86868312205,

13758.63478301448, 13758.38713200615, 13758.11195820898, 13757.85055494796, 13757.57540340062,

13757.27272932513, 13756.98382769755, 13756.68118067321, 13756.35101140867, 13756.03461669608,

13755.70447975140, 13755.34682088165, 13755.00293886010, 13754.64531804619, 13754.26017564948,

13753.88881258934, 13753.50371445161, 13753.09109510041, 13752.69225776618, 13752.27968934415,

13751.83960010495, 13751.41329575507, 13750.97326458214, 13750.50571301526, 13750.05194940188,

13749.58446350513, 13749.08945766447, 13748.60824303321, 13748.11331093316, 13747.59085936598,

13747.08220245570, 13746.55983316605, 13746.00994491270, 13745.47385495522, 13744.92405798261,

13744.34674257625, 13743.78322929609, 13743.20601463979, 13742.60128210613, 13742.01035572020,

13741.40573387183, 13740.77359472882, 13740.15526594613, 13739.52324788935, 13738.86371314685,

13738.21799316818, 13737.55859037837, 13736.87167153784, 13736.19857205539, 13735.51179649931,
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13734.79750555346, 13734.09703875053, 13733.38290288595, 13732.64125231838, 13731.91343086897,

13731.17194764433, 13730.40295042915, 13729.64778749761, 13728.87897035161, 13728.08263995306,

13727.30014919368, 13726.50401205490, 13725.68036242695, 13724.87055798355, 13724.04711527003,

13723.19616085595, 13722.35905736146, 13721.50832398027, 13720.63007971222, 13719.76569228823,

13718.88768363504, 13717.98216493361, 13717.09050918992, 13716.18524114855, 13715.25246392228,

13714.33355595645, 13713.40104489837, 13712.44102554331, 13711.49488194016, 13710.53514472403,

13709.54790012322, 13708.57453795433, 13707.58759192550, 13706.57313944848, 13705.57257627170,

13704.55843926168, 13703.51679676397, 13702.48905062287, 13701.44774094881, 13700.37892677138,

13699.32401619471, 13698.25555265887, 13697.15958562757, 13696.07752962873, 13694.98193151791,

13693.85883094293, 13692.74964901937, 13691.62693610433, 13690.47672177962, 13689.34043391228,

13688.19062644716, 13687.01331864984, 13685.84994530254]

∆ = 10−9; L = 127; l = 0, 1, ...L

σs,l = [13761.95103687960, 13761.95102311765, 13761.95099559375, 13761.95094054594, 13761.95089926009,

13761.95084421229, 13761.95076164058, 13761.95069283083, 13761.95061025913, 13761.95050016352,

13761.95040382987, 13761.95029373427, 13761.95015611476, 13761.95003225721, 13761.94989463772,

13761.94972949431, 13761.94957811286, 13761.94941296948, 13761.94922030218, 13761.94904139683,

13761.94884872956, 13761.94862853837, 13761.94842210913, 13761.94820191797, 13761.94795420290,

13761.94772024977, 13761.94747253473, 13761.94719729578, 13761.94693581876, 13761.94666057985,

13761.94635781702, 13761.94606881612, 13761.94576605334, 13761.94543576663, 13761.94511924186,

13761.94478895521, 13761.94443114464, 13761.94408709600, 13761.94372928549, 13761.94334395106,

13761.94297237856, 13761.94258704419, 13761.94217418591, 13761.94177508955, 13761.94136223134,

13761.94092184921, 13761.94049522900, 13761.94005484695, 13761.93958694098, 13761.93913279693,
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13761.93866489105, 13761.93816946125, 13761.93768779337, 13761.93719236367, 13761.93666941004,

13761.93616021834, 13761.93563726483, 13761.93508678738, 13761.93455007187, 13761.93399959455,

13761.93342159330, 13761.93285735399, 13761.93227935287, 13761.93167382783, 13761.93108206473,

13761.93047653982, 13761.92984349100, 13761.92922420412, 13761.92859115543, 13761.92793058284,

13761.92728377219, 13761.92662319974, 13761.92593510338, 13761.92526076898, 13761.92457267278,

13761.92385705267, 13761.92315519452, 13761.92243957458, 13761.92169643073, 13761.92096704885,

13761.92022390519, 13761.91945323761, 13761.91869633201, 13761.91792566464, 13761.91712747335,

13761.91634304404, 13761.91554485298, 13761.91471913799, 13761.91390718499, 13761.91308147025,

13761.91222823157, 13761.91138875490, 13761.91053551649, 13761.90965475414, 13761.90878775381,

13761.90790699175, 13761.90699870574, 13761.90610418177, 13761.90519589607, 13761.90426008643,

13761.90333803883, 13761.90240222951, 13761.90143889625, 13761.90048932503, 13761.89952599211,

13761.89853513525, 13761.89755804043, 13761.89656718392, 13761.89554880348, 13761.89454418508,

13761.89352580500, 13761.89247990100, 13761.89144775904, 13761.89040185541, 13761.88932842786,

13761.88826876236, 13761.88719533520, 13761.88609438412, 13761.88500719509, 13761.88390624442,

13761.88277776983, 13761.88166305730, 13761.88053458314, 13761.87937858506, 13761.87823634905,

13761.87708035142, 13761.87589682987, 13761.87472707039]
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Appendix C

Henyey-Greenstein Scattering
Cross-section Moments

g = 0.5; L = 63; l = 1, 2, ...L

σs,l = [1., .5000000000000000, .2500000000000000, .1250000000000000, 0.6250000000000000e-1,

0.3125000000000000e-1, 0.1562500000000000e-1, 0.7812500000000000e-2, 0.3906250000000000e-2,

0.1953125000000000e-2, 0.9765625000000000e-3, 0.4882812500000000e-3, 0.2441406250000000e-3,

0.1220703125000000e-3, 0.6103515625000000e-4, 0.3051757812500000e-4, 0.1525878906250000e-4,

0.7629394531250000e-5, 0.3814697265625000e-5, 0.1907348632812500e-5, 9.536743164062500e(-7),

4.768371582031250e(-7), 2.384185791015625e(-7), 1.192092895507812e(-7), 5.960464477539062e(-

8), 2.980232238769531e(-8), 1.490116119384766e(-8), 7.450580596923828e(-9), 3.725290298461914e(-

9), 1.862645149230957e(-9), 9.313225746154785e(-10), 4.656612873077393e(-10), 2.328306436538696e(-

10), 1.164153218269348e(-10), 5.820766091346741e(-11), 2.910383045673370e(-11), 1.455191522836685e(-

11), 7.275957614183426e(-12), 3.637978807091713e(-12), 1.818989403545856e(-12), 9.094947017729282e(-

13), 4.547473508864641e(-13), 2.273736754432321e(-13), 1.136868377216160e(-13), 5.684341886080801e(-

14), 2.842170943040401e(-14), 1.421085471520200e(-14), 7.105427357601002e(-15), 3.552713678800501e(-

15), 1.776356839400250e(-15), 8.881784197001252e(-16), 4.440892098500626e(-16), 2.220446049250313e(-

16), 1.110223024625157e(-16), 5.551115123125783e(-17), 2.775557561562891e(-17), 1.387778780781446e(-

17), 6.938893903907228e(-18), 3.469446951953614e(-18), 1.734723475976807e(-18), 8.673617379884035e(-
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19), 4.336808689942018e(-19), 2.168404344971009e(-19), 1.084202172485504e(-19)]

g = 0.9999; L = 63; l = 1, 2, ...L

σs,l = [1., .9999000000000000, .9998000100000000, .9997000299990000, .9996000599960001, .9995000999900005,

.9994001499800015, .9993002099650035, .9992002799440070, .9991003599160126, .9990004498800210,

.9989005498350330, .9988006597800495, .9987007797140715, .9986009096361001, .9985010495451365,

.9984011994401820, .9983013593202379, .9982015291843059, .9981017090313875, .9980018988604843,

.9979020986705983, .9978023084607312, .9977025282298852, .9976027579770622, .9975029977012645,

.9974032474014943, .9973035070767542, .9972037767260465, .9971040563483739, .9970043459427391,

.9969046455081448, .9968049550435940, .9967052745480896, .9966056040206348, .9965059434602328,

.9964062928658867, .9963066522366001, .9962070215713765, .9961074008692193, .9960077901291324,

.9959081893501195, .9958085985311845, .9957090176713314, .9956094467695642, .9955098858248873,

.9954103348363048, .9953107938028212, .9952112627234409, .9951117415971685, .9950122304230088,

.9949127291999665, .9948132379270465, .9947137566032538, .9946142852275935, .9945148237990707,

.9944153723166908, .9943159307794592, .9942164991863812, .9941170775364626, .9940176658287089,

.9939182640621261, .9938188722357199, .9937194903484963]
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