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ABSTRACT 
 

 
 

Reliability analysis yields statistically derived technical system performance estimates.  

Traditional reliability analysis employs classical statistical techniques predicated upon 

asymptotic properties of large data sets.  Not uncommonly, however, medium to small 

data sets constrain analysis efforts for high risk systems characterized by significant 

danger or cost.  This paper outlines a general reliability analysis paradigm to contend 

with small to medium data sets.  Preliminary sensitivity analysis using scatter plots and 

tests for non-randomness reveals component-level drivers in system-level performance 

measures.  Comprehensive data collection efforts targeting all available, high-quality 

information sources decrease and allow analysts to estimate uncertainty in model 

parameters describing driving component performance.  Bayesian analysis accumulates 

these data into posterior distributions summarizing all available performance knowledge 

about driving components.  Sampling-based uncertainty propagation methods then 

transform component-level posterior distributions into system-level parent and sampling 

distributions.   Reliability metric point-estimates and credible intervals estimate the 
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system reliability and benchmark the quality of the estimates, respectively.  An 

operational reliability assessment of the B-2 Radar Modernization Program (B2-RMP) 

modernized radar system demonstrates the mechanics of the analysis paradigm applied to 

real data.  Results from analysis including uncertainty explicitly modeled in all B-2 RMP 

components benchmark results from analysis including uncertainty modeled for driving 

components only. 
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Chapter 1: Overview 

 

“Beware of false knowledge; it is more dangerous than ignorance.” George Bernard Shaw 

“Information is a source of learning. But unless it is organized, processed, and available to the right people 

in a format for decision making, it is a burden, not a benefit.”  William Pollard 

 

 

1.1 Introduction  

 

Mathematical models of real systems allow us to interpolate and extrapolate system 

characteristics through time and space.  However, models are, by definition, 

approximations of what is real, and as such never include all information impacting 

system properties.  Model approximations can be known and deliberate, known and 

unavoidable or unknown and unavoidable [1].  Known and deliberate approximations are 

made in the interest of efficiency when their impact on results is minor relative to some 

standard of accuracy and precision.  Known and unavoidable approximations are made 

due to an understood lack of knowledge about the system or due to inherent stochasticity 

in the system.  Unknown and unavoidable approximations occur when the system is so 

poorly understood that analysts are unaware of the extent to which they lack important 

knowledge about it.  Known approximations can be explicitly defined and their effect on 

model results can often be quantified.  When model results inform decision making 

processes that entail significant environmental, human health or financial risk, 

accompanying definitions and estimates of the approximations used in the model help 

decision makers benchmark the quality of the information contained in the results.   
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The development and procurement of technical systems are often associated with non-

trivial resource expenditures. These systems can also pose potential hazards to human 

health and the environment.  As a consequence, technical system performance estimates 

play an important role in industrial and sociopolitical decision making processes.  This 

paper focuses on methods to quantify the approximations involved in the estimation of 

technical system performance metrics using reliability block diagram models and 

demonstrates an approximation analysis in a case study of the B-2 modernized radar 

operational reliability assessment.     

 

1.2 Reliability Analysis  

 

Less than a century ago, the field of technical system reliability analysis arose in the 

interest of assessing variation in airplane operational safety as a function of engine 

number [2].  Since then, mass-production and rapidly evolving technological 

sophistication in high-value/ high-consequence systems has inspired concurrent evolution 

in reliability analysis sophistication and rigor.  Lines of inquiry in reliability 

investigations fall into one of three idiosyncratic domains: human reliability, software 

reliability and hardware reliability [2].  Operations research analysts explore how 

reliability estimates in these three domains combine to produce an overarching estimate 

of human-in-the-loop, technical system reliability.     

 

A subdivision within hardware reliability techniques occurs along the lines of physics 

based versus actuarial-based approaches [2].   Physics-based approaches model the 
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strength, S, of a technical item and the load it will bear, L, as random variables.  The 

reliability of the item is defined as the probability that S is greater than L: 

 

R = Pr(S>L) 

 

Modifications of this equation to incorporate multiple dimensions including time are 

standard.  In the actuarial approach, all reliability information is subsumed in a time-to- 

failure (or a time-between failure if the system is repairable, cf. below) random variable, 

Y (X if the system is repairable); a proxy for explicitly modeled physical variables such as 

load and strength.   

 

Technical systems undergo periods of reliability growth and decay.  System reliability 

during these periods is often determined using reliability distributions with time-

dependent parameters [3].  When not experiencing reliability growth or decay, a system 

is said to be in a steady-state.  Steady-state reliability regimes are easier to model since 

reliability distributions during these periods have time-independent parameters.  During 

steady-state periods in the life history of a non-repairable system, the time-to-failure 

distribution,  , is the generator of all actuarial-based reliability metric estimates and 

distributions [2,3].  In particular, the reliability distribution of a non-repairable system,  , 

is defined as  = 1 -  .  Thus, actuarial-based reliability measures the likelihood a system 

will not fail during a particular time interval.   
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System reliability analysis explores how component-level reliability combines to affect 

system-level reliability.  This includes structural and compositional considerations.  The 

counter-intuitive result that a system composed of highly reliable components may still 

exhibit low reliability is a consequence of emergent properties associated with the 

structure, rather than the composition, of the system [2].  Somewhat more intuitively, the 

location and dispersion of component-level time-to-failure or time-between-failures 

distributions describing the random variable Y or X for each component,    also influence 

system-level reliability. 

 

Repairable and non-repairable system reliability investigations differ in complexity and 

descriptive metrics.  Common, non-repairable system reliability metrics include the 

reliability function and mean time-to-failure (MTTF or     , where Y is the random 

variable representing time-to-failure events).  Repairable system reliability analysis 

includes all metrics and distributions found in non-repairable system reliability along 

with others that summarize system repair characteristics and operational capacity given 

that the system is inoperable for time intervals due to repair events.  Availability, mean 

time-between-failures (MTBF or       where   is the random variable representing the 

time the system is up), maintainability, and mean down-time (MDT or       where   is 

the random variable representing the time the system is down) are typical metrics of 

repairable system reliability [2,3].  Mean-time-between-failures is a measure of the time 

the system is operating (e.g. not being repaired).  Reliability metric nomenclature can be 

misleading and care should be taken to investigate the formulae defining the metrics to 
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ensure proper interpretation.  Since repairable system models incorporate two random 

varibles, X and D, the complexity of the analysis involved scales accordingly. 

 

Actuarial-Based Reliability Analysis Using Reliability Block Diagrams 

 

 
Reliability block diagrams (RBDs) are commonly used models in actuarial-based 

reliability investigations.  They provide both abstraction, leading to ease of solution and 

system representation, and solution accuracy for a broad class of systems.  System 

models using RBDs incorporate independent, component-level random variable 

distributions, such as time-to-failure distributions.  The resolution of the system model 

can be set arbitrarily based on how many component distributions it includes.  

Component reliability distributions are represented schematically by blocks.  The 

architecture of the RBD represents how block random variable distributions combine 

recursively to determine a random variable distribution of the system as a whole. 

  

The basic recursive relationships are represented with series and parallel block structures 

(cf. Figure 1 below).  In the case where the component distributions are time-to-failure 

distributions, a series structure including a set of blocks fails if one or more of the blocks 

in the structure fail.   

 

Figure 1:  Basic Recursive Structures in an RBD 



6 

 

The analyst sets failure behavior of a parallel structure as a function of component block 

failure to reflect how redundancy has been engineered into the system to improve 

reliability.  For instance, a parallel structure containing three blocks may fail if one, two 

or three component blocks fail concurrently.  Frequently, a fraction denotes the failure 

behavior of a parallel structure.  The denominator of this fraction is the total number of 

blocks in the parallel structure while the numerator is the number of blocks that must 

operate concurrently for the structure to operate.  RBD models usually display these 

fractions in an obvious manner in relation to each parallel structure.  A parallel structure 

that fails when only one component block fails is isomorphic to a series structure 

containing the same number of blocks.   

 

In a well-formed RBD, connections between the components and their positions relative 

to one another clearly manifest the manner in which individual component reliability 

combines to affect system reliability as a whole. RBD components are generally defined 

so that component random variables are independent.  Some RBD software packages 

allow users to define dependencies between components.  When this is not sufficient, 

other models, such as Markov Chains, are more appropriate [2]. 

 

Figure 2 depicts a small RBD model.  For simplicity, assume this is a non-repairable 

system and that the Fja, j=1,2,..,5 are time-to-failure distributions.  Note the ½ following 

each of the two parallel structures in this diagram.  This indicates that the parallel 

structure remains operating if one out of the two constituent components is operating.  
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Appendix A outlines the process of computing the analytical time-to-failure distribution 

for this system. 

 

 

Figure 2: A simple RBD composed of series and parallel structures 

 

Monte-Carlo Simulation Applied to RBDs 

 

For simple RBDs like the one depicted in Figure 2, it is possible to analytically define the 

system random variable distributions as functions of block random variable distributions.  

While it is in principle possible to evaluate these functions, it is often impractical for 

systems with many components and parallel architectures.  Even defining a functional 

relationship between block random variables and system random variables is impractical 

for many classes of sufficiently complex systems. Monte Carlo (MC) simulation is an 

attractive alternative to explicit evaluation of RBD system-level random variable 

distributions.  The goal of generic MC simulation is to estimate an unknown parameter or 

unknown parameters, such as the mean and standard deviation, of some distribution.  In 

the MC community, this distribution is called the “parent distribution” [4].  The parent 

distribution for a RBD is the system-level random variable distribution of interest, e.g. 

the system time-to-failure distribution, denoted Fa.   



8 

 

 

Using a random sampling technique, one MC run generates one point in the parent 

distribution.  Multiple runs constitute an MC simulation and result in an estimate of the 

parent distribution.  Thus, with infinite time and/or resources, it is theoretically possible 

to exactly form a parent distribution from block random variable distributions.  However, 

practical limits on resources dictate that the MC generated parent distribution will always 

be approximate.  Such an approximation amounts to a known error due to finite, random 

sampling in the algorithm.  

  

From the approximate parent distribution, it is possible to calculate an estimate of its 

unknown parameter(s) using a function (usually a linear combination of the points 

comprising the parent distribution) called an “estimator” [4,5].  The estimator, being a 

function of parent distribution data generated from randomly selected input distribution 

data, is itself a random variable.  Repeated runs generate a distribution of the estimator, 

called “the sampling distribution.”   A sampling distribution is the distribution of a 

parameter corresponding to a parent distribution.  Figure 3 schematically represents the 

flow of generic MC simulation applied to an RBD model. 

 

Thus, MC simulations generate estimations of unknown parameters that have a known, 

quantifiable error.  Sampling distribution dispersion arises from the randomly, finitely 

determined parent distribution. This, in turn, is a consequence of random, finite sampling 

data from the input distributions used to define the parent distribution.  However, 

according to The Central Limit Theorem, as the number of points used to generate the 
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sampling distribution increases, the sampling distribution becomes approximately  

normal with mean equal to the parameter of interest [5]. 

 

Commercial software programs that use RBDs with Monte Carlo Methods implement 

various algorithms [17].  It is important to consult user manuals to understand software 

specific algorithms.  Different Monte Carlo algorithms entail different standard error in 

the sampling distributions.  The solutions for some systems may diverge beyond an 

acceptable tolerance due to algorithmic differences [6].  Determining which package to 

use under such circumstances would entail more detailed analysis of the interplay 

between the system of interest and the structure of the different software algorithms. 

 

The ultimate goal of the RBD/MC simulation is to find unbiased, minimum variance 

estimators of the parameters of the system-level parent distributions such as time-

between-failures distributions, Fa [4].  Generally, the user defines a relevant time span for 

the simulation based on system properties, such as estimated obsolescence, or segregated 

reliability regimes that should be simulated separately so that distribution parameters are 

approximately time-independent, such as short growth period intervals and steady-state.  

During this time span, the simulation samples randomly from the block distributions.  

Directly and indirectly, these samples constitute data points that combine to form system-

level random variable distributions, i.e. the parent distributions.  At the end of the 

simulation time span, system quantities such as reliability are computed as averages of 

these distributions over time as well as averages over system state space, e.g. the time-

between- failures event space. 
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Figure 3: Flow of Monte Carlo analysis applied to RBD 

 

 

1.3 Approximations in Analysis  

 

As mentioned above, results derived from Monte Carlo simulations are approximate in 

the sense that they are computed using a finite number of samples from continuous input 

distributions.   The magnitude of Monte Carlo approximation is a function of the number 

of points used in the estimator computation and the number of estimator points used to 

define the sampling distribution.  Due to time and resource constraints as well as 

constraints introduced by boundary conditions on equations governing the simulation, it 

is not always possible to increase these two factors arbitrarily to get MC approximations 
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down to an acceptable tolerance.  In this case, a quantified estimate of the sampling 

distribution dispersion can benchmark how approximate MC results are. 

 

Equations from probability theory quantify MC approximations when the estimated 

parameter is a mean [7].  However, approximations from other non-Monte Carlo sources 

in analysis endeavors are not so readily quantifiable.  This poses a serious problem when 

analytical results guide policy affecting public safety and significant resource 

expenditures.  Under such circumstances, estimates of the accuracy and precision of 

analytical conclusions inform policy makers about whether such results posses sufficient 

integrity to be used as a basis for decision making.  

 

All analysis endeavors approximate a physical system with some sort of model.  Sets of 

initial and boundary conditions and descriptions of variables and their respective 

couplings define models of systems that are not changing, or static, in some reference 

frame.  A model may be as simple as a single deterministic equation or as complex as 

architectures of nested systems of equations.  The amount of detail included in a model is 

a function of the types of problems for which it is intended to facilitate solution, desired 

solution accuracy, and efficiency concerns. 

 

However, no matter the level of detail included in an analytical model, it is still an 

approximation of the physical world.  Analytical results will therefore always have some 

inherent bias and/or dispersion with respect to an unknown true value.   A complete 

model includes an explicit description of all known approximations entailed in its 
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development as well as the motivation behind and possible limitations arising from these 

approximations. 

 

There is no unified approach to defining and quantifying approximations resulting in bias 

and dispersion in modeling and simulation results.  Oberkampf et al., attempt to 

synthesize various and disparate contributions to this end accumulated over many years 

from a variety of fields [1].  They divide approximation sources into three categories: 

variability, uncertainty, and error.   

 

Variability is a consequence of inherent randomness in the system being modeled and as 

such is an irreducible approximation.  Uncertainty results from a lack of knowledge about 

the system.  Because it is possible to accumulate more knowledge about a system via 

experimentation or research, uncertainty is a reducible approximation.  This paper 

follows widely used nomenclature replacing the terms variability and uncertainty with 

aleatory uncertainty and epistemic uncertainty, respectively [8].   Dispersion in the 

random variable distributions characterizing each block in an RBD model is a 

manifestation of aleatory uncertainty.  Greater dispersion in these distributions entails 

greater aleatory uncertainty in the model of the block.  Because an analyst does not know 

the exact form of the block random variable distributions with arbitrary precision, 

epistemic uncertainty arises in the block distribution parameters.  As a consequence, the 

parameters of the block distributions themselves can be characterized using distributions.  

In this case, the parameter random variable distribution dispersion represents the degree 

of epistemic uncertainty in the value of the parameter.     
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Error is a recognizable deficiency in the modeling and simulation process that is not due 

to lack of information.  Errors can be isolated, described, and controlled using proper 

protocols.  Errors can arise in RBD models due to approximations made while defining 

the block variables and their interactions.  Since the block random variables must be 

independent, analysts frequently combine blocks with coupled variables into one block.  

This approximation decreases the resolution of the model by neglecting the constituent 

contributions and interactions of the subsumed components, resulting in known errors.  

Approximations from Monte Carlos simulations, if incorporated into the RBD model, 

also constitute errors.  These are known approximations that can be quantified either 

analytically or by some other means such as bootstrapping methods [7].   

 
Bayesian Inference and Exploratory Sensitivity Analysis 

 

 
Implicit in traditional RBD/MC algorithms is the assumption that component-level 

distribution parameters are known with arbitrary precision.  However, epistemic 

uncertainty in model parameters is almost always present to some extent, especially in 

low-data scenarios when large deviations from this approximation can result in 

incomplete, misleading results. There are several approaches to representing and 

transforming epistemic uncertainty [1,8].  When an analyst uses distributions to represent 

uncertainty in block parameters, the machinery of probability theory and statistics 

becomes available to transform the uncertainty in a model. 
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Modeling block parameters with distributions introduces an additional component-level 

random variable into the model.  Section 1.2 defined X and D as the random variables 

describing the aleatory uncertainty in the uptimes (times-between-failures) and 

downtimes of a repairable system.  Now, with the addition of epistemic uncertainty in the 

model, each influential block has one or more random variables describing the epistemic 

uncertainty in the parameters of the aleatory uncertainty distributions.  

 

Bayesian statistical inference provides a systematic means to define and update these 

epistemic uncertainty random variables as more information become available.  Under 

these circumstances, test data can be incorporated with additional information, such as 

past performance data, subject-matter expert knowledge, software model results and 

performance data of similar systems.  In low data scenarios, including all sources of 

quality information in analysis can drastically improve fidelity in decision-driving results. 

   

Bayesian Inference requires two basic inputs in the form of distributions.  The first     , 

called “the prior distribution,” represents information about a parameter,  , available 

prior to a data collection event [3,9]. Dispersion in      quantifies the level of epistemic 

uncertainty about the parameter remaining after accounting for available information 

prior to testing. The prior distribution can encompass past testing and performance 

information as well as information garnered during a subject matter expert elicitation.  

The second input distribution,       , called “the likelihood distribution,” is a summary 

of recently collected data not included in the prior distribution determination.  Dispersion 
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in        represents the amount of aleatory uncertainty surrounding the item being 

tested. 

 

A conditional probability distribution, computed using Bayes’ Theorem (cf. equation (1)), 

incorporates the information contained in the likelihood distribution (component-level 

mean response and variability) into the component-level parameter information 

summarized by the prior distribution.  The resultant “posterior distribution,”        , 

contains information from both the prior distribution and the test data. 

 

                                                          
          

             
        (1) 

 

The analytical tractability of the conditional probability distribution defining the posterior 

in (1) is determined by the tractability of the integral in the denominator.  This integral 

can be solved for many types of prior distribution when the likelihood is distributed as a 

standard exponential with only one uncertain parameter, the scale parameter (cf. 

Appendix B and C).  Frequently, the likelihood distribution can be approximated well by 

one of the common distribution types.  If the prior is then modeled using a distribution 

called the “conjugate” of the likelihood distribution type, the likelihood and prior 

distributions are called a “conjugate pair,” and the posterior can be obtained analytically.  

Using conjugate pairs imposes restrictions on the prior distribution type, however.   

 

Tables of conjugate pairs and formulas describing the resultant posterior type as a 

function of the likelihood variable and parameter(s) and prior variable and parameter(s) 
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are available in the literature [9].  In the interest of completeness, this paper includes an 

analytical derivation of several posteriors (cf. Appendices B and C for details).  The 

posterior results given an exponential likelihood for a single observation y, i.e. 

        , and gamma prior over   with parameters,        are summarized below:         

 

       
          

             
 =

                
  
  

                 
  
    

 
 

  
       

      
 
 
 

        
      

 
 
 
     

 
 

 

 
       

 
 
 

          
         

 

    
 

 
 
     (2) 

 

As is always the case with conjugate pairs, the posterior here has the same distribution 

type as the prior, a gamma, with different parameters, shape parameter,     , and scale 

parameter,   .   

 

In situations where the conjugate pair approximation is too restrictive, WinBUGS [10], 

YADAS [3] or other software suites compute posteriors from arbitrary likelihood and 

prior distributions.  These packages use variations of Markov Chain Monte Carlo to 

approximate the posterior.  Although these packages are versatile, the posteriors they 

produce are approximations, including error associated with the sampling based 

algorithms used to generate them. 

   

The first step in Bayesian inference involves modeling the input distributions.  The 

likelihood distribution is specified analytically (cf. Appendices B and C).  Accumulating 
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prior information from diverse sources into one prior distribution is less straightforward.  

One method consists of iteratively applying Bayes’ Theorem to distributions formed from 

different data sources.      

   

Generating accurate and precise prior distributions can be a time and resource intensive 

process requiring ingenuity and careful planning [8,9,11,12].  Isolating the most 

influential component-level parameters with a sensitivity analysis circumvents the need 

to explicitly model priors for non-influential components.  Conclusions from a sensitivity 

analysis conducted on a model before an uncertainty analysis aid analysts in determining 

how to reduce the dimensionality of the epistemic uncertainty in the model and, hence, 

the expense entailed by the uncertainty analysis.   

 

Approaches to sensitivity analysis differ depending on the type of model involved and 

scope of inquiry desired.  Saltelli et al., categorize sensitivity analysis approaches 

according to scope of inquiry [13].  Factor Screening involves isolating important factors 

(inputs) in a system with many factors.  Local Sensitivity Analysis emphasizes the local 

impact of factors on a system and is typically accomplished analytically using partial 

derivatives.  Global Sensitivity Analysis emphasizes apportioning uncertainty in output to 

uncertainty in input factors.  Alternative sensitivity analysis taxonomies defined in terms 

of model efficiency (expensive vs. cheap), model type (e.g. linear vs. nonlinear, 

monotonic vs. non-monotonic), approach (analytical vs. sampling based) or fidelity 

(using the model directly vs. using a meta-model to approximate the model) also serve as 

helpful guides in choosing the best approach for specific analytical regimes [8,13].   
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In the case where the model is a black box, sensitivity analysis techniques accurate for 

specific model types are inappropriate.  The schematic design and recursive nature of, as 

well as the nested sampling loops in RBDs models including epistemic uncertainty place 

these models in the black box category.  In this case, scatter plots can give insights about 

implicit relationships between component-level and system-level epistemic uncertainty 

without any assumptions about the functional form of the relationship.   

 

After approximate relationships have been discerned from scatter plots, tests for non-

randomness such as the Common Means Test, the Common Locations Test, the 

Statistical Independence Test, the Regression Test and the Quadratic Regression Test can 

quantify and rank inputs according to influence upon output response.  Because these 

tests work well for specific model types, information in scatter plots should inform the 

weight an analyst gives to specific test results.  In tandem, these sensitivity analysis 

techniques provide an estimate of the global main effects, or drivers, in the system 

response.     

 

If a sensitivity analysis reveals that output responses are insensitive to changes in one or 

more input variables, point estimates of these variables can be used in the model in lieu 

of distributions.  For RBD/MC simulations incorporating estimates of epistemic 

uncertainty in component parameters, this amounts to discovering that system-level 

epistemic uncertainty is unaffected by epistemic uncertainty in some component-level 

parameters.  Investing resources into characterizing epistemic uncertainty distributions 

for these parameters is therefore unnecessary.  
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Bayesian statistical methods provide a means to characterize and iteratively decrease 

epistemic uncertainty in a parameter as more information becomes available.  

Augmenting commercial RBD/MC algorithms by using distributions to represent 

epistemic uncertainty and Bayesian inference to update epistemic uncertainty 

distributions as new information becomes available is a logical next step in honing 

reliability analysis.  In the area of system reliability analysis, Bayesian methods will most 

commonly apply at the component-level to update epistemic uncertainty in component-

level parameter distributions.  As a consequence, uncertainty propagation methods are 

necessary to make inferences about how these component-level transformations translate 

to the system-level. 

 

Uncertainty Analysis 

 

 
RBD/MC commercial software sampling propagates aleatory uncertainty from the 

component to the system level.  An additional sampling layer applied to component 

parameter distributions representing epistemic uncertainty produces a system-level 

epistemic uncertainty distribution and a suite of system-level aleatory uncertainty 

distributions.  Figure 4 depicts the flow of the simulation including the additional 

sampling layer.  The system-level epistemic uncertainty distribution summarizes the 

cumulative effect of epistemic uncertainty in influential component-level distributions.  It 

serves as an important benchmark of the precision in the analytical process. 

 

After forming influential component priors and generating posteriors, samples drawn 

from each of the influential component parameter uncertainty distributions (the posterior 
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distributions derived from Bayesian inference) n times produce n parameter vectors.  

Each of the n parameter vectors is (1 x m), where m is the number of influential blocks in 

the RBD model.  The vectors comprise randomly-grouped sets of parameter samples, 

with one sample from each influential block.  Each parameter vector defines a set of 

block distribution parameters to be used as input for a standard RBD/MC algorithm.   

Non-influential component parameters are fixed at their point-estimate values in the 

simulation.  These point estimates can be obtained using historical data or from subject 

matter expert estimations. 

 

For inexpensive models, using MC sampling in the outer sampling layer is simple and 

yields good results with large sample sizes.  Medium to large RBD models entail longer 

simulation times, imposing limits on system-level sample generation, however.  In these 

cases, strategic sampling from input distributions can survey the input variable space with 

fewer samples than simple random sampling, thus decreasing the number of model 

evaluations necessary to map the output space.  Stratified sampling and Latin Hypercube 

sampling are popular alternatives to random sampling when model evaluations are 

expensive [8,14,15]. 

 

Stratified sampling involves partitioning a set into mutually exclusive, exhaustive subsets 

(strata) [8].  Random samples from these subsets comprise a stratified sample.  

Partitioning allows an analyst to assure that important events in the set are included in the 

sample, even if these events have small associated probability.    
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Latin hypercube sampling (LHS) presents a useful compromise between stratified and 

simple random sampling in several respects [8,14,15].  Like stratified sampling, LHS 

involves partitioning a set into mutually exclusive, exhaustive subsets.  LHS differs from 

stratified sampling, however, in that the intervals defining the subsets are equally spaced.  

Consequently, the analyst only defines the total number of intervals desired, and not their 

ranges.  For most models, LHS estimator convergence improves upon the estimator 

convergence of simple random sampling [8,14,15].  Furthermore, implementation of LHS 

requires less time and skill than is required in stratified sampling schemes because it is 

not necessary to define strata and their associated probabilities [14].  Because model 

evaluations are expensive for the B-2 modernized radar RBD, the outer sampling loop for 

the sensitivity and uncertainty analysis presented in Chapter 2 uses LHS. 

 

The output of the entire simulation is a set of sampling distributions of the mean, one 

generated from each parameter vector.  The means of these sampling distributions exhibit 

dispersion due to the uncertainty in the block parameters as well as sampling error 

incurred during the simulation.  The dispersion of the means can be used to calculate 

approximate credibility intervals that quantify uncertainty in system parameters (cf. 

figure 4).  However, when model evaluations are expensive and place limitations on 

system-level data generation, finite sampling error could significantly affect the estimated 

system-level epistemic uncertainty distribution.   

 

It is possible to estimate the cumulative effect of the error from the two sampling sources.  

When the parameter of interest is a mean, error due to finite MC sampling executed in  
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Figure 4: Depiction of the system-level uncertainty analysis conducted 

by applying an extra layer of sampling from parameter distributions 

 

 

RBD/MC software is summarized via the standard error of the mean, denoted seF(   .  In 

this notation, x is a random variable with distribution F and     is the mean of a random 
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sample taken from the set of events represented by x.  The standard error of any estimator 

is a common indicator of statistical accuracy [7].  RBD/MC software suites output a 

seF(    for all mean estimates.  By the Central Limit Theorem, as the number, k, of 

samples increases, the sampling distribution of the mean approaches a normal with 

standard deviation equal to the seF(    [5,7].  The sampling distribution with mean equal 

to the estimated mean and standard deviation equal to the seF(    summarizes the error in 

the mean estimate due to finite sampling in the RBD/MC simulation. 

      

              seF(            
            (3) 

 

A bootstrap method can be used to estimate the cumulative effect of both the MC and the 

LHS sampling error.  In this method, l bootstrap sample vectors are generated by 

sampling with replacement p times from an empirical distribution composed of p 

observed values [7].  In the case of RBD models including epistemic uncertainty, an 

observed value is the system-level metric (usually an approximate mean value),          

       generated by RBD/MC software for each of the   parameter sample vectors.  

Recall that LHS, stratified sampling or MC methods produced the p parameter sample 

vectors used as inputs for the RBD/MC simulation.  

 

So, we get a sample of size p,                         by sampling                

with replacement l times.  Further, substituting a random sample from 

                   for each        in a bootstrap sample accounts for the inner MC sampling 
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error.  The sampling with replacement of the       accounts for the outer loop sampling 

error.  CDFs formed using these new observed bootstrap sample vectors can then be used 

to approximate point wise confidence bands around the epistemic uncertainty curve.  

These bounds estimate the amount of error incurred in the two sampling loops (cf. 

Appendix D for further details).   

 

In sum, the steps outlined above culminate in an uncertainty CDF, bounded by 

confidence bands estimating the magnitude of the sampling error in the uncertainty 

analysis.  The uncertainty CDF can be used to compute metric point-estimates as well as 

credible intervals defining the fidelity of the point-estimates.  Additionally, the fidelity of 

the uncertainty CDF itself is quantified using point wise confidence bands.  Because a 

preliminary sensitivity analysis reduces the dimensionality of the epistemic uncertainty 

probability space, this analysis paradigm generates results with more information than a 

point estimate using minimal information from the input space.  Of course, there is no 

free lunch in nature; the cost of this trade-off is the increased effort introduced into the 

analysis by the sensitivity analysis.  The next section applies the process outlined above 

to real data taken from the B-2 modernized radar program operational reliability tests. 
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Chapter 2: Operational Reliability Assessment of the  

B-2 Modernized Radar System  

 

At the Air Force Operational Test and Evaluation Center (AFOTEC), we test and 

evaluate new weapon system capabilities in operationally realistic battle space 

environments.  Operational test (OT) data are obtained from a production-representative 

system in an operationally realistic environment.  Reliability analysis plays a key role in 

defining measures of operational capability. 

   

AFOTEC consists of a headquarters in Albuquerque, New Mexico and five detachments 

spread throughout the U.S.  Each detachment specializes in operational evaluation of 

specific classes of technical systems used in the Air Force. For example, Detachment 5 in 

California works with mobility, bomber, command and control, intelligence, surveillance 

and reconnaissance weapon systems.  Analysts at AFOTEC headquarters are tasked to 

support test teams and analysts at the detachments as needed.       

 

Air Force leadership compares results from OT analysis to standards stipulated in 

contracts between the developer and the Air Force (the purchaser).  When OT results 

indicate that the system performance is lacking significantly, the developer is obliged to 

discover and modify the source of the shortfall prior to large scale production.  OT 

analysis also provides logistics information to aid decision makers on how to best support 

the war fighter using these systems in wartime scenarios.  Since large sums of tax-payer 

money as well as the lives of civilian and military personnel hinge on these 
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considerations, estimates of fidelity in operational reliability analysis results provide 

crucial information for decision makers. 

 

2.1      The B-2 Radar Modernization Program 

 

The Air Force recently contracted Northrop Grumman Corporation (NGC) to incorporate 

new technology into the B-2 bomber radar system. This project, deemed the B-2 

Modernized Radar Program (B-2 RMP), included the following adaptations to the legacy 

radar system: 

 

-R/E (receiver exciter) modified (6 shop replaceable units) to accommodate radar 

modernization program (RMP) requirements 

 

-Legacy antenna replaced with new AESA (Active Electronically Scanned Array) 

antenna assemblies: AESA includes all legacy antenna functionalities combined with the 

functionalities contained in the legacy transmitters.  Northrop Grumman Corporation 

(NGC) lead B-2 RMP engineer, Steve Ruch, considers the legacy antenna and the AESA 

“totally different technologies.” 

 

-Legacy transmitters removed 

- WG-SW (Wave-Guide Switch) is new 

-Electrical power to the AESA provided by new PPCU (Prime Power Conditioning 

Units) 

 

-DMS RFFE modified to provide RF signal protection from on-board radar emissions at 

the new operating frequency (not considered part of the radar system and not modeled in 

RBD) 

 

-The Ku Band Transponder LRUs modified to accommodate the new operating 

frequency (not considered part of the radar system and not modeled in RBD) 
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Upon release, Detachment 5 of AFOTEC initiated an operational performance evaluation 

on several production-representative prototypes of the B-2 modernized radar.  Part of this 

evaluation included reliability testing and analysis to determine the values of several 

relevant performance metrics.  The figure of merit MTBF, E(X), mean time-between-

failures, was highlighted by Air Force leadership amongst these as particularly relevant.   

Sparse operational test data available for the B-2 RMP system due to resource and time 

constraints limited the accuracy and precision of classical statistical analysis for this 

system.  Consequently, analysts at AFOTEC headquarters were tasked to develop an 

alternative analysis paradigm to contend with this and other increasingly common low to 

medium data scenarios.   

 

To leverage the more prolific component-level data, the AFOTEC bomber analysts at 

Detachment 5 used a reliability block diagram developed by NGC representing the 

modernized radar system.  The RBD underwent an internal accreditation process at 

AFOTEC prior to being used in this analysis.  The final accredited RBD is shown below 

in Figure 5.  As a repairable system, the model of each component, i, incorporates two 

types of aleatory uncertainty random variable:    , the time-between-failures random 

variable, and   , the down-time random variable.  

 

The two aleatory random variables for each component and its mirror image, henceforth 

called a redundant  structure, are defined independently and identically.  Component- 
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Figure 5:   B-2 RMP (Radar Modernization Program) Reliability Block Diagram 

 

 

  Repair Distribution Type 
              
Mean   Std. Dev.         

                      

Antenna   Lognormal 8   0.5         

                      

MSS   Lognormal 3   0.5         

                      

PPCU   Lognormal 2   0.5         

                CONSTANT OVER   

R/E   Lognormal 4   0.5   ENTIRE ANALYSIS   

                      

RDP   Lognormal 2   0.5         

                      

RSP   Lognormal 3   0.5         

                      

WG-SW   Lognormal 5   0.5         

 

Table 1.  Parameter values for component repair distributions 

 

level time-between-failures probability spaces are summarized in the model with 

exponential distributions,           , while lognormal down-time distributions, 

               , describe each component’s down-time probability space (cf. Tables 1 

and 2).  AFOTEC bomber analysts and NGC engineers estimated           in the model.  

At headquarters, we determined estimates for   using legacy data collected by AFOTEC 

and research and development (R&D) data amassed at NGC.   
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Time-Between-Failure 

Distribution Type 

  

   =         

 RDP   Exponential       

 

    1/1879.2   

                      

RSP   Exponential       

 

    1/2349   

                      

R/E   Exponential       

 

    1/804   

                      

WG-SW   Exponential       

 

    1/11,437.80   

                      

PPCU   Exponential       

 

    1/61,348   

                      

MSS   Exponential       

 

    1/1566   

            

 

        

           Antenna   Exponential       

 

    1/2412   

 

Table 2.  Parameter values for component failure distributions 

 

2.2 Preliminary Sensitivity Analysis 

 

To begin the reliability analysis, we conducted a preliminary sensitivity analysis on the 

accredited RBD model described above to isolate and characterize the most influential 

components affecting epistemic uncertainty in B-2 RMP MTBF estimates.  We used 

RAPTOR RBD/MC software (developed at AFOTEC) for the RBD/MC portion of our 

analysis.  RAPTOR provides many unique capabilities necessary for the simulation of 

Air Force technical systems not found in other RBD/MC software suites. 
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The preliminary sensitivity analysis focused on how epistemic uncertainty in the 

component-level time-between-failures distribution parameter,   , affected epistemic 

uncertainty in the system-level MTBF only.  We held the repair distribution parameters 

constant throughout the analysis.  We modeled the epistemic uncertainty in the seven 

redundant-structure scale parameters with a uniformly distributed random variable,   , 

centered at        with range [0, 2      ], where        is the estimated mean of    determined 

using legacy and R&D test data (cf. Table 3), e.g.               
  .  

 

Then, using the R function for Latin Hypercube sampling, we produced 100 randomly 

grouped (1x7) parameter vectors with components from these distributions.  Each vector 

served as the time-between-failures distribution parameter input for one RBD/MC 

simulation.  We set the termination point of the simulation at 131,534.1 simulated hours 

to ensure that the          was no larger than approximately one percent of the system-

level MTBF.  The entire process produced 100 estimates of system-level MTBF as a 

function of component parameter     changes.   

 

Although one of the simplest sensitivity analysis techniques, scatter plots are robust in 

that they do not require any assumptions about the functional form of the relationships 

being explored [8,13].  Because the    samples spanned a broad range including very 

small numbers, we used scatter plots of mean system-level response            versus 

        ) for each of the seven redundant structures as a first step in determining possible 

relationships between system and component-level uncertainty (cf. Figure 6 below).  As 
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Uniform 

Distribution 

Parameters 

 

Component Mean Interval 

Antenna 1/2412 [0,1/1206] 

MSS 1/56376 [0,1/28188] 

PPCU 1/61,348 [0,1/30674] 

R/E 1/804 [0,1/402] 

RDP 1/46980 [0,1/23490] 

RSP 1/37584 [0,1/18792] 

WGSW 1/11437.8 [0,1/5718.9] 

 

Table 3:  Component uniform distribution parameters 

  

demonstrated in Figure 6, the MSS and Antenna     appear to result in systematic 

changes in the system MTBF over the entire range of parameter values.   The other 

component types demonstrate little influence on the system MTBF over the entire sample 

range.  

 

The approximate relationships demonstrated in the scatter plots allowed us to apply 

quantitative, model-dependent tests for non-randomness to the data in a more informed 

manner.  There appeared to be no obviously non-monotonic relationships.  Furthermore, 

it seemed that the system-level MTBF, as a function of    could be reasonably 

approximated using a linear or quadratic function of these variables. The common means 

test (CMT), common locations test (CLT), test for statistical independence (SI), 

regression test (REG) and quadratic regression test (QREG) are accurate for determining 
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Figure 6: Scatterplots of      System MTBF) vs.         ), for i = 1, 2, …, 7 for each of the seven 

redundant structures 

 

 

general relationships, failing only in pathological cases.  REG is accurate when 

identifying linear relationships, while QREG is accurate when identifying quadratic 

relationships.   

 

Non-randomness tests such as the common means test (CMT), the common locations test 

(CLT), and the test for statistical independence (SI) involve partitioning the scatter-plot 

abscissa (as well as the ordinate for the SI test) into disjoint classes and determining if the 

data across the classes share common statistics (e.g. the mean for the CMT, the median 

for the CLT or the chi-square test for contingency tables for SI).  If they do, it is less 

likely there is a relationship between the dependent and independent variable [8].  The 

regression (REG) and quadratic regression (QREG) tests involve fitting a surface (linear 

in the case of REG, quadratic in the case of QREG) to the data and testing to see if the 

coefficient of a predictor variable is significantly larger than zero.  If it is, there is a 

significant relationship between that predictor and the response variable [8].   
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For each test, p-values quantify the level of non-randomness in the predictor/response 

variable relationship.  A small p-value corresponds to low level of randomness in the 

relationship (e.g. small p-value indicates a significant relationship between the predictor 

and response variable).  As can be seen by the small associated p-values in Table 4, the 

CMT, CLT, SI, REG, and QREG tests confirm that the MSS and antenna   dispersion 

exerts significant influence on the system MTBF.  Although not apparent in the scatter 

plot, the non-randomness tests isolated the RE   as influential as well.  The REG and 

QREG tests designated the WG-SW   as a driver in the model.   

 

The small number of components in the system as well as the high-level of symmetry 

facilitates a comparison of these quantitative results with qualitative, more intuitive 

notions of how specific blocks should influence system reliability measures.  The first 

group of redundant blocks: RSP, RDP and R/E, are paired in a one-out-of-two 

configuration, meaning that only one of the two redundant blocks needs to be operational 

to keep the system operational.  Thus, the system should not be very sensitive to 

individual downing events in these blocks. 

 

The subsequent two groups, including the WG-SW, PPCU, MSS and antenna 

components, are two-out-of-two redundant structures, meaning blocks in both parallel 

strings must operate if the system is to remain operational.  Individual, component-level 

downing events in these groups result in a system-level downing event, e.g. the system 

should be more sensitive to component-level failures for these blocks.  The fact that the 

system MTBF is insensitive to PPCU and WG-SW parameters is possibly due to some 
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interplay between their repair distribution parameters and the portion of the parameter 

space from which we sampled.    

 

                

Common Means Test  

(CMT) 

Common Locations Test 

(CLT) 

Statistical 

Independence Test (SI) 

 

Input 

 

MSS 

 

Antenna 

 

RE 

 

MSS 

 

Antenna 

 

RE 

 

MSS 

 

Antenna 

 

P-val 

 

0 

 

0 

 

0.0366 

 

0 

 

0 

 

0.0353 

 

0 

 

0.00008 

 

Regression Test 

(REG) 

 

Quadratic Regression Test 

(QREG) 

 

Input 

 

MSS 

 

Antenna 

 

RE 

 

WGSW 

 

MSS 

 

Antenna 

 

RE 

 

WGSW 

 

P-val 

 

0.0016 

 

0.0029 

 

0.0181 

 

0.0393 

 

 

0 

 

0 

 

0.0193 

 

0.0410 

    Table 4:  P-values from five different non-randomness tests 

 

The preliminary sensitivity analysis conducted via an accredited reliability block diagram 

of the B-2 RMP indicates that the most influential failure distribution parameters on the 

system-level mean response (MTBF) are those of the MSS and the Antenna.  These two 

components appear to drive epistemic uncertainty in B-2 RMP system-level MTBF and 

thus, indirectly, other reliability measures (cf. reference [2] for equations relating MTBF
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to other reliability measures).  Accurate, well-defined and precise descriptions of 

reliability measures for such drivers directly entail more informative, higher fidelity 

system-level measures. 

 

2.3 Component-Level Epistemic Uncertainty Modeling and 

Minimization with Bayesian Inference 

 

Prior Determination 

 

For the purposes of benchmarking the preliminary sensitivity analysis results, we 

modeled distributions representing epistemic uncertainty in both driving and non-

influential components.   This allowed us to compare results from the full model, 

including epistemic uncertainty distributions for all components, with those from the 

reduced model, containing epistemic uncertainty distributions for driving components 

only.  Because NGC modeled all component failure distributions as exponential, we 

modeled all observations constituting the likelihood distributions derived from test data 

as exponentials.  In order to facilitate calculations, we modeled each component-level 

prior distribution on   as a gamma, the conjugate prior of an exponential likelihood.  To 

this end, we used a formula cited by NIST on its Bayesian reliability website to form 

gamma priors from legacy data [16].  According to the NIST formula, the gamma prior 

shape parameter is defined as the number of recorded failures in the historical data, the 

scale parameter the reciprocal of the total time during which failure data were logged.   
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The NIST formula can be derived from first principles by taking a uniform prior on 

[0,   (an uninformative prior) and forming a posterior using the legacy data as a 

likelihood in the limiting case where     (cf. Appendix B).   When new test data 

defining another likelihood distribution becomes available, the posterior formed above 

can be inputted as the prior to be updated using Bayes’ Theorem.  Thus, Bayesian 

analysis enables iterative model “learning” as more information from test data becomes 

available.   

 

However, this method assumes that legacy and RMP components are equivalent; an 

assumption that is not valid for new or modified RMP components.  For these 

components, the prior parameters can be informed by legacy data only to the extent that 

the RMP components resemble the legacy components.  NGC R&D (research and 

development) test data for the new and modified components provides additional 

reliability information for new and modified components.   

 

To reconcile R&D and legacy data sources for the new and modified components, 

weighted averages of historical data and R&D estimates for the new and modified 

components would most accurately serve as prior parameter estimates.  The weights 

would reflect an estimate of the deviation of the RMP components from the legacy 

components.  That is, the larger the technological deviation of the RMP components from 

legacy components, the larger the weight attributed to the R&D data in the prior 

parameter estimates.   
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Unfortunately, the NGC engineers with the expertise to estimate such weights were not 

contracted to provide this information or any additional information about uncertainty in 

the component-level drivers.  As a consequence, we took a conservative approach here, 

and the new and modified component priors do not incorporate historical data, only NGC 

R&D data.  We used the NIST formula with the R&D data likelihood to define prior 

distribution parameters for these components.  NGC was the only source of additional 

information that could decrease and further characterize epistemic uncertainty in driving 

component parameters.  Therefore, the driver parameters do not incorporate additional 

information to decrease uncertainty and increase the resolution of the models 

representing uncertainty in these component parameters.   AFOTEC legal counsel is in 

the process of investigating alternatives to existing contracts that would oblige 

contractors to provide this information for future systems.  The following summarizes the 

considerations we used to form each component-level prior: 

 

The Antenna is a new component incorporating the legacy antenna and transmitter.  In 

NGC R&D testing, it failed one time during a total of 2412 hours.  This results in a 

gamma prior with shape parameter 1 and scale parameter 1/2412. 

 

The PPCU is a new component with no analog in legacy test data.  It experienced zero 

failures during R&D testing.  NGC estimated steady state MTBF using the Duane model 

is 61,348 hrs.  The PPCU prior shape parameter in this case is estimated to be 1, the scale 

to be 1/61,348. 
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The WG-SW is another new component with no analog in legacy test data.  MTBF 

estimated by NGC using Raptor to be 11436.8.  Using 1/11436.8 as the prior scale 

parameter, the prior shape parameter was set at 1. 

 

 

 

Gamma 

Prior 

Parameters 

 

Component Shape Scale 

Antenna 1 1/2412 

MSS 6 1/9396 

PPCU 1 1/61,348 

R/E 1 1/804 

RDP 5 1/9396 

RSP 4 1/9396 

WGSW 1 1/11437.8 

 

Table 5: Component Prior Gamma Failure Distribution Parameters 

 

The R/E was modified in RMP.  NGC encountered one failure for this component in 804 

hours of R&D testing which translates to a prior with shape parameter 1 and scale 

parameter 1/804.  Although the R/E appears to have undergone significant modifications, 

it is considered “modified” rather than “new” by NGC.        

 

The MSS, RDP, RSP are all legacy components.  Prior parameters consisted of the total 

number of failures in legacy data as the shape parameter and the inverse of total time 

during which failures were logged as the scale parameter (Table 5). 
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Posterior Determination 

 

Appendix C details the derivation of the formula for defining gamma posteriors from a 

gamma prior/exponential likelihood conjugate pair when the likelihood data is failure 

truncated.  The resultant posterior shape parameter is simply the sum of the total number 

of failures in the likelihood data and the shape parameter of the prior.  The reciprocal of 

the scale parameter is the sum of the total test time in the likelihood data and the inverse 

scale parameter of the prior.  These very simple, closed-form posterior parameter 

equations are a consequence of the gamma prior and exponential likelihood being a 

conjugate pair.  For arbitrary likelihood and prior distribution types, MCMC software or 

analytical solutions to integral equations provide estimates of posterior parameters. 

 

AFOTEC conducted two sets of operational tests.  The first included all B-2 modernized 

radar components and was time truncated (e.g. the test stopped at a specific time rather 

than after a specific number of failures).  The second included only the antenna and the 

R/E and was failure truncated (e.g. the test stopped after a stipulated number of failures, 

in this case the number was one).  The posterior parameter formulas derived in Appendix 

C from a gamma prior/exponential likelihood conjugate pair assume a likelihood formed 

from failure censored data.  Our first data set was time truncated, but included no data on 

the specific times of each component failure and repair within the test time period.  This 

made it impossible to model the likelihood of that data in as time censored.  We therefore 

made the approximation that this data set was failure truncated and used the formula  
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Likelihood 

Data: Test 1 

Component Failures Test Time  

 

 

Gamma 

Posterior 

Parameters 

Component Shape Scale 

  Antenna 2 

1313.9 

Antenna 3 1/3725.9 

MSS 0 MSS 6 1/10709.9 

PPCU 0 PPCU 1 1/62,662 

R/E 3 R/E 4 1/2117.9 

RDP 3 RDP 8 1/10709.9 

RSP 0 RSP 4 1/10709.9 

WGSW 0 WGSW 1 1/12751.7 

 

Tables 6: Likelihood data for the first operational test and resultant gamma posterior parameters  

after applying Bayes’ Theorem to it and the NIST priors formed from legacy data 

 

 

 

 

Likelihood 

Data: Test 2 

Component Failures Test Time  

 

 

Gamma 

Posterior 

Parameters 

Component Shape Scale 

Antenna 1 1046.5 Antenna 4 1/4772.4 

MSS N/A  MSS 6 1/10709.9 

PPCU N/A  PPCU 1 1/62,662 

R/E 1 1752.1 R/E 5 1/3870 

RDP N/A  RDP 8 1/10709.9 

RSP N/A  RSP 4 1/10709.9 

WGSW N/A  WGSW 1 1/12751.7 

 

Table 7: Likelihood data for the second operational test and resultant gamma posterior parameters after 

applying Bayes’ Theorem to it and the priors defined as the posteriors generated from the first test data 

 

derived in Appendix C to define the first set of gamma posterior parameters.  It is 

important to note that, as a consequence of this approximation, the mean time-between-

failures for the first data set is overstated.  Unfortunately, we cannot quantify this bias 

due to lack of data from the test team.  This situation highlighted the need for 
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standardization in data collection across the detachments at AFOTEC and is being 

addressed as part of an organization-wide effort to standardize processes. 

 

To incorporate information from both sets of test results into our component-level 

uncertainty distributions, we applied Bayes’s Theorem twice.  We used the NIST gamma 

priors and the likelihoods of the first test data set to produce component gamma 

posteriors.  These posteriors then became the priors updated by the likelihood of the 

second set of test data (cf. Tables 6 and 7).  The dispersion in the last set of gamma 

posteriors represents the component-level epistemic uncertainty remaining after 

incorporating all available information into the model (c.f. Figure 7). 
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Figure 7: Plots of gamma posterior probability distribution functions summarizing the epistemic 

uncertainty probability space for each component 
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2.4 Sampling-Based Uncertainty and Sensitivity Analysis 

 

For this portion of the analysis, we produced two sets of 100 sample vectors using LHS, 

as described in the preliminary sensitivity analysis section.  To generate the first set, we 

sampled from all of the posterior gamma uncertainty distributions defined above.  We 

generated the second set by sampling only from the driver (MSS and antenna) posterior 

distributions, keeping all other component rate parameters fixed at their point estimates.  

Each sample vector served as input for one Raptor simulation with run time 131,534.1 

hours and repetition level 100.  Raptor outputted two sets of 100 B-2 RMP system-level 

MTBF estimate, one for the full model, the other for the reduced model.  The dispersion 

in the estimates generated for each model represents the epistemic uncertainty in the B-2 

RMP system-level MTBF.   

 

To gauge model sensitivity with the input parameters distributed as gammas for the full 

model, we produced scatter plots and ran the same non-randomness tests performed in the 

preliminary sensitivity analysis.   The results were not drastically different from those in 

the preliminary sensitivity analysis, as can be seen in Figure 8 and Table 8, with the 

exception that the RE appears to be less decisively a third place driver in the system 

MTBF. The resultant epistemic uncertainty CDF for the full model is shown in Figure 9.     
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Common Means Test  

(CMT) 

Common Locations Test 

(CLT) 

 

Statistical 

Independence Test (SI) 

 

Input 

 

MSS 

 

Antenna 

 

 

MSS 

 

Antenna 

 

RE 

 

MSS 

 

Antenna 

 

RE 

 

P-val 

 

0 

 

0 

 

 

0 

 

0 

 

0.0488 

 

0 

 

0.0018 

 

0.0488 

 

Regression Test 

(REG) 

 

Quadratic Regression Test 

(QREG) 

 

Input 

 

MSS 

 

Antenna 

 

WGSW 

 

MSS 

 

Antenna 

 

WGSW 

 

RE 

 

P-val 

 

0 

 

0 

 

0.0164 

 

 

0 

 

0 

 

0.0224 

 

0.0254 

 

Table 8: Non-randomness test results for the full model with each component   

defined by its gamma posterior distribution 
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Figure 8: Scatterplots of System MTBF vs. component parameter   

for   distributed as a gamma posterior defined in Table 7 

 

 

 
Figure 9:  Plot of epistemic uncertainty histogram and CDF from a sample of 100 MTBF estimations 
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Figure 10 demonstrates the magnitude of the sampling error from the two sampling loops 

in the simulation run on the full model.  The confidence bands can be interpreted as 

random variable vectors that, when formed repeatedly, will contain the true epistemic 

uncertainty CDF from the full model 95% of the time.  

 

 

 

Figure 10:  Plot of system uncertainty CDF bounded by 95% point-wise confidence bands 

 

Figure 11 shows the epistemic uncertainty CDF for the driver (reduced) model plotted 

next to that generated from the full model.  Because all non-driving component 

parameters remained fixed at point-estimate values, the system epistemic uncertainty 

CDF for the reduced model summarizes the effect of epistemic uncertainty in the antenna 

and MSS on epistemic uncertainty in the system MTBF.  Superimposing the full and 

reduced model CDFs gave us a qualitative idea of well the driver model captured the true 

epistemic uncertainty in the system MTBF.  We were interested in benchmarking the 
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preliminary sensitivity results for future reference by checking whether our interpretation 

of the results in this initial project were sound enough to extend to future projects.    

 

 

 
 

Figure 11:  Plot of full model and driver model epistemic uncertainty CDFs 

 

 

 

However, the full and reduced model epistemic uncertainty CDFs in Figure 11 are 

superimposed out of context.  As shown by the 95% confidence bands in Figure 11, non-

negligible sampling error from the two sampling loops leads to dispersion in our estimate 

of the full model epistemic uncertainty CDF.  Figure 12 demonstrates that the driver 

model epistemic uncertainty CDF falls within these 95% point-wise confidence bands.  

Thus, within the 95% confidence bounds defining the sampling error, the two curves are 

equivalent.  
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Figure 12:  Plot of system uncertainty CDF for the full model (black) and the driver model (blue) bounded 

by 95% point-wise confidence bands estimating sampling error in full model MTBF determination. 

 

 

 

Common statistics describing the central tendency and dispersion in the MTBF 

uncertainty distribution (e.g. mean and standard deviation,) can be found below in Table 

9.  Because the MTBF uncertainty distribution is reasonably symmetric, the mean and the 

80% credible interval as statistics describe its central tendency and dispersion, 

respectively.  Credible intervals are interpreted as direct probability statements about the 

variable summarized by a distribution.  Note that credible intervals are interpreted 

differently than classical confidence intervals; many people find the interpretation of the 

credible interval more intuitively direct than that of a confidence interval.  
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The mean MTBF for the full model occurs at 368.33 hours while the 80% credible 

interval spans 240.3 hours to 535.1 hours.  In this case, an 80% credible interval means 

that the true B-2 RMP MTBF lies in the interval [240.3, 535.1] hours with a probability 

of 80%.  The mean of the driver model MTBF, 369.4 hours, is very close to that of the 

full model.  However, the epistemic uncertainty CDF for the driver model underestimates 

the uncertainty in the MTBF distribution, having an 80% credible interval about 25 hours 

shorter than that of the full model CDF.   

 

  Full Model Driver Model 

 

Central 

Tendency 

(hours) 

 

Sample Size 100 100 

Median 

(hours) 

 

352.66 

 

345.33 

Mean 

(hours) 

 

368.33 

 

369.4 

 

Dispersion 

(hours) 

Standard Deviation 

(hours) 

 

118.61 

 

118.36 

80% Credible 

Interval 

(hours) 

 

[243.3, 535.1] 

 

[239.74, 506.89] 

 

Table 9:  Descriptive statistics for the system MTBF epistemic uncertainty distribution as determined using 

for full model and the reduced model including epistemic uncertainty in driving component parameters 

 

 

Because we reduced the dimensionality of the epistemic uncertainty space from 14 to 4, 

this deviation is not surprising.  It is possible that including the RE epistemic uncertainty 

in the model, the third most influential component isolated in the non-randomness tests, 
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would result in more accurate dispersion estimates for the reduced model system MTBF.  

However, since the magnitude of the sampling error was large in the analyses, it is 

difficult to gauge whether the deviation of the reduced model uncertainty CDF from that 

of the full model is due to sampling error or due to the reduction itself.  

 

2.5      Conclusion 

 

The May 2008 Defense Science Board report on Developmental Test and Evaluation 

identified the need for robust reliability, availability, and maintainability programs to 

address sustainability problems identified during testing.  Operational testing for 

reliability requires appropriate test data to bolster conclusions and provide decision-

quality information.  As technology evolves and technological complexity increases, 

analytical techniques intended to describe and understand capabilities must also improve 

to keep pace.   Analytical practices heavily influenced by classical statistical techniques 

require significant amounts of test data to provide accurate and precise conclusions. 

Unfortunately, test and analysis costs are often directly proportional to the technological 

sophistication of the system being characterized.  With rising acquisition costs, test and 

analysis cost will increase as well.  The direct competition for limited resources impacts 

the availability of funds for testing and precipitates the necessity for test organizations to 

produce quality results with limited data. 

 

The techniques described in the main body of the paper identified a reliability analysis 

procedure to contend specifically with increasingly common low data scenarios 
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encountered during OT.  The process hones reliability analysis by targeting important 

drivers in system-level reliability mean responses, by maximizing the use of available 

developmental test data, non-testing and legacy testing information from diverse sources 

for these drivers, and by making system-level inferences based upon more prolific 

component-level information.  

 

Sensitivity analysis techniques isolate important drivers in system-level reliability.  When 

the drivers are known, resources for testing along with the research and analysis can be 

focused on characterizing these drivers.  Resources dedicated to testing the reliability of 

components driving system-level reliability yield more prolific test data for these 

components.  Resources dedicated to accumulating non-testing or legacy testing data 

about component-level drivers via elicitation and research yield additional reliability 

information, thereby increasing the quality and density of information available for 

analysis.   

 

Bayesian inference provides a means to incorporate information from these diverse 

sources into one distribution summarizing available information about important 

component parameters.  The method leverages information from similar or legacy 

components, research and development, and DT data.  Uncertainty propagation via 

layered sampling produces system-level epistemic and aleatory uncertainty distributions 

summarizing the cumulative effect of component-level epistemic and aleatory uncertainty 

and mean-responses on the system-level reliability metrics. 
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Results from applying the Bayesian and sampling process include system-level reliability 

estimations as well as measures, defined by dispersion in system-level parameter and 

parent distributions, benchmarking the level of approximation involved in the analysis.  

In other words, this enhanced analytical process answers two questions:  

 

1) Approximately, how reliable is a system?  

2) How approximate is this estimate of its reliability? 

 

Standard reliability block diagram algorithms answer only the first question.  Answers to 

both of the questions allow decision makers to determine the risk involved in purchasing 

and operating a system and, consequently, whether further testing or analysis is 

necessary.             
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Appendix A 

 

This appendix demonstrates the analytical determination of the system-level time-to-

failure distribution for the RBD depicted in Figure 1 (for further details consult reference 

[17]). 

 

First, the innermost parallel and series structure distributions combine to form 

distributions summarizing the failure behavior of the structures. 

   

 
 

 

F23a = F2aF3a 

 

 

The probability that the parallel structure including blocks 2 and 3 fails is the probability 

that 2 and 3 fail, e.g. the probability of the event defined by the intersection of block 2 

and block 3 time-to-failure event sets. 

 

F67a = 1 – R67a = 1 – R6aR7a = 1-(1-F6a)(1-F7a) 

 

 

The probability that the series structure including blocks 6 and 7 fails is the probability 

that 6 or 7 fails, e.g. the probability of the event defined by the union of block 6 and 

block 7 time-to-failure event sets.  Here, R67a denotes the reliability of the series structure 

containing blocks 6 and 7. 
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F1, F23 and F4 combine to form the time-to-failure distribution of the series structure 

circled below. 

 
 

 

F1234a = 1 – R1234a = 1 – R1aR23a(R4a = 1 – (1 – F1a)(1 - F23a)(1 – F4a) 

 

 

The parallel structure time-to-failure distribution including the two block strings 

combines F1234a with F67a. 

 

 
 

 

F123467a = (F1234a)(F67a) 

 

 

Finally, the system time-to-failure distribution, Fsa, combines F123467a and F5a represented 

in the series structure below. 
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Fsa = 1 – Rsa = 1 – (1 – F123467a)(1 – F5a) 
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Appendix B 

 

The NIST webpage on Bayesian Methods in reliability analysis provides a formula for 

defining a gamma prior from historical data [1].  This appendix details the derivation of 

this formula.  Suppose the historical data describes n time increments in which n-1 

failures occur.   This would be the case, for example, if a test time is truncated at tc before 

the n
th

 failure occurs for some system.  Time truncated data is also called Type I censored 

data [3].  If Tk  denotes the time of the k
th

 failure in the time increment [0, tc ],    

          is the time between the (k-1)
th

 and the k
th

 failure.  When the    are 

independent and identically distributed (steady-state periods in the system’s life history) 

as exponentials with parameter, λ, the likelihood function summarizing the time-between-

failures events is the product of the probability of each time-between-failures event 

occurring: 

            
   
    , where         

    . 

Since the last time-between-failures measurement is truncated before a failure occurs, it 

is the event that           is not a time-between-failures event and has associated 

probability (1– F(         , where      is the cdf of the time-between-failures random 

variable [3]. 

                     
         

 
d  = 1-1+                            

So, the likelihood becomes: 

             
   
                               

   
              = 
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Bayes’ Theorem generates a posterior using the likelihood of the historical data.  Because 

no data about the system exists prior to the historical data, the input prior for Bayes’ 

Theorem should contain only the only information we have about  ,the interval defining 

its domain.  Since  is defined on the positive real line, its domain is         Forming a 

prior using this information is not straighforward.   

 

Several approaches to forming such noninformative priors exist in the literature.  These 

include using Jeffery's Rule or seeking transformations for which the likelihood is 

approximately data transformed (e.g. one-to-one transformations on the parameter of 

interest that result in a likelihood which shifts location only upon changes in the data; 

dispersion and shape remain constant) [18].  While these methods are rigorous and 

complete, they require significant effort.  Instead, we resort to a simplifying 

approximation that models the input prior as a uniform distribution: 

             
 

 
                                                 

        
            

            
 . 

In this case, Bayes’ Theorem yields:  
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To derive the posterior given  under the constraint that we know nothing but the limits of 

the domain of  , we take the limit of        as    ∞: 

   
   

           
   

            
 
 
           

             
 
 
  

 

 
  

    
   

 
 
                       

 
 
             
 

 
  

 

=       

                       

            
 
 

  
 

           

            
 
   

 

The integral in the denominator can be solved using integration by parts, but this involves 

some tedious work. Alternatively, multiplying and dividing the integral in the 

denominator by     
  puts it into a familiar form: 

 
 

  
 
 

       
                 

 

 
 =  

 

  
 
 

    . 

And we are left with: 

       
           

 
 
  
 
 

    
      

 

  
   

This posterior can now be used as a prior for new data as it becomes available. 
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Appendix C 

 

This appendix details the analytical determination of a posterior derived from a likelihood 

generated from i.i.d. interfailure times,           , and a gamma prior.  All parameters 

are general.  The gamma is assumed to be a two parameter distribution (   is the shape 

and   is the scale parameter) with a mean equal to the product of its parameters.  The    

are assumed to be failure censored data (Type II censoring), e.g. data collection 

terminated after the n
th

 failure.  For Type II censoring, the likelihood takes the form: 

            

 

   

                  
 
                         

When finding the posterior of a conjugate pair, the posterior distribution type matches the 

prior distribution type but has modified parameters.  In this case, the posterior will be a 

gamma with parameters updated to reflect the information contained in the exponential 

likelihood. 

Exponential Likelihood:                  

Gamma Prior:       
     

  
 

      
                  

 

 
      

Posterior:        
          

             
 = 

           
     

  
 

      
 

            
     

  
 

      
   

 
 

 

Since        is not a function of  , we can pull it out of the integral in the denominator 

and cancel it with        in the numerator. 

Posterior:         
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Solution of the integral in the denominator:  

              
 
 
      

 

 

 
 

    
 
 
 
          

 

 
  

     

       
 
 
        

 

 
     

 

 

 

=  
 

    
 

 
 
          . 

Now, we get: 

Posterior:         
       

      
 
 
 

 
 

    
 
 
 
 

   

      

  
       

      
 
 
 

          
               

        
 

    
 
  
  

As expected, the posterior is distributed as a gamma with shape parameter     , and 

scale parameter    
 

    
 

 
 
.   
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Appendix D 

 

The following is code written in R to estimate point-wise confidence bands defining 

sampling error in the inner MC sampling loop and outer LHS sampling loop that 

determine the epistemic uncertainty CDF. 

 

####Function to find F(X=x.n), the step function of the CDF of a sample, xsample.vec, evaluated at 
####x.n 
 
 
cdfpoint <- function(x.n, xsample.vec){ 
   return(mean(xsample.vec <= x.n)) 
 } 
 
####Function to find a vector, cdf.vec, from a vector, x.vec, of x's  
 
 
Fx <- function(xsample.vec,x.vec){ 
 cdf.vec <- rep(0,length(x.vec)) 
 for(i in 1:length(x.vec)){  
 cdf.vec[i]<-cdfpoint(x.vec[i],xsample.vec)} 
 return(cdf.vec)} 
 
####Script to generate Z(x) matrix, quantiles(t), and pointwise C.I.s at each x 
 
 

##Read in system MTBF data from files on desktop 
 
mydata.data<-read.table(file="C:\\Documents and Settings\\Bea.Yu\\Desktop\\B2data.txt", 
header = T) 
 

##Read in SEM data for each MTBF determination 
 
sem.data <- read.table(file="C:\\Documents and Settings\\Bea.Yu\\Desktop\\sem.txt", header = T) 
 

##Initialize variables 
 
bs.n <- 1000 
 
x.vec <- seq(from = 0, to = 800, by = 0.08) 
MTBF.vec<-mydata.data[,8] 
SEM.vec<-sem.data[,1] 
lowerCI.vec<-rep(0,length(x.vec)) 
upperCI.vec<-rep(0,length(x.vec)) 
 
bs.mat <- matrix(0, nrow=bs.n, ncol=length(MTBF.vec)) 
bsobs.mat <-matrix(0, nrow=bs.n, ncol=length(MTBF.vec)) 
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sem.mat <- matrix(0, nrow=bs.n, ncol=length(SEM.vec)) 
bsobs_x.mat <- matrix(0, nrow=bs.n, ncol=length(x.vec)) 
Z_x.mat <- matrix(0, nrow=bs.n, ncol=length(x.vec)) 
quant.mat <- matrix(0, nrow=length(x.vec), ncol=2) 
 

##Generate 1000 jostled bootstrap samples by taking a bootstrap sample of the LHS MTBF's, 
##forming normals with mean=MTBF, std. dev.=SEM, sampling randomly once from each 
##normal and replacing the MTBF with the random sample from the normal  

 
for(k in 1:bs.n){ 
  set.seed(k) 
  bs.mat[k,] <- MTBF.vec[sample(length(MTBF.vec),replace=TRUE)] 
  set.seed(k) 
  sem.mat[k,]<-SEM.vec[sample(length(SEM.vec),replace=TRUE)] 
  for(j in 1:length(MTBF.vec)){ 
          bsobs.mat[k,j]<-rnorm(1,mean = bs.mat[k,j],sd = sem.mat[k,j]) 
                   } 
  } 
 

##Generate a step function for the CDF of MTBF uncertainty  
 
F_x.vec <- Fx(MTBF.vec,x.vec) 
 

##Generate a step function for the jostled bootstrap samples and subtract this function 
##evaluated at values in x.vec from the values of F_t.vec evaluated at the same points  

 
for(k in 1:bs.n){ 
   bsobs_x.mat[k,] <- Fx(bsobs.mat[k,],x.vec) 
   Z_x.mat[k,] <- (F_x.vec - bsobs_x.mat[k,]) 
   } 
 

##Produce the 2.5th and 97.5th percentiles to estimate a 95% CI 
 
for(j in 1:length(x.vec)){ 
        quant.mat[j,] <- quantile(Z_x.mat[,j],probs=c(0.025,0.975),names = FALSE) 
                 } 
 
upperCI.vec <- (F_x.vec - quant.mat[,1]) 
lowerCI.vec <- (F_x.vec - quant.mat[,2]) 
 
plot(x.vec, F_x.vec, main = "Epistemic Uncertainty CDF for Full Model and Driver Model Bounded by 
95% Confidence Bands", xlab = "System MTBF", ylab = "Probability", type = "l") 
lines(x.vec,upperCI.vec, col = "red") 
lines(x.vec,lowerCI.vec, col = "red") 
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Appendix E 

 

List of Acronyms 

 
 

AFOTEC – Air Force Operational Test and Evaluation Center 

B-2 RMP – B-2 Radar Modernization Program 

CDF – Cumulative Distribution Function 

CI – Confidence Interval 

CLT – Common Locations Test 

CMT – Common Means Test 

DT – Developmental Test 

LHS – Latin Hypercube Sampling 

NGC – Northrop Grumman Corporation 

NIST – National Institute of Standards and Technology 

MC – Monte Carlo  

MCMC – Markov Chain Monte Carlo 

MSS – Motion Sensing System 

MTBF – Mean Time Between Failures (statistic describing the mean uptime for a 

repairable system)  

MTTF – Mean Time To Failure (statistic describing the mean time to failure for a non-

repairable system)  

OT – Operational Test  

PPCU – Prime Power Conditioning Unit 

QREG – Quadratic Regression Test for Non-Randomness 

RBD – Reliability Block Diagram 

RBD/MC – Reliability Block Diagram Model Using Monte Carlo Simulation  

R & D – Research and Development 

RDP – Undefined acronym for component in modernized radar 

R/E – Receiver/Exciter 

REG – Regression Test for Non-Randomness 

RMP - Radar Modernization Program 

RSP - Undefined acronym for component in modernized radar 

SI – Statistical Independence Test 

WG-SW – Wave-Guide Switch 
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