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Dimensionless invariants from foraging theory's marginal
value theorem

(dung flies/insect mating systems/sperm competition/phenotypic plasticity/patchy environment)

ERIC L. CHARNovt AND G. A. PARKERt
tDepartment of Biology, University of Utah, Salt Lake City, UT 84112; and *Department of Environmental and Evolutionary Biology, University of Liverpool,
Liverpool L69 3BX, United Kingdom

Communicated by Gordon H. Orians, University of Washington, Seattle, WA, November 21, 1994

ABSTRACT Copula duration (t) decreases, and propor-
tional rate of sperm transfer (c) increases, with larger male
body size in dung flies, so their dimensionless product (c-t) is
approximately constant (-2.2). The most recent copulating
male fertilizes about 89%o of the eggs laid (= 1 - e-ct = 1 -
e-22), independent of his body size. The conditions under
which natural selection favors this phenotypic invariance are
studied with fitness optimization models. The dimensionless
rules for optimal patch residence times are then generalized
to cover phenotypic variation in other foraging cases.

Optimization models, both frequency-dependent and -inde-
pendent, have been widely and successfully used in evolution-
ary ecology to predict the attributes of organisms [see Parker
and Maynard Smith (1), Charnov (2), and Stephens and Krebs
(3)]; most such models maximize fitness (or its proxy) in the
face of tradeoffs and constraints. The present paper uses an
optimization approach to explore some general patterns in the
use of a patchy environment. In particular, we seek general
rules for a phenotypic version of the marginal value theorem
or MVT [see Charnov (4) and Parker and Stuart (5)], a
theorem that has been widely used in behavioral ecology to
predict when a solitary forager should abandon a particular
resource to begin searching for a new one. Two important
features in the MVT are subject to phenotypic variation: (i) the
travel time taken to find a new resource after quitting the
existing one, and (ii) the rate at which gains accrue while
exploiting a given resource. These effects are likely to be
inversely correlated because, compared with the average, a
"good" forager is likely to have a lower travel time and a higher
rate of resource gain than a "bad" forager. We seek rules
relating optimal exploitation times to between-individual vari-
ation in these two features of patch use. We also seek general
rules for how variation in patch quality may affect MVT
solutions. Although our modeling efforts will focus on the
specific problem of copula duration in dung flies, which pro-
vided the empirical puzzle, the marginal value rules should
apply to optimal patch duration times in a wide variety of
foraging cases.

Copula Duration in Dung Flies

The reproductive behavior of dung flies, Scatophaga sterco-
raria, has been widely analyzed by using ideal free (6-8) and
marginal value models (5) in behavioral ecology. Dung fly
males arrive quickly at fresh cattle droppings and capture and
copulate with incoming gravid females, which arrive more
slowly. Females usually contain sperm from previous matings
(9) and as copulation occurs, new sperm gradually displace
previously stored sperm at a decreasing rate (10). After cop-
ulation, the male guards the female while she oviposits in the

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement" in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

dropping, thereby ensuring that his sperm are not displaced. By
allowing a male to mate, the female gains not only sperm but
also the benefits of the male's postcopulatory guarding
phase-she avoids harassment from searching males while she
oviposits in the dropping (11).
The topic of this paper was stimulated by data in Fig. 1,

where copula duration (t) is plotted versus male body size (H
= the cube of hind tibia length). The hatched line is a linear
regression through the data; the curve formed by the open dots
gives the copula duration expected if a male sets t to maximize
the number of eggs he fertilizes per unit time while around the
dropping. The optimal copula duration is quite close to the
observed except for very small males (H < =20 mm3; ref. 12).
We will explain shortly how the prediction of optimal t was
made. To explain the meaning of the heavy continuous curve

through the filled circles in Fig. 1, which fall essentially on top
of (within 10% of) the predicted relation, first we must explain
the mechanism of sperm competition in dung flies: Seminal
fluid flows out from the male at a constant rate and displaces
an equal volume of fluid from the female's sperm stores; there
is immediate mixing of sperm store contents (5, 10). This
process generates an expected gain curve G(t) which shows
exponentially decreasing fertilization returns (5).

G(t) = Gm[l- exp(-c-t)], [1]

where c = the proportionate rate of sperm displacement,
defining the rate at which G(t) rises to its asymptote, and Gm
equals the total number of eggs the female will lay.
Note also that Eq. 1 is the general expectation of cumulative

prey gains with time for a randomly searching predator from
a patch in which there are initially Gm prey items at time t =
0, and where c is the constant proportionate rate at which prey
are captured.

c has units of time-1, so the product c t is dimensionless. The
heavy continuous line in Fig. 1 represents the copula duration
size relation associated with the dimensionless invariant c-t =
2.2; because c increases with male body size (12) t must
decrease to hold their product a constant. Referring again to
Eq. 1, we note that c*t invariance implies that the guarding male
will fertilize. about 89% (= 1 - e-22) of the female's eggs,
independent ofhis body size. Fig. 2 illustrates this independence
in a set of laboratory experiments using small to medium-sized
males (H < 37 mm3).
Here we use MVT optimization models for copula duration

to explore the surprising fact that copula duration (propor-
tional fertilization) appears to satisfy an invariance principle.
We will explore a series of models of increasing complexity,
our goal being to ask two questions: What meaning can be
attached to the invariance of c-t, and how broadly might the
invariance rule apply?

Abbreviation: MVT, marginal value theorem.
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FIG. 1. Relationship between copula duration t (in min) and male
sizeH [hind tibia length (in mm) cubed] in dung flies. Hatched line is
the observed relationship, which has t = 65.38 - 0.74H (see figure 4A
of ref. 12 for details and statistics). The heavy line with filled circles
shows the t* calculated on the assumption of invariance of c t by taking
the mean value for c = 0.062 min-1 [average of a series of data sets
of Parker and Simmons (10)] and the mean value for t as 35.5 min (5,
6). Thus c t 2.2, and since c increases with H as c = -0.003 +
0.0018H (see figure 2 of ref. 12 for details and statistics), t* is
calculated as 2.2/c. The open circles give the exact t* predicted from
Eq. 5, with c ,u derived as follows. The value of c(H) is calculated from
the regression equation above. ,L(H) is estimated as follows. From field
data, it takes on average 156.5 min to find and guard a newly arriving
female (6), and all earlier calculations of the optimal copula duration
were based on this value. However, this value for ,u should be reduced
because of takeovers, an effect which increases with male size, H. The
method of calculation of the effect of takeovers on ,u is fully explained
by Parker and Simmons (figure 3b of ref. 12). The predicted curve for
t* calculated from substituting c(H) ,u(H) into Eq. 5 is slightly closer
to the observed t* than c.t* invariant prediction, but not greatly so.
Note that both predictions give a good fit over the commonest size
range (only approximately 10% of paired males are smaller thanH =
20 mm3, and 10% are larger than H = 50 mm3). The fit breaks down
only for very small males [the predicted curves move out of the 95%
confidence limits about the observed t below approximately H < 17
mm3; see Parker and Simmons (12)].

Phenotype and Patch Variation

We next evaluate a number of models framed, for clarity, in
dung fly terms, but which have generality across many exam-

ples of foraging (for either food or mates). In reality, natural
conditions typically consist of a phenotype distribution of
foraging abilities ("good" and "bad" foragers) and a distribu-
tion of resource qualities ("good" and "bad" patches). The
models examine the two sources of variation separately and
then in combination. All are potentially plausible because an

optimal strategy depends on the information available to, and
the assessment potential of, a forager. For example, an indi-
vidual may "know" its relative foraging ability (for a male dung
fly, this relates to his own body size) but may not be able to
assess the quality of the resource patches (for a male dung fly,
this relates to female body size-i.e., the size of the female with
whom he is mating). The models to be explored (with their
more general equivalents in parenthesis) are as follows:

(i) One male size and one female size (one type of forager
and one type of patch)

(ii) Many male sizes and one female size (many types of
forager and one type of patch)

(iii) Many male sizes and many female sizes (many types of
forager and many types of patch)

0.6
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FIG. 2. Proportion of eggs fertilized by the second male to mate
(P2), in the clutch laid after the second mating, remains constant and
independent of male body size (measured as H, the cube of male hind
tibia length); the area of each symbol is proportional to the number of
data points at that location. The slope of the regression of P2 against
H is not significantly different from zero (sample size = 70, F1, 68 =
0.59, P = 0.45). Virgin females were reared in the laboratory and then
mated to two virgin males, one of which had been irradiated so that
the P2 value could be determined from the proportion of eggs which
failed to hatch. Both males were allowed to mate until natural sepa-
ration, and male hind tibia length was recorded. [For details of the
techniques see Simmons and Parker (13)].

(iv) One male size and many female sizes (one type of
forager and many types of patch).
One Male Size and One Female Size (One Type of Forager

and One Type of Patch). Consider a system with a single
forager phenotype and a single patch type. The male dung fly's
fertilization gains, G, depend on how long (time t) he has
copulated-i.e., on how much of his sperm relative to previous
sperm is present in the female's sperm stores. Calling ,u the
mean time to find and guard an incoming female, the eggs
fertilized by the male per unit time on the dropping are given
by

eggs fertilized per female
time to find and guard one female + copula time per female

or

G(t)
,u + t

, [2]

The optimal time to copulate (t*) maybe found by settingd(Eq.
2)/dt = 0. This t* result satisfies the MVT: a male should leave
when his marginal gains from mating drop to the expected gain
rate from the habitat as a whole. t* is shown graphically in Fig.
3. Formally, this solution is where

dG(t*) G(t*)
dt ,u+t* [3]

Note that increasing ,u increases t*.
With G(t) given by Eq. 1, dG(t)/dt = Gm-c-exp(-c-t); sub-

stituting this and Eq. 1 into Eq. 3 yields

exp(c-t*) = c(,u + t*) + 1, [4]

from which t* readily can be iterated numerically. Hence Gm
does not affect optimal copula duration t*, which depends only
on ,u and c; indeed, c.t* is solely a function of c ,u (14).

Since Eq. 4 is implicit in t*, it is a bit awkward to work with.
Stephens and Dunbar (14) show that, provided c ,u > 2, the
following explicit form gives an excellent approximation to Eq.
4:

g 8 8 2 @ i o08 8 8 0,o
0

0

0

0
o n
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c.t* Ic + 2

ln(c- + 1).
c-g++1) [5]

Earlier analyses of optimal copula duration in dung flies (5,
9), which, aggregated (averaged over) male and female size
classes, showed that the mean observed copula duration of 35.5
min was quantitatively close to that predicted by Eq. 5: 41.4
min. The mean displacement rate c = 0.062 (10)-i.e., roughly
1/16 of stored sperm are displaced per minute of copulation;
and overall, from field estimates, average ,u = 156.5 min (6).
The c*,u of 9.8 puts c.t* equal to 2.6 (from Eq. 5); the observed
value is 35.5 x 0.062 = 2.20, an 18% difference. This estimate
of average IL is undoubtedly too large because it ignores
females lost or gained through takeovers; recent estimates
using the frequency distributions of male size and the esti-
mated u(H) relation from Parker and Simmons (12) (Fig. 4)
give an average ,u 120 min when takeovers are included. This
new estimate makes ct - 7.3 and c.t* - 2.4, even closer to the
observed. But Fig. 1 says that c.t* 2.2 over a wide range of
male body sizes, not just as an average; we take this up next.
Many Male Sizes and One Female Size (Many Types of

Forager and One Type of Patch). In this model there is one
patch type (with the same Gm for all foragers), but foragers
differ in their foraging abilities and can vary their optimal t
accordingly. Explicitly, where foraging ability increases with an
aspect of phenotype, H, we expect both ,u and c to be functions
of H, and we seek the optimal response across phenotype,
t*(H). From Eq. 5, it is clear that if the product c(H) ,u(H) is
approximately constant with H then c(H).t*(H) must remain
constant, and so the optimal t* must decline as c increases. An
obvious way for this to apply is that good foragers have reduced
travel times and higher resource gain rate, and that, as a rough
approximation, travel time decreases inversely with H and
resource gain rates increases directly with H: J(Hk) H;
c(H) k2H. Then the product c(H)-,u(H) is approximately
constant as kg-k2.
For dung flies, Parker and Simmons (12) have applied the

argument of Fig. 2 (Eq. 2 leading to result 5) to males ofvarious
body sizes, producing the curve described by open circles in
Fig. 1. They also observed copula duration, t, in lab experi-
ments, using males of known size mated to females of random
size (189 matings), so that t could be estimated as a function
of male body size H. The essentials of their data are as follows
(Fig. 4). As male body size increases: (i) travel time ,u decreases
because all males have similar prospects of capturing newly
arriving females, but large males are better able to gain females

FIG. 3. Graphical MVT solution for a forager in a habitat with just
one patch type. The forager takes time IL to find a resource patch and
stays in the patch for time t*. The cumulative gain, G, increases
monotonically with decreasing returns with time t spent in the patch.
At t*, the gradient of G(t) is equal to the tangent slope G(t)/[,u + t].
For dung flies, G is the proportion of the eggs about to be laid that will
be sired by the copulating male, ,u is the time taken to find a female
and to guard her during the oviposition which will follow mating, and
t is the copulation time.
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FIG. 4. The large dots give the relationship between c',u and male
size H (hind tibia length cubed). The solid line with smaller dots gives
the value for ,u from the estimates of Parker and Simmons (figure 3b
of ref. 12), and the dotted line gives the value ofc = -0.003 + 0.0018H
(see figure 2 of ref. 12 for details and statistics). The limit values for
lines ,u and c are indicated in boxes; the scales are linear within these
limits.

by takeovers; (ii) sperm displacement rate c increases because
larger males transfer sperm to females at a faster rate [c(H) =
-0.003 + 0.0018H]. Thus, increasing male body size results in
a decrease in ,u and an increase in c. The end result, putting
these effects into Eq. 5, is that t* decreases as body size
increases (open circles of Fig. 1).
But Fig. 1 shows that the calculations ofParker and Simmons

fit the invariance result c.t* 2.2 reasonably well. Eq. 5 says
that c.t* will be constant if c-,u is constant. But c-,u will be
approximately constant because c and ,A change in opposite
directions with changes in male body size (Fig. 4). Or at least
c ,u appears constant enough for c.t* to always be near 2.2. To
see this note that c ,u, for male body sizes H > 20 mm3, is in
the range 4.5-9, a 2-fold variation (Fig. 4). The first term on
the right-hand side of Eq. 5 is in the narrow range 1.2-1.1,
while the second (In) term on the right is always in the range
1.7-2.3. The terms go in opposite directions as c ,u doubles
from 4.5 to 9, so their product (c.t*) varies only from about 2
to 2.5; a 2 x change in c ,u results in only about a 0.25 x increase
in the predicted c-t*. The c.t* number is thus rather insensitive
to this variation in c ,u, and stays near 2.2. Thus the reasons c.t*
is approximately a constant with male body size are, first, that
c and ,u go in opposite directions (Fig. 4) so their product varies
little and, second, that for c ,u above- 4, c't increases very slowly
with c y (see figure t in ref 14). The observed variation in c ,u
is small enough for a fixed central value of c , to fit the data
(Fig. 1) rather well (excepting for small males).

Constant proportional fertilization (I - e-ct) is an alterna-
tive way to view this invariance (Fig. 2). Fig. 5 illustrates the
MVT for two male sizes (H = 25 and 50 mm3) in the face of
a single female size. The large male has small ,u and a steeply
rising G(t) curve, whereas a small male has the reverse. The
MVT answers yield quite different t* values but almost iden-
tical predicted proportional fertilization.
Many Male Sizes and Many Female Sizes (Many Types of

Forager and Many Types of Patch). The previous model al-
lowed male size (forager phenotype) to vary but treated fe-

Proc. NatL Acad ScL USA 92 (1995)
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t, min t, min

FIG. 5. c-t invariance across male sizes means that the proportional fertilization (1 - e-ct) is independent of male size. This figure shows the
MVT predictions for a small (s) (H = 25 mm3) and a large (L) (H = 50 mm3) male in an environment with a single female size (one Gm). The
AL (135 and 93 min) and c (0.042 and 0.087 min-1) values used are from Fig. 4 and lead (by Eq. 5) to predicted c-t values of 2.18 (small) and 2.45
(large). These make G = 1 - e-c' 0.9 for both male sizes. Fig. 1 shows that the observed t values are very close to the values implied here.

males (patch type) as being of a single size; a more realistic
assumption would be to allow female size to vary also. The
Parker and Simmons (12) experiments to estimate c and t
randomized female sizes for each male size and then used
averages of t and c (denoted t,e) over the females to produce
the data plotted in Figs. 1, 2, 4, and 5. Here we use the
multipatch (multi-female-size) version of the MVT to ask for
conditions that result in c-t* to be invariant over male sizes for
a fixed distribution of female sizes. Except for one special case,
developed in the following section, c-t* is not predicted to be
invariant over female sizes (patch types).
Suppose that females come in discrete size categories, with

fi the proportion of size i (actually fi is the proportion of size
i encountered by our focal sized male). Each female size (at a
fixed male size) has an associated G,., ci, and ti; the time to find
and guard one female is again AL. For a focal male size, the
number of eggs fertilized per unit time while around the
dropping satisfies the multifemale (multipatch) rate equation
(4)

>fi-Gm(1 - e-c,tj)
average fertilizations i

time Ix + Efi-ti [6]

The optimal copulation times (t7*, j = 1, 2, . . .) are where the
a(Eq. 6)/atj = 0 for all j (4) or

ZfiGr,(1 - e-cit)

F+ Ef = G -cj-exp(-cj-t*). [7]

Eq. 7 is less formidable than it looks because the left-hand
side is the average fertilizations per unit time while on the
dropping, whereas the right-hand side is the marginal gains
while with a female of size j. Eq. 7 is unchanged ifwe multiply
through by 1/c, resulting in the following for our focal male
size:

Zfi@Gn,(1 -e-c-"ti)
i

,u c- + c- Egi t* = GmM -exp(-cjt;). [8]

Now consider a second sized male (denoted by '), who
encounters the same size distribution of females. Suppose he
transfers sperm at a different rate; then all of his c values will

equal a constant (h) times the first sized male's c values (see
below): c'i = h-ci. Note that this applies across all female sizes,
so that c' = hc-; thus ci/- is independent of male size. Suppose
further that MVT for the second sized male produces ci' ti*' =
ci-ti* + Ai; we thus have (t7' = ci ti* + A i)/h-ci and can write Eq.
8 for female j for the second sized male.

i - c1
- Gm e- et*e-Aj.

!C' + h.c Jfi.( )
[9]

Provided that again phenotype affects ,u and c in compen-
satory fashion so that ,u c = ,u'c-C', the only solution in Eq. 9 is
for Ai = 0 for all female sizes, for the ci t* to be invariant with
male size. It thenfollows that E(c-t*) and &t* are invariants over
male sizes (where E and overbar mean average). To show that
all A = 0 in Eq. 9, note that (if c-tL = c'`,u') Eq. 9 is the same
equation as Eq. 8 with the tCin Eq. 8 changed to t* + Ai/ci. But
we already know that the t* in Eq. 8 are the only ones that satisfy
it; thus Ai # 0 cannot satisfy the equality.
The condition that c-,u be invariant with male size is the

multi-female-size (multi-patch-type) analogue to the Eq. 5
requirement of c ,u invariance discussed previously; good for-
agers have lower ,u but higher c so that c,u tends to stay
constant across phenotypes differing in foraging ability. In-
deed, for dung flies, Fig. 4 plots c- and ,u versus male body size
and shows the approximate invariance of their product. c 1* is
likewise just as insensitive to changes in c ,u as was c-t* to
changes in c ,u (previous calculations).

Furthermore, in dung flies, the ci values for each type offemale
should change proportionally with male size (i.e., cl = h-ci)
provided the main influence on the ci as a function of male size
is simply the rate at which the male transfers sperm. If the sperm
transfer rate (s) is a function of only male size and decreases with
male size, then so should ci, which equals s/Si for a female with
a displacement vessel (bursa or spermatheca) holding amaximum
of Si sperm. This of course makes c = s-E(1/S); males encoun-
tering the same size distribution of females share the same E(1/
S). Thus a male's c- will be proportional to his sperm transfer rate
(s), resulting in a decrease of c- with decreasing male size. Because
the takeover effect makes ,u increase with decreasing male size,
their product (c- ,u) is approximately constant (Fig. 4).
One more interpretation exists for c-t* invariance across

male (predator) sizes. Eqs. 8 and 9 tell us that c-,u invariance
implies c.t* invariance across males at each and every female
(patch) size. Because the gain from an encounter with a female

Population Biology: Chamov and Parker
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(patch) of size i is Gm(l - e-ci'.), the gain in eggs fertilized
from i is the same for all males independent of the male's size.

c-t* Invariance over Female Sizes (for a Single Male Size)?
In the last section we noted that, in general, c t* is not expected
to be the same for each female size (at a fixed male size).
However, one special condition does lead to c-t* invariance
over female sizes (patch types). We do not know if these special
conditions are met in dung flies (but see below), but we
develop the case anyway because we think the conditions may
be rather common for other kinds of foragers. We couch our
discussion in more general foraging terms.

Consider a system in which individuals do not vary in their
foraging abilities, but resource patches vary. More specifically,
the patch area varies, but the initial density of prey items per
unit area of patch, before exploitation, is constant across all
patches. For this case, the cumulative gain from a patch i rises
to its asymptotic value, Gm,, where all the prey are captured,
following Eq. 1 (Gm, is the total prey in i). ci is the propor-
tionate rate of prey capture of a focal forager in patch type i.
The forager searches at a fixed speed, so we can let ci = g/Gmi,
where g = a constant relating to the capture rate at initial prey
density for the focal forager. Because g is constant for a given
forager across patch types i, j, ci must decline with Gm,; bigger
patches have lower ci. In hypothetical dung fly terms, males
mate with females of many sizes and bigger females carry more
eggs (6, 11) and are hence analogous to bigger patches (they
have higher Gm). Also, because of the mechanism of sperm
competition, if bigger females have larger vessels in which
sperm displacement occurs (the site of displacement is not yet
known, but is likely to be either the bursa or the spermatheca),
then they are likely to have a lower proportionate rate of sperm
displacement ci by a given male (12).
From MVT Eq. 7 we know that equalization of marginal

gains across female sizes means that for females of any sizes k
and j:

G,1,;cj-exp(-cjtj) = G,ck-exp(-ck'tk) = Eq. 7. [10]

Eq. 10 contains the information we need to ask how c.t* varies
across female sizes for a fixed male size.

Suppose we wish to have c.t* a constant, independent of
female size. This can happen either if Gm and c are each
(effectively) constant with female size, or their product is a
constant (i.e., they are inversely proportional). If cicGm, = g,
then Eq. 10 reduces to gexp(-cj.t = gexp(-ck.t*), and the
g cancels so that ci tf must be the same for all female sizes.
Why might c and Gm be inversely proportional? One possible

hypothesis for dung flies, mentioned above, is that a female's
egg count (Gm) and displacement vessel volume (S) both are
proportional to her bodyweight (or Gm = rS). If the focal sized
male transfers sperm to any size female at rate s, then c = s/S
a G` with proportionality constant s-r. However, the data
presently available (L. W. Simmons and G.A.P., unpublished
data) suggest that female size does not influence t, so if Si
changes across females as just suggested, males either cannot
or do not assess this and change their t* accordingly. Further
studies are necessary to estimate S as a function of female size.
A world characterized by Gm-c a constant across various

patch types (female sizes) has a distinctive signature. For this
constancy to apply, we require initial foraging rates to be equal
across patch types, since dG(t)/dt -- Gm-c as t -- 0; perhaps this
signature would be easily recognizable by a typical forager (if
not a male dung fly).

Conclusion

This paper has developed an invariance approach to use of a
patchy environment, motivated by some intriguing empirical
results for copulation duration in dung flies (Figs. 1 and 2).
These results may apply much more generally to patchy envi-
ronments characterized byMVT solutions for movement rules.
We believe that Ht* should be a constant across predator sizes

(for the same collection of patches) because if movement rate is
a function of predator size, individuals with slower movement
rates should have longer interpatch travel times (IL) and smaller
c values. This should be sufficient to make c-,u approximately a
constant over predator size for a specified set of patches; the
MVT (Eqs. 8 and 9) then makes H-t* an invariant across predator
sizes. Of course, the stronger result is that ci ti is invariant across
predator sizes for each and every patch type i.
The gain curves G(t) for a great many "foraging in a patchy

environment" situations can be approximated by the negative
exponential function G(t) = Gm[l - exp(-c-t)]. Eq. 10 says
that a forager facing an environment with several kind of
patches should make c-t* a constant across the patch types if
c mc G-1. This may often be approximately true, particularly if
Gm is primarily controlled by the physical size of the patch
(with initial resource densities roughly equivalent across patch
types) and the predator's search rate is independent of patch
size. Larger patches should have larger Gm values but smaller
c values because c is the proportional rate at which the patch
is searched.

Dimensionless invariance has provided interesting insights
into other evolutionary problems, particularly life histories (15,
16). To the best of our knowledge, the present paper is the first
use of such thinking in foraging theory, and the first attempt
(along with ref. 12) to find general rules for use of a patchy
environment in the face of phenotypic variation in foraging
abilities.
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