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Abstract

The high quality optical films in coatings with low absorption and good environmen-

tal stability are required for the development of high power lasers, because even

slightest absorbing defects could lead to material’s breakdown[1]. Thus, a non-

destructive absorption measurement is required to measure the absorption of de-

fects. Reflection-transmission method is the simplest measurement to measure the

absorption of optical films. This indirect method is good for absorption values down

to ∼ 0.1%. However, typical high quality optical coatings have absorption values

measured in parts per million (ppm). In this thesis, the photo-thermal lens setup

provides another way to measure the change in the sample related to heating with

sensitivity up to 10−6. This technique is a pump-probe technique which depends on

a change in an optical property measured by a weak probe laser that results from

heating by a strong pump. The photo-thermal setup is used to measure absorption

with time resolution and identify defects in optical coatings.
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Chapter 1

Introduction

The recent advances in optical coating manufacturing, such as laser conditioning[5]

for specific materials and sophisticated vacuum deposition technologies[6], have fa-

cilitated a considerable increase in the laser induced damage threshold of optical

components. However, in high power laser applications, such as micro-machining,

surface cleaning, or nuclear fusion[7][8][9], even the slightest defect could lead to

the material’s breakdown. Therefore, it is important and necessary to develop an

accurate tool as precursor centers of laser-induced damage to help us in the local-

ization, detection, and identification of defects and would permit feedback of the

production technology of microcomponents and substrates[1]. For past 20 years, the

optical single-particle detection based on fluorescence has become an effective tool

in molecular biology and materials science because of the low background of this

technique [10]. Still, this technique has its inherent shortcoming that it could not

be adopted in several applications. Indeed, the fluorescence of the defects in thin

film coatings is extremely weak, almost all the absorbed energy is converted into

heat[11]. The detection of nanometer-sized inclusions embedded in thin films or sub-

strates is turned out to be difficult with using only the classical optical technique

(e.g., Bright-field , dark-field or Nomarski microscope)[12].Previous attempts to non-
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Chapter 1. Introduction

destructively identify fluence-limiting defects by various microscopy techniques in-

cluding Scanning Electron Microscopy(SEM) and Atomic Force Microscopy (AFM)

have only identified critical geometrical features or scatter characteristics of coat-

ings defects and laser damage threshold[13, 14, 15]. However, these instruments

give no insight into seed stoichiometry or absorption[5]. Thus, with a different way

of creating contrast, photo-thermal microscopes, including Photo-thermal common

path interferometry[2], photo-thermal deflection microscope [3]and photo-thermal

lens geometry[16], present effective methods to detect the absorption defects in thin

films with high sensitivity.

The photo-thermal effect was first demonstrated in the nineteenth century, but

this technique was not utilized for characterizing materials until 1970s. Then it

is widely used in physics, analytical chemistry and medicine[17]. Photo-thermal

microscope is a technique in which a heating beam is absorbed by a species to be

detected, causing heat flow and a local change of refractive index. The propagation of

a second beam, the probe, would be modulated by the heated area. These changes

produce observed signals[18]. The photo-thermal signal is free from background

and not sensitive to weak scattering since it only arises from absorbing centers that

dissipate heat.

1.1 Goals of Thesis

1. To optimize the photo-thermal test instrument to obtain a ppm sensitivity and

combine with spatial resolution to obtain distribution maps of absorbing sites.

Thus we can investigate properties of the absorbing defects and distribution of

those defects.

2. To apply this photo-thermal setup to get time resolution of optical materials

such as, TiO2 and HfO2. The observation can explain the difference between the

2



Chapter 1. Introduction

multi-pulse laser-induced damage threshold and the fundamental value mea-

sured by single-pulse testing.

3. To obtain the correlation between absorbing and scattering signals to identify

different kinds of defects.

1.2 Outline of Thesis

In Chapter 2 the origin of absorption in optical coatings is discussed. Also, the phys-

ical principles behind photo-thermal measurements of this absorption are reviewed.

In Chapter 3 the photo-thermal setup is presented. The optimization of the

setup is demonstrated using modeling and experiments. The sources of noises are

discussed. Finally the method of calibration is presented and the limit of detection

identified.

In Chapter 4 the use of the photo-thermal setup to measure absorption with time

resolution is demonstrated. Two examples are given. First, Laser-induced absorption

in ion beam sputtered TiO2 is studied. Second, the effect of laser conditioning and

thermal annealing on the absorption of HfO2 is presented.

In Chapter 5 the photo-thermal setup is applied to identify defects in optical

coatings. Simultaneous mapping of absorption and scatter is presented that shows

that localized absorption and/or scattering sites can be identified. The density of

these sites is estimated.

In appendix, there are lists of things that we discussed in details including:

(1) Experimental Procedures.(2) Lists of reference samples we have used throughout

the thesis.(3) How reproducible of the calibration sample experiment.(4) Conver-

sion of absorption coefficient from absorption.(5) Absorption and scattering from

3



Chapter 1. Introduction

dust.(6) Substrate issue.(7) Electron beam evaporation TiO2 film under CW and

pulsed beam.(8) Overall absorption calculation for a single layer film on top of fused

silica substrate with given interface absorption coefficient α and volume absorption

coefficient γ.
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Chapter 2

Background

This chapter briefly presents a few key features of the photo-thermal technique used

throughout this thesis. It begins with an introduction of optical absorption in di-

electric materials. Then it is followed with a discussion in terms of thermal lens

mechanism and different absorption detection geometries. Finally, the conversion

from the measured absorption to absorption coefficient is discussed.

2.1 Absorption in Dielectrics

This thesis is concerned with the measurement of absorption in optical coatings.

The most common materials for optical coatings are metal oxides because of their

low absorption in the visible spectrum and good environmental stability. As an

example, Fig. 2.1 shows the transmission spectra of fused silica and borosilicate

(BK7) windows. The transmission is below 100% at all wavelengths due to Fresnel

reflections at the surfaces. The BK7 window is transparent down to ∼300 nm.

This absorption edge corresponds to point when the photon energy (hν) equals the

material band gap energy (Eg). The band gap energies of some oxides commonly

5



Chapter 2. Background

used in optical coatings are listed in Table 2.1.

Figure 2.1: Transmission spectra of fused SiO2 and borosilicate (BK7) windows.

Dielectric Oxide film Bandgap[eV]

TiO2 3.3[19]

HfO2 5.1[19]

Al2O3 6.5[19]

SiO2 8.3[19]

Sc2O3 5.7[20] ,6.3[20]

Table 2.1: Bandgaps of some dielectric oxide films used for high reflection mirror
coatings

The general features of the transmission spectra can be described by an ideal

dielectric (see Fig. 2.1). Absorption is due to excitation of an electron from a com-

pletely filled valence band to an empty conduction band. For linear absorption, this

requires that the photon energy be greater than the band gap energy (hν > Eg,

see Fig. 2.2(a)). For photon energies below the band gap, multiphoton absorption,

6



Chapter 2. Background

where 2 or more photons are absorbed while exciting the electron, is required (see

Fig. 2.2(b)). Multiphoton absorption is important at the high intensities reached in

pulsed laser systems.

Figure 2.2: Band model of absorption in dielectrics. Three absorption processes are
shown: (a) single-photon band-to-band excitation; (b) multiphoton band-to-band
excitation; and (c) excitation into empty defect states near the valence band edge.

In real materials, linear absorption still occurs for photon energies well below the

band gap due to defects such as interstitials and vacancies in the material which

create states within the band gap. As an example Fig. 2.2(c) shows excitation into a

state near the valence band. This is just one example of a defect state. Other states

throughout the band gap are predicted from first-principles calculation[21]. Point

defects (e.g. vacancies and interstitials) are inevitable even in single-crystals[22].

Optical coating processes produce films far from equilibrium and result in higher

densities of defects than bulk materials. In addition, defects can be created and

eliminated by laser illumination itself. Intrinsic and laser-induced defects have been

used to explain the laser-induced damage behavior of dielectric films[23].

7



Chapter 2. Background

2.2 Absorption Measurements of Optical Coatings

The simplest technique to measure the absorption of an optical coating on a weakly

absorbing substrate, is to measure the transmitted power PT and the reflected power

PR. By energy conservation, the absorption A is given by

A = 1− (PT + PR)/P0

where P0 is the incident power. (This assumes that the scattered power and absorp-

tion by the substrate are negligible.) This indirect method is good for absorption

values down to ∼0.1% and is limited by the accuracy of the power measurements.

Typical high quality optical coatings have absorption values measured in parts

per million (ppm). The absorbed power can be measured indirectly through a change

in the sample related to heating. One such method is laser calorimetry[24] which

works by measuring the temperature change of the test sample using an attached

temperature sensor. Photothermal techniques are all optical methods that depend

on a change in an optical property measured by a weak probe laser that results from

heating by a strong pump. They require that fluorescence can be neglected.

To illustrate the photo thermal method, Fig. 2.3 shows the temperature increase

in the substrate caused by absorption in a thin film (100 nm thick and 10 ppm

absorption) calculated by solving the heat diffusion equation[25]. The calculation

parameters are described in the figure caption. In the figure, the film is too thin to

resolve but the temperature change extends more than 10 microns into the substrate.

This temperature field leads to a spatially varying change in the refractive index ∆n

through the thermo-optic coefficient dn/dT , i.e.

∆n =
dn

dT
∆T.

This spatially varying ∆n produces a thermal lens which can be detected by its effect

on the probe laser and related back to the absorption of the pump. There have been

8



Chapter 2. Background

many demonstrations of the photothermal effect for absorption measurements[2, 3,

26], but they can be split into two classes based on the geometry of their pump-probe

setup: photothermal lens and photothermal deflection. These are discussed in the

next sections.

Figure 2.3: Calculated temperature field for absorbing film on a non-absorbing fused
silica substrate. (Film is on left side of graph.) film thickness = 100 nm; absorp-
tion= 10 ppm; pump power=1 W; pump Gaussian beam radius=15 microns. Peak
temperature 220 mK.

2.2.1 Photo-thermal lensing technique

The photo-thermal refraction technique (sometimes called PCI technique[2]) has be-

come a effective tool to test various low absorption optical thin films and coatings.

A schematic of the setup is shown in Figure. 2.4. And this is the geometry we use

throughout this thesis.

9



Chapter 2. Background

Figure 2.4: Photo-thermal Common-path Interferometer setup[2]

The technique is called a pump-probe technique in which a pump beam is focused

into a material with a focusing lens, resulting in heating of the material. The heating

causes the temperature rise and thus a local change in the refractive index of the

material. Due to the spatial variation of the incident pump beam, a thermal lens is

formed within the heat area. A second probe beam, with a waist larger than and

power less than the heating probe beam, passes through the material. The probe

beam is diverged by the thermal lens. An iris is used at the center of beam to acquire

the intensity change due to thermal lens caused by pump beam.

2.2.2 Photo-thermal deflection technique

The photo-thermal deflection technique[3]distinguishes it from photo-thermal refrac-

tive technique in the way that the probe beam is deflected by the heated area which

relates to the heating and the displacement of probe beam is detected by a position

sensor.

The deflection technique is usually designed in two different geometries: trans-

verse and collinear, see Figure. 2.5
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Figure 2.5: (a),(b)The experimental setup for transverse and collinear Photo-thermal
deflection spectroscopy(PDS) respectively [3]

The collinear setup is difficult to align comparing with the transverse geometry,

but it can perform 3-D depth profiling of absorption by moving the beam overlap

region through the sample. The transverse PDS is good for measuring spectra of

opaque samples or scattering samples. However, both techniques are limited by the

point stability of probe laser in the case of low-frequency modulation. At high-

frequency modulation, the limits are set by the stability of the probe laser and by

the electronic noise of the position sensor.

11



Chapter 2. Background

2.3 The Absorption Coefficient

The measurements described in the previous section all measure the total absorption

of the film, which depends on the thickness of the sample. When possible the absorp-

tion will be converted to the linear absorption coefficient, α, which can be related to

defect absorption. This coefficient relates the laser intensity to the energy density

absorbed, and can be related to the total absorption using the Beer-Lambert Law[27]

which gives the intensity of a plane wave traveling through a uniformly absorbing

material,

I(z) = I0 exp(−αz)

For a slab of thickness d, the total absorption A is related to α by

α = −1

d
ln(1− A) ≈ A

d

The latter is true for small absorptions (i.e. A << 1). In the case of thin films, the

conversion from total absorption to absorption coefficient is complicated by multiple

reflections off the air-film and film-substrate interfaces which create a Fabry-Perot

effect[28]. Details of the conversion a given in Appendix D.

2.4 Summary

In optical coatings, absorption is possible for photon energies well below the band gap

because of defects that result from the thin film deposition process. The absorption

in high quality coatings approaches 1-10 ppm which cannot be detected by standard

measurements with a spectrometer. Instead, techniques that are sensitive to the

temperature changes caused by absorption are used. Photo-thermal methods are all

optical pump-probe techniques that measure the local heating through the generation

and detection of a thermal lens.
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Photo-thermal absorption

optimization

In this chapter, photo-thermal setup with optimized parameters is sought to achieve

high sensitivity as much as possible. In order to do that, photo-thermal signals should

be improved by optimizing several parameters first. Secondly, sources of noise should

be identified and minimized properly.

We start with introducing the layout of photo-thermal setup, and then make

comparison between the simulation work[18] and our experimental results. Noise

sources needed to be identified and proper ways to minimize noise needed to be found.

Finally calibration is introduced in such as way that we can claim the sensitivity of

current photo-thermal setup.

3.1 Experimental setup

The optical layout of the photo-thermal instrument used throughout the remain-

der of this thesis is shown in Fig. 3.1. A 532 nm frequency doubled Nd:Vanadate
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laser(Coherent Verdi V-8) used as pump source is focused by a positive lens with

10 cm focal length. 632.8 nm He-Ne laser(AEROTECH) focused by a 4 cm lens is

chosen to probe the thermal lens which is induced by pump beam. The test sample

is located at the overlap of pump and probe beams. The alignment procedure is

described in Appendix A. After test sample, the transmitted probe beam passing

through an iris which samples just the center of the beam. After the iris, a lens im-

ages the probe beam into an avalanche photo-diode (Thorlabs APD110A2). A line

filter(Thorlabs FL632.8-10) is used to block any laser sources except for the probe

beam. A mechanical chopper(50% duty cycle) modulates pump beam and send ref-

erence signal to a DSP lock-in amplifier (Standard Research Systems,SRS830) which

is used to measure the AC signal at the reference frequency. The DC level is mea-

sured using a digital oscilloscope (Tektronix, TDS210). The photo-thermal signal is

defined as the relative probe intensity change which is given by

p =
∆s

S
(3.1)

where ∆s is AC signal measured by lock-in amplifier, S is the DC level measured by

a digital oscilloscope.

Finally, an additional lens and photodetector shown in Fig.3.1 are used for collect-

ing the scattered pump beam from sample surface. The scattered signal is measured

with an analog Lock-in amplifier(Ithaco Dynatrac 391A) at the same frequency as

the photo-thermal signal. The scatter measurements are discussed in Chapter 5.
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Figure 3.1: Optical layout of photo-thermal setup

3.2 Optimization parameters

The next section describes optimization of the photo-thermal signal through model

and experiments. There are four parameters that are optimized and these are illus-

trated in Fig. 3.2.

Figure 3.2: Schematic of photo-thermal lens

These parameters are distance from sample to the iris d, the size of the iris, the
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distance between the probe focus and the sample surface z′, and probe spot size wp

relative to the pump size we.

3.3 Simulation and optimization

The model we used for the photo-thermal was developed by Bialkowski[18]. The

details of this model can be found in Appendix I. The final analytical expression for

the photo-thermal signal estimated in Bialkowshi[18] with all the setup parameters

p ≈
−8dkw2(t)ϕ(t)(z2

p + z′2 + dz′)
k2w4(t)(z2

p + z′2 + 2dz′+ d2) + 8kw2(t)d2zp + 16d2(z2
p + z′2)

, (3.2)

where z′ is the probe focus to sample distance, zp is the Rayleigh range of probe laser,

k wave-vector of the probe beam, d is the sample to iris distance, ϕ(t) is the phase

shift at the beam center caused by the thermal lens and w(t) is the time dependent

radius of the temperature change. The experimental result of intensity change p

is shown in Eq 3.1. The following graphs shows how we optimized the parameters

theoretically and experimentally.
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Figure 3.3: Comparison of photo-thermal signal between simulation and experiment
vs. normalized d/zp

Figure 3.3 shows a comparison of experimental and simulation results of the de-

pendence on detection distance d. The black line in Figure. 3.3 shows the analytical

result, indicating that the photo-thermal signal monotonically decreases with detec-

tion distance and the far-field signal is about 3 times less than that of the near-field

signal. However, the red dots represent the real data measured with photo-thermal

setup, where the photo-thermal signal increase first but then decrease with detection

distance. And the far-field signal is about 30% less than the maximum one. The

discrepancy of experiment and model results might caused by some assumptions in

the model analysis. To achieve near-field detection, a projecting lens is needed to

be used for imaging the point to the detector plane, which makes the alignment

much more complicated. In our system, we choose far-field detection to make the

alignment easier and it turns out that with current sensitivity we can measure the

absorption of thin films discussed throughout this thesis. However, one could im-

prove the sensitivity of current setup by 30% in the near-field detection based on

what we have discussed above.
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Figure 3.4: The photo-thermal signal vs normalized iris size in near-field and far-field
detection. The iris size is normalized to the probe size at the iris plane.

Figure 3.4 shows the dependence of the photo-thermal signal on the iris size (nor-

malized to the beam size on the iris plane) for two different values of the detection

distance d. There is no simulation because of an approximation in the model deriva-

tion it does not include the effect of iris size. The photo-thermal signal is strongly

dependent on the iris size. In Fig. 3.4, there are always optimized iris sizes both for

near-field and far-field detection since too small iris size leads to weak probe inten-

sity but no iris leads to no change in the probe intensity. The optimum iris size is

about 1% of the beam size of the probe beam at iris plane no matter which detection

scheme is chosen.
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Figure 3.5: Photo-thermal signal vs probe focus to sample distance z′ with detection
distance 100 times larger than the probe Raleigh range.

Figure 3.5 shows the dependence of the photo-thermal signal on the focus to

sample distance z′ normalized to the Rayleigh range zp. This calculation is for far

field detection but the result is the same for near field.
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Figure 3.6: Contour plot of photo-thermal signal p = ∆s
S

vs z′ and d. Both are
normalized to zp, the Rayleigh range of probe beam.

The resulting optimum focus position is z′ = ±zp shown in Fig. 3.5. However, we

choose position value for z′ since in Fig. 3.6 the overall maximum signal is obtained

at the place where z′=zp.

In summary, we have discussed optimization of the photo-thermal signal exper-

imentally and theoretically. The photo-thermal signal is detected in the far-field

scheme even though the signal is 30% higher in the near field detection scheme, be-

cause the alignment is easier. The iris size is always set to 1% of the beam size at

the iris plane. The probe is focused to one Rayleigh range before the sample. The

probe beam size is always chosen to be larger than that of the pump beam.

The optical layout of photo-thermal microscope was shown previously in Fig. 3.1.

The following table 3.1 shows all the optimized parameters.
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Symbol Definition (Units) Value
w0 beam waist radius of pump (532 nm ) µm 12.5

wp,0 beam waist radius of probe (633 nm) µm 20
β crossing angle between pump and probe (rad) π/6
wp probe beam size at sample plane (µm) 45
z′ probe focus to sample distance (mm) 2
d sample to iris distance (cm) 60
L distance from lens4 to Photo detector(mm) 80
f1 focal length of lens1 (mm) 100
f2 focal length of lens2 (mm) 40
f3 focal length of lens3 (mm) 140
f4 focal length of lens4(mm) 50
Pe averaged pump power incident on the test sample (W) 1∼6
Pp averaged probe power incident on the test sample (mW) < 1
ν chopper frequency (Hz) 1100
tl Lock-in time constant (s) 0.3

Table 3.1: Optimized parameters of photothermal setup

3.4 Noise analysis

The detection limit is the smallest absorption which produces a signal that is larger

than the noise. In the previous section, we have optimized the geometry of the

photo-thermal setup to optimize the signal. In this section, we identify the noise

sources in order to minimize them. The sources are the power fluctuations of pump

and probe beams, point stability of pump and probe beams, and electronic noise

from the detection system. These all have frequency dependence, so we will identify

the frequency with lowest noise. To identify the noise sources, a schematic setup in

Fig 3.7 works as a spectrum analyzer is used.
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Figure 3.7: A Schematic of setup for measuring overall noise including power fluctu-
ation and point stability from the laser source.

Iris is used for detecting both point stability and power fluctuation of laser source,

and no iris for collecting power fluctuation from the laser source. The noise equivalent

signal can be analyzed at different frequency by changing the chopper frequency. At

each different reference frequency, a different lock-in time constant is chosen. The

higher the reference frequency is, the smaller the time constant would be chosen.

Since the 1/f noise fluctuation increases with reference frequency, a slower Lock-in

time constant which reduces the measurement bandwidth is needed to obtain clean

results. One can find the corresponding time constant and chopper frequency in

table 3.2

chopper frequency [Hz] time constant [s]
110 3
330 1
1100 0.3
3300 0.1

Table 3.2: Chopper frequency with corresponding time constant
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(a) (b)

Figure 3.8: The noise equivalent signal caused by the pump laser at different chopper
frequency (a) power fluctuation (b) both point stability and power fluctuation.

(a) (b)

Figure 3.9: The noise equivalent signal caused by the probe laser source at different
chopper frequency (a) power fluctuation (b) both probe point stability and power
fluctuation.
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(a) (b)

Figure 3.10: The noise equivalent signal caused by probe and pump laser sources at
different chopper frequency (a) power fluctuation (b) both point stability and power
fluctuation.

24



Chapter 3. Photo-thermal absorption optimization

In Fig. 3.8, the magnitude of both pump power fluctuation and point stability are

on the order of 10−5 and the noise levels in both cases are the maximum at 330Hz.

In Fig. 3.9, the magnitude of both probe power fluctuation and point stability are

on the order of 10−6 and noise levels in both cases are the maximum at 1.1kHz.

However, in Fig. 3.10 the overall noise from both pump and probe power fluctuation

and point stability are on the order of 10−6, as the same order from the probe laser

source only.

We identify that the noises are mainly from the probe laser source for reason that

the pump makes much smaller effect on the final photo-thermal signal than that from

the probe, although it has higher noise level. The pump beam affects the noise in

an indirect way since any power fluctuations and point stability would give rise to

uncertainties to the thermal lens which can be shown in the final probe signal change

∆s. ∆s is proportional to pump power and ∆s fluctuation is also proportional to the

pump power fluctuation and point stability based on the linear relationship shown

in Fig. 3.11.
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Figure 3.11: The linear relationship between photo-thermal signal and input pump
power .

Then ∆snoise is related to ∆s by

∆snoise ≈ 10−5 ∆s, (3.3)

where ∆snoise is ∆s fluctuation and ∆s is probe change caused by thermal lens.

However, the probe laser source directly affect the photo-thermal signal because we

detect the probe signal S and probe signal change ∆s at the same time. The S

fluctuation is also proportional to the probe power fluctuation and point stability.

The relationship is expressed as,

Snoise ≈ 10−6 S (3.4)

where Snoise is S fluctuation that cause noise by the probe laser source, and S is

the probe signal. For a typical dielectric thin film that we used in our thesis, the

magnitude of photo-thermal is on the order of 10−5, which means ∆s is much smaller

than S in such way,

∆s = 10−5 S. (3.5)
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We can compare the effect from pump(∆snoise) with that from probe (Snoise) using

the equations 3.3 3.4 3.5. We can get the relationship between the pump effect and

probe effect,

∆snoise = 10−10 S = 10−4 Snoise. (3.6)

The effect from pump laser source is 104 smaller than that from probe laser source,

and this is the reason why we can ignore the effect from pump source and identify

the noise from probe laser only.

In phase component X and amplitude R of noise at different reference frequency

are measured respectively. Based on those graphs, we can see that R is larger than

X and there is relationship between X and R, such that

X = R ∗ sin(θ) (3.7)

Where θ is the phase between the signal and the reference input.

All the magnitude of relative changes are on the order of 10−6, but with the lowest

level at 1.1 kHz chopper frequency. Therefore for all the signal and noise values we

are going to discuss in the following chapters are in phase component X which have

been measured at 1.1 kHz chopper frequency in order to achieve minimized noise

level.

In addition to electronic noise, coherent radio frequency pickup adds a steady

offset to the signal [29]. Any signal and reference cables and even power cord that

plug into the lock in amplifier, picking up signals at reference frequency. This kind

of effect would be dominant at frequencies above 5 MHz. Since current setup works

at frequency below 1 MHz, we do not need to bother with this kind of noise source.

The last source of noise to be considered is optical noise. Scattered pump light

at the reference frequency can easily overwhelm the measurement. However, in our

system a line pass filter with center wavelength 633 nm and bandwidth 3 nm is used

to block the pump beam produced no observable effect on the signal.
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In this section, different kinds of noise have been discussed in details especially

the laser noise. Compared to other noise sources, such as the shot noise level, the

noise from the laser source itself dominates in this case. And the noise level is on

the order of 10−6, which limits the sensitivity of the setup. Therefore, in order to

improve the sensitivity of the setup, laser source with low power fluctuation and high

point stability would be considered.

3.5 Calibration

In order to convert the photo-thermal signal to absorption, we use a calibration

sample which consists of a highly absorbing film on a substrate of the same material

as the test sample. The absorption is calculated using

A =
p

pr

PrAr
P

(3.8)

where Ar is the known absorption of the reference sample, A is the test sample

absorption, Pr,P are the input pump power of reference and test samples. pr,p

are the photo-thermal signal of reference and test samples. The assumptions of

this calibration procedure are that the thermal lens is in the substrate and does not

depend on the film and the photo-thermal signal is linearly proportional to the pump

power. The latter is shown in Fig. 3.12
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Figure 3.12: The photo-thermal signal of reference sample NDF03 vs. input pump
power

The specific reference samples used in this thesis and the calibration process have

been discussed in details in Appendix B

3.6 Optimized photo-thermal setup and detection

limit
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Figure 3.13: Absorption of two HfO2 samples with different thicknesses

Figure 3.13 shows an example that with our current setup we can measure the

absorption of samples larger than 0.5 ppm with a 1 W input power. The dash

line represents the minimum absorption level that can be measured by our current

photo-thermal setup.

3.7 Longitudinal scans of samples
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Figure 3.14: The longitudinal scan of as-grown HfO2 with 200nm film thickness on
a quarter inch fused silica substrate

The black curve shows the photo-thermal signal where the thin film move toward

the pump/probe crossing point. The center peak corresponds to the position where

the pump and probe beams cross at the thin film. The value for this maximum is

used for calibration. The width of the central peak shows the longitudinal space

resolution of the system, which is about 100µm. There are two side peaks with

negative value because we measure X rather than R and the π phase shifts occur

while crossing through those points. The red curve shows the photo-thermal signal

where the substrate move toward the pump/probe crossing point. The signal is

around the noise level of current setup, which is much smaller than that in the first

case. The difference between two cases is that in first case the thin film absorbs the

energy and creates a thermal lens in the substrate due to the heat flow, however, in

the second case, the substrate absorbs the energy and creates a much weaker thermal
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lens in the substrate due to very small absorption of fused silica compared to the

HfO2 thin film with 20 ppm. Therefore we can distinguish the thin film absorption

from substrate.

3.8 Summary

In this chapter, setup parameters such as pump/probe beam size ratio, detection

distance, probe focus to sample distance z′ and iris size have been optimized for

building a good photo-thermal setup with∼0.5 ppm sensitivity, which has normalized

to 1 W input power, 18µm transverse spatial resolution and 100µm longitudinal

spatial resolution. Even better sensitivity is possible if noise from probe laser source

can be reduced.
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Time resolved absorption of thin

films

Optical coatings have been an area of intense research for decades [30]. Oxide films

are the dominant material in the visible to near-IR spectral range due to their envi-

ronmental robustness and low absorption, because of their large bandgap relative to

the photon energy. The connection between the fundamental damage threshold and

multiphoton ionization processes has been established by single-pulse subpicosecond-

laser-damage studies [19]. However, the practical limit (i.e. the multiple-pulse dam-

age threshold) is lower than the fundamental value[31]. This observation has been

attributed to material changes arising from sub-threshold excitation of electrons into

native and laser-induced states in the band gap [[31], [19]].Corresponding laser dam-

age models can explain the dependence of the damage fluence on the number of

excitation pulses and their spacing [23]. Long lived laser induced material modi-

fications are well known in dielectric bulk materials and are often associated with

self-trapped excitons [32]. Time-resolved spectroscopy on thin films also indicate
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that the film does not fully relax between pulses of a train[33]. ∗

The midgap model[23] predicts an increase in absorption due to the occupation

of states near the conduction band. TiO2 is a material well suited to demonstrate

this effect. Because of its relatively small band gap, material modification induced

by CW and pulsed illumination can be compared. If the presence of the pump-

laser itself leads to changes in the absorption, it will be observed in changes in the

photo-thermal signal. Pump-induced changes to absorption of TiO2 films have been

studied previously[35][36]. However, these two studies used a CW pump and were

limited to irradiances of just 400 W/cm2 and 2.2 kW/cm2, respectively. In the latter

case, a drop in the absorption was observed, which was attributed to laser annealing

of the film[36]. In later work Wu et al. compared films prepared by electron-beam

evaporation and ion-assisted deposition and found the latter to have a lower and

more stable absorption [37].

In this section, we compare laser-induced material modifications by CW and

pulsed (train of femtosecond pulses) for both IBS and EBE TiO2 thin film coatings.

However, the IBS film results would be discussed in details in this section, please

refer to EBE film results in Appendix. G.

4.1 Ion-beam sputtering TiO2 time-resolved re-

sults

The absorption behavior of two different TiO2 film samples was investigated. They

were prepared (1) by ion-beam sputtering(IBS) and (2) by electron beam evapora-

tion(EBE). The IBS film was 496nm thick and had a refractive index of 2.39. The

∗In this section, I copied most parts from the paper [34] due to my contribution to all
the experimental data shown in this section.
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EBE film was 115 nm thick and had a refractive index of 2.2.

For a given pump mode (CW or pulsed) the absorption (thermal lens signal) was

monitored as a function of time for different excitation powers. A new spot on the

sample was selected before the next data set was taken. To estimate the recovery time

of the induced absorption the pump was blocked after a certain absorption change

was reached and then unblocked briefly at certain intervals to probe the thermal lens.

Third-harmonic microscopy (THM) showed great potential for the inspection of

nascent optical films, see for example[38]. This optical far-field microscopy has the

potential for in situ monitoring of films during deposition and annealing. Figure 4.1

shows THM images of the IBS and EBE TiO2 films used in this study. The image

contrast arises from local anisotropies, which are clearly more pronounced in the

EBE sample. We attribute this to boundaries (interfaces) between film domains, for

example grain boundaries, in the EBE sample.

(a) (b)

Figure 4.1: Third-harmonic microscope images(10µm by 10µm)of (a) IBS and (b)
EBE TiO2 films [4]
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(a) (b)

Figure 4.2: Time-resolved absorption of the IBS TiO2 film for (a) pulsed illumination
at (1) 57 kW/cm2, (2) 110 kW/cm2, and (3) 200 kW/cm2 average irradiance; and
(b) CW illumination

Figure 4.2a shows the time-resolved absorption for the IBS film at different irra-

diances when exposed to the femto-second pulse train. The data are normalized to

the initial absorption measured at very low average power. The absorption increases

monotonically over the exposure time. In contrast, the absorption for CW illumi-

nation is not time dependent for the incident powers used, see Figure 4.2b. The

absorption value agrees with that measured for the initial absorption at low incident

pulsed power. Figure 4.3 shows the initial absorption as a function of the power of

the incident pulse train and the absorption value measured with the CW laser for

comparison.
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Figure 4.3: The initial absorption vs. the average irradiance for the IBS TiO2 film
under pulsed illumination. The absorption coefficient obtained with CW illumination
is shown for comparison.

Refer to the model shown in chapter 2, we present it here(Fig. 4.4) again for

simplicity. Both the IBS and EBE sample have an energy level, A1, close to the

valence band (VB), which is responsible for the absorption coefficient α0. The

quadratic dependence of the initial absorption coefficient on intensity under pulsed

illumination,α2I
2, is due to a three-photon absorption that can promote electrons to

the CB(3h ν ≈ 4.5 eV > Egap ≈ 3.3 eV). From there these electrons can populate

trap states A1and A2. Both of these states can absorb linearly and are responsible

for the transient absorption component ∆α(t). In addition, they may increase the

VB-CB absorption because they can represent near-resonant mid-gap states, which

could enhance the multi-photon absorption coefficient.

The initial absorption coefficient derived from the measurements varies quadrat-
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Figure 4.4: Simplified energy level scheme for TiO2. (solid arrows = optical transi-
tions; dashed arrows = relaxation processes.) Level A1, A2 is an existing trap state
near VB and CB, respectively. B is a laser induced state.

ically with the incident power (intensity) of the pulse train, apart from a constant

offset (α0). These observations suggest that the absorption coefficient is the sum of

an intensity dependent initial (t = 0) value αi and an intensity and a time dependent

component ∆α:

α(I, t) = αi(I) + ∆α(I, t) (4.1)

where the initial absorption coefficient for the IBS sample

αi(I) = α0 + α2I
2 (4.2)

has a constant contribution and a term quadratic in the incident intensity.
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(a) (b)

Figure 4.5: Time-resolved absorption with relaxation for IBS film under pulsed illu-
mination: (a) long-time scale; and (b) short-time scale

The distinction between states A2 and B meant to explain the kinetics of the laser-

induced absorption, both the increase to its maximum value and the relaxation after

the pump is blocked. Figure 4.5a shows the absorption measured over 5 hours. The

absorption increases rapidly over the first hour but then increases only another 33%

over the next 4 hours, reaching a maximum value of 80 cm−1. At that point the pump

was blocked and the material was allowed to relax. Another two measurements were

made over the next 90 minutes by unblocking the pump just long enough to measure

the absorption and then blocking it again. During that time, the absorption had

relaxed to 68 cm−1. On the other hand, Fig.4.5b shows that the film, when exposed

to the pump for just twelve minutes, relaxes to its initial value in under an hour.

Therefore, the states A2 are those that are quick to be filled and quick to relax while

the state B take much longer to be filled and relax more slowly too. The states

A2 might be existing traps states whereas the B are laser-induced states. The final

density of occupied B states depends on the pump intensity.

In summary, the laser-induced absorption observed in TiO2 is caused by band-
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to-band (VB-CB) excitation and the subsequent occupation of existing and laser-

induced states near the CB. This excitation process is sensitive to the film micro-

structure. In the EBE sample, the effective cross section for VB - CB excitation

is greatly increased, presumably due to interface states, so that absorption changes

occur even with CW irradiation. The lifetime of the induced absorption depends

is different for the trap (minutes) and laser-induced state (hours), which can be

controlled by the duration of the exposure and intensity. The proposed energy level

diagram based on the absorption measurements exhibits similar features than that

derived from multiple pulse damage measurements[23]. This supports the hypothesis

that the occupation of native and laser-induced midgap states are responsible for the

observation that the multiple-pulse laser-induced damage threshold is lower than the

fundamental value measured by single-pulse testing.

4.2 Absorption reduction by laser conditioning and

thermal annealing

Laser conditioning is a process where an optic is illuminated at a progressively higher

influences to obtain absorption reduction, thus leading to the increase of optics laser

damage threshold[39, 40]. And it has been shown that laser conditioning has im-

proved the laser damage threshold of some optical coatings by more than a factor of

2[5]. Similarly post deposition annealing also leads to reduction in absorption and

increased damage threshold[41].

Time dependent absorption was measured for HfO2 films prepared by ion beam

sputtering. A total of four films with different thicknesses and/or post-deposition

treatments were prepared. These are listed in Table. 4.1. Samples A and B were from

the same coating run, and sample A was tested as grown while sample B received
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an additional post-deposition annealing treatment. Similarly samples C and D were

tested as grown and after annealing respectively. Figure 4.6 shows the time dependent

absorption of samples A and B. The absorption of the as-grown film, sample A, drops

from its initial value of 26 ppm to its final value 8 ppm. On the other hand, the

absorption of the annealed film, sample B, is nearly constant at 1 ppm.

label Coating ID thickness (nm) post deposition
A 130220b 85 as grown
B 130220b 85 annealed
C 130222b 191 as grown
D 130222b 191 annealed

Table 4.1: List of samples and corresponding labels in this thesis

(a) (b)

Figure 4.6: Absorption of as-grown and annealed HfO2 samples respectively vs.time
at a local spot under 532nm CW excitation with intensity 990kW/cm2.
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Chapter 4. Time resolved absorption of thin films

Figure 4.7: The initial and final absorption of annealed and as-grown HfO2 with
different film thickness. The arrows indicate the changes.

Figure 4.7 shows the initial and final absorption vs. thickness for all four samples.

The absorption of the annealed films extrapolates to zero for zero film thickness.

But the dashed line through the initial absorption of the as-grown films does not

approach zero for zero film thickness. This result indicates the absorption at the

interfaces (film-air and/or film-substrate). Figure 4.8 shows calculated absorption

vs. thickness where α is the volume absorption coefficient and γ is the interface

absorption coefficient. The calculations are discussed in details in Appendix J. This

curve goes through both experimental values. The contributions of the volume and

interface to the total absorption are listed in Table 4.2 for both thicknesses.
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Chapter 4. Time resolved absorption of thin films

Figure 4.8: The theoretical and experimental absorption results vs. film thickness

In Figure 4.8, we define α as the volume absorption coefficient and γ the interface

absorption coefficient.

Interface Volume
Extinction coefficient 6*10−4 0.5 cm−1

Absorption of sample C (ppm) 19 11
Fraction of overall absorption 63% 37%

Absorption of sample A (ppm) 19 6
Fraction of overall absorption 76 % 24%

Table 4.2: Absorption coefficients of interface and volume, associated with corre-
sponding absorption of sample C and A with different film thickness.

In Table 4.2, it turns out that the interface absorption will no longer be negligible

but dominates in the as-grown film samples.

In summary, the time dependent absorption of both annealed and as-grown HfO2

with different film thicknesses has been investigated under 532 nm CW laser. The

absorption of as-grown film decreases with illumination time while annealed one
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Chapter 4. Time resolved absorption of thin films

is independent of time. The thickness dependence of the absorption indicates the

as-grown films have a significant interface component, whereas the annealed films

exhibit just volume absorption. Therefore we conclude that the laser conditioning

effect observed in the as grown films is due to reduction of interface state density,

just like the post-deposition annealing process. So compared to as-grown films, the

annealing process has improved the dielectric films in these ways :(1) It reduced over-

all absorption and time dependent issue effect.(2) It limited the interface absorption

effect.(3) It could reduce defects both in thin films and substrate surfaces which could

be discussed in details in chapter 5.
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Chapter 5

Combined absorption and

scattering imaging

Laser damage in optical films by nanosecond laser pulses are initiated at localized

defects[42]. In this chapter we demonstrate the use of the photo-thermal setup for

mapping localized absorption and scattering centers in optical films as potential

damage precursors. The sample is raster-scanned (see Fig. 5.1)and single-point mea-

surements are combined to form absorption and scattering maps. The resolution of

these maps is limited by the focused pump size(FWHM=18 µm).
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Chapter 5. Combined absorption and scattering imaging

Figure 5.1: A layout of setup for simultaneously collecting scattering and absorption
signals.

5.1 Sc2O3 scanning results

Sc2O3 films prepared by ion beam sputtering on fused silica substrates are used to

demonstrate simultaneous absorption and scatter mapping. Fig. 5.2 shows absorp-

tion and scattering maps for a scandia film under 1 watt CW pump laser.

From these images, one can conclude that there are at least three different kinds

of sites: (1) There are the sites with strong absorption associated with strong scatter-

ing.(2) There are sites where there are strong absorption but no scattering.(3) There

are sites with strong scattering but no strong absorption.These would be three differ-

ent kinds of defects, and they might or might not affect the laser damage threshold

measurements at the end, thus more work is needed to prove that. Dust particles

are not a problem, see Appendix E.
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Chapter 5. Combined absorption and scattering imaging

Figure 5.2: Left : Absorption image of Scandia with pump intensity 220kw/cm2.
Right : Scattering image of Scandia. The size of both images is 900µm × 136 µm
and each pixel is 9µm ×9µm.

Fig. 5.3 shows three consecutive line scans. We observed that in Fig. 5.3a the

absorption of thin film decreases in the second and third scan lines because of the laser

conditioning, but the two spikes remain the same. And the scattering measurements

are the same for the three successive scans.
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Chapter 5. Combined absorption and scattering imaging

(a) (b)

Figure 5.3: Three successive lateral line scans of Scandia film showing (a)absorption
(b) scattering.

5.2 HfO2 scanning results

To further investigate whether the spikes come from the thin film or substrate, we

statistically analyze the spike density on both side of sample. For safe argument,

we have assumed that both sides of substrate are identical. And the back side of

sample refers to the substrate side. Thus, we scanned a couple of lines on the film

and substrate side.

For a pair of HfO2 sample with 191 nm thickness, lateral scan for both film and

back side have been tested, see in table 5.1 For a pair of HfO2 sample with 85 nm

thickness, lateral scan result can refer to Appendix. H.
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Chapter 5. Combined absorption and scattering imaging

D substrate C substrate D Film C Film
Spike# 3 5 1 5

Scan area (mm2) 0.14 0.14 0.14 0.41
Absorption density (mm−2) 21 36 7 12

Spike absorption (ppm) 1 1.2 1 16

Table 5.1: Scanning results for sample D(annealed) and C(as-grown)

Compared with annealed sample, the spike density tends to be larger in as-grown

sample both for film and substrate side, which is independent of film thickness. In

both as-grown and annealed samples, we also found more spikes on substrate surfaces

with about 2 times larger than that on film side.

In summary, with current photo-thermal lens geometry we can identify several

kinds of localized defects by combining the scattering measurements. The annealing

process reduced both the spike density and absorption on thin film and substrate

side.
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Chapter 6

Summary

The fact that absorption in real optical films is possible for photon energies well below

the band gap because of defects that result from the thin film deposition process has

been discussed. The photo-thermal setup with sensitivity of ∼0.5 ppm is developed

and optimized using modeling and experiments. The setup is calibrated using a film

with known absorption deposited on fused silica substrate, the same substrate of the

test films. The photo-thermal setup provides us a direct way to detect, localize and

characterize the defects in optical thin films since it is important for developing high

quality mirrors in high power lasers. Three examples are applied to demonstrate

that. First, the laser-induced absorption in ion beam sputtered TiO2 is investigated.

Second, the effect of laser conditioning and thermal annealing on the absorption of

HfO2 is presented. Third, simultaneous mapping of absorption and/or scattering

sites is shown as well as the density of these sites is estimated.
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Appendix A

Experimental Procedures

The photo-thermal setup has been aligned in such a way that anyone who follows the

routine shown in the following context can align the setup in a couple of minutes.

1. Check probe power to make sure probe laser works in a stable power mode.

2. Check pump power. If using a tunable laser such as the Ti:Sapphire oscillator,

then check the spectrum.

3. Align both probe and pump beam through irises on the experiment table.

4. Use the ∼ 20 µm pinhole to overlap both beams as shown in Fig. A.1
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Appendix A. Experimental Procedures

Figure A.1: The schematic of aligning beams with the pinhole

5. Insert the pinhole into the sample holder, and adjust the xyz axes to find the

focal point of pump beam by maximizing the power that passes through the

pinhole.

6. Find the focus of the probe beam by moving the pinhole in x and y (do not

touch z) by maximizing the throughout using the power meter.

7. Now overlap pump and probe by adjusting the pump focus lens in x and y to

one again maximize the power through the pinhole.

8. Replace pinhole with reference sample, and reduce pump power to the level such

that ∆S on the lock in amplifier goes to noise level without using iris before

photo-detector, where ∆S is the voltage on the Lock in amplifier representing

probe intensity change at the reference frequency.

9. Make reference to the calibration samples and powers listed in Appendix B.

10. Turn chopper on , minimize the iris which locates before the photo-detector

and adjust reference sample in z axis to get maximum ∆S.

11. Adjust pump lens holder in x-y axis to get higher ∆S if necessary. Move probe

lens holder in the direction of probe beam if the setup is to align for a new
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Appendix A. Experimental Procedures

laser system. Then fix the probe lens holder without changing the position and

angle with respect to the direction of pump beam.

12. Record the input pump power, sample holder z, ∆S and S for calibration

samples, where S is the voltage on the oscilloscope.

13. Day to day reproducibility of the z position is within the range of 75 µ m.

14. Replace the reference sample with ground glass slide (one surface has rough

surface but the other one does not) and align the scattering light to photo-

detector.

15. Use power meter to measure the scattered light before photo-detector Psc, and

record voltage Vscon the lock-in amplifier.

16. Replace the reference sample with test sample and increase the pump power.

adjust test sample in z axis until one founds the maximum ∆S.

17. On the lock-in amplifier, we usually choose X quadrature for the ∆S, and we

need to press the auto-phase button repeatedly everytime when we make our

experiments.

18. For optimum operation, we usually choose 1.1kHz with 300 ms time constant

on the lock in amplifier, more details can be found in Chapter 3.
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Appendix B

Lists of reference sample

Following the procedure in Appendix A, one records three values for a given mea-

surement: the AC signal, the DC level, and the pump power. Because the AC signal

is proportional to the pump and probe powers, the photo-thermal signal is calculated

as Eq. I.9

∆ =
∆S

S
(B.1)

In order to convert to the total absorption, the reference sample with the following

two properties is required: (a) the absorption of the reference film must be known;

(b) the reference film must be on the same substrate as the unknown. The absorption

of the unknown is then calculated using Eq. B.2

Q =
∆

P ∗ A
(B.2)

where Q is called the calibration factor.

There were two reference samples used for calibrating the absorption measure-

ments at 532 nm. These are listed in table. B.1

The Calibration power for NDF03 is needed to be reduced in the future in order

to avoid refractive index change.
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Appendix B. Lists of reference sample

NDF03 with BK7 AlOx with fused silica
Absorption 0.4 0.57

Calibration factor (µm/ppm) 1.5 0.5
Calibration power (mW) 5 0.6

Table B.1: Calibration samples on different substrate with 532 nm

The AlOx reference sample was also used to calibrate the measurements done at

800 nm. In that case, there was a difference absorption measured for pulsed and CW

excitation. The calibration values are listed in table. B.2

Pulsed CW
Absorption @ 800 nm 0.3 0.35

Calibration factor(µm/ppm) 0.61 0.74
Calibration power (mW) 5.3 4.2

Table B.2: Calibration sample AlOx on fused silica under CW and pulsed excitations
round 800 nm
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How reproducible of the

calibration sample experiment

One can easily align the photo-thermal setup in the way shown in appendix A.

However, we got different calibration values every time when we aligned the setup,

see Figure.C.1

Figure C.1: Calibration factor of NDF03 reference sample measured on different days
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Appendix C. How reproducible of the calibration sample experiment

The accuracy of the calibration depends on the uncertainty of the calibration

coefficient. Fig. C.1 shows a plot of the calibration coefficient of the NDF03 reference

sample measured on different days. The average calibration factor is 1.5 µW/ppm

with standard deviation of 0.13, giving an accuracy of roughly 9%.
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Appendix D

Conversion of absorption

coefficient from absorption

The photo-thermal instrument measures the total absorption of the film, which de-

pends on the film thickness amongst other parameters. Instead we report the absorp-

tion coefficient, which comes from the Beer-Lambert law that describes the intensity

of light traveling in one direction through an absorber. The conversion from total

absorption to absorption coefficient is complicated in thin films due to reflections at

the air film and film-substrate interfaces which lead to the Fabry-Perot effect.

With three given refractive indices: n1,n2,n3 and a film thickness d. We can

calculate reflection coefficients at air film and film substrate interfaces ρ12,ρ23. The

round trip propagator G can be defined as

G = e−α∗d (D.1)

G is less than 1 since the film do not have gain but loss in this case. Take the thin

film as a resonant cavity, and the transmission and reflection could be expressed
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Appendix D. Conversion of absorption coefficient from absorption

as[28],

T =
G(1− ρ12)(1− ρ23)

(1−G√ρ12ρ23)2 + 4G
√
ρ12ρ23sin2θ

(D.2)

R =
(
√
ρ12 − ρ23)2 + 4G

√
ρ12ρ23sin

2θ

(1−G√ρ12ρ23)2 + 4G
√
ρ12ρ23sin2θ

(D.3)

A = 1− T −R (D.4)

Since the absorption is so low that within the initial linear region in Fig. D.1 we can

define a correction factor as in Eq. D.5

Figure D.1: Absorption vs.α for a given film index and thickness

Q = α/A (D.5)
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Appendix D. Conversion of absorption coefficient from absorption

Since Ais function of the parameters such as refractive index n and thickness l

of thin film, Q will be dependent of both n and l. Therefore, we can calculate any

absorption coefficient of thin film with given n and d.
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Appendix E

Absorption and scattering from

dust

There are a few spikes while we laterally scan the thin film. Therefore we need to

make sure that the spikes are from thin film itself before making any conclusion

about that. The first thing we need to pay attention to is the dust. Is it known that

the dust is everywhere, and it would adhere to the surface of any optical components

if some of them have static charge to them. We set up a Nitrogen flow dust cleanser

which could try to get rid of dust around the test surfaces, check the Figure. E.1

Figure E.1: The layout for the Nitrogen flow setup

62



Appendix E. Absorption and scattering from dust

But it turns out that it could not get rid of dust but cause additional noise with

high flow rate, one could found in the Table. E.1

Mean absorption (ppm) Standard Deviation
High flow rate 0.78 0.4
low flow rate 0.7 0.2
No flow rate 0.76 0.17

Table E.1: Mean absorption and standard deviation measured at the same spot with
different flow rates

It not only causes additional noise but also adds dust to the surface, see Fig-

ure. E.2

(a) (b)

Figure E.2: (a)The lateral scan of a same line with low flow rate first and then high
flow rate.(b)Lateral scan of a same line without flow rate and then with low flow
rate.

There is no obvious spikes in the first lateral scan under low Nitrogen flow rate,

but a huge spike exists the second time with high flow rate. Based on above results,
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Appendix E. Absorption and scattering from dust

we could not run this kind of experiment under high flow rate since everything will

messes up. Then we lower the flow rate in Figure (b), the two scan lines are overlap

with each other and make no difference, indicating no effect by the Nitrogen flow.

In this experiment, we tried to use high flow rate and low flow rate and no evidence

to show that using Nitrogen flow can prevent dust from the sample surface without

leading to additional noises.

Checking the lateral scan spikes on a dusty sample is an alternative way to exclu-

sive the dust problem from our scanning results. We can see how the dust effects the

absorption and scattering lines on a sample surface. Therefore, a cleaned substrate

was left uncovered over night. Dusts may adhere to the surface of the substrate.

The following graphs Figure. E.3 show how the dust behave in both absorption and

scattering scanning lines

(a) (b)

Figure E.3: (a)(b)Scanning lines of both absorption and scattering at two different
places.

From Figure. E.3 we see that the absorption spikes are about 10 times larger,

compared with the absorption spikes on a cleaned sample surface. Secondly, there

are scattering associated with absorption spikes. Finally, there are scattering without
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Appendix E. Absorption and scattering from dust

absorption but no absorption without scatter. The possible reason would be that

dust would absorb energy without transferring it to the sample surface or even could

not absorb energy of the laser.

The dust absorption and scattering lines distinguished from that of clean surfaces

in such way, it should not effect spike detection after carefully cleaning.
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Appendix F

Substrate issue

In appendix E, we discuss about if dust would effect spike detection. In this section,

we also need to pay more attention to the substrate surfaces, since it also could be

one of the spike sources. We usually assume that the front surface which attaches to

the thin film is identical to the surface on the backside. The fused silica substrate

discussed in this chapter are listed in Table F.1

Sample Label
HfO2 120602 b substrate I
HfO2 130222 b substrate J

Table F.1: The fused silica from different vendors

Absorption measurements of sample I is shown in Figure F.1.
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Appendix F. Substrate issue

Figure F.1: left: Time dependent absorption measurement layout. Right: The ab-
sorption of sample I vs time

Figure F.2: The absorption of sample J vs time

The substrate absorption in Fig. F.1 is larger than that in Fig. F.2. They are

both fused silica, but provided by different vendors. Referring to the longitudinal

scan result in Figure. F.3, we can see that the absorption just occurs at the substrate

surface, which could be caused by contamination.
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Appendix F. Substrate issue

Figure F.3: left: Longitudinal scan measurement layout. Right: The absorption of
sample J vs longitudinal position Z.

We sent them back to our co-workers in Colorado State University. They cleaned

that and sent it back to us. We tested again and the result is shown in Fig. F.4

Figure F.4: Lateral scan of cleaned sample I

The average absorption is smaller than that in Fig. F.1, but it is still above the

detection limit of our current system(0.5 ppm).
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Appendix G

Electron beam evaporation TiO2

film results

We used IBS sample as an example to demonstrate the effect that the increased

absorption is due to the occupation of states near the conduction band. The EBE

film is presented here for a comparison.
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Appendix G. Electron beam evaporation TiO2 film results

(a) (b)

Figure G.1: Time-resolved absorption coefficient for the EBE film under (a) CW
illumination at (1) 9.3 kW/cm2, (2) 28 kW/cm2, (3) 78 kW/cm2, and (4) 141
kW/cm2 irradiance; (b) pulsed illumination at (1) 9.3 kW/cm2, (2) 25 kW/cm2,
(3) 87 kW/cm2, and (4) 180 kW/cm2 peak irradiance.

For the EBE film, the absorption exhibited a time-dependent component, ∆α

for both CW and pulsed excitation, see Fig. G.1. The results for CW excitation of

the EBE film (FigureG.1a) were similar to the pulsed illumination of the IBS film,

monotonic increase of the absorption with power dependence. In the case of pulsed

excitation (Fig. G.1b) the absorption increase is faster and a new feature appears at

the highest irradiances, a transient spike in the absorption.
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Appendix G. Electron beam evaporation TiO2 film results

Figure G.2: Initial absorption vs. irradiance of EBE film under CW illumination.

Fig. G.2 shows the initial absorption of the EBE film under CW illumination.

Within the error of the measurement, the initial absorption coefficient(α0 24cm−1)

does not depend on the CW power and is about three times larger than for the

IBS film. The functional behavior of αi(I) could not be determined from the pulsed

illumination data, because the change in the absorption was too rapid at high irradi-

ances to get reliable values for the initial absorption. More details about EBE films

have been discussed[34].
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Appendix H

Spike distributions of HfO2 C and

D

Label side Spike# Scan area(mm 2 ) density (mm−2) spike absorption(ppm)
HfO2B Back 0 0.3 0 0
HfO2A Back 9 0.18 50 8
HfO2B Film 1 0.3 4 20
HfO2A Film 5 0.27 24 6

Table H.1: Scanning results for annealed and as-grown HfO2 with 85 nm thickness
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Appendix I

Model of photo-thermal signal

The case of a pulse-laser excited sample probed with a continuous laser is examined

first. Photo-thermal lens signals are calculated by first finding the time-dependent

temperature change resulting from instantaneous sample excitation[18]. The expres-

sion for the temperature change in the sample as a function of radius and time can

be obtained by the solution of the heat transfer equation[25]

ρCρ
d[∆T ]

dt
− κ∇2[∆T ] = U(r, t) (I.1)

where ρ and Cρ are density and heat capacity of the thin film respectively. The

first term on the left-hand side equation represents the time rate of change of energy

stored in a unit volume, the second term on the left-hand side would be the rate of

energy entering or leaving through the boundary surface of the volume, and the term

on the right-hand side shows the heating due to the absorption which is described

by

U(r, t) = δ(t)αH(r) (I.2)
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Appendix I. Model of photo-thermal signal

where α is the absorption coefficient, δ(t) is the delta function, and H(r) is the fluence

for a TEM00 Gaussian excitation pulse,

H(r) =
2E

πw2
e

exp(
−2r2

w2
e

) (I.3)

E is the pulse energy, we is the excitation-beam radius, and r is the radial distance

from the beam center.

After the integration is performed, the solution of EquationI.1 gives the time-

dependent temperature change

δT (r, t) =
2αE

πw2(t)ρCρ
exp
−2r2

w2(t)
(I.4)

w2(t)= w2(1+2t/tc) is the time dependent radius of the temperature change, and tc

is a characteristic thermal time constant of the medium.

Next the radially dependent optical phase shift produced by this temperature

change is found,

ϕ(r, t) = exp[iϕ] = exp[ikl∆n] (I.5)

where ϕ is the phase shift, k is the wave vector of probe beam and l is the sample

path length. In particular, ∆n is the index change caused by the temperature change

associated with the thermal-optical coefficient dn/dT ,

∆n = ∆T
dn

dT
. (I.6)

Finally, the phase shift is subsequently used to find the the effect on probe laser

beam after passing through the sample. The electric field of probe can be obtained

by multiplying the phase shift with incident electric field. And by performing the

integration in diffraction calculations, we obtain the electric field at the detection

plane with a distance d away from sample.

Two approximations have been reasonably introduced before giving the final an-

alytical expression for the diffractive photo-thermal signal[44]. The first is the iris
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Appendix I. Model of photo-thermal signal

approximation. The model assumes that the iris size is vanishingly small. So we

look at the intensity change at r=0. The other approximation is for the exponential

phase shift. Since it is claimed in Sheldon[44] that because the induced phase shift

in most photo-thermal lens experiments is much less than 1, the phase shift can be

given as

exp(iδϕ) ≈ 1 + iδϕ (I.7)

where higher-order series approximations are ignored in this case.

The photo-thermal lens signal is defined as the relative change of the probe in-

tensity with and without the thermal lens effect. Thus the analytical expression can

be defined by

p =
Φ(t)− Φ(∞)

Φ(∞)
(I.8)

where Φ(t) represents the probe intensity with laser excitation, and Φ(∞) is the

probe intensity with material relax for enough time. Thus no thermal effect would

be considered in this case. The final analytical expression for the photo-thermal

signal estimated in [18] with all the setup parameters,

p ≈
−8dkw2(t)ϕ(t)(z2

p + z′2 + dz′)
k2w4(t)(z2

p + z′2 + 2dz′+ d2) + 8kw2(t)d2zp + 16d2(z2
p + z′2)

(I.9)

Where z′ is the probe focus to sample distance, zp is the Rayleigh range of probe

laser, d is the sample to iris distance and w(t) is the time dependent radius of the

temperature change.

75



Appendix J

Overall absorption calculation for

the sample with a single layer film

For the sample with thin film on top of substrate, we define four layers in Fig. J.1

Figure J.1: The schematic graph shows that the incident beam can be reflected ,
absorbed and transmitted by the test sample.

This calculation adds a minor adjustment of matrix formalism for modeling the

multiple-beam interference [45].
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Appendix J. Overall absorption calculation for the sample with a single layer film

The reflection coefficients at each interface can be calculated by,

rjk =
nj − nk
nj + nk

(J.1)

and the transmission coefficients at each interface can also be expressed as,

tjk =
2 nj

nj + nk
(J.2)

where k = j + 1,j = 1, 2, 3.

The phase shifts within film and substrate are given by,

β2,3 =
2π n2,3d2,3

λ
. (J.3)

The interface transition matrices are given by,

Hjk=
1
tjk

γjk rjk
tjk

γjk rjk
tjk

1
tjk

where k = j + 1,j = 1, 2, 3.

The layer propagation matrices for layer 2 and layer 3 are given by,

L2,3=
e−iβ2,3−iα2,3d2,3 0

0 eiβ2,3−iα2,3d2,3

Then the stack matrix is given by,

B = H12 ∗ L2 ∗H23 ∗ L3 ∗H34. (J.4)

The total reflection R can be obtained by

R = |B1,2

B2,2

|2. (J.5)

The total transmission T can be given by

T =
n4

n1

| 1

B2,2

|2 (J.6)

77



Appendix J. Overall absorption calculation for the sample with a single layer film

for normal incident beam.

The overall absorption for the given interface absorption coefficient γ and volume

absorption coefficient α can be calculated using

A = 1−R− T. (J.7)
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