
University of New Mexico University of New Mexico 

UNM Digital Repository UNM Digital Repository 

Biology Faculty & Staff Publications Academic Department Resources 

1-1-2005 

Mammal life-history evolution with size-dependent mortality Mammal life-history evolution with size-dependent mortality 

Eric Charnov 

Follow this and additional works at: https://digitalrepository.unm.edu/biol_fsp 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Evolutionary Ecology Research, 2005,7:795-799 

This Article is brought to you for free and open access by the Academic Department Resources at UNM Digital 
Repository. It has been accepted for inclusion in Biology Faculty & Staff Publications by an authorized administrator 
of UNM Digital Repository. For more information, please contact disc@unm.edu. 

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/biol_fsp
https://digitalrepository.unm.edu/departments
https://digitalrepository.unm.edu/biol_fsp?utm_source=digitalrepository.unm.edu%2Fbiol_fsp%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=digitalrepository.unm.edu%2Fbiol_fsp%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


Mammal life-history evolution with
size-dependent mortality

Eric L. Charnov*

Department of Biology, The University of New Mexico,
Albuquerque, NM 87131-0001, USA

ABSTRACT

Question: What is the effect of within-species size dependence of mortality on the between-
species allometries for maturation and adult life span?

Mathematical methods: Optimization of net-reproductive rate, R0, with respect to adult
mass, mα.

Key assumptions: Instantaneous mortality at age x, size mx, is proportional to mx
−h, and

this assumption is added to the Charnov (2001) mammal life-history model.
Results: h in the range of zero to 0.20 has a very small (≈10–15%) effect on the heights of

the allometries.

Keywords: allometry, life span, maturation, optimization, sensitivity analysis.

INTRODUCTION

It is widely accepted that for mammals across-species plots of life-history variables, such
as average adult life span (E) and age-of-first-birth (α), versus adult female mass (mα)
are linear on a log/log scale with slopes of ≈¼. The best data set for α and E is that
compiled by Purvis and Harvey (1995), plotted in Figure 1 of Charnov (2001). With both
variables scaling as mα

0.25 their ratio is, of course, invariant, and E/α ≈ 1.43 for mammals.
This paper extends my earlier work (Charnov, 1991, 1993, 2001) to ask again what meaning can be
attached to the existence of quarter-power allometries across mammal species. This paper
allows sigmoid growth in body mass and allows mortality rates to be size dependent.
Kozlowski and Weiner (1997) criticized my earlier work for ignoring sigmoid growth and the
(possible) size dependence of mortality rates. The present paper looks at both of these
features and asks for the resulting optimal life histories to satisfy 0.25 allometries (and
invariance in the E/α number).
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INDIVIDUAL GROWTH

Accepting that growth is sigmoid, what functional form is appropriate? West et al. (2001)

have proposed a new body-size growth equation that derives net production of mass
from the first principles of energy intake minus maintenance and activity costs. Their
argument leads to an equation for change-in-mass (prior to reproduction) of the form
dm/dt = a ·m0.75 − b ·m, where a is expected to be similar for species with similar metabolic
scaling (i.e. within mammals). b is equal to the maintenance metabolic rate per existing body
cell divided by the cost of building a new cell. This equation excludes reproductive alloca-
tion and would result in sigmoid growth to an asymptotic size (M = (a/b)4), as shown in Fig.
1. There is a fastest growth rate, an inflection point, at 0.316 ·M (which is (0.75)4). Nothing
precludes an adult size (mα) well before the asymptotic size (M), so the size at the inflection
point, relative to adult size, tells us where the adult size (mα) is relative to M: if mα = µ ·M,
then the size at fastest growth (mi) is where mi/mα = (0.316/µ). µ will play a special role in the
new life-history model, since 0.25 allometries will require it to be invariant across mammal
species.

AVERAGE ADULT LIFE SPAN (E)

Average adult life span (E) often scales with the 0.25 power of adult body mass (mα)
in across-species plots. Various taxa (e.g. primates, more typical mammals) differ in the
height (intercept) of the allometry, but not the slope; and the height is (roughly) inversely
proportional to the height of the individual production or body-size growth relation. For
example, primates grow at only about a half to a fourth the rate of typical mammals of the
same body size, and their life spans are two to four times as great (Charnov, 1993). Suppose
individual production follows West and colleagues’ (2001) equation:

dm

dt
= a ·m0.75 − b ·m (1)

Fig. 1. Schematic diagram of the growth model (dm/dt, m = mass). Growth follows the domed curve
until size-at-reproduction (mα). Asymptotic size (dm/dt = 0) is at M = (a/b)4, while the fastest growth
rate (mi at max dm/dt) is at 0.316M, so that mi relative to mα tells us the mα/M ratio, too. mα/M is
called µ in the text.
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where a is the height of the growth curve. Equation (1) determines individual growth, and at
the onset of reproduction at age α (size mα), c ·a ·mα

0.75 determines offspring production (i.e.
c ·a ·mα

0.75 is available per unit time to grow offspring); this offspring production function is
developed in great detail in Charnov (2001). Growth ceases at α, so mα is the adult size.

Further suppose that the instantaneous mortality rate (Zx) at any age (x) is strictly a
function of body mass (mx), excepting during a small time period early in life when density
dependence operates.

Zx = k ·mx
−h or E = 1/Zα =

1

k
·mα

h (2)

Let us suppose that if offspring are of some fixed size (m0), fitness is the number produced
over an individual’s life span (R0) (Charnov, 1993, 1997):

R0 =
S ·E

m0

·c ·a ·mα
0.75 (3)

where S = the chance of living to age α, when c ·a ·mα
0.75 mass is given to reproduction per

year, for E years.

S = H ·e
−∫ α

0
Z(x)dx, which can be expressed as S = H ·e

−∫ mα
0

Z(m)

a ·m0.75 − b ·m
dm

. H is the probability

of surviving to the end of the (short) density-dependent time interval. Thus, R0 is equal to:

R0 = H ·e
−∫

mα

0

k

a ·m(0.75 + h) − b ·m(1 + h) dm
·� c ·a ·mα

0.75

k ·mα
−h ·m0

�
The optimal m satisfies ∂1n R0/∂mα = 0 and yields the rule (evaluated at mα):

Zα + (0.75 + h)b = α(0.75 + h)mα
−0.25 (4)

We want E to scale with mα
0.25 (or 1/E = Zα to scale with mα

−0.25) and the height of the
E versus mα curves to be inversely proportional to a, the height of the growth curve. This
will happen if all species in the data set share the same a and h values, and b is proportional
to the adult mortality rate Zα:

b = q ·Zα (5)

Equation (4) then becomes Zα [1 + (0.75 + h)q] = a(0.75 + h)mα
−0.25.

E = 1/Zα = �1 + (0.75 + h)q

0.75 + h � �1

a� mα
0.25 (6)

[Since q will be near 15 (see below), this scaling rule is very insensitive to h values up to (say)
0.2.]

AGE-AT-FIRST-BREEDING

Age-at-maturity (α) also shows a 0.25 allometry with adult mass; the height of the allometry
is again inversely proportional to a (Charnov, 1993). Equation (1) may be integrated from size ≈ 0
at t = 0 to give (integration hint: set y = m0.25 and work in y; t and y can now be separated):

α = �−1n(1 − µ
0.25)

µ
0.25 �� 4

α�mα
0.25 (7)
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where µ
0.25 = (mα

0.25/a) ·b; µ is the adult size (mα) as a proportion of the asymptotic size
[(a/b)4]. µ ≈ constant is required for α to show a 0.25 scaling with mα across species with the
same a value.

TWO DIMENSIONLESS RULES AND A SENSITIVITY ANALYSIS

Note that since µ0.25 =
mα

0.25 ·b

a
 and b ·E = q (equation 5), equation 6 may be rewritten as:

�1 + (0.75 + h)q

0.75 + h �=
q

µ
0.25 (8)

Equations (6) and (7) may be combined to eliminate body mass and a:

4 ·E

α
= �1 + (0.75 + h)q

0.75 + h �� µ
0.25

−1n(1 − µ
0.25)� (9)

Equations (8) and (9) have two very interesting implications. First, q is a unique function
of µ for any E/α value; it is

q =
4 ·E

α
[−1n(1 − µ

0.25)] (10)

and equation (8) may then be solved for the associated h:

h =
µ

0.25 + 0.75qµ
0.25 − 0.75q

q(1 − µ
0.25)

(11)

h = 0 in the 2001 model so that equations (10) and (11) may be solved for q and µ for the
observed E/α (≈1.43); this results in q ≈ 14.3 and µ ≈ 0.7 (Figure 5 in Charnov, 2001). Obviously,
a positive h will increase µ (i.e. begin reproduction at a larger relative size). Now, set
E/α = 1.43 and µ = 0.8, solve equation (10) for q = 16.65, and then use the µ, q pair in
equation (11) to solve for h = 0.18. Similarly, h would have to be near 0.5 to push µ up to
0.85. Recall that µ = 0.7 results in the inflection point for growth being at 45% the adult
mass (0.316/0.70); if µ = 0.8, the inflection point is at 39.5% the adult size (0.316/0.80), a
12% drop. µ = 0.85 makes the inflection point at 37% the adult size, a 17% drop; h this high
(≈0.5) would have been observed long ago in data sets, so it is difficult to believe that h is
bigger than, say, 0.2. But, this means that size dependence of mortality (h ≤ 0.2) would seem
to have a potentially very small effect on the optimal µ. Indeed, as noted earlier for the E
scaling (equation 6), h of this magnitude should likewise have a very small (<10%) effect on
the height of the E allometry. Similarly, changing h from zero to 0.2 alters the height of the
α allometry (equation 7) by about 15%.

DISCUSSION

Charnov (2001) discusses why b/Zα may be expected to be a constant across species, and
develops a model for the joint evolution of b and Zα; a similar argument may be applied to
the joint evolution of b and the Z(m) function here. Perhaps the most interesting aspect
of adding Z as a function of m is how small the effect is on µ, or the height of E or α
allometries (10–15% change as h goes from zero to 0.20).
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