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An introduction to DSMT
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Chemin de la Huniére, 200 College Road,
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jean.dezert@onera.fr smarand@unm.edu

Abstract — The management and combination of uncertain, imprecigeyfand even paradoxical or highly conflicting
sources of information has always been, and still remaisyp of primal importance for the development of reliable
modern information systems involving artificial reasonihgthis introduction, we present a survey of our recent tieo

of plausible and paradoxical reasoning, known as Dezer&#@&ndache Theory (DSmT), developed for dealing with im-
precise, uncertain and conflicting sources of informatidve focus our presentation on the foundations of DSmT and on
its most important rules of combination, rather than on bsowg specific applications of DSmT available in literature.
Several simple examples are given throughout this present show the efficiency and the generality of this newrtheo
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1 Introduction

The management and combination of uncertain, imprecigzyfand even paradoxical or highly conflicting
sources of information has always been, and still remaidaytoof primal importance for the development of
reliable modern information systems involving artificiabsoning. The combination (fusion) of information
arises in many fields of applications nowadays (especialtiefense, medicine, finance, geo-science, economy,
etc). When several sensors, observers or experts have wntigred together to solve a problem, or if one
wants to update our current estimation of solutions for agiproblem with some new information available,
we need powerful and solid mathematical tools for the fusamecially when the information one has to deal
with is imprecise and uncertain. In this chapter, we preaentrvey of our recent theory of plausible and para-
doxical reasoning, known as Dezert-Smarandache Theorm{D$ the literature, developed for dealing with
imprecise, uncertain and conflicting sources of infornratiRecent publications have shown the interest and
the ability of DSmT to solve problems where other approadaitsespecially when conflict between sources
becomes high. We focus this presentation rather on the &iom$ of DSmT, and on the main important rules
of combination, than on browsing specific applications ofiiSavailable in literature. Successful applications
of DSmT in target tracking, satellite surveillance, sitoatanalysis, robotics, medicine, biometrics, etc, can be
found in Parts Il of [31,35,37] and on the world wide web [38gveral simple examples are given in this paper
to show the efficiency and the generality of DSmT

2 Foundations of DSMT

The development of DSmT (Dezert-Smarandache Theory ojtieuand paradoxical reasoning [8, 31]) arises
from the necessity to overcome the inherent limitations &TD(Dempster-Shafer Theory [24]) which are
closely related with the acceptance of Shafer's model fefikion problem under consideration (i.e. the frame
of discernmen® is implicitly defined as a finite set aixhaustiveand exclusivehypothese®;,i = 1,...,n
since the masses of belief are defined only on the power &et sée section 2.1 for details), the third middle ex-
cluded principle (i.e. the existence of the complement fir@lements/propositions belonging to the power set

This paper is based on the first chapter of [37].



of ®), and the acceptance of Dempster’s rule of combinatiorolitvg normalization) as the framework for the
combination of independent sources of evidence. Discnssia limitations of DST and presentation of some
alternative rules to Dempster’s rule of combination candumél in [11,15,17-19,21,23,31,40,48,52,53,56-59]
and therefore they will be not reported in details in thisadtction. We argue that these three fundamental
conditions of DST can be removed and another new matherhappsoach for combination of evidence is
possible. This is the purpose of DSmT.

The basis of DSmT is the refutation of the principle of thediixcluded middle and Shafer's model, since
for a wide class of fusion problems the intrinsic nature gidtheses can be only vague and imprecise in such
a way that precise refinement is just impossible to obtairedlity so that the exclusive elemerttscannot
be properly identified and precisely separated. Many prodlawvolving fuzzy continuous and relative con-
cepts described in natural language and having no absaberietation like tallness/smallness, pleasure/pain,
cold/hot, Sorites paradoxes, etc, enter in this categoBnD starts with the notion dfee DSm modetenoted
M/ (©), and consider® only as a frame of exhaustive elemefitsi = 1, ..., n which can potentially overlap.
This model isfreebecause no other assumption is done on the hypothesesehue#ik exhaustivity constraint
which can always be satisfied according the closure prie@gplained in [31]. No other constraint is involved
in the free DSm model. When the free DSm model holds, the cdiative and associative classical DSm rule
of combination, denoted DSmC, corresponding to the cotigmconsensus defined on the free Dedekind’s
lattice is performed.

Depending on the intrinsic nature of the elements of thefuproblem under consideration, it can however
happen that the free model does not fit the reality because sabsets 0P can contain elements known to
be truly exclusive but also truly non existing at all at a givene (specially when working on dynamic fusion
problem where the fram® varies with time with the revision of the knowledge avaiigbl These integrity
constraints are then explicitly and formally introducetbithe free DSm modeM/(©) in order to adapt it
properly to fit as close as possible with the reality and petorgonstruct dybrid DSm modeM (©) on which
the combination will be efficiently performed. Shafer’s rehdienoted\°(0), corresponds to a very specific
hybrid DSm model including all possible exclusivity cométts. DST has been developed for working only
with M°%(©) while DSmT has been developed for working with any kind ofdiylnodel (including Shafer’s
model and the free DSm model), to manage as efficiently andselg as possible imprecise, uncertain and
potentially highly conflicting sources of evidence whilesking in mind the possible dynamicity of the infor-
mation fusion problematic. The foundations of DSmT aredfwe totally different from those of all existing
approaches managing uncertainties, imprecisions andasenfDSmT provides a new interesting way to attack
the information fusion problematic with a general framekviororder to cover a wide variety of problems.

DSmT refutes also the idea that sources of evidence prok@lelieliefs with the same absolute interpreta-
tion of elements of the same franmeand the conflict between sources arises not only because pbtsible
unreliability of sources, but also because of possibleedsfiit and relative interpretation 6f, e.g. what is
considered as good for somebody can be considered as badnfebedy else. There is some unavoidable
subjectivity in the belief assignments provided by the sesrof evidence, otherwise it would mean that all
bodies of evidence have a same objective and universapistation (or measure) of the phenomena under
consideration, which unfortunately rarely occurs in itgalbut when basic belief assignments (bba’s) are based
on someobjective probabilitiegransformations. But in this last case, probability thecay handle properly
and efficiently the information, and DST, as well as DSmTdmees useless. If we now get out of the prob-
abilistic background argumentation for the constructibblza, we claim that in most of cases, the sources of
evidence provide their beliefs about elements of the frahtlegecfusion problem only based on their own limited
knowledge and experience without reference to the (inadue} absolute truth of the space of possibilities.

2.1 The power set, hyper-power set and super-power set

In DSmT, we take very care about the model associated withdtte of hypotheses where the solution of the
problem is assumed to belong to. In particular, the threeetis (power set, hyper-power set and super-power
set) can be used depending on their ability to fit adequatélyttve nature of hypotheses. In the following, we



assume tha® = {6,,...,0,} is a finite set (called frame) of exhaustive elements|f © = {fy,...,0,}

is a priori not closed® is said to be an open world/frame), one can always includé anciosure element,
sayf,+1 in such away that we can work with a new closed world/fraffig ... , 0,,,6,,+1}. So without loss

of generality, we will always assume that we work in a closedlavby considering the fram® as a finite
set of exhaustive elements. Before introducing the powethse hyper-power set and the super-power set it is
necessary to recall that subsets are regarded as propssitiDempster-Shafer Theory (see Chapter 2 of [24])
and we adopt the same approach in DSmT.

e Subsets as propositionsGlenn Shafer in pages 35—-37 of [24] considers the subsgisopssitions in
the case we are concerned with the true value of some quérntilying its possible values i®. Then
the propositiongPy(A) of interest are those of the fofm

Py(A) = The true value of is in a subsetd of ©.

Any propositionPy(A) is thus in one-to-one correspondence with the suldset ©. Such correspon-
dence is very useful since it translates the logical notareonjunctionA, disjunctionv, implication=-

and negatiorn- into the set-theoretic notions of intersectionuniony, inclusionc and complementa-
tion ¢(.). Indeed, ifPy(A) andPy(B) are two propositions corresponding to subsétnd B of ©, then

the conjunctiorPy(A) A'Py(B) corresponds to the intersectiein B and the disjunctiorPy(A) vV Py(B)
corresponds to the unioA U B. A is a subset of3 if and only if Py(A) = Py(B) and A is the set-
theoretic complement @B with respect ta® (written A = co(B)) if and only if Py(A) = = Py(B). In
other words, the following equivalences are then used leivilee operations on the subsets and on the

propositions:
Operations Subsets Propositions
Intersection/conjunction ANB Po(A) A Py(B)
Union/disjunction AUB Po(A) V Py(B)
Inclusion/implication ACB Py(A) = Po(B)
Complementation/negation A = co(B) | Py(A) = —Py(B)

Table 1: Correspondence between operations on subsetsgmdpositions.

e Canonical form of a proposition: In DSmT we consider all propositions/sets in a canonicahfoWe
take the disjunctive normal form, which is a disjunction oehjnctions, and it is unique in Boolean
algebra and simplest. For examplé,= AN BN (AU BUQC)itis notin a canonical form, but we
simplify the formula andX = A N B is in a canonical form.

e The power set 2°© £ (©,U)

Aside Dempster’s rule of combination, the power set is onthefcorner stones of Dempster-Shafer Theory
(DST) since the basic belief assignments to combine areetbéin the power set of the frande In mathemat-
ics, given a se®, the power set o, written 29, is the set of all subsets 6f. In Zermelo—Fraenkel set theory
with the axiom of choice (ZFC), the existence of the powero$etny set is postulated by the axiom of power
set. In other words® generates the power s2? with the U (union) operator only.

We do not assume here that elemehtare necessary exclusive, unless specified. There is natiestiond; but the
exhaustivity.

2We use the symbet to mearequals by definitioythe right-hand side of the equation is the definition of &fehand
side.



More precisely, the power séf is defined as the set of all composite propositions/subssits flom
elements oP with U operator such that:

1. @,91,... ,0n € 29,
2. IfA,B €29, thenAUB € 2°.
3. No other elements belong 28, except those obtained by using rules 1 and 2.

Examples of power sets

o If © = {61,6,}, then20=101.02} — 140} (0,1 {#},{61,6,}} which is commonly written ag® =
{®761792761 U 02}

e Let's consider two frame®; = {A, B} and©®©, = {X,Y}, then their power sets are respectively
201={4.B} — () A, B,A U B} and29:=1XY} = () XV, X UY}. Let’s consider a refined frame
ol = {6y,6,,03,0,4}. The granule®;, i = 1,...,4 are not necessarily exhaustive, nor exclusive. If
A and B are expressed more precisely in function of the granfjléxy example asi £ {61, 6,03} =
61 UB Uz andB £ {65,604} = 0, U 64 then the power sets can be expressed from the grafiutes
follows:

291={4.B} — () A, B, AU B}
= {0,{61,62,05}, {62,604}, {{61, 05,05}, {62,04}}}
—

A B AUB
= {@,91 UbyUb3,0:U64,601 U0, U063 U94}

If X andY are expressed more precisely in function of the finer graxylby example ast = {6,} =
6, andY £ {92, 93,94} = 6y U 03 U 6, then:
202=1XY} — 19 XV, X UY}
={0,{01},{02,03,04},{{01},{02,03,04}}}
~—

X Y XUY
= {@,91,92 Uf3Ub4,60, U605 U 03 U94}

We see that one has naturalg®:={AB} £ 902={X.Y} £ 90"/ ={01,62.05.04} even if working fromd;
withAuUB=XUY = {91,92,93,94} =Qref,

e The hyper-power set D® £ (©,U,N)

One of the cornerstones of DSMT is the free Dedekind’s &fd¢ denoted adyper-power sein DSmT
framework. Let® = {64, ...,0,} be afinite set (called frame) afexhaustive elements. The hyper-power set
DP is defined as the set of all composite propositions/subsgitsiiom elements ofd with U andn operators
such that:

1. 0,64,...,6, € D°.
2. IfA,B e D®, thenAn B e D® andAU B € D°.
3. No other elements belong 18°, except those obtained by using rules 1 or 2.

Therefore by convention, we writB® = (©, U, N) which means tha® generatesD® under operators)
andn. The dual (obtained by switching andn in expressions) oD® is itself. There are elements R®
which are self-dual (dual to themselves), for examplefor the case whemn = 3 in the following example.
The cardinality ofD® is majored by22" when the cardinality o® equalsn, i.e. |©| = n. The generation
of hyper-power seD® is closely related with the famous Dedekind’s problem [3p#]enumerating the set
of isotone Boolean functions. The generation of the hymsvey set is presented in [31]. Since for any given
finite set®, | D®| > |29| we call D® the hyper-power setf ©.



Example of the first hyper-power sets

e For the degenerate case+ 0) where® = {}, one hasD® = {ay = ()} and|D®| = 1.

e WhenO = {#;}, one hasD® = {ay 2 0, a1 £ 6,} and|D®| = 2.

e When® = {6;,6,}, one hasD® = {ag,ay,..

a9 =S 01, as £ 0, anday £ 61 U 6.

e When® = {01, 65,05}, one hasD® = {ag, a, ..

.,044} and|D®| = 5 with o = 0, a1 £ 61 N 6o,

.,a1g} and|D®| = 19 with

Oéoé@

a1é91092093 aloéaz
agéalﬂeg a1 é@g
a3é91ﬁ93 Oélzé (91ﬂ92)U93
(X4é€2093 0413é (61063)U62
Qs = (91U92)ﬂ93 14 =S (62063)U91
ag = (01 U03) N by s = 6, U6,

ar = (63U 63) N6, a6 £ 0y U b3

ag = (91092)U(91 ﬂ93)U(92093) a7 é92U93
Oégéel a18é91U92U93

The cardinality of hyper-power sé2® for n > 1 follows the sequence of Dedekind’s numbers [26], i.e.
1,2,5,19,167, 7580,7828353,... and analytical exprassidedekind’s numbers has been obtained recently
by Tombak in [47] (see [31] for details on generation and ordeof D®). Interesting investigations on the
programming of the generation of hyper-power sets for egging applications have been done in Chapter 15
of [35] and in [37].

Examples of hyper-power sets

Let's consider the frame®, = {4, B} and©, = {X, Y}, then their corresponding hyper-power sets are
DO ={ABY — () AN B, A, B,AU B} andD®>={XY} = (). X NY, X, Y, X UY}. Let's consider a refined
frame©™/ = {6,,0,03,6,} where the granuleg;, i = 1,...,4 are now considered asuly exhaustive and
exclusive If A andB are expressed more precisely in function of the granylbg example ast £ {6, 0,65}
andB £ {605,0,} then

DO =ABY — 1) AN B, A, B, AU B}
- {wa {91, 92, 93} N {927 94}5 {915 925 93}5 {927 94}5
——
ANB={62} A B
{{01,02,03},{02,04}}}
AUB:{91,92,93,94}
= {0,02,01 Uy U 05,05 U 04,0, Uby Ubs U0} £ 29 =1AB

If X andY are expressed more precisely in function of the finer granjléy example asX = {6,} and
Y £ {6,,03,0,} then in assuming tha, i = 1,...,4 are exhaustive and exclusive, one gets

DO=XYY — £ X NY, X, Y, X UY}
= {@7 {91} N {925 93, 94},@5 {925 93, 94}1, {{91}, {92) 935 94}}}

XNy =0 X Y XUY
0
= {@, {91}5 {925 935 94}5 {{91}7 {92) 935 94}}} = 292:{X7Y}
e 4 ’
X Y XUY



Therefore, we see th&2®>={X.Y'} = 29:={X.Y'} hecause the exclusivity constraikitn Y = () holds since one
has assumed = {6,} andY £ {6, 63, 0,4} with exhaustive and exclusive granulgsi = 1,...,4.

If the granules;, i = 1,...,4 are not assumed exclusive, then of course the expressidngef-power
sets cannot be simplified and one would have:

DO=ABY — 1) AN B, A, B, AU B}
= {@, (91 Uy U 93) N (92 U 94),91 Uy UBb3,0,U804,600 U6 Ub3U 94} 75 291:{A’B}

DO=XY — fp X NY, X, Y, X UY}
= {0,601 N (02U 05U 04), 601,05 U b3 U by, 01 Uby Ubs U By} £ 202~}

Shafer's model of a frame More generally, when all the elements of a given fraGhare known (or are
assumed to be) truly exclusive, then the hyper-poweD$&teduces to the classical power 88t Therefore,
working on power seR® as Glenn Shafer has proposed in his Mathematical Theory mfeBwe [24]) is
equivalent to work on hyper-power sBX° with the assumption that all elements of the frame are eikeus
This is what we calShafer’s model of the fram@, written M"(0), even if such model/assumption has not
been clearly stated explicitly by Shafer himself in his msiitae book.

e The super-power set S© £ (0,U,N, ¢(.))

The notion of super-power set has been introduced by Smachedn the Chapter 8 of [35]. It corresponds
actually to the theoretical construction of the power seéhefminimaf refined frameo™/ of ©. © generates
S® under operators), N and complementation(.). S® = (©,U,N, ¢(.)) is a Boolean algebra with respect to
the union, intersection and complementation. Therefondiwg with the super-power set is equivalent to work
with a minimal theoretical refined frant@™/ satisfying Shafer's model. More preciseBf? is defined as the
set of all composite propositions/subsets built from eleismief© with U, N andc(.) operators such that:

1. 0,6q,...,0, € S°.

2. IfA,Be S® thenANB e S®, AUB e S°.

3. If A S®, thenc(A) € S°.

4. No other elements belong 8, except those obtained by using rules 1, 2 and 3.

As reported in [32], a similar generalization has been sl used in 1993 by Guan and Bell [14] for the
Dempster-Shafer rule using propositions in sequentiatlagd reintroduced in 1994 by Paris in his book [20],
page 4.

Example of a super-power set

Let's consider the fram® = {61, 6>} and let's assume, N6, # 0, i.e. 6; andd, are not disjoint according
to Fig. 1 whered £ p; denotes the part @, belonging only td; (p stands here fopart), B = p, denotes the
part of, belonging only tod; andC £ p;, denotes the part af, andé, belonging to both. In this example,
50=101.02} is then given by

SO = 0,6, N 6o, 01,0,01 Uby, c(0),c(0; Nb),c(61),c(62), (6 Ub)}

wherec(.) is the complement i®. Sincec(()) = 6, U 62 ande(6; U 63) = (), the super-power set is actually
given by
S€ = {0,601 N 0,01,0,01 U0, c(0; M), c(6),c(2)}



Fig. 1: Venn diagram of a free DSm model for a 2D frame.

Let’s now consider the minimal refinemedt’ = {A, B, C} of © built by splitting the granule8; and
6, depicted on the previous Venn diagram into disjoint parts @"¢/ satisfies the Shafer's model) as follows:

0L =AUC, #, = BUC, f1Nby=C

Then the classical power set®f¢/ is given by

2®r6f :{mjAjB,C’AUB,AUC,BUC,AUBUC}

We see that we can define easily a one-to-one correspondemitten ~, between all the elements of the
super-power se§© and the elements of the power 88{’ as follows:

@N@, (01ﬂ02)~6’, HlN(AUC), HQN(BUC), (61U92)N(AUBUC)

6(61 N 62) ~ (A U B), 0(91) ~ B, 0(92) ~ A

Such one-to-one correspondence between the elemefifs and2°™’ can be defined for any cardinality
|©| > 2 of the frame® and thus one can considéP as the mathematical construction of the power§&t’
of the minimal refinement of the frante. Of course, whe® already satisfies Shafer's model, the hyper-power
set and the super-power set coincide with the classical pseteof©. It is worth to note that even if we have
a mathematical tool to built the minimal refined frame sgiigf Shafer's model, it doesn’t mean necessary
that one must work with this super-power set in general ith apalications because most of the times the
elements/granules & have no clear physical meaning, not to mention the drastiease of the complexity
since one hag® C D® C S© and

ref
20| = 209l < | DO| < |59 =29 | = 22¥!~1 (1)
Typically,
O] =n [ [2°]=2" [ [D®[ [ [S°®] = [2%</[= 2% T
2 4 5 23 =8
3 8 19 27 =128
4 16 167 | 215 = 32768
5 32 7580 | 231 = 2147483648

Table 2: Cardinalities of®, D® andS®.

3The minimality refers here to the cardinality of the refineahfies.



In summary, DSmT offers truly the possibility to build andwork on refined frames and to deal with
the complement whenever necessary, but in most of appicagither the fram® is already built/chosen
to satisfy Shafer's model or the refined granules have na glegsical meaning which finally prevent to be
considered/assessed individually so that working on thpehpower set is usually sufficient for dealing with
uncertain imprecise (quantitative or qualitative) anchhigconflicting sources of evidences. Working Wi
is actually very similar to working witl2® in the sense that in both cases we work with classical powsy se
the only difference is that when working wigf we have implicitly switched from the original frant@repre-
sentation to a minimal refineme®t/ representation. Therefore, in the sequel we focus our sisous based
mainly on hyper-power set rather than (super-) power setiwhias already been the basis for the development
of DST. But as already mentioned, DSmT can easily deal witiebinctions defined 0oR® or S© similarly
as those defined aR®.

Generic notation: In the sequel, we use the generic notatiéf for denoting the sets (power set, hyper-power
set and super-power set) on which the belief functions aiineat

Remark on the logical refinement The refinement in logic theory presented recently by Chatvi2] was
actually proposed in nineties by a Guan and Bell [14] and bisH20]. This refinement is isomorphic to the
refinement in set theory done by many researcher®. # {61, 02, 65} is a language where the propositional
variables aré, 65, 3, Cholvy considers all 8 possible logical combinations afgarsitionsd;’s or negations
of §;'s (called interpretations), and defines #he- 23 disjoint parts/propositions of the Venn diagram in Fig. 2
[one also considers as a part the negation of the total ignetan the set theory, so that:

i1 =01 ANy N\ b3 19 = 01 A Oy A\ 03

ig =01 A 03 A\ O3 iqg = 01 A bz A\ —03
i5 = —01 A O3 A NO3 16 = 01 A b2 N —03
i7 = —01 A 03 A O3 ig = —01 A~y A\ 03

where—6; means the negation 6éf.

P123

01 A6 A O3

=01 A O A =03 \ =01 AOs A3 | =01 A—0s A O

P23

=01 A =03 A =03 PO

Fig. 2: Venn diagram of the free DSm model for a 3D frame.



Because of Shafer's equivalence of subsets and propasit@holvy’s logical refinement is strictly equiv-
alent to the refinement we did already in 2006 in definfifg- see Chap. 8 of [35] - but in the set theory
framework. We did it using Smarandache’s codification (¢asynderstand and read) in the following way:

- each Venn diagram disjoint payt;, or p;;; represents respectively the intersectiopoéndp; only, or
p; andp; andpy, only, etc; while the complement of the total ignorance issideredp, [p stands for
part].

Thus, we have an easier and clearer representation in DSanTiriithe logical representation. While the
refinement in DST using logical approach fowery large is very hard, we can simply consider in the DSmT
the super-power s&t® = (©,U,N, ¢(.)). So, in DSMT representation the disjoint parts are noted|kss:

prog = 01 N Oy N O3 = iy p12 = 01 Ao A =03 =i

P13 = 01 A =0y A B3 = i3 p1 =01 ANl A -3 =1y

pa3 = 01 A by A B3 =i p2 = 01 A by A =03 = ig

p3 = —01 A by A O3 =ir po = =01 A =0y A =3 = ig

As seeing, in Smarandache’s codification a disjoint Vengrdia part is equal to the intersection of single-
tons whose indexes show up as indexes of the Venn part; fongeanp,, case indexes 1 and 2, intersected
with the complement of the missing indexes, in this casexridis missing.

Smarandache’s codification can easily transform any set §8 into its canonical disjunctive normal form.
For examplef; = p1 U p12 U p13 U p1og (i-€. all Venn diagram disjoint parts that contain the intiExin their
indexes ; such indexes frosP are 1, 12, 13, 123) can be expressed as

01 = (91 N 6(92) N 6(93)) U (91 N6y N 6(93))(91 N 6(92) N 93) U (91 NN 93)

where the set values of each part were defined as previgiysiyls = p1o Upi23 (i.€. all Venn diagram disjoint
parts that contain the index “12” in their indexes) equal§oA 02 A —63) vV (61 A 02 A 03).

The refinement based on Venn Diagram, becomes very hard mwdtampossible when the cardinal ©f
n, is large and all intersections are non-empty (the free Mho8eappose: = 20, or even bigger, and we have
the free model. How can we construct a Venn Diagram wheredw sl possible intersections of 20 sets? Its
geometrical figure would be very hard to design and very hanegtad (you don’t identify well each disjoint
part of a such Venn Diagram to what intersection of sets ibiigd to). The larger ig, the more difficult is
the refinement. Fortunately, based on Smarandache’s @idific we can algebraically design in an easy way
for all such intersections (for examplerifis very big, we can use computer programs to make combirsation
of indexes{1,2,...,n} taken in groups or 1, of 2, ..., or of elements each), so the refinement should not
be a big problem from the programming point of view, but we tralways keep in mind if such refinement
is really necessary and if it has (or not) a deep physicatpnégation and justification for the problem under
consideration.

The assertion in [2], upon Milan Daniel’s, that hybrid DSrteris equivalent to Dubois-Prade rule is untrue,
since in dynamic fusion they give different results. Suchregle has been already given in [7] and is reported
in section 2.6.3 for the sake of clarification for the read@ise assertion in [2] that “from an expressivity point
of view DSmT is equivalent to DST” is partially true sincedhiea is true when the refinement is possible (not
always it is practically/physically possible), and evenewlthe spaces we work o6© = 29"/ where the
hypotheses are exclusive, DSmT offers the advantage teakfmement is already done (it is not necessary
for the user to do (or implicitly presuppose) it as in DST)sé&| DSmT accepts from the very beginning the
possibility to deal with non-exclusive hypotheses and afrse it can a fortiori deal with sets of exclusive hy-
pothesis and work either @f or 26"/ whenever necessary, while DST first requires implicitly trkwith
exclusive hypotheses only.



The main distinctions between DSmT and DST are summarizedebipllowing points:

1. Therefinement is not always (physically) possible, eigigdor elements from the frame of discernment
whose frontiers are not clear, such as: colors, vague satdear hypotheses, etc. in the frame of
discernment; DST does not fit well for working in such casdsle\DSmT does;

2. Even in the case when the frame of discernment can be rdfieedheatomicelements of the frame
have all a distinct physical meaning), it is still easier g& IDSmMT than DST since in DSmT framework
the refinement is done automatically by the mathematicadtcaction of the super-power set;

3. DSmT offers better fusion rules, for example ProporticdBanflict redistribution Rule # 5 (PCR5) -
presented in the sequel - is better than Dempster’s rulgjdhism rule (DSmH) works for the dynamic
fusion, while Dubois-Prade fusion rule does not (DSmH isxeresion of Dubois-Prade rule);

4. DSmMT offers the best qualitative operators (when workiritp labels) giving the most accurate and
coherent results;

5. DSmT offers new interesting quantitative conditionindes (BCRs) and qualitative conditioning rules
(QBCRs), different from Shafer’s conditioning rule (SCBER can be seen simply as a combination of
a prior mass of belief with the mass(A) = 1 wheneverA is the conditioning event;

6. DSmT proposes a new approach for working with imprecisntitative or qualitative information and
not limited to interval-valued belief structures as prambgenerally in the literature [5, 6, 49].

2.2 Notion of free and hybrid DSm models

Free DSm model The element$;, i = 1,...,n of © constitute the finite set of hypotheses/concepts charac-
terizing the fusion problem under consideration. Whenei@no constraint on the elements of the frame, we
call this model thédree DSm moderitten M7 (6). This free DSm model allows to deal directly with fuzzy
concepts which depict a continuous and relative intrinaicire and which cannot be precisely refined into finer
disjoint information granules having an absolute intetig@ien because of the unreachable universal truth. In
such case, the use of the hyper-power B8t (without integrity constraints) is particularly well adeg for
defining the belief functions one wants to combine.

Shafer’s model In some fusion problems involving discrete concepts,ral¢lementd;, i = 1,...,n of ©
can be truly exclusive. In such case, all the exclusivitystints ord;, : = 1,...,n have to be included in the
previous model to characterize properly the true naturdefiision problem and to fit it with the reality. By
doing this, the hyper-power s&®° as well as the super-power s&? reduce naturally to the classical power
set2® and this constitutes what we have cal®afer's modeldenotedM®(©). Shafer's model corresponds
actually to the most restricted hybrid DSm model.

Hybrid DSm models: Between the class of fusion problems corresponding torée DSm modeM 7 (©)
and the class of fusion problems corresponding to ShafeodeinM®(0), there exists another wide class
of hybrid fusion problems involving i® both fuzzy continuous concepts and discrete hypothesesudn
(hybrid) class, some exclusivity constraints and possgidgne non-existential constraints (especially when
working on dynamit fusion) have to be taken into account. Each hybrid fusiomlera of this class will then
be characterized by a proper hybrid DSm model dendt@) with M(0) # M/ (0) andM(©) # M°(O).

In any fusion problems, we consider as primordial at the beginning and before combining information
expressed as belief functions to define clearly the propendé®© of the given problem and to choose explicitly
its corresponding model one wants to work with. Once thisiseg the second important point is to select the
proper se2®, D® or $© on which the belief functions will be defined. The third potaincerns the choice of
an efficient rule of combination of belief functions and figahe criteria adopted for decision-making.

4i.e. when the fram® and/or the modeM is changing with time.
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In the sequel, we focus our presentation mainly on hyperepmetD® (unless specified) since it is the
most interesting new aspect of DSMT for readers alreadylitarmiith DST framework, but a fortiori we can
work similarly on classical power sef if Shafer's model holds, and even @R"’ (the power set of the min-
imal refined frame) whenever one wants to use it and if passibl

Examples of models for a frame©:

e Let's consider the 2D problem whefe = {#,6,} with D® = {(),0; N 6,6,,605,6, U 65} and assume
now thatf; andé, are truly exclusive (i.e. Shafer's modgt® holds), then becausg n 6, A (), one gets
DO = {0,6, 1652 0,61,05,01 Ubs} = {0,6,,65,6, U by} = 2°.

e As another simple example of hybrid DSm model, let’s consilde 3D case with the fram@ = {61, 02,05}
with the modelM # M7 in which we force all possible conjunctions to be empty, &ut 6,. This hybrid
DSm model is then represented with the Venn diagram on Figghre boundaries of intersection@fandd,
are not precisely defined #f andf, represent only fuzzy concepts likenallnessandtallnessby example).

0 0y

D

03
Fig. 3: Venn diagram of a DSm hybrid model for a 3D frame.

2.3 Generalized belief functions

From a general fram®, we define a mam(.) : G® — [0, 1] associated to a given body of evider8as

m(@) =0  and > m(A) =1 2)

AcG®

The quantitym(A) is called thegeneralized basic belief assignment/mégsba) ofA.

Thegeneralized belief and plausibility functioase defined in almost the same manner as within DST, i.e.

Bel(A) = ) m(B) PIi4A) = Y m(B) (3)
BCA BNA#)
BeG® BeGg®

We recall thatG® is the generic notation for the set on which the gbba is def{g&d can be2®, D®
or evenS® depending on the model chosen f8). These definitions are compatible with the definitions of
the classical belief functions in DST framework whéf? = 2° for fusion problems where Shafer's model
MPO(O) holds. We still haver A € G©, Bel(A) < PI(A). Note that when working with the free DSm model
M/ (©), one has always Pi) = 1 VA # () € (G® = D®) which is normal.

Example: Let's consider the simple frane = {4, B}, then depending on the model we chooseG8t, one
will consider either:

e G© as the power s&t° and therefore:

m(A)+m(B)+m(AUB) =1

11



e G as the hyper-power sé2® and therefore:

m(A)+m(B)+m(AUB)+m(ANB)=1

e G as the super-power s&f and therefore:

m(A) +m(B) +m(AU B) +m(AN B)+m(c(A)) +m(c(B)) +m(c(A) Uc(B)) =1

2.4 The classic DSm rule of combination

When the free DSm modeW/ (6) holds for the fusion problem under consideration, the @a3$m rule of
combinationm s gy = m(.) £ [my @ mo](.) of two independeRtsources of evidences; and 3, over the
same framed with belief functions Bel(.) and Be}(.) associated with gbbau, (.) andms(.) corresponds to
the conjunctive consensus of the sources. It is given by [31]

VO ED®,  muse)(C) =m(C) = Y mi(A)ma(B) (4)

A,BeD®
ANB=C

Since D® is closed under andn set operators, this new rule of combination guaranteesntifatis a
proper generalized belief assignment, ixe(.) : D® — [0,1]. This rule of combination is commutative and
associative and can always be used for the fusion of soungelving fuzzy concepts when free DSm model
holds for the problem under consideration. This rule has les¢ended fos > 2 sources in [31].

According to Table 2, this classic DSm rule of combinatiooki® very expensive in terms of computations
and memory size due to the huge number of elemeni33when the cardinality o increases. This remark
is however valid only if the cores (the set of focal elemeritghida) IC; (m;) and K (ms) coincide withD®,

i.e. whenm;(A) > 0 andmy(A) > 0forall A # () € D®. Fortunately, it is important to note here that in
most of the practical applications the sizes@{m ) and/C»(m2) are much smaller thaiD®| because bodies
of evidence generally allocate their basic belief assigritmenly over a subset of the hyper-power set. This
makes things easier for the implementation of the classi;mD8e (4). The DSm rule is actually very easy
to implement. It suffices for each focal elementof(m,) to multiply it with the focal elements ofs(ms)
and then to pool all combinations which are equivalent utigerlgebra of sets. While very costly in term on
memory storage in the worst case (i.e. whemalld) > 0, A € D® or A € 29™), the DSm rule however
requires much smaller memory storage than when working $fthi.e. working with a minimal refined frame
satisfying Shafer's model.

In most fusion applications only a small subset of element®® have a non null basic belief mass be-
cause all the commitments are just usually impossible taioktrecisely when the dimension of the problem
increases. Thus, it is not necessary to generate and keegniom all elements aD® (or eventuallyS®) but
only those which have a positive belief mass. However thegerieal technical challenge on how to manage
efficiently all elements of the hyper-power set. This prabls obviously much more difficult when trying to
work on a refined frame of discernme®t®/ if one really prefers to use Dempster-Shafer theory andyappl
Dempster’s rule of combination. It is important to keep imthithat the ultimate and minimal refined frame
consisting in exhaustive and exclusive finite set of refinadusive hypotheses is just impossible to justify and
to define precisely for all problems dealing with fuzzy anedéfined continuous concepts. A discussion on
refinement with an example has be included in [31].

SWhile independence is a difficult concept to define in all tisomanaging epistemic uncertainty, we follow here the
interpretation of Smets in [39] and [40], p. 285 and consthat two sources of evidence are independent (i.e distimtt a
noninteracting) if each leaves one totally ignorant abbetgarticular value the other will take.
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2.5 The hybrid DSm rule of combination

When the free DSm modeW1/ (©) does not hold due to the true nature of the fusion problem rucalesid-
eration which requires to take into account some known iitiegonstraints, one has to work with a proper
hybrid DSm modelM (©) # M/ (©). In such case, the hybrid DSm rule (DSmH) of combination ase
the chosen hybrid DSm modgH (©) for k > 2 independent sources of information is defined foralt D®
as [31]:

mpsmir(A) = mae)(4) £ 6(4)[S1(4) + $5(4) + S3(4)] (5)

where all sets involved in formulas are in the canonical femad ¢(A) is the characteristic non-emptiness
functionof a setA, i.e. p(A) = 1if A ¢ P andgp(A) = 0 otherwise, wher® = {@nq, 0}. o4 is the set of
all elements ofD® which have been forced to be empty through the constraintiseomodelM and( is the
classical/universal empty sef; (A) = m s (p)(A), S2(A), S3(A) are defined by

k
S1(A) = Z Hmi(Xi) (6)

X1,Xo,...,X,eD® =1
Xi1NXoN...NX=A

k
Sa(A) = Z H mi(X;) (7
X1,X2,...,Xk€® =1
U=AV[UED)N(A=I})]

k
S3(A) £ > [[mi(x) (8)
X1,Xo,...,.X,eD® =1
X1UXoU...UX=A
X1NX2N..NX,ED
with i £ u(X1)Uu(Xo)U. .. Uu(X}) whereu(X) is the union of alb; that composeX, I; £ ;U U. ..U,
is the total ignoranceS; (A) corresponds to the classic DSm rule foindependent sources based on the free
DSm modelM/ (©); So(A) represents the mass of all relatively and absolutely engigghich is transferred
to the total or relative ignorances associated with nontexi®l constraints (if any, like in some dynamic
problems); S3(A) transfers the sum of relatively empty sets directly ontodhronical disjunctive form of
non-empty sets.

The hybrid DSm rule of combination generalizes the clasSaDule of combination and is not equivalent
to Dempter’s rule. It works for any models (the free DSm mo&élafer’s model or any other hybrid models)
when manipulatingorecisegeneralized (or eventually classical) basic belief fuordi An extension of this
rule for the combination oimprecisegeneralized (or eventually classical) basic belief fuordiis presented
in next section. As already stated, in DSmT framework it gbgdossible to deal directly with complements
if necessary depending on the problem under consideratidnttee information provided by the sources of
evidence themselves.

The first and simplest way is to work wi® on Shafer’s model when a minimal refinement is possible and
makes sense. The second way is to deal with partially knoamdrand introduce directly the complementary
hypotheses into the frame itself. By example, if one knowsy tmo hypothese#, 6, and their complements
61, 62, then we can choose to switch from original fra@e= {6, 2} to the new fram@® = {6;,65,0;,0-}. In
such case, we don't necessarily assume@that 6, andf, = 6, becaus@, andd, may include other unknown
hypotheses we have no information about (case of partiakkricame). More generally, in DSmT framework,
it is not necessary that the frame is built on pure/simplesgfidy vague) hypotheses as usually done in
all theories managing uncertainty. The frafecan also contain directly as elements conjunctions and/or
disjunctions (or mixed propositions) and negations/camants of pure hypotheses as well. The DSm rules
also work in such non-classic frames because DSmT works yuiatributive lattice built from© anywhere
O is defined.
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2.6 Examples of combination rules

Here are some numerical examples on results obtained by DB af combination. More examples can be
found in [31].

2.6.1 Example witl® = {0,602, 603,04}

Let's consider the frame of discernment= {6, 05, 03, 6, }, two independent experts, and the two following
bbas

m1(91) =0.6 m1(93) =04 m2(92) =0.2 m2(94) =0.8

represented in terms of mass matrix
06 0 04 O
M= 0 02 0 038

e Dempster’s rule cannot be applied becausex j < 4, one getsn(f;) = 0/0 (undefined!).
e But the classic DSm rule works because one obtain&?);) = m(f2) = m(63) = m(64) = 0, and

m(6; N Oy) = 0.12, m(0; N Oy) = 0.48, m(f2 N 63) = 0.08, m(fs N 64) = 0.32 (partial para-
doxes/conflicts).

e Suppose now one finds out that all intersections are empféBs model), then one applies the hybrid
DSm rule and one gets (indéxstands here fonybrid rule): my, (61 U 62) = 0.12, my, (61 U 64) = 0.48,
mh(02 U 93) = 0.08 andmh(03 U 94) = 0.32.

2.6.2 Generalization of Zadeh’s example wih= {6, 02, 65}

Let’s considell < e1,¢e5 < 1 be two very tiny positive numbers (close to zero), the frarfhdiscernment be

© = {61, 6,,03}, have two experts (independent sources of evidene@ads:) giving the belief masses
m1(61) =1- €1 m1(02) =0 m1(03) = €1

m2(61) =0 mg(ag) =1- €9 mg(eg) = €9
From now on, we prefer to use matrices to describe the masses,
1—¢ 0 €1
0 1-— €9 €9
e Using Dempster’s rule of combination, one gets
(e1€2)
(1—61)-0+0-(1—62)+6162

which is absurd (or at least counter-intuitive). Note thatwever positive values fer, ¢ are, Demp-
ster’s rule of combination provides always the same resukt) which is abnormal. The only acceptable
and correct result obtained by Dempster’s rule is reallpioletd only in the trivial case whef = 5 = 1,

i.e. when both sources agreefinwith certainty which is obvious.

m(93) == =1

e Using the DSm rule of combination based on free-DSm moded,g&ism (03) = e1e2, m(0; N O2) =
(I1—€1)(1—e€2), m(01Nb3) = (1—e€1)e2, m(62N03) = (1 —e2)er and the others are zero which appears
more reliable/trustable.

e Going back to Shafer’s model and using the hybrid DSm ruleoofiltination, one gets:i(63) = €;ea,
m(91 U 92) = (1 — 61)(1 — 62), m(91 U 93) = (1 — 61)62, m(92 U 93) = (1 — 62)61 and the others are
zero.

Note that in the special case when= ¢, = 1/2, one has
m1(01):1/2 m1(92):0 m1(93)21/2
m2(01) =0 mg(ag) = 1/2 m2(93) = 1/2

Dempster’s rule of combinations still yields(63) = 1 while the hybrid DSm rule based on the same Shafer’s
model yields nown(63) = 1/4, m(6; U 63) = 1/4, m(6; U 03) = 1/4, m(02 U 03) = 1/4 which is normal.

14



2.6.3 Comparison with Smets, Yager and Dubois & Prade rules

We compare the results provided by DSmT rules and the maimmnrules of combination on the follow-
ing very simple numerical example where only 2 independentces (a priori assumed equally reliable) are
involved and providing their belief initially on the 3D fram® = {61, 02,60s}. Itis assumed in this example
that Shafer's model holds and thus the belief assignments) andms(.) do not commit belief to internal
conflicting information.m (.) andms(.) are chosen as follows:

m1(91) =0.1 m1(92) =04 m1(93) =0.2 m1(91 U 92) =0.3

mg(ﬂl) =0.5 m2(92) =0.1 m2(93) =0.3 m2(91 U 92) =0.1
These belief masses are usually represented in the formadfed mass matrixM given by

0.1 04 0.2 0.3
M= 0.5 0.1 03 0.1 ©)
where index; for the rows corresponds to the index of the sourceinand the indexeg for columns ofM
correspond to a given choice for enumerating the focal edsnaf all sources. In this particular example, in-
dex;j = 1 corresponds té;, j = 2 corresponds té,, j = 3 corresponds té; and; = 4 corresponds t6; U6,.

Now let's imagine that one finds out th@g is actually truly empty because some extra and certain knowl
edge onfs is received by the fusion center. As exampe, 6, and 63 may correspond to three suspects
(potential murders) in a police investigatiom, (.) andma(.) corresponds to two reports of independent wit-
nesses, but it turns out that finally has provided a strong alibi to the criminal police invegtigance arrested

by the policemen. This situation corresponds to set up adhybodel M with the constraints M.

Let's examine the result of the fusion in such situation wiatd by the Smets’, Yager's, Dubois & Prade’s
and hybrid DSm rules of combinations. First note that, basedhe free DSm model, one would get by
applying the classic DSm rule (denoted here by inflm (') the following fusion result

=021 mpgme(f2) =0.11
mpsmc (63 (6, U 6y) =0.03
mpsmc (61 N 02 (
(

mpsmc (62 N O3

01N 93) =0.13
=0.14 mpsmc (63 N 61 U 92)) =0.11

=0.21 MpSmC

But because of the exclusivity constraints (imposed her¢hbyuse of Shafer's model and by the non-

existential constrairtis M (), the total conflicting mass is actually given by, = 0.06 +0.21 +0.13 4+ 0.14 +
0.11 = 0.65.

¢ If one appliesDempster’s rule [24] (denoted here by indek.S), one gets:

mps(0) =0
mps(01) = 0.21/[1 — k2] = 0.21/[1 — 0.65] = 0.21/0.35 = 0.600000
mps(f) = 0.11/[1 — k1a] = 0.11/[1 — 0.65] = 0.11/0.35 = 0.314286
mps(01 U bs) = 0.03/[1 — kia] = 0.03/[1 — 0.65] = 0.03/0.35 = 0.085714

e |fone appliesSmets’ rule[41,42] (i.e. the non normalized version of Dempster’s wilh the conflicting
mass transferred onto the empty set), one gets:
mg(0) = m(0 ) = 0.65 (conflicting mass)
(61) =02
mg(f2) = 0.1
mg (61 U6z) = 0.0

mg
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¢ If one appliesyager’s rule [51-53], one gets:

my(@) =0
my (61) = 0.21
my (62) = 0.11
my (61 U 6y) = 0.03 + k12 = 0.03 + 0.65 = 0.68

o If one appliesDubois & Prade’s rule [12], one gets becaush M.

mpp(0) =0 (by definition of Dubois & Prade’s rule)
mpp(61) = [m1(01)ma(61) + mq(61)ma(01 U 62)

+ ma(61)mq (61 U b))

+ [m1(61)ma(03) + ma(61)m1(63)]
=[01-054+0.1-0.140.5-0.3]+[0.1-0.3+0.5-0.2]
=0.214+0.13=0.34

mpp(f2) =[0.4-0.140.4-0.1+0.1-0.3] +[0.4-0.340.1-0.2]
=0.1140.14 = 0.25

mpp(01 U 0s) = [mi(61 U 2)ma(6r U 6s)]
+ [m1 (61 U O2)ma(03) + ma(61 U O2)mq(63)]
+ [ma(01)ma2(602) + ma(61)ma(62)]
= [0.30.1] +[0.3- 0.3 + 0.1 0.2] + [0.1 - 0.1 + 0.5 - 0.4]
= [0.03] + [0.09 + 0.02] + [0.01 + 0.20]
=0.03+0.11 4+ 0.21 = 0.35

Now if one adds up the masses, one @ets0.34 + 0.25 + 0.35 = 0.94 which is less than 1. Therefore
Dubois & Prade’s rule of combination does not work when alstiogy, or an union of singletons, becomes
empty (in a dynamic fusion problem). The products of suchtgrefement columns of the mass matrix
M are lost; this problem is fixed in DSmT by the sufs1(.) in (5) which transfers these products to the
total or partial ignorances.

e Finally, if one appliedDSmH rule, one gets becausg Mo

mpsmu(0) =0 (by definition of DSmH)
mpsmu(61) = 0.34 (same asnpp(01))
) =0.25 (same asnpp(62))
) = [y (61 U 82)ma(6; U 6)]
+ [ (01 U 02)1ma(05) + ma (61 U 0a)im (65)]
+ [m1(61)ma(02) + ma(61)m1(02)] + [ma(03)ma(03)]
=0.03+0.11 4+ 0.21 +0.06 = 0.35 + 0.06 = 0.41
# mpp(61 U 62)

mpsmu (01 U 02

We can easily verify thatn psm(61) + mpsme(62) + mpsme (61 U 62) = 1. In this example, using
the hybrid DSm rule, one transfers the product of the emfgigrentfs column,my (63)ma(63) = 0.2 -
0.3 = 0.06, to mpsmm (01 U O2), which becomes equal @35 + 0.06 = 0.41. Clearly, DSmH rule
doesn't provide the same result as Dubois and Prade’s ntegrily when working on static frames of
discernment (restricted cases).
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2.7 Fusion of imprecise beliefs

In many fusion problems, it seems very difficult (if not impid®e) to have precise sources of evidence gener-
ating precise basic belief assignments (especially whéeftienctions are provided by human experts), and
a more flexible plausible and paradoxical theory suppotitimgrecise information becomes necessary. In the
previous sections, we presented the fusiomprmfciseuncertain and conflicting/paradoxical generalized basic
belief assignments (gbba) in DSmT framework. We mean heggrdgise gbba, basic belief functions/masses
m(.) defined precisely on the hyper-power £& where each mass,(X), whereX belongs taD®, is repre-
sented by only one real number belongind(ol] such that) " . e m(X) = 1. In this section, we present
the DSm fusion rule for dealing withdmissible imprecise generalized basic belief assignsneft.) defined

as real subunitary intervals ¢, 1], or even more general as real subunitary sets [i.e. setsjauatssarily
intervals].

An imprecise belief assignment’(.) over D® is saidadmissibleif and only if there exists for every
X € D° at least one real numben(X) € m!(X) such thaty" v pe m(X) = 1. The idea to work with
imprecise belief structures represented by real subsatvais of[0, 1] is not new and has been investigated
in [5, 6, 16] and references therein. The proposed workdadlaiin the literature, upon our knowledge were
limited only to sub-unitary interval combination in the rimnawork of Transferable Belief Model (TBM) de-
veloped by Smets [41, 42]. We extend the approach of LamatacgaMand Denceux based on subunitary
interval-valued masses to subunitary set-valued magsesfore the closed intervals used by Denceux to de-
note imprecise masses are generalized to any sets inclod@dl], i.e. in our case these sets can be unions
of (closed, open, or half-open/half-closed) intervals/andcalars all in0, 1]. Here, the proposed extension
is done in the context of DSMT framework, although it can apply directly to fusion of imprecise belief
structures within TBM as well if the user prefers to adopt TBdther than DSmT.

Before presenting the general formula for the combinatibgemeralized imprecise belief structures, we
remind the following set operators involved in the DSm fasiormulas. Several numerical examples are given
in the chapter 6 of [31].

e Addition of sets
S1H Sy =Sy H S, é{x|x281+32,31 € 51, 89 GSQ}

e Subtraction of sets
Sl EISQ £ {1‘ ‘ r =81 — 892,81 € 51782 S SQ}

e Multiplication of sets
S1E S é{x | T = 81-82,81 € 51,82 € SQ}

e Division of sets If 0 doesn’t belong ta,,

5108, = {.’L’ ’ .%'281/82,81 € 51,89 € SQ}

2.7.1 DSm rule of combination for imprecise beliefs

We present the generalization of the DSm rules to combineygueyof imprecise belief assignment which may
be represented by the union of several sub-unitary (hgifehantervals, (half-)closed intervals and/or sets of
points belonging to [0,1]. Several numerical examples B@given. In the sequel, one uses the notatior)

for an open intervalla, b] for a closed interval, anf, b] or [a, b) for a half open and half closed interval. From

the previous operators on sets, one can generalize the O8sn(classic and hybrid) from scalars to sets in the
following way [31] (chap. 6)¥A # () € D®,

m!(4) = > [T mfx) (10)

X1,X2,.., Xx€DOi=1,..k
(X1NXaN..nX})=A
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where Z and H represent the summation, and respectively product, of sets

Similarly, one can generalize the hybrid DSm rule from ssala sets in the following way:
1 _ I A I I I
M (A) = Mhye)(A) 2 6(4) B [S(A) B S5(4) B 55(A)] (11)

where all sets involved in formulas are in the canonical famad ¢(A) is the characteristic non emptiness
functionof the setd andS{(A), SZ(A) andSi(A) are defined by

S{(A) & > [T mix) (12)

Xl,Xg,...,XkED@izl,...,k
X1NXqN...NX,=A

Sy(A) £ > 11| micx) (13)

Xl,XQ,...,XkG(D i=1,...,k
U=AIV[UEB)A(A=1y)]

CIOENEEDS

X17X27"'7Xk€D(_)i:17"'7k
XqUXoU...UX=A
X1NXoN...NX4ED

m} (X;) (14)

—

In the case when all sets are reduced to points (numbers}ethaperations become normal operations with
numbers; the sets operations are generalizations of ncaheperations. When imprecise belief structures re-
duce to precise belief structure, DSm rules (10) and (11)aedo their precise version (4) and (5) respectively.

2.7.2 Example

Here is a simple example of fusion with multiple-interval sses. For simplicity, this example is a particular
case when the theorem of admissibility (see [31] p. 138 ftail¥® is verified by a few points, which happen to
be just on the bounders. It is an extreme example, becausgeded comprise all kinds of possibilities which
may occur in the imprecise or very imprecise fusion. Sos letinsider a fusion problem ovér = {6,605},
two independent sources of information with the followingpirecise admissible belief assignments

Ac DO mi(A) my(A)
6 [0.1,0.2] U {0.3} [0.4,0.5]
62 (0.4,0.6) U [0.7,0.8] | [0,0.4] U {0.5,0.6}

Table 3: Inputs of the fusion with imprecise bba’s.
Using the DSm classic (DSmC) rule for sets, one gets

m!(6;) = ([0.1,0.2] U {0.3}) @ 0.4, 0.5] = ([0.1,0.2] @ [0.4,0.5]) U ({0.3} @ [0.4, 0.5])
= [0.04,0.10] U [0.12, 0.15]
m!(63) = ((0.4,0.6) U [0.7,0.8]) = ([0,0.4] U {0.5,0.6})
= ((0.4,0.6) @ [0,0.4]) U ((0.4,0.6) @ {0.5,0.6}) U ([0.7,0.8] @ [0,0.4]) U ([0.7,0.8] @ {0.5,0.6})
= (0,0.24) U (0.20,0.30) U (0.24,0.36) U [0,0.32] U [0.35,0.40] U [0.42, 0.48]
= [0,0.40] U [0.42, 0.48]
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m! (01 1 62) = [([0.1,0.2] U {0.3}) @ ([0,0.4] U {0.5,0.6})] B [[0.4,0.5] &1 ((0.4,0.6) U[0.7,0.8])]
[([0.1,0.2] @ [0,0.4]) U ([0.1,0.2] & {0.5,0.6}) U ({0.3} = [0,0.4]) U ({0.3} & {0.5,0.6))]
[ [([0.4,0.5] @ (0.4,0.6)) U ([0.4,0.5] &1 [0.7,0.8])]

[[0,0.08] U [0.05, 0.10] U [0.06,0.12] U [0,0.12] U {0.15,0.18}] B [(0.16,0.30) U [0.28, 0.40]]
[[0,0.12) U {0.15,0.18}] 8 (0.16, 0.40]

= (0.16,0.52] U (0.31,0.55] U (0.34, 0.58] = (0.16,0.58]

Hence finally the fusion admissible result with DSmC ruleiigg by:

A e D® [ ml(A) = [ml ®ml](A)
0, 0.04,0.10] U [0.12,0.15]

02 [0, 040] U [0.42, 048]
611 05 (0.16,0.58]
01 U0y 0

Table 4: Fusion result with the DSmC rule.
If one finds out thaté; N 6, 4 () (this is our hybrid modeM one wants to deal with), then one uses the hybrid
DSm rule (11) for setsm/ (61 N 62) = 0 andm? (61 U 65) = (0.16,0.58], the others imprecise masses are
not changed.

With the hybrid DSm rule (DSmH) applied to imprecise beli@fse gets now the results given in Table 5.

AeD® [ml (4)=[mleml(A)
0, [0.04,0.10] U [0.12,0.15]
0 [0,0.40] U [0.42, 0.48]
61 N6y /\E/t 0 0
61 U 6y (0.16,0.58]

Table 5: Fusion result with DSmH rule fav1.

Let's check now the admissibility condition. For the soulceghere exist the precise massges; (0;) =
0.3) € ([0.1,0.2]U{0.3}) and(m(f2) = 0.7) € ((0.4,0.6)U[0.7,0.8]) such thab.3+0.7 = 1. For the source
2, there exist the precise masses; (6;) = 0.4) € ([0.4,0.5]) and(mz(f2) = 0.6) € ([0,0.4] U {0.5,0.6})
such that0.4 + 0.6 = 1. Therefore both sources associated with(.) andmi(.) are admissible imprecise
sources of information. It can be verified that DSmC fusiomaf(.) andms(.) yields the paradoxical bba
m(@l) = [m1 @mg](Hl) =0.12, m(92) = [m169m2](92) =0.42 andm(elﬂﬂg) = [mleBmQ](Hl ﬂ92) = 0.46.
One sees that the admissibility condition is satisfied sipaéd;) = 0.12) € (m!(f;) = [0.04,0.10] U
[0.12,0.15]), (m(f2) = 0.42) € (mf(f2) = [0,0.40]U[0.42,0.48]) and(m (01 Nbs) = 0.46) € (m!(61Nb) =
(0.16,0.58]) such that.12+ 0.42+ 0.46 = 1. Similarly if one finds out tha#; N 6, = (), then one uses DSmH
rule and one getsin(f; N #2) = 0 andm(6; U O2) = 0.46; the others remain unchanged. The admissibility
condition still holds, because one can pick at least one euainbeach subset(.) such that the sum of these
numbers is 1.

3 Proportional Conflict Redistribution rule

Instead of applying a direct transfer of partial conflictsoopartial uncertainties as with DSmH, the idea behind
the Proportional Conflict Redistribution (PCR) rule [33] 85to transfer (total or partial) conflicting masses to
non-empty sets involved in the conflicts proportionallylwigspect to the masses assigned to them by sources
as follows:

5We consider now a dynamic fusion problem.
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1. calculation the conjunctive rule of the belief massesofses;
2. calculation the total or partial conflicting masses;

3. redistribution of the (total or partial) conflicting massto the non-empty sets involved in the conflicts
proportionally with respect to their masses assigned bgdloeces.

The way the conflicting mass is redistributed yields acyusdiveral versions of PCR rules. These PCR fusion
rules work for any degree of conflict, for any DSm models (8Hafmodel, free DSm model or any hybrid
DSm model) and both in DST and DSmMT frameworks for static aragyical fusion situations. We present
below only the most sophisticated proportional conflictisgtbution rule denoted PCR5 in [33, 35]. PCR5
rule is what we feel the most efficient PCR fusion rule devetbgo far. This rule redistributes the partial
conflicting mass to the elements involved in the partial ¢onftonsidering the conjunctive normal form of
the partial conflict. PCR5 is what we think the most mathecaditi exact redistribution of conflicting mass to
non-empty sets following the logic of the conjunctive rutedoes a better redistribution of the conflicting mass
than Dempster’s rule since PCR5 goes backwards on the toddke conjunctive rule and redistributes the
conflicting mass only to the sets involved in the conflict angpprtionally to their masses put in the conflict.
PCRS5 rule is quasi-associative and preserves the neutpaicinof the vacuous belief assignment because in
any partial conflict, as well in the total conflict (which isans of all partial conflicts), the conjunctive normal
form of each partial conflict does not inclu@esince® is a neutral element for intersection (conflict), therefore
O gets no mass after the redistribution of the conflicting m¥¢s have proved in [35] the continuity property
of the fusion result with continuous variations of bba’s tanbine.

3.1 PCR formulas
The PCR5 formula for the combination of two sources<(2) is given by:mpcrs(#) = 0 andvX € GO\ {0}

ml(X)ng(Y) mg(X)le (Y)
ml(X) +m2(Y) mg(X) +m1(Y)

mpcrs(X) = mio(X) + Z [

YeGO\{X}
XNY=0

] (15)

where all sets involved in formulas are in canonical formahereG® corresponds to classical power 8&tif
Shafer’s model is used, or to a constrained hyper-powe8af any other hybrid DSm model is used instead,
or to the super-power s&t® if the minimal refinemen®7¢/ of © is used;m2(X) = mn(X) corresponds to
the conjunctive consensus dhbetween the = 2 sources and where all denominators are different from zero.
If a denominator is zero, that fraction is discarded.

A general formula of PCR5 for the fusion ef> 2 sources has been proposed in [35], but a more intu-
itive PCR formula (denoted PCR6) which provides good resulfpractice has been proposed by Martin and
Osswald in [35] (pages 69-88). We can rewrite Martin-OsaWwRCR6 formula in the following simple way:
mpcre(9) = 0andvX € G® \ {0}

- m1(X1)ma(Xa) ... me(Xs
mpore(X) =mizo(X+ 3, DA% (Gl (X1§+12n é( §)+ o )(X) (16)
X1,Xa,..,X.€GO\ {0} m=1 1\A1 2(A2 s (X
X1NXaN..NXs=0
where
X700, i X £ X,

and where the belief mass assignment_ s(X) = mn(X) corresponds to the conjunctive consensusXon
between the > 2 sources. If a denominator is zero, that fraction is dischtuErause all masses;(X;) = 0
so the numerator is also zero, i.e. no conflicting mass (ngtta redistribute). For two sources € 2), PCR5
and PCR6 formulas coincide. The implementation of PCR6sg&eethan PCRS5 and can be found in [50].
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3.2 Examples

e Example 1 Let’s take® = { A, B} of exclusive elements (Shafer's model), and the followibg:b

A B AUB
mi ()] 06 0 04
my() | 0 03 07

[mn() [042 012 0.28]

The conflicting mass is12 = mn (AN B) and equalsn; (A)ma(B) +mi(B)ma(A) = 0.18. Therefore

A and B are the only focal elements involved in the conflict. Henosoading to the PCR5 hypothesis
only A and B deserve a part of the conflicting mass ahd B do not deserve. With PCR5, one redis-
tributes the conflicting magds» = 0.18 to A and B proportionally with the masses (A4) andmg(B)
assigned tod and B respectively.

Here are the results obtained from Dempster’s rule, DSmHARR5:

A B AUB
mMps 0.512 0.146 0.342
mpsmy || 0.420 0.120 0.460
mpcrs | 0.540 0.180 0.280
Example 2 Let's modify example 1 and consider
A B AUB
mi(.) | 0.6 0 0.4
ma(.) | 0.2 0.3 0.5
| mn() 050 0.12 0.20 |

The conflicting mas;» = m~(A N B) as well as the distribution coefficients for the PCR5 rem#ies
same as in the previous example but one gets now

A B AUB
mps 0.609 0.146 0.231
mpsmpe || 0.500 0.120 0.380
mpcrs || 0.620 0.180 0.200
Example 3 Let's modify example 2 and consider
A B AUB
mi(.) | 0.6 0.3 0.1
mao(.) | 0.2 0.3 0.5
| mn(.) [0.44 027 0.05]|

The conflicting masg12 = 0.24 = my(A)me(B) + m1(B)ma(A) = 0.24 is now different from
previous examples, which means that(A) = 0.2 andm;(B) = 0.3 did make an impact on the
conflict. Therefored and B are the only focal elements involved in the conflict and thoiy ol and B
deserve a part of the conflicting mass. PCR5 redistributepdhntial conflicting mass 0.18 té and B
proportionally with the masses; (A) andmy(B) and also the partial conflicting mass 0.064@nd B
proportionally with the masses,(A) andm (B). After all derivations (see [13] for details), one finally
gets:
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A B AUB
Mps 0.579 0.355 0.066
mpsm || 0.440 0.270  0.290
mpcrs | 0.584 0.366 0.050

One clearly sees that ps(A U B) gets some mass from the conflicting mass althadgh B does not
deserve any part of the conflicting mass (according to PCRbthgsis) sincel U B is not involved in
the conflict (onlyA and B are involved in the conflicting mass). Dempster’s rule appéaus less exact
than PCRS5 and Inagaki’s rules [15]. It can be showed [13] thagaki’'s fusion rule (with an optimal
choice of tuning parameters) can become in some cases @/ ttd PCR5 but upon our opinion PCR5
result is more exact (at least less ad-hoc than Inagakis one

Example 4 (A more concrete example) Three people, JohnJj, George (), and David ) are sus-
pects to a murder. So the frame of discernmen®is= {J,G, D}. Two sourcesni(.) andma(.)
(witnesses) provide the following information:

J G D
m; {09 0 01
me | O 0.8 0.2

We know that John and George are friends, but John and Dateédehah other, and similarly George and
David.

a) Free model, i. e. all intersections are nonemgty.G # 0, JND # 0,GND # 0, JNGND # (.
Using the DSm classic rule one gets:

J G D JnG JnD GnD JnGnND
mpsmc || 0 0 0.02 0.72 0.18 0.08 0

So we can see that John and George together ) are most likely to have committed the crime,
since the massipsmc(J N G) = 0.72 is the biggest resulting mass after the fusion of the two
sources. In Shafer's model, only one suspect could comnaitctime, but the free and hybrid
models allow two or more people to have committed the sameecriwhich happens in reality.

b) Let’s consider the hybrid model, i. e. some intersectemesempty, and others are not. According to
the above statement about the relationships between #eshspects, we can deduce thatG #
f,whileJND=GnND =JnNnGN D = (). Then we first apply the DSm Classic rule, and then
the transfer of the conflicting masses is done with PCR5:

J G D JnG JnD GnD JnGnD
my 09 0 01
mo 0O 08 02
mpsmc || O 0 002 0.72 0.18 0.08 0

Using PCR5 now we transfen(J N D) = 0.18, sinceJ N D = (), to J and D proportionally with
0.9 and 0.2 respectively, sbgets 0.15 and gets 0.03 since:

2.J/0.9 = 21D/0.2 = 0.18/(0.9 + 0.2) = 0.18/1.1

whencerJ = 0.9(0.18/1.1) = 0.15 andz1D = 0.2(0.18/1.1) = 0.03.

Again using PCRS5, we transfern(G N D) = 0.08, sinceG N D = (), to G and D proportionally
with 0.8 and 0.1 respectively, €& gets 0.07 and gets 0.01 since:

yG/0.8 = 22D /0.1 = 0.08/(0.8 + 0.1) = 0.08/0.9
whenceyG = 0.8(0.08/0.9) = 0.07 andzD = 0.1(0.08/0.9) = 0.01. Adding we get finally:
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J G D JnG JNnD GnNnD JNnGnND
mpcrs || 0.15 0.07 0.06 0.72 0 0 0

So one has a high belief that the criminals are John and Géoogie of them committed the crime)
sincem(J N D) = 0.72 and it is by far the greatest fusion mass.

In Shafer's model, if we try to refine we get the disjoint paits JN G, J \ (J N G), andG \ (J N G),
but the last two are ridiculous (what is the real/physicaureofJ \ (J N G) or G\ (J N G) ? Half of

a person(!) ?), so the refining does not work here in realityat® why the hybrid and free models are
needed.

e Example 5 (Imprecise PCR5) The PCR5 formula can naturally work also for the combirratid
imprecise bba’s. This has been already presented in settidn8 page 49 of [35] with a numerical
example to show how to apply it. This example will therefoot Ipe reincluded here.

3.3 Zadeh's example

We compare here the solutions for well-known Zadeh’s exanfipb, 59] provided by several fusion rules.
A detailed presentation with more comparisons can be foor{81, 35]. Let's conside® = {M,C,T} as
the frame of three potential origins about possible diseadea patient §/ standing formeningitis C' for
concussiorand 7" for tumor), the Shafer's model and the two following belief assigntagrovided by two
independent doctors after examination of the same patient.

ml(M) =0.9 ml(C) 0
0 mg(C) =09 mQ(T) =

The total conflicting mass is high since it is
m1(M)ma(C) + my(M)ma(T) + m2(C)m1(T) = 0.99

e with Dempster’s rule and Shafer's model (DS), one gets thentr-intuitive result (see justifications
in [11,31,48,53,56))mps(T) = 1

¢ with Yager’s rule [53] and Shafer’'s modehy (M U C UT) = 0.99 andmy (1) = 0.01
e with DSmH and Shafer's model:
mpsmu (M UC) =0.81 mpsmu(T) = 0.01
mpsmag(M UT) =mpgsmu(CUT) =0.09

e The Dubois & Prade’s rule (DP) [11] based on Shafer's modeliges in Zadeh's example the same
result as DSmH, because DP and DSmH coincide in all statiorfygoblems.

e with PCR5 and Shafer’s mOdthCR5(M) = mpCR5(C) = 0.486 andmpCR5(T) = 0.028.

One sees that when the total conflict between sources bedugiesDSmT is able (upon authors opinion) to
manage more adequately through DSmH or PCRS5 rules the catidnirof information than Dempster’s rule,
even when working with Shafer's model - which is only a spedifybrid model. DSmH rule is in agreement
with DP rule for the static fusion, but DSmH and DP rules diffegeneral (for non degenerate cases) for dy-
namic fusion while PCR5 rule is the most exact proportiomatfiict redistribution rule. Besides this particular
example, we showed in [31] that there exist several infinidsses of counter-examples to Dempster’s rule
which can be solved by DSmT.

Insummary, DST based on Dempster’s rule provides countaitive results in Zadeh'’s example, or in non-
Bayesian examples similar to Zadeh's and no result whenahffict is 1. Only ad-hoc discounting techniques

"Indeed DP rule has been developed for static fusion onlysnb$mH has been developed to take into account the
possible dynamicity of the frame itself and also its asgedianodel.
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allow to circumvent troubles of Dempster’s rule or we neeshtiich to another model of representation/frame;
in the later case the solution obtained doesn't fit with thaf&F's model one originally wanted to work with.
We want also to emphasize that in dynamic fusion when theicbb#comes high, both DST [24] and Smets’
Transferable Belief Model (TBM) [41] approaches fail topesd to new information provided by new sources.
This can be easily showed by the very simple following exampl

Example (where TBM doesn’t respond to new information):
Let©® = {A, B,C} with the (precise) bba's; (4) = 0.4, m;(C) = 0.6 andmgy(A) = 0.7, me(B) = 0.3.

Then one gefswith Dempster’s rule, Smets’ TBM (i.e. the non-normalizeztsion of Dempster’s combina-
tion), DSmH and PCR&m2¢(A) = 1, mi?y,,(4) = 0.28, m¥%;,,(0) = 0.72,

mDS H(A)
mp. . (A ) =0.12 m1102035(z4) = 0.574725
PCR5 .
mDsmH(A oo 12 (C) = 0.313846
= mpeogs(C) = 0.
mpgmp(BUC) =0.18

Now let’'s consider a temporal fusion problem and introdudkira sourcems(.) with ms(B) = 0.8 and
m3(C) = 0.2. Then one sequentially combines the results obtaineehds,, (.), m¥4(.), mis,. ;(.) and

mpx-,(.) with the new evidencen;(.) and one sees thmg??’ becomes not defined (division by zero) and
mi2% (0) = 1 while (DSmH) and (PCRS5) provide

(128 (B) =0.240

o 1(C) = 0.120 m322_(4) = 0.277490
D (AU B) =0.224 and mO23_(B) = 0.545010
Do (AUC) = 0.056 m323 () = 0.177500
(128 (AUBUC) = 0.360

When the mass committed to empty set becomes one at a préeiopsral fusion step, then both DST
and TBM do not respond to new informatfor_et’s continue the example and consider a fourth soutgg)
with my(A) = 0.5, myg(B) = 0.3 andmy4(C) = 0.2. Then itis easy to see that%?)?’)‘l(.) is not defined
since at previous stezm(12)3( ) was already not defined, and thﬂéﬂB 27 (0) = 1 whatevermy(.) is because
at the previous fusion step one 1,29)]\34((2)) = 1. Therefore for a number of sources> 2, DST and TBM
approaches do not respond to new information incoming iritkien process while both (DSmH) and (PCR5)
rules respond to new information. To make DST and/or TBM wagkproperly in such cases, it is necessary
to introduce ad-hoc temporal discounting techniques waremot necessary to introduce if DSmT is adopted.
If there are good reasons to introduce temporal discountivage is obviously no difficulty to apply the DSm
fusion of these discounted sources. An analysis of thissiehfor target type tracking is presented in [9, 35].

4 Uniform and partially uniform redistribution rules

The principles of Uniform Redistribution Rule (URR) and fly Uniform Redistribution Rule (PURR) have
been proposed in 2006 with examples in [34].

The Uniform Redistribution Rule consists in redistribgtithne total conflicting mass,, to all focal ele-
ments ofG® generated by the consensus operator. This way of redistribmass is very simple and URR is

8We introduce here explicitly the indexes of sources in tiséofniresult since more than two sources are considered in
this example.

9Actually Dempster’s rule doesn't respond also to new coibpeainformation/bba as soon as a total mass of belief is
already committed by a source to only one focal element. kam@le, if one conside® = { A, B} with Shafer's model
(AN B = 0) and withm; (A) = 1, ma(A) = 0.2 andmy(B) = 0.8, then Dempster’s rule always provides,s(A4) = 1
whatever are the values taken#g (A4) > 0 andmsy(B) > 0.
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different from Dempster’s rule of combination, because Ppster's rule redistributes the total conflict propor-

tionally with respect to the masses resulted from the catijum rule of non-empty sets. PCR5 rule presented
previously does proportional redistributions of partiahflicting masses to the sets involved in the conflict.
The URR formula for two sources is given byA # ()

1
misvrR(A) = maz(4) + — > mi(X1)ma(Xo) (18)
12 X1,X2€G®

X1NXa=0

wheremy2(A) is the result of the conjunctive rule applied to belief assigntsm(.) andms(.), andnis =
Card{Z € G®,m(Z) # 00rms(Z) # 0}.

Fors > 2 sources to combineZA # (), one has

1 S
miz..sURR(A) = miz.s(A) + — > [[m(x0) (19)
12...5 X1,X2,..,X,€G® =1

X1NXaN...NX =0
wherem,._ s(A) is the result of the conjunctive rule appliedrig(.), foralli € {1,2,...,s} and
nig..s = Card{Z € G®,mi(Z) #00rmy(Z) #00r ... orms(Z) # 0}

As alternative (modified version of URR), we can also conside cardinal of the ensemble of sets whose
masses resulted from the conjunctive rule are non-nullthecardinality of the core of conjunctive consensus:

ni. s = CardZ € Ge7m12...s(z) # 0}

It is also possible to do a uniformly partial redistributiom. to uniformly redistribute the conflicting mass
only to the sets involved in the conflict. For examplepify(A N B) = 0.08 and AN B = (), then 0.08 is
equally redistributed tel and B only, supposingd and B are both non-empty, so 0.04 assigneditand 0.04
to B.

The Partially Uniform Redistribution Rule (PURR) for twowsoes is defined as follows:A + ()

1
mizpurr(A) = miz(4) + 5 > my(X1)ma(X2) (20)
X17X2€G®
X1NXao=0

Xij=Aor Xo=A

wherem5(A) is the result of the conjunctive rule applied to belief assigntsm, (.) andms(.).
Fors > 2 sources to combineZA # (), one has

mia.sPURR(A) = miz2.. s(A)

®w | =

> Cardy({X1,..., X.}) [[ma(X5) (21)
i=1

X1,X2,..,Xs€G®
X1NXaN..NXs=0
atleat oneX;=A,j€{1,...,s}

where Card ({ X1, ..., X;}) is the number ofd’s occurring in{ X;, Xo, ..., X}.
If A =0, mapyrr(A) =0andma_spurr(A) = 0.
These rules have a low computation cost with respect to Piiopal Conflict Redistribution (PCR) rules

developed in the DSmT framework and they preserve the rigytod the vacuous belief assignment (VBA)
since any bban, (.) combined with VBA defined on any frante¢ = {6,,...,0,} bymypa(61U...U0,) =1,
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using the conjunctive rule, gives;(.), so no conflicting mass is needed to transfer. Of course thdse
are very easy to implement but from a theoretical point ofwibey remain less precise in their transfer of
conflicting beliefs since they do not take into account thapprtional redistribution with respect to the mass of
each set involved in the conflict. Reasonably, URR or PURR@goutperform PCRS5 but they may hopefully
could appear as good enough in some specific fusion probldran the level of total conflict is not important.
PURR does a more refined redistribution that URR and MURRtlvaguires a little more calculation.

5 RSC Fusion rules

In this section, we briefly recall a new class of fusion rulasdd on the belief redistribution to subsets or com-
plements and denoted CRSC (standing for Class of Redistnibrules to Subsets or Complements) for short.
This class is presented in details in [37] with several eXasp

Let m1(.) andms(.) be two normalized basic belief assignments (bba’s) defthizdm S© to [0, 1]. We
use the conjunctive rule to first combime; (.) with ms(.) to getmn(.) and then the mass of conflict say
mn(X NY) =0, whenX NY = () or even whenX NY is different from the empty set is redistributed to
subsets or complements in many ways (see [37] for details riew class of fusion rule (denotétRSC.)
for transferring the conflicting masses only is defined4oe S© \ {0, I;} by:

mersco.(A) = ma(A) + [a-ma(A) + 8- Card(A) + v - f(A)]

ml(X)mQ(Y)
' (22)
XNY =0 ZeS°® zZCM
ACM

wherel;, = 6, U6, U ... U 6, represents the total ignorance wh@n= {6,,...,6,}. M can bec(X UY)

(the complement o U Y'), or a subset of(X UY), or X UY, orasubsetoX UY’; o, 3,7 € {0,1} but
a+ 6+~ # 0; in a weighted way we can take 3,~ € [0, 1] also witha + 3+~ # 0; f(X) is a function of
X, i.e. another parameter that the masXas directly proportionally with respect t@;ard(X) is the cardinal
of X.

The mass of beliefncrsc, (1) committed to the total ignorance is given by:

mcrsc, (It) = ma(l;) + Z mi(X)mao(Y') (23)

X,Y €8°
{XNY =0andM = 0}
or{X NY =0andDen(Z) = 0}

whereDen(Z) £ Y yc g0 zeple- ma(Z2) + - Card(Z) + v - f(Z)).

A more general formula for the redistribution of conflict amah-conflict to subsets or complements class
of rules for the fusion of masses of belief for two sourcesvidence is defined! € (S© Sﬁ‘m@) ~ {0,0}

by:

mense(A) = mn(A) + 3 FaymXmaY) (24)
X,Y € 8° § : (2)
(XNY =0,Ac T(X,Y)} ZeT(X,Y)

or{XnNy esnor? AeT'(X,Y)}

10since these rules use explicitely the complementationatpet(.), they apply only with the super-power s&? or
on2® depending on the underlying model chosen for the fréme
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and forA = I;:

meorso () = ma(ly) + > my(X)ma(Y) (25)
X,y € 8°
XNy =0,
{T(X,Y)=0or >  f(Z)=0}
ZeT(X,Y)

whereS, = {X € S®|X =Y NZ, whereY, Z ¢ S~ {(}}, all propositions are expressed in their canonical
form and whereX contains at least an symbol in its expressiorﬂg be the set of all empty intersections from
Sn (i.e. the set of exclusivity constraints), aﬁqonw the set of all non-empty intersections frosh,. ng’r"@

is the set of all non-empty intersections fré#i°*? whose masses are redistributed to other sets/propositions
The setSﬁf’T"@ highly depends on the model for the frame of the applicatioden consideration.f(.) is a

mapping fromS® to R*. For example, we can choogéX) = m~(X), f(X) = | X|, fT(X) = % or
f(z) = mn(X) +|X]|, etc. The functior? specifies a subset 6, for exampleZ (X,Y) = {c¢(X UY)}, or
T(X,Y) = {X UY} or can specify a set of subsets 9. For example7 (X,Y) = {A C ¢«(X UY)}, or
T(X,Y)={A C X UY}. The function7" is a subset 06°, for exampleZ’(X,Y) = {X UY},or 7" is a

subset ofX U Y, etc.

It is important to highlight that in formulas (22)-(23) orransfers only the conflicting masses, whereas the
formulas (24)-(25) are more general since one transfersdh#licting masses or the non-conflicting masses
as well depending on the preferences of the fusion systeigras The previous formulas have been directly
extended for any > 2 sources of evidence in [37]. All denominators in these CR&@filas are naturally
supposed different from zero. It is worth to note also that éixtensions of these rules for including the
reliabilities of the sources are also presented in [37].

6 The generalized pignistic transformation (GPT)
6.1 The classical pignistic transformation

We follow here Philippe Smets’ vision which considers thenagement of information as a two 2-levels
process: credal (for combination of evidences) and pignfstfor decision-making) , i.ewhen someone must
take a decision, he/she must then construct a probabilitgtfon derived from the belief function that describes
his/her credal state. This probability function is thendise make decisiofig40] (p. 284). One obvious way
to build this probability function corresponds to the sdlethClassical Pignistic Transformation (CPT) defined
in DST framework (i.e. based on the Shafer’s model assumpés [42]:

| X N A
| X]

where|A| denotes the cardinality oft (with convention|(|/|(}] = 1, to define BetP{(}). Decisions are
achieved by computing the expected utilities of the actaguitiie subjective/pignisti@&3et P{.} as the proba-
bility function needed to compute expectations. Usualhe ases the maximum of the pignistic probability
as decision criterion. The maximum &fet P{.} is often considered as a prudent betting decision criterion
between the two other alternatives (max of plausibility @xmof credibility which appears to be respectively
too optimistic or too pessimistic). It is easy to show that P{.} is indeed a probability function (see [41]).

BetP{A} = ) _

Xe20

m(X) (26)

6.2 Notion of DSm cardinality

One important notion involved in the definition of the Gettigeal Pignistic Transformation (GPT) is tiESm
cardinality. The DSm cardinalityof any elementA of hyper-power seD®, denoted’(A), corresponds to
the number of parts ofl in the corresponding fuzzy/vague Venn diagram of the prablmodel M) taking

into account the set of integrity constraints (if any), a#t the possible intersections due to the nature of the el-
ementd);. Thisintrinsic cardinalitydepends on the modaH (free, hybrid or Shafer's modelM is the model

Upignistic terminology has been coined by Philippe Smetscandes fronpignus a bet in Latin.
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that contains4, which depends both on the dimensieor= |©| and on the number of non-empty intersections
present in its associated Venn diagram (see [31] for détailfie DSm cardinality depends on the cardinal of
© = {61,0s,...,0,} and on the model aD® (i.e., the number of intersections and between what elesrant
O - in aword the structure) at the same time; it is not necdgdhet every singleton, sad, has the same DSm
cardinal, because each singleton has a different strydgfute structure is the simplest (no intersection of this
elements with other elements) thég, (6;) = 1, if the structure is more complicated (many intersectidghep
Cm(6;) > 1; let’s consider a singletofy: if it has 1 intersection only thefiy(6;) = 2, for 2 intersections only
Crm(0;) is 3 or 4 depending on the modgt, for m intersections it is betweemn + 1 and2™ depending on the
model; the maximum DSm cardinality 26! and occurs fof; U6, U. .. U6, in the free modeM7; similarly

for any set fromD®: the more complicated structure it has, the bigger is the @Srdinal; thus the DSm
cardinality measures the complexity of an element ftbff, which is a nice characterization in our opinion;
we may say that for the singletah not even|©| counts, but only its structure (= how many other singletons
intersect);). Simple illustrative examples are given in Chapter 3 anfi[34. One hasl < Cy(A) < 2™ —1.
Cam(A) must not be confused with the classical cardinglty of a given set4 (i.e. the number of its distinct
elements) - that's why a new notation is necessary lggg.A) is very easy to compute by programming from
the algorithm of generation dP® given explicated in [31].

Example: let's take back the example of the simple hybrid DSm modstdbed in section 2.2, then one gets
the following list of elements (with their DSm cardinal) fiire restrictedD® taking into account the integrity
constraints of this hybrid model:

Ae D®

ap =0

(71 £ 61 N6y

a9 é 93

az £ 6

g £ 92

as = 01 U0,

Qg =S 01 U 603

(e%4 =S 05 U O3

as =S 01 U605 U b5

~—

<
B W W W NN = O
N

Example of DSm cardinal®€ ,(A) for hybrid modelM.

6.3 The Generalized Pignistic Transformation

To take a rational decision within DSmT framework, it is nexary to generalize the Classical Pignistic Trans-
formation in order to construct a pignistic probability @tion from any generalized basic belief assignment
m(.) drawn from the DSm rules of combination. Here is the simmest direct extension of the CPT to define
the Generalized Pignistic Transformation:

CM(X ﬂA)

VA € D®, BetP{A} = )_ o)

XeDh®

m(X) 27)

whereC((X) denotes the DSm cardinal of propositighfor the DSm modelM of the problem under con-
sideration.

The decision about the solution of the problem is usuallgtaky the maximum of pignistic probability
function BetP{.}. Let's remark the close ressemblance of the two pignistindformations (26) and (27).
It can be shown that (27) reduces to (26) when the hyper-pee®® reduces to classical power 9 if
we adopt Shafer's model. But (27) is a generalization of @6ge it can be used for computing pignistic
probabilities for any models (including Shafer's model) has been proved in [31] (Chap. 7) thaetP{.}
defined in (27) is indeed a probability distribution. In tliddwing section, we introduce a new alternative to
BetP which is presented in details in [37].
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7 The DSmP transformation

In the theories of belief functions, the mapping from thedddb the probability domain is a controversial issue.
The original purpose of such mappings was to make (hardsidecibut contrariwise to erroneous widespread
idea/claim, this is not the only interest for using such niage nowadays. Actually the probabilistic transfor-
mations of belief mass assignments (as the pignistic tbamsftion mentioned previously) are for example very
useful in modern multitarget multisensor tracking systéansn any other systems) where one deals with soft
decisions (i.e. where all possible solutions are kept fateststimation with their likelihoods). For example, in
a Multiple Hypotheses Tracker using both kinematical atibate data, one needs to compute all probabilities
values for deriving the likelihoods of data associationdtiipses and then mixing them altogether to estimate
states of targets. Therefore, it is very relevant to use gpoimgpvhich provides a highly probabilistic informa-
tion content (PIC) for expecting better performances.

In this section, we briefly recall a new probabilistic trarsfiation, denoted Sm P and introduced in [10]
which is explained in details in [37]0.Sm P is straight and different from other transformations. Theibidea
of DSmP consists in a new way of proportionalizations of the massaohgartial ignorance such ds U A,
or A; U (Ay N As) or (A1 N Ag) U (A3 N Ay), etc. and the mass of the total ignorantgu As U... U A,
to the elements involved in the ignorances. This new transdtion takes into account both the values of the
masses and the cardinality of elements in the proporticedibtribution process. We first remind what PIC
criteria is and then shortly present the general formuld®f®mP transformation with few numerical examples.
More examples and comparisons with respect to other transtons are given in [37].

7.1 The Probabilistic Information Content (PIC)

Following Sudano’s approach [43, 44, 46], we adopt the Riitibaic Information Content (PIC) criterion as

a metric depicting the strength of a critical decision by acéiic probability distribution. It is an essential
measure in any threshold-driven automated decision systdma PIC is the dual of the normalized Shannon
entropy. A PIC value of one indicates the total knowledge tkena correct decision (one hypothesis has a
probability value of one and the rest of zero). A PIC value efozindicates that the knowledge to make a
correct decision does not exist (all the hypotheses havejaal @robability value), i.e. one has the maximal
entropy. The PIC is used in our analysis to sort the perfooasirof the different pignistic transformations
through several numerical examples. We first recall whah8bia entropy and PIC measure are and their tight
relationship.

e Shannon entropy

Shannon entropy, usually expressed in bits (binary digitsa probability measur#{.} over a discrete
finite set® = {6y, ...,0,} is defined by? [25]:

H(P) £ =" P{0;}log,(P{0;}) (28)
=1

H(P) is maximal for the uniform probability distribution ovér, i.e. whenP{6;} = 1/nfori=1,2,...,n.
In that case, one getd (P) = Hyax = — Y1 q +1ogy(2) = logy(n). H(P) is minimal for a totallydeter-

ministic probability, i.e. for anyP{.} such thatP{6;} = 1 for somei € {1,2,...,n} andP{#;} = 0 for
j # 1. H(P) measures the randomness carried by any discrete propab{lit.

e The PIC metric

The Probabilistic Information Content (PIC) of a probagilmeasureP{.} associated with a probabilistic
source over a discrete finite g8t= {6,,...,0,} is defined by [44]:

1

PIC(P)=1
C( ) + Hmax

.Y P{6i}logy(P{6:}) (29)
i=1

2with common conventiofi log, 0 = 0.
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The PIC is nothing but the dual of the normalized Shannoropwtand thus is actually unit les?IC(P)
takes its values if0, 1]. PIC(P) is maximum, i.e.PICy.x = 1 with any deterministicprobability and it is
minimum, i.e. PICy,;, = 0, with the uniform probability over the fram@. The simple relationships between
H(P)andPIC(P)arePIC(P)=1— (H(P)/Hmnax) andH (P) = Hpax - (1 — PIC(P)).

7.2 The DSmP formula

Let’s consider a discrete frant@with a given model (free DSm model, hybrid DSm model or Shafaiodel),
the DSm P mapping is defined bypSmP.(()) = 0 andvX € G® \ {0} by

> m(Z)+e-C(XNY)
o
DSmP.(X) =
(%) ggj@ > m(Z)+e-CY)

ZCY
c(2)=1

m(Y) (30)

wheree > 0 is a tuning parameter ar@® corresponds to the generic s2?( S° or D® including eventually

all the integrity constraints (if any) of the mod#k); C(X NY’) andC(Y) denote the DSm cardinafsof the
setsX N'Y andY respectively.c allows to reach the maximum PIC value of the approximatiom6f) into a
subjective probability measure. The smallethe better/bigger PIC value. In some particular degeaarases
however, theD Sm P._y values cannot be derived, but the5m P.~.( values can however always be derived by
choosinge as a very small positive number, say= 1/1000 for example in order to be as close as we want to
the maximum of the PIC. When= 1 and when the masses of all elemefthavingC(Z) = 1 are zero, (30)
reduces to (27), i.eDSmP._; = BetP. The passage from a free DSm model to a Shafer's model irvtihes
passage from a structure to another one, and the cardiratgetas well in the formula (30).

DSmP works for all models (free, hybrid and Shafer’s). In ordeafiply classical transformation (Pig-
nistic, Cuzzolin’s one, Sudano’s ones, etc - see [37]), veslra first to refine the frame (on the cases when it
is possible!) in order to work with Shafer's model, and thpplg their formulas. In the case where refinement
makes sense, then one can apply the other subjective pliibalwn the refined frameD Sm P works on the
refined frame as well and gives the same result as it does amotheefined frame. ThuBSmP with € > 0
works on any models and so is very general and appealivgn P does a redistribution of the ignorance mass
with respect to both the singleton masses and the singletarginals in the same time. Now, if all masses of
singletons involved in all ignorances are different fromoz¢hen we can take= 0, andDSm P gives the best
result, i.e. the best PIC value. In summabsm P does an 'improvement’ over previous known probabilistic
transformations in the sense tHatm P mathematically makes a more accurate redistribution oigtherance
masses to the singletons involved in ignorancBsim P and Bet P work in both theories: DST (= Shafer’s
model) and DSmT (= free or hybrid models) as well.

7.3 Examples for DSmP and BetP

The examples briefly presented here are detailed in [37]winicludes also additional results based on Cuz-
zolin’s and Sudano’s transformations.

¢ With Shafer's model and a non-Bayesian mass

Let's consider the fram® = {A, B} and let's assume Shafer’s model and the non-Bayesian mass (m
precisely the simple support mass) given in Table 6.

We summarize in Table 7, the results obtained with DSmP arnB. B#ne sees tha®/C(DSmP._) is
maximum among all PIC values. The best result imdaquate probabilitynotthe biggest PIGn this case.
This is becausé’(B) deserves to receive some mass frormid U B), so the most correct result is done by
DSmP._g001 in Table 7 (of course we can choose any other very small pesi@lue fore if we want).
Always when a singleton whose mass is zero, but it is involaesh ignorance whose mass is not zero, then
(in DSm P formula (30)) should be taken different from zero.

Bwe have omitted the index of the model for the notation convenience.
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A|BJAUB
m() 04| 0] 06

Table 6: Quantitative inputs.

A B | PIC()
BetP() 0.7000| 0.3000] 0.1187
DSmP._g001(.) | 0.9985| 0.0015| 0.9838
DSmP._o(.) 1 0 1

Table 7: Results of the probabilistic transformations.
e With a Hybrid DSm model

Let’s consider the fram® = {4, B, C'} and let’s consider the hybrid DSm model in which all intetzets
of elements of© are empty, butd N B corresponding to figure 4. In this case® reduces to 9 elements
{0, AnB,A,B,C,AUB,AUC,BUC,AU BUC}. The input masses of focal elements are given by
m(ANB) =0.20, m(A) = 0.10, m(C) = 0.20, m(AU B) = 0.30, n(AUC) = 0.10, andm(AUBUC) =
0.10 and given in the Table 8.

D' A'uD C’

m(.) 0.2 0.1 0.2
AuB'uD | AucC'uD | AuB uC' uD

m(.) 0.3 0.1 0.1

Table 8: Quantitative inputs.
A B
C

Fig. 4: Hybrid model fol® = {A, B, C}.

Applying BetP and DSmP transformations, one gets:

A B’ C’ D’ [ PIC()
BetP() 0.2084| 0.1250| 0.2583| 0.4083] 0.0607
DSmP.—go01(.) | 0.0025| 0.0017 | 0.2996 | 0.6962|| 0.5390

Table 9: Results of the probabilistic transformations.

e \With a free DSm model

Let’s consider the fram® = {A, B, C'} and let’s consider the free DSm model depicted on Figure b wit
the input masses given in Table 10. To apply Sudano’s anddlinazmappings, one works on the refined
frame@'™ = {A’, B',C’, D', E', F', G’} where the elements &' are exclusive (assuming such refinement
has a physical meaning) according to Figure 5. This refinéstep is not necessary when usibgm P since
it works directly on DSm free model. The PIC values obtainétth WSmP and BetP are given in Table 11. One
sees thaD Sm P._.q provides here again the best results in term of PIC.

An extension of DSmP (denoted gDSmP) for working with gaéire labels instead of numbers is possible
and has been proposed and presented in 2008 in [10] usingxd@mpiaite operators on labels. A simple example
for gDSmMP based on precise operators on refined labels geekin [37] is presented in the next section.
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ANBNC | AnB| A | AuUB| AUuBUC

m(.) 0.1 02 |03]| 01 0.3
Table 10: Quantitative inputs.
A B
C

Fig. 5: Free DSm model for a 3D frame.

Transformations| PIC(.)
BetP(.) 0.1176
DSTTLPEZ()_O(H(.) 0.8986

Table 11: Results of the probabilistic transformations.

8 Fusion of qualitative beliefs

We recall here the notion of qualitative belief assignmentmiodel beliefs of human experts expressed in
natural language (with linguistic labels). We show how gative beliefs can be efficiently combined using
an extension of DSmT to qualitative reasoning. A more dedagiresentation can be found in [35, 37]. The
derivations are based on a new arithmetic on linguisticléavaich allows a direct extension of all quantitative
rules of combination and conditioning. The qualitativesien of PCR5 rule and DSmP is also presented in the
sequel.

8.1 Qualitative Operators

Computing with words (CW) and qualitative information is maovague, less precise than computing with
numbers, but it offers the advantage of robustness if doneatty. Here is a general arithmetic we propose
for computing with words (i.e. with linguistic labels). Letconsider a finite fram&® = {6,,...,60,} of
n (exhaustive) element®;, : = 1,2,...,n, with an associated mode\1(©) on O (either Shafer's model
M?O(©), free-DSm modeM/ (©), or more general any Hybrid-DSm model [31]). A model(©) is defined
by the set of integrity constraints on elementsofif any); Shafer's modeM(6) assumes all elements of
O truly exclusive, while free-DSm modeé/ (©) assumes no exclusivity constraints between elements of the
frame®. Let's define a finite set of linguistic labels = {Li,Ls,...,Ly,} wherem > 2is an integer.L
is endowed with a total order relationship so thatl.; < Ly < ... < L,,. To work on a close linguistic
set under linguistic addition and multiplication operatare extend<, with two extreme valueg, and L,
wherel corresponds to the minimal qualitative value dng,, corresponds to the maximal qualitative value,
in such a way that

Lo<Li <Ly<...<Lp<Lnpp

where< means inferior to, or less (in quality) than, or smaller (irality) than, etc. hence a relation of order
from a qualitative point of view. But if we make a correspomcke between qualitative labels and quantitative
values on the scal@, 1], thenL,,;, = Lo would correspond to the numerical value 0, whilg,x = Ly,11
would correspond to the numerical value 1, and eactvould belong tdo, 1], i. e.

Lmin:LQ <L1 <L2 < ... <Lm<Lm+1 :Lmax
From now on, we work on extended ordered Betf qualitative values
L={Lo, L, L1} = {Lo, L1, Lo, ., Lyn, L 41}

In our previous works, we did propose approximate qualigatiperators, but in [37] we propose to use
better and accurate operators for qualitative labels. eSthese new operators are defined in details in the
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chapter of [37] devoted on the DSm Field and Linear Algebr&efined Labels (FLARL), we just briefly
introduce here only the the main ones (i.e. the accuraté dalokition, multiplication and division). In FLARL,
we can replace the "qualitative quasi-normalization” oélifative operators we used in our previous papers by
"qualitative normalization” since in FLARL we have exactaijtative calculations and exact normalization.

e Label addition :

Lo+ Ly = Lo+ (31)
; a b a+b
Sincé"7 + 1 = mJ-rH'
e Label multiplication :
Lo X Ly = Lap)/(m+1) (32)
i a b ab)/(m+1
SINCE T " mrT = ( )77/1(4—1 L.
e Label division (whenl;, # Ly):
Lo + Ly = La/t)(m+1) (33)
i a . b a a/b)(m+1
sincerty + by = § = U

More accurate qualitative operations (substractionasaalltiplication, scalar root, scalar power, etc) can
be found in [37]. Of course, if one really needs to stay witthie original set of labels, an approximation will
be necessary at the very end of the calculations.

8.2 Qualitative Belief Assignment

A qualitative belief assignmeHt (gba) is a mapping functiogn(.) : G® — L whereG® corresponds either

to 29, to D® or even t0S® depending on the model of the frarewe choose to work with. In the case when
the labels are equidistant, i.e. the qualitative distaretevben any two consecutive labels is the same, we get
an exact qualitative result, and a qualitative basic belgsignment (bba) is considered normalized if the sum
of all its qualitative masses is equal i9,.x = L.,+1. If the labels are not equidistant, we still can use all
gualitative operators defined in the FLARL, but the qudiitaresult is approximate, and a qualitative bba is
considered quasi-normalized if the sum of all its massesgjusleto L,,.x. Using the qualitative operator of
FLARL, we can easily extend all the combination and conditig rules from quantitative to qualitative. In the
sequel we will consides > 2 qualitative belief assignmentgn (.),...,gms(.) defined over the same space
G® and provided by independent sources , . . ., S, of evidence.

Note: The addition and multiplication operators used in all gatVe fusion formulas in next sections corre-
spond toqualitative additionandqualitative multiplicationoperators and must not be confused with classical
addition and multiplication operators for numbers.

8.3 Qualitative Conjunctive Rule

The gqualitative Conjunctive Rule (QCR) ef> 2 sources is defined similarly to the quantitative conjurectiv
consensus rule, i.e.

gmger(X) = Y [ ami(x3) (34)

X1,..,X,eG® i=1
X1N..NXs=X

The total qualitative conflicting mass is given by

Ky .s= Z quz(Xl)

X1,..,X.€G® =1
X1N...NXs=0

We call it alsoqualitative belief maser g-masgor short.
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8.4 Qualitative DSm Classic rule

The qualitative DSm Classic rule (g-DSmC) for> 2 is defined similarly to DSm Classic fusion rule (DSmC)
as follows :gm,psmc(0) = Lo and for allX € D®\ {0},

gmgpsme(X) = > JJami(X3) (35)

X177---7Xs€D9 i=1
X1N..NXs=X

8.5 Qualitative hybrid DSm rule
The qualitative hybrid DSm rule (g-DSmH) is defined simiyad quantitative hybrid DSm rule [31] as follows:

qmqDSmH(@) = LO (36)

and for allX € G® \ {0}
amgsmin(X) £ 6(X) - [451(X) + aa(X) + ¢S5(X)] 37)

where all sets involved in formulas are in the canonical famad ¢(X) is the characteristic non-emptiness
functionof a setX, i.e. ¢(X) = L1 if X ¢ @ ande(X) = Lo otherwise, wher® = {@r, 0}. 0, is the
set of all elements aD® which have been forced to be empty through the constrairttseahodelM and( is
the classical/universal empty setS;(X) = gmgpsmc(X), ¢S2(X), ¢S3(X) are defined by

¢S1(X) £ > [T ami(x:) (38)

X1,Xo,..,X,€D® =1
X1NXoN..NXs=X

gS2(X) £ > [T ami(x:) (39)
X1,X9,...,X:€0 =1
U=X]V[UEDN(X=T})]

gS3(X) £ > aemixw) (40)

X1,Xo,..,X,eD® i=1

X1UXoU.. .UXs=X

X1NX2N..NX,€0
with U £ u(X;)U...Uu(X;) whereu(X) is the union of alp; that composeX, I; = 6, U...U#, is the total
ignorance ¢S; (X) is nothing but the gDSmC rule ferindependent sources based.otf (0); ¢S»(X) is the
gualitative mass of all relatively and absolutely emptg sdtich is transferred to the total or relative ignorances
associated with non existential constraints (if any, liks@me dynamic problems)S;(X) transfers the sum
of relatively empty sets directly onto the canonical disfie form of non-empty sets. gDSmH generalizes
gDSmC works for any models (free DSm model, Shafer's modelnyr hybrid models) when manipulating
gualitative belief assignments.

8.6 Qualitative PCR5 rule (qQPCR5)

In classical (i.e. quantitative) DSmMT framework, the Pmipmal Conflict Redistribution rule no. 5 (PCR5)

defined in [35] has been proven to provide very good and caheesults for combining (quantitative) belief

masses, see [9, 33]. When dealing with qualitative beligfisivthe DSm Field and Linear Algebra of Refined
Labels [37] we get an exact qualitative result no matter Vitision rule is used (DSm fusion rules, Dempster’s
rule, Smets’s rule, Dubois-Prade’s rule, etc.). The exadlitative result will be a refined label (but the user
can round it up or down to the closest integer index label).
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8.7 A simple example of qualitative fusion of gba’s

Let’s consider the following set of ordered linguistic l&be
L ={Lo, L1, L2, L3, Ly, L5}

(for example,L1, Lo, L3 and L, may represent the valueg:; = very poot L, = poor, L; £ goodand
L4 £ very goodwhere2 symbol meangy definitior).

Let’s consider now a simple two-source case with a 2D fr&ne- {6,,0,}, Shafer's model fo®, and
gba'’s expressed as follows:

qmi(01) = L1, qmq(02) = L3, qmq(61Ub) = Ly

qma(01) = La, gma(B2) = Ly, qma(01Ub) = Lo

The two qualitative massesn; (.) andgms(.) are normalized since:
qm1(01) +gmi(02) +gm1(01 U02) = L1+ Ly + L1 = L1y341 = Ls

and
gma(01) + qma(02) + qma(61 U b02) = Lo+ L1 + Lo = Loy142 = Ls

We first derive the result of the conjunctive consensus. Vikisls:

gmi2(61) = qgmy(61)gma(61) + gmq(01)gma(01 U 62) + gmq (01 U O2)gma(61)
=11 X Lo+ Ly x Lo+ L1 x Lo
:L% +L1—52 + Lia =1

2,2, 2=~Ls =1L
5 5TET 12

(S
[S3][

gmi2(02) = qmi(02)gma(62) + gmi(02)gma (61 U 62) + gmq (01 U O2)gma(62)
=L3x L1+ Lgx Lo+ Ly x 1Ly
=Ly tlatlyg =Ly,

=L =1Ls

il
H
als

qm12(91 U 92) = qm1(91 U Qg)qmg(al U 92) =L1 X Lo=Li2 =1L

gmi2(61 N 02) = qmq(01)gma(62) + gmq(02)gma(61)
=14 XL1—|—L2XL3:L% —{—L%S

ST
o
[SIEN]

Therefore we get:

e for the fusion with gqDSmC, when assumitign 6, # 0,
gmgpsmc(01) = L12 qmgpsmc(02) = Lo
qmgpsmc (01 U 02) = Lo.4 qmgpsmc (61 N02) = L4

e for the fusion with gDSmH, when assumifign 6, = (. The mass of; N 5 is transferred t@; U 6s.
Hence:
qmgpsmi(61) = L1.2 qmgpsmi(02) = Lo

qmgpsmu (61 N02) = Lo qmgpsmu (61 Ub2) = Los+ Lia = Lig
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e for the fusion with qPCR5, when assumifign 6, = (. The masgmi2(0; N 63) = Ly 4 is transferred
to 6, and tod, in the following way:

gmi2(01 N O2) = qgmq(01)gma(62) + qma(01)gmi(62)

Then,gmq(61)gm2(02) = L1 x Ly = Lia = L1 = Lo is redistributed t@; andf, proportionally
5 5
with respect to their qualitative masses put in the conflicand respectively.;:

To, _ Yoo _ Loz _ Loz _ Loz _, ~_ .
Lo, _ Yo _ _ _ = Lo, =
Ly Ly Li+Li Liyq Lo 2

=Los

NI

WheﬂC&Ug1 = Yp, = L1 x Lys = Lios = Los = Ly 1.
5 5

Actually, we could easier see thatu(0,)gms(02) = Lo 2 had in this case to be equally split between
#, andd, since the mass put in the conflict By andf, was the same for each of therh;. Therefore

2
Similarly, gma(61)gmi(62) = Ly x Ly = Las = Ls = L1 has to be redistributed ) and 6.
5

proportionally withL, and L3 respectively : ’

Ty, Yo,  Lia Lo Lis I I
=7 = = = = Li25= L1
Lo Ls Lo+ Lj Los Ls 5

56/91 = L2 X L1.2 = L2-}A2 = Lg = L0_48
9 9

whence{ Now, add all these to the qualitative masses of

Yp, = L3 x L12 = L¥ = L%b‘ = Lo
0, and@, respectively:

gmgpcrs(01) = qmiz(01) + xg, + p, = L1.2 + Lo1 + Lo.as = L1.240.1+40.48 = L1.78
qmqpcrs(02) = qmi2(02) + Yo, + Yy, = Lo + Lo + Loz = Loyo.140.72 = Lo
qmgpcrs(01 U 62) = qmia(01 Ub2) = Loy
qmqpcrs(01 N 62) = Lo
The qualitative mass results using all fusion rules (QDSIBPSEMH,qPCR5) remain normalized in FLARL.

Naturally, if one prefers to express the final results withlgative labels belonging in the original discrete
setof labeld. = {Lg, L1, Lo, L3, L4, L5}, Some approximations will be necessary to round continiralexed
labels to their closest integer/discrete index value; lymexe,qmqpcrs(01) = Li.7s = Lo, gmgpcrs(62) =
L g2 ~ Lz andgmgpcrs(6h U 62) = Loa =~ Lo.

8.8 A simple example for the gDSmP transformation

We first recall that the qualitative extension of (30), dedatD.SmP.(.) is given bygDSmP,.()) = 0 and
VX € GO\ {0} by

Z gn(Z)+e-C(XNY)
Z(ggmy
C(Z)=1
gDSmP.(X) =
yg(;(—) Z qgm(Z) +¢€-C(Y)
ZCY

c(2)=1

qm(Y') (41)

where all operations in (41) are referred to labels, thataperators on linguistic labels and not classical oper-
ators on numbers.

Let’s consider the simple frant® = {6,605} (heren = |©| = 2) with Shafer’s model (i.e4; N6, = () and
the following set of linguistic labelé, = {Lg, L1, Lo, L3, L4, L5}, With Ly = Ly, @ndLs = Lyax = L1
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(herem = 4) and the following qualitative belief assignmentn(0;) = L1, gm(02) = Ls andgm(6; U ) =
Li. gm(.) is quasi-normalized sinc®_ y 50 ¢m(X) = Ls = Lpax. In this example and wittD.SmP
transformationgm(6, U 63) = L; is redistributed t#; andd, proportionally with respect to their qualitative
massed.; and L3 respectively. Since both, and L are different fromL,, we can take the tuning parameter
e = 0 for the best transfere is taken different from zero when a mass of a set involved iartig or total
ignorance is zero (for qualitative masses, it mebgs

Therefore using (33), one has

o, w9,  In Ly

Ly L _L1+L3:L_4

=Li,=Ls =Ly

1 5
it 1

and thus using (32), one gets
xo, = L1 X L195s = Liq.as = L% = Lo.25
5

xg, = L3 X L1295 = L3»<1525> = L% = Lo.75

Therefore,

qDSmPE:()(al N 92) = qDSmPezo(@) =Ly
gDSmP.—o(01) = L1 +x9, = L1 + Lo2s = L1.25
qDSmP.—y(02) = L3 + g, = L3+ Lo7s = L3715

Naturally in our example, one has also

qDSmPEZO(Hl U 92) = qDSmPEZO(Hl) + qDSmPEZO(Hg) — qDSmPEZO(Hl N 92)
= Ly25+ L3775 — Lo = Ls = Lax

Since Hyax = logyn = log, 2 = 1, using the qualitative extension of PIC formula (29), onéaots the
following qualitative PIC value:

1
PIC =1+ 1 [qDSmPe—y(01)logy(gDSmP.—o(61))
+ ¢DSmP._y(02)logs(gDSmMP.—o(02))]
=1+ Li.25logy(L1.25) + La.75 loga(Ls.75) ~ Lo.oa
since we considered the isomorphic transformafign= i/(m + 1) (in our particular example: = 4 interior
labels).
9 Belief Conditioning Rules
9.1 Shafer’s Conditioning Rule (SCR)

Until very recently, the most commonly used conditioninderfor belief revision was the one proposed by
Shafer [24] and referred here as Shafer’'s Conditioning Rsi&R). The SCR consists in combining the prior
bbam/(.) with a specific bba focused ofh with Dempster’s rule of combination for transferring thenftiwting
mass to non-empty sets in order to provide the revised bbathkr words, the conditioning by a proposition
A, is obtained by SCR as follows :

mscr(-|A) = [m & mg]() (42)

wherem(.) is the prior bba to updatel is the conditioning eventys(.) is the bba focused oA defined by
mg(A) = 1andmg(X) = 0 for all X # A and® denotes Dempster’s rule of combination [24].
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The SCR approach based on Dempster’s rule of combinatidmegbrior bba with the bba focused on the
conditioning event remairsubjectivesince actually in such belief revision process both souacesubjective
and in our opinions SCR doesn’t manage satisfactorily theotiie nature/absolute truth carried by the condi-
tioning term. Indeed, when conditioning a prior mas§ ), knowing(or assuming) that the truth is i, means
that we have in hands an absolute (not subjective) knowl|edgedhe truth in4 has occurred (or is assumed to
have occurred), thud is realized (or is assumed to be realized) and this is (orast lmust be interpreted as)
an absolute truth. The conditioning term "Giveri must therefore be considered as an absolute truth, while
mg(A) = 1 introduced in SCR cannot refer to an absolute truth actubily only to asubjective certainty
on the possible occurrence df from avirtual second source of evidence. The advantage of SCR remains
undoubtedly in its simplicity and the main argument in itgdfais its coherence with the conditional proba-
bility when manipulating Bayesian belief assignment. Bubur opinion, SCR should better be interpreted
as the fusion ofn(.) with a particular subjective bbas(A) = 1 rather than an objective belief conditioning
rule. This fundamental remark motivated us to develop a ramily of BCR [35] based on hyper-power set
decomposition (HPSD) explained briefly in the next sectibmurns out that many BCR are possible because
the redistribution of masses of elements outsidd ¢the conditioning event) to those insidiecan be done in
n-ways. This will be briefly presented right after the nexttEec

9.2 Hyper-Power Set Decomposition (HPSD)

Let ©® = {61,02,...,0,}, n > 2, a modelM(O) associated fo© (free DSm model, hybrid or Shafer’s
model) and its corresponding hyper-power &%. Let’s consider a (quantitative) basic belief assignment
(bba)m(.) : D® — [0,1] such thaty_ y.pe m(X) = 1. Suppose one finds out that the truth is in the set
A € D\ {0}. LetPp(A) = 24N D%\ {p}, i.e. all non-empty parts (subsets) afwhich are included

in D®. Let's consider the normal cases whdn# () and > yepp(aym(Y) > 0. For the degenerate case
when the truth is inA = (), we consider Smets’ open-world, which means that there trer diypotheses
O = {0ps1,0n42, ... 0ntm}t, m > 1, and the truth is il € D"\ {#}. If A = ( and we consider a close-
world, then it means that the problem is impossible. Forlzgrotiegenerate case, Wh@pe%(m m(Y) =0,

i.e. when the source gave us a totally (100%) wrong inforomati(.), then, we definem(A4|A) £ 1 and,

as a consequencep(X|A) = 0 forany X # A. Lets(A) = {0;,0;,,...,0;,}, 1 < p < n, be the
singletons/atoms that compode(for example, ifA = 6; U (3 N 64) thens(A) = {61, 605,04}). The Hyper-
Power Set Decomposition (HPSD) &f° \ () consists in its decomposition into the three following sibs
generated bw:

e Dy = Pp(A), the parts ofA which are included in the hyper-power set, except the engity s

e Dy = {(©\ s(A4)),U,n} \ {0}, i.e. the sub-hyper-power set generateddy s(A) underu andn,
without the empty set.

e D3 = (D®\ {0})\ (D1 U Dy); each set fromD3 has in its formula singletons from bo#{A) and
© \ s(A) in the case whe® \ s(A) is different from empty set.

Dy, Dy and D3 have no element in common two by two and their unio®f8 \ {()}.

Simple example of HPShet's consider® = {64,602, 05} with Shafer's model (i.e. all elements 6f are
exclusive) and let's assume that the truth ig4ru 65, i.e. the conditioning term i@, U #5. Then one has the
following HPSD: D, = {92, f3,0o U 93}, Dy = {91} andD3 = {91 Uébs, 0, UBb3,01Uby U 93} More complex
and detailed examples can be found in [35].

9.3 Quantitative belief conditioning rules (BCR)

Since there exists actually many ways for redistributirg rirasses of elements outsideAfthe conditioning
event) to those insidd, several BCR’s have been proposed in [35]. In this intradactwve will not browse all
the possibilities for doing these redistributions and &8s formulas but only one, the BCR number 17 (i.e.
BCR17) which does in our opinion the most refined redistiibusince:

- the massn (W) of each elementV in Dy U Ds is transferred to thos& € D; elements which are included
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in W if any proportionally with respect to their non-empty masse

- if no suchX exists, the mass: (W) is transferred in a pessimistic/prudent way to thlargest element from
D1 which are included i/ (in equal parts) if any;

- if neither this way is possible, then(W) is indiscriminately distributed to alk € D, proportionally with
respect to their nonzero masses.

BCR17 is defined by the following formula (see [35], Chap. Bdetailed explanations and examples):

mpcrr(X|A) =m(X) - |Sp,+ Y % + > m(W)/k  (43)
WeDoUD3 WeDsUD3
Xcw xcw, Xis k-largest
S(W)#0 S(W)=0

where "X is k-largest” means thaX is thek-largest (with respect to inclusion) set includedihand

SwyE Y m(Y)

YeED,YCW
> m(Z)
ZeDh,
A OrZED:| AyeDiwithycz
Sp, =

ZYED1 m(Y)
Note: The authors mentioned in an Erratum to the printed versiameiecond volume of DSMT book se-
ries (http://fs.gallup.unm.edu//Erratum.pdf ) and they also corrected the online version of the
aforementioned book (see page 24itp://fs.gallup.unm.edu//DSmT-book2.pdf that all de-

nominators of the BCR’s formulas are naturally supposecktdifierent from zero. Of course, Shafer’s condi-
tioning rule as stated in Theorem 3.6, page 67 of [24] doesvook when the denominator is zero and that's
why Shafer has introduced the condititel(B) < 1 (or equivalentlyPI(B) > 0) in his theorem when the
conditioning term isB.

A simple example for BCR17 Let's conside© = {6, 62, 3} with Shafer’s model (i.e. all elements 6fare
exclusive) and let's assume that the truth ig4rU 65, i.e. the conditioning term igl £ 6, U #3. Then one has
the following HPSD:

D, = {92, 03,65 U 93}, Dy = {91}

D3 = {91 Uy, 0, Ubs, 01 U6yU 93}

Let's consider the following prior bbam(6,) = 0.2, m(62) = 0.1, m(63) = 0.2, m(6; U 62) = 0.1,
m(92 U 93) =0.1 andm(91 U by U 93) =0.3.

Loy Yoy

With BCR17, for Dy, m(61) = 0.2 is transferred proportionally to all elements B, i.e. 5% = 53 =

Zegf“l% = 8—?1 = 0.5 whence the parts ofi(6;) redistributed td, 03 andfd, U 05 are respectivelyty, = 0.05,

Yo, = 0.10, andzp, 9, = 0.05. For D3, there is actually no need to transfe(; Uds) becausen (6, Ub3) = 0
in this example; whereas (6, U#,) = 0.1 is transferred td, (no case ok-elements hereinyn (6, U6,U03) =
0.3 is transferred t@,, #5 andd, U A5 proportionally to their corresponding masses:

x9,/0.1 = yp, /0.2 = 29,59,/0.1 = 0.3/0.4 = 0.75
whencezy, = 0.075, yg, = 0.15, andzg, g, = 0.075. Finally, one gets

mBCR17(62’62 U 93) =0.104+0.05+ 0.10 + 0.075 = 0.325
mBCRl7(63’62 U 93) =0.204+ 0.10 4+ 0.15 = 0.450
mBCRl7(92 U 93‘92 U 93) = 0.10 +0.05 + 0.075 = 0.225
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which is different from the result obtained with SCR, sinoe gets in this example:

mSCR(HQ‘HQ U 93) = mSCR(Hg‘HQ U 93) =0.25
mSCR(HQ U 93‘92 U 63) = 0.50

More complex and detailed examples can be found in [35].

9.4 Qualitative belief conditioning rules

In this section we present only the qualitative belief ctinding rule no 17 which extends the principles of the
previous quantitative rule BCR17 in the qualitative domasing the operators on linguistic labels defined pre-
viously. We consider from now on a general fra@e= {0, 0,...,6,}, a given mode/M (©) with its hyper-
power setD® and a given extended ordered &edf qualitative valued. = {Lg, L1, Lo, . . ., Ly, Ly 1 }. The
prior qualitative basic belief assignment (gbba) takisydlues inL is denoted;m/(.). We assume in the sequel
that the conditioning event id # (), A € D®, i.e. the absolute truth is iA. The approach we present here is
a direct extension of BCR17 using FLARL operators. Suchresitan can be done with all quantitative BCR's
rules proposed in [35], but only gBCR17 is presented her¢hsake of space limitations.

9.4.1 CQualitative Belief Conditioning Rule no 17 (qBCR17)
Similarly to BCR17, gBCR17 is defined by the following forraul

amgperir(X14) = am(X) - [aSp, + q’;((vvg)) + 3 gm(W)/k  (44)
WeD2UD3 1 WeD2UD3
Xcw Xcw, Xis k-largest
gS(W)7#0 gS(W)=0

where "X is k-largest” means thaX is the k-largest (with respect to inclusion) set includedihand

gSW)2 Y gm(Y)

YeD;, YCW

> qgm(Z)

ZeDh,
orZeDs | fyeDiwithyY cZ

ZYeDl qgm(Y)
Naturally, all operators (summation, product, divisiott)envolved in the formula (44) are the operators

defined in FLARL working on linguistic labels. It is worth t@te that the formula (44) requires also the divi-
sion of the labeym (W) by a scalak. This division is defined as follows:

A
Sp, =

Letr € R,r # 0. Then the label division by a scalar is defined by

Lo _p
r

(45)

a/r

9.4.2 A simple example for gBCR17

Let's considerL, = {Ly, L1, Lo, L3, L4, L5, L¢} a set of ordered linguistic labels. For examgle, Lo, L3, Ly
andLs may represent the valueg; = very poot L, £ poor, Ls £ medium Ly £ goodandLs; £ very good
Let’s consider also the fram@ = { A, B, C, D} with the hybrid model corresponding to the Venn diagram on
Figure 6.

We assume that the prior qualitative bpa(.) is given by:

gm(A) =Ly, qm(C)=Li, gm(D)= Ly

40



C

Fig. 6: Venn Diagram for the hybrid model for this example.

and the qualitative masses of all other elemeni§@ftake the minimal/zero valug,. This qualitative mass is
normalized sincd.y + L1 + Ly = L1144 = Lg = Lpax.

If we assume that the conditioning event is the proposition B, i.e. the absolute truth is id U B, the
hyper-power set decomposition (HPSD) is obtained as falldw is formed by all parts oA U B, Ds is the
set generated b{(C, D),u,N}\ 0 = {C,D,CUD,CnD},andD3 = {AUC,AUD,BUC,BUD, AU
BUC,AuU(CnNnD),...}. Because the truth is id U B, gm(D) = L4 is transferred in a prudent way to
(AU B)ND = Bn D according to our hybrid model, becauBen D is the 1-largest element fromd U B
which is included inD. While gm(C) = L is transferred ta4 only, since it is the only element iA U B
whose qualitative masgn(A) is different fromL, (zero); hence:

gmgpcr7(A|AU B) = gqm(A) + gm(C) = L1 + L1 = L141 = Lo.
Therefore, one finally gets:

qmgpcr17(AJAU B) = Lo gmgpcr17(C|AU B) = Ly
qmgpcri7(D|AU B) = Ly qmgpcri7(BN D|AUB) = Ly

which is a normalized qualitative bba.

More complicated examples based on other gBCR’s can be fioli3é].

10 Conclusion

A general presentation of the foundations of DSmMT has beepoged in this introduction. DSmMT proposes
new guantitative and qualitative rules of combination facertain, imprecise and highly conflicting sources
of information. Several applications of DSmT have been psegd recently in the literature and show the
potential and the efficiency of this new theory. DSmMT offdrs possibility to work in different fusion spaces
depending on the nature of problem under consideration.s,Téne can work either i2° = (©,U) (i.e. in

the classical power set as in DST framework),[®® = (0,U,N) (the hyper-power set — also known as
Dedekind’s lattice) or in the super-power s¢? = (©,U,N,c(.)), which includes2® and D® and which
represents the power set of the minimal refinement of thedr@mvhen the refinement is possible (because
for vague elements whose frontiers are not well known th@eefent is not possible). We have enriched the
DSmT with a subjective probabilityl{Sm P,) that gets the best Probabilistic Information Content (HIC
comparison with other existing subjective probabilitiégdso, we have defined and developed the DSm Field
and Linear Algebra of Refined Labels that permit the tramsédion of any fusion rule to a corresponding
qualitative fusion rule which gives an exact qualitativeule (i.e. a refined label), so far the best in literature.
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