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abstract: Fundamental to life-history theory is the assumed inverse
proportionality between the number of offspring and the resource
allocation per offspring. Lizards have been model organisms for em-
pirical tests of this theory for decades; however, the expected negative
relationship between clutch size and offspring size is often not de-
tected. Here we use the approach developed by Charnov and Ernest
to demonstrate that this often concealed trade-off can be made ap-
parent in an interspecific comparison by correcting for size-depen-
dent resource allocation. Our data set also shows a tight allometry
for annual production that is consistent with life-history models for
indeterminate growers. To account for nonindependence of species
data we also compare the fit of nonphylogenetic and phylogenetic
regression models to test for phylogenetic signal in these allometry
and trade-off patterns. When combined, these results demonstrate
that the offspring size/clutch size trade-off is not isolated to a single
clutch but is shaped by the resource investment made over an entire
year. We conclude that, across diverse lizard species, there is strong
evidence for the predicted trade-off between offspring size and the
annual number of eggs produced.

Keywords: clutch size, offspring size, trade-off, reproductive allom-
etry, life history, lizards.

The trade-off between the number and size of offspring
is a central tenet of life-history theory (Lack 1954; Smith
and Fretwell 1974; Stearns 1992; Roff 2002). Finite re-
sources (or perhaps body space available for bearing off-
spring) constrain an individual’s reproductive allocation,
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resulting in a trade-off between many small offspring ver-
sus a few large offspring. This trade-off may be further
shaped by selective constraints on the parsing of repro-
ductive investment into single or multiple clutches during
a breeding season. Lizards have been a model study or-
ganism for the examination of both the proximate and
ultimate factors driving this trade-off. Indeed, the clutch
size/offspring size trade-off has been shown to be con-
strained by the maximal space available in a female’s ab-
dominal cavity (Vitt and Congdon 1978; Shine 1992; Du
et al. 2005) and pelvic opening (Congdon and Gibbons
1987; Sinervo and Licht 1991), and offspring size has been
convincingly linked to offspring survival (Ferguson and
Fox 1984; Sinervo and Doughty 1996). However, it has
been argued that resource availability is a primary driver
of reproductive investment and the clutch size/offspring
size trade-off (DeMarco 1989; Schwarzkopf 1992; Bonnet
et al. 2001; Jordan and Snell 2002; Olsson et al. 2002; Du
et al. 2005; Uller and Olsson 2005; Oufiero et al. 2007).
Despite the great successes of trade-off research in the
herpetological literature, the link between maternal re-
sources and reproductive trade-offs remains somewhat
tenuous and the predicted clutch size/offspring size trade-
off is not always observed (Doughty and Shine 1997; Zera
and Harshman 2001; Jordan and Snell 2002; Bowden et
al. 2004; Uller and Olsson 2005).

This lack of evidence does not negate the existence of
the offspring size/clutch size trade-off but may be a result
of concealment by mitigating factors (van Noordwijk and
de Jong 1986; Roff 2002). If a parent has R resources to
invest in offspring and each offspring costs I units, the
clutch size C must be (Smith and Fretwell 1974).C ∝ R/I
If adults are of various sizes within a species (i.e., they
experience indeterminate growth, as in lizards, fish, etc.)
then , where overbar indicates the adult averageC ∝ R/I
of R and C. If we plot vs. for a collection ofln (C) ln (I)
species, will have a linear relationship with a slopeln (C)
of �1 if (i) all the species have the same value or (ii)R

does not correlate with I across species. Unfortunately,R
for many taxa (including lizards and mammals), I cor-
relates with and so the expected �1 slope is not seenR
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(Charnov and Ernest 2006). In other words, the trade-off
(inverse proportionality) assumed by the classic Smith-
Fretwell model is probably masked if resource availability
and reproductive allocation vary greatly among individuals
or species (van Noordwijk and de Jong 1986; Roff 2002).
Clearly, we expect , or a slope of �1 (forC/R ∝ 1/I

vs. ), if we first remove the effects of varyingln C/R ln I R
among species. Charnov and Ernest (2006) demonstrated
(with mammals) that there exists a very general way to
correct for variation in among species. They argued that,R
across species and within a taxon, (where m0.75R ∝ (m)
is body mass) and, thus, .0.25C/m ∝ 1/I

In this study we use a compiled lizard life-history data
set to first test a prediction from a recent life-history evo-
lution model where, for indeterminate growers such as
lizards, (Charnov et al. 2001). Here, is body0.75R ∝ m ma a

mass at first reproduction. We then use this data set of
138 populations of 115 species of lizards and the Charnov
and Ernest (2006) approach to examine the relationship
between size-dependent resource allocation and the clutch
size/offspring size trade-off in lizards. It is important to
note that the optimization models of Charnov et al. (2001),
as well as those of Lester et al. (2004) and Shuter et al.
(2005), have demonstrated that the scaling exponent of
0.75 that describes the relationship between reproductive
allocation and incorporates the effects of mortality onma

size at maturity and reproductive effort. Because their op-
timization models allowed for the adjustment of age/size
at maturity and reproductive allocation in the face of mor-
tality, our use of this scaling in our analysis thus captures
the effects of mortality on the clutch size/offspring size
trade-off. Using maximum likelihood techniques, we also
compare the fit of both conventional comparative and
phylogenetic regression models to these allometric and
trade-off data. Through these analyses we thus show that
average yearly reproductive allocation across the lizards in
this data set is indeed proportional to , and we further0.75ma

demonstrate that, by accounting for this size-dependent
reproductive allocation, the often obscured offspring size/
clutch size trade-off is made apparent and robust, even in
lizards exhibiting very diverse life histories.

Methods

Data

Life-history data were compiled from the published lit-
erature for 138 populations and 115 species of lizards of
the following 15 families: Agamidae, Anguidae, Chamae-
leonidae, Corytophanidae, Crotaphytidae, Gekkonidae,
Gymnophthalmidae, Iguanidae, Lacertidae, Phrynosoma-

tidae, Polychrotidae, Scincidae, Teiidae, Tropiduridae, and
Xantusiidae. Values for the parameters of female snout-
vent length (SVL) at maturity, average hatchling SVL, av-
erage clutch size, and average annual number of clutches
were gathered from both primary literature sources and
previously published reviews of lizard life histories (see
app. A). The SVL at maturity ( ) used in our data setma

is either that reported by the original authors or the SVL
recorded for the smallest reproductive female reported in
a study. Female SVL at maturity ranged from 28.5 to 378
mm across species. If all of the above data were not avail-
able for a single population (or from a single source), then
average values for a species were derived from a number
of studies.

In our analysis we used the calculation (using3(SVL)
both maturity SVL and hatchling SVL) as a proxy for
body mass. This conversion is supported by a previous
study that found body mass scales as SVL raised to an
exponent of 2.98 across 47 species of lizard (Pough
1980). Similarly unpublished field data from one of
the authors (R.W.W.) suggest an exponent of 3.12
when analyzing 14 species of lizards composed of
436 individuals ranging from hatchling to adult
( ; 95% CI oflog (body mass) p �10.9 � 3.12 # log (SVL)
exponent, 2.99–3.23; ). We did not use body mass2r p .87
in our analyses for two reasons: SVL is much more com-
monly reported in the herpetological literature as a mea-
sure of size and age, and the body mass of lizards of a
given SVL can be highly variable due to relatively large
ingested and egested meals.

Annual clutch size was estimated by multiplying av-C
erage clutch size by number of clutches per year. We es-
timated the average yearly body mass given to reproduc-
tion by multiplying the average annual clutch size byC
hatchling (again, is used to estimate hatch-3 3(SVL) (SVL)
ling body mass).

Statistical Analysis

Slope estimates for all conventional analyses were calcu-
lated using ordinary least squares (OLS) regression and
reduced major axis (RMA) estimation. For these analyses
we used the line fitting package SMATR (http://web
.maths.unsw.edu.au/∼dwarton/programs) implemented on
the R software platform (R Development Core Team 2007).
It has been argued that RMA estimation or Type II re-
gression is more appropriate than OLS regression for an-
alyzing allometric data (see LaBarbera 1989). As shown by
Warton et al. (2006), however, there is no single correct
method for finding a line of best fit to allometric data (see
also Ricker 1973). Contrary to claims in the literature,
RMA estimation should not be used simply because the
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X-axis data are measured with error (Warton et al. 2006).
The RMA method is designed to account for error (ran-
dom and measurement error) along both the X- and Y-
axes (Warton et al. 2006; O’Connor et al. 2007). An im-
portant limitation of RMA, however, is that to account
for this error it assumes that variance in the data is par-
titioned equally between both axes. On the other hand,
OLS regression assumes that variance in the Y-axis is
greater than variance in the X-axis. In their recent review,
O’Connor et al. (2007) demonstrated that these regression
methods worked well under the conditions for which they
were designed (i.e., OLS when is large and RMA whenj /jy x

).j /j p 1y x

The data presented in this study are compiled data from
field studies that inherently have a degree of measurement
error that includes both operator error and sampling error.
The degree of this error is not known. In this study, how-
ever, our presentation of this data warrants the use of OLS
regression because the compounding error in the Y-axis
variables (e.g., clutch size # number of clutches # hatch-
ling size) swamps any error in the X-axis variables (e.g.,
hatchling size or maturity size). We present both OLS and
RMA regressions in this study for comparison with phy-
logenetic regressions (see below) and for discussion.

Phylogenetic Analysis

The relationship between size, reproductive effort, and the
clutch size/offspring size trade-off across species may be
driven not only by resource trade-offs but by phylogenetic
inertia between closely related species. To account for a
phylogenetic effect among these traits, we developed a
composite phylogeny using the most recent comprehensive
phylogenies available for all of the lizard species analyzed
in this study (see app. B). This tree was drawn using Mes-
quite (Maddison and Maddison 2006), and species with
multiple data points were drawn as polytomies (not shown
in fig. B1) with no hierarchical arrangement of populations
(Perry and Garland 2002). Initial branch lengths were ar-
bitrarily set to a value of 1, which is appropriate for a
speciation model of evolution (Martins and Garland
1991). We then used a new Matlab program regres-
sionv2.m (http://biology.ucr.edu/people/faculty/Garland/
physig) to implement and compare nonphylogenetic OLS
and phylogenetic generalized least square (GLS) regres-
sions using the Ornstein-Uhlenbeck (OU) transformation
(Blomberg et al. 2003; Lavin et al. 2008). In this article,
we refer to this phylogenetic regression model with the
OU transformation as PROU. A detailed explanation of
this Matlab program and phylogenetic regression meth-
odology (outlined below) can be found in Lavin et al.’s
(2008) paper. It is important to note that models resulting

from phylogenetic GLS regressions are equivalent to those
resulting from the method of independent contrasts
(Freckleton et al. 2002; Blomberg et al. 2003). Analysis
using PROU, however, has several advantages that include
an estimate of the strength of phylogenetic signal in the
data (see below: the d parameter), as well as the ability to
compare the fit of competing OLS and phylogenetic re-
gression models using a maximum-likelihood ratio test
(Lavin et al. 2008).

Briefly, regression by OLS assumes that residual varia-
tion is independent among species, whereas phylogenetic
GLS regression assumes that residual variation is correlated
and models these correlations using a Brownian or random
evolutionary process along the phylogenetic tree. The re-
gressionv2.m program also produces GLS regression mod-
els based on stabilizing selection around an optimum given
by the OU process along the phylogenetic tree. Note that
we do not present our analyses using GLS because the
PROU models always outperformed the GLS models. Us-
ing restricted maximum likelihood, the program estimates
the optimal OU transformation parameter d, which is an
estimate of the optimal branch lengths. The parameter d
can vary between 0 and 1: a value of 0 indicates that the
nonphylogenetic OLS regression model best fits the data,
whereas a value of 1 indicates that the PROU model best
fits the data. If d is intermediate but significantly greater
than 0, then the residual variation in the dependent var-
iable exhibits a statistically significant phylogenetic signal.
The model with better fit can be determined by a maxi-
mum-likelihood ratio test in which twice the difference in
the natural log of the maximum likelihoods of the OLS
and PROU models will be distributed approximately as a
x2 with degrees of freedom equal to the difference in the
number of parameters estimated in the two models (PROU
has one more parameter with d).

Results and Discussion

The predicted reproductive allometry of as the0.75R ∝ ma

annual body mass given to reproduction is strongly sup-
ported in the data, with a very tight allometry and an
estimated OLS regression slope of 0.77, which is not sig-
nificantly different from our assumed value of 0.75 (95%
CI, 0.70–0.84: ; 95% CI, 0.8–0.94: 2RMA p 0.88 r p

; fig. 1). Although the RMA analysis does not overlap0.78
the predicted 0.75 exponent, the OLS regression slope is
the more appropriate model because, as argued above, the
error in the Y-axis is compounded and must swamp any
error in the X-axis data. Phylogenetic regression analysis
using the PROU transformation also generally supports
this predicted allometry with a 95% CI that overlaps the
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Figure 1: Annual production allometry as estimated by (clutch size) # (number of clutches per year) # (hatchling ) scales with an OLS3(SVL)
regression slope of 0.77 (95% CI, 0.68–0.85; RMA regression slope [dotted line], 0.88, 95% CI, 0.81–0.95). Phylogenetic regression analysis similarly
supports a 0.75 slope value (see table 1). These results support the predictions of previous optimization models (see text), which indicate that this
0.75 scaling captures the effects of mortality on the trade-off between reproductive effort and size at maturity. These results also support our use
of as a correction factor for revealing the offspring size/clutch size trade-off in lizards.0.75ma

0.75 exponent (table 1). However, the two major clades
in this data set exhibit differing slopes, with Iguania
strongly supporting the predicted 0.75 value. Scleroglossa,
on the other hand, shows wide confidence intervals that
overlap the expected 0.75 value using an OLS regression
model but not with the PROU model (table 1). Notice
that the generally tight allometric relationship 0.75R ∝ ma

is for annual reproduction; fitted allometries for yearly
clutch size versus size at maturity (slope, 0.02; ) or2r p 0
offspring body mass per clutch versus size at maturity are
not very strong or informative (slope, 0.61; ).2r p 0.37
Thus, an individual’s body size at maturity determines the
annual body mass available for reproduction, which can
be partitioned among a single or multiple clutches. This
result also strongly supports the predicted 0.75 value of
Charnov et al. (2001), which reflects the influence of mor-
tality on the growth and reproductive trade-off in lizards.

Next we examine the data set for the expected clutch
size/offspring size trade-off by first simply asking whether
clutch size or yearly clutch size is inversely correlated with
offspring size across lizard species. We find no evidence,
however, of a trade-off for either clutch size (fig. 2A) or
for yearly clutch size (fig. 2B). Given the tight reproduc-
tive allometry of exhibited by these lizards, we0.75R ∝ ma

can use this estimate of to control for the size-depen-R
dent allocation to annual reproduction by plotting

versus . As0.75 3ln (annual clutch size/m ) ln (hatchling SVL )a

shown in figure 3A, the -corrected yearly clutch size isR
now very strongly related to offspring size, with a slope
value not significantly different from �1 (OLS slope,
�0.96; 95% CI, �0.87 to �1.05; ; RMA slope,2r p 0.78
�1.09; 95% CI, �1 to �1.18; fig. 3A). Phylogenetic re-
gression analysis also generally supports this result, with
a slope for the entire data set that trends toward �1 al-
though the confidence intervals do not overlap the ex-
pected slope (PROU slope, �0.79; 95% CI, �0.69 to
�0.92; ; fig. 3B). However, the two major clades2r p 0.63
exhibit differing slopes, with Iguania again strongly sup-
porting the predicted slope value of �1 (PROU slope,
�1.02; 95% CI, �0.9 to �1.15; ; fig. 3B). Scle-2r p 0.79
roglossa, on the other hand, shows a more shallow slope
that trends toward, but does not overlap, the expected �1
slope value (PROU slope, �0.73; 95% CI, �0.61 to �0.88;

; fig. 3B). The offspring size/clutch size trade-2r p 0.67
off is thus revealed after controlling for variation in , asR
shown by both the comparative OLS slope value of �0.96
and the negative trends near �1 for the phylogenetic re-
gression analysis.

Phylogenetic Analysis

The newly developed phylogenetic regression program re-
gressionv2.m by T. Garland Jr. (Lavin et al. 2008) provides
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Table 1: Regression slopes from nonphylogenetic (OLS regression) and phylogenetic (PROU) analyses for annual
reproductive effort in relation to size at maturity

Analysis N Slope 95% CI r2 ln likelihood AIC d

Nonphylogenetic OLS regression:
All lizards 138 .77 .7–.84 .77 �124.6 255.2 …
Iguania 64 .7 .64–.77 .87 �41.1 88.2 …
Scleroglossa 71 .82 .71–.91 .78 �53.1 112.2 …

Phylogenetic GLS regression with OU transformation:
All lizards 138 .85 .75–.94 .63 �94.9a 197.7 .68
Iguania 64 .74 .71–.91 .77 �37.1a 82.1 .45
Scleroglossa 71 .9 .8–.99 .82 �44.4a 96.8 .66

Note: Values for r 2 obtained from OLS and PROU models are not comparable. The term d is the restricted maximum-likelihood estimate

of the OU transformation parameter. Akaike Information Criterion (AIC; smaller is better) is computed as �2(ln maximum likelihood) �

.a2(no. of parameters)
a On the basis of likelihood ratio tests, the PROU models are statistically significantly better than the OLS regression models.

for tests of the strength of phylogenetic signal among traits
(Blomberg et al. 2003), as well as maximum-likelihood
data for the comparison of fit between models ranging
from conventional nonphylogenetic to complex phyloge-
netic regressions. For both the data for the reproductive
allometry (table 1) and the offspring size/clutch size trade-
off (table 2), likelihood ratio tests indicate that phyloge-
netic regressions using the PROU transformation fit sig-
nificantly better ( ) than do OLS regression models.P ! .05
For all lizards in the data set and between the two clades,
PROU models provided a better fit because they contain
an additional parameter d (Lavin et al. 2008). Note that
the all lizard and clade data sets show values that are
significantly greater than 0 for the parameter d (allometry
and trade-off analysis average, SD; tables 1,0.61 � 0.13
2). Because this parameter d gives a measure of how well
the branch lengths estimated by the OU transformation
fit the data, the residual values for these lizards have a
statistically significant phylogenetic signal (Blomberg et al.
2003; Lavin et al. 2008). It must be noted, however, that
there is a rather large degree of uncertainty in the topology
of our phylogenetic tree, especially within Scleroglossa, as
indicated by polytomies (fig. B1). Garland and Diaz-
Uriarte (1999) found, however, that phylogenetic analysis
provides reliable estimates of trait correlations despite such
phylogenetic uncertainty. A separate issue is whether the
slopes from the comparative OLS regression models differ
from the phylogenetic PROU models, which can be de-
termined by the overlap of their 95% CIs (Lavin et al.
2008). For our reproductive allometry analysis, the con-
fidence intervals of both OLS and PROU models did over-
lap the predicted 0.75 slope value for all lizards and the
Iguania clade, whereas the PROU slope for Scleroglossa
did not overlap this value (table 1). For our trade-off
analysis, the confidence intervals and slope values from
the OLS model were very near the predicted value of �1
for all the lizards and the Iguania clade (table 2). For the

PROU analysis, however, only the Iguania clade exhibited
a slope and confidence interval that was indistinguishable
from �1.

These differences in the slope patterns between the two
major clades suggest that correlated life-history traits such
as body plan and reproductive effort may play a very im-
portant role in the reproductive allometry and trade-offs
of these lizards (Vitt and Congdon 1978; Shine 1992).
Lizards in the Iguania clade generally have rounded body
plans and have clutch sizes and an annual number of
clutches that are, on average, twofold greater than those
of the lizards in Scleroglossa (which are characterized by
slender body plans). An examination of the differing eco-
morphologies included in this data set may, therefore, be
a very informative way to understand how selective forces
have shaped the clutch size/offspring size trade-off. In-
cluded in this data set are species representing the great
diversity of coevolved body plans, foraging modes, and
reproductive strategies that are inherent to lizards ranging
from the rotund horned lizards (Phrynosoma genus) to the
sleek whiptails (Teiidae) and including both oviparous and
viviparous species.

The oviparous and viviparous reproductive modes did
not affect our trade-off results; oviparous species had an
OLS regression slope value of �0.92 (95% CI, �0.82 to
�1.02; ; ) and viviparous species had a2r p 0.77 n p 112
slope value of �0.98 (95% CI, �0.76 to �1.20; 2r p

; ). The intercepts are also indistinguishable,0.78 n p 26
with wide overlapping confidence intervals for the ovip-
arous species (intercept, 2.20; 95% CI, 1.20–3.19) and for
the viviparous species (intercept, 2.47; 95% CI, 0.14–4.81).

Analysis of the clutch size/offspring size trade-off at the
rather coarse taxonomic family level indicates that most
of the lizards in this data set (we excluded families with
!4 data points) do show the predicted negative relation-
ship between -corrected annual clutch size and hatchlingR
size (fig. 4). Although the family designation may be a
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Figure 2: A, Counter to theoretical predictions for an offspring size/clutch size trade-off (negative relationship), comparative data for 138 populations
and 115 species of lizards show a slightly positive nonsignificant relationship for log-transformed hatchling SVL (mm3) versus clutch size. B, Similarly
annualized data do not support the predicted trade-off, with a slightly negative and nonsignificant relationship between hatchling SVL (mm3) and
annual clutch size (clutch size # number of clutches per year).

somewhat arbitrary phylogenetic distinction, we believe
that this analysis satisfactorily captures the significant and
consistent ecomorphologies represented by different fam-
ilies (e.g., Gekkonidae vs. Iguanidae, etc.). Although gen-
erally small sample sizes and limited ranges of hatchling
size preclude much precision, all of the 95% CIs for each
family include the expected �1 slope value. Indeed, the
estimated slope value is indistinguishable from �1 (OLS

slope, �0.99; ) if only those five families with2r p 0.82
four or more data points (Teiids and horned lizards ex-
cluded) are included in the across-species trade-off
analysis.

The distinct ecomorphologies characterized by the
horned lizards (Phrynosoma) and Teiids are possibly the
exceptions (fig. 4). These lizards may represent the ex-
tremes in differing body plans between the clades of Igua-
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Figure 3: A, Correcting for size-dependent R (estimated by ) reveals a negative relationship with an OLS regression slope of �0.96 (95%0.75(mass)
CI, �0.87 to �1.05; RMA slope [dotted line] �1.09, 95% CI, �1 to �1.18) indistinguishable from a �1 slope, strongly supporting the theoretically
predicted offspring size/clutch size trade-off across lizards. B, Phylogenetic analysis using GLS regression also shows regressions of negative slopes
near �1, with the Iguania clade (solid line) strongly supporting the �1 slope, whereas the Scleroglossa clade (dashed line) does not show a slope
overlapping �1.

nia and Scleroglossa, and their differing slope values may
reflect how the correlation between body shape and body
mass allocation to a single clutch have shaped the clutch
size/offspring size trade-off in these lizards. As argued by

other researchers, body shape is highly correlated with
lizard ecology, feeding strategies (active vs. sit-wait pred-
ators), and reproductive effort (Vitt and Congdon 1978;
Shine 1992). The five horned lizard species, however,
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Table 2: Regression slopes from nonphylogenetic (OLS) and phylogenetic (PROU) analyses for annual clutch size/maturity
body mass0.75 in relation to hatchling size

Analysis N Slope 95% CI r 2 ln likelihood AIC d

Nonphylogenetic OLS regression:
All lizards 138 �.96 �.88 to �1.04 .77 �124.4 254.8 …
Iguania 64 �1.07 �.98 to �1.16 .9 �40.1 86.2 …
Scleroglossa 71 �.82 �.7 to �.93 .73 �49 104 …

Phylogenetic GLS regression with OU transformation:
All lizards 138 �.79 �.69 to �.92 .63 �89.1a 186.2 .76
Iguania 64 �1.02 �.9 to �1.14 .79 �36.1a 80.2 .45
Scleroglossa 71 �.73 �.61 to �.88 .67 �38.7a 85.3 .64

Note: Values for r 2 obtained from OLS regression and PROU models are not comparable. The term d is the restricted maximum likelihood estimate

of the OU transformation parameter. Akaike Information Criterion (AIC; smaller is better) is computed as �2(ln maximum likelihood) �

.2(no. of parameters)
a On the basis of likelihood ratio tests, the PROU models are statistically significantly better than the OLS regression models.

show no statistically significant reproductive allometry
( ; ), and the nine Teiids have a weak2slope p 0.16 r p 0.18
allometry ( ; ). The exclusion of2slope p 0.65 r p 0.31
these two taxa has no affect for either the overall pro-
duction allometry ( ; ) or the2OLS slope p 0.78 r p 0.79
trade-off analysis ( ; ).2OLS slope p �0.96 r p 0.78

Temperature

Temperature also plays a critical and predictable role in
driving life-history patterns in lizards (Shine 2005). Sur-
prisingly, our results include the predicted 0.75 and �1
slope values (figs. 2A, 3) without including an explicit
temperature parameter in our model. Charnov and Ernest
(2006) suggested that the correction might be0.75R ∝ ma

distorted if larger-bodied species always lived at higher
average annual temperatures than small-bodied species did
(Gillooly et al. 2002). However, this does not appear to
be true for these lizards, as shows a very tight0.75R ∝ ma

relationship. A lack of a temperature effect is not neces-
sarily that surprising, however, considering that diurnal
reptiles can behaviorally adjust their own body tempera-
tures precisely and over a considerable thermal range
(Shine 2005). Thus, most reproducing females are likely
optimizing their resource allocation to a clutch by behav-
iorally regulating their body temperature. That is, the life-
history traits of a particular species or population have
been molded by temperature, and our data therefore in-
clude any temperature effects on resource dynamics.

Mortality

Ontogenetic increases in body size, clutch size, reproduc-
tive effort, and survival that are characteristic to most
species of lizards must play an extremely important role
in shaping the clutch size/offspring size trade-off in a single
breeding effort, especially within the context of potential

future reproduction. Our use of yearly average values cer-
tainly does not capture these ontogenetic dynamics. To
explicitly model such interage class differences, however,
would require detailed knowledge of when mortality oc-
curs for each age class (e.g., before or after a first, second,
or third clutch). These data simply do not exist, even for
well-studied taxa as such lizards; all life-history and de-
mographic data for lizards are average estimates. Despite
the coarse nature of such field estimates (and the compiled
data in this article) and our admittedly coarse method of
estimating resources for reproduction ( ), our re-0.75R ∝ ma

sults are robust and strongly support the theoretical pre-
dictions. We also do not include an extra mortality cost
induced by increased reproduction because such a trade-
off has rarely been demonstrated in nature (van Noordwijk
and de Jong 1986; Charnov 1993; Schwarzkopf 1993; Char-
nov et al. 2001; Uller and Olsson 2005).

Allometry Methodology

The primary objective of allometry analysis is often the
estimation of slopes. Slopes estimated by regression can
provide insight into the functional biology of organisms
and ecosystems and have been the fuel for much recent
debate (e.g., Calder 1984; White and Seymour 2003; Brown
et al. 2004). Critical to the estimation and confidence of
allometry slopes is the variance structure within the data.
Because variance due to measurement and sampling error
is always present (often to an unknown degree) in both
comparative and phylogenetic data, the use of Type II
RMA regressions has more often been recommended over
least squares methods (Sokal and Rohlf 1995; Warton et
al. 2006). As demonstrated by O’Connor et al. (2007),
however, OLS and RMA regression methods provided ac-
curate slope values only under the conditions for which
they were designed (i.e., OLS when is large and RMAj /jy x

when ). The alternative least squares variance-j /j p 1y x
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Figure 4: Six of 15 families with more than four data points have the predicted negative relationship between hatchling size and the R-corrected
annual clutch size, with OLS confidence intervals overlapping the predicted �1 slope. The distinct slopes for Teiids and horned lizards may reflect
differences caused by correlated body plans and reproductive patterns. Small sample size and ranges in hatchling size, however, preclude any strong
conclusions.

oriented residuals regression method (LSVOR) outlined
by O’Connor et al. (2007) would be ideal with the use of
more complete life-history data that include variance
estimates.

Admittedly our OLS, RMA, and PROU slope estimates
are not the most accurate because of unknown variance,
but the critical point is that the predicted allometry and
trade-off patterns are always supported (figs. 1, 3). The
approximate slope values for these lizard data are very
near the predicted slopes of 0.75 and �1 when the data
are analyzed using both comparative and phylogenetic
methods. If we had better variance data, both our com-
parative and phylogenetic slope values would presumably
be similar to the LSVOR simulation results reported by
O’Connor et al. (2007). Our estimated comparative and
phylogenetic slope values would thus lie between the re-
ported OLS, RMA, and PROU estimates, with confidence
intervals closely overlapping the predicted 0.75 and �1
slope values.

In summary, our results show that, by correcting for
size-dependent variation in , the often-obscured inverseR
proportionality between and I is revealed for lizards,C
despite our rather crude measure of resource investment.
These data also demonstrate a very tight allometry for

annual production, a relationship that has been rarely
shown for lizards. Phylogenetic GLS models similarly sup-
port these results, although they highlight differing trade-
off and reproductive patterns between the two major
clades of Iguania and Scleroglossa. When combined, these
analyses demonstrate the importance of examining the
offspring size/clutch size trade-off from the perspective of
annual resource investment in reproduction because the
offspring size/clutch size trade-off is not isolated to a single
clutch but is shaped by resource investment over an entire
breeding season. Considering the importance of body size
for a spectrum of life-history traits (Calder 1984; Charnov
1993), allometric relationships such as are also0.75R ∝ ma

invaluable tools for increasing our understanding of the
evolution of life-history trade-offs. Indeed, through the
use of these tools, we conclude that, across lizard species
with a wide diversity of evolved life-history traits, there is
strong evidence for the predicted trade-off between off-
spring size and the annual number of eggs produced.
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APPENDIX A

Table A1: Compiled lizard life-history data

Family, species

Female
maturity

SVL

Female
average

SVL

Hatchling
average

SVL

Clutch
size

(mean)

No.
clutches
per year
(mean) Reference

Agamidae:
Amphibolurus fordi 48.0 … 24.0 2.3 2.0 Dunham et al. 1988
Amphibolurus isolepis 51.0 61.0 27.0 3.3 2.0 Dunham et al. 1988
Amphibolurus nuchalis 86.0 88.3 32.0 4.1 2.0 Dunham et al. 1988
Amphibolurus ornatus 69.0 … 32.0 3.8 2.0 Dunham et al. 1988
Japalura swinhonis 53.5 76.1 20.0 4.3 2.0 Lin and Lu 1982

Anguidae:
Elgaria coerulea principis 72.0 91.4 32.7 4.6 1.0 Dunham et al. 1988
Elgaria coerulea 75.0 87.7 35.9 3.8 1.0 Stewart 1985
Elgaria m. multicarinata 92.0 108.8 34.0 12.0 2.0 Dunham et al. 1988

Chamaeleonidae:
Chamaeleo namaquensis 81.0 120.4 32.5 13.2 3.0 Dunham et al. 1988
Chamaeleo pumilus 51.0 79.0 22.0 11.0 4.0 Dunham et al. 1988; Clobert et

al. 1998
Corytophanidae:

Basiliscus basiliscus 135.0 168.0 42.0 9.5 6.0 Dunham et al. 1988; Shine and
Charnov 1992

Crotaphytidae:
Crotaphytus collaris 70 85.1 40.0 5.0 1.5 Turner 1977; Ballinger and

Hipp 1985; Degenhardt et al.
1996

Gambelia sila 86.0 97.5 45.0 3.0 1.5 Howard 1974
Gambelia wislizenii 90.0 105.0 45.0 7.3 1.0 Tinkle and Hadley 1975;

Degenhardt et al. 1996
Gekkonidae:

Coleonyx variegatus 52.0 62.0 27.0 2.0 3.0 Degenhardt et al. 1996; Clobert
et al. 1998

Diplodactylus damaeus 45.0 52.7 22.0 2.0 2.0 Henle 1991
Diplodactylus tessellatus 45.0 50.2 25.0 2.0 2.0 Henle 1991
Gehyra variegata 48.0 53.7 25.0 1.0 2.0 Henle 1990
Gymnodactylus geckoides amarali 38.7 43.8 20.0 1.7 2.0 Kitchener et al. 1988
Heteronotia binoei 44.0 46.7 21.0 2.0 2.0 Henle 1991
Oedura ocellata boulenger 79.0 80.0 35.0 2.0 1.5 Bustard 1971
Oedura reticulata 63.0 66.3 26.0 2.0 1.0 Dunham et al. 1988; Kitchener

et al. 1988
Oedura tryoni 73.0 80.0 35.0 2.0 2.0 Dunham et al. 1988

Gymnophthalmidae:
Gymnophthalmus speciosus 37.0 41.5 18.0 1.8 3.0 Dunham et al. 1988
Leposoma rugiceps 37.0 … 18.1 2.2 2.0 Dunham et al. 1988
Neusticurus ecpleopus 50 56.6 21.5 2 2.0 Dunham et al. 1988

Iguanidae:
Amblyrhynchus cristatus 252.0 279.0 118.0 2.5 1.0 Laurie 1990; Laurie and Brown

1990
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Table A1 (Continued)

Family, species

Female
maturity

SVL

Female
average

SVL

Hatchling
average

SVL

Clutch
size

(mean)

No.
clutches
per year
(mean) Reference

Conolophus subcristatus 370.0 416.0 99.0 13.5 1.0 Werner 1982; Wiewandt 1982;
Clobert et al. 1998

Ctenosaura similis 200.0 276.0 54.0 25.0 1.0 Fitch 1970; Dunham et al.
1988; Clobert et al. 1998

Cyclura carinata 192.0 225.0 80.0 4.3 1.0 Dunham et al. 1988; Shine and
Charnov 1992

Cyclura pinguis 378.0 468.0 105.0 14.0 1.0 Wiewandt 1982; Clobert et al.
1998; Iverson et al. 2004

Cyclura stejnegeri 375.0 475.0 109.0 12.0 1.0 Wiewandt 1982; Clobert et al.
1998; Iverson et al. 2004

Dipsosaurus dorsalis 110.0 120.0 50.0 5.5 1.0 Krekorian 1984
Sauromalus ater 125.0 160.0 54.0 6.9 1.0 Abts 1987
S. ater 150.0 170.0 54.0 8.6 1.0 Dunham et al. 1988

Lacertidae:
Acanthodactylus erythrurus 61.0 71.9 34.0 3.7 1.0 Bauwens and Diaz-Uriarte 1997
Aporosaura anchietae 44.0 44.0 27.0 1.3 3.0 Dunham et al. 1988
Lacerta agilis 62.0 68.4 26.6 5.8 1.0 Bauwens and Diaz-Uriarte 1997
Lacerta lepida 132 168.4 42.8 16.9 1.0 Bauwens and Diaz-Uriarte 1997
Lacerta monticola 67.3 … 25.9 6.5 1.0 Dunham et al. 1988
Lacerta monticola cantabrica 56 66.1 25 7.2 1.5 Bauwens and Diaz-Uriarte 1997
Lacerta monticola cyreni 60 70.1 26.6 5.4 1.0 Bauwens and Diaz-Uriarte 1997
Lacerta schreiberi 91.0 108.5 31.6 13.7 1.0 Bauwens and Diaz-Uriarte 1997
Lacerta viridis 84.0 98.5 32.6 8.9 1.0 Bauwens and Diaz-Uriarte 1997
Lacerta vivipara 44.2 57.6 21.0 6.0 1.0 Sorci et al. 1996; Clobert et al.

1998
L. vivipara (oviparous) 43.0 53.0 19.4 6.2 1.0 Bauwens and Diaz-Uriarte 1997
L. vivipara (viviparous) 44.0 55.5 20.8 4.4 1.0 Bauwens and Diaz-Uriarte 1997
Meroles cuneirostris 44.0 49.0 27.5 2.9 2.0 Dunham et al. 1988
Podarcis atrata 51.0 63.1 29.0 2.8 2.5 Krekorian 1984
Podarcis bocagei 44.0 55.2 24.0 4.2 2.0 Bauwens and Diaz-Uriarte 1997
Podarcis hispanica atrata 53.0 63.1 28.2 2.8 2.0 Bauwens and Diaz-Uriarte 1997
Podarcis hispanica hispanica

(Asturias) 39.0 49.6 23.8 2.1 2.0 Bauwens and Diaz-Uriarte 1997
P. hispanica hispanica (Salamanca) 49.0 61.3 27.0 3.6 2.0 Bauwens and Diaz-Uriarte 1997
Podarcis muralis 49.0 58.5 24.8 5.2 2.0 Bauwens and Diaz-Uriarte 1997
Psammodromus algirus 58.0 69.2 27.8 6.0 1.5 Bauwens and Diaz-Uriarte 1997
Psammodromus hispanicus 42.0 48.4 22.9 3.2 2.0 Bauwens and Diaz-Uriarte 1997
Takydromus septentrionalis 56.0 65.0 23.4 3.1 2.0 Bauwens and Diaz-Uriarte 1997
Takydromus tachydromoides 41.0 45.7 22.0 3.6 3.0 Telford 1969
T. tachydromoides 46.0 53.5 22.5 3.4 3.0 Bauwens and Diaz-Uriarte 1997

Phrynosomatidae:
Phrynosoma cornutum 70 87.0 25 21.3 1.5 Howard 1974; Munger 1986
Phrynosoma douglassi 63 76.0 25 24 1.0 Degenhardt et al. 1996
Phrynosoma modestum 42 57.0 25 13 1.5 Howard 1974; Munger 1986
Phrynosoma platyrhinos 70.0 76.5 27.0 8.4 1.5 Medica et al. 1973; Pianka and

Parker 1975
Phrynosoma solare 80 … 30 17 1.0 Parker 1971; Degenhardt et al.

1996
Callisaurus draconoides 60.0 75.5 29.0 4.42 3.0 Pianka and Parker 1972
Cophosaurus texanus 50.0 60.0 22.0 6.1 3 Sugg et al. 1995; Degenhardt et

al. 1996
Holbrookia maculata 45 54.0 25 5 2.0 Gennaro 1974
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Table A1 (Continued)

Family, species

Female
maturity

SVL

Female
average

SVL

Hatchling
average

SVL

Clutch
size

(mean)

No.
clutches
per year
(mean) Reference

H. maculata 41 50.0 25.0 4.5 2 Jones and Ballinger 1987
Sceloporus clarkii 89.0 100.0 34.0 19.6 1.0 Tinkle and Dunham 1986;

Degenhardt et al. 1996
Sceloporus cyanogenys 88.0 106.0 29.6 13.0 1.0 Dunham et al. 1988
Sceloporus graciosus (CA) 57 … 25 4.1 2.0 Tinkle et al. 1993
S. graciosus (UT) 50 52.0 25 3.7 2.0 Tinkle et al. 1993
Sceloporus jarrovii 54.0 72.4 28.5 7.07 1.0 Dunham et al. 1988
S. jarrovii 54.0 77.0 29 8.4 1.0 Ballinger 1973
S. jarrovii 54.0 72.0 30.7 5.6 1.0 Dunham et al. 1988
Sceloporus magister 80 89.0 32 6.2 2.0 Vitt and Ohmart 1974; Tinkle

1976
Sceloporus merriami 43.0 50.2 22.0 4.5 2.0 Dunham 1981
Sceloporus olivaceus 80.0 96.0 26.0 18.0 3.0 Blair 1960
Sceloporus poinsettii 85.0 104.0 33.0 10.5 1.0 Ballinger 1973
Sceloporus scalaris 41 52.0 20.0 8.8 1.5 Ballinger and Congdon 1981;

Degenhardt et al. 1996
Sceloporus u. consobrinus (NM) 54.0 68.4 22.0 9.9 3.5 Vinegar 1975b
Sceloporus u. tristichus (NM) 53.0 63.3 25.0 7.2 2.5 Vinegar 1975b
Sceloporus undulatus (AZ) 60.0 65.0 27.0 8.3 3.0 Tinkle and Dunham 1986
S. undulatus (CO) 58.0 70.0 28.5 7.9 2.0 Tinkle and Dunham 1986
S. undulatus (KA) 47.0 57.0 24.0 7.0 2.5 Tinkle and Dunham 1986
S. undulatus (NE) 45 60.2 23.0 5.7 2.5 Jones and Ballinger 1987
S. undulatus (NJ) 60.0 73.0 26.0 8.0 2.0 Niewiarowski and Roosenburg

1993; Niewiarowski et al.
2004

S. undulatus (OH) 66.0 75.0 25.0 11.8 2.0 Tinkle and Dunham 1986
S. undulatus (SC) 55.0 63.0 23.0 7.4 3.0 Tinkle and Dunham 1986
S. undulatus (TX) 47.0 57.0 22.0 9.5 3.0 Tinkle and Dunham 1986
S. undulatus (UT) 60.0 69.0 25.0 6.3 3.0 Tinkle and Dunham 1986
Sceloporus virgatus 47 48.2 22 9.5 1 Vinegar 1975a; Rose 1981
Sceloporus woodi 45 … 21 5 3 Jackson and Telford 1974;

McCoy et al. 2004
Urosaurus ornatus (AZ) 45.0 … 20.0 7.0 1.5 Smith 1977
U. ornatus (AZ) 39.0 52.0 21.0 7.1 3.0 Tinkle and Dunham 1983
U. ornatus (NM) 41.0 49.0 21.0 7.5 2.0 Ballinger 1977
U. ornatus (TX) 41.0 48.4 21.0 5.0 3.0 Dunham 1981
U. ornatus (TX) 39.0 48.0 21.0 5.4 3.5 Martin 1977
Uta stansburiana (CA) 42.0 49.0 25.0 3.5 3.0 Goldberg 1977
U. stansburiana (NV) 42.0 45.4 22.0 3.5 3.0 Turner et al. 1974
U. stansburiana (TX) 42.0 47.2 22.0 3.6 3.5 Tinkle 1967; Tinkle and Hadley

1975
Polychrotidae:

Anolis acutus 36.0 42.2 20.0 1.0 6.0 Ruibal et al. 1972; Ruibal and
Philibosian 1974

Anolis carolinensis 46.5 50.0 23.5 1.3 6.0 Dunham et al. 1988
Scincidae:

Ctenotus taeniolatus 52.3 66.4 33.0 3.7 1 Dunham et al. 1988
Egernia coventryi 73.0 115.0 37.5 3.0 1.0 Chapple 2003
Egernia cunninghami 195.0 240.0 63.5 5.8 1.0 Chapple 2003
Egernia kingii 187.0 215.0 70.0 5.0 1.0 Chapple 2003
Egernia kintorei 170.0 195.0 75.0 6.0 1.0 Chapple 2003
Egernia modesta 85.0 105.0 42.5 2.7 1.0 Chapple 2003
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Table A1 (Continued)

Family, species

Female
maturity

SVL

Female
average

SVL

Hatchling
average

SVL

Clutch
size

(mean)

No.
clutches
per year
(mean) Reference

Egernia stokesii 170.0 172.5 80.0 5.1 1.0 Chapple 2003
Egernia whitii 78.0 80.7 35.0 3.5 1 Dunham et al. 1988
E. whitii 83.0 95.0 42.5 2.8 1.0 Chapple 2003
Emoia atrocostata 80.0 90.0 35.0 2.0 3.0 Alcala and Howard 1967
Eulamprus tympanum (high altitude) 79.0 88.0 39.0 3.2 1.0 Schwarzkopf 1993; Blomberg

and Shine 2001
Eumeces egregius 40.0 … 20.6 4.8 1.0 Dunham et al. 1988
Eumeces fasciatus 52.0 63.3 24.0 5.9 1.0 Turner 1977; Dunham et al.

1988
Eumeces laticeps 85.0 103.8 31.4 13.7 1.0 Dunham et al. 1988
Eumeces obsoletus 77.0 120.0 37.0 11.0 1.0 Hall 1971; Degenhardt et al.

1996
Mabuya bistriata 55.0 93.1 35.8 4.7 1.0 Vitt and Blackburn 1991
Mabuya heathi 45.0 70.3 32.4 5.0 1.0 Dunham et al. 1988
Menetia greyii 28.5 34.6 17.0 2.0 2.0 Dunham et al. 1988
Morethia boulengeri 36.0 45.0 19.00 2.7 3.0 Lin and Lu 1982
Niveoscincus ocellatus 65.0 72.9 29.7 4.0 1.0 Wapstra et al. 1999; Wapstra

and Swain 2001
N. ocellatus 56.0 62.7 29.0 2.4 1.0 Wapstra et al. 1999; Wapstra

and Swain 2001
Scincella lateralis 35.0 42.0 19.0 2.5 2.0 Brooks 1967

Teiidae:
Aspidoscelis dixoni 67.0 87.7 34.0 4.0 1.0 Walker 1994; Degenhardt et al.

1996
Aspidoscelis hyperythra 53.0 59.7 27.0 2.3 2.0 Dunham et al. 1988
Aspidoscelis inornata 51 57.0 34 2.4 1.5 Christiansen 1971
Aspidoscelis neomexicana 47.0 65.0 37.0 2.3 1.5 Christiansen 1971
Aspidoscelis sexlineata 55.0 73.0 33.0 2.1 2.0 Fitch 1958; Degenhardt et al.

1996
Aspidoscelis tesselata 66.0 83.0 45.0 3.5 1.5 Knopf 1966; Schall 1978;

Degenhardt et al. 1996
Aspidoscelis tigris 60 82.3 38 3 1.0 Tinkle and Hadley 1975;

Degenhardt et al. 1996
Aspidoscelis uniparens 60 66.0 36 3.3 2.5 Hulse 1981; Degenhardt et al.

1996
Teius teyou 76.1 103.1 38.9 5.0 1.0 Cruz et al. 1999

Tropiduridae:
Liolaemus multiformis 69 80.6 28 5.8 1 Dunham et al. 1988
Tropidurus semitaeniatus 58 70.5 19 2 3.5 Dunham et al. 1988
Tropidurus torquatus 70 88.5 27.8 6 3 Dunham et al. 1988

Xantusidae:
Xantusia vigilis 36.0 40.0 23.0 1.8 1.0 Zweifel and Lowe 1966

Note: Compiled data for female snout-vent length (SVL) at maturity, average adult female SVL, average hatchling SVL, average clutch size, and average

annual number of clutches gathered from both primary literature sources and previously published reviews of lizard life histories.
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APPENDIX B

Sources for Figure B1

This tree was drawn using the Treeview program (Page 1996). The broad topology for Squamata follows Townsend et
al. (2004). Phylogenies at the family level were drawn from Kluge (1987) for Gekkonidae, Schmitz et al. (2005) for
Scincidae, Reeder et al. (2002) for Teiidae, and Carranza et al. (2004) for Lacertidae. Relationships for the lizards of
Phrynosomatidae were drawn from Reeder and Wiens (1996), whereas for the Sceloporus group we relied on Wiens
and Reeder (1997) and Miles et al. (2002). The Agamidae phylogeny follows the topology drawn by Macey et al.
(2000). Relationships within Iguanidae were drawn from Etheridge and de Queiroz (1988) and Sites et al. (1996). The
phylogenies for Crotaphytidae are from McGuire (1996), Tropiduridae from Harvey and Gutberlet (2000), and Poly-
chrotidae from Jackman (1999).
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Figure B1: Compiled lizard phylogeny. This composite tree was drawn from the most recent or comprehensive phylogenies available for all of the
lizard species analyzed in this study. This tree is rooted in Gekkonidae with “Scleroglossa” presented here as a paraphyletic outgroup to Iguania.
Species with multiple populations (see table A1) were drawn as polytomies (not shown in this figure) with no hierarchical arrangement of populations.
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Figure B1 (Continued)
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