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abstract: In a 1966 American Naturalist article, G. C. Williams
initiated the study of reproductive effort (RE) with the prediction
that longer-lived organisms ought to expend less in reproduction per
unit of time. We can multiply RE, often measured in fractions of
adult body mass committed to reproduction per unit time, by the
average adult life span to get lifetime reproductive effort (LRE).
Williams’s hypothesis (across species, RE decreases as life span in-
creases) can then be refined to read “LRE will be approximately
constant for similar organisms.” Here we show that LRE is a key
component of fitness in nongrowing populations, and thus its value
is central to understanding life-history evolution. We then develop
metabolic life-history theory to predict that LRE ought to be ap-
proximately 1.4 across organisms despite extreme differences in pro-
duction and growth rates. We estimate LRE for mammals and lizards
that differ in growth and production by five- to tenfold. The distri-
butions are approximately normal with means of 1.43 and 1.41 for
lizards and mammals, respectively (95% confidence intervals: 1.3–
1.5 and 1.2–1.6). Ultimately, therefore, a female can only produce a
mass of offspring approximately equal to 1.4 times her own body
mass during the course of her life.

Keywords: lizards, mammals, life-history optimization, dimension-
less, Williams’s hypothesis.

The optimal size of an offspring (Smith and Fretwell 1974)
and the optimal schedule of allocation to reproduction
(Williams 1966) are the two central issues of life-history
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evolution. Williams (1966) initiated the study of repro-
ductive allocation by suggesting that longer-lived organ-
isms ought to expend less in reproduction per unit of time.
In most data sets, Williams’s hypothesis is true and is
predicted theoretically (at least qualitatively) by a great
many formal models (reviews in Stearns 1992; Charles-
worth 1994). Williams (1966) placed center stage the issue
of how we conceptualize/measure the “cost of reproduc-
tion” (now often called “reproductive effort” [RE]). Gen-
erally speaking, the literature (Stearns 1992; Charlesworth
1994) is dominated by two possibilities: reproduction can
decrease parental survival and/or divert parental resources
from future reproduction, perhaps through slowing (or
ending) growth. It is somewhat surprising that the increase
in adult mortality has rarely been seen, and many models
implicitly assume that the diversion of resources from pa-
rental growth is the only cost of reproduction (e.g., Koz-
lowski 1992). Of course, it is possible that both potential
costs are present and interact in complex ways (e.g., mor-
tality decreases with body size and reproduction results in
smaller adult size [Kozlowski 1992]).

While the definition of RE is much debated (e.g., Stearns
1992), workers on many taxa have independently come to
rely heavily on the idea that the mass given to reproduction
per unit of time, as a proportion of the adult mass, captures
much of what we mean by the concept (particularly if
there is no mortality cost to reproductive allocation). This
RE metric is interesting in that it has units of 1 over time
(i.e., percentage of a body mass per unit of time), and so
when it is multiplied by a measure of adult life span, it
produces a dimensionless number that measures “lifetime
reproductive effort” (LRE; Charnov 2002, 2005). Wil-
liams’s hypothesis (RE goes down as life span goes up)
leads naturally to the suggestion that their product might
be some fixed, or at least highly bounded, value (Charnov
2005). In order for LRE to be really useful, a uniform
measure of adult life span must be used, and it was pro-
posed previously (Charnov 2002, p. 751, 2005) that the
“expectation of further life at the age of first reproduction
(a),” called the average adult life span (E), was the most
useful metric. Charnov (2005) also suggested that body
mass at first reproduction be the normalizing size (par-
ticularly with indeterminate growth).
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This article is about various roles for LRE in the de-
scription of life histories. We show that LRE is a key com-
ponent of fitness that encompasses the central core of 40
years of life-history thought—reproductive allocation, size
at maturity, and adult life span. First, we define LRE for
arbitrary schedules of survivorship and fecundity. Second,
we show that fitness in nongrowing populations, R0, the
net reproductive rate, is quite naturally written in terms
of LRE (and the size of an offspring normalized to adult
size). Third, we predict LRE for an optimal life history
with metabolic production constraints (Charnov 1991,
1993); this yields a surprisingly simple (and elegant) an-
swer: /(metabolic exponent). Fourth, we estimateLRE p 1
LRE for a large sample of lizards (71 populations of 54
species) and mammals (40 species). Surprisingly, the av-
erage LRE values are very close to those predicted by the
optimal life history with the simplest metabolic con-
straints. Finally, we initiate a sensitivity analysis for the
theoretical prediction, how does predicted LRE change if
we alter the trade-off structure for the life history or the
production function?

Lifetime Reproductive Effort Defined (Eq. [2])

To begin, we define the following symbols for an asexual
population: at first reproduction; , wherea p age S p la
lx is the chance of survival to age x ( );l p 1 m p0 a

body mass at age of first reproduction;adult R px

allocation per unit of time at age x (massreproductive
per unit of time); and finally, adult life span:E p average

(this is the definition of expectation of fur-�E p (l /S)dx∫a x

ther life at age a). Now, the average rate of mass allocated
to reproduction (Rx) over the adult lifetime ( ) isR

� [(l # R )/S]dx∫a x x
R p . (1)� (l /S)dx∫a x

The is simply a survivorship schedule for the adultsl /Sx

(i.e., , so everyone is assumed alive at age a). Thel p Sa

is a probability density function since in�(l /S)/ (l /S)dx∫ax x

a stationary (nongrowing) population, it is the chance an
adult is age x. Then we may write LRE simply as

R
LRE p # E. (2)

ma

Since , we may also write�E p (l /S)dx∫a x

�

1
LRE p l # R dx . (3)� x x( )( )m # Sa

a

The LRE is the average mass per unit time to reproduction
( ) multiplied by E, the average adult life span, all dividedR
by the adult size, ma (eq. [2]), or it can simply be written
as the integral in equation (3).

Fitness in Nongrowing Populations and LRE

The net reproductive rate (R0) is the average number of
offspring produced over an individual’s lifetime, and it is
a measure of Darwinian fitness in nongrowing populations
(e.g., Charlesworth 1994). Fitness in nongrowing popu-
lations, R0, is a dimensionless number that can be written
in various ways to show how resource allocation enters
into fitness; here we will show how it contains LRE. We
define the following symbols for an asexual population:

(mass) of an offspring at independence fromm p size0

the parent, and per unit of time at ageb p fecundityx

. Then,x(b p R /m )x x 0

� �

1
R p l # b dx p # l # R dx0 � x x � x xm 0

a a

if m0 is independent of x, parental age. We can multiply
by to get(S # m )/(S # m )a a

�

S l # Rx xR p # dx .0 �( )m /m S # m0 a a
a

Since the integral is simply LRE we have

S # LRE
R p . (4)0 m /m0 a

So, provided offspring size (m0) is independent of parental
age, R0 is survival to adulthood (S) multiplied by LRE
divided by offspring size (normalized to adult size,

). Equation (4) suggests that LRE and arem /m m /m0 a 0 a

the two key dimensionless numbers in the study of life
histories (in nongrowing populations). Density depen-
dence, necessary to hold to enforce the nongrowingR ≈ 10

population assumption, is probably mostly in the S term
(discussion and data in Charnov 1993).

Optimal Life Histories with the Simplest
Metabolic Constraints

We begin by predicting LRE for an optimal life history
with allometric (metabolic) production rates, where
growth is production of self and reproduction is produc-
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tion of offspring. Both are measured as production of mass
per unit time. Suppose production follows the equation

dm
dp am , (5)

dt

where m is an individual’s mass, a is the height of the
growth curve, and d is the production exponent (Charnov
1991, 1993). Equation (5) determines the rate of individual
growth, and at the onset of reproduction at age a (size
ma), it determines the rate of offspring production (i.e.,

is available to grow offspring). Equation (5) is thedm/dt
simplest allometric (growth and production) equation;
many life-history models use a more complex growth
equation:

dm
d d1 2p am � bm , (6)

dt

where (reviewed in Kozlowski 1992).d ! d ! 11 2

For the moment we will consider only equation (5), the
simplest metabolic constraint, where RE p dm /m dt pa a

. We further suppose that the instantaneous mor-d�1ama

tality rate (Z) is age and body-size independent, except
during a small time period early in life when density de-
pendence operates. Thus, the average adult life span (E)
is Z�1. A more complex model (Charnov 1991, 1993) that
allows Z to increase at the young ages gives the same
answer as below.

If offspring are of some fixed size (m0) and the popu-
lation is not growing or declining, fitness is the number
of offspring produced over an individual’s life span (R0):

S # E dmaR p , (7)0 m dt0

where S is the chance of living to age a when massdm /dta

is given to reproduction per year for E years. We set
, where H is the density-dependent part of S�ZaS p He

and H is fixed independently of a. Thus, R p0

. The optimal size at first reproduction (ma)�Za dHe am /m Za 0

will maximize R0. It is found by setting . This�R /�a p 00

is equivalent to the more easily solved � ln (R )/�a p 00

and yields the following rule evaluated at ma (Charnov
1991, 1993):

d�1Z p adm . (8)a

Equation (8) shows that Z equals the derivative of the
production function. Since , then we predictE p 1/Z

1�d1 dm m 1a ad�1LRE p E p am p . (9)am dt ad da

Thus, by maximizing R0 with respect to size at maturity
(ma), we find that LRE equals the inverse of mass at ma-
turity times the production function divided by the de-
rivative of the production function. Given equation (5),
all of the terms cancel except the inverse of the production
exponent ( ).1/d

The value of d has been estimated and predicted to be
between 2/3 and 3/4. Metabolic scaling theory predicts the
metabolic exponent (reviewed in Brown et al.d p 3/4
2004), and Charnov (1991) assumes . Empirically,d p 3/4
the interspecies allometry for production in mammals
gives (Charnov 2001, fig. 3). In a review of overd p 0.67
600 growth allometries, the exponent for metabolism has
a mean of value of 0.71, but it is highly variable with a
standard deviation of 0.26 (data from Glazier 2005). Thus,
we assume and therefore expect the mean valued ≈ 0.7
of LRE to be about 1.4, although variation in d may cause
LRE to vary between approximately 1 and 2. Notice par-
ticularly that predicted LRE is independent of a, the height
of the production curve; thus, endotherms may grow and
produce offspring five to 10 times as fast as ectotherms
(Case 1978), but that should not affect LRE.

Our model describes the simpler case of determinate
growth where ma is the final adult size, which is constant
throughout the reproductive period. For indeterminate
growth where not all is given to reproduction afterdm/dt
age a, we predict similar LRE values if ma is used for adult
size (Lester et al. 2004), given the above mortality and
prereproductive growth assumptions.

Methods to Estimate LRE in Mammals and Lizards

We estimated LRE from the Purvis and Harvey (1995)
mammal data compilation (40 species) and for 71 pop-
ulations of 54 lizard species; our methods and data sources
are in appendixes A (mammals) and B (lizards). We treated
populations as independent data points, as is appropriate
for our normalizing (optimizing) natural selection model
of life histories (Charnov 1993).

In brief, our methods are as follows: LRE p (litters
or clutches/year) # (litter or clutch size) # (average
adult lifespan) # (offspring mass at independence)/
(adult mass at first reproduction). The ratio (offspring
mass at independence)/(adult mass at first reproduction)
assumes that the energetic cost of producing a mass of
adult tissue is equivalent to the energetic cost of producing
the same mass of offspring tissue. For lizards, where hatch-
ing and adult size are usually reported as body length, we
cubed the length ratio. For mammals, we account for mor-
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Figure 1: Life-history allometries for lizards (71 populations of 54 spe-
cies). A, versus adult3Clutch size # clutches/year # hatchling SVL

. As expected, the exponent is near 0.7. B, Adult life span (inverse3SVL
of adult instantaneous mortality rate, Z�1; yearly ) versus�Zsurvival p e
adult size. As expected, the exponent is near 0.3.

Figure 2: Frequency histogram of lifetime reproductive effort (LRE) for
(A) mammals and (B) lizards. See text and appendixes for estimation
procedures.

tality during the parental care period since maternal in-
vestment stops when offspring die (table A1). We use a
regression between survival to weaning and litter size from
empirical data to estimate the proportion of offspring that
die in each litter, and we assume that they die at a mass
that is the mean of mass at birth and mass at weaning.
We then estimate the mass at which investment stops by
averaging over the weaning mass and the mass of litter-
mates that died (app. A).

Lifetime Reproductive Effort Results for
Mammals and Lizards

Previous analyses have shown that across-species allom-
etries for mammals satisfy equation (5) for yearly mass of
offspring and equation (8) for life span versus adult mass

(Charnov 1991, 1993, 2001; Charnov and Ernest 2006).
In appendix B we compile the first data set to test equations
(5) and (8) for lizards. Figure 1 shows that the lizard data
are also closely approximated by equations (5) and (8).

Figure 2 shows the distributions of LRE for mammals
(A) and lizards (B). Both distributions are approximately
normal with means that are not significantly different from
1.4 ( , 95% confidence interval [CI]: 1.3–lizards p 1.43
1.5; , CI: 1.2–1.6). The LRE shows nomammals p 1.41
significant trend with adult body mass in mammals and
a slight increase in lizards ( , ,0.12 2LRE ∝ m r p 0.21 P !a

). We expect, and see, broad distributions (fig. 2) for.01
LRE because field estimates of life span and yearly offspring
production generally have low precision (although not
necessarily low accuracy; Krebs 1989). Our calculations
combine inherently imprecise field estimates of reproduc-
tive life span, annual clutch size, and relative offspring
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Table 1: Lifetime reproductive effort (LRE) by taxonomic group

LRE
average

Minimum
LRE

Maximum
LRE

SD
LRE No.

Lizard family:
Crotaphytidae 1.49 1.32 1.65 .23 2
Gekkonidae .71 .34 1.87 .59 6
Iguanidae 2.27 1.45 2.95 .68 6
Lacertidae 1.09 .98 1.20 .16 2
Phrynosomatidae 1.54 .93 2.45 .32 39
Scincidae .94 .44 1.76 .46 6
Teiidae 1.10 .77 1.40 .25 6
All 1.43 .34 2.95 .54 71

Mammalian order:
Rodentia 1.55 1.03 2.16 .42 8
Lagomorpha 1.54 .72 2.76 .93 4
Chiroptera 1.68 1.24 2.11 .61 2
Carnivora 1.50 .30 2.88 .82 10
Artiodactyla 1.34 .56 2.29 .60 10
Pinipeds 1.23 .65 1.79 .48 4
All 1.41 1.03 2.16 .42 40

mass. If, for example, each of these three field estimates
has a precision of �20%, then compounding these errors
could lead to deviations of over 70% from the actual value
of LRE. There may be interesting biological meaning in
the variation of LRE (tables 1, A1, A2). However, due to
the inherently high measurement error, distilling such
meaning from our estimates is not feasible with our cur-
rent data.

In table 1 we give the mean and standard deviation for
the six mammalian orders and seven lizard families for
which we have LRE measurements for two or more species
or populations. The mean LRE is between 1 and 2 in most
taxa, indicating that LRE has similar bounds both within
and between most taxonomic groups. However, LRE es-
timates of the Gekkonidae are consistently low, with five
of six species showing values below 0.8, while LRE is con-
sistently high for the Iguanidae ( for four out ofLRE 1 2
six species). Environmental resource availability can dra-
matically affect the interannual life-history dynamics in
temperate species of both taxa (Burghardt and Rand 1982;
Vitt 1986). Because such interannual variation creates in-
accuracy in measurements of average clutch size and num-
ber, as well as survival, LRE calculations for these taxa are
inherently imprecise. Field measures of clutch number in
tropical species of gecko must also come with a high degree
of error. Because geckos generally lay one egg at a time,
the chance of recapturing individual females that may lay
more than six eggs (clutches) a year (and thus require 16
recaptures) is highly unlikely. Thus, it would not be sur-
prising if LRE were systematically underestimated in this
group. Taxanomic differences in LRE may reflect inter-
esting ecological, evolutionary, and life-history dynamics;
however, we are reluctant to speculate further on such
biological meaning in LRE variation without more precise
field estimates and measures of d.

The overall patterns are as predicted by the simplest
metabolic life-history theory: LRE is similar for the en-
dothermic mammals and the ectothermic lizards, with the
average predicted by a metabolic exponent of . Wed p 0.7
do not consider this a conclusive test of metabolic life-
history theory but a hopeful beginning, given our scant
knowledge of the appropriate constraints for our models
(see below).

Other Theoretical Models

Variations in model assumptions may change the predicted
LRE. For example, suppose we make Z dependent on body
size over the ontogeny, with its own power function rule
(e.g., Kozlowski 1992):

�PZ p B m , (10)x i x

where Bi means species i. Repeating the max R0 argument
leading to equation (9) predicts , andd�1Z p (d � P)am

. If (larger animals survive better),LRE p 1/(d � P) P 1 0
LRE is decreased. Since there have not been conclusive
demonstrations of a mortality benefit to larger size, P is
likely to be small relative to d.

Many life-history evolution models (reviewed in Koz-
lowski 1992) use the more complex equation (6) as the
growth equation and, depending on things such as the
mortality assumptions, can generate determinate or in-
determinate growth. Charnov (2001) developed a new
model for mammal life histories. The model builds on a
growth equation developed by West et al. (2001), which
is a special version of equation (6):

dm
dp am � bm. (11)

dt

Charnov (2001) defines a term , which is them p m /Ma

mass at maturity relative to maximum mass, M; M is de-
fined as the mass at which no further growth is possible
( , so ). Using equationd�1 d�1 1�ddM/dt p 0 b p aM p am m

(11) for both growth and production predicts an optimal
m that is less than the inflection point in equation (11).
Thus, the model predicts that determinate growers stop
growing and begin reproducing before they reach the as-
ymptotic growth phase. Therefore, Charnov suggests that
equation (11) may govern growth, but reproduction (R )
is governed by an equation similar to equation (5):

dR p Cm , (12)
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where C is an as yet to be determined constant. According
to equation (12), .d�1RE p R/M p CM

Now we can predict LRE, assuming that equation (10)
describes mortality, equation (11) describes growth, and
equation (12) describes production. Again, we find the
value of Z that maximizes R0:

d�1Z p (d � P)(am � b)a

(similar to eq. [10] in Charnov 2001). Substituting Z and
equation (12) into equation (9) gives

C 1 1
LRE p . (13)

1�da (1 � m ) (d � P)

Now LRE is underdetermined until we know and m.C/a
We can make a preliminary estimate of the first two terms
in equation (13) from empirical data. Charnov (2001) pre-
dicted that it requires for this model to accountm ≈ 0.7
for existing mammal life-history data (Charnov 1993). The
proportion of adult metabolism that is allocated to re-
production is , which Moses (2005, pp. 23–40) esti-C/a
mated as for mammals. If we further assumeC/a ≈ 0.15
that , then , where0.6 ! d ! 0.8 LRE p x/(d � P) 1 ! x !

, reasonably close to our empirical estimates. Thus, we2.3
have shown that more complicated models of growth, pro-
duction, and mortality (eqq. [10]–[12]) generate a pre-
diction for LRE (eq. [13]), which can be parameterized
with empirical data and also produce LRE close to our
estimates. However, in this more complicated model, LRE
is linearly dependent on C/a and increases with both d

and m; thus; LRE might be expected to show much more
variation than it actually does.

We think it is important to note that empirical estimates
of LRE are consistent with a very simple model (eq. [5],
with mortality independent of mass), and the data are
consistent with the more complicated model described in
this section only within a fairly narrow parameter space.
It is possible that the simple model fully captures the rel-
evant life-history parameters; alternatively, perhaps the
more complicated model (eqq. [10]–[12]) is correct, but
it can be collapsed to the simpler model because of trade-
offs between variables in equation (13). We encourage
further explorations of those trade-offs and of the sensi-
tivity of LRE to alternative models.

Discussion

Williams’s (1966) hypothesis is probably the single most
influential idea in life-history studies, with about 1,200
citations (source: Web of Science http://isiknowledge.com,
2006). Its refinement in terms of LRE suggests that it is
even more general than Williams originally proposed: or-
ganisms can be quite different and still have similar LRE
values. Arguably, the greatest differences between various
taxa lie in their production and growth rates (Case 1978),

and metabolic life-history theory predicts (and our data
show) LRE to be independent of those differences. Equa-
tions (5)–(8) show that maximizing R0 results in a mor-
tality rate (Z) that is the derivative of the production func-
tion. Using the simplest production model (eq. [5]), all
of the terms cancel except the exponent on the production
function.

Kozlowski (1997) criticized equation (5) because it gen-
erates exponential rather than asymptotic growth. Equa-
tion (6) (and eq. [11]) can generate asymptotic growth,
but Charnov (2001) showed that if equation (11) is also
used to describe reproduction, then maximizing R0 pre-
vents organisms from actually reaching the asymptotic
growth phase described by the equation. Charnov solves
this problem by using equation (11) for growth but equa-
tion (12) for production. We have shown that the predicted
LRE based on the 2001 model (eq. [13]) depends on five
variables (C, a, d, P, and m), while the 1991 model (eq.
[5]) generates a much simper prediction for LRE ( ).1/d
Our empirical estimates of LRE are quite close to ,1/d
suggesting that if the other four variables are part of LRE,
they tend to cancel out. Parameterizing equation (13) with
preliminary empirical estimates of and m do show thatC/a
equation 13 collapses to something close to equation (9).
We find it remarkable that species that vary widely in a,
and could potentially vary widely in C, P, and m, have very
similar values of LRE. It remains an open question whether
the more complicated model in equation (13) can account
for some of the variation we observe in LRE or whether
the simpler model captures the essence of LRE.

Estimating LRE from field data, even at the coarse level
we do here, is difficult. For mammals, it required esti-
mating mortality before weaning in the field. There is not
much data on which to base this estimate, so it is nec-
essarily a coarse estimate. For lizards, we assembled a data
set with the appropriate measures, though survival mea-
sures were sometimes highly variable. We are well aware
of the imprecision inherent in the estimation of LRE from
field data. We simply do not know how much of the var-
iation in figure 2 is estimation error versus biological
(trade-off) differences between the species, differences in
d, or deviations from the form of the production function
(eq. [5]).

The importance of LRE to understanding the evolution
of life histories is evident in equation (4), which states
that R0 is the product of three dimensionless quantities:
survival to reproduction, relative offspring mass, and LRE.
Of these three dimensionless quantities, LRE is particularly
interesting because it is the one that links the energetics
of production and reproduction to life span. Previous work
described R0 as a function of other dimensionless quan-
tities (e.g., Charnov 1997). Those remain valid quantities
from which to measure R0, but the formulation we present
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here is much more intuitively meaningful. In a funda-
mental sense, this way of rewriting R0 says that LRE and
the relative offspring size are the two key life-history var-
iables. Though relative offspring size is taxonomically quite
variable (Charnov 2002), our data suggest LRE is very
similar for otherwise very different organisms. Thus, there
is a trade-off between the production exponent, relative
mass at independence, and survival, so that during her
lifetime, a female will ultimately produce a mass of off-
spring approximately equal to 1.4 times her own body
mass. The LRE number can easily accommodate any mor-
tality cost to reproductive allocation, as this would simply
decrease life span to increase RE; perhaps the optimum
LRE would not be too different from trade-off cases with-
out the mortality cost, like those considered here.

Finally, we note that life-history workers usually con-
sider the age-specific schedule of reproductive allocation
to be the object of interest (e.g., Kozlowski 1992; Stearns
1992; Charlesworth 1994). Our interest is in a more macro
view in which we aggregate the life history by looking at

the “average reproductive allocation” and the “average life
span” (Charnov 1997, 2002); LRE (eq. [3]) is an aggregate
number that combines reproductive allocation, adult size,
and adult life span to yield a single dimensionless char-
acterization. We consider this approach complementary to
the more traditional fine-scale view of life histories. The
LRE is a key component of fitness (eq. [4]) and it encom-
passes the central core of 40 years of life-history thought—
reproductive allocation, size at maturity, and adult life
span. This places it central to the study of life histories;
we suggest people estimate it and theorists predict it from
trade-off and production assumptions beyond ours.
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APPENDIX A

Mammals

Lifetime reproductive effort (LRE) was calculated for mammals from data in Purvis and Harvey (1995). They list life-
history characteristics of 64 species in nine mammalian orders. The data are subject to reasonably stringent inclusion
criteria described in their article. All of the variables required to calculate LRE are listed for 40 species. The LRE was
calculated from . Litters/year,LRE p litters/year # litter size # adult life span # mass at independence/adult mass
litter size, and adult mass are given in Purvis and Harvey (1995). Adult life span (average time between maturity and
death) is calculated as the inverse of annual adult instantaneous mortality rate.

Purvis and Harvey list mass at weaning (mw), and it is often assumed that mass at independence .(m ) p mi w

However, if there is mortality between birth and weaning, mw is an overestimate of the average size that an offspring
becomes independent of maternal provisioning. That is, offspring become independent either when they die or when
they wean. We incorporate preweaning mortality into the estimate of mi.

We use data from the literature (table A1) to estimate survival from birth to weaning (Sw) in the field as a function
of litter size (L) and find ( species, ). This regression equation is used to estimate the�0.35 2S p 0.7L N p 13 r p 0.67w

proportion of offspring that survive to weaning (Sw), and for these offspring . The proportion of offspringm p mi w

that die between birth and weaning is , and for them we assume they die at a size that is the mean of the size1 � Sw

at birth (mb) and mw; thus, . Thus, we calculate an average mi over all offspring that are born:m p 1/2(m � m )i b w

.m p S m � 1/2(1 � S )(m � m )i w w w b w

Table A1: Litter size and rates of survival to weaning in natural populations

Species Litter size Preweaning survival

Ovis aries (Soay sheep) 1.14 (Gaillard et al. 2000) .80 (Gaillard et al. 2000)
Alces alces (moose) 1.29 (Gaillard et al. 2000) .51 (Gaillard et al. 2000)
Odocoileus virginianus (white-tailed deer) 1.54 (Gaillard et al. 2000) .49 (Gaillard et al. 2000)
Odocoileus hemionus (mule deer) 1.64 (Gaillard et al. 2000) .55 (Gaillard et al. 2000)
Capreolus capreolus (roe deer) 1.84 (Gaillard et al. 2000) .57 (Gaillard et al. 2000)
Peromyscus mexicanus 2.70 (Duquette and Millar 1998) .63 (Duquette and Millar 1998)
Microtus ochrogaster 3.50 (Innes and Millar 1994) .44 (Millar 2007)
Peromyscus leucopus 4.58 (Millar et al. 2004) .33 (Millar et al. 2004)
Clethrionomys gapperi 5.00 (Ernest 2003) .46 (Millar 2007)
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Table A1 (Continued)

Species Litter size Preweaning survival

Peromyscus maniculatus 5.14 (Millar and McAdam 2001) .38 (Millar and McAdam 2001)
Microtus arvalis 5.20 (Innes and Millar 1994) .48 (Millar 2007)
Microtus townsendii 5.30 (Innes and Millar 1994) .37 (Millar 2007)
Microtus pennsylvanicus 6.50 (Ernest 2003) .28 (Millar 2007)
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APPENDIX B

Lizards

Life-history data necessary for the calculation of lifetime reproductive effort (LRE) were complied from the published
literature for 71 populations and 54 species of lizards of the following 11 families: Agamidae, Corytophanidae, Cro-
taphytidae, Gekkonidae, Iguanidae, Lacertidae, Phrynosomatidae, Polychrotidae, Scincidae, Teiidae, and Xantusiidae.
The parameters of female snout-vent length (SVL) at maturity, average adult SVL, average hatchling SVL, average
clutch size, average annual number of clutches, and average adult survival rate were gathered from both primary
literature sources and previously published reviews of lizard life histories. These parameters were gathered from single
literature sources for 60% of these 71 populations. If all of these data were not available for a single population (or
from a single source), then average values for a species were derived from a number of studies.

The maturity SVL (ma) used in our data set is either that reported by the original authors or the SVL for the smallest
reproductive female reported in a study. Female SVL at maturity ranged from 35 mm to 378 mm across all species.

In our calculation of LRE and in figure 1, we used the SVL3 of both maturity SVL and hatchling SVL as a proxy
for mass. This conversion is supported by a previous study that found body mass to scale as the SVL raised to an
exponent of 2.98 across 47 species of lizards (Pough 1980). Similarly, unpublished field data from one of our authors
(R. Warne) shows an exponent of 3.12 across 14 species of lizards and 436 individuals ranging from hatchling to adult
( , 95% CI of –3.23, ). We did not use mass in our2log [mass] p �10.9 � 3.12 # log [SVL] exponent p 2.99 r p 0.87
analyses for two reasons: first, SVL is much more commonly reported in the herpetological literature as a measure of
size and age, and second, the mass of lizards of a given SVL can be highly variable due to relatively large ingested
and egested meals.

We calculated adult life span as the inverse of the adult instantaneous mortality rate. We estimated the average
yearly mass given to reproduction as ; again, SVL3 is used to3average clutch size # clutches per year # hatchling SVL
estimate hatchling mass.
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Table B1: Lizard life-history data

Species

Female
maturity

SVL

Female
average

SVL
Hatchling

SVL

Clutch
size

(mean)

Clutches
per year
(mean)

Female
adult

survival LRE Source

Agamidae:
Japalura swinhonis 54 76.1 20 4.3 2 .82 2.39 Lin and Lu 1982

Corytophanidae:
Basiliscus basiliscus 135 168.0 42 9.5 6 .33 1.55 Dunham et al. 1988

(appendix); Shine
and Charnov 1992

Crotaphytidae:
Crotaphytus collaris 70 85.1 40 5 1.5 .48 1.65 Turner 1977; Ballinger

and Hipp 1985; De-
genhardt et al. 1996

Gambelia wislizeni 90 105.0 45 7.3 1 .50 1.32 Tinkle and Hadley
1975; Degenhardt et
al. 1996

Gekkonidae:
Diplodactylus

damaeus 45 52.7 22 2 2 .33 .42 Henle 1990b
Diplodactylus

tessellatus 45 50.2 25 2 2 .18 .40 Henle 1990b
Gehyra variegata 48 53.7 25 1 2 .55 .47 Henle 1990a
Heteronotia binoei 44 46.7 21 2 2 .28 .34 Henle 1990b
Oedura ocellata 79 80 35 2 1.5 .87 1.87 Bustard 1971
Oedura reticulata 63 66.3 26 2 1 .83 .75 Dunham et al. 1988

(appendix); Kitche-
ner et al. 1988

Iguanidae:
Amblyrhynchus

cristatus 252 279.0 118 2.5 1 .85 1.58 Laurie 1990; Laurie
and Brown 1990

Ctenosaura similis 200 276.0 54 25 1 .78 1.98 Fitch 1970; Dunham
et al. 1988 (appen-
dix); Clobert et al.
1998 (app. I)

Cyclura carinata 192 225.0 80 4.3 1 .90 2.95 Dunham et al. 1988
(appendix); Shine
and Charnov 1992

Cyclura pinguis 378 468.0 105 14 1 .90 2.85 Wiewandt 1982; Clob-
ert et al. 1998 (app.
I); Iverson et al.
2004

Cyclura stejnegeri 375 475.0 109 12 1 .90 2.80 Wiewandt 1982; Clob-
ert et al. 1998 (app.
I); Iverson et al.
2004

Dipsosaurus dorsalis 110 120.0 50 5.5 1 .70 1.45 Krekorian 1984
Lacertidae:

Lacerta vivipara 44 57.6 21 6.0 1 .52 .98 Sorci et al. 1996;
Clobert et al. 1998
(app. I)

Takydromus
tachydromoides 41 45.7 22 3.6 3 .25 1.20 Telford 1969

Phrynosomatidae:
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Table B1 (Continued)

Species

Female
maturity

SVL

Female
average

SVL
Hatchling

SVL

Clutch
size

(mean)

Clutches
per year
(mean)

Female
adult

survival LRE Source

Callisaurus
draconoides 60 75.5 29 4.4 3 .20 .93 Pianka and Parker

1972
Conolophus

subcristatus 370 416 99 13.5 1 .90 2.45 Werner 1982; Wie-
wandt 1982; Clob-
ert et al. 1998 (app.
I)

Cophosaurus
texanus 50 60.0 22 6.1 3 .30 1.29 Sugg et al. 1995; De-

genhardt et al. 1996
Holbrookia maculata

(NM) 45 54.0 25 5 2 .20 1.07 Gennaro 1974
H. maculata (NE) 41 50.0 25 4.5 2 .27 1.56 Jones and Ballinger

1987
Phrynosoma

cornutum 70 87.0 25 21.3 1.5 .48 1.98 Howard 1974; Pianka
and Parker 1975;
Munger 1986

Phrynosoma
modestum 42 57.0 25 13 1.5 .14 2.09 Howard 1974; Mun-

ger 1986
Phrynosoma

platyrhinos 70 76.5 27 8.4 1.5 .55 1.21 Medica et al. 1973;
Pianka and Parker
1975

Phrynosoma solare 80 30 17 1 .58 1.65 Parker 1971; Degen-
hardt et al. 1996

Sauromalus ater 125 160.0 54 6.9 1 .75 1.93 Abts 1987
Sceloporus clarkii 89 100.0 34 19.6 1 .50 1.58 Tinkle and Dunham

1986; Degenhardt et
al. 1996

Sceloporus graciosus
(UT) 50 52.0 25 3.7 2 .56 1.60 Tinkle et al. 1993

S. graciosus (CA) 57 25 4.1 2 .55 1.16 Tinkle et al. 1993
Sceloporus jarrovii 54 77.0 29 8.4 1 .40 1.42 Ballinger 1973
Sceloporus magister 80 89.0 32 6.2 2 .61 1.19 Vitt and Ohmart

1974; Tinkle 1976;
Degenhardt et al.
1996

Sceloporus merriami 43 50.2 22 4.5 2 .40 1.42 Dunham 1981
Sceloporus olivaceus 80 96.0 26 18 3 .25 1.34 Blair 1960
Sceloporus poinsetti 85 104.0 33 10.5 1 .65 1.43 Ballinger 1973
Sceloporus scalaris 41 52.0 20 8.8 1.5 .25 1.11 Ballinger and Cond-

gon 1981; Degen-
hardt et al. 1996

Sceloporus u. conso-
brinus (NM) 54 68.4 22 9.9 3.5 .20 1.46 Vinegar 1975b

Sceloporus u. tristi-
chus (NM) 53 63.3 25 7.2 2.5 .32 1.66 Vinegar 1975b

Sceloporus undulatus
(AZ) 60 65.0 27 8.3 3.0 .24 1.59 Tinkle and Dunham

1986
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Table B1 (Continued)

Species

Female
maturity

SVL

Female
average

SVL
Hatchling

SVL

Clutch
size

(mean)

Clutches
per year
(mean)

Female
adult

survival LRE Source

S. undulatus (CO) 58 70.0 28 7.9 2.0 .37 1.79 Tinkle and Dunham
1986

S. undulatus (KA) 47 57.0 24 7.0 2.5 .27 1.78 Tinkle and Dunham
1986

S. undulatus (NE) 45 60.2 23 5.7 2.5 .30 1.58 Jones and Ballinger
1987

S. undulatus (NJ) 60 73.0 26 8.0 2.0 .44 1.59 Niewiarowski and
Roosenburg 1993;
Niewiarowski et al.
2004

S. undulatus (OH) 66 75.0 25 11.8 2.0 .44 1.56 Tinkle and Dunham
1986

S. undulatus (SC) 55 63.0 23 7.4 3.0 .49 1.99 Tinkle and Dunham
1986

S. undulatus (TX) 47 57.0 22 9.5 3.0 .11 1.32 Tinkle and Dunham
1986

S. undulatus (UT) 60 69.0 25 6.3 3.0 .48 1.86 Tinkle and Dunham
1986

Sceloporus virgatus 47 48.2 22 9.5 1 .50 1.41 Vinegar 1975a; Rose
1981

Sceloporus woodi 45 21 5 3 .40 1.66 Jackson and Telford
1974; McCoy et al.
2004

Urosaurus ornatus
(NM) 41 49.0 21 7.5 2.0 .32 1.77 Ballinger 1977

U. ornatus (AZ) 45 20 7.0 1.5 .56 1.59 Smith 1977
U. ornatus (TX) 39 48.0 21 5.4 3.5 .11 1.34 Martin 1977
U. ornatus (AZ) 39 52.0 21 7.1 3.0 .11 1.51 Tinkle and Dunham

1983
U. ornatus (TX) 41 48.4 21 5.0 3.0 .33 1.82 Dunham 1981
Uta stansburiana

(TX) 42 47.2 22 3.6 3.5 .25 1.31 Tinkle 1967; Tinkle
and Hadley 1975

U. stansburiana
(NV) 42 45.4 22 3.5 3 .23 1.03 Turner et al. 1974

(pp. 117–128)
Polychrotidae:

Anolis acutus 36 42.2 20 1 6 .37 1.03 Ruibal et al. 1972;
Ruibal and Philibo-
sian 1974

Scincidae:
Emoia atrocostata 80 90.0 35 2 3 .32 .44 Alcala and Howard

1967
Eulamprus

tympanum 79 88.0 39 3.2 1 .66 .93 Schwarzkopf 1993;
Blomberg and
Shine 2001

Eumeces fasciatus 52 63.3 24 5.9 1 .50 .84 Turner 1977; Dunham
et al. 1988
(appendix)

Eumeces obsoletus 77 120.0 37 11 1 .50 1.76 Hall 1971; Degenhardt
et al. 1996

Morethia boulenger 36 45 19 2.7 3 .15 .63 Henle 1991
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Table B1 (Continued)

Species

Female
maturity

SVL

Female
average

SVL
Hatchling

SVL

Clutch
size

(mean)

Clutches
per year
(mean)

Female
adult

survival LRE Source

Scincella lateralis 35 42.0 19 2.5 2 .46 1.03 Brooks 1967
Teiidae:

Aspidoscelis inornata 51 57.0 34 2.4 1.5 .30 .89 Christiansen 1971
Aspidoscelis

neomexicana 47 65 37 2.3 1.5 .30 1.40 Christiansen 1971
Aspidoscelis

sexlineata 55 73.0 33 2.1 2 .41 1.02 Fitch 1958; Degen-
hardt et al. 1996

Aspidoscelis tesselata 66 83.0 45 3.5 1.5 .27 1.27 Knopf 1966; Schall
1978; Degenhardt et
al. 1996

Aspidoscelis tigris 60 82.3 38 3 1 .55 1.27 Tinkle and Hadley
1975; Degenhardt et
al. 1996

Aspidoscelis
uniparens 60 66.0 36 3.3 2.5 .10 .77 Hulse 1981; Degen-

hardt et al. 1996
Xantusiidae:
Xantusia vigilis 36 40.0 23 1.8 1 .66 1.13 Zweifel and Lowe

1966

Note: Data from three reviews were used (Tinkle and Dunham 1986; Dunham et al. 1988; Colbert et al. 1998). to vent length;SVL p snout

reproductive effortLRE p lifetime
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