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Preamble

This volume on advances and applications of Dezert-Smarandache Theory
(DSmT) for information fusion collects theoretical and applied contribu-

tions of researchers working in different fields of applications and in mathe-
matics. Some contributions have not been published until now, or only par-
tially published and presented since the summer 2006 in international confer-
ences, seminars, workshops and journals. Several chapters include figures in
color which can be seen from the free electronic copy of this volume available
at http://www.gallup.unm.edu/~smarandache/DSmT-book3.pdf or upon re-
quest to editors or authors. Part 1 of this volume presents the current state-of-
the-art on theoretical investigations while Part 2 presents new applications in
defense, geosciences, remote sensing, medicine, etc. Some works in this book
are at their preliminary stages, others are under progress, and some are at
their final stages of development. We hope that this third volume on DSmT
will bring help and suscitate new ideas to researchers and engineers working in
quantitative and qualitative information fusion under uncertainty. This third
volume has about 760 pages, split into 25 chapters, from 41 contributors.

In the first part of this volume the readers will discover: the different fusion
spaces where the DSmT can work (power-set, hyper-power set, or super-power
set) depending on the model associated with the frame of the problem one
wants to solve; new fusion rules such as the simple uniform or partial uni-
form redistribution rules, and more complex classes based on redistribution
to subsets or complements including also the reliability of the sources; a new
probabilistic transformation which outperforms the classical pignistic transfor-
mation in term of probabilistic information content; a DSm Field and Linear
Algebra of Refined Labels (FLARL) that is able to deal exactly with qualitative
masses if the labels are equidistant (if they are not equidistant, the FLARL
operators can be still used, but the result will be approximate); the extension
of quantitative fusion rules into qualitative fusion rules by simply replacing
the numerical operations by corresponding qualitative operations thanks to
FLARL; the extension of the proportional conflict redistribution rule no. 6
on continuous frames for combining densities of probabilities and thus keeping
multiple modes in the resulting fusionned density; new sampling techniques
based on referee functions for the fusion and also codes or pseudo-codes to
implement some rules, etc.
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More applications of DSmT have emerged in the past three years from the
apparition of the second book of DSmT in summer 2006. Part 2 of this vol-
ume presents some of them done in target tracking, in satellite image fusion,
in snow-avalanche risk assessment, in multi-biometric match score fusion, in
assessment of an attribute information retrieved based on the sensor data or
human originated information, in sensor management, in automatic goal allo-
cation for a planetary rover, in computer-aided medical diagnosis, in multiple
camera fusion for tracking objects on ground plane, in object identification, in
fusion of Electronic Support Measures (ESM) allegiance reports, in map regen-
erating forest stands, in target type tracking, etc.

We want to thank all the contributors of this third volume for their research
works and their interests in the development of DSmT. We are also grateful
to other colleagues for encouraging us to edit this third volume, for sharing
with us several ideas and for their questions and comments on DSmT through
the years. We specially thank Dr. Albena Tchamova for her constant devotion
and help in the preparation and in the peer-review of this volume. We thank
Dr. Erik Blasch, 2007 President of the International Society of Information
Fusion (www.isif.org.) for the Preface. We also thank Prof. Pierre Valin,
2006 ISIF President, for peer-reviewing the chapters of this book. Jean Dezert
thanks Dr. Romain Kervarc, Dr. Christophe Peyret and Dr. Grégoire Mercier
for helping him to overcome typesetting difficulties under LATEX during the pre-
liminary stage of this book project. Florentin Smarandache is grateful to The
University of New Mexico, U.S.A. that many times partially sponsored him
to attend international conferences, workshops and seminars on Information
Fusion and Jean Dezert is grateful to the Department of Information Modeling
and Processing (DTIM) at the French Aerospace Lab (Office National d’Études
et de Recherches Aérospatiales), Châtillon, France for encouraging him to carry
on this research and for its financial support.

The Editors.



Preface

Each decade, there have been probabilistic and non-probabilistic reasoning
advances that have spawned a new generation of processing techniques to

support information fusion. Dezert-Smarandache Theory (DSmT) is the the-
ory of the first decade of the 21st century. Dr. Jean Dezert and Dr. Florentin
Smarandache have combined their efforts to advance the mathematical field
of evidence theory popularized by Dempster-Shafer (DS). The DS method ex-
tended Bayesian theory to deal with conflicting and imprecise data, ignorance,
and belief and plausibility relations. DSmT further generalizes the DS theory
to include the hyper-power set over which (1) complex static and dynamic in-
formation fusion results are realized for large data conflicts, (2) the frame of
discernment (set) is refined and beliefs redistributed, and (3) data is better
understood over vagueness, imprecision, and large relative differences.

Throughout the last decade, Dr. Dezert and Dr. Smarandache have sup-
ported the decision-making community by providing solutions to information
fusion technique limitations by developing the DSmT, providing seminars and
tutorials, as well as producing a series of texts. The dedication of their efforts is
demonstrated through the compilation of the on-line and freely available texts
and exemplar code. The hard work and contribution is a serious commitment
to organize their thoughts, teach the next generation of researchers, as well as
provide valuable feedback to the authors and researchers throughout the world.

As this text is the third volume in the series on Advances and Applications
of DSmT for Information Fusion, the broad range of applications shows the
power of the DSmT technique to advance the state-of-the-art in many math-
ematical, business, and engineering fields. Volume 1 focused on defining the
DSmT, providing comparisons between many fusion rules, and the hybrid DSm
(DSmH) rule applied to tracking in clutter, data association, and distributed
situation analysis. Volume 2 focused on the Proportional Conflict Redistribu-
tion (PCR) rules, Belief Conditioning Rules (BCR), and fusion of qualitative
beliefs for applications in targeting and tracking. Volume 2 also provides many
MATLABTM routines to implement the DSmT.
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The completion of the third volume is quite exciting as it contains 25 chap-
ters, from 41 contributors, detailing the DSmT applications over 700 pages.
In the current installment of DSmT Advances and Applications, there is some-
thing for everyone in the field of Information Fusion. Dezert and Smarandache
work with Frédéric Dambreville to present new advances for the Proportional
Conflict Redistribution (PCR) rule for qualitative applications. Arnaud Martin
and Xinde Li provide new developments in belief redistribution of subsets or
complements (RSC) and imprecise labels, respectively. Milan Daniel provides
new insights on Belief Conditioning Rules (BCR). For these various advances,
examples are shown for applications in tracking that leverage contemporary
techniques such as particle filtering.

Applications demonstrate the power of the DSmT framework. In this third
Volume, DSmT is applied to the entire spectrum of the Information Fusion
that would interest any reader in data, sensor, information, and mathemat-
ical fusion topics. Highlighted in Figure 1 are the contemporary issues that
include the links between (1) data conditioning and information management,
(2) combined situation and impact assessment, and (2) knowledge representa-
tion between machine processing and user coordination. Various applications
leverage DSmT “Advances” listed above along with DSmH (hybrid), DSmP
(Probabilistic), and DSmT theoretical insights. The third volume attacks these
application issues of coordination between the “levels” of information fusion.

Figure 1: Data Fusion Information Group (DFIG) Model.



Briefly, here is a list of DSmT applications in Vol. 3 as categorized by the
DFIG:

• Level 0 – Data Assessment : terrain analysis and data conditioning

• Level 1 – Object Assessment : simultaneous track and identification as
well as image fusion

• Level 2 – Situation Assessment : association as well as event and entity
determination

• Level 3 – Impact Assessment : geographic risk assessment

• Level 4 – Process Refinement : sensor management and performance eval-
uation

• Level 5 – User Refinement : decision and display

• Level 6 – Mission Management : attribute information for command and
control

Many results are presented for different research areas including: robotics,
biometric fingerprinting, satellite image fusion, and standard object tracking
and identification. Without a doubt, DSmT is the tool1 from this decade that
advances information fusion for decision-making.

Erik Blasch, PhD, MBA
Air Force Research Laboratory
Dayton, OH
April 2009

1. E. Bossé, J. Roy, and S. Wark, Concepts, Models, and Tools for Information Fusion,
Artech House, 2007.
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Chapter 1

An introduction to DSmT

Jean Dezert Florentin Smarandache
French Aerospace Research Lab., Chair of Math. & Sciences Dept.,

ONERA/DTIM/SIF, University of New Mexico,
29 Avenue de la Division Leclerc, 200 College Road,

92320 Châtillon, France. Gallup, NM 87301, U.S.A.
jean.dezert@onera.fr smarand@unm.edu

Abstract: The management and combination of uncertain, im-
precise, fuzzy and even paradoxical or highly conflicting sources of
information has always been, and still remains today, of primal im-
portance for the development of reliable modern information sys-
tems involving artificial reasoning. In this introduction, we present
a survey of our recent theory of plausible and paradoxical reasoning,
known as Dezert-Smarandache Theory (DSmT), developed for deal-
ing with imprecise, uncertain and conflicting sources of information.
We focus our presentation on the foundations of DSmT and on its
most important rules of combination, rather than on browsing spe-
cific applications of DSmT available in literature. Several simple ex-
amples are given throughout this presentation to show the efficiency
and the generality of this new theory.
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1.1 Introduction

The management and combination of uncertain, imprecise, fuzzy and even
paradoxical or highly conflicting sources of information has always been, and
still remains today, of primal importance for the development of reliable modern
information systems involving artificial reasoning. The combination (fusion) of
information arises in many fields of applications nowadays (especially in de-
fense, medicine, finance, geo-science, economy, etc). When several sensors,
observers or experts have to be combined together to solve a problem, or if
one wants to update our current estimation of solutions for a given problem
with some new information available, we need powerful and solid mathemat-
ical tools for the fusion, specially when the information one has to deal with
is imprecise and uncertain. In this chapter, we present a survey of our recent
theory of plausible and paradoxical reasoning, known as Dezert-Smarandache
Theory (DSmT) in the literature, developed for dealing with imprecise, uncer-
tain and conflicting sources of information. Recent publications have shown
the interest and the ability of DSmT to solve problems where other approaches
fail, especially when conflict between sources becomes high. We focus this pre-
sentation rather on the foundations of DSmT, and on the main important rules
of combination, than on browsing specific applications of DSmT available in
literature. Successful applications of DSmT in target tracking, satellite surveil-
lance, situation analysis, robotics, medicine, biometrics, etc, can be found in
Parts II of this volume, in Parts II of [32, 36] and on the world wide web [38].
Several simple examples are given in this chapter to show the efficiency and
the generality of DSmT.

1.2 Foundations of DSmT

The development of DSmT (Dezert-Smarandache Theory of plausible and para-
doxical reasoning [9, 32]) arises from the necessity to overcome the inherent
limitations of DST (Dempster-Shafer Theory [25]) which are closely related
with the acceptance of Shafer’s model for the fusion problem under consider-
ation (i.e. the frame of discernment Θ is implicitly defined as a finite set of
exhaustive and exclusive hypotheses θi, i = 1, . . . , n since the masses of be-
lief are defined only on the power set of Θ - see section 1.2.1 for details), the
third middle excluded principle (i.e. the existence of the complement for any
elements/propositions belonging to the power set of Θ), and the acceptance of
Dempster’s rule of combination (involving normalization) as the framework for
the combination of independent sources of evidence. Discussions on limitations
of DST and presentation of some alternative rules to Dempster’s rule of com-
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bination can be found in [12, 16, 18–20, 22, 24, 32, 40, 48, 51, 52, 55–58] and
therefore they will be not reported in details in this introduction. We argue
that these three fundamental conditions of DST can be removed and another
new mathematical approach for combination of evidence is possible. This is
the purpose of DSmT.

The basis of DSmT is the refutation of the principle of the third excluded
middle and Shafer’s model, since for a wide class of fusion problems the in-
trinsic nature of hypotheses can be only vague and imprecise in such a way
that precise refinement is just impossible to obtain in reality so that the exclu-
sive elements θi cannot be properly identified and precisely separated. Many
problems involving fuzzy continuous and relative concepts described in nat-
ural language and having no absolute interpretation like tallness/smallness,
pleasure/pain, cold/hot, Sorites paradoxes, etc, enter in this category. DSmT
starts with the notion of free DSm model, denoted Mf (Θ), and considers Θ
only as a frame of exhaustive elements θi, i = 1, . . . , n which can potentially
overlap. This model is free because no other assumption is done on the hy-
potheses, but the weak exhaustivity constraint which can always be satisfied
according the closure principle explained in [32]. No other constraint is involved
in the free DSm model. When the free DSm model holds, the commutative and
associative classical DSm rule of combination, denoted DSmC, corresponding
to the conjunctive consensus defined on the free Dedekind’s lattice is performed.

Depending on the nature of the elements of the fusion problem under con-
sideration, it can happen that the free model does not fit with the reality
because some subsets of Θ can contain elements known to be truly exclusive
and even possibly truly non existing at a given time (specially in dynamic fu-
sion problems where the frame Θ changes with time with the revision of the
knowledge available). These integrity constraints are introduced in the free
DSm model Mf (Θ) in order to fit with the reality. This allows to construct
a hybrid DSm model M(Θ) on which the combination will be efficiently per-
formed. Shafer’s model, denoted M0(Θ), corresponds to a very specific hybrid
DSm model including all possible exclusivity constraints. DST has been devel-
oped for working with M0(Θ) whereas DSmT was proposed for working with
any hybrid models (including Shafer’s and free DSm models), to manage as
efficiently and precisely as possible imprecise, uncertain and potentially highly
conflicting sources of evidence while keeping in mind the possible dynamicity of
the frame. The foundations of DSmT are therefore totally different from those
of all existing approaches managing uncertainties, imprecisions and conflicts.
DSmT provides a new interesting way to attack the information fusion prob-
lematic with a general framework in order to cover a wide variety of problems.
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DSmT refutes also the idea that sources of evidence provide their beliefs
with the same absolute interpretation of elements of the same frame Θ and the
conflict between sources arises not only because of the possible unreliability
of sources, but also because of possible different and relative interpretations
of Θ, e.g. what is considered as good for somebody can be considered as bad
for somebody else. There is some unavoidable subjectivity in the belief assign-
ments provided by the sources of evidence, otherwise it would mean that all
bodies of evidence have a same objective and universal interpretation (or mea-
sure) of the phenomena under consideration, which unfortunately rarely occurs
in reality, but when basic belief assignments (bba’s) are based on some objec-
tive probabilities transformations. But in this last case, probability theory can
handle properly and efficiently the information, and DST, as well as DSmT,
becomes useless. If we now get out of the probabilistic background argumenta-
tion for the construction of bba, we claim that in most of cases, the sources of
evidence provide their beliefs about elements of the frame of the fusion problem
only based on their own limited knowledge and experience without reference
to the (inaccessible) absolute truth of the space of possibilities.

1.2.1 The power set, hyper-power set and super-power set

In DSmT, we take very care of the model associated with the set Θ of hypothe-
ses where the solution of the problem is assumed to belong to. In particular,
the three main sets (power set, hyper-power set and super-power set) can be
used depending on their ability to fit adequately with the nature of hypothe-
ses. In the following, we assume that Θ = {θ1, . . . , θn} is a finite set (called
frame) of n exhaustive elements1. If Θ = {θ1, . . . , θn} is a priori not closed (Θ
is said to be an open world/frame), one can always include in it a closure ele-
ment, say θn+1 in such away that we can work with a new closed world/frame
{θ1, . . . , θn, θn+1}. So without loss of generality, we will always assume that
we work in a closed world by considering the frame Θ as a finite set of exhaus-
tive elements. Before introducing the power set, the hyper-power set and the
super-power set it is necessary to recall that subsets are regarded as propo-
sitions in Dempster-Shafer Theory (see Chapter 2 of [25]) and we adopt the
same approach in DSmT.

1We do not assume here that elements θi are necessary exclusive, unless specified. There
is no restriction on θi but the exhaustivity.
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• Subsets as propositions: Glenn Shafer in pages 35–37 of [25] consid-
ers the subsets as propositions in the case we are concerned with the
true value of some quantity θ taking its possible values in Θ. Then the
propositions Pθ(A) of interest are those of the form2:

Pθ(A) � The true value of θ is in a subset A of Θ.

Any proposition Pθ(A) is thus in one-to-one correspondence with the
subset A of Θ. Such correspondence is very useful since it translates
the logical notions of conjunction ∧, disjunction ∨, implication ⇒ and
negation ¬ into the set-theoretic notions of intersection ∩, union ∪, in-
clusion ⊂ and complementation c(.). Indeed, if Pθ(A) and Pθ(B) are two
propositions corresponding to subsets A and B of Θ, then the conjunction
Pθ(A)∧Pθ(B) corresponds to the intersection A∩B and the disjunction
Pθ(A) ∨ Pθ(B) corresponds to the union A ∪ B. A is a subset of B if
and only if Pθ(A) ⇒ Pθ(B) and A is the set-theoretic complement of B
with respect to Θ (written A = cΘ(B)) if and only if Pθ(A) = ¬Pθ(B).
In other words, the following equivalences are then used between the
operations on the subsets and on the propositions:

Operations Subsets Propositions
Intersection/conjunction A ∩B Pθ(A) ∧ Pθ(B)
Union/disjunction A ∪B Pθ(A) ∨ Pθ(B)
Inclusion/implication A ⊂ B Pθ(A) ⇒ Pθ(B)
Complementation/negation A = cΘ(B) Pθ(A) = ¬Pθ(B)

Table 1.1: Correspondence between operations on subsets and on propositions.

• Canonical form of a proposition: In DSmT we consider all propo-
sitions/sets in a canonical form. We take the disjunctive normal form,
which is a disjunction of conjunctions, and it is unique in Boolean alge-
bra and simplest. For example, X = A ∩ B ∩ (A ∪ B ∪ C) it is not in
a canonical form, but we simplify the formula and X = A ∩ B is in a
canonical form.

• The power set: 2Θ � (Θ,∪)
Aside Dempster’s rule of combination, the power set is one of the corner stones
of Dempster-Shafer Theory (DST) since the basic belief assignments to combine

2We use the symbol � to mean equals by definition; the right-hand side of the equation
is the definition of the left-hand side.
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are defined on the power set of the frame Θ. In mathematics, given a set Θ, the
power set of Θ, written 2Θ, is the set of all subsets of Θ. In Zermelo–Fraenkel
set theory with the axiom of choice (ZFC), the existence of the power set of
any set is postulated by the axiom of power set. In other words, Θ generates
the power set 2Θ with the ∪ (union) operator only. More precisely, the power
set 2Θ is defined as the set of all composite propositions/subsets built from
elements of Θ with ∪ operator such that:

1. ∅, θ1, . . . , θn ∈ 2Θ.

2. If A,B ∈ 2Θ, then A ∪B ∈ 2Θ.

3. No other elements belong to 2Θ, except those obtained by using rules 1
and 2.

Examples of power sets:

• If Θ = {θ1, θ2}, then 2Θ={θ1,θ2} = {{∅}, {θ1}, {θ2}, {θ1, θ2}} which is
commonly written as 2Θ = {∅, θ1, θ2, θ1 ∪ θ2}.

• Let’s consider two frames Θ1 = {A,B} and Θ2 = {X,Y }, then their
power sets are respectively 2Θ1={A,B} = {∅, A,B,A∪B} and 2Θ2={X,Y } =
{∅, X, Y,X ∪ Y }. Let’s consider a refined frame Θref = {θ1, θ2, θ3, θ4}.
The granules θi, i = 1, . . . , 4 are not necessarily exhaustive, nor exclusive.
If A and B are expressed more precisely in function of the granules θi by
example as A � {θ1, θ2, θ3} ≡ θ1 ∪ θ2 ∪ θ3 and B � {θ2, θ4} ≡ θ2 ∪ θ4

then the power sets can be expressed from the granules θi as follows:

2Θ1={A,B} = {∅, A,B,A ∪B}
= {∅, {θ1, θ2, θ3}︸ ︷︷ ︸

A

, {θ2, θ4}︸ ︷︷ ︸
B

, {{θ1, θ2, θ3}, {θ2, θ4}}︸ ︷︷ ︸
A∪B

}

= {∅, θ1 ∪ θ2 ∪ θ3, θ2 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}

If X and Y are expressed more precisely in function of the finer granules
θi by example as X � {θ1} ≡ θ1 and Y � {θ2, θ3, θ4} ≡ θ2 ∪ θ3 ∪ θ4 then:

2Θ2={X,Y } = {∅, X, Y,X ∪ Y }
= {∅, {θ1}︸︷︷︸

X

, {θ2, θ3, θ4}︸ ︷︷ ︸
Y

, {{θ1}, {θ2, θ3, θ4}}︸ ︷︷ ︸
X∪Y

}

= {∅, θ1, θ2 ∪ θ3 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}
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We see that one has naturally:

2Θ1={A,B} = 2Θ2={X,Y } = 2Θref ={θ1,θ2,θ3,θ4}

even if working from θi with A ∪B = X ∪ Y = {θ1, θ2, θ3, θ4} = Θref .

• The hyper-power set: DΘ � (Θ,∪,∩)

One of the cornerstones of DSmT is the free Dedekind’s lattice [4] denoted
as hyper-power set in DSmT framework. Let Θ = {θ1, . . . , θn} be a finite set
(called frame) of n exhaustive elements. The hyper-power set DΘ is defined as
the set of all composite propositions/subsets built from elements of Θ with ∪
and ∩ operators such that:

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A,B ∈ DΘ, then A ∩B ∈ DΘ and A ∪B ∈ DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1
and 2.

Therefore by convention, we write DΘ = (Θ,∪,∩) which means that Θ gen-
erates DΘ under operators ∪ and ∩. The dual (obtained by switching ∪ and
∩ in expressions) of DΘ is itself. There are elements in DΘ which are self-dual
(dual to themselves), for example α8 for the case when n = 3 in the following
example. The cardinality of DΘ is majored by 22n

when the cardinality of Θ
equals n, i.e. |Θ| = n. The generation of hyper-power set DΘ is closely related
with the famous Dedekind’s problem [3, 4] on enumerating the set of isotone
Boolean functions. The generation of the hyper-power set is presented in [32].
Since for any given finite set Θ, |DΘ| ≥ |2Θ| we call DΘ the hyper-power set
of Θ.

Example of the first hyper-power sets:

• For the degenerate case (n = 0) where Θ = {}, one has DΘ = {α0 � ∅}
and |DΘ| = 1.

• When Θ = {θ1}, one has DΘ = {α0 � ∅, α1 � θ1} and |DΘ| = 2.

• When Θ = {θ1, θ2}, one has DΘ = {α0, α1, . . . , α4} and |DΘ| = 5 with
α0 � ∅, α1 � θ1 ∩ θ2, α2 � θ1, α3 � θ2 and α4 � θ1 ∪ θ2.
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• When Θ = {θ1, θ2, θ3}, one has DΘ = {α0, α1, . . . , α18} and |DΘ| = 19
with

α0 � ∅
α1 � θ1 ∩ θ2 ∩ θ3 α10 � θ2

α2 � θ1 ∩ θ2 α11 � θ3

α3 � θ1 ∩ θ3 α12 � (θ1 ∩ θ2) ∪ θ3

α4 � θ2 ∩ θ3 α13 � (θ1 ∩ θ3) ∪ θ2

α5 � (θ1 ∪ θ2) ∩ θ3 α14 � (θ2 ∩ θ3) ∪ θ1

α6 � (θ1 ∪ θ3) ∩ θ2 α15 � θ1 ∪ θ2

α7 � (θ2 ∪ θ3) ∩ θ1 α16 � θ1 ∪ θ3

α8 � (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 � θ2 ∪ θ3

α9 � θ1 α18 � θ1 ∪ θ2 ∪ θ3

The cardinality of hyper-power set DΘ for n ≥ 1 follows the sequence of
Dedekind’s numbers [27], i.e. 1,2,5,19,167, 7580,7828353,... and analytical ex-
pression of Dedekind’s numbers has been obtained recently by Tombak in [47]
(see [32] for details on generation and ordering of DΘ). Interesting investiga-
tions on the programming of the generation of hyper-power sets for engineering
applications have been done in Chapter 15 of [36] and in Chapter 7 of this vol-
ume.

Examples of hyper-power sets:

Let’s consider the frames Θ1 = {A,B} and Θ2 = {X,Y }, then their
corresponding hyper-power sets are DΘ1={A,B} = {∅, A ∩ B,A,B,A ∪ B}
and DΘ2={X,Y } = {∅, X ∩ Y,X, Y,X ∪ Y }. Let’s consider a refined frame
Θref = {θ1, θ2, θ3, θ4} where the granules θi, i = 1, . . . , 4 are now considered
as truly exhaustive and exclusive. If A and B are expressed more precisely in
function of the granules θi by example as A � {θ1, θ2, θ3} and B � {θ2, θ4}
then

DΘ1={A,B} = {∅, A ∩B,A,B,A ∪B}
= {∅, {θ1, θ2, θ3} ∩ {θ2, θ4}︸ ︷︷ ︸

A∩B={θ2}

, {θ1, θ2, θ3}︸ ︷︷ ︸
A

, {θ2, θ4}︸ ︷︷ ︸
B

,

{{θ1, θ2, θ3}, {θ2, θ4}}︸ ︷︷ ︸
A∪B={θ1,θ2,θ3,θ4}

}

= {∅, θ2, θ1 ∪ θ2 ∪ θ3, θ2 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}
= 2Θ1={A,B}
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If X and Y are expressed more precisely in function of the finer granules
θi by example as X � {θ1} and Y � {θ2, θ3, θ4} then in assuming that θi,
i = 1, . . . , 4 are exhaustive and exclusive, one gets

DΘ2={X,Y } = {∅, X ∩ Y,X, Y,X ∪ Y }
= {∅, {θ1} ∩ {θ2, θ3, θ4}︸ ︷︷ ︸

X∩Y =∅︸ ︷︷ ︸
∅

, {θ1}︸︷︷︸
X

, {θ2, θ3, θ4}︸ ︷︷ ︸
Y

, {{θ1}, {θ2, θ3, θ4}}︸ ︷︷ ︸
X∪Y

}

= {∅, {θ1}︸︷︷︸
X

, {θ2, θ3, θ4}︸ ︷︷ ︸
Y

, {{θ1}, {θ2, θ3, θ4}}︸ ︷︷ ︸
X∪Y

}

≡ 2Θ2={X,Y }

Therefore, we see that DΘ2={X,Y } ≡ 2Θ2={X,Y } because the exclusivity con-
straint X ∩ Y = ∅ holds since one has assumed X � {θ1} and Y � {θ2, θ3, θ4}
with exhaustive and exclusive granules θi, i = 1, . . . , 4.

If the granules θi, i = 1, . . . , 4 are not assumed exclusive, then of course the
expressions of hyper-power sets cannot be simplified and one would have:

DΘ1={A,B} = {∅, A ∩B,A,B,A ∪B}
= {∅, (θ1 ∪ θ2 ∪ θ3) ∩ (θ2 ∪ θ4), θ1 ∪ θ2 ∪ θ3, θ2 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}
= 2Θ1={A,B}

DΘ2={X,Y } = {∅, X ∩ Y,X, Y,X ∪ Y }
= {∅, θ1 ∩ (θ2 ∪ θ3 ∪ θ4), θ1, θ2 ∪ θ3 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}
= 2Θ2={X,Y }

Shafer’s model of a frame: More generally, when all the elements of a given
frame Θ are known (or are assumed to be) truly exclusive, then the hyper-power
set DΘ reduces to the classical power set 2Θ. Therefore, working on power set
2Θ as Glenn Shafer has proposed in his Mathematical Theory of Evidence [25])
is equivalent to work on hyper-power set DΘ with the assumption that all
elements of the frame are exclusive. This is what we call Shafer’s model of the
frame Θ, written M0(Θ), even if such model/assumption has not been clearly
stated explicitly by Shafer himself in his milestone book.
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• The super-power set: SΘ � (Θ,∪,∩, c(.))

The notion of super-power set has been introduced by Smarandache in the
Chapter 8 of [36]. It corresponds actually to the theoretical construction of
the power set of the minimal3 refined frame Θref of Θ. Θ generates SΘ under
operators ∪, ∩ and complementation c(.). SΘ = (Θ,∪,∩, c(.)) is a Boolean
algebra with respect to the union, intersection and complementation. There-
fore working with the super-power set is equivalent to work with a minimal
theoretical refined frame Θref satisfying Shafer’s model. More precisely, SΘ is
defined as the set of all composite propositions/subsets built from elements of
Θ with ∪, ∩ and c(.) operators such that:

1. ∅, θ1, . . . , θn ∈ SΘ.

2. If A,B ∈ SΘ, then A ∩B ∈ SΘ, A ∪B ∈ SΘ.

3. If A ∈ SΘ, then c(A) ∈ SΘ.

4. No other elements belong to SΘ, except those obtained by using rules 1,
2 and 3.

As reported in [33], a similar generalization has been previously used in
1993 by Guan and Bell [15] for the Dempster-Shafer rule using propositions in
sequential logic and reintroduced in 1994 by Paris in his book [21], page 4.

Example of a super-power set:

Let’s consider the frame Θ = {θ1, θ2} and let’s assume θ1 ∩ θ2 = ∅, i.e. θ1

and θ2 are not disjoint according to Fig. 1.1 where A � p1 denotes the part of
θ1 belonging only to θ1 (p stands here for part), B � p2 denotes the part of θ2

belonging only to θ2 and C � p12 denotes the part of θ1 and θ2 belonging to
both. In this example, SΘ={θ1,θ2} is then given by

SΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2, c(∅), c(θ1 ∩ θ2), c(θ1), c(θ2), c(θ1 ∪ θ2)}
where c(.) is the complement in Θ. Since c(∅) = θ1 ∪ θ2 and c(θ1 ∪ θ2) = ∅, the
super-power set is actually given by

SΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2, c(θ1 ∩ θ2), c(θ1), c(θ2)}
Let’s now consider the minimal refinement Θref = {A,B,C} of Θ built by

splitting the granules θ1 and θ2 depicted on the previous Venn diagram into
disjoint parts (i.e. Θref satisfies the Shafer’s model) as follows:

3The minimality refers here to the cardinality of the refined frames.
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Figure 1.1: Venn diagram of a free DSm model for a 2D frame.

θ1 = A ∪ C, θ2 = B ∪ C, θ1 ∩ θ2 = C

Then the classical power set of Θref is given by

2Θref

= {∅, A,B,C,A ∪B,A ∪ C,B ∪C,A ∪B ∪ C}
We see that we can define easily a one-to-one correspondence, written ∼, be-
tween all the elements of the super-power set SΘ and the elements of the power

set 2Θref

as follows:

∅ ∼ ∅, (θ1∩θ2) ∼ C, θ1 ∼ (A∪C), θ2 ∼ (B∪C), (θ1∪θ2) ∼ (A∪B∪C)

c(θ1 ∩ θ2) ∼ (A ∪B), c(θ1) ∼ B, c(θ2) ∼ A

Such one-to-one correspondence between the elements of SΘ and 2Θref

can
be defined for any cardinality |Θ| ≥ 2 of the frame Θ and thus one can consider

SΘ as the mathematical construction of the power set 2Θref

of the minimal
refinement of the frame Θ. Of course, when Θ already satisfies Shafer’s model,
the hyper-power set and the super-power set coincide with the classical power
set of Θ. It is worth to note that even if we have a mathematical tool to build
the minimal refined frame satisfying Shafer’s model, it doesn’t mean necessary
that one must work with this super-power set in general in real applications
because most of the time the elements/granules of SΘ have no clear physical
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meaning, not to mention the drastic increase of the complexity since one has
2Θ ⊆ DΘ ⊆ SΘ and

|2Θ| = 2|Θ| < |DΘ| < |SΘ| = 2
|Θref |

= 22|Θ|−1 (1.1)

Typically,

|Θ| = n |2Θ| = 2n |DΘ| |SΘ| = |2Θref | = 22n−1

2 4 5 23 = 8
3 8 19 27 = 128
4 16 167 215 = 32768
5 32 7580 231 = 2147483648

Table 1.2: Cardinalities of 2Θ, DΘ and SΘ.

In summary, DSmT offers truly the possibility to build and to work on re-
fined frames and to deal with the complement whenever necessary, but in most
of applications either the frame Θ is already built/chosen to satisfy Shafer’s
model or the refined granules have no clear physical meaning which finally
prevent to be considered/assessed individually so that working on the hyper-
power set is usually sufficient for dealing with uncertain imprecise (quantitative
or qualitative) and highly conflicting sources of evidences. Working with SΘ

is actually very similar to working with 2Θ in the sense that in both cases we
work with classical power sets; the only difference is that when working with
SΘ we have implicitly switched from the original frame Θ representation to a
minimal refinement Θref representation. Therefore, in the sequel we focus our
discussions based mainly on hyper-power set rather than (super-) power set
which has already been the basis for the development of DST. But as already
mentioned, DSmT can easily deal with belief functions defined on 2Θ or SΘ

similarly as those defined on DΘ.

Generic notation: In the sequel, we use the generic notation GΘ for denoting
the sets (power set, hyper-power set and super-power set) on which the belief
functions are defined.

Remark on the logical refinement: The refinement in logic theory pre-
sented recently by Cholvy in [2] was actually proposed in nineties by a Guan
and Bell [15] and by Paris [21]. This refinement is isomorphic to the refine-
ment in set theory done by many researchers. If Θ = {θ1, θ2, θ3} is a language
where the propositional variables are θ1, θ2, θ3, Cholvy considers all 8 possible
logical combinations of propositions θi’s or negations of θi’s (called interpreta-
tions), and defines the 8 = 23 disjoint parts/propositions of the Venn diagram



Chapter 1: An introduction to DSmT 15

in Fig. 1.2 [one also considers as a part the negation of the total ignorance] in
the set theory, so that:

i1 = θ1 ∧ θ2 ∧ θ3

i2 = θ1 ∧ θ2 ∧ ¬θ3

i3 = θ1 ∧ ¬θ2 ∧ θ3

i4 = θ1 ∧ ¬θ2 ∧ ¬θ3

i5 = ¬θ1 ∧ θ2 ∧ ∧θ3

i6 = ¬θ1 ∧ θ2 ∧ ¬θ3

i7 = ¬θ1 ∧ ¬θ2 ∧ θ3

i8 = ¬θ1 ∧ ¬θ2 ∧ ¬θ3

where ¬θi means the negation of θi.

Θ

θ1

θ1 ∧ ¬θ2 ∧ ¬θ3

p1

θ3θ2

¬θ1 ∧ θ2 ∧ ¬θ3

p2

¬θ1 ∧ ¬θ2 ∧ θ3

p3

¬θ1 ∧ θ2 ∧ θ3

p23

θ1 ∧ θ2 ∧ θ3

p123

θ1 ∧ θ2 ∧ ¬θ3
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θ1 ∧ ¬θ2 ∧ θ3
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¬θ1 ∧ ¬θ2 ∧ ¬θ3 p0
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Figure 1.2: Venn diagram of the free DSm model for a 3D frame.

Because of Shafer’s equivalence of subsets and propositions, Cholvy’s logical
refinement is strictly equivalent to the refinement we did already in 2006 in
defining SΘ - see Chap. 8 of [36] - but in the set theory framework.
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We did it using Smarandache’s codification (easy to understand and read)
in the following way:

- each Venn diagram disjoint part pij , or pijk represents respectively the
intersection of pi and pj only, or pi and pj and pk only, etc; while the
complement of the total ignorance is considered p0 [p stands for part].

Thus, we have an easier and clearer representation in DSmT than in logical
representation. While the refinement in DST using logical approach for n very
large is very hard, we can simply consider in the DSmT the super-power set
SΘ = (Θ,∪,∩, c(.)). So, in DSmT representation the disjoint parts are noted
as follows:

p123 = θ1 ∧ θ2 ∧ θ3 = i1

p12 = θ1 ∧ θ2 ∧ ¬θ3 = i2

p13 = θ1 ∧ ¬θ2 ∧ θ3 = i3

p23 = ¬θ1 ∧ θ2 ∧ θ3 = i5

p1 = θ1 ∧ ¬θ2 ∧ ¬θ3 = i4

p2 = ¬θ1 ∧ θ2 ∧ ¬θ3 = i6

p3 = ¬θ1 ∧ ¬θ2 ∧ θ3 = i7

p0 = ¬θ1 ∧ ¬θ2 ∧ ¬θ3 = i8

As seeing, in Smarandache’s codification a disjoint Venn diagram part is
equal to the intersection of singletons whose indexes show up as indexes of
the Venn part; for example in p12 case indexes 1 and 2, intersected with the
complement of the missing indexes, in this case index 3 is missing.

Smarandache’s codification can easily transform any set from SΘ into its canon-
ical disjunctive normal form. For example, θ1 = p1 ∪ p12 ∪ p13 ∪ p123 (i.e. all
Venn diagram disjoint parts that contain the index “1” in their indexes ; such
indexes from SΘ are 1, 12, 13, 123) can be expressed as

θ1 = (θ1 ∩ c(θ2) ∩ c(θ3)) ∪ (θ1 ∩ θ2 ∩ c(θ3))(θ1 ∩ c(θ2) ∩ θ3) ∪ (θ1 ∩ θ2 ∩ θ3)

where the set values of each part was taken from the above table.
θ1 ∧ θ2 = p12 ∪ p123 (i.e. all Venn diagram disjoint parts that contain the

index “12” in their indexes) equals to (θ1 ∧ θ2 ∧ ¬θ3) ∨ (θ1 ∧ θ2 ∧ θ3).
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The refinement based on Venn Diagram, becomes very hard and almost im-
possible when the cardinal of Θ, n, is large and all intersections are non-empty
(the free model). Suppose n = 20, or even bigger, and we have the free model.
How can we construct a Venn Diagram where to show all possible intersections
of 20 sets? Its geometrical figure would be very hard to design and very hard
to read (you don’t identify well each disjoint part of a such Venn Diagram
to what intersection of sets it belongs to). The larger is n, the more difficult
is the refinement. Fortunately, based on Smarandache’s codification, we can
algebraically design in an easy way for all such intersections (for example, if n
is very big, we can use computer programs to make combinations of indexes
{1, 2, ..., n} taken in groups or 1, of 2, ..., or of n elements each), so the refine-
ment should not be a big problem from the programming point of view, but
we must always keep in mind if such refinement is really necessary and if it has
(or not) a deep physical interpretation and justification for the problem under
consideration.

The assertion in [2], upon Milan Daniel’s, that hybrid DSm rule is equivalent
to Dubois-Prade rule is untrue, since in dynamic fusion they give different
results. Such example has been already given in [8] and is reported in section
1.2.6.3 for the sake of clarification for the readers. The assertion in [2] that
“from an expressivity point of view DSmT is equivalent to DST” is partially
true since this idea is true when the refinement is possible (not always it is
practically/physically possible), and even when the spaces we work on, SΘ =

2Θref

, where the hypotheses are exclusive, DSmT offers the advantage that the
refinement is already done (it is not necessary for the user to do (or implicitly
presuppose) it as in DST). Also, DSmT accepts from the very beginning the
possibility to deal with non-exclusive hypotheses and of course it can a fortiori

deal with sets of exclusive hypothesis and work either on 2Θ or 2Θref

whenever
necessary, while DST first requires implicitly to work with exclusive hypotheses
only.

The main distinctions between DSmT and DST are summarized by the
following points:

1. The refinement is not always (physically) possible, especially for elements
from the frame of discernment whose frontiers are not clear, such as:
colors, vague sets, unclear hypotheses, etc. in the frame of discernment;
DST does not fit well for working in such cases, while DSmT does;

2. Even in the case when the frame of discernment can be refined (i.e. the
atomic elements of the frame have all a distinct physical meaning), it
is still easier to use DSmT than DST since in DSmT framework the
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refinement is done automatically by the mathematical construction of
the super-power set;

3. DSmT offers better fusion rules, for example Proportional Conflict re-
distribution Rule # 5 (PCR5) - presented in the sequel - is better than
Dempster’s rule; hybrid DSm rule (DSmH) works for the dynamic fu-
sion, while Dubois-Prade fusion rule does not (DSmH is an extension of
Dubois-Prade rule); therefore DSmT with its fusion rules cannot be con-
sidered as a special case of DST, contrariwise to some authors’ claims in
the literature (see [5] by example).

4. DSmT offers the best qualitative operators (when working with labels)
giving the most accurate and coherent results;

5. DSmT offers new interesting quantitative conditioning rules (BCRs) and
qualitative conditioning rules (QBCRs), different from Shafer’s condi-
tioning rule (SCR). SCR can be seen simply as a combination of a prior
mass of belief with the mass m(A) = 1 whenever A is the conditioning
event;

6. DSmT proposes a new approach for working with imprecise quantita-
tive or qualitative information and not limited to interval-valued belief
structures as proposed generally in the literature [6, 7, 49].

1.2.2 Notion of free and hybrid DSm models

Free DSm model: The elements θi, i = 1, . . . , n of Θ constitute the finite set
of hypotheses/concepts characterizing the fusion problem under consideration.
When there is no constraint on the elements of the frame, we call this model the
free DSm model , written Mf(Θ). This free DSm model allows to deal directly
with fuzzy concepts which depict a continuous and relative intrinsic nature and
which cannot be precisely refined into finer disjoint information granules hav-
ing an absolute interpretation because of the unreachable universal truth. In
such case, the use of the hyper-power set DΘ (without integrity constraints) is
particularly well adapted for defining the belief functions one wants to combine.

Shafer’s model: In some fusion problems involving discrete concepts, all the
elements θi, i = 1, . . . , n of Θ can be truly exclusive. In such case, all the exclu-
sivity constraints on θi, i = 1, . . . , n have to be included in the previous model
to characterize properly the true nature of the fusion problem and to fit it with
the reality. By doing this, the hyper-power set DΘ as well as the super-power
set SΘ reduce naturally to the classical power set 2Θ and this constitutes what
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we have called Shafer’s model , denoted M0(Θ). Shafer’s model corresponds
actually to the most restricted hybrid DSm model.

Hybrid DSm models: Between the class of fusion problems corresponding to
the free DSm model Mf (Θ) and the class of fusion problems corresponding to
Shafer’s model M0(Θ), there exists another wide class of hybrid fusion prob-
lems involving in Θ both fuzzy continuous concepts and discrete hypotheses.
In such (hybrid) class, some exclusivity constraints and possibly some non-
existential constraints (especially when working on dynamic4 fusion) have to be
taken into account. Each hybrid fusion problem of this class will then be char-
acterized by a proper hybrid DSm model denoted M(Θ) with M(Θ) = Mf (Θ)
and M(Θ) = M0(Θ).

In any fusion problems, we consider as primordial at the very beginning and
before combining information expressed as belief functions to define clearly the
proper frame Θ of the given problem and to choose explicitly its corresponding
model one wants to work with. Once this is done, the second important point
is to select the proper set 2Θ, DΘ or SΘ on which the belief functions will be
defined. The third important point will be the choice of an efficient rule of com-
bination of belief functions and finally the criteria adopted for decision-making.

In the sequel, we focus our presentation mainly on hyper-power set DΘ (un-
less specified) since it is the most interesting new aspect of DSmT for readers
already familiar with DST framework, but a fortiori we can work similarly on

classical power set 2Θ if Shafer’s model holds, and even on 2Θref

(the power
set of the minimal refined frame) whenever one wants to use it and if possible.

Examples of models for a frame Θ:

• Let’s consider the 2D problem where Θ = {θ1, θ2} with DΘ = {∅, θ1 ∩
θ2, θ1, θ2, θ1 ∪ θ2} and assume now that θ1 and θ2 are truly exclusive (i.e.

Shafer’s model M0 holds), then because θ1 ∩ θ2
M0

= ∅, one gets DΘ = {∅, θ1 ∩
θ2
M0

= ∅, θ1, θ2, θ1 ∪ θ2} = {∅, θ1, θ2, θ1 ∪ θ2} ≡ 2Θ.

• As another simple example of hybrid DSm model, let’s consider the 3D case
with the frame Θ = {θ1, θ2, θ3} with the model M = Mf in which we force
all possible conjunctions to be empty, but θ1 ∩ θ2. This hybrid DSm model
is then represented with the Venn diagram on Fig. 1.3 (where boundaries of

4i.e. when the frame Θ and/or the model M is changing with time.
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intersection of θ1 and θ2 are not precisely defined if θ1 and θ2 represent only
fuzzy concepts like smallness and tallness by example).
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Figure 1.3: Venn diagram of a DSm hybrid model for a 3D frame.

1.2.3 Generalized belief functions

From a general frame Θ, we define a map m(.) : GΘ → [0, 1] associated to a
given body of evidence B as

m(∅) = 0 and
∑

A∈GΘ

m(A) = 1 (1.2)

The quantitym(A) is called the generalized basic belief assignment/mass (gbba)
of A.

The generalized belief and plausibility functions are defined in almost the same
manner as within DST, i.e.

Bel(A) =
∑
B⊆A

B∈GΘ

m(B) Pl(A) =
∑

B∩A �=∅
B∈GΘ

m(B) (1.3)

We recall that GΘ is the generic notation for the set on which the gbba is
defined (GΘ can be 2Θ, DΘ or even SΘ depending on the model chosen for
Θ). These definitions are compatible with the definitions of the classical belief
functions in DST framework when GΘ = 2Θ for fusion problems where Shafer’s
model M0(Θ) holds. We still have ∀A ∈ GΘ, Bel(A) ≤ Pl(A).

Note that when working with the free DSm model Mf (Θ), one has always
Pl(A) = 1 ∀A = ∅ ∈ (GΘ = DΘ) which is normal.



Chapter 1: An introduction to DSmT 21

Example: Let’s consider the simple frame Θ = {A,B}, then depending on
the model we choose for GΘ, one will consider either:

• GΘ as the power set 2Θ and therefore:

m(A) +m(B) +m(A ∪B) = 1

• GΘ as the hyper-power set DΘ and therefore:

m(A) +m(B) +m(A ∪B) +m(A ∩B) = 1

• GΘ as the super-power set SΘ and therefore:

m(A) +m(B) +m(A ∪B) +m(A ∩B)

+m(c(A)) +m(c(B)) +m(c(A) ∪ c(B)) = 1

1.2.4 The classic DSm rule of combination

When the free DSm model Mf(Θ) holds for the fusion problem under consid-
eration, the classic DSm rule of combination mMf (Θ) ≡ m(.) � [m1 ⊕ m2](.)
of two independent5 sources of evidences B1 and B2 over the same frame Θ
with belief functions Bel1(.) and Bel2(.) associated with gbba m1(.) and m2(.)
corresponds to the conjunctive consensus of the sources. It is given by [32]:

∀C ∈ DΘ, mMf (Θ)(C) ≡ m(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B) (1.4)

Since DΘ is closed under ∪ and ∩ set operators, this new rule of com-
bination guarantees that m(.) is a proper generalized belief assignment, i.e.
m(.) : DΘ → [0, 1]. This rule of combination is commutative and associative
and can always be used for the fusion of sources involving fuzzy concepts when
free DSm model holds for the problem under consideration. This rule can be
directly and easily extended for the combination of k > 2 independent sources
of evidence [32].

According to Table 1.2, this classic DSm rule of combination looks very
expensive in terms of computations and memory size due to the huge number

5While independence is a difficult concept to define in all theories managing epistemic
uncertainty, we follow here the interpretation of Smets in [39] and [40], p. 285 and consider
that two sources of evidence are independent (i.e distinct and noninteracting) if each leaves
one totally ignorant about the particular value the other will take.
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of elements in DΘ when the cardinality of Θ increases. This remark is however
valid only if the cores (the set of focal elements of gbba) K1(m1) and K2(m2)
coincide with DΘ, i.e. when m1(A) > 0 and m2(A) > 0 for all A = ∅ ∈ DΘ.
Fortunately, it is important to note here that in most of the practical appli-
cations the sizes of K1(m1) and K2(m2) are much smaller than |DΘ| because
bodies of evidence generally allocate their basic belief assignments only over a
subset of the hyper-power set. This makes things easier for the implementation
of the classic DSm rule (1.4). The DSm rule is actually very easy to imple-
ment. It suffices for each focal element of K1(m1) to multiply it with the focal
elements of K2(m2) and then to pool all combinations which are equivalent
under the algebra of sets. While very costly in term on memory storage in the

worst case (i.e. when all m(A) > 0, A ∈ DΘ or A ∈ 2Θref

), the DSm rule
however requires much smaller memory storage than when working with SΘ,
i.e. working with a minimal refined frame satisfying Shafer’s model.

In most fusion applications only a small subset of elements of DΘ have
a non null basic belief mass because all the commitments are just usually
impossible to obtain precisely when the dimension of the problem increases.
Thus, it is not necessary to generate and keep in memory all elements of DΘ

(or eventually SΘ) but only those which have a positive belief mass. However
there is a real technical challenge on how to manage efficiently all elements
of the hyper-power set. This problem is obviously much more difficult when
trying to work on a refined frame of discernment Θref if one really prefers
to use Dempster-Shafer theory and apply Dempster’s rule of combination. It
is important to keep in mind that the ultimate and minimal refined frame
consisting in exhaustive and exclusive finite set of refined exclusive hypotheses
is just impossible to justify and to define precisely for all problems dealing with
fuzzy and ill-defined continuous concepts. A discussion on refinement with an
example has be included in [32].

1.2.5 The hybrid DSm rule of combination

When the free DSm model Mf(Θ) does not hold due to the true nature of the
fusion problem under consideration which requires to take into account some
known integrity constraints, one has to work with a proper hybrid DSm model
M(Θ) = Mf (Θ). In such case, the hybrid DSm rule (DSmH) of combination
based on the chosen hybrid DSm model M(Θ) for k ≥ 2 independent sources
of information is defined for all A ∈ DΘ as [32]:

mDSmH(A) = mM(Θ)(A) � φ(A)
[
S1(A) + S2(A) + S3(A)

]
(1.5)
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where all sets involved in formulas are in the canonical form and φ(A) is the
characteristic non-emptiness function of a set A, i.e. φ(A) = 1 if A /∈ ∅ and
φ(A) = 0 otherwise, where ∅ � {∅M, ∅}. ∅M is the set of all elements of DΘ

which have been forced to be empty through the constraints of the model M
and ∅ is the classical/universal empty set. S1(A) ≡ mMf (θ)(A), S2(A), S3(A)
are defined by

S1(A) �
∑

X1,X2,...,Xk∈DΘ

X1∩X2∩...∩Xk=A

k∏
i=1

mi(Xi) (1.6)

S2(A) �
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏
i=1

mi(Xi) (1.7)

S3(A) �
∑

X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xk=A
X1∩X2∩...∩Xk∈∅

k∏
i=1

mi(Xi) (1.8)

with U � u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk) where u(X) is the union of all θi that
compose X , It � θ1 ∪ θ2 ∪ . . .∪ θn is the total ignorance. S1(A) corresponds to
the classic DSm rule for k independent sources based on the free DSm model
Mf(Θ); S2(A) represents the mass of all relatively and absolutely empty sets
which is transferred to the total or relative ignorances associated with non ex-
istential constraints (if any, like in some dynamic problems); S3(A) transfers
the sum of relatively empty sets directly onto the canonical disjunctive form of
non-empty sets.

The hybrid DSm rule of combination generalizes the classic DSm rule of
combination and is not equivalent to Dempter’s rule. It works for any models
(the free DSm model, Shafer’s model or any other hybrid models) when manip-
ulating precise generalized (or eventually classical) basic belief functions. An
extension of this rule for the combination of imprecise generalized (or eventually
classical) basic belief functions is presented in next section. As already stated,
in DSmT framework it is also possible to deal directly with complements if
necessary depending on the problem under consideration and the information
provided by the sources of evidence themselves.

The first and simplest way is to work with SΘ on Shafer’s model when
a minimal refinement is possible and makes sense. The second way is to deal
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with partially known frame and introduce directly the complementary hypothe-
ses into the frame itself. By example, if one knows only two hypotheses θ1,
θ2 and their complements θ̄1, θ̄2, then we can choose to switch from original
frame Θ = {θ1, θ2} to the new frame Θ = {θ1, θ2, θ̄1, θ̄2}. In such case, we
don’t necessarily assume that θ̄1 = θ2 and θ̄2 = θ1 because θ̄1 and θ̄2 may in-
clude other unknown hypotheses we have no information about (case of partial
known frame). More generally, in DSmT framework, it is not necessary that the
frame is built on pure/simple (possibly vague) hypotheses θi as usually done
in all theories managing uncertainty. The frame Θ can also contain directly as
elements conjunctions and/or disjunctions (or mixed propositions) and nega-
tions/complements of pure hypotheses as well. The DSm rules also work in
such non-classic frames because DSmT works on any distributive lattice built
from Θ anywhere Θ is defined.

1.2.6 Examples of combination rules

Here are some numerical examples on results obtained by DSm rules of com-
bination. More examples can be found in [32].

1.2.6.1 Example with Θ = {θ1, θ2, θ3, θ4}
Let’s consider the frame of discernment Θ = {θ1, θ2, θ3, θ4}, two independent
experts, and the two following bbas

m1(θ1) = 0.6 m1(θ3) = 0.4 m2(θ2) = 0.2 m2(θ4) = 0.8

represented in terms of mass matrix

M =

[
0.6 0 0.4 0
0 0.2 0 0.8

]

• Dempster’s rule cannot be applied because: ∀1 ≤ j ≤ 4, one gets m(θj) =
0/0 (undefined!).

• But the classic DSm rule works because one obtains: m(θ1) = m(θ2) =
m(θ3) = m(θ4) = 0, andm(θ1∩θ2) = 0.12, m(θ1∩θ4) = 0.48, m(θ2∩θ3) =
0.08, m(θ3 ∩ θ4) = 0.32 (partial paradoxes/conflicts).

• Suppose now one finds out that all intersections are empty (Shafer’s
model), then one applies the hybrid DSm rule and one gets (index h
stands here for hybrid rule): mh(θ1 ∪ θ2) = 0.12, mh(θ1 ∪ θ4) = 0.48,
mh(θ2 ∪ θ3) = 0.08 and mh(θ3 ∪ θ4) = 0.32.
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1.2.6.2 Generalization of Zadeh’s example with Θ = {θ1, θ2, θ3}
Let’s consider 0 < ε1, ε2 < 1 be two very tiny positive numbers (close to zero),
the frame of discernment be Θ = {θ1, θ2, θ3}, have two experts (independent
sources of evidence s1 and s2) giving the belief masses

m1(θ1) = 1− ε1 m1(θ2) = 0 m1(θ3) = ε1

m2(θ1) = 0 m2(θ2) = 1− ε2 m2(θ3) = ε2

From now on, we prefer to use matrices to describe the masses, i.e.[
1− ε1 0 ε1

0 1− ε2 ε2

]

• Using Dempster’s rule of combination, one gets

m(θ3) =
(ε1ε2)

(1− ε1) · 0 + 0 · (1− ε2) + ε1ε2
= 1

which is absurd (or at least counter-intuitive). Note that whatever posi-
tive values for ε1, ε2 are, Dempster’s rule of combination provides always
the same result (one) which is abnormal. The only acceptable and correct
result obtained by Dempster’s rule is really obtained only in the trivial
case when ε1 = ε2 = 1, i.e. when both sources agree in θ3 with certainty
which is obvious.

• Using the DSm rule of combination based on free-DSm model, one gets
m(θ3) = ε1ε2, m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2), m(θ1 ∩ θ3) = (1 − ε1)ε2,
m(θ2 ∩ θ3) = (1 − ε2)ε1 and the others are zero which appears more
reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combi-
nation, one gets m(θ3) = ε1ε2, m(θ1∪θ2) = (1− ε1)(1− ε2), m(θ1∪θ3) =
(1− ε1)ε2, m(θ2 ∪ θ3) = (1− ε2)ε1 and the others are zero.

Note that in the special case when ε1 = ε2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2

m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yields m(θ3) = 1 while the hybrid DSm
rule based on the same Shafer’s model yields now m(θ3) = 1/4, m(θ1 ∪ θ2) =
1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is normal.
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1.2.6.3 Comparison with Smets, Yager and Dubois & Prade rules

We compare the results provided by DSmT rules and the main common rules
of combination on the following very simple numerical example where only
2 independent sources (a priori assumed equally reliable) are involved and
providing their belief initially on the 3D frame Θ = {θ1, θ2, θ3}. It is assumed
in this example that Shafer’s model holds and thus the belief assignments m1(.)
and m2(.) do not commit belief to internal conflicting information. m1(.) and
m2(.) are chosen as follows:

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.3

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

These belief masses are usually represented in the form of a belief mass matrix
M given by

M =

[
0.1 0.4 0.2 0.3
0.5 0.1 0.3 0.1

]
(1.9)

where index i for the rows corresponds to the index of the source no. i and
the indexes j for columns of M correspond to a given choice for enumerating
the focal elements of all sources. In this particular example, index j = 1 cor-
responds to θ1, j = 2 corresponds to θ2, j = 3 corresponds to θ3 and j = 4
corresponds to θ1 ∪ θ2.

Now let’s imagine that one finds out that θ3 is actually truly empty because
some extra and certain knowledge on θ3 is received by the fusion center. As
example, θ1, θ2 and θ3 may correspond to three suspects (potential murders) in
a police investigation, m1(.) and m2(.) corresponds to two reports of indepen-
dent witnesses, but it turns out that finally θ3 has provided a strong alibi to
the criminal police investigator once arrested by the policemen. This situation

corresponds to set up a hybrid model M with the constraint θ3
M
= ∅.

Let’s examine the result of the fusion in such situation obtained by the
Smets’, Yager’s, Dubois & Prade’s and hybrid DSm rules of combinations.
First note that, based on the free DSm model, one would get by applying the
classic DSm rule (denoted here by index DSmC) the following fusion result

mDSmC(θ1) = 0.21 mDSmC(θ2) = 0.11

mDSmC(θ3) = 0.06 mDSmC(θ1 ∪ θ2) = 0.03

mDSmC(θ1 ∩ θ2) = 0.21 mDSmC(θ1 ∩ θ3) = 0.13

mDSmC(θ2 ∩ θ3) = 0.14 mDSmC(θ3 ∩ (θ1 ∪ θ2)) = 0.11
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But because of the exclusivity constraints (imposed here by the use of

Shafer’s model and by the non-existential constraint θ3
M
= ∅), the total con-

flicting mass is actually given by k12 = 0.06+ 0.21+ 0.13+ 0.14+ 0.11 = 0.65.

• If one applies Dempster’s rule [25] (denoted here by index DS), one
gets:

mDS(∅) = 0

mDS(θ1) = 0.21/[1− k12] = 0.21/[1− 0.65] = 0.21/0.35 = 0.600000

mDS(θ2) = 0.11/[1− k12] = 0.11/[1− 0.65] = 0.11/0.35 = 0.314286

mDS(θ1 ∪ θ2) = 0.03/[1− k12] = 0.03/[1− 0.65] = 0.03/0.35 = 0.085714

• If one applies Smets’ rule [41, 42] (i.e. the non normalized version of
Dempster’s rule with the conflicting mass transferred onto the empty set),
one gets:

mS(∅) = m(∅) = 0.65 (conflicting mass)

mS(θ1) = 0.21

mS(θ2) = 0.11

mS(θ1 ∪ θ2) = 0.03

• If one applies Yager’s rule [50–52], one gets:

mY (∅) = 0

mY (θ1) = 0.21

mY (θ2) = 0.11

mY (θ1 ∪ θ2) = 0.03 + k12 = 0.03 + 0.65 = 0.68
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• If one applies Dubois & Prade’s rule [13], one gets because θ3
M
= ∅ :

mDP (∅) = 0 (by definition of Dubois & Prade’s rule)

mDP (θ1) = [m1(θ1)m2(θ1) +m1(θ1)m2(θ1 ∪ θ2)

+m2(θ1)m1(θ1 ∪ θ2)]

+ [m1(θ1)m2(θ3) +m2(θ1)m1(θ3)]

= [0.1 · 0.5 + 0.1 · 0.1 + 0.5 · 0.3] + [0.1 · 0.3 + 0.5 · 0.2]
= 0.21 + 0.13 = 0.34

mDP (θ2) = [0.4 · 0.1 + 0.4 · 0.1 + 0.1 · 0.3] + [0.4 · 0.3 + 0.1 · 0.2]
= 0.11 + 0.14 = 0.25

mDP (θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)]

+ [m1(θ1 ∪ θ2)m2(θ3) +m2(θ1 ∪ θ2)m1(θ3)]

+ [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)]

= [0.30.1] + [0.3 · 0.3 + 0.1 · 0.2] + [0.1 · 0.1 + 0.5 · 0.4]
= [0.03] + [0.09 + 0.02] + [0.01 + 0.20]

= 0.03 + 0.11 + 0.21 = 0.35

Now if one adds up the masses, one gets 0+0.34+0.25+0.35 = 0.94 which
is less than 1. Therefore Dubois & Prade’s rule of combination does not
work when a singleton, or an union of singletons, becomes empty (in a
dynamic fusion problem). The products of such empty-element columns
of the mass matrix M are lost; this problem is fixed in DSmT by the
sum S2(.) in (1.5) which transfers these products to the total or partial
ignorances.

• Finally, if one applies DSmH rule, one gets because θ3
M
= ∅ :

mDSmH(∅) = 0 (by definition of DSmH)

mDSmH(θ1) = 0.34 (same as mDP (θ1))

mDSmH(θ2) = 0.25 (same as mDP (θ2))

mDSmH(θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)]

+ [m1(θ1 ∪ θ2)m2(θ3) +m2(θ1 ∪ θ2)m1(θ3)]

+ [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)] + [m1(θ3)m2(θ3)]

= 0.03 + 0.11 + 0.21 + 0.06 = 0.35 + 0.06 = 0.41

= mDP (θ1 ∪ θ2)

We can easily verify that mDSmH(θ1)+mDSmH(θ2)+mDSmH(θ1∪θ2) =
1. In this example, using the hybrid DSm rule, one transfers the product
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of the empty-element θ3 column, m1(θ3)m2(θ3) = 0.2 · 0.3 = 0.06, to
mDSmH(θ1 ∪ θ2), which becomes equal to 0.35 + 0.06 = 0.41. Clearly,
DSmH rule doesn’t provide the same result as Dubois and Prade’s rule,
but only when working on static frames of discernment (restricted cases).

1.2.7 Fusion of imprecise beliefs

In many fusion problems, it seems very difficult (if not impossible) to have pre-
cise sources of evidence generating precise basic belief assignments (especially
when belief functions are provided by human experts), and a more flexible
plausible and paradoxical theory supporting imprecise information becomes
necessary. In the previous sections, we presented the fusion of precise uncer-
tain and conflicting/paradoxical generalized basic belief assignments (gbba)
in DSmT framework. We mean here by precise gbba, basic belief function-
s/masses m(.) defined precisely on the hyper-power set DΘ where each mass
m(X), where X belongs to DΘ, is represented by only one real number be-
longing to [0, 1] such that

∑
X∈DΘ m(X) = 1. In this section, we present the

DSm fusion rule for dealing with admissible imprecise generalized basic belief
assignments mI(.) defined as real subunitary intervals of [0, 1], or even more
general as real subunitary sets [i.e. sets, not necessarily intervals].

An imprecise belief assignment mI(.) over DΘ is said admissible if and only
if there exists for every X ∈ DΘ at least one real number m(X) ∈ mI(X) such
that

∑
X∈DΘ m(X) = 1. The idea to work with imprecise belief structures

represented by real subset intervals of [0, 1] is not new and has been inves-
tigated in [6, 7, 17] and references therein. The proposed works available in
the literature, upon our knowledge were limited only to sub-unitary interval
combination in the framework of Transferable Belief Model (TBM) developed
by Smets [41, 42]. We extend the approach of Lamata & Moral and Denœux
based on subunitary interval-valued masses to subunitary set-valued masses;
therefore the closed intervals used by Denœux to denote imprecise masses are
generalized to any sets included in [0,1], i.e. in our case these sets can be unions
of (closed, open, or half-open/half-closed) intervals and/or scalars all in [0, 1].
Here, the proposed extension is done in the context of DSmT framework, al-
though it can also apply directly to fusion of imprecise belief structures within
TBM as well if the user prefers to adopt TBM rather than DSmT.

Before presenting the general formula for the combination of generalized
imprecise belief structures, we remind the following set operators involved in
the DSm fusion formulas. Several numerical examples are given in the chapter
6 of [32].
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• Addition of sets

S1 � S2 = S2 � S1 � {x | x = s1 + s2, s1 ∈ S1, s2 ∈ S2}

• Subtraction of sets

S1 � S2 � {x | x = s1 − s2, s1 ∈ S1, s2 ∈ S2}

• Multiplication of sets

S1 � S2 � {x | x = s1 · s2, s1 ∈ S1, s2 ∈ S2}

• Division of sets: If 0 doesn’t belong to S2,

S1 � S2 � {x | x = s1/s2, s1 ∈ S1, s2 ∈ S2}

1.2.7.1 DSm rule of combination for imprecise beliefs

We present the generalization of the DSm rules to combine any type of imprecise
belief assignment which may be represented by the union of several sub-unitary
(half-) open intervals, (half-)closed intervals and/or sets of points belonging to
[0,1]. Several numerical examples are also given. In the sequel, one uses the
notation (a, b) for an open interval, [a, b] for a closed interval, and (a, b] or [a, b)
for a half open and half closed interval. From the previous operators on sets,
one can generalize the DSm rules (classic and hybrid) from scalars to sets in
the following way [32] (chap. 6): ∀A = ∅ ∈ DΘ,

mI(A) =
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏
i=1,...,k

mI
i (Xi) (1.10)

where
∑

and
∏

represent the summation, and respectively product, of

sets.

Similarly, one can generalize the hybrid DSm rule from scalars to sets in
the following way:

mI
DSmH(A) = mI

M(Θ)(A) � φ(A) �

[
SI

1(A) � SI
2(A) � SI

3 (A)
]

(1.11)

where all sets involved in formulas are in the canonical form and φ(A) is the
characteristic non emptiness function of the set A and SI

1(A), SI
2 (A) and SI

3 (A)



Chapter 1: An introduction to DSmT 31

are defined by

SI
1 (A) �

∑
X1,X2,...,Xk∈DΘ

X1∩X2∩...∩Xk=A

∏
i=1,...,k

mI
i (Xi) (1.12)

SI
2 (A) �

∑
X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

∏
i=1,...,k

mI
i (Xi) (1.13)

SI
3 (A) �

∑
X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xk=A

X1∩X2∩...∩Xk∈∅

∏
i=1,...,k

mI
i (Xi) (1.14)

In the case when all sets are reduced to points (numbers), the set operations be-
come normal operations with numbers; the sets operations are generalizations
of numerical operations. When imprecise belief structures reduce to precise
belief structure, DSm rules (1.10) and (1.11) reduce to their precise version
(1.4) and (1.5) respectively.

1.2.7.2 Example

Here is a simple example of fusion with multiple-interval masses. For simplicity,
this example is a particular case when the theorem of admissibility (see [32]
p. 138 for details) is verified by a few points, which happen to be just on the
bounders. It is an extreme example, because we tried to comprise all kinds
of possibilities which may occur in the imprecise or very imprecise fusion. So,
let’s consider a fusion problem over Θ = {θ1, θ2}, two independent sources of
information with the following imprecise admissible belief assignments

A ∈ DΘ mI
1(A) mI

2(A)
θ1 [0.1, 0.2] ∪ {0.3} [0.4, 0.5]
θ2 (0.4, 0.6) ∪ [0.7, 0.8] [0, 0.4] ∪ {0.5, 0.6}

Table 1.3: Inputs of the fusion with imprecise bba’s.

Using the DSm classic (DSmC) rule for sets, one gets

mI(θ1) = ([0.1, 0.2] ∪ {0.3})� [0.4, 0.5]

= ([0.1, 0.2]� [0.4, 0.5]) ∪ ({0.3}� [0.4, 0.5])

= [0.04, 0.10]∪ [0.12, 0.15]
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mI(θ2) = ((0.4, 0.6) ∪ [0.7, 0.8])� ([0, 0.4] ∪ {0.5, 0.6})
= ((0.4, 0.6)� [0, 0.4]) ∪ ((0.4, 0.6) � {0.5, 0.6})

∪ ([0.7, 0.8]� [0, 0.4]) ∪ ([0.7, 0.8]� {0.5, 0.6})
= (0, 0.24) ∪ (0.20, 0.30)∪ (0.24, 0.36) ∪ [0, 0.32]

∪ [0.35, 0.40]∪ [0.42, 0.48] = [0, 0.40]∪ [0.42, 0.48]

mI(θ1 ∩ θ2) = [([0.1, 0.2] ∪ {0.3})� ([0, 0.4] ∪ {0.5, 0.6})]� [[0.4, 0.5]

� ((0.4, 0.6) ∪ [0.7, 0.8])]

= [([0.1, 0.2]� [0, 0.4]) ∪ ([0.1, 0.2]� {0.5, 0.6})
∪ ({0.3} � [0, 0.4]) ∪ ({0.3} � {0.5, 0.6})]
� [([0.4, 0.5]� (0.4, 0.6)) ∪ ([0.4, 0.5]� [0.7, 0.8])]

= [[0, 0.08]∪ [0.05, 0.10]∪ [0.06, 0.12]∪ [0, 0.12]

∪ {0.15, 0.18}]� [(0.16, 0.30)∪ [0.28, 0.40]]

= [[0, 0.12]∪ {0.15, 0.18}]� (0.16, 0.40]

= (0.16, 0.52]∪ (0.31, 0.55]∪ (0.34, 0.58] = (0.16, 0.58]

Hence finally the fusion admissible result with DSmC rule is given by:

A ∈ DΘ mI(A) = [mI
1 ⊕mI

2](A)
θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2 (0.16, 0.58]
θ1 ∪ θ2 0

Table 1.4: Fusion result with the DSmC rule.

If one finds out6 that θ1 ∩ θ2
M≡ ∅ (this is our hybrid model M one wants to

deal with), then one uses the hybrid DSm rule (1.11) for sets: mI
M(θ1∩θ2) = 0

and mI
M(θ1 ∪ θ2) = (0.16, 0.58], the others imprecise masses are not changed.

With the hybrid DSm rule (DSmH) applied to imprecise beliefs, one gets
now the results given in Table 1.5.

6We consider now a dynamic fusion problem.
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A ∈ DΘ mI
M(A) = [mI

1 ⊕mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2
M≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

Table 1.5: Fusion result with DSmH rule for M.

Let’s check now the admissibility condition. For the source 1, there exist
the precise masses (m1(θ1) = 0.3) ∈ ([0.1, 0.2] ∪ {0.3}) and (m1(θ2) = 0.7) ∈
((0.4, 0.6) ∪ [0.7, 0.8]) such that 0.3 + 0.7 = 1. For the source 2, there exist
the precise masses (m1(θ1) = 0.4) ∈ ([0.4, 0.5]) and (m2(θ2) = 0.6) ∈ ([0, 0.4]∪
{0.5, 0.6}) such that 0.4+0.6 = 1. Therefore both sources associated with mI

1(.)
and mI

2(.) are admissible imprecise sources of information. It can be verified
that DSmC fusion of m1(.) and m2(.) yields the paradoxical bba m(θ1) =
[m1 ⊕ m2](θ1) = 0.12, m(θ2) = [m1 ⊕ m2](θ2) = 0.42 and m(θ1 ∩ θ2) = [m1 ⊕
m2](θ1 ∩ θ2) = 0.46. One sees that the admissibility condition is satisfied
since (m(θ1) = 0.12) ∈ (mI(θ1) = [0.04, 0.10] ∪ [0.12, 0.15]), (m(θ2) = 0.42) ∈
(mI(θ2) = [0, 0.40] ∪ [0.42, 0.48]) and (m(θ1 ∩ θ2) = 0.46) ∈ (mI(θ1 ∩ θ2) =
(0.16, 0.58]) such that 0.12 + 0.42 + 0.46 = 1. Similarly if one finds out that
θ1 ∩ θ2 = ∅, then one uses DSmH rule and one gets: m(θ1 ∩ θ2) = 0 and
m(θ1 ∪ θ2) = 0.46; the others remain unchanged. The admissibility condition
still holds, because one can pick at least one number in each subset mI(.) such
that the sum of these numbers is 1.

1.3 Proportional Conflict Redistribution rule

Instead of applying a direct transfer of partial conflicts onto partial uncertain-
ties as with DSmH, the idea behind the Proportional Conflict Redistribution
(PCR) rule [34, 36] is to transfer (total or partial) conflicting masses to non-
empty sets involved in the conflicts proportionally with respect to the masses
assigned to them by sources as follows:

1. calculation the conjunctive rule of the belief masses of sources;

2. calculation the total or partial conflicting masses;

3. redistribution of the (total or partial) conflicting masses to the non-empty
sets involved in the conflicts proportionally with respect to their masses
assigned by the sources.
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The way the conflicting mass is redistributed yields actually several versions
of PCR rules. These PCR fusion rules work for any degree of conflict, for any
DSm models (Shafer’s model, free DSm model or any hybrid DSm model) and
both in DST and DSmT frameworks for static or dynamical fusion situations.
We present below only the most sophisticated proportional conflict redistri-
bution rule denoted PCR5 in [34, 36]. PCR5 rule is what we feel the most
efficient PCR fusion rule developed so far. This rule redistributes the partial
conflicting mass to the elements involved in the partial conflict, considering
the conjunctive normal form of the partial conflict. PCR5 is what we think
the most mathematically exact redistribution of conflicting mass to non-empty
sets following the logic of the conjunctive rule. It does a better redistribution
of the conflicting mass than Dempster’s rule since PCR5 goes backwards on
the tracks of the conjunctive rule and redistributes the conflicting mass only
to the sets involved in the conflict and proportionally to their masses put in
the conflict. PCR5 rule is quasi-associative and preserves the neutral impact
of the vacuous belief assignment because in any partial conflict, as well in the
total conflict (which is a sum of all partial conflicts), the conjunctive normal
form of each partial conflict does not include Θ since Θ is a neutral element for
intersection (conflict), therefore Θ gets no mass after the redistribution of the
conflicting mass. We have proved in [36] the continuity property of the fusion
result with continuous variations of bba’s to combine.

1.3.1 PCR formulas

The PCR5 formula for the combination of two sources (s = 2) is given by:
mPCR5(∅) = 0 and ∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X) +
∑

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
]

(1.15)

where all sets involved in formulas are in canonical form and where GΘ cor-
responds to classical power set 2Θ if Shafer’s model is used, or to a con-
strained hyper-power set DΘ if any other hybrid DSm model is used instead,
or to the super-power set SΘ if the minimal refinement Θref of Θ is used;
m12(X) ≡ m∩(X) corresponds to the conjunctive consensus on X between the
s = 2 sources and where all denominators are different from zero. If a denom-
inator is zero, that fraction is discarded.

A general formula of PCR5 for the fusion of s > 2 sources has been proposed
in [36], but a more intuitive PCR formula (denoted PCR6) which provides good



Chapter 1: An introduction to DSmT 35

results in practice has been proposed by Martin and Osswald in [36] (pages 69-
88) and is given by: mPCR6(∅) = 0 and ∀X ∈ GΘ \ {∅}

mPCR6(X) = m12...s(X)+

s∑
i=1

mi(X)2
∑

s−1∩
k=1

Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(s−1))∈(GΘ)s−1

⎛
⎜⎜⎜⎜⎜⎝

s−1∏
j=1

mσi(j)(Yσi(j))

mi(X)+

s−1∑
j=1

mσi(j)(Yσi(j))

⎞
⎟⎟⎟⎟⎟⎠ (1.16)

where σi counts from 1 to s avoiding i:{
σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i,

(1.17)

Since Yi is a focal element of expert/source i, mi(X)+

s−1∑
j=1

mσi(j)(Yσi(j)) = 0;

the belief mass assignment m12...s(X) ≡ m∩(X) corresponds to the conjunctive
consensus on X between the s > 2 sources. For two sources (s = 2), PCR5
and PCR6 formulas coincide.

1.3.2 Examples

• Example 1: Let’s take Θ = {A,B} of exclusive elements (Shafer’s
model), and the following bba:

A B A ∪B
m1(.) 0.6 0 0.4
m2(.) 0 0.3 0.7

m∩(.) 0.42 0.12 0.28

The conflicting mass is k12 = m∩(A ∩ B) and equals m1(A)m2(B) +
m1(B)m2(A) = 0.18. Therefore A and B are the only focal elements
involved in the conflict. Hence according to the PCR5 hypothesis only A
and B deserve a part of the conflicting mass and A ∪ B do not deserve.
With PCR5, one redistributes the conflicting mass k12 = 0.18 to A and
B proportionally with the masses m1(A) and m2(B) assigned to A and
B respectively.
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Here are the results obtained from Dempster’s rule, DSmH and PCR5:

A B A ∪B
mDS 0.512 0.146 0.342
mDSmH 0.420 0.120 0.460
mPCR5 0.540 0.180 0.280

• Example 2: Let’s modify example 1 and consider

A B A ∪B
m1(.) 0.6 0 0.4
m2(.) 0.2 0.3 0.5

m∩(.) 0.50 0.12 0.20

The conflicting mass k12 = m∩(A ∩ B) as well as the distribution coef-
ficients for the PCR5 remains the same as in the previous example but
one gets now

A B A ∪B
mDS 0.609 0.146 0.231
mDSmH 0.500 0.120 0.380
mPCR5 0.620 0.180 0.200

• Example 3: Let’s modify example 2 and consider

A B A ∪B
m1(.) 0.6 0.3 0.1
m2(.) 0.2 0.3 0.5

m∩(.) 0.44 0.27 0.05

The conflicting mass k12 = 0.24 = m1(A)m2(B) + m1(B)m2(A) = 0.24
is now different from previous examples, which means that m2(A) = 0.2
and m1(B) = 0.3 did make an impact on the conflict. Therefore A and
B are the only focal elements involved in the conflict and thus only A
and B deserve a part of the conflicting mass. PCR5 redistributes the
partial conflicting mass 0.18 to A and B proportionally with the masses
m1(A) and m2(B) and also the partial conflicting mass 0.06 to A and B
proportionally with the masses m2(A) and m1(B). After all derivations
(see [14] for details), one finally gets:
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A B A ∪B
mDS 0.579 0.355 0.066
mDSmH 0.440 0.270 0.290
mPCR5 0.584 0.366 0.050

One clearly sees that mDS(A ∪ B) gets some mass from the conflicting
mass although A ∪ B does not deserve any part of the conflicting mass
(according to PCR5 hypothesis) since A∪B is not involved in the conflict
(only A and B are involved in the conflicting mass). Dempster’s rule
appears to us less exact than PCR5 and Inagaki’s rules [16]. It can be
showed [14] that Inagaki’s fusion rule (with an optimal choice of tuning
parameters) can become in some cases very close to PCR5 but upon our
opinion PCR5 result is more exact (at least less ad-hoc than Inagaki’s
one).

• Example 4 (A more concrete example): Three people, John (J),
George (G), and David (D) are suspects to a murder. So the frame of
discernment is Θ � {J,G,D}. Two sources m1(.) and m2(.) (witnesses)
provide the following information:

J G D
m1 0.9 0 0.1
m2 0 0.8 0.2

We know that John and George are friends, but John and David hate
each other, and similarly George and David.

a) Free model, i. e. all intersections are nonempty: J ∩G = ∅, J ∩D =
∅, G ∩D = ∅, J ∩G ∩D = ∅. Using the DSm classic rule one gets:

J G D J ∩G J ∩D G ∩D J ∩G ∩D
mDSmC 0 0 0.02 0.72 0.18 0.08 0

So we can see that John and George together (J ∩G) are most likely
to have committed the crime, since the mass mDSmC(J ∩G) = 0.72
is the biggest resulting mass after the fusion of the two sources. In
Shafer’s model, only one suspect could commit the crime, but the
free and hybrid models allow two or more people to have committed
the same crime - which happens in reality.



38 Chapter 1: An introduction to DSmT

b) Let’s consider the hybrid model, i. e. some intersections are empty,
and others are not. According to the above statement about the
relationships between the three suspects, we can deduce that J∩G =
∅, while J ∩ D = G ∩D = J ∩ G ∩ D = ∅. Then we first apply the
DSm Classic rule, and then the transfer of the conflicting masses is
done with PCR5:

J G D J ∩G J ∩D G ∩D J ∩ G ∩D

m1 0.9 0 0.1
m2 0 0.8 0.2

mDSmC 0 0 0.02 0.72 0.18 0.08 0

Using PCR5 now we transfer m(J ∩D) = 0.18, since J ∩D = ∅, to
J and D proportionally with 0.9 and 0.2 respectively, so J gets 0.15
and D gets 0.03 since:

xJ/0.9 = z1D/0.2 = 0.18/(0.9 + 0.2) = 0.18/1.1

whence xJ = 0.9(0.18/1.1) = 0.15 and z1D = 0.2(0.18/1.1) = 0.03.

Again using PCR5, we transfer m(G ∩D) = 0.08, since G ∩D = ∅,
to G and D proportionally with 0.8 and 0.1 respectively, so G gets
0.07 and D gets 0.01 since:

yG/0.8 = z2D/0.1 = 0.08/(0.8 + 0.1) = 0.08/0.9

whence yG = 0.8(0.08/0.9) = 0.07 and zD = 0.1(0.08/0.9) = 0.01.
Adding we get finally:

J G D J ∩G J ∩D G ∩D J ∩ G ∩D

mPCR5 0.15 0.07 0.06 0.72 0 0 0

So one has a high belief that the criminals are John and George
(both of them committed the crime) since m(J ∩ D) = 0.72 and it
is by far the greatest fusion mass.

In Shafer’s model, if we try to refine we get the disjoint parts: D, J ∩G,
J \ (J ∩G), and G \ (J ∩G), but the last two are ridiculous (what is the
real/physical nature of J \ (J ∩ G) or G \ (J ∩ G) ? Half of a person(!)
?), so the refining does not work here in reality. That’s why the hybrid
and free models are needed.

• Example 5 (Imprecise PCR5): The PCR5 formula can naturally
work also for the combination of imprecise bba’s. This has been already
presented in section 1.11.8 page 49 of [36] with a numerical example to
show how to apply it. This example will therefore not be reincluded here.
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1.3.3 Zadeh’s example

We compare here the solutions for well-known Zadeh’s example [55, 58] pro-
vided by several fusion rules. A detailed presentation with more comparisons
can be found in [32, 36]. Let’s consider Θ = {M,C, T} as the frame of three po-
tential origins about possible diseases of a patient (M standing for meningitis,
C for concussion and T for tumor), the Shafer’s model and the two following
belief assignments provided by two independent doctors after examination of
the same patient.

m1(M) = 0.9 m1(C) = 0 m1(T ) = 0.1

m2(M) = 0 m2(C) = 0.9 m2(T ) = 0.1

The total conflicting mass is high since it is

m1(M)m2(C) +m1(M)m2(T ) +m2(C)m1(T ) = 0.99

• with Dempster’s rule and Shafer’s model (DS), one gets the counter-
intuitive result (see justifications in [12, 32, 48, 52, 55]): mDS(T ) = 1

• with Yager’s rule [52] and Shafer’s model: mY (M ∪ C ∪ T ) = 0.99 and
mY (T ) = 0.01

• with DSmH and Shafer’s model:

mDSmH(M ∪ C) = 0.81 mDSmH(T ) = 0.01

mDSmH(M ∪ T ) = mDSmH(C ∪ T ) = 0.09

• The Dubois & Prade’s rule (DP) [12] based on Shafer’s model provides
in Zadeh’s example the same result as DSmH, because DP and DSmH
coincide in all static fusion problems7.

• with PCR5 and Shafer’s model: mPCR5(M) = mPCR5(C) = 0.486 and
mPCR5(T ) = 0.028.

One sees that when the total conflict between sources becomes high, DSmT
is able (upon authors opinion) to manage more adequately through DSmH or
PCR5 rules the combination of information than Dempster’s rule, even when
working with Shafer’s model - which is only a specific hybrid model. DSmH rule
is in agreement with DP rule for the static fusion, but DSmH and DP rules

7Indeed DP rule has been developed for static fusion only while DSmH has been developed
to take into account the possible dynamicity of the frame itself and also its associated model.
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differ in general (for non degenerate cases) for dynamic fusion while PCR5
rule is the most exact proportional conflict redistribution rule. Besides this
particular example, we showed in [32] that there exist several infinite classes of
counter-examples to Dempster’s rule which can be solved by DSmT.

In summary, DST based on Dempster’s rule provides counter-intuitive re-
sults in Zadeh’s example, or in non-Bayesian examples similar to Zadeh’s and
no result when the conflict is 1. Only ad-hoc discounting techniques allow to
circumvent troubles of Dempster’s rule or we need to switch to another model
of representation/frame; in the later case the solution obtained doesn’t fit with
the Shafer’s model one originally wanted to work with. We want also to em-
phasize that in dynamic fusion when the conflict becomes high, both DST [25]
and Smets’ Transferable Belief Model (TBM) [41] approaches fail to respond
to new information provided by new sources. This can be easily showed by the
very simple following example.

Example (where TBM doesn’t respond to new information):

Let Θ = {A,B,C} with the (precise) bba’s m1(A) = 0.4, m1(C) = 0.6 and
m2(A) = 0.7, m2(B) = 0.3. Then one gets8 with Dempster’s rule, Smets’
TBM (i.e. the non-normalized version of Dempster’s combination), DSmH and
PCR5: m12

DS(A) = 1, m12
TBM (A) = 0.28, m12

TBM (∅) = 0.72,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m12
DSmH(A) = 0.28

m12
DSmH(A ∪B) = 0.12

m12
DSmH(A ∪ C) = 0.42

m12
DSmH(B ∪ C) = 0.18

⎧⎪⎨
⎪⎩

m12
PCR5(A) = 0.574725

m12
PCR5(B) = 0.111429

m12
PCR5(C) = 0.313846

Now let’s consider a temporal fusion problem and introduce a third source
m3(.) with m3(B) = 0.8 and m3(C) = 0.2. Then one sequentially combines
the results obtained by m12

TBM (.), m12
DS(.), m12

DSmH(.) and m12
PCR(.) with the

new evidence m3(.) and one sees that m
(12)3
DS becomes not defined (division by

8We introduce here explicitly the indexes of sources in the fusion result since more than
two sources are considered in this example.
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zero) and m
(12)3
TBM (∅) = 1 while (DSmH) and (PCR5) provide⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m
(12)3
DSmH(B) = 0.240

m
(12)3
DSmH(C) = 0.120

m
(12)3
DSmH(A ∪B) = 0.224

m
(12)3
DSmH(A ∪ C) = 0.056

m
(12)3
DSmH(A ∪B ∪C) = 0.360

⎧⎪⎨
⎪⎩

m
(12)3
PCR5(A) = 0.277490

m
(12)3
PCR5(B) = 0.545010

m
(12)3
PCR5(C) = 0.177500

When the mass committed to empty set becomes one at a previous temporal
fusion step, then both DST and TBM do not respond to new information9.
Let’s continue the example and consider a fourth source m4(.) with m4(A) =

0.5, m4(B) = 0.3 and m4(C) = 0.2. Then it is easy to see that m
((12)3)4
DS (.)

is not defined since at previous step m
(12)3
DS (.) was already not defined, and

that m
((12)3)4
TBM (∅) = 1 whatever m4(.) is because at the previous fusion step

one had m
(12)3
TBM (∅) = 1. Therefore for a number of sources n ≥ 2, DST and

TBM approaches do not respond to new information incoming in the fusion
process while both (DSmH) and (PCR5) rules respond to new information.
To make DST and/or TBM working properly in such cases, it is necessary to
introduce ad-hoc temporal discounting techniques which are not necessary to
introduce if DSmT is adopted. If there are good reasons to introduce temporal
discounting, there is obviously no difficulty to apply the DSm fusion of these
discounted sources. An analysis of this behavior for target type tracking is
presented in [10, 36].

1.4 Uniform and partially uniform redistribution rules

The principles of Uniform Redistribution Rule (URR) and Partially Uniform
Redistribution Rule (PURR) have been proposed in 2006 with examples in [35].

9Actually Dempster’s rule doesn’t respond also to new compatible information/bba as
soon as a total mass of belief is already committed by a source to only one focal element. For
example, if one considers Θ = {A, B} with Shafer’s model (A∩B = ∅) and with m1(A) = 1,
m2(A) = 0.2 and m2(B) = 0.8, then Dempster’s rule always provides mDS(A) = 1 whatever
are the values taken by m2(A) > 0 and m2(B) > 0.
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The Uniform Redistribution Rule consists in redistributing the total con-
flicting mass k12 to all focal elements of GΘ generated by the consensus op-
erator. This way of redistributing mass is very simple and URR is different
from Dempster’s rule of combination, because Dempster’s rule redistributes
the total conflict proportionally with respect to the masses resulted from the
conjunctive rule of non-empty sets. PCR5 rule presented in section 1.3 does
proportional redistributions of partial conflicting masses to the sets involved in
the conflict. The URR formula for two sources is given by: ∀A = ∅

m12URR(A) = m12(A) +
1

n12

∑
X1,X2∈GΘ

X1∩X2=∅

m1(X1)m2(X2) (1.18)

where m12(A) is the result of the conjunctive rule applied to belief assignments
m1(.) and m2(.), and n12 = Card{Z ∈ GΘ,m1(Z) = 0 or m2(Z) = 0}.

For s ≥ 2 sources to combine: ∀A = ∅, one has

m12...sURR(A) = m12...s(A) +
1

n12...s

∑
X1,X2,...,Xs∈GΘ

X1∩X2∩...∩Xs=∅

s∏
i=1

m1(Xi) (1.19)

where m12...s(A) is the result of the conjunctive rule applied to mi(.), for all
i ∈ {1, 2, . . . , s} and

n12...s = Card{Z ∈ GΘ,m1(Z) = 0 or m2(Z) = 0 or . . . or ms(Z) = 0}

As alternative (modified version of URR), we can also consider the cardinal
of the ensemble of sets whose masses resulted from the conjunctive rule are
non-null, i.e. the cardinality of the core of conjunctive consensus:

nc
12...s = Card{Z ∈ GΘ,m12...s(Z) = 0}

It is also possible to do a uniformly partial redistribution, i.e. to uniformly
redistribute the conflicting mass only to the sets involved in the conflict. For
example, if m12(A∩B) = 0.08 and A∩B = ∅, then 0.08 is equally redistributed
to A and B only, supposing A and B are both non-empty, so 0.04 assigned to
A and 0.04 to B.

The Partially Uniform Redistribution Rule (PURR) for two sources is defined
as follows: ∀A = ∅
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m12PURR(A) = m12(A) +
1

2

∑
X1,X2∈GΘ

X1∩X2=∅
X1=A or X2=A

m1(X1)m2(X2) (1.20)

where m12(A) is the result of the conjunctive rule applied to belief assignments
m1(.) and m2(.).

For s ≥ 2 sources to combine: ∀A = ∅, one has

m12...sPURR(A) = m12...s(A)

+
1

s

∑
X1,X2,...,Xs∈GΘ

X1∩X2∩...∩Xs=∅
at leat one Xj=A,j∈{1,...,s}

CardA({X1, . . . , Xs})
s∏

i=1

m1(Xi) (1.21)

where CardA({X1, . . . , Xs}) is the number ofA’s occurring in {X1, X2, . . . , Xs}.

If A = ∅, m12PURR(A) = 0 and m12...sPURR(A) = 0.

These rules have a low computation cost with respect to Proportional
Conflict Redistribution (PCR) rules developed in the DSmT framework and
they preserve the neutrality of the vacuous belief assignment (VBA) since any
bba m1(.) combined with VBA defined on any frame Θ = {θ1, . . . , θn} by
mV BA(θ1∪ . . .∪θn) = 1, using the conjunctive rule, gives m1(.), so no conflict-
ing mass is needed to transfer. Of course these rules are very easy to implement
but from a theoretical point of view they remain less precise in their transfer of
conflicting beliefs since they do not take into account the proportional redistri-
bution with respect to the mass of each set involved in the conflict. Reasonably,
URR or PURR cannot outperform PCR5 but they may hopefully could appear
as good enough in some specific fusion problems when the level of total conflict
is not important. PURR does a more refined redistribution that URR and
MURR but it requires a little more calculation.

1.5 RSC Fusion rules

In this section, we briefly10 recall a new class of fusion rules based on the
belief redistribution to subsets or complements and denoted CRSC (standing
for Class of Redistribution rules to Subsets or Complements) for short.

10This class is presented in details in chapter 5 of this volume with several examples.
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Let m1(.) and m2(.) be two normalized basic belief assignments (bba’s)
defined11 from SΘ to [0, 1]. We use the conjunctive rule to first combine m1(.)
with m2(.) to get m∩(.) and then the mass of conflict say m∩(X∩Y ) = 0, when
X ∩ Y = ∅ or even when X ∩ Y is different from the empty set is redistributed
to subsets or complements in many ways (see chapter 5 for details). The new
class of fusion rule (denoted CRSCc) for transferring the conflicting masses
only is defined for A ∈ SΘ \ {∅, It} by:

mCRSCc(A) = m∩(A) + [α · m∩(A) + β · Card(A) + γ · f(A)]·
·
∑

X, Y ∈ SΘ

X ∩ Y = ∅
A ⊆ M

m1(X)m2(Y )∑
Z∈SΘ,Z⊆M

[α · m∩(Z) + β · Card(Z) + γ · f(Z)]
(1.22)

where It = θ1∪θ2∪. . .∪θn represents the total ignorance when Θ = {θ1, . . . , θn}.
M can be c(X ∪ Y ) (the complement of X ∪ Y ), or a subset of c(X ∪ Y ), or
X ∪ Y , or a subset of X ∪ Y ; α, β, γ ∈ {0, 1} but α+ β + γ = 0; in a weighted
way we can take α, β, γ ∈ [0, 1] also with α+ β + γ = 0; f(X) is a function of
X , i.e. another parameter that the mass of X is directly proportionally with
respect to; Card(X) is the cardinal of X .

The mass of belief mCRSCc(It) committed to the total ignorance is given by:

mCRSCc(It) = m∩(It) +
∑

X, Y ∈ SΘ

{X ∩ Y = ∅ and M = ∅}
or{X ∩ Y = ∅ and Den(Z) = 0}

m1(X)m2(Y ) (1.23)

where Den(Z) �
∑

Z∈SΘ,Z⊆M [α · m∩(Z) + β · Card(Z) + γ · f(Z)].

A more general formula for the redistribution of conflict and non-conflict
to subsets or complements class of rules for the fusion of masses of belief for
two sources of evidence is defined A ∈ (SΘ � Snon∅

∩ ) � {∅,Θ} by:

mCRSC(A) = m∩(A) +
∑

X, Y ∈ SΘ

{X ∩ Y = ∅, A ∈ T (X, Y )}

or {X ∩ Y ∈ Snon∅
∩,r , A ∈ T ′(X, Y )}

f(A)
m1(X)m2(Y )∑
Z∈T (X,Y )

f(Z)
(1.24)

11Since these rules use explicitely the complementation operator c(.), they apply only with
the super-power set SΘ or on 2Θ depending on the underlying model chosen for the frame
Θ.
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and for A = It:

mCRSC(It) = m∩(It) +
∑

X, Y ∈ SΘ

X ∩ Y = ∅,

{T (X, Y ) = ∅ or
X

Z∈T (X,Y )

f(Z) = 0}

m1(X)m2(Y ) (1.25)

where S∩ = {X ∈ SΘ|X = Y ∩Z, where Y, Z ∈ SΘ �{∅}}, all propositions are
expressed in their canonical form and where Xcontains at least an ∩ symbol in
its expression; S∅∩ be the set of all empty intersections from S∩ (i.e. the set of
exclusivity constraints), and Snon∅

∩ the set of all non-empty intersections from
S∩. Snon∅

∩,r is the set of all non-empty intersections from Snon∅
∩ whose masses are

redistributed to other sets/propositions. The set Snon∅
∩,r highly depends on the

model for the frame of the application under consideration. f(.) is a mapping
from SΘ to R+. For example, we can choose f(X) = m∩(X), f(X) = |X |,
fT (X) = |X|

|T (X,Y )| , or f(x) = m∩(X) + |X |, etc. The function T specifies a

subset of SΘ, for example T (X,Y ) = {c(X ∪ Y )}, or T (X,Y ) = {X ∪ Y } or
can specify a set of subsets of SΘ. For example, T (X,Y ) = {A ⊂ c(X ∪ Y )},
or T (X,Y ) = {A ⊂ X ∪ Y }. The function T ′ is a subset of SΘ, for example
T ′(X,Y ) = {X ∪ Y }, or T ′ is a subset of X ∪ Y , etc.

It is important to highlight that in formulas (1.22)-(1.23) one transfers only
the conflicting masses, whereas the formulas (1.24)-(1.25) are more general
since one transfers the conflicting masses or the non-conflicting masses as well
depending on the preferences of the fusion system designer. The previous
formulas have been directly extended for any s ≥ 2 sources of evidence in
chapter 5. All denominators in these CRSC formulas are naturally supposed
different from zero. It is worth to note also that the extensions of these rules
for including the reliabilities of the sources are also presented in chapter 5 of
this volume.

1.6 The generalized pignistic transformation (GPT)

1.6.1 The classical pignistic transformation

We follow here Philippe Smets’ vision which considers the management of infor-
mation as a two 2-levels process: credal (for combination of evidences) and pig-
nistic12 (for decision-making) , i.e ”when someone must take a decision, he/she

12Pignistic terminology has been coined by Philippe Smets and comes from pignus, a bet
in Latin.
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must then construct a probability function derived from the belief function that
describes his/her credal state. This probability function is then used to make
decisions” [40] (p. 284). One obvious way to build this probability function
corresponds to the so-called Classical Pignistic Transformation (CPT) defined
in DST framework (i.e. based on the Shafer’s model assumption) as [42]:

BetP{A} =
∑

X∈2Θ

|X ∩A|
|X | m(X) (1.26)

where |A| denotes the cardinality of the set A (with convention |∅|/|∅| = 1, to
define BetP{∅}). Decisions are achieved by computing the expected utilities
of the acts using the subjective/pignistic BetP{.} as the probability function
needed to compute expectations. Usually, one uses the maximum of the pignis-
tic probability as decision criterion. The maximum of BetP{.} is often consid-
ered as a prudent betting decision criterion between the two other alternatives
(max of plausibility or max. of credibility which appears to be respectively
too optimistic or too pessimistic). It is easy to show that BetP{.} is indeed a
probability function (see [41]).

1.6.2 Notion of DSm cardinality

One important notion involved in the definition of the Generalized Pignistic
Transformation (GPT) is the DSm cardinality. The DSm cardinality of any
element A of hyper-power set DΘ, denoted CM(A), corresponds to the number
of parts of A in the corresponding fuzzy/vague Venn diagram of the problem
(model M) taking into account the set of integrity constraints (if any), i.e. all
the possible intersections due to the nature of the elements θi. This intrinsic
cardinality depends on the model M (free, hybrid or Shafer’s model). M is
the model that contains A, which depends both on the dimension n = |Θ| and
on the number of non-empty intersections present in its associated Venn dia-
gram (see [32] for details ). The DSm cardinality depends on the cardinal of
Θ = {θ1, θ2, . . . , θn} and on the model of DΘ (i.e., the number of intersections
and between what elements of Θ - in a word the structure) at the same time;
it is not necessarily that every singleton, say θi, has the same DSm cardinal,
because each singleton has a different structure; if its structure is the sim-
plest (no intersection of this elements with other elements) then CM(θi) = 1, if
the structure is more complicated (many intersections) then CM(θi) > 1; let’s
consider a singleton θi: if it has 1 intersection only then CM(θi) = 2, for 2
intersections only CM(θi) is 3 or 4 depending on the model M, for m inter-
sections it is between m + 1 and 2m depending on the model; the maximum
DSm cardinality is 2n−1 and occurs for θ1 ∪ θ2 ∪ . . . ∪ θn in the free model



Chapter 1: An introduction to DSmT 47

Mf ; similarly for any set from DΘ: the more complicated structure it has, the
bigger is the DSm cardinal; thus the DSm cardinality measures the complexity
of an element from DΘ, which is a nice characterization in our opinion; we may
say that for the singleton θi not even |Θ| counts, but only its structure (= how
many other singletons intersect θi). Simple illustrative examples are given in
Chapter 3 and 7 of [32]. One has 1 ≤ CM(A) ≤ 2n − 1. CM(A) must not be
confused with the classical cardinality |A| of a given set A (i.e. the number of
its distinct elements) - that’s why a new notation is necessary here. CM(A) is
very easy to compute by programming from the algorithm of generation of DΘ

given explicated in [32].

Example: let’s take back the example of the simple hybrid DSm model de-
scribed in section 1.2.2, then one gets the following list of elements (with their
DSm cardinal) for the restricted DΘ taking into account the integrity con-
straints of this hybrid model:

A ∈ DΘ CM(A)

α0 � ∅ 0

α1 � θ1 ∩ θ2 1

α2 � θ3 1

α3 � θ1 2

α4 � θ2 2

α5 � θ1 ∪ θ2 3

α6 � θ1 ∪ θ3 3

α7 � θ2 ∪ θ3 3

α8 � θ1 ∪ θ2 ∪ θ3 4

Example of DSm cardinals: CM(A) for hybrid model M.

1.6.3 The Generalized Pignistic Transformation

To take a rational decision within DSmT framework, it is necessary to gener-
alize the Classical Pignistic Transformation in order to construct a pignistic
probability function from any generalized basic belief assignment m(.) drawn
from the DSm rules of combination. Here is the simplest and direct extension
of the CPT to define the Generalized Pignistic Transformation:

∀A ∈ DΘ, BetP{A} =
∑

X∈DΘ

CM(X ∩A)

CM(X)
m(X) (1.27)
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where CM(X) denotes the DSm cardinal of proposition X for the DSm model
M of the problem under consideration.

The decision about the solution of the problem is usually taken by the
maximum of pignistic probability function BetP{.}. Let’s remark the close
ressemblance of the two pignistic transformations (1.26) and (1.27). It can be
shown that (1.27) reduces to (1.26) when the hyper-power set DΘ reduces to
classical power set 2Θ if we adopt Shafer’s model. But (1.27) is a generalization
of (1.26) since it can be used for computing pignistic probabilities for any
models (including Shafer’s model). It has been proved in [32] (Chap. 7) that
BetP{.} defined in (1.27) is indeed a probability distribution. In the following
section, we introduce a new alternative to BetP which is presented in details
in the chapter 3 of this volume.

1.7 The DSmP transformation

In the theories of belief functions, the mapping from the belief to the proba-
bility domain is a controversial issue. The original purpose of such mappings
was to make (hard) decision, but contrariwise to erroneous widespread idea/-
claim, this is not the only interest for using such mappings nowadays. Actually
the probabilistic transformations of belief mass assignments (as the pignistic
transformation mentioned previously) are for example very useful in modern
multitarget multisensor tracking systems (or in any other systems) where one
deals with soft decisions (i.e. where all possible solutions are kept for state esti-
mation with their likelihoods). For example, in a Multiple Hypotheses Tracker
using both kinematical and attribute data, one needs to compute all probabili-
ties values for deriving the likelihoods of data association hypotheses and then
mixing them altogether to estimate states of targets. Therefore, it is very rele-
vant to use a mapping which provides a high probabilistic information content
(PIC) for expecting better performances.

In this section, we briefly recall a new probabilistic transformation, denoted
DSmP and introduced in [11] which will be explained in details in Chapter 3
of this volume. DSmP is straight and different from other transformations.
The basic idea of DSmP consists in a new way of proportionalizations of
the mass of each partial ignorance such as A1 ∪ A2 or A1 ∪ (A2 ∩ A3) or
(A1∩A2)∪(A3∩A4), etc. and the mass of the total ignoranceA1∪A2∪. . .∪An,
to the elements involved in the ignorances. This new transformation takes into
account both the values of the masses and the cardinality of elements in the
proportional redistribution process. We first remind what PIC criteria is and
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then shortly present the general formula for DSmP transformation with few
numerical examples. More examples and comparisons with respect to other
transformations are given in the chapter 3.

1.7.1 The Probabilistic Information Content (PIC)

Following Sudano’s approach [43, 44, 46], we adopt the Probabilistic Informa-
tion Content (PIC) criterion as a metric depicting the strength of a critical
decision by a specific probability distribution. It is an essential measure in
any threshold-driven automated decision system. The PIC is the dual of the
normalized Shannon entropy. A PIC value of one indicates the total knowledge
to make a correct decision (one hypothesis has a probability value of one and
the rest of zero). A PIC value of zero indicates that the knowledge to make
a correct decision does not exist (all the hypotheses have an equal probability
value), i.e. one has the maximal entropy. The PIC is used in our analysis to
sort the performances of the different pignistic transformations through several
numerical examples. We first recall what Shannon entropy and PIC measure
are and their tight relationship.

• Shannon entropy

Shannon entropy, usually expressed in bits (binary digits), of a probability
measure P{.} over a discrete finite set Θ = {θ1, . . . , θn} is defined by13 [26]:

H(P ) � −
n∑

i=1

P{θi} log2(P{θi}) (1.28)

H(P ) is maximal for the uniform probability distribution over Θ, i.e. when
P{θi} = 1/n for i = 1, 2, . . . , n. In that case, one gets H(P ) = Hmax =
−∑n

i=1
1
n log2(

1
n ) = log2(n). H(P ) is minimal for a totally deterministic pro-

bability, i.e. for any P{.} such that P{θi} = 1 for some i ∈ {1, 2, . . . , n} and
P{θj} = 0 for j = i. H(P ) measures the randomness carried by any discrete
probability P{.}.

• The PIC metric

The Probabilistic Information Content (PIC) of a probability measure P{.}
associated with a probabilistic source over a discrete finite set Θ = {θ1, . . . , θn}
is defined by [44]:

PIC(P ) = 1 +
1

Hmax
·

n∑
i=1

P{θi} log2(P{θi}) (1.29)

13with common convention 0 log2 0 = 0.
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The PIC is nothing but the dual of the normalized Shannon entropy and thus
is actually unit less. PIC(P ) takes its values in [0, 1]. PIC(P ) is maximum,
i.e. PICmax = 1 with any deterministic probability and it is minimum, i.e.
PICmin = 0, with the uniform probability over the frame Θ. The simple
relationships between H(P ) and PIC(P ) are PIC(P ) = 1 − (H(P )/Hmax)
and H(P ) = Hmax · (1− PIC(P )).

1.7.2 The DSmP formula

Let’s consider a discrete frame Θ with a given model (free DSm model, hybrid
DSm model or Shafer’s model), the DSmP mapping is defined by DSmPε(∅) =
0 and ∀X ∈ GΘ \ {∅} by

DSmPε(X) =
∑

Y ∈GΘ

∑
Z⊆X∩Y
C(Z)=1

m(Z) + ε · C(X ∩ Y )

∑
Z⊆Y
C(Z)=1

m(Z) + ε · C(Y )
m(Y ) (1.30)

where ε ≥ 0 is a tuning parameter and GΘ corresponds to the generic set (2Θ,
SΘ or DΘ including eventually all the integrity constraints (if any) of the model
M); C(X ∩ Y ) and C(Y ) denote the DSm cardinals14 of the sets X ∩ Y and Y
respectively. ε allows to reach the maximum PIC value of the approximation
of m(.) into a subjective probability measure. The smaller ε, the better/bigger
PIC value. In some particular degenerate cases however, the DSmPε=0 values
cannot be derived, but the DSmPε>0 values can however always be derived by
choosing ε as a very small positive number, say ε = 1/1000 for example in order
to be as close as we want to the maximum of the PIC. When ε = 1 and when the
masses of all elements Z having C(Z) = 1 are zero, (1.30) reduces to (1.27), i.e.
DSmPε=1 = BetP . The passage from a free DSm model to a Shafer’s model
involves the passage from a structure to another one, and the cardinals change
as well in the formula (1.30). DSmP works for all models (free, hybrid and
Shafer’s). In order to apply classical transformation (Pignistic, Cuzzolin’s one,
Sudano’s ones, etc - see Chapter 3 in this volume), we need at first to refine the
frame (on the cases when it is possible!) in order to work with Shafer’s model,
and then apply their formulas. In the case where refinement makes sense, then
one can apply the other subjective probabilities on the refined frame. DSmP
works on the refined frame as well and gives the same result as it does on the
non-refined frame. Thus DSmP with ε > 0 works on any models and so is very

14We have omitted the index of the model M for the notation convenience.
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general and appealing. DSmP does a redistribution of the ignorance mass with
respect to both the singleton masses and the singletons’ cardinals in the same
time. Now, if all masses of singletons involved in all ignorances are different
from zero, then we can take ε = 0, and DSmP gives the best result, i.e. the
best PIC value. In summary, DSmP does an ’improvement’ over previous
known probabilistic transformations in the sense that DSmP mathematically
makes a more accurate redistribution of the ignorance masses to the singletons
involved in ignorances. DSmP and BetP work in both theories: DST (=
Shafer’s model) and DSmT (= free or hybrid models) as well.

1.7.3 Examples for DSmP and BetP

The examples briefly presented here are detailed in Chapter 3 including addi-
tional results based on Cuzzolin’s and Sudano’s transformations.

• With Shafer’s model and a non-Bayesian mass

Let’s consider the frame Θ = {A,B} and let’s assume Shafer’s model and
the non-Bayesian mass (more precisely the simple support mass) given in Table
1.6. We summarize in Table 1.7, the results obtained with DSmP and BetP.
One sees that PIC(DSmPε→0) is maximum among all PIC values.

A B A ∪B
m(.) 0.4 0 0.6

Table 1.6: Quantitative inputs for example 4 in Chapter 3.

A B PIC(.)
BetP (.) 0.7000 0.3000 0.1187
DSmPε=0.001(.) 0.9985 0.0015 0.9838
DSmPε=0(.) 1 0 1

Table 1.7: Results for example 4 in Chapter 3.

The best result is an adequate probability, not the biggest PIC in this case.
This is because P (B) deserves to receive some mass from m(A∪B), so the most
correct result is done by DSmPε=0.001 in Table 1.7 (of course we can choose
any other very small positive value for ε if we want). Always when a singleton
whose mass is zero, but it is involved in an ignorance whose mass is not zero,
then ε (in DSmP formula (1.30)) should be taken different from zero.
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• With a hybrid DSm model

Let’s consider the frame Θ = {A,B,C} and let’s consider the hybrid DSm
model in which all intersections of elements of Θ are empty, but A ∩ B cor-
responding to figure 1.4. In this case, GΘ reduces to 9 elements {∅, A ∩
B,A,B,C,A∪B,A∪C,B ∪C,A∪B ∪C}. The input masses of focal elements
are given by m(A ∩ B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30,
m(A ∪C) = 0.10, and m(A ∪B ∪ C) = 0.10 and given in the Table 1.8.

D′ A′ ∪D′ C′

m(.) 0.2 0.1 0.2

A′ ∪B′ ∪D′ A′ ∪ C′ ∪D′ A′ ∪B′ ∪C′ ∪D′

m(.) 0.3 0.1 0.1

Table 1.8: Quantitative inputs for example 8 in Chapter 3.
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Figure 1.4: Hybrid model for Θ = {A,B,C}.

Applying BetP and DSmP transformations, one gets:

A′ B′ C′ D′ PIC(.)
BetP (.) 0.2084 0.1250 0.2583 0.4083 0.0607
DSmPε=0.001(.) 0.0025 0.0017 0.2996 0.6962 0.5390

Table 1.9: Results for example 8 in Chapter 3.
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• With a free DSm model

Let’s consider the frame Θ = {A,B,C} and let’s consider the free DSm
model depicted on Figure 1.5 with the input masses given in Table 1.10.
To apply Sudano’s and Cuzzolin’s mappings, one works on the refined frame
Θref = {A′, B′, C′, D′, E′, F ′, G′} where the elements of Θref are exclusive (as-
suming such refinement has a physical meaning) according to Figure 1.5. This
refinement step is not necessary when using DSmP since it works directly on
DSm free model. The PIC values obtained with DSmP and BetP are given in
Table 1.11. One sees that DSmPε→0 provides here again the best results in
term of PIC.

��
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��
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��
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��C
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C′
E′ F ′

B′A′

Figure 1.5: Free DSm model for a 3D frame for example 9 in Chapter 3.

A ∩B ∩ C A ∩B A A ∪B A ∪B ∪C
m(.) 0.1 0.2 0.3 0.1 0.3

Table 1.10: Quantitative inputs for example 9 in Chapter 3.

Transformations PIC(.)
BetP (.) 0.1176
DSmPε=0.001(.) 0.8986

Table 1.11: Results for example 9 in Chapter 3.

An extension of DSmP (denoted qDSmP) for working with qualitative labels
instead of numbers is possible and has been proposed and presented in 2008
in [11] using approximate operators on labels. A simple example for qDSmP
based on precise operators on refined labels is presented in the next section.
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1.8 Fusion of qualitative beliefs

We recall here the notion of qualitative belief assignment to model beliefs of
human experts expressed in natural language (with linguistic labels). We show
how qualitative beliefs can be efficiently combined using an extension of DSmT
to qualitative reasoning. A more detailed presentation can be found in [36]. The
derivations are based on a new arithmetic on linguistic labels which allows a
direct extension of all quantitative rules of combination and conditioning. The
qualitative version of PCR5 rule and DSmP is also presented in the sequel.

1.8.1 Qualitative Operators

Computing with words (CW) and qualitative information is more vague, less
precise than computing with numbers, but it offers the advantage of robustness
if done correctly. Here is a general arithmetic we propose for computing with
words (i.e. with linguistic labels). Let’s consider a finite frame Θ = {θ1, . . . , θn}
of n (exhaustive) elements θi, i = 1, 2, . . . , n, with an associated model M(Θ)
on Θ (either Shafer’s model M0(Θ), free-DSm model Mf (Θ), or more gen-
eral any Hybrid-DSm model [32]). A model M(Θ) is defined by the set of
integrity constraints on elements of Θ (if any); Shafer’s model M0(Θ) assumes
all elements of Θ truly exclusive, while free-DSm model Mf (Θ) assumes no
exclusivity constraints between elements of the frame Θ. Let’s define a finite
set of linguistic labels L̃ = {L1, L2, . . . , Lm} where m ≥ 2 is an integer. L̃
is endowed with a total order relationship ≺, so that L1 ≺ L2 ≺ . . . ≺ Lm.
To work on a close linguistic set under linguistic addition and multiplication
operators, we extends L̃ with two extreme values L0 and Lm+1 where L0 corre-
sponds to the minimal qualitative value and Lm+1 corresponds to the maximal
qualitative value, in such a way that

L0 ≺ L1 ≺ L2 ≺ . . . ≺ Lm ≺ Lm+1

where ≺ means inferior to, or less (in quality) than, or smaller (in quality)
than, etc. hence a relation of order from a qualitative point of view. But if
we make a correspondence between qualitative labels and quantitative values
on the scale [0, 1], then Lmin = L0 would correspond to the numerical value 0,
while Lmax = Lm+1 would correspond to the numerical value 1, and each Li

would belong to [0, 1], i. e.

Lmin = L0 < L1 < L2 < . . . < Lm < Lm+1 = Lmax

From now on, we work on extended ordered set L of qualitative values

L = {L0, L̃, Lm+1} = {L0, L1, L2, . . . , Lm, Lm+1}
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In our previous works, we did propose approximate qualitative operators,
but in this book we propose to use better and accurate operators for quali-
tative labels. Since these new operators are defined in details in Chapter 2
devoted on the DSm Field and Linear Algebra of Refined Labels (FLARL), we
just briefly introduce here only the the main ones (i.e. the accurate label addi-
tion, multiplication and division). In FLARL, we can replace the ”qualitative
quasi-normalization” of qualitative operators we used in our previous papers
by ”qualitative normalization” since in FLARL we have exact qualitative cal-
culations and exact normalization.

• Label addition :
La + Lb = La+b (1.31)

since a
m+1 + b

m+1 = a+b
m+1 .

• Label multiplication :

La × Lb = L(ab)/(m+1) (1.32)

since a
m+1 · b

m+1 = (ab)/(m+1)
m+1 .

• Label division (when Lb = L0):

La ÷ Lb = L(a/b)(m+1) (1.33)

since a
m+1 ÷ b

m+1 = a
b = (a/b)(m+1)

m+1 .

More accurate qualitative operations (substraction, scalar multiplication,
scalar root, scalar power, etc) can be found in Chapter 2. Of course, if one
really needs to stay within the original set of labels, an approximation will be
necessary at the very end of the calculations.

1.8.2 Qualitative Belief Assignment

A qualitative belief assignment15 (qba) is a mapping function qm(.) : GΘ �→ L
where GΘ corresponds either to 2Θ, to DΘ or even to SΘ depending on the
model of the frame Θ we choose to work with. In the case when the labels are
equidistant, i.e. the qualitative distance between any two consecutive labels is
the same, we get an exact qualitative result, and a qualitative basic belief as-
signment (bba) is considered normalized if the sum of all its qualitative masses
is equal to Lmax = Lm+1. If the labels are not equidistant, we still can use

15We call it also qualitative belief mass or q-mass for short.
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all qualitative operators defined in the FLARL, but the qualitative result is
approximate, and a qualitative bba is considered quasi-normalized if the sum
of all its masses is equal to Lmax. Using the qualitative operator of FLARL, we
can easily extend all the combination and conditioning rules from quantitative
to qualitative. In the sequel we will consider s ≥ 2 qualitative belief assign-
ments qm1(.), . . . , qms(.) defined over the same space GΘ and provided by s
independent sources S1, . . . , Ss of evidence.

Note: The addition and multiplication operators used in all qualitative fusion
formulas in next sections correspond to qualitative addition and qualitative
multiplication operators and must not be confused with classical addition and
multiplication operators for numbers.

1.8.3 Qualitative Conjunctive Rule

The qualitative Conjunctive Rule (qCR) of s ≥ 2 sources is defined similarly
to the quantitative conjunctive consensus rule, i.e.

qmqCR(X) =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=X

s∏
i=1

qmi(Xi) (1.34)

The total qualitative conflicting mass is given by

K1...s =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=∅

s∏
i=1

qmi(Xi)

1.8.4 Qualitative DSm Classic rule

The qualitative DSm Classic rule (q-DSmC) for s ≥ 2 is defined similarly to
DSm Classic fusion rule (DSmC) as follows : qmqDSmC(∅) = L0 and for all
X ∈ DΘ \ {∅},

qmqDSmC(X) =
∑

X1,,...,Xs∈DΘ

X1∩...∩Xs=X

s∏
i=1

qmi(Xi) (1.35)
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1.8.5 Qualitative hybrid DSm rule

The qualitative hybrid DSm rule (q-DSmH) is defined similarly to quantitative
hybrid DSm rule [32] as follows:

qmqDSmH(∅) = L0 (1.36)

and for all X ∈ GΘ \ {∅}

qmqDSmH(X) � φ(X) ·
[
qS1(X) + qS2(X) + qS3(X)

]
(1.37)

where all sets involved in formulas are in the canonical form and φ(X) is the
characteristic non-emptiness function of a set X , i.e. φ(X) = Lm+1 if X /∈ ∅

and φ(X) = L0 otherwise, where ∅ � {∅M, ∅}. ∅M is the set of all elements
of DΘ which have been forced to be empty through the constraints of the
model M and ∅ is the classical/universal empty set. qS1(X) ≡ qmqDSmC(X),
qS2(X), qS3(X) are defined by

qS1(X) �
∑

X1,X2,...,Xs∈DΘ

X1∩X2∩...∩Xs=X

s∏
i=1

qmi(Xi) (1.38)

qS2(X) �
∑

X1,X2,...,Xs∈∅

[U=X]∨[(U∈∅)∧(X=It)]

s∏
i=1

qmi(Xi) (1.39)

qS3(X) �
∑

X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xs=X
X1∩X2∩...∩Xs∈∅

s∏
i=1

qmi(Xi) (1.40)

with U � u(X1) ∪ . . . ∪ u(Xs) where u(X) is the union of all θi that compose
X , It � θ1 ∪ . . .∪ θn is the total ignorance. qS1(X) is nothing but the qDSmC
rule for s independent sources based on Mf (Θ); qS2(X) is the qualitative
mass of all relatively and absolutely empty sets which is transferred to the
total or relative ignorances associated with non existential constraints (if any,
like in some dynamic problems); qS3(X) transfers the sum of relatively empty
sets directly onto the canonical disjunctive form of non-empty sets. qDSmH
generalizes qDSmC works for any models (free DSm model, Shafer’s model or
any hybrid models) when manipulating qualitative belief assignments.
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1.8.6 Qualitative PCR5 rule (qPCR5)

In classical (i.e. quantitative) DSmT framework, the Proportional Conflict
Redistribution rule no. 5 (PCR5) defined in [36] has been proven to pro-
vide very good and coherent results for combining (quantitative) belief masses,
see [10, 34]. When dealing with qualitative beliefs within the DSm Field and
Linear Algebra of Refined Labels (see Chapter 2 in this book) we get an ex-
act qualitative result no matter what fusion rule is used (DSm fusion rules,
Dempster’s rule, Smets’s rule, Dubois-Prade’s rule, etc.). The exact qualita-
tive result will be a refined label (but the user can round it up or down to the
closest integer index label).

1.8.7 A simple example of qualitative fusion of qba’s

Let’s consider the following set of ordered linguistic labels

L = {L0, L1, L2, L3, L4, L5}

(for example, L1, L2, L3 and L4 may represent the values: L1 � very poor,
L2 � poor, L3 � good and L4 � very good, where � symbol means by defini-
tion).

Let’s consider now a simple two-source case with a 2D frame Θ = {θ1, θ2},
Shafer’s model for Θ, and qba’s expressed as follows:

qm1(θ1) = L1, qm1(θ2) = L3, qm1(θ1 ∪ θ2) = L1

qm2(θ1) = L2, qm2(θ2) = L1, qm2(θ1 ∪ θ2) = L2

The two qualitative masses qm1(.) and qm2(.) are normalized since:

qm1(θ1) + qm1(θ2) + qm1(θ1 ∪ θ2) = L1 + L3 + L1 = L1+3+1 = L5

and

qm2(θ1) + qm2(θ2) + qm2(θ1 ∪ θ2) = L2 + L1 + L2 = L2+1+2 = L5

We first derive the result of the conjunctive consensus. This yields:

qm12(θ1) = qm1(θ1)qm2(θ1) + qm1(θ1)qm2(θ1 ∪ θ2) + qm1(θ1 ∪ θ2)qm2(θ1)

= L1 × L2 + L1 × L2 + L1 × L2

= L 1·2
5

+ L 1·2
5

+ L 1·2
5

= L 2
5+ 2

5 + 2
5
= L 6

5
= L1.2
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qm12(θ2) = qm1(θ2)qm2(θ2) + qm1(θ2)qm2(θ1 ∪ θ2) + qm1(θ1 ∪ θ2)qm2(θ2)

= L3 × L1 + L3 × L2 + L1 × L1

= L 3·1
5

+ L 3·2
5

+ L 1·1
5

= L 3
5+ 6

5+ 1
5
= L 10

5
= L2

qm12(θ1 ∪ θ2) = qm1(θ1 ∪ θ2)qm2(θ1 ∪ θ2) = L1 × L2 = L 1·2
5

= L 2
5
= L0.4

qm12(θ1 ∩ θ2) = qm1(θ1)qm2(θ2) + qm1(θ2)qm2(θ1)

= L1 × L1 + L2 × L3 = L 1·1
5

+ L 2·3
5

= L 1
5+ 6

5
= L 7

5
= L1.4

Therefore we get:

• for the fusion with qDSmC, when assuming θ1 ∩ θ2 = ∅,

qmqDSmC(θ1) = L1.2 qmqDSmC(θ2) = L2

qmqDSmC(θ1 ∪ θ2) = L0.4 qmqDSmC(θ1 ∩ θ2) = L1.4

• for the fusion with qDSmH, when assuming θ1 ∩ θ2 = ∅. The mass of
θ1 ∩ θ2 is transferred to θ1 ∪ θ2. Hence:

qmqDSmH(θ1) = L1.2 qmqDSmH(θ2) = L2

qmqDSmH(θ1 ∩ θ2) = L0 qmqDSmH(θ1 ∪ θ2) = L0.4 + L1.4 = L1.8

• for the fusion with qPCR5, when assuming θ1 ∩ θ2 = ∅. The mass
qm12(θ1 ∩ θ2) = L1.4 is transferred to θ1 and to θ2 in the following way:

qm12(θ1 ∩ θ2) = qm1(θ1)qm2(θ2) + qm2(θ1)qm1(θ2)

Then, qm1(θ1)qm2(θ2) = L1×L1 = L 1·1
5

= L 1
5
= L0.2 is redistributed to

θ1 and θ2 proportionally with respect to their qualitative masses put in
the conflict L1 and respectively L1:

xθ1

L1
=

yθ2

L1
=

L0.2

L1 + L1
=

L0.2

L1+1
=

L0.2

L2
= L 0.2

2 ·5
= L 1

2
= L0.5

whence xθ1 = yθ2 = L1 × L0.5 = L 1·0.5
5

= L 0.5
5

= L0.1.

Actually, we could easier see that qm1(θ1)qm2(θ2) = L0.2 had in this
case to be equally split between θ1 and θ2 since the mass put in the
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conflict by θ1 and θ2 was the same for each of them: L1. Therefore
L0.2

2 = L 0.2
2

= L0.1.

Similarly, qm2(θ1)qm1(θ2) = L2 × L3 = L 2·3
5

= L 6
5
= L1.2 has to be

redistributed to θ1 and θ2 proportionally with L2 and L3 respectively :

x′θ1

L2
=

y′θ2

L3
=

L1.2

L2 + L3
=

L1.2

L2+3
=

L1.2

L5
= L 1.2

5 ·5
= L1.2

whence

{
x′θ1

= L2 × L1.2 = L 2·1.2
5

= L 2.4
5

= L0.48

y′θ2
= L3 × L1.2 = L 3·1.2

5
= L 3.6

5
= L0.72

Now, add all these

to the qualitative masses of θ1 and θ2 respectively:

qmqPCR5(θ1) = qm12(θ1)+xθ1+x′θ1
= L1.2+L0.1+L0.48 = L1.2+0.1+0.48 = L1.78

qmqPCR5(θ2) = qm12(θ2)+ yθ2 + y′θ2
= L2 +L0.1 +L0.72 = L2+0.1+0.72 = L2.82

qmqPCR5(θ1 ∪ θ2) = qm12(θ1 ∪ θ2) = L0.4

qmqPCR5(θ1 ∩ θ2) = L0

The qualitative mass results using all fusion rules (qDSmC,qDSmH,qPCR5)
remain normalized in FLARL.

Naturally, if one prefers to express the final results with qualitative labels
belonging in the original discrete set of labels L = {L0, L1, L2, L3, L4, L5}, some
approximations will be necessary to round continuous indexed labels to their
closest integer/discrete index value; by example, qmqPCR5(θ1) = L1.78 ≈ L2,
qmqPCR5(θ2) = L2.82 ≈ L3 and qmqPCR5(θ1 ∪ θ2) = L0.4 ≈ L0.

1.8.8 A simple example for the qDSmP transformation

We first recall that the qualitative extension of (1.30), denoted qDSmPε(.) is
given by qDSmPε(∅) = L0 and ∀X ∈ GΘ \ {∅} by

qDSmPε(X) =
∑

Y ∈GΘ

∑
Z⊆X∩Y
C(Z)=1

qm(Z) + ε · C(X ∩ Y )

∑
Z⊆Y
C(Z)=1

qm(Z) + ε · C(Y )
qm(Y ) (1.41)

where all operations in (1.41) are referred to labels, that is q-operators on lin-
guistic labels and not classical operators on numbers.
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Let’s consider the simple frame Θ = {θ1, θ2} (here n = |Θ| = 2) with
Shafer’s model (i.e. θ1 ∩ θ2 = ∅) and the following set of linguistic labels L =
{L0, L1, L2, L3, L4, L5}, with L0 = Lmin and L5 = Lmax = Lm+1 (here m = 4)
and the following qualitative belief assignment: qm(θ1) = L1, qm(θ2) = L3

and qm(θ1 ∪ θ2) = L1. qm(.) is quasi-normalized since
∑

X∈2Θ qm(X) = L5 =
Lmax. In this example and with DSmP transformation, qm(θ1 ∪ θ2) = L1

is redistributed to θ1 and θ2 proportionally with respect to their qualitative
masses L1 and L3 respectively. Since both L1 and L3 are different from L0, we
can take the tuning parameter ε = 0 for the best transfer. ε is taken different
from zero when a mass of a set involved in a partial or total ignorance is zero
(for qualitative masses, it means L0).
Therefore using (1.33), one has

xθ1

L1
=

xθ2

L3
=

L1

L1 + L3
=

L1

L4
= L 1

4 ·5
= L 5

4
= L1.25

and thus using (1.32), one gets

xθ1 = L1 × L1.25 = L 1·(1.25)
5

= L 1.25
5

= L0.25

xθ2 = L3 × L1.25 = L 3·(1.25)
5

= L 3.75
5

= L0.75

Therefore,

qDSmPε=0(θ1 ∩ θ2) = qDSmPε=0(∅) = L0

qDSmPε=0(θ1) = L1 + xθ1 = L1 + L0.25 = L1.25

qDSmPε=0(θ2) = L3 + xθ2 = L3 + L0.75 = L3.75

Naturally in our example, one has also

qDSmPε=0(θ1 ∪ θ2) = qDSmPε=0(θ1) + qDSmPε=0(θ2)− qDSmPε=0(θ1 ∩ θ2)

= L1.25 + L3.75 − L0 = L5 = Lmax

Since Hmax = log2 n = log2 2 = 1, using the qualitative extension of PIC
formula (1.29), one obtains the following qualitative PIC value:

PIC = 1 +
1

1
· [qDSmPε=0(θ1) log2(qDSmPε=0(θ1))

+ qDSmPε=0(θ2) log2(qDSmPε=0(θ2))]

= 1 + L1.25 log2(L1.25) + L3.75 log2(L3.75) ≈ L0.94

since we considered the isomorphic transformation Li = i/(m + 1) (in our
particular example m = 4 interior labels).
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1.9 Belief Conditioning Rules

1.9.1 Shafer’s Conditioning Rule (SCR)

Until very recently, the most commonly used conditioning rule for belief revision
was the one proposed by Shafer [25] and referred here as Shafer’s Conditioning
Rule (SCR). The SCR consists in combining the prior bba m(.) with a specific
bba focused on A with Dempster’s rule of combination for transferring the
conflicting mass to non-empty sets in order to provide the revised bba. In other
words, the conditioning by a proposition A, is obtained by SCR as follows :

mSCR(.|A) = [m⊕mS ](.) (1.42)

where m(.) is the prior bba to update, A is the conditioning event, mS(.) is the
bba focused on A defined by mS(A) = 1 and mS(X) = 0 for all X = A and ⊕
denotes Dempster’s rule of combination [25].

The SCR approach based on Dempster’s rule of combination of the prior
bba with the bba focused on the conditioning event remains subjective since
actually in such belief revision process both sources are subjective and in our
opinions SCR doesn’t manage satisfactorily the objective nature/absolute truth
carried by the conditioning term. Indeed, when conditioning a prior mass
m(.), knowing (or assuming) that the truth is in A, means that we have in
hands an absolute (not subjective) knowledge, i.e. the truth in A has occurred
(or is assumed to have occurred), thus A is realized (or is assumed to be
realized) and this is (or at least must be interpreted as) an absolute truth.
The conditioning term ”Given A” must therefore be considered as an absolute
truth, while mS(A) = 1 introduced in SCR cannot refer to an absolute truth
actually, but only to a subjective certainty on the possible occurrence of A
from a virtual second source of evidence. The advantage of SCR remains
undoubtedly in its simplicity and the main argument in its favor is its coherence
with conditional probability when manipulating Bayesian belief assignment.
But in our opinion, SCR should better be interpreted as the fusion of m(.)
with a particular subjective bba mS(A) = 1 rather than an objective belief
conditioning rule. This fundamental remark motivated us to develop a new
family of BCR [36] based on hyper-power set decomposition (HPSD) explained
briefly in the next section. It turns out that many BCR are possible because
the redistribution of masses of elements outside of A (the conditioning event)
to those inside A can be done in n-ways. This will be briefly presented right
after the next section.
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1.9.2 Hyper-Power Set Decomposition (HPSD)

Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2, a model M(Θ) associated for Θ (free DSm
model, hybrid or Shafer’s model) and its corresponding hyper-power set DΘ.
Let’s consider a (quantitative) basic belief assignment (bba) m(.) : DΘ �→ [0, 1]
such that

∑
X∈DΘ m(X) = 1. Suppose one finds out that the truth is in the set

A ∈ DΘ \ {∅}. Let PD(A) = 2A ∩DΘ \ {∅}, i.e. all non-empty parts (subsets)
of A which are included in DΘ. Let’s consider the normal cases when A = ∅
and
∑

Y ∈PD(A) m(Y ) > 0. For the degenerate case when the truth is in A = ∅,
we consider Smets’ open-world, which means that there are other hypotheses
Θ′ = {θn+1, θn+2, . . . θn+m}, m ≥ 1, and the truth is in A ∈ DΘ′ \{∅}. If A = ∅
and we consider a close-world, then it means that the problem is impossible. For
another degenerate case, when

∑
Y ∈PD(A) m(Y ) = 0, i.e. when the source gave

us a totally (100%) wrong information m(.), then, we define: m(A|A) � 1 and,
as a consequence, m(X |A) = 0 for any X = A. Let s(A) = {θi1 , θi2 , . . . , θip},
1 ≤ p ≤ n, be the singletons/atoms that compose A (for example, if A =
θ1 ∪ (θ3 ∩ θ4) then s(A) = {θ1, θ3, θ4}). The Hyper-Power Set Decomposition
(HPSD) of DΘ \∅ consists in its decomposition into the three following subsets
generated by A:

• D1 = PD(A), the parts of A which are included in the hyper-power set,
except the empty set;

• D2 = {(Θ \ s(A)),∪,∩} \ {∅}, i.e. the sub-hyper-power set generated by
Θ \ s(A) under ∪ and ∩, without the empty set.

• D3 = (DΘ\{∅})\(D1∪D2); each set from D3 has in its formula singletons
from both s(A) and Θ \ s(A) in the case when Θ \ s(A) is different from
empty set.

D1, D2 and D3 have no element in common two by two and their union is
DΘ \ {∅}.

Simple example of HPSD: Let’s consider Θ = {θ1, θ2, θ3} with Shafer’s model
(i.e. all elements of Θ are exclusive) and let’s assume that the truth is in
θ2∪θ3, i.e. the conditioning term is θ2∪θ3. Then one has the following HPSD:
D1 = {θ2, θ3, θ2∪θ3}, D2 = {θ1} and D3 = {θ1∪θ2, θ1∪θ3, θ1∪θ2∪θ3}. More
complex and detailed examples can be found in [36].

1.9.3 Quantitative belief conditioning rules (BCR)

Since there exists actually many ways for redistributing the masses of elements
outside of A (the conditioning event) to those inside A, several BCR’s have
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been proposed in [36]. In this introduction, we will not browse all the possi-
bilities for doing these redistributions and all BCR’s formulas but only one,
the BCR number 17 (i.e. BCR17) which does in our opinion the most refined
redistribution since:
- the mass m(W ) of each element W in D2∪D3 is transferred to those X ∈ D1

elements which are included in W if any proportionally with respect to their
non-empty masses;
- if no such X exists, the mass m(W ) is transferred in a pessimistic/prudent
way to the k-largest element from D1 which are included in W (in equal parts)
if any;
- if neither this way is possible, then m(W ) is indiscriminately distributed to
all X ∈ D1 proportionally with respect to their nonzero masses.

BCR17 is defined by the following formula (see [36], Chap. 9 for detailed
explanations and examples):

mBCR17(X |A) = m(X) ·
[
SD1 +

∑
W∈D2∪D3

X⊂W

S(W ) �=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-largest
S(W )=0

m(W )/k (1.43)

where ”X is k-largest” means that X is the k-largest (with respect to inclusion)
set included in W and

S(W ) �
∑

Y ∈D1,Y⊂W

m(Y )

SD1 �

∑
Z∈D1,

or Z∈D2 |�Y ∈D1 with Y⊂Z

m(Z)

∑
Y ∈D1

m(Y )

Note: The authors mentioned in an Erratum to the printed version of the sec-
ond volume of DSmT book series (http://fs.gallup.unm.edu//Erratum.pdf)
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and they also corrected the online version of the aforementioned book (see page
240 in http://fs.gallup.unm.edu//DSmT-book2.pdf that all denominators
of the BCR’s formulas are naturally supposed to be different from zero. Of
course, Shafer’s conditioning rule as stated in Theorem 3.6, page 67 of [25]
does not work when the denominator is zero and that’s why Shafer has intro-
duced the condition Bel(B̄) < 1 (or equivalently Pl(B) > 0) in his theorem
when the conditioning term is B.

A simple example for BCR17: Let’s consider Θ = {θ1, θ2, θ3} with Shafer’s
model (i.e. all elements of Θ are exclusive) and let’s assume that the truth is
in θ2∪θ3, i.e. the conditioning term is A � θ2∪θ3. Then one has the following
HPSD:

D1 = {θ2, θ3, θ2 ∪ θ3}, D2 = {θ1}
D3 = {θ1 ∪ θ2, θ1 ∪ θ3, θ1 ∪ θ2 ∪ θ3}.

Let’s consider the following prior bba: m(θ1) = 0.2, m(θ2) = 0.1, m(θ3) = 0.2,
m(θ1 ∪ θ2) = 0.1, m(θ2 ∪ θ3) = 0.1 and m(θ1 ∪ θ2 ∪ θ3) = 0.3.

With BCR17, for D2, m(θ1) = 0.2 is transferred proportionally to all ele-
ments of D1, i.e.

xθ2

0.1 =
yθ3

0.2 =
zθ2∪θ3

0.1 = 0.2
0.4 = 0.5 whence the parts of m(θ1)

redistributed to θ2, θ3 and θ2 ∪ θ3 are respectively xθ2 = 0.05, yθ3 = 0.10, and
zθ2∪θ3 = 0.05. For D3, there is actually no need to transfer m(θ1 ∪ θ3) because
m(θ1 ∪ θ3) = 0 in this example; whereas m(θ1 ∪ θ2) = 0.1 is transferred to θ2

(no case of k-elements herein); m(θ1 ∪ θ2 ∪ θ3) = 0.3 is transferred to θ2, θ3

and θ2 ∪ θ3 proportionally to their corresponding masses:

xθ2/0.1 = yθ3/0.2 = zθ2∪θ3/0.1 = 0.3/0.4 = 0.75

whence xθ2 = 0.075, yθ3 = 0.15, and zθ2∪θ3 = 0.075. Finally, one gets

mBCR17(θ2|θ2 ∪ θ3) = 0.10 + 0.05 + 0.10 + 0.075 = 0.325

mBCR17(θ3|θ2 ∪ θ3) = 0.20 + 0.10 + 0.15 = 0.450

mBCR17(θ2 ∪ θ3|θ2 ∪ θ3) = 0.10 + 0.05 + 0.075 = 0.225

which is different from the result obtained with SCR, since one gets in this
example:

mSCR(θ2|θ2 ∪ θ3) = mSCR(θ3|θ2 ∪ θ3) = 0.25

mSCR(θ2 ∪ θ3|θ2 ∪ θ3) = 0.50

More complex and detailed examples can be found in [36].



66 Chapter 1: An introduction to DSmT

1.9.4 Qualitative belief conditioning rules

In this section we present only the qualitative belief conditioning rule no 17
which extends the principles of the previous quantitative rule BCR17 in the
qualitative domain using the operators on linguistic labels defined previously.
We consider from now on a general frame Θ = {θ1, θ2, . . . , θn}, a given model
M(Θ) with its hyper-power set DΘ and a given extended ordered set L of
qualitative values L = {L0, L1, L2, . . . , Lm, Lm+1}. The prior qualitative basic
belief assignment (qbba) taking its values in L is denoted qm(.). We assume in
the sequel that the conditioning event is A = ∅, A ∈ DΘ, i.e. the absolute truth
is in A. The approach we present here is a direct extension of BCR17 using
FLARL operators. Such extension can be done with all quantitative BCR’s
rules proposed in [36], but only qBCR17 is presented here for the sake of space
limitations.

1.9.4.1 Qualitative Belief Conditioning Rule no 17 (qBCR17)

Similarly to BCR17, qBCR17 is defined by the following formula:

qmqBCR17(X |A) = qm(X) ·
[
qSD1 +

∑
W∈D2∪D3

X⊂W

qS(W ) �=0

qm(W )

qS(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-largest
qS(W )=0

qm(W )/k (1.44)

where ”X is k-largest” means that X is the k-largest (with respect to inclusion)
set included in W and

qS(W ) �
∑

Y ∈D1,Y⊂W

qm(Y )

SD1 �

∑
Z∈D1,

or Z∈D2 |�Y ∈D1 with Y⊂Z

qm(Z)

∑
Y ∈D1

qm(Y )

Naturally, all operators (summation, product, division, etc) involved in the
formula (1.44) are the operators defined in FLARL working on linguistic labels.
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It is worth to note that the formula (1.44) requires also the division of the label
qm(W ) by a scalar k. This division is defined as follows:

Let r ∈ R, r = 0. Then the label division by a scalar is defined by

La

r
= La/r (1.45)

1.9.4.2 A simple example for qBCR17

Let’s consider L = {L0, L1, L2, L3, L4, L5, L6} a set of ordered linguistic labels.
For example, L1, L2, L3, L4 and L5 may represent the values: L1 � very poor,
L2 � poor, L3 � medium, L4 � good and L5 � very good. Let’s consider also
the frame Θ = {A,B,C,D} with the hybrid model corresponding to the Venn
diagram on Figure 1.6.

��

��

��

��

��

��
��

��
��

A
��

B

� C

� D

Figure 1.6: Venn Diagram for the hybrid model for this example.

We assume that the prior qualitative bba qm(.) is given by:

qm(A) = L1, qm(C) = L1, qm(D) = L4

and the qualitative masses of all other elements of GΘ take the minimal/zero
value L0. This mass is normalized since L1 +L1 +L4 = L1+1+4 = L6 = Lmax.

If we assume that the conditioning event is the proposition A ∪ B, i.e. the
absolute truth is in A ∪B, the hyper-power set decomposition (HPSD) is ob-
tained as follows: D1 is formed by all parts of A ∪B, D2 is the set generated
by {(C,D),∪,∩} \ ∅ = {C,D,C ∪ D,C ∩ D}, and D3 = {A ∪ C,A ∪ D,B ∪
C,B ∪D,A ∪B ∪C,A ∪ (C ∩D), . . .}.
Because the truth is in A ∪B, qm(D) = L4 is transferred in a prudent way to
(A ∪ B) ∩ D = B ∩ D according to our hybrid model, because B ∩ D is the
1-largest element from A ∪ B which is included in D. While qm(C) = L1 is
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transferred to A only, since it is the only element in A ∪ B whose qualitative
mass qm(A) is different from L0 (zero); hence:

qmqBCR17(A|A ∪B) = qm(A) + qm(C) = L1 + L1 = L1+1 = L2.

Therefore, one finally gets:

qmqBCR17(A|A ∪B) = L2, qmqBCR17(C|A ∪B) = L0

qmqBCR17(D|A ∪B) = L0, qmqBCR17(B ∩D|A ∪B) = L4

which is a normalized qualitative bba.

More complicated examples based on other qBCR’s can be found in [37].

1.10 Conclusion

A general presentation of the foundations of DSmT has been proposed in this
introduction. DSmT proposes new quantitative and qualitative rules of com-
bination for uncertain, imprecise and highly conflicting sources of information.
Several applications of DSmT have been proposed recently in the literature and
show the potential and the efficiency of this new theory. DSmT offers the possi-
bility to work in different fusion spaces depending on the nature of problem un-
der consideration. Thus, one can work either in 2Θ = (Θ,∪) (i.e. in the classical
power set as in DST framework), in DΘ = (Θ,∪,∩) (the hyper-power set —
also known as Dedekind’s lattice) or in the super-power set SΘ = (Θ,∪,∩, c(.)),
which includes 2Θ and DΘ and which represents the power set of the minimal
refinement of the frame Θ when the refinement is possible (because for vague
elements whose frontiers are not well known the refinement is not possible).
We have enriched the DSmT with a subjective probability (DSmPε) that gets
the best Probabilistic Information Content (PIC) in comparison with other ex-
isting subjective probabilities. Also, we have defined and developed the DSm
Field and Linear Algebra of Refined Labels that permit the transformation of
any fusion rule to a corresponding qualitative fusion rule which gives an exact
qualitative result (i.e. a refined label), so far the best in literature.
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[4] R. Dedekind, Über Zerlegungen von Zahlen durch ihre grössten gemein-
sammen Teiler, In Gesammelte Werke, Bd. 1. pp. 103-148, 1897.

[5] M. Daniel, The DSm approach as a special case of the Dempster-Shafer
theory, in Symbolic and quantitative approaches to reasoning with uncer-
tainty (Mellouli Ed.), Lecture Notes in Computer Science 4724 (Lecture
Notes in Artificial Intelligence), pp. 381-392 (2007); 9th European con-
ference, ECSQARU 2007, Hammamet, Tunisia, October 31–November 2,
2007.

[6] T. Denœux, Reasoning with imprecise belief structures, Technical Report
Heudiasys 97/44, available at http://www.hds.utc.fr/~tdenoeux/.

[7] T. Denœux, Reasoning with imprecise belief structures, International Jour-
nal of Approximate Reasoning, 20, pp. 79-111, 1999.

[8] J. Dezert J., F. Smarandache, Panel Discussion on DSmT, Fusion 2004
International Conference, Stockholm, Sweden (and also in Tutorials on
DSmT given in Fusion 2005-2008 Conferences).

[9] J. Dezert J., F. Smarandache, DSmT: A New Paradigm Shift for Informa-
tion Fusion, in Proceedings of Cogis ’ 06 Conference, Paris, March 2006.

[10] J. Dezert, A. Tchamova, F. Smarandache, P. Konstantinova, Target Type
Tracking with PCR5 and Dempster’s rules: A Comparative Analysis, in
Proceedings of Fusion 2006 International conference on Information Fu-
sion, Fusion 2006, Firenze, Italy, July 10-13, 2006.

[11] J. Dezert, F. Smarandache, A new probabilistic transformation of belief
mass assignment, in Proceedings of Fusion 2008 Conference, Cologne, Ger-
many, July 2008.

[12] D. Dubois, H. Prade, On the unicity of Dempster rule of combination,
International Journal of Intelligent Systems, Vol. 1, pp 133-142, 1986.



70 Chapter 1: An introduction to DSmT

[13] D. Dubois, H. Prade, Representation and combination of uncertainty with
belief functions and possibility measures, Computational Intelligence, 4,
pp. 244-264, 1988.

[14] M.C. Florea,Combinaison d’informations hétérogènes dans le cadre uni-
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[38] F. Smarandache, DSmT web page, http:/fs.gallup.unm.edu//DSmT.htm

[39] Ph. Smets, Combining non distinct evidence, Proc. North American Fuzzy
Information Processing (NAFIP 1986), New Orleans, LA, 1986.

[40] Ph. Smets, E.H. Mamdani, D. Dubois, H. Prade (Editors), Non-Standard
Logics for Automated Reasoning, Academic Press, 1988.

[41] Smets Ph., Kennes R., The transferable belief model, Artif. Intel., 66(2),
pp. 191-234, 1994.

[42] Ph. Smets, Data Fusion in the Transferable Belief Model, Proceedings
of the 3rd International Conference on Information Fusion, Fusion 2000,
Paris, July 10-13, 2000, pp PS21-PS33.

[43] J. Sudano, Pignistic Probability Transforms for Mixes of Low- and High-
Probability Events, Proc. of Fusion 2001, Montréal, August 2001.
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2.1 Introduction

Definitions of group, field, algebra, vector space, and linear algebra used in this
paper can be found in [1, 2, 4]. Let L1, L2, . . . , Lm be labels, where m ≥ 1 is
an integer. We consider a relation of order defined on these labels which can be
”smaller”, ”less in quality”, ”lower”, etc., L1 < L2 <, . . . , < Lm. Let’s extend
this set of labels with a minimum label L0, and a maximum label Lm+1. In
the case when the labels are equidistant, i.e. the qualitative distance between
any two consecutive labels is the same, we get an exact qualitative result, and
a qualitative basic belief assignment (bba) is considered normalized if the sum
of all its qualitative masses is equal to Lmax = Lm+1. If the labels are not
equidistant, we still can use all qualitative operators defined in the FLARL,
but the qualitative result is approximate, and a qualitative bba is considered
quasi-normalized if the sum of all its masses is equal to Lmax. Connecting them
to the classical interval [0, 1], we have:

Figure 2.1: Ordered set of labels in [0, 1].

So, 0 ≡ L0 < L1 < L2 < . . . < Li < . . . < Lm < Lm+1 ≡ 1, and Li =
i

m+1
for i ∈ {0, 1, 2, . . . ,m,m+ 1}.

1. Ordinary labels: The set of labels L̃ � {L0, L1, L2, . . . , Li, . . . , Lm, Lm+1}
whose indexes are positive integers between 0 and m+1, is called the set
of 1-Tuple labels. We call a set of labels to be equidistant labels , if the
geometric distance between any two consecutive labels is the same, i.e.
Li+1 − Li = Constant for any i.

And, the opposite definition: a set of labels is of non-equidistant labels if
the distances between consecutive labels is not the same, i.e. there exists
i = j such that Li+1 − Li = Lj+1 − Lj.

For simplicity and symmetry of the calculations, we further consider the
case of equidistant labels. But the same procedures can approximately
work for non-equidistant labels.

This set of 1-Tuple labels is isomorphic with the numerical set { i
m+1 , i =

0, 1, . . . ,m+ 1} through the isomorphism fL̃(Li) =
i

m+1 .
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2. Refined labels: We theoretically extend the set of labels L̃ to the left
and right sides of the interval [0, 1] towards −∞ and respectively +∞.
So, we define:

LZ � { j

m+ 1
, j ∈ Z}

where Z is the set of all positive and negative integers (zero included).

Thus:

LZ = {. . . , L−j, . . . , L−2, L−1, L0, L1, L2, . . . , Lj, . . .} = {Lj, j ∈ Z},
i.e. the set of extended labels with positive and negative indexes.

Similarly, one defines LQ � {Lq, q ∈ Q} as the set of labels whose indexes
are fractions. LQ is isomorphic with Q through the isomorphism fQ(Lq) =

q
m+1 for any q ∈ Q.

Even more general, we can define:

LR � { r

m+ 1
, r ∈ R}

where R is the set of all real numbers. LR is isomorphic with R through
the isomorphism fR(Lr) =

r
m+1 for any r ∈ R.

2.2 DSm field and linear algebra of refined labels

We will prove that (LR,+,×) is a field, where + is the vector addition of la-
bels, and × is the vector multiplication of labels which is called the DSm field
of refined labels. Therefore, for the first time we introduce decimal or refined
labels, i.e. labels whose index is decimal. For example: L 3

2
which is L1.5 means

a label in the middle of the label interval [L1, L2]. We also theoretically in-
troduce negative labels, L−i which is equal to −Li, that occur in qualitative
calculations.

Even more, (LR,+,×, ·), where · means scalar product, is a commutative
linear algebra over the field of real numbers R, with unit element, and whose
each non-null element is invertible with respect to the multiplication of labels.
This is called the DSm Linear Algebra of Refined labels (DSm-LARL for short).

2.2.1 Qualitative operators on DSm-LARL

Let’s define the qualitative operators on this linear algebra. Let a, b, c in R,
and the labels La = a

m+1 , Lb =
b

m+1 and Lc =
c

m+1 . Let the scalars α, β in R.
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• Vector Addition (addition of labels):

La + Lb = La+b (2.1)

since a
m+1 + b

m+1 = a+b
m+1 .

• Vector Subtraction (subtraction of labels):

La − Lb = La−b (2.2)

since a
m+1 − b

m+1 = a−b
m+1 .

• Vector Multiplication (multiplication of labels):

La × Lb = L(ab)/(m+1) (2.3)

since a
m+1 · b

m+1 = (ab)/(m+1)
m+1 .

• Scalar Multiplication (number times label):

α · La = La · α = Lαa (2.4)

since α · a
m+1 = αa

m+1 .

As a particular case, for α = −1, we get: −La = L−a.

Also, La

β = La ÷ β = 1
β · La = L a

β
.

• Vector Division (division of labels):

La ÷ Lb = L(a/b)(m+1) (2.5)

since a
m+1 ÷ b

m+1 = a
b = (a/b)(m+1)

m+1 .

• Scalar Power:

(La)
p
= Lap/(m+1)p−1 (2.6)

since ( a
m+1 )

p = ap/(m+1)p−1

m+1 , ∀p ∈ R.

• Scalar Root:
k
√

La = (La)
1
k = L

a
1
k /(m+1)

1
k

−1 (2.7)

which results from replacing p = 1
k in the power formula (2.6), ∀k integer

≥ 2.
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2.2.2 The DSm field of refined labels

Since (LR,+,×) is isomorphic with the set of real numbers (R,+,×), it re-
sults that (LR,+,×) is a field, called DSm field of refined labels. The field
isomorphism: fR : LR → R, fR(Lr) =

r
m+1 satisfies the axioms:

Axiom A1:
fR(La + Lb) = fR(La) + fR(Lb) (2.8)

since fR(La+Lb) = fR(La+b) =
a+b
m+1 and fR(La)+fR(Lb) =

a
m+1+

b
m+1 =

a+b
m+1 .

Axiom A2:
fR(La × Lb) = fR(La) · fR(Lb) (2.9)

since fR(La ×Lb) = fR(L(ab)/(m+1)) =
ab

m+1 and fR(La) · fR(Lb) =
a

m+1 ·
b

m+1 = ab
(m+1)2 .

(LR,+, ·) is a vector space of refined labels over the field of real numbers R,
since (LR,+) is a commutative group, and the scalar multiplication (which is
an external operation) verifies the axioms:

Axiom B1:
1 · La = L1·a = La (2.10)

Axiom B2:
(α · β) · La = α · (β · La) (2.11)

since both, left and right sides, are equal to Lαβa

Axiom B3:
α · (La + Lb) = α · La + α · Lb (2.12)

since α · (La + Lb) = α · La+b = Lα(a+b) = Lαa+αb = Lαa + Lαb =
α · La + α · Lb.

Axiom B4:
(α+ β) · La = α · La + β · La (2.13)

since (α+ β) · La = L(α+β)a = Lαa+βa = Lαa + Lβa = α · La + β · La.

(LR,+,×, ·) is a a Linear Algebra of Refined Labels over the field R of
real numbers, called DSm Linear Algebra of Refined Labels (DSm-LARL for
short), which is commutative, with identity element (which is Lm+1) for vector
multiplication, and whose non-null elements (labels) are invertible with respect
to the vector multiplication. This occurs since (LR,+, ·) is a vector space,
(LR,×) is a commutative group, the set of scalars R is well-known as a field,
and also one has:
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• The vector multiplication is associative:

Axiom C1 (Associativity of vector multiplication):

La × (Lb × Lc) = (La × Lb)× Lc (2.14)

since La × (Lb × Lc) = La × L(b·c)/(m+1) = L(a·b·c)/(m+1)2 while
(La × Lb)× Lc = L(ab)/(m+1) × Lc = L(a·b·c)/(m+1)2 as well.

• The vector multiplication is distributive with respect to addition:

Axiom C2:

La × (Lb + Lc) = La × Lb + La × Lc (2.15)

since La×(Lb+Lc) = La×Lb+c = L(a·(b+c))/(m+1) and La×Lb+La×
Lc = L(ab)/(m+1) + L(ac)/(m+1) = L(ab+ac)/(m+1) = L(a(b+c))/(m+1).

Axiom C3:

(La + Lb)× Lc = La × Lc + Lb × Lc (2.16)

since (La+Lb)×Lc = La+b×Lc = L((a+b)c))/(m+1) = L(ac+bc)/(m+1) =
L(ac)/(m+1)+(bc)/(m+1) = L(ac)/(m+1)+L(bc)/(m+1) = La×Lc+Lb×
Lc.

Axiom C4:

α · (La × Lb) = (α · La)× Lb = La × (α · Lb) (2.17)

since α·(La×Lb) = α·L(ab)/(m+1) = L(αab)/(m+1) = L((αa)b)/(m+1) =
Lαa × Lb = (α · La) × Lb; but also L(αab)/(m+1) = L(a(αb))/(m+1) =
La × Lαb = La × (α · Lb).

• The Unitary Element for vector multiplication is Lm+1, since

Axiom D1:

La × Lm+1 = Lm+1 × La = L(a(m+1))/(m+1) = La, ∀a ∈ R. (2.18)

• All La = L0 are invertible with respect to vector multiplication and the
inverse of La is (La)

−1 with:

Axiom E1:

(La)
−1 = L(m+1)2/a =

1

La
(2.19)

since La × (La)
−1 = La ×L(m+1)2/a = L(a·(m+1)2/a)/(m+1) = Lm+1.
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Therefore the DSm linear algebra is a Division Algebra. DSm Linear Alge-
bra is also a trivial Lie Algebra since we can define a law:

(La, Lb) → [La, Lb] = La × Lb − Lb × La = L0

such that

[La, La] = L0 (2.20)

and Jacobi identity is satisfied:

[La, [Lb, Lc]] + [Lb, [Lc, La]] + [Lc, [La, Lb]] = L0 (2.21)

Actually (LR,+,×, ·) is a field, and therefore in particular a ring, and any
ring with the law: [x, y] = xy − yx is a Lie Algebra.

We can extend the field isomorphism fR to a linear algebra isomorphism by
defining1: fR : R ·LR → R ·R with fR(α ·Lr1) = α · fR(Lr1) since fR(α ·Lr1) =
fR(L(α·r1)) = α · r1/(m+1) = α · r1

m+1 = α · fR(Lr1). Since (R,+, ·) is a trivial
linear algebra over the field of reals R, and because (LR,+, ·) is isomorphic with
it through the above fR linear algebra isomorphism, it results that (LR,+, ·) is
also a linear algebra which is associative and commutative.

2.3 New operators

Let’s now define new operators, such as scalar-vector (mixed) addition, scalar-
vector (mixed) subtraction, scalar-vector (mixed) division, vector power, and
vector root.

They might be surprizing since such “strange“ operators have not been
defined in science, but for DSm linear Algebra they make perfect sense since
(LR,+,×) is isomorphic to (R,+,×) and a label is equivalent to a real number,
since for a fixed m ≥ 1 we have

∀La ∈ LR, ∃!r ∈ R, r =
a

m+ 1
such that La = r

and reciprocally

∀r ∈ R, ∃!La ∈ LR, La = Lr(m+1) such that r = La

In consequence, we can substitute a real number by a label, and reciprocally.

1where · denotes the scalar multiplication.
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• Scalar-vector (mixed) addition:

La + α = α+ La = La+α(m+1) (2.22)

since La + α = La + α(m+1)
(m+1) = La + Lα(m+1) = La+α(m+1).

• Scalar-vector (mixed) subtractions:

La − α = La−α(m+1) (2.23)

since La − α = La − α(m+1)
(m+1) = La − Lα(m+1) = La−α(m+1).

α− La = Lα(m+1)−a (2.24)

since α− La = α(m+1)
(m+1) − La = Lα(m+1) − La = Lα(m+1)−a.

• Scalar-vector (mixed) divisions:

La ÷ α =
La

α
=

1

α
· La = L a

α
, for α = 0, (2.25)

which is equivalent to the scalar multiplication ( 1
α ) · La where 1

α ∈ R.

α÷ La = Lα(m+1)2

a

(2.26)

since α ÷ La = α(m+1)
m+1 ÷ La = Lα(m+1) ÷ La = Lα(m+1)/a)·(m+1) =

Lα(m+1)2

a

.

• Vector power:

(La)
Lb = L

a
b

m+1 /(m+1)
b−m−1

m+1
(2.27)

since (La)
Lb = (La)

b
m+1 = L

a
b

m+1 /(m+1)
b

m+1
−1 = L

a
b

m+1 /(m+1)
b−m−1

m+1

where we replaced p = b
m+1 in the scalar product formula.

• Vector root:
Lb

√
La = L

a
m+1

b /(m+1)
m−b+1

b
(2.28)

since Lb
√

La = (La)
1

Lb = (La)
1

b/(m+1) = (La)
m+1

b = L
a

m+1
b /(m+1)

m+1
b

−1 =

L
a

m+1
b /(m+1)

m−b+1
b

.
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LR endowed with all these scalar and vector (addition, subtraction, multipli-
cation, division, power, and root) operators becomes a powerful mathematical
tool in the DSm field and simultaneously linear algebra of refined labels.

Therefore, if we want to work with only 1-Tuple labels (ordinary labels), in
all these operators we set the restrictions that indexes are integers belonging
to {0, 1, 2, . . . ,m,m+1}; if an index is less than 0 then we force it to be 0, and
if greater than m + 1 we force it to m + 1.

2.4 Working with 2-tuple labels

For 2-Tuple labels defined by Herrera and Martinez [3], that have the form
(Li, σ

h
i ) where i is an integer and σh

i is a remainder in [− 0.5
m+1 ,

0.5
m+1 ), we use

the scalar addition (when σh
i ≥ 0) or scalar subtraction (when σh

i < 0) as
defined previously in order to transform a 2-Tuple label into a refined label
and then we use all previous twelve operators defined in FLARL. Actually,
(Li, σ

h
i ) = Li + σh

i and it doesn’t matter if σh
i is positive, zero, or negative.

2.5 Working with interval of labels

Interval of labels (i.e. imprecise labels) in the DSm Linear Algebra are intervals
of the form [Lr1 , Lr2 ], [Lr1 , Lr2), (Lr1 , Lr2 ], (Lr1 , Lr2) where r1, r2 ∈ R and
r1 < r2. To observe that r1 and r2 can be positive, negative, zero, decimals,
etc. For r1 = r2, the closed labeled interval [Lr1 , Lr2 ] ≡ Lr1 ≡ Lr2 , while the
other intervals are empty.

For intervals of labels or, more general, for sets of labels, we use the op-
erations on sets (addition, subtraction, multiplication, division, power, root of
sets) employed in working with imprecise information as proposed in [5].

2.6 Concluding remark

All previous four categories of labels: 1-Tuple labels, 2-Tuple labels, Imprecise
labels, and specially refined labels can be enriched. Enrichment of a category
of labels means that one take into account also the degree of confidence in each
label (or in each interval of labels), as in statistics. For example, the refined
labels Li(ci) means that we are ci percent confident in label Li, where ci ∈ [0, 1].
Li and ci are independent, which means that we apply all previous twelve
qualitative operators on Li’s, while for the percentage ci we can use quantitative
operators such as min, max, average, etc. To remark that σh

i from Herrera-
Martinez 2-Tuple labels is not independent from Li that is associated and σh

i
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can be interpreted as a refinement factor of Li whereas ci is interpreted as a
confidence factor for Li. Therefore, ci from enriched labels is different from σh

i

from 2-Tuple labels and they have totally different meanings. From the refined
label model of qualitative beliefs and the previous operators, we are able to
extend the DSm classic (DSmC) and the PCR5 numerical fusion rules proposed
in Dezert-Smarandache Theory (DSmT) and all other numerical fusion rules
from any fusion theory (DST, TBM, etc.) in the qualitative domain.
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Abstract: In this chapter, we propose in the DSmT framework, a
new probabilistic transformation, called DSmP, in order to build a
subjective probability measure from any basic belief assignment de-
fined on any model of the frame of discernment. Several examples
are given to show how the DSmP transformation works and we com-
pare it to main existing transformations proposed in the literature
so far. We show the advantages of DSmP over classical transforma-
tions in term of Probabilistic Information Content (PIC). The direct
extension of this transformation for dealing with qualitative belief as-
signments is also presented. This theoretical work must increase the
performances of DSmT-based hard-decision based systems as well as
in soft-decision based systems in many fields where it could be used,
i.e. in biometrics, medicine, robotics, surveillance and threat as-
sessment, multisensor-multitarget tracking for military and civilian
applications, etc.
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3.1 Introduction

In the theories of belief functions, Dempster-Shafer Theory (DST) [10], Trans-
ferable Belief Model (TBM) [15] or DSmT [12, 13], the mapping from the
belief to the probability domain is a controversial issue. The original purpose
of such mappings was to make a (hard) decision, but contrariwise to erroneous
widespread idea/claim, this is not the only interest for using such mappings
nowadays. Actually the probabilistic transformations of belief mass assign-
ments are very useful in modern multitarget multisensor tracking systems (or
in any other systems) where one deals with soft decisions (i.e. where all possible
solutions are kept for state estimation with their likelihoods). For example, in
a Multiple Hypotheses Tracker using both kinematical and attribute data, one
needs to compute all probabilities values for deriving the likelihoods of data
association hypotheses and then mixing them altogether to estimate states
of targets. Therefore, it is very relevant to use a mapping which provides a
high probabilistic information content (PIC) for expecting better performances.
This perfectly justifies the theoretical work proposed in this chapter. A classical
transformation is the so-called pignistic probability [16], denoted BetP , which
offers a good compromise between the maximum of credibility Bel and the
maximum of plausibility Pl for decision support. Unfortunately, BetP doesn’t
provide the highest PIC in general as pointed out by Sudano [17–19]. We
propose hereafter a new generalized pignistic transformation, denoted DSmP ,
which is justified by the maximization of the PIC criterion. An extension of
this transformation in the qualitative domain is also presented. This chapter is
an extended version of a paper presented at Fusion 2008 conference in Cologne,
Germany [7]. An application of DSmP for the Target Type Tracking problem
will be presented in Chapter 16.

3.2 Classical and generalized pignistic probabilities

3.2.1 Classical pignistic probability

The basic idea of the classical pignistic probability proposed and coined by
Philippe Smets in [14, 16] consists in transfering the positive mass of belief of
each non specific element onto the singletons involved in that element split by
the cardinality of the proposition when working with normalized basic belief
assignments (bba’s). The (classical) pignistic probability in TBM framework
is given by1 BetP (∅) = 0 and ∀X ∈ 2Θ \ {∅} by:

1We assume that m(.) is of course a non degenerate bba, i.e. m(∅) �= 1.
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BetP (X) =
∑

Y ∈2Θ,Y �=∅

|X ∩ Y |
|Y |

m(Y )

1−m(∅) , (3.1)

where 2Θ is the power set of the finite and discrete frame Θ assuming Shafer’s
model, i.e. all elements of Θ are assumed truly exclusive.

In Shafer’s approach, m(∅) = 0 and the formula (3.1) can be rewritten for
any singleton θi ∈ Θ as

BetP (θi) =
∑

Y ∈2Θ

θi⊆Y

1

|Y |m(Y ) = m(θi) +
∑

Y ∈2Θ

θi⊂Y

1

|Y |m(Y ) (3.2)

3.2.2 Generalized pignistic probability

The classical pignistic probability has been generalized in DSmT framework for
any regular bbam(.) : GΘ �→ [0, 1] (i.e. such thatm(∅) = 0 and

∑
X∈GΘ m(X) =

1) and for any model of the frame (free DSm model, hybrid DSm model and
Shafer’s model as well). A detailed presentation of this transformation with
several examples can be found in Chapter 7 of [12]. It is given by BetP (∅) = 0
and ∀X ∈ GΘ \ {∅} by

BetP (X) =
∑

Y ∈GΘ

CM(X ∩ Y )

CM(Y )
m(Y ) (3.3)

where GΘ corresponds to the hyper-power set including all the integrity con-
straints of the model (if any)2; CM(Y ) denotes the DSm cardinal3 of the set
Y . The formula (3.3) reduces to (3.2) when GΘ reduces to classical power set
2Θ when one adopts Shafer’s model.

3.3 Sudano’s probabilities

indexSudano’s probabilities
John Sudano has proposed several transformations for approximating any

quantitative belief mass m(.) by a subjective probability measure [21]. These

2GΘ = 2Θ if one adopts Shafer’s model for Θ and GΘ = DΘ (Dedekind’s lattice) if one
adopts the free DSm model for Θ [12].

3CM(Y ) is the number of parts of Y in the Venn diagram of the model M of the frame
Θ under consideration [12] (Chap. 7).
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transformations were denoted PrP l, PrNPl, PraP l, PrBel and PrHyb, and
were all defined in DST framework. They use different kinds of mappings either
proportional to the plausibility, to the normalized plausibility, to all plausibil-
ities, to the belief, or a hybrid mapping.

PrP l(.) and PrBel(.) transformations are mathematically defined4 as follows
for all X = ∅ ∈ Θ:

PrP l(X) = Pl(X) ·
∑

Y ∈2Θ

X⊆Y

1

CS[Pl(Y )]
m(Y ) (3.4)

PrBel(X) = Bel(X) ·
∑

Y ∈2Θ

X⊆Y

1

CS[Bel(Y )]
m(Y ) (3.5)

where the denominators involved in the formulas are given by the compound-
to-sum of singletons CS[.] operator defined by [17]:

CS[Pl(Y )] �
∑

Yi∈2Θ

|Yi|=1
∪iYi=Y

Pl(Yi) and CS[Bel(Y )] �
∑

Yi∈2Θ

|Yi|=1
∪iYi=Y

Bel(Yi)

PrNPl(.), PraP l(.) and PrHyb(.) also proposed by John Sudano [17, 21] are
defined as follows:

• The mapping proportional to the normalized plausibility

PrNPl(X) =
1

Δ

∑
Y ∈2Θ

Y ∩X �=∅

m(Y ) =
1

Δ
· Pl(X) (3.6)

where Δ is a normalization factor such that
∑

X∈Θ PrNPl(X) = 1.

• The mapping proportional to all plausibilities

PraP l(X) = Bel(X) + ε · Pl(X) (3.7)

with

ε �
1−∑Y ∈2Θ Bel(Y )∑

Y ∈2Θ Pl(Y )

4For notational convenience and simplicity, we use a different but equivalent notation
than the one originally proposed by John Sudano in his publications.
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• The hybrid pignistic probability

PrHyb(X) = PraP l(X) ·
∑

Y ∈2Θ

X⊆Y

1

CS[PraP l(Y )]
m(Y ) (3.8)

with
CS[PraP l(Y )] �

∑
Yi∈2Θ

|Yi|=1
∪iYi=Y

PraP l(Yi)

• The pedigree pignistic probability [18]: It is denoted PrPed(.) and was
introduced by John Sudano in [18]. PrPed(.) uses the combined bba’s
with the probability proportionally functions to compute a better pignis-
tic probability estimate when used in conjunction with the Generalized
belief fusion algorithm [sic [19]]. This kind of transformation is out of the
scope of this chapter, since it cannot be applied directly for approximat-
ing a bba m(.) without reference to some prior bba’s and a fusion rule.
Here we search for an efficient approximation of m(.) by a subjective pro-
bability measure without any other considerations on how m(.) has been
obtained. We just want to use the minimal information available about
m(.), i.e. the values of m(A) for all A ∈ GΘ.

3.4 Cuzzolin’s intersection probability

In 2007, a new transformation has been proposed in [4] by Fabio Cuzzolin in
the framework of DST. From a geometric interpretation of Dempster’s rule,
an Intersection Probability measure was proposed from the proportional repar-
tition of the Total Non Specific Mass5 (TNSM) by each contribution of the
non-specific masses involved in it. For notational convenience, we will denote
it CuzzP in the sequel.

3.4.1 Definition

CuzzP (.) is defined on any finite and discrete frame Θ = {θ1, . . . , θn}, n ≥ 2,
satisfying Shafer’s model, by

CuzzP (θi) = m(θi) +
Δ(θi)∑n

j=1 Δ(θj)
× TNSM (3.9)

5i.e. the mass committed to partial and total ignorances, i.e. to disjunctions of elements
of the frame.
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with Δ(θi) � Pl(θi)−m(θi) and

TNSM = 1−
n∑

j=1

m(θj) =
∑

A∈2Θ,|A|>1

m(A) (3.10)

3.4.2 Remarks

While appealing at the first glance because of its interesting geometric justi-
fication, Cuzzolin’s transformation seems to be not totally satisfactory in our
point of view for approximating any belief massm(.) into subjective probability
for the following reasons:

1. Although (3.9) does not include explicitly Dempster’s rule, its geometrical
justification [2–4, 6] is strongly conditioned by the acceptance of Demp-
ster’s rule as the fusion operator for belief functions. This is a dogmatic
point of view we disagree with since it has been recognized for many years
by different experts of AI community, that other fusion rules can offer
better performances, especially for cases where highly conflicting sources
are involved.

2. Some parts of the masses of partial ignorance, say A, involved in the
TNSM, are also transferred to singletons, say θi ∈ Θ which are not in-
cluded in A (i.e. such that {θi} ∩ A = ∅). Such transfer is not justified
and does not make sense in our point of view. To be more clear, let’s take
Θ = {A,B,C} and m(.) defined on its power set with all masses strictly
positive. In that case, m(A ∪ B) > 0 does count in TNSM and thus it

is a bit redistributed back to C with the ratio Δ(C)
Δ(A)+Δ(B)+Δ(C) through

TNSM > 0. There is no solid reason for committing partially m(A∪B)
to C since, only A and B are involved in that partial ignorance. Similar
remarks hold for the partial redistribution of m(A ∪ C) > 0.

3. It is easy to verify moreover that CuzzP (.) is mathematically not defined
when m(.) is already a probabilistic belief mass because in such case all
terms Δ(.) equal zero in (3.9) so that one gets 0/0 indetermination in
Cuzzolin’s formula. This remark is important only from the mathematical
point of view.

3.5 A new generalized pignistic transformation

We propose a new generalized pignistic transformation, denoted DSmP to
avoid confusion with the previous existing transformations, which is straight-
forward, and also different from Sudano’s and Cuzzolin’s redistributions which
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are more refined but less exact in our opinions than what we present here.
The basic idea of our DSmP (.) transformation consists in a new way of pro-
portionalizations of the mass of each partial ignorance such as A1 ∪ A2 or
A1 ∪ (A2 ∩ A3) or (A1 ∩ A2) ∪ (A3 ∩ A4), etc. and the mass of the total ig-
norance A1 ∪ A2 ∪ . . . ∪ An, to the elements involved in the ignorances. This
new transformation takes into account both the values of the masses and the
cardinality of elements in the proportional redistribution process. We first
present the general formula for this new transformation, and the numerical
examples, and comparisons with respect to other transformations are given in
next sections.

3.5.1 The DSmP formula

Let’s consider a discrete frame Θ with a given model (free DSm model, hybrid
DSm model or Shafer’s model), the DSmP mapping is defined by DSmPε(∅) =
0 and ∀X ∈ GΘ \ {∅} by

DSmPε(X) =
∑

Y ∈GΘ

∑
Z⊆X∩Y
C(Z)=1

m(Z) + ε · C(X ∩ Y )

∑
Z⊆Y
C(Z)=1

m(Z) + ε · C(Y )
m(Y ) (3.11)

where ε ≥ 0 is a tuning parameter and GΘ corresponds to the hyper-power
set including eventually all the integrity constraints (if any) of the model M;
C(X ∩ Y ) and C(Y ) denote the DSm cardinals6 of the sets X ∩ Y and Y re-
spectively.

The parameter ε allows to reach the maximum PIC value of the approx-
imation of m(.) into a subjective probability measure. The smaller ε, the
better/bigger PIC value. In some particular degenerate cases however, the
DSmPε=0 values cannot be derived, but the DSmPε>0 values can however al-
ways be derived by choosing ε as a very small positive number, say ε = 1/1000
for example in order to be as close as we want to the maximum of the PIC (see
the next sections for details and examples).

It is interesting to note also that when ε = 1 and when the masses of all
elements Z having C(Z) = 1 are zero, (3.11) reduces to (3.3), i.e. DSmPε=1 =
BetP . The passage from a free DSm model to a Shafer’s model induces a

6We have omitted the index of the model M for notational convenience.
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change in the Venn diagram representation, and so the cardinals change as
well in the formula (3.11).

If one works on a (ultimate refined) frame Θ, which implies that Shafer’s
model holds, then the DSmPε(θi) probability of any element θi, i = 1, 2, . . . , n
of the frame Θ = {θ1, . . . , θn} can be directly obtained by:

DSmPε(θi) = m(θi) + (m(θi) + ε)
∑

X∈2Θ

X⊃θi

C(X)≥2

m(X)∑
Y ∈2Θ

Y⊂X
C(Y )=1

m(Y ) + ε · C(X)
(3.12)

The probabilities of (partial or total) ignorances are then obtained from the
additivity property of the probabilities of elementary exclusive elements, i.e.
for i, j = 1, . . . , n, i = j, DSmPε(θi ∪ θj) = DSmPε(θi) +DSmPε(θj), etc.

3.5.2 Advantages of DSmP

DSmP works for all models (free, hybrid and Shafer’s). In order to apply
classical BetP , CuzzP or Sudano’s mappings, we need at first to refine the
frame (on the cases when it is possible!) in order to work with Shafer’s model,
and then apply their formulas. In the case where refinement makes sense, then
one can apply the other subjective probabilities on the refined frame. DSmP
works on the refined frame as well and gives the same result as it does on the
non-refined frame. Thus DSmP with ε > 0 works on any model and so is
very general and appealing. It is a combination of PrBel and BetP . PrBel
performs a redistribution of an ignorance mass to the singletons involved in that
ignorance proportionally with respect to the singleton masses. While BetP also
does a redistribution of an ignorance mass to the singletons involved in that
ignorance but proportionally with respect to the singleton cardinals. PrBel
does not work when the masses of all singletons involved in an ignorance are
null since it gives the indetermination 0/0; and in the case when at least one
singleton mass involved in an ignorance is zero, that singleton does not receive
any mass from the distribution even if it was involved in an ignorance, which
is not fair/good. BetP works all the time, but the redistribution is rough and
does not take into account the masses of the singletons.

So, DSmP solves the PrBel problem by doing a redistribution of the ig-
norance mass with respect to both the singleton masses and the singletons’
cardinals in the same time. Now, if all masses of singletons involved in all ig-
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norances are different from zero, then we can take ε = 0, and DSmP coincides
with PrBel and both of them give the best result, i.e. the best PIC value.

PrNPl is not satisfactory since it yields an abnormal behavior. Indeed,
in any model, when a bba m(.) is transformed into a probability, normally
(we mean it is logically that) the masses of ignorances are transferred to the
masses of elements of cardinal 1 (in Shafer’s model these elements are single-
tons). Thus, the resulting probability of an element whose cardinal is 1 should
be greater than or equal to the mass of that element. In other words, if A in
GΘ and C(A) = 1, then P (A) ≥ m(A) for any probability transformation P (.).
This legitimate property is not satisfied by PrNPl as seen in the following
example.

Example: Let’s consider Shafer’s model with Θ = {A,B,C} and m(A) =
0.2, m(B) = m(C) = 0 and m(B ∪ C) = 0.8, then the DSmP transformation
provides for any ε > 0:

DSmPε(A) = 0.2 = BetP (A)

DSmPε(B) = 0.4 = BetP (B)

DSmPε(C) = 0.4 = BetP (C)

Applying Sudano’s probabilities formulas (3.4)-(3.8), one gets7:

- Probability PrP l(.):

PrP l(A) = 0.2 · [0.2/0.2] = 0.2

PrP l(B) = 0.8 · [0.8/(0.8 + 0.8)] = 0.4

PrP l(C) = 0.8 · [0.8/(0.8 + 0.8)] = 0.4

- Probability PrBel(.):

PrBel(A) = 0.2 · [0.2/0.2] = 0.2

PrBel(B) = 0 · [0.8/(0 + 0)] = NaN

PrBel(C) = 0 · [0.8/(0 + 0)] = NaN

- Probability PrNPl(.):

PrNPl(A) = 0.2/(0.2 + 0.8 + 0.8) ≈ 0.1112

PrNPl(B) = 0.8/(0.2 + 0.8 + 0.8) ≈ 0.4444

PrNPl(C) = 0.8/(0.2 + 0.8 + 0.8) ≈ 0.4444

7We use NaN acronym here standing for Not a Number . We could also use the standard
”N/A” standing for ”does not apply”.
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- Probability PraP l(.): ε = 1−0.2−0−0
0.2+0.8+0.8 ≈ 0.4444

PraP l(A) = 0.2 + 0.4444 · 0.2 ≈ 0.2890

PraP l(B) = 0 + 0.4444 · 0.8 ≈ 0.3555

PraP l(C) = 0 + 0.4444 · 0.8 ≈ 0.3555

- Probability PrHyb(.):

PrHyb(A) = 0.2890 · [ 0.2

0.2890
] = 0.2

PrHyb(B) = 0.3555 · [ 0.8

0.3555 + 0.3555
] = 0.4

PrHyb(C) = 0.3555 · [ 0.8

0.3555 + 0.3555
] = 0.4

Applying Cuzzolin’s probabilities formula (3.9), one gets:

CuzzP (A) = m(A) +
Δ(A)

Δ(A) + Δ(B) + Δ(C)
· TNSM

= 0.2 +
0

0 + 0.8 + 0.8
· 0.8 = 0.2

CuzzP (B) = m(B) +
Δ(B)

Δ(A) + Δ(B) + Δ(C)
· TNSM

= 0 +
0.8

0 + 0.8 + 0.8
· 0.8 = 0.4

CuzzP (C) = m(C) +
Δ(C)

Δ(A) + Δ(B) + Δ(C)
· TNSM

= 0 +
0.8

0 + 0.8 + 0.8
· 0.8 = 0.4

since TNSM = m(B ∪ C) = 0.8, Δ(A) = Pl(A) − m(A) = 0, Δ(B) =
Pl(B)−m(B) = 0.8 and Δ(C) = Pl(C)−m(C) = 0.8.

In such a particular example, BetP , PrP l, CuzzP , PrHyb and DSmPε>0

transformations coincide. PrBel(.) is mathematically not defined. Such con-
clusion is not valid in general as we will show in the next examples of this
chapter. From this very simple example, one sees clearly the abnormal behav-
ior of PrNPl(.) transformation because PrNPl(A) = 0.1112 < m(A) = 0.2;
it is not normal that singleton A looses mass when m(.) is transformed into a
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subjective probability since the resulted subjective probability of an element
whose cardinal is 1 should be greater than or equal to the mass of that element.

In summary, DSmP does an improvement of all Sudano, Cuzzolin, and
BetP formulas, in the sense that DSmP mathematically makes a more accurate
redistribution of the ignorance masses to the singletons involved in ignorances.
DSmP and BetP work in both theories: DST (= Shafer’s model) and DSmT
(= free or hybrid models) as well. In order to use Sudano’s and Cuzzolin’s in
DSmT models, we have to refine the frame (see Example 3.7.5).

3.6 PIC metric for the evaluation of the transformations

Following Sudano’s approach [17, 18, 21], we adopt the Probabilistic Informa-
tion Content (PIC) criterion as a metric depicting the strength of a critical
decision by a specific probability distribution. It is an essential measure in
any threshold-driven automated decision system. The PIC is the dual of the
normalized Shannon entropy. A PIC value of one indicates the total knowledge
(i.e. minimal entropy) or information to make a correct decision (one hypoth-
esis has a probability value of one and the rest are zero). A PIC value of zero
indicates that the knowledge or information to make a correct decision does
not exist (all the hypothesis have an equal probability value), i.e. one has the
maximal entropy. The PIC is used in our analysis to sort the performances
of the different pignistic transformations through several numerical examples.
We first recall what Shannon entropy and PIC measure are and their tight
relationship.

3.6.1 Shannon entropy

Shannon entropy, usually expressed in bits (binary digits), of a discrete pro-
bability measure P{.} over a discrete finite set Θ = {θ1, . . . , θn} is defined
by8 [11]:

H(P ) � −
n∑

i=1

P{θi} log2(P{θi}) (3.13)

H(P ) measures the randomness carried by any discrete probability measure
P{.}. H(P ) is maximal for the uniform probability measure over Θ, i.e. when
P{θi} = 1/n for i = 1, 2, . . . , n. In that case, one gets:

8with common convention 0 log2 0 = 0 as in [1].
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H(P ) = Hmax = −
n∑

i=1

1

n
log2(

1

n
) = log2(n)

H(P ) is minimal for a totally deterministic probability measure, i.e. for any
P{.} such that P{θi} = 1 for some i ∈ {1, 2, . . . , n} and P{θj} = 0 for j = i.

3.6.2 The probabilistic information content

The Probabilistic Information Content (PIC) of a discrete probability measure
P{.} over a discrete finite set Θ = {θ1, . . . , θn} is defined by [18]:

PIC(P ) = 1 +
1

Hmax
·

n∑
i=1

P{θi} log2(P{θi}) (3.14)

The PIC metric is nothing but the dual of the normalized Shannon entropy
and is actually unitless. It actually measures the information content of a prob-
abilistic source characterized by the probability measure P{.}. The PIC(P )
metric takes its values in [0, 1] and is maximum, i.e. PIC(P ) = PICmax = 1
with any deterministic probability measures. PIC(P ) = PICmin = 0 when
the probability measure is uniform over the frame Θ, i.e. P{θi} = 1/n for
i = 1, 2, . . . , n. The simple relationships between H(P ) and PIC(P ) are :

PIC(P ) = 1− H(P )

Hmax
(3.15)

H(P ) = Hmax · (1− PIC(P )) (3.16)

3.7 Examples and comparisons on a 2D frame

3.7.1 Example 1: Shafer’s model with a general source

Let’s consider the 2D frame Θ = {A,B} with Shafer’s model (i.e. A ∩B = ∅)
and the non-Bayesian quantitative belief assignment (mass) given in Table 3.1.
In this example since one adopts Shafer’s model for the frame Θ, GΘ coincides
with 2Θ, i.e. GΘ = 2Θ = {∅, A,B,A∪B}.

A B A ∪B
m(.) 0.3 0.1 0.6

Table 3.1: Quantitative input for example 3.7.1
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Let’s explain in details the derivations of the different transformations9:

• With the pignistic probability:

BetP (A) = m(A) +
1

2
m(A ∪B) = 0.3 + (0.6/2) = 0.60

BetP (B) = m(B) +
1

2
m(A ∪B) = 0.1 + (0.6/2) = 0.40

Since we are working with Shafer’s model, the generalized pignistic probability
given by (3.3) coincides with the classical pignistic probability.

• With Sudano’s probabilities:

Applying Sudano’s probabilities formulas (3.4)-(3.8), one gets:

- With the probability PrP l(.):

PrP l(A) = 0.9 · [0.3/0.9 + 0.6/(0.9 + 0.7)] = 0.6375

PrP l(B) = 0.7 · [0.1/0.7 + 0.6/(0.9 + 0.7)] = 0.3625

- With the probability PrBel(.):

PrBel(A) = 0.3 · [0.3/0.3 + 0.6/(0.3 + 0.1)] = 0.7500

PrBel(B) = 0.1 · [0.1/0.1 + 0.6/(0.3 + 0.1)] = 0.2500

- With the probability PrNPl(.):

PrNPl(A) = 0.9/(0.9 + 0.7) = 0.5625

PrNPl(B) = 0.7/(0.9 + 0.7) = 0.4375

- With the probability PraP l(.): ε = 1−0.3−0.1
0.9+0.7 = 0.375

PraP l(A) = 0.3 + 0.375 · 0.9 = 0.6375

PraP l(B) = 0.1 + 0.375 · 0.7 = 0.3625

- With the probability PrHyb(.):

PrHyb(A) = 0.6375 · [ 0.3

0.6375
+

0.6

0.6375 + 0.3625
] = 0.6825

PrHyb(B) = 0.3625 · [ 0.1

0.3625
+

0.6

0.6375 + 0.3625
] = 0.3175

9All results presented here are rounded to their fourth decimal place for convenience.
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• With Cuzzolin’s probability:

Since TNSM = m(A ∪ B) = 0.6, Δ(A) = Pl(A) − m(A) = 0.6 and
Δ(B) = Pl(B)−m(B) = 0.6, one gets

CuzzP (A) = m(A) +
Δ(A)

Δ(A) + Δ(B)
· TNSM = 0.3 +

0.6

0.6 + 0.6
· 0.6 = 0.6000

CuzzP (B) = m(B) +
Δ(B)

Δ(A) + Δ(B)
· TNSM = 0.1 +

0.6

0.6 + 0.6
· 0.6 = 0.4000

• With DSmP transformation:

If one uses the DSmP formula (3.11) for this 2D case with Shafer’s model,
one gets:

DSmPε(A) =
m(A) + ε · C(A)

m(A) + ε · C(A)
·m(A) +

0

m(B) + ε · C(B)
·m(B)

+
m(A) + ε · C(A)

m(A) +m(B) + ε · C(A ∪B)
·m(A ∪B) (3.17)

DSmPε(B) =
0

m(A) + ε · C(A)
·m(A) +

m(B) + ε · C(B)

m(B) + ε · C(B)
·m(B)

+
m(B) + ε · C(B)

m(A) +m(B) + ε · C(A ∪B)
·m(A ∪B) (3.18)

DSmPε(A ∪B) =
m(A) + ε · C(A)

m(A) + ε · C(A)
· m(A) +

m(B) + ε · C(B)

m(B) + ε · C(B)
· m(B)

+
m(A) +m(B) + ε · C(A ∪B)

m(A) +m(B) + ε · C(A ∪B)
·m(A ∪B) (3.19)

Since we use Shafer’s model in this example C(A) = C(B) = 1 and C(A ∪
B) = 2 and finally one gets with the DSmP transformation the following ana-
lytical expressions:

DSmPε(A) = m(A) +
m(A) + ε

m(A) +m(B) + 2 · ε · m(A ∪B)
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DSmPε(B) = m(B) +
m(B) + ε

m(A) +m(B) + 2 · ε ·m(A ∪B)

DSmPε(A ∪B) = m(A) +m(B) +m(A ∪B) = 1

One can verify that the expressions of DSmPε(A) and DSmPε(B) are also
consistent with the formula (3.12) and it can be easily verified that

DSmPε(A) +DSmPε(B) = DSmPε(A ∪B) = 1.

- Applying formula (3.11) (or equivalently the three previous expressions)
for ε = 0.001 yields:

DSmPε=0.001(A) ≈ 0.3 + 0.4492 = 0.7492

DSmPε=0.001(B) ≈ 0.1 + 0.1508 = 0.2508

DSmPε=0.001(A ∪B) = 1

- Applying formula (3.11) for ε = 0 yields10:

DSmPε=0(A) = 0.3 + 0.45 = 0.75

DSmPε=0(B) = 0.1 + 0.15 = 0.25

DSmPε=0(A ∪B) = 1

A B PIC(.)
PrNPl(.) 0.5625 0.4375 0.0113
BetP (.) 0.6000 0.4000 0.0291
CuzzP (.) 0.6000 0.4000 0.0291
PrP l(.) 0.6375 0.3625 0.0553
PraP l(.) 0.6375 0.3625 0.0553
PrHyb(.) 0.6825 0.3175 0.0984
DSmPε=0.001(.) 0.7492 0.2508 0.1875
PrBel(.) 0.7500 0.2500 0.1887
DSmPε=0(.) 0.7500 0.2500 0.1887

Table 3.2: Results for example 3.7.1.

Results: We summarize in Table 3.2, the results of the subjective probabi-
lities and their corresponding PIC values sorted by increasing values. It is
interesting to note that DSmPε→0(.) provides same result as with PrBel(.)
and PIC(DSmPε→0(.)) is greater than the PIC values obtained with PrNPL,
BetP , CuzzP , PrP l and PraP l transformations.

10It is possible since the masses of A and B are not zero, so we actually get a proportion-
alization with respect to masses only.
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3.7.2 Example 2: Shafer’s model with the ignorant source

Let’s consider the 2D frame Θ = {A,B} with Shafer’s model (i.e. A ∩B = ∅)
and the vacuous belief mass characterizing the totally ignorant source given in
Table 3.3.

A B A ∪B
m(.) 0 0 1

Table 3.3: Vacuous belief mass for example 3.7.2

• With the pignistic probability:

BetP (A) = BetP (B) = 0 + (1/2) = 0.5

• With Sudano’s probabilities:

Applying Sudano’s probabilities formulas (3.4)-(3.8), one gets:

- Probability PrP l(.):

PrP l(A) = PrP l(B) = 1 · [0/1 + 1/(1 + 1)] = 0.5

- With the probability PrBel(.):

PrBel(A) = PrBel(A) = 0 · [0/0 + 1/(0 + 0)] = NaN

- With the probability PrNPl(.):

PrNPl(A) = PrNPl(B) = 1/(1 + 1) = 0.5

- With the probability PraP l(.): ε = 1−0−0
1+1 = 0.5

PraP l(A) = PraP l(B) = 0 + 0.5 · 1 = 0.5

- With the probability PrHyb(.):

PrHyb(A) = PrHyb(B) = 0.5 · [ 0

0.5
+

1

0.5 + 0.5
] = 0.5
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• With Cuzzolin’s probability:

Since TNSM = m(A ∪ B) = 1, Δ(A) = Pl(A) − m(A) = 1 and Δ(B) =
Pl(B)−m(B) = 1, one gets

CuzzP (A) = CuzzP (B) = 0 +
1

1 + 1
· 1 = 0.5

• With DSmP transformation:

Applying formula (3.11) (or (3.12) since we work here with Shafer’s model)
for ε > 0 yields11:

DSmPε>0(A) = m(A ∪B)/2 = 0.5

DSmPε>0(B) = m(A ∪B)/2 = 0.5

DSmPε>0(A ∪B) = 1

In the particular case of the totally ignorant source characterized by the vacuous
belief assignment, all transformations coincide with the uniform probability
measure over singletons of Θ, except PrBel(.) which is mathematically not
defined in that case. This result can be easily proved for any size of the frame
Θ with |Θ| > 2. We summarize in Table 3.4, the results of the subjective
probabilities and their corresponding PIC values.

A B PIC(.)
PrBel(.) NaN NaN NaN
BetP (.) 0.5 0.5 0
PrP l(.) 0.5 0.5 0
PrNPl(.) 0.5 0.5 0
PraP l(.) 0.5 0.5 0
PrHyb(.) 0.5 0.5 0
CuzzP (.) 0.5 0.5 0
DSmPε>0(.) 0.5 0.5 0

Table 3.4: Results for example 3.7.2.

11It is not possible to apply the DSmP formula for ε = 0 in this particular case, but ε can
be chosen as small as we want.
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3.7.3 Example 3: Shafer’s model with a probabilistic source

Let’s consider the 2D frame Θ = {A,B} and let’s assume Shafer’s model and
let’s see what happens when applying all the transformations on a probabilistic
source12 which commits a belief mass only to singletons of 2Θ, i.e. a Bayesian
mass [10]. It is intuitively expected that all transformations are idempotent
when dealing with probabilistic sources, since actually there is no reason/need
to modify m(.) (the input mass) to obtain a new subjective probability measure
since Bel(.) associated with m(.) is already a probability measure.

If we consider, for example, the uniform probabilistic mass given in Table
3.5, it is very easy to verify in this case, that almost all transformations coincide
with the probabilistic input mass as expected, so that the idempotency property
is satisfied.

A B A ∪B
mu(.) 0.5 0.5 0

Table 3.5: Uniform probabilistic mass for example 3.7.3

Only Cuzzolin’s transformation fails to satisfy this property because in
CuzzP (.) formula (3.9) one gets 0/0 indetermination since all Δ(.) = 0 in
(3.9). This remark is valid whatever the dimension of the frame is, and for any
probabilistic mass, not only for uniform belief mass mu(.). We summarize in
Table 3.6, the results of the subjective probabilities and their corresponding
PIC values:

A B PIC(.)
CuzzP (.) NaN NaN NaN
BetP (.) 0.5 0.5 0
PrP l(.) 0.5 0.5 0
PrNPl(.) 0.5 0.5 0
PraP l(.) 0.5 0.5 0
PrHyb(.) 0.5 0.5 0
PrBel(.) 0.5 0.5 0
DSmPε(.) 0.5 0.5 0

Table 3.6: Results for example 3.7.3.

12This has obviously no practical interest since the source already provides a probability
measure, nevertheless this is very interesting to see the theoretical behavior of the transfor-
mations in such case.
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3.7.4 Example 4: Shafer’s model with a non-Bayesian mass

Let’s assume Shafer’s model and the non-Bayesian mass (more precisely the
simple support mass) given in Table 3.7. We summarize in Table 3.8, the
results obtained with all transformations. One sees that PIC(DSmPε→0) is
maximum among all PIC values. PrBel(.) does not work correctly since it can
not have a division by zero; even overcoming it13, PrBel does not do a fair
redistribution of the ignorance m(A ∪ B) = 0.6 because B does not receive
anything from the mass 0.6, although B is involved in the ignorance A ∪ B.
All m(A ∪B) = 0.6 was unfairly redistributed to A only.

A B A ∪B
m(.) 0.4 0 0.6

Table 3.7: Quantitative input for example 3.7.4

A B PIC(.)
PrBel(.) 1 NaN NaN
PrNPl(.) 0.6250 0.3750 0.0455
BetP (.) 0.7000 0.3000 0.1187
CuzzP (.) 0.7000 0.3000 0.1187
PrP l(.) 0.7750 0.2250 0.2308
PraP l(.) 0.7750 0.2250 0.2308
PrHyb(.) 0.8650 0.1350 0.4291
DSmPε=0.001(.) 0.9985 0.0015 0.9838
DSmPε=0(.) 1 0 1

Table 3.8: Results for example 3.7.4.

3.7.5 Example 5: Free DSm model

Let’s consider the 2D frame Θ = {A,B} with the free DSm model (i.e. A∩B =
∅) and the following generalized quantitative belief given in Table 3.9. In the
case of free-DSm (or hybrid DSm) models, the pignistic probability BetP and
the DSmP can be derived directly from m(.) without the ultimate refinement
of the frame Θ whereas Sudano’s and Cuzzolin’s probabilities cannot be derived

13since the direct derivation of PrBel(B) cannot be done from the formula (3.5) because
of the undefined form 0/0, we could however force it to PrBel(B) = 0 since PrBel(B) =
1 − PrBel(A) = 1 − 1 = 0, and consequently we indirectly take PIC(PrBel) = 1.
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directly from the formulas (3.4)-(3.9) in such models. However, Sudano’s and
Cuzzolin’s probabilities can be obtained indirectly after an intermediary step
of ultimate refinement of the frame Θ into Θref which satisfies Shafer’s model.
More precisely, instead of working directly on the 2D frame Θ = {A,B} with
m(.) given in Table 3.9, we need to work on the 3D frame Θref = {A′ �
A \ {A∩B}, B′ � B \ {A∩B}, C′ � A∩B} satisfying Shafer’s model with the
equivalent bba m(.) defined as in Table 3.10.

A ∩B A B A ∪B
m(.) 0.4 0.2 0.1 0.3

Table 3.9: Quantitative input on the original frame Θ

C′ A′ ∪ C′ B′ ∪ C′ A′ ∪B′ ∪ C′

m(.) 0.4 0.2 0.1 0.3

Table 3.10: Quantitative equivalent input on the refined frame Θref

• With the pignistic probability: With the generalized pignistic trans-
formation [12] (Chap.7, p. 148), one gets:

BetP (A) = m(A) +
m(B)

2
+m(A ∩B) +

2

3
m(A ∪B)

= 0.2 + 0.05 + 0.4 + 0.2 = 0.85

BetP (B) = m(B) +
m(A)

2
+m(A ∩B) +

2

3
m(A ∪B)

= 0.1 + 0.1 + 0.4 + 0.2 = 0.80

BetP (A ∩B) =
m(A)

2
+

m(B)

2
+m(A ∩B) +

1

3
m(A ∪B)

= 0.1 + 0.05 + 0.4 + 0.1 = 0.65

We can easily check that

BetP (A ∪B) = BetP (A) +BetP (B)−BetP (A ∩B) = 0.85 + 0.80− 0.65 = 1
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• With Sudano’s probabilities: Working on the refined frame Θref, with
the bba m(.) defined in Table 3.10, one finally obtains from (3.4)-(3.8):

- With the probability PrP l(.):

PrP l(A′) ≈ 0.1456

PrP l(B′) ≈ 0.0917

PrP l(C′) ≈ 0.7627

so that:

PrP l(A) = 0.1456 + 0.7627 = 0.9083

PrP l(B) = 0.0917 + 0.7627 = 0.8544

PrP l(A ∩B) = PrP l(C ′) = 0.7627

- With the probability PrBel(.): It cannot be directly computed by (3.5)
because of the division by zero involved in derivation of PrBel(A′) and
PrBel(B′), i.e. formally one gets

PrBel(A′) = NaN

PrBel(B′) = NaN

PrBel(C′) = 1

But because PrBel(C′) = 1, one can set artificially/indirectlyPrBel(A′) =
0 and PrBel(B′) = 0, so that:

PrBel(A) = NaN + 1 ≈ 0 + 1 = 1

PrBel(B) = NaN + 1 ≈ 0 + 1 = 1

PrBel(A ∩B) = 1

but fundamentally, PrBel(A) = NaN and PrBel(B) = NaN from
PrBel(.) formula.

- With the probability PrNPl(.):

PrNPl(A′) ≈ 0.2632

PrNPl(B′) ≈ 0.2105

PrNPl(C′) ≈ 0.5263

so that:

PrNPl(A) = 0.2632 + 0.5263 = 0.7895

PrNPl(B) = 0.2105 + 0.5263 = 0.7368

PrNPl(A ∩B) = PrNPl(C ′) = 0.5263
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- With the probability PraP l(.): ε ≈ 0.3157

PraP l(A′) ≈ 0.1579

PraP l(B′) ≈ 0.1264

PraP l(C′) ≈ 0.7157

so that:

PraP l(A) = 0.1579 + 0.7157 = 0.8736

PraP l(B) = 0.1264 + 0.7157 = 0.8421

PraP l(A ∩B) = PraP l(C ′) = 0.7157

- With the probability PrHyb(.):

PrHyb(A′) ≈ 0.0835

PrHyb(B′) ≈ 0.0529

PrHyb(C′) ≈ 0.8636

so that:

PrHyb(A) = 0.0835 + 0.8636 = 0.9471

PrHyb(B) = 0.0529 + 0.8636 = 0.9165

PrHyb(A ∩B) = PrHyb(C ′) = 0.8636

• With Cuzzolin’s probability: Working on the refined frame Θref, with
the bba m(.) defined in Table 3.10, one has TNSM = m(A′∪C′)+m(B′∪
C′)+m(A′ ∪B′ ∪C′) = 0.6, Δ(A′) = 0.5, Δ(B′) = 0.4 and Δ(C′) = 0.4.
Therefore:

CuzzP (A′) = m(A′) +
Δ(A′)

Δ(A′) + Δ(B′) + Δ(C′)
· TNSM

= 0 +
0.5

0.5 + 0.4 + 0.6
· 0.6 = 0.20

CuzzP (B′) = m(B′) +
Δ(B′)

Δ(A′) + Δ(B′) + Δ(C′)
· TNSM

= 0 +
0.4

0.5 + 0.4 + 0.6
· 0.6 = 0.16

CuzzP (C′) = m(C′) +
Δ(C′)

Δ(A′) + Δ(B′) + Δ(C′)
· TNSM

= 0.4 +
0.6

0.5 + 0.4 + 0.6
· 0.6 = 0.64
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which finally gives:

CuzzP (A) = CuzzP (A′) + CuzzP (C′) = 0.84

CuzzP (B) = CuzzP (B′) + CuzzP (C′) = 0.80

CuzzP (A ∩B) = CuzzP (C ′) = 0.64

• With DSmP transformation:

If one uses the DSmP formula (3.11) for this 2D case with the free DSm
model where C(A ∩ B) = 1, C(A) = C(B) = 2 and C(A ∪ B) = 3, one gets the
following analytical expressions of DSmPε(.) (assuming all denominators are
strictly positive):

DSmPε(A∩B) = m(A∩B)+
m(A ∩B) + ε

m(A ∩B) + 2 · ε ·m(A)+
m(A ∩B) + ε

m(A ∩B) + 2 · ε ·m(B)

+
m(A ∩B) + ε

m(A ∩B) + 3 · ε ·m(A ∪B) (3.20)

DSmPε(A) = m(A ∩B) + m(A) +
m(A ∩B) + ε

m(A ∩B) + 2 · ε ·m(B)

+
m(A ∩B) + 2 · ε
m(A ∩B) + 3 · ε ·m(A ∪B) (3.21)

DSmPε(B) = m(A ∩B) +m(B) +
m(A ∩B) + ε

m(A ∩B) + 2 · ε ·m(A)

+
m(A ∩B) + 2 · ε
m(A ∩B) + 3 · ε ·m(A ∪B) (3.22)

DSmPε(A ∪ B) = m(A ∩ B) + m(A) + m(B) + m(A ∪ B) = 1 (3.23)

- Applying formula (3.11) for ε = 0.001 yields:

DSmPε=0.001(A ∩B) ≈ 0.9978

DSmPε=0.001(A) ≈ 0.9990

DSmPε=0.001(B) ≈ 0.9988

DSmPε=0.001(A ∪B) = 1
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which induces the underlying probability measure on the refined frame

p1 = P (A \ (A ∩B)) ≈ 0.0012

p2 = P (B \ (A ∩B)) ≈ 0.0010

p3 = P (A ∩B) ≈ 0.9978

This yields to PIC ≈ 0.9842.

- Applying formula (3.11) for ε = 0 yields14: One gets

DSmPε=0(A ∩B) = 1 DSmPε=0(A) = 1

DSmPε=0(A ∪B) = 1 DSmPε=0(B) = 1

which induces the underlying probability measure on the refined frame

p1 = P (A \ (A ∩B)) = 0

p2 = P (B \ (A ∩B)) = 0

p3 = P (A ∩B) = 1

which yields the maximum PIC value, i.e. PIC = 1.

We summarize in Table 3.11, the results of the subjective probabilities and
their corresponding PIC values sorted in increasing order:

A B A ∩B PIC(.)
PrNPl(.) 0.7895 0.7368 0.5263 0.0741
CuzzP (.) 0.8400 0.8000 0.6400 0.1801
BetP (.) 0.8500 0.8000 0.6500 0.1931
PraP l(.) 0.8736 0.8421 0.7157 0.2789
PrP l(.) 0.9083 0.8544 0.7627 0.3570
PrHyb(.) 0.9471 0.9165 0.8636 0.5544
DSmPε=0.001(.) 0.9990 0.9988 0.9978 0.9842
PrBel(.) NaN NaN 1 1
DSmPε=0(.) 1 1 1 1

Table 3.11: Results for example 3.7.5.

14It is possible since the mass of A ∩ B is not zero.
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From Table 3.11, one sees that PIC(DSmPε→0) is the maximum value.
PrBel does not work correctly because it cannot be directly evaluated for A
and B since the underlying PrBel(A′) and PrBel(B′) are mathematically un-
defined in such case.

Remark : If one works on the refined frame Θref and one applies the DSmP
mapping of the bba m(.) defined in Table 3.10, one obtains naturally the same
results for DSmP as those given in table 3.11. Of course the results of BetP
in Table 3.11 are the same using directly the formula (3.3) as those using (3.1)
on Θref.

Proof: Applying (3.11) with Shafer’s model for m(.) defined in Table 3.10, one
gets directly the DSmPε values of atomic elements A′, B′ and C′ of the refined
frame Θref, i.e.:

DSmPε(A
′) =

ε · C(A′)
m(C′) + ε · C(A′ ∪ C′)

· m(A′ ∪ C′)

+
ε · C(A′)

m(C′) + ε · C(A′ ∪B′ ∪ C′)
· m(A′ ∪B′ ∪ C′) (3.24)

DSmPε(B
′) =

ε · C(B′)
m(C′) + ε · C(B′ ∪ C′)

· m(B′ ∪C′)

+
ε · C(B′)

m(C′) + ε · C(A′ ∪B′ ∪ C′)
· m(A′ ∪B′ ∪ C′) (3.25)

DSmPε(C
′) =

m(C′) + ε · C(C′)
m(C′) + ε · C(C′) · m(C′)

+
m(C′) + ε · C(C′)

m(C′) + ε · C(A′ ∪ C′)
·m(A′ ∪C′) +

m(C′) + ε · C(C′)
m(C′) + ε · C(B′ ∪C′)

·m(B′ ∪ C′)

+
m(C ′) + ε · C(C′)

m(C′) + ε · C(A′ ∪B′ ∪ C′)
· m(A′ ∪B′ ∪ C′) (3.26)

Since on the refined frame with Shafer’s model, C(A′) = C(B′) = C(C′) = 1,
C(A′∪B′) = C(A′∪C′) = C(B′∪C′) = 2 and C(A′∪B′∪C′) = 3, the previous
expressions can be simplified as:

DSmPε(A
′) =

ε

m(C′) + 2 · ε ·m(A′ ∪C′)+
ε

m(C′) + 3 · ε ·m(A′ ∪B′ ∪C′)

(3.27)
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DSmPε(B
′) =

ε

m(C′) + 2 · ε ·m(B′ ∪C′)+
ε

m(C′) + 3 · ε ·m(A′ ∪B′ ∪C′)

(3.28)

DSmPε(C
′) = m(C ′)+

m(C′) + ε

m(C′) + 2 · ε ·m(A′∪C′)+
m(C′) + ε

m(C′) + 2 · ε ·m(B′∪C′)

+
m(C′) + ε

m(C′) + 3 · ε ·m(A′ ∪B′ ∪ C′) (3.29)

One sees that the expressions of DSmPε(A
′), DSmPε(B

′) and DSmPε(C
′) we

obtain here, coincide with the expressions that one would obtain by applying
directly the formula (3.12) specifically when Shafer’s model holds (i.e. when a
ultimate refined frame is used). It can be easily verified that:

DSmPε(A
′) +DSmPε(B

′) +DSmPε(C
′) = 1

Replacing ε and m(C′), m(A′∪C′), m(B′∪C′) and m(A′∪B′∪C′) by their
numerical values, one gets the same numerical values as those given by p1, p2

and p3. For example if ε = 0.001, one obtains from the previous expressions:

DSmPε=0.001(A
′) =

0.001

0.4 + 2 · 0.001 · 0.2 + 0.001

0.4 + 3 · 0.001 · 0.3 ≈ 0.0012

DSmPε=0.001(B
′) =

0.001

0.4 + 2 · 0.001 · 0.1 + 0.001

0.4 + 3 · 0.001 · 0.3 ≈ 0.0010

DSmPε=0.001(C
′) = 0.4 +

0.4 + 0.001

0.4 + 2 · 0.001 · 0.2

+
0.4 + 0.001

0.4 + 2 · 0.001 · 0.1 + 0.4 + 0.001

0.4 + 3 · 0.001 · 0.3 ≈ 0.9978

From the probabilities of these atomic elements A′, B′ and C′, one can
easily compute the probability of A ∩ B = C′, A = A′ ∪ C′, B = B′ ∪ C′ and
A ∪B = A′ ∪B′ ∪ C′ by:

DSmPε(A ∩B) = DSmPε(C
′)

DSmPε(A) = DSmPε(A
′) +DSmPε(C

′)
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DSmPε(B) = DSmPε(B
′) +DSmPε(C

′)

DSmPε(A ∪B) = DSmPε(A
′) +DSmPε(B

′) +DSmPε(C
′)

Therefore, for ε = 0.001, one obtains:

DSmPε=0.1(A ∩B) = 0.9978

DSmPε=0.1(A) = 0.0012 + 0.9978 = 0.9990

DSmPε=0.1(B) = 0.0010 + 0.9978 = 0.9988

DSmPε=0.1(A ∪B) = 0.0012 + 0.0010 + 0.9978 = 1

We can verify that this result is the same result as the one obtained directly
with formula 3.11 when one uses the free DSm model (see 7th row of the Table
3.11). This completes the proof.

3.8 Examples on a 3D frame

3.8.1 Example 6: Shafer’s model with a non-Bayesian mass

This example is drawn from [21]. Let’s consider the 3D frame Θ = {A,B,C}
with Shafer’s model and the following non-Bayesian quantitative belief mass.

A B C A ∪B A ∪ C B ∪C A ∪B ∪C
m(.) 0.35 0.25 0.02 0.20 0.07 0.05 0.06

Table 3.12: Quantitative input for example 3.8.1

• With the pignistic probability: Applying formula (3.1), one gets

BetP (A) = 0.35 +
0.20

2
+

0.07

2
+

0.06

3
= 0.5050

BetP (B) = 0.25 +
0.20

2
+

0.05

2
+

0.06

3
= 0.3950

BetP (C) = 0.02 +
0.07

2
+

0.05

2
+

0.06

3
= 0.1000

• With Sudano’s probabilities: The belief and plausibility ao A, B and
C are

Bel(A) = 0.35 Bel(B) = 0.25 Bel(C) = 0.02

Pl(A) = 0.68 Pl(B) = 0.56 Pl(C) = 0.20

Applying formulas (3.4)-(3.8), one obtains the following Sudano’s proba-
bilities:
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– With the probability PrP l(.):

PrP l(A) = Pl(A) · [ m(A)

Pl(A)
+

m(A ∪B)

Pl(A) + Pl(B)
+

m(A ∪C)

Pl(A) + Pl(C)

+
m(A ∪B ∪ C)

Pl(A) + Pl(B) + Pl(C)
]

= 0.68 · [ 0.35
0.68

+
0.20

1.24
+

0.07

0.88
+

0.06

1.44
] ≈ 0.5421

and similarly,

PrP l(B) ≈ 0.4005 PrP l(C) ≈ 0.0574

– With the probability PrBel(.):

PrBel(A) = Bel(A) · [ m(A)

Bel(A)
+

m(A ∪B)

Bel(A) +Bel(B)

+
m(A ∪ C)

Bel(A) +Bel(C)
+

m(A ∪B ∪ C)

Bel(A) +Bel(B) +Bel(C)
]

= 0.35 · [ 0.35
0.35

+
0.20

0.60
+

0.07

0.37
+

0.06

0.62
] ≈ 0.5668

and similarly,

PrBel(B) ≈ 0.4038 PrBel(C) ≈ 0.0294

– With the probability PrNPl(.):

PrNPl(A) =
1

Δ
Pl(A) =

Pl(A)

Pl(A) + Pl(B) + Pl(C)
=

0.68

1.44
≈ 0.4722

and similarly,

PrNPl(B) ≈ 0.3889 PrNPl(C) ≈ 0.1389

– With the probability PraP l(.): Applying formula (3.7), one gets

ε =
1−Bel(A)−Bel(B)−Bel(C)

Pl(A) + Pl(B) + Pl(C)
=

0.38

1.44

PraP l(A) = Bel(A) + ε · Pl(A) = 0.35 +
0.38

1.44
· 0.68 ≈ 0.5294

and similarly,

PraP l(B) ≈ 0.3978 PraP l(C) ≈ 0.0728
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– With the probability PrHyb(.):

PrHyb(A) = PraP l(A) · [ m(A)

PraP l(A)
+

m(A ∪B)

PraP l(A) + PraP l(B)

+
m(A ∪ C)

PraP l(A) + PraP l(C)

+
m(A ∪B ∪ C)

PraP l(A) + PraP l(B) + PraP l(C)
] ≈ 0.5575

and similarly,

PrHyb(B) ≈ 0.4019 PrHyb(C) ≈ 0.0406

• With Cuzzolin’s probability: Since TNSM = m(A ∪ B) = 0.38,
Δ(A) = Pl(A) − m(A) = 0.33, Δ(B) = Pl(B) − m(B) = 0.31 and
Δ(C) = Pl(C)−m(C) = 0.18, one gets:

CuzzP (A) = 0.35 +
0.33

0.33 + 0.31 + 0.18
· 0.38 ≈ 0.5029

CuzzP (B) = 0.25 +
0.31

0.33 + 0.31 + 0.18
· 0.38 ≈ 0.3937

CuzzP (C) = 0.02 +
0.18

0.33 + 0.31 + 0.18
· 0.38 ≈ 0.1034

• With DSmP transformation:

- Applying formula (3.11) for ε = 0.001 yields:

DSmPε=0.001(A) ≈ 0.5665

DSmPε=0.001(B) ≈ 0.4037

DSmPε=0.001(C) ≈ 0.0298

DSmPε=0.001(A ∪B) ≈ 0.9702

DSmPε=0.001(A ∪C) ≈ 0.5963

DSmPε=0.001(B ∪C) ≈ 0.4335

DSmPε=0.001(A ∪B ∪C) = 1
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- Applying formula (3.11) for ε = 0 yields:

DSmPε=0(A) ≈ 0.5668

DSmPε=0(B) ≈ 0.4038

DSmPε=0(C) ≈ 0.0294

DSmPε=0(A ∪B) ≈ 0.9706

DSmPε=0(A ∪ C) ≈ 0.5962

DSmPε=0(B ∪ C) ≈ 0.4332

DSmPε=0(A ∪B ∪ C) = 1

We summarize in Table 3.13, the results of the subjective probabilities and
their corresponding PIC values sorted in increasing order.

A B C PIC(.)
PrNPl(.) 0.4722 0.3889 0.1389 0.0936
CuzzP (.) 0.5029 0.3937 0.1034 0.1377
BetP (.) 0.5050 0.3950 0.1000 0.1424
PraP l(.) 0.5294 0.3978 0.0728 0.1861
PrP l(.) 0.5421 0.4005 0.0574 0.2149
PrHyb(.) 0.5575 0.4019 0.0406 0.2517
DSmPε=0.001(.) 0.5665 0.4037 0.0298 0.2783
PrBel(.) 0.5668 0.4038 0.0294 0.2793
DSmPε=0(.) 0.5668 0.4038 0.0294 0.2793

Table 3.13: Results for example 3.8.1.

One sees that DSmPε→0 provides the same result as PrBel which corre-
sponds the best result in term of PIC for this example.

3.8.2 Example 7: Shafer’s model with another non-Bayesian
mass

Let’s consider the 3D frame Θ = {A,B,C} with Shafer’s model and the fol-
lowing non-Bayesian quantitative belief mass:
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A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
m(.) 0.1 0 0.2 0.3 0.1 0 0.3

Table 3.14: Quantitative input for example 3.8.2

• With the pignistic probability:

BetP (A) = 0.1 +
0.3

2
+

0.1

2
+

0.3

3
= 0.40

BetP (B) = 0 +
0.3

2
+

0.3

3
= 0.25

BetP (C) = 0.2 +
0.1

2
+

0.3

3
= 0.35

• With Sudano’s probabilities: The belief and plausibility of A, B and
C are

Bel(A) = 0.10 Bel(B) = 0 Bel(C) = 0.20

Pl(A) = 0.80 Pl(B) = 0.60 Pl(C) = 0.60

Applying formulas (3.4)-(3.8), one obtains:

– With the probability PrP l(.):

PrP l(A) = Pl(A) · [ m(A)

Pl(A)
+

m(A ∪B)

Pl(A) + Pl(B)

+
m(A ∪ C)

Pl(A) + Pl(C)
+

m(A ∪B ∪ C)

Pl(A) + Pl(B) + Pl(C)
]

= 0.80 · [ 0.10
0.80

+
0.30

1.40
+

0.10

1.40
+

0.30

2
] ≈ 0.4486

and similarly,

PrP l(B) ≈ 0.2186 PrP l(C) ≈ 0.3328

– With the probability PrBel(.):

PrBel(A) = Bel(A) · [ m(A)

Bel(A)
+

m(A ∪B)

Bel(A) +Bel(B)

+
m(A ∪ C)

Bel(A) +Bel(C)
+

m(A ∪B ∪ C)

Bel(A) +Bel(B) +Bel(C)
]

= 0.10 · [ 0.10
0.80

+
0.30

0.10
+

0.10

0.30
+

0.30

0.30
] ≈ 0.5333
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PrBel(C) ≈ 0.4667 but from the formula (3.5), one gets PrBel(B) =
NaN because of the division by zero. Since PrBel(A)+PrBel(B)+
PrBel(C) must be one, one could circumvent the problem by taking
PrBel(B) = 0.

– With the probability PrNPl(.):

PrNPl(A) =
Pl(A)

Pl(A) + Pl(B) + Pl(C)
=

0.80

2
= 0.40

PrNPl(B) =
Pl(B)

Pl(A) + Pl(B) + Pl(C)
=

0.60

2
= 0.30

PrNPl(C) =
Pl(C)

Pl(A) + Pl(B) + Pl(C)
=

0.60

2
= 0.30

– With the probability PraP l(.): Applying formula (3.7), one gets

ε =
1−Bel(A)−Bel(B)−Bel(C)

Pl(A) + Pl(B) + Pl(C)
= 0.35

PraP l(A) = 0.10 + 0.35 · 0.80 = 0.38

PraP l(B) = 0 + 0.35 · 0.60 = 0.21

PraP l(C) = 0.20 + 0.35 · 0.60 = 0.41

– With the probability PrHyb(.):

PrHyb(A) ≈ 0.4553 PrHyb(B) ≈ 0.1698 PrHyb(C) ≈ 0.3749

• With Cuzzolin’s probability: Since TNSM = 0.3 + 0.1 + 0.3 = 0.7,
Δ(A) = 0.7, Δ(B) = 0.6 and Δ(C) = 0.4, one gets:

CuzzP (A) = 0.1 +
0.7

1.7
× 0.7 = 0.388

CuzzP (B) = 0 +
0.6

1.7
× 0.7 = 0.247

CuzzP (C) = 0.2 +
0.4

1.7
× 0.7 = 0.365
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• With DSmP transformation:

- Applying formula (3.11) for ε = 0.001 yields:

DSmPε=0.001(A) ≈ 0.5305

DSmPε=0.001(B) ≈ 0.0039

DSmPε=0.001(C) ≈ 0.4656

DSmPε=0.001(A ∪B) ≈ 0.5344

DSmPε=0.001(A ∪C) ≈ 0.9961

DSmPε=0.001(B ∪C) ≈ 0.4695

DSmPε=0.001(A ∪B ∪C) = 1

- The formula (3.11) for ε = 0 cannot be applied in this example because
of 0/0 indetermination, but one can always choose ε arbitrary small in
order to evaluate DSmPε→0(.).

A B C PIC(.)
PrBel(.) 0.5333 NaN 0.4667 NaN
PrNPl(.) 0.4000 0.3000 0.3000 0.0088
CuzzP (.) 0.3880 0.2470 0.3650 0.0163
BetP (.) 0.4000 0.2500 0.3500 0.0164
PraP l(.) 0.3800 0.2100 0.4100 0.0342
PrP l(.) 0.4486 0.2186 0.3328 0.0368
PrHyb(.) 0.4553 0.1698 0.3749 0.0650
DSmPε=0.001(.) 0.5305 0.0039 0.4656 0.3500

Table 3.15: Results for example 3.8.2.

We summarize in Table 3.15, the results of the subjective probabilities and their
corresponding PIC values sorted in increasing order. One sees that DSmPε→0

provides the highest PIC and PrBel is mathematically undefined. If one set
artificially PrBel(B) = 0, one will get the same result with PrBel as with
DSmPε→0.
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3.8.3 Example 8: Shafer’s model with yet another
non-Bayesian mass

Let’s modify a bit the previous and consider the 3D frame Θ = {A,B,C} with
Shafer’s model and the following non-Bayesian quantitative belief assignments
(mass) having masses on B and C equal zero and according to Table 3.16.

A B C A ∪B A ∪ C B ∪C A ∪B ∪C
m(.) 0.1 0 0 0.2 0 0.3 0.4

Table 3.16: Quantitative input for example 3.8.3

A B C PIC(.)
PrBel(.) 0.7000 NaN NaN NaN
CuzzP (.) 0.3455 0.3681 0.2864 0.0049
PrNPl(.) 0.3043 0.3913 0.3044 0.0067
BetP (.) 0.3333 0.3833 0.2834 0.0068
PraP l(.) 0.3739 0.3522 0.2739 0.0077
PrHyb(.) 0.3526 0.4066 0.2408 0.0203
PrP l(.) 0.3093 0.4377 0.2530 0.0239
DSmPε=0.001(.) 0.6903 0.1558 0.1539 0.2413

Table 3.17: Results for example 3.8.3.

We summarize in Table 3.17, the results of the subjective probabilities and their
corresponding PIC values sorted in increasing order. DSmPε→0 provides here
the best results in term of PIC metric with respect to all other transformations.
PrBel doesn’t work here because the two values PrBel(B) and PrBel(C)
are mathematically undefined. Of course if we set artificially PrBel(B) =
PrBel(C) = (1 − PrBel(A))/2 = 0.15, then we will obtain same result as
with DSmPε→0, but there is no solid reason for using such artificial trick for
circumventing the inherent limitation of the PrBel transformation.

3.8.4 Example 9: Shafer’s model with yet another
non-Bayesian mass

Here is an example where the PrBel(.) provides a counter intuitive result.
Let’s consider again Shafer’s model for Θ = {A,B,C} with the following bba

In this example PrBel(B) and PrBel(C) require division by zero which is
impossible. Even if in PrBel formula we force the mass m(B ∪ C) = 0.9 to
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A B C B ∪ C
m(.) 0.1 0 0 0.9

Table 3.18: Quantitative input for example 3.8.4

be transferred to A, we get PrBel(A) = 1, but it is not fair nor intuitive to
have the mass of B ∪C transferred to A, since A was not at all involved in the
ignoranceB∪C. Using DSmPε we get for the elements of Θ: DSmPε(A) = 0.1,
DSmPε(B) = 0.45 and DSmPε(C) = 0.45 no matter what ε > 0 is equal to.
We summarize in Table 3.19, the results of the subjective probabilities and
their corresponding PIC values sorted in increasing order (the verification is
left to the reader):

A B C PIC(.)
PrBel(.) 0.1000 NaN NaN NaN
PraP l(.) 0.1474 0.4263 0.4263 0.0814
BetP (.) 0.1000 0.4500 0.4500 0.1362
CuzzP (.) 0.1000 0.4500 0.4500 0.1362
PrP l(.) 0.1000 0.4500 0.4500 0.1362
PrHyb(.) 0.1000 0.4500 0.4500 0.1362
DSmPε(.) 0.1000 0.4500 0.4500 0.1362
PrNPl(.) 0.0526 0.4737 0.4737 0.2146

Table 3.19: Results for example 3.8.4.

One sees that DSmPε coincides with BetP , CuzzP , PrP l(.) and PrHyb(.)
in this special case. PrBel(.) is mathematically undefined. If one forces ar-
tificially PrBel(B) = PrBel(C) = 0, one gets PrBel(A) = 1 which does not
make sense. PrNPl provides a better PIC than other transformations here
only because it is subject to an abnormal behavior as already explained in
section 3.5.2, and therefore it cannot be considered as a serious candidate for
transforming any bba into a subjective probability.

3.8.5 Example 10: Hybrid DSm model

We consider here the hybrid DSm model for the frame Θ = {A,B,C} in which
we force all possible intersection of elements of Θ to be empty, except A∩B. In
this case the hyper-power set DΘ reduces to 9 elements {∅, A∩B,A,B,C,A∪
B,A∪C,B∪C,A∪B∪C}. The quantitative belief masses are chosen according
to Table 3.20 (the mass of elements not included in the Table are equal to zero).
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A ∩B A C
m(.) 0.2 0.1 0.2

A ∪B A ∪ C A ∪B ∪ C
m(.) 0.3 0.1 0.1

Table 3.20: Quantitative input for example 3.8.5

One has according to Figure 3.1 (see [12], page 55): C(A∩B) = 1, C(A) = 2,
C(B) = 2, C(C) = 1, C(A ∪ B) = 3, C(A ∪ C) = 3, C(B ∩ C) = 3 and
C(A ∪B ∪C) = 4.
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Figure 3.1: Hybrid DSm model for example 3.8.4

In order to apply Sudano’s and Cuzzolin’s transformations, we need to work
on the refined frame Θref with Shafer’s model as depicted on Figure 3.2:

Θref = {A′ � A \ (A ∩ B), B′ � B \ (A ∩ B), C′ � C,D′ � A ∩ B}
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Figure 3.2: Refined 3D frame
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For Sudano’s and Cuzzolin’s transformations, we use the following equiva-
lent bba as numerical input of the transformations:

D′ A′ ∪D′ C′

m(.) 0.2 0.1 0.2

A′ ∪B′ ∪D′ A′ ∪ C′ ∪D′ A′ ∪B′ ∪C′ ∪D′

m(.) 0.3 0.1 0.1

Table 3.21: Quantitative equivalent input on refined frame for example 3.8.5

• With the pignistic probability:

Applying the generalized pignistic transform (3.3) directly on Θ with m(.)
given in Table 3.20, one gets:

BetP{A ∩B} = BetP{A} = BetP{B} = BetP{C} =
(1/1) · 0.2 (1/1) · 0.2 (1/1) · 0.2 (0/1) · 0.2
+(1/2) · 0.1 +(2/2) · 0.1 +(1/2) · 0.1 +(0/2) · 0.1
+(1/2) · 0 +(1/2) · 0 +(2/2) · 0 +(0/2) · 0
+(0/1) · 0.2 +(0/2) · 0.2 +(0/1) · 0.2 +(1/1) · 0.2
+(1/3) · 0.3 +(2/3) · 0.3 +(2/3) · 0.3 +(0/3) · 0.3
+(1/3) · 0.1 +(2/3) · 0.1 +(1/3) · 0.1 +(1/3) · 0.1
+(1/3) · 0 +(1/3) · 0 +(2/3) · 0 +(1/3) · 0
+(1/4) · 0.1 +(2/4) · 0.1 +(2/4) · 0.1 +(1/4) · 0.1
≈ 0.408333 ≈ 0.616666 ≈ 0.533333 ≈ 0.258333

Table 3.22: Derivation of BetP{A ∩B}, BetP{A}, BetP{B} and BetP{C}

It is easy to verify that the pignistic probability of the whole frame Θ is one since
one has BetP{A∪B∪C} = (1/1) ·0.2+(2/2) ·0.1+(2/2) ·0+(2/2) ·0.2+(3/3) ·
0.3+(3/3)·0.1+(3/3)·0+(4/4)·0.1 = 0.2+0.1+0.2+0.3+0.1+0.1 = 1. Moreover,
one can verify also that the classical equality BetP{A ∪ B} = BetP{A} +
BetP{B}−BetP{A∩B} is satisfied since BetP (.) is a (subjective) probability
measure, similarly for BetP{A∪C} and for BetP{B ∪C}. BetP{A∩C} and
BetP{B ∩ C} equal zero in this example.
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BetP{A ∪B} = BetP{A ∪ C} = BetP{B ∪ C} =
(1/1) · 0.2 (1/1) · 0.2 (1/1) · 0.2
+(2/2) · 0.1 +(2/2) · 0.1 +(1/2) · 0.1
+(2/2) · 0 +(1/2) · 0 +(2/2) · 0
+(0/1) · 0.2 +(1/1) · 0.2 +(2/2) · 0.2
+(3/3) · 0.3 +(2/3) · 0.3 +(2/3) · 0.3
+(2/3) · 0.1 +(3/3) · 0.1 +(2/3) · 0.1
+(2/3) · 0 +(2/3) · 0 +(3/3) · 0
+(3/4) · 0.1 +(3/4) · 0.1 +(3/4) · 0.1
≈ 0.741666 = 0.875000 ≈ 0.791666

Table 3.23: Derivation of BetP{A ∪B}, BetP{A ∪C} and BetP{B ∪ C}

The underlying probability measure of the atomic elements of Θref is then
given by:

BetP{A′} = BetP{A} − BetP{A ∩B} ≈ 0.2084

BetP{B′} = BetP{B} −BetP{A ∩B} ≈ 0.1250

BetP{C′} = BetP{C} ≈ 0.2583

BetP{D′} = BetP{A ∩B} ≈ 0.4083

• With Sudano’s probabilities: The belief and plausibility of elements
of Θref are

Bel(A′) = 0 Pl(A′) = 0.6

Bel(B′) = 0 Pl(B′) = 0.4

Bel(C′) = 0.2 Pl(C′) = 0.4

Bel(D′) = 0.2 Pl(D′) = 0.8

Applying the formulas (3.4)-(3.8) on Θref with the masses given in Table
3.21, one gets:

- With the probability PrP l(.):

PrP l(A′) ≈ 0.2035 PrP l(B′) ≈ 0.0848

PrP l(C′) ≈ 0.2404 PrP l(D′) ≈ 0.4713

- With the probability PrBel(.): One cannot directly apply (3.5) because of
the division by zero involved in derivation of PrBel(A′) and PrBel(B′),
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i.e. formally one gets

PrBel(A′) = NaN PrBel(B′) = NaN

PrBel(C′) = 0.3000 PrBel(D′) = 0.7000

But because PrBel(C′) + PrBel(D′) = 1, one can set artificially/indi-
rectly PrBel(A′) = PrBel(B′) = 0 and this would yield to PIC ≈
0.5593, but fundamentally, PrBel(A′) = NaN and PrBel(B′) = NaN
from PrBel(.) formula, so that PIC is mathematically inderterminate.

- With the probability PrNPl(.):

PrNPl(A′) ≈ 0.2728 PrNPl(B′) ≈ 0.1818

PrNPl(C′) ≈ 0.1818 PrNPl(D′) ≈ 0.3636

- With the probability PraP l(.): ε ≈ 0.2727

PraP l(A′) ≈ 0.1636 PraP l(B′) ≈ 0.1091

PraP l(C′) ≈ 0.3091 PraP l(D′) ≈ 0.4182

- With the probability PrHyb(.):

PrHyb(A′) ≈ 0.1339 PrHyb(B′) ≈ 0.0583

PrHyb(C′) ≈ 0.2656 PrHyb(D′) ≈ 0.5422

• With Cuzzolin’s probability: Working on the refined frame Θref, with
the bba m(.) defined in Table 3.21, one has TNSM = 0.6, Δ(A′) = 0.6,
Δ(B′) = 0.4, Δ(C′) = 0.2 and Δ(D′) = 0.6. Therefore:

CuzzP (A′) = m(A′) +
Δ(A′) · TNSM

Δ(A′) + Δ(B′) + Δ(C′) + Δ(D′)

= 0 +
0.6 · 0.6

0.6 + 0.4 + 0.2 + 06
= 0.2000

CuzzP (B′) = m(B′) +
Δ(B′) · TNSM

Δ(A′) + Δ(B′) + Δ(C′) + Δ(D′)

= 0 +
0.4 · 0.6

0.6 + 0.4 + 0.2 + 06
≈ 0.1333
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CuzzP (C′) = m(C ′) +
Δ(C′) · TNSM

Δ(A′) + Δ(B′) + Δ(C′) + Δ(D′)

= 0.2 +
0.2 · 0.6

0.6 + 0.4 + 0.2 + 06
≈ 0.2667

CuzzP (D′) = m(D′) +
Δ(D′) · TNSM

Δ(A′) + Δ(B′) + Δ(C′) + Δ(D′)

= 0.2 +
0.6 · 0.6

0.6 + 0.4 + 0.2 + 06
= 0.4000

• With DSmP transformation: Applying directly the formula (3.11) on
the frame Θ with this hybrid model and for the chosen bba m(.), yield
to the following analytical expressions:

DSmPε(A∩B) =
m((A ∩B) ∩ (A ∩B)) + ε · C((A ∩B) ∩ (A ∩B))

m(A ∩B) + ε · C(A ∩B)
·m(A∩B)

+
m(A ∩ (A ∩B)) + ε · C(A ∩ (A ∩B))

m(A ∩B) + ε · C(A)
· m(A)

+
m((A ∪B) ∩ (A ∩B)) + ε · C((A ∪B) ∩ (A ∩B))

m(A ∩B) + ε · C(A ∪B)
· m(A ∪B)

+
m((A ∪ C) ∩ (A ∩B)) + ε · C((A ∪ C) ∩ (A ∩B))

m(A ∩B) +m(C) + ε · C(A ∪C)
· m(A ∪ C)

+
m((A ∪B ∪C) ∩ (A ∩B)) + ε · C((A ∪B ∪ C) ∩ (A ∩B))

m(A ∩B) +m(C) + ε · C(A ∪B ∪ C)
·m(A∪B ∪C)

Since we work with this hybrid DSm model, one has C(A∩B) = 1, C(C) = 1,
C(A) = C(B) = 2, C(A∪B) = C(A∪C) = C(B∪C) = 3 and C(A∪B ∪C) = 4.
So that the previous expression can be simplified as:

DSmPε(A ∩B) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A ∩B) +

m(A ∩B) + ε · 1
m(A ∩B) + ε · 2 ·m(A)

+
m(A ∩B) + ε · 1
m(A ∩B) + ε · 3 · m(A ∪B) +

m(A ∩B) + ε · 1
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(A ∩B) + ε · 1

m(A ∩B) +m(C) + ε · 4 ·m(A ∪B ∪ C)
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Similarly, one gets:

DSmPε(A) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 · m(A ∩B) +

m(A ∩B) + ε · 2
m(A ∩B) + ε · 2 · m(A)

+
m(A ∩B) + ε · 2
m(A ∩B) + ε · 3 · m(A ∪B) +

m(A ∩B) + ε · 2
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(A ∩B) + ε · 2

m(A ∩B) +m(C) + ε · 4 · m(A ∪B ∪ C)

DSmPε(B) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A ∩B) +

m(A ∩B) + ε · 1
m(A ∩B) + ε · 2 · m(A)

+
m(A ∩B) + ε · 2
m(A ∩B) + ε · 3 · m(A ∪B) +

m(A ∩B) + ε · 1
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(A ∩B) + ε · 2

m(A ∩B) +m(C) + ε · 4 · m(A ∪B ∪ C)

DSmPε(C) =
m(C) + ε · 1
m(C) + ε · 1 ·m(C) +

m(C) + ε · 1
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(C) + ε · 1

m(A ∩B) +m(C) + ε · 4 · m(A ∪B ∪ C)

DSmPε((A∩B)∪C) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A∩B)+

m(A ∩B) + ε · 1
m(A ∩B) + ε · 2 ·m(A)

+
m(C) + ε · 1
m(C) + ε · 1 ·m(C) +

m(A ∩B) + ε · 1
m(A ∩B) + ε · 3 · m(A ∪B)

+
m(A ∩B) +m(C) + ε · 2
m(A ∩B) +m(C) + ε · 3 ·m(A∪C)+

m(A ∩B) +m(C) + ε · 3
m(A ∩B) +m(C) + ε · 4 ·m(A∪B∪C)

DSmPε(A ∪B) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 · m(A ∩B) +

m(A ∩B) + ε · 2
m(A ∩B) + ε · 2 ·m(A)

+
m(A ∩B) + ε · 3
m(A ∩B) + ε · 3 · m(A ∪B) +

m(A ∩B) + ε · 2
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(A ∩B) + ε · 3

m(A ∩B) +m(C) + ε · 4 · m(A ∪B ∪ C)
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DSmPε(A ∪ C) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A ∩B) +

m(A ∩B) + ε · 2
m(A ∩B) + ε · 2 ·m(A)

+
m(C) + ε · 1
m(C) + ε · 1 ·m(C) +

m(A ∩B) + ε · 2
m(A ∩B) + ε · 3 · m(A ∪B)

+
m(A ∩B) +m(C) + ε · 3
m(A ∩B) +m(C) + ε · 3 ·m(A∪C)+

m(A ∩B) +m(C) + ε · 3
m(A ∩B) +m(C) + ε · 4 ·m(A∪B∪C)

DSmPε(B ∪ C) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A ∩B) +

m(A ∩B) + ε · 1
m(A ∩B) + ε · 2 ·m(A)

+
m(C) + ε · 1
m(C) + ε · 1 ·m(C) +

m(A ∩B) + ε · 2
m(A ∩B) + ε · 3 · m(A ∪B)

+
m(A ∩B) +m(C) + ε · 2
m(A ∩B) +m(C) + ε · 3 ·m(A∪C)+

m(A ∩B) +m(C) + ε · 3
m(A ∩B) +m(C) + ε · 4 ·m(A∪B∪C)

DSmPε(A∪B∪C) =
m(A ∩B) + ε · 1
m(A ∩B) + ε · 1 ·m(A∩B)+

m(A ∩B) + ε · 2
m(A ∩B) + ε · 2 ·m(A)

+
m(C) + ε · 1
m(C) + ε · 1 ·m(C) +

m(A ∩B) + ε · 3
m(A ∩B) + ε · 3 · m(A ∪B)

+
m(A ∩B) +m(C) + ε · 3
m(A ∩B) +m(C) + ε · 3 ·m(A ∪ C)

+
m(A ∩B) +m(C) + ε · 4
m(A ∩B) +m(C) + ε · 4 · m(A ∪B ∪ C) = 1

- Applying formula (3.11) for ε = 0.001 yields:

DSmPε=0.001(A ∩B) ≈ 0.6962

DSmPε=0.001(A) ≈ 0.6987

DSmPε=0.001(B) ≈ 0.6979

DSmPε=0.001(C) ≈ 0.2996

DSmPε=0.001((A ∩B) ∪ C) ≈ 0.9958

DSmPε=0.001(A ∪B) ≈ 0.7004

DSmPε=0.001(A ∪ C) ≈ 0.9983

DSmPε=0.001(B ∪ C) ≈ 0.9975

DSmPε=0.001(A ∪B ∪ C) = 1

which induces the underlying probability measure on the refined frame

P (A′) ≈ 0.0025 P (B′) ≈ 0.0017 P (C′) ≈ 0.2996 P (D′) ≈ 0.6962
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A′ B′ C′ D′ PIC(.)
PrBel(.) NaN NaN 0.3000 0.7000 NaN
PrNPl(.) 0.2728 0.1818 0.1818 0.3636 0.0318
CuzzP (.) 0.2000 0.1333 0.2667 0.4000 0.0553
BetP (.) 0.2084 0.1250 0.2583 0.4083 0.0607
PraP l(.) 0.1636 0.1091 0.3091 0.4182 0.0872
PrP l(.) 0.2035 0.0848 0.2404 0.4713 0.1124
PrHyb(.) 0.1339 0.0583 0.2656 0.5422 0.1928
DSmPε=0.001(.) 0.0025 0.0017 0.2996 0.6962 0.5390

Table 3.24: Results for example 3.8.5.

We summarize in Table 3.24, the results on the refined frame for the subjective
probabilities and their corresponding PIC values sorted in increasing order.
DSmPε→0 provides here the best result in term of PIC metric with respect to
all other transformations.

3.8.6 Example 11: Free DSm model

We consider the free DSm model as Figure 3.3 for Θ = {A,B,C} with the bba
given in Table 3.25.

A ∩B ∩ C A ∩B A
m(.) 0.1 0.2 0.3

A ∪B A ∪B ∪ C
m(.) 0.1 0.3

Table 3.25: Quantitative input for example 3.8.6

In order to apply Sudano’s and Cuzzolin’s transformations, we need to work
one the refined frame

Θref = {A′, B′, C′, D′, E′, F ′, G′}

where elements of Θref corresponds to separate parts (assuming such refine-
ment makes physically sense/meaning - sometimes depending on the nature of
elements A, B and C the refinement has no physical sense but can just be seen
as a mathematical abstract refined frame) of the Venn Diagram of Figure 3.3.
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Figure 3.3: Free DSm model for a 3D frame.

• With the pignistic probabilities: One gets for singletons of Θref.

BetP{A′} ≈ 0.1345 BetP{B′} ≈ 0.0595 BetP{C′} ≈ 0.0429

BetP{D′} ≈ 0.2345 BetP{E′} ≈ 0.1345 BetP{F ′} ≈ 0.0595

BetP{G′} ≈ 0.3345

• With Sudano’s probabilities: The belief and plausibility of elements
of Θref are

Bel(A′) = 0 Pl(A′) = 0.7

Bel(B′) = 0 Pl(B′) = 0.4

Bel(C′) = 0 Pl(C′) = 0.3

Bel(D′) = 0 Pl(D′) = 0.9

Bel(E′) = 0 Pl(E′) = 0.7

Bel(F ′) = 0 Pl(F ′) = 0.4

Bel(G′) = 0.1 Pl(G′) = 1

Applying the formulas (3.4)-(3.8) on Θref one obtains:

- With the probability PrP l(.):

PrP l(A′) ≈ 0.1284 PrP l(B′) ≈ 0.0370 PrP l(C′) ≈ 0.0205

PrP l(D′) ≈ 0.2599 PrP l(E′) ≈ 0.1284 PrP l(F ′) ≈ 0.0370

PrP l(G′) ≈ 0.3887
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- With the probability PrBel(.): If one applies PrBel(.) formula re-
stricted only with positive masses (to circumvent 0/0 undetermi-
nations, one obtains PrBel(G′) = 1 and PIC = 1. But if one
strictly applies PrBel(.) formula which normally must include all
masses (even those taking zero values), then PrBel(.) yields to 0/0
indeterminations and thus PIC = NaN .

- With the probability PrNPl(.):

PrNPl(A′) ≈ 0.1591 PrNPl(B′) ≈ 0.0909

PrNPl(C′) ≈ 0.0682 PrNPl(D′) ≈ 0.2045

PrNPl(E′) ≈ 0.1591 PrNPl(F ′) ≈ 0.0909

PrNPl(G′) ≈ 0.2273

- With the probability PraP l(.): ε ≈ 0.2045

PraP l(A′) ≈ 0.1432 PraP l(B′) ≈ 0.0818

PraP l(C′) ≈ 0.0614 PraP l(D′) ≈ 0.1841

PraP l(E′) ≈ 0.1432 PraP l(F ′) ≈ 0.0818

PraP l(G′) ≈ 0.3045

- With the probability PrHyb(.):

PrHyb(A′) ≈ 0.1136 PrHyb(B′) ≈ 0.0333

PrHyb(C′) ≈ 0.0184 PrHyb(D′) ≈ 0.2214

PrHyb(E′) ≈ 0.1136 PrHyb(F ′) ≈ 0.0333

PrHyb(G′) ≈ 0.4663

• With Cuzzolin’s probability: Working on the refined frame Θref, one
has TNSM = 0.9, Δ(A′) = 0.7, Δ(B′) = 0.4, Δ(C′) = 0.3, Δ(D′) = 0.9,
Δ(E′) = 0.7, Δ(F ′) = 0.4 and Δ(G′) = 0.9. Therefore:

CuzzP (A′) ≈ 0.1465 CuzzP (B′) ≈ 0.0837

CuzzP (C′) ≈ 0.0628 CuzzP (D′) ≈ 0.1884

CuzzP (E′) ≈ 0.1465 CuzzP (F ′) ≈ 0.0837

CuzzP (G′) ≈ 0.2884
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• With DSmP transformation:

Applying formula (3.11) for ε = 0.001 yields15:

DSmPε=0.001(A ∩B ∩ C) ≈ 0.9678

DSmPε=0.001(A ∩B) ≈ 0.9764

DSmPε=0.001(A ∩ C) ≈ 0.9745

DSmPε=0.001(B ∩C) ≈ 0.9716

DSmPε=0.001((A ∪B) ∩ C) ≈ 0.9782

DSmPε=0.001((A ∪ C) ∩B) ≈ 0.9802

DSmPε=0.001((B ∪ C) ∩A) ≈ 0.9831

DSmPε=0.001((A ∩B) ∪ (A ∩C) ∪ (B ∩ C)) ≈ 0.9868

DSmPε=0.001(A) ≈ 0.9897

DSmPε=0.001(B) ≈ 0.9839

DSmPε=0.001(C) ≈ 0.9810

DSmPε=0.001((A ∩B) ∪ C) ≈ 0.9896

DSmPε=0.001((A ∩ C) ∪B) ≈ 0.9963

DSmPε=0.001((B ∩ C) ∪A) ≈ 0.9935

DSmPε=0.001(A ∪B) ≈ 0.9972

DSmPε=0.001(A ∪ C) ≈ 0.9963

DSmPε=0.001(B ∪C) ≈ 0.9934

DSmPε=0.001(A ∪B ∪ C) = 1

which induces the underlying probability measure on the refined frame16

P (A′) = DSmP (A)−DSmP (A ∩B)−DSmP (A ∩ C)

+DSmP (A ∩B ∩C) ≈ 0.0066

P (B′) = DSmP (B)−DSmP (A ∩B)−DSmP (B ∩C)

+DSmP (A ∩B ∩ C) ≈ 0.0038

P (C ′) = DSmP (C)−DSmP (A ∩ C)−DSmP (B ∩ C)

+DSmP (A ∩B ∩ C) ≈ 0.0028

15The verification is left to the reader.
16Here we use the Poincaré’s formula. The index ε has been omitted due to space limitation

for notational convenience.
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P (D′) = DSmP (A ∩B)−DSmP (A ∩B ∩ C) ≈ 0.0086

P (E′) = DSmP (A ∩ C)−DSmP (A ∩B ∩ C) ≈ 0.0067

P (F ′) = DSmP (B ∩ C)−DSmP (A ∩B ∩ C) ≈ 0.0037

P (G′) = DSmP (A ∩B ∩C) ≈ 0.9678

Note that these probabilities can also be computed directly by the formula
(3.12) using the proper bba defined on the refined frame. For example
by applying (3.12), one gets for this example (with m(A) = m(A′ ∪D′ ∪
E′ ∪ G′) = 0.3, m(A ∪ B) = m(A′ ∪ B′ ∪ D′ ∪ E′ ∪ F ′ ∪ G′) = 0.1 and
m(A ∪B ∪ C) = m(A′ ∪B′ ∪ C′ ∪D′ ∪ E′ ∪ F ′ ∪G′) = 0.2)

P (A′) =
ε · 0.3

0.1 + ε · 4 +
ε · 0.1

0.1 + ε · 6 +
ε · 0.3

0.1 + ε · 7
which is equal to 0.0066 when ε = 0.001. Similar derivations can be done
using (3.12) to obtain directly the probabilities of the other elements of
the refined frame.

We summarize in Table 3.26, the PIC values obtained with the different trans-
formations sorted in increasing order. DSmPε→0 provides here again the best
result in term of PIC metric with respect to all other transformations.

Transformations PIC(.)
PrBel(.) NaN
PrNPl(.) 0.0414
CuzzP (.) 0.0621
PraP l(.) 0.0693
BetP (.) 0.1176
DSmPε=0.1(.) 0.1854
PrP l(.) 0.1940
PrHyb(.) 0.2375
DSmPε=0.001(.) 0.8986

Table 3.26: Results for example 3.8.6.

3.9 Extension of DSmP for qualitative belief

In order to compute directly with words (linguistic labels), Smarandache and
Dezert have defined in [13] a qualitative basic belief assignment qm(.) as a
mapping function from GΘ into a set of linguistic labels L = {L0, L̃, Lm+1}



132 Chapter 3: Transformations of belief masses . . .

where L̃ = {L1, · · · , Lm} is a finite set of linguistic labels and where m ≥ 2
is an integer. For example, L1 can take the linguistic value “poor”, L2 the
linguistic value “good”, etc. L̃ is endowed with a total order relationship ≺,
so that L1 ≺ L2 ≺ · · · ≺ Ln. To work on a true closed linguistic set L un-
der linguistic operators, L̃ is extended with two extreme values L0 = Lmin

and Lm+1 = Lmax, where L0 corresponds to the minimal qualitative value
and Lm+1 corresponds to the maximal qualitative value, in such a way that
L0 ≺ L1 ≺ L2 ≺ · · · ≺ Lm ≺ Lm+1, where ≺ means inferior to, or less (in
quality) than, or smaller than, etc.

From the isomorphism between the set of linguistic equidistant labels and
a set of numbers in the interval [0, 1] and the DSm Field and Linear Algebra of
Refined Labels (FLARL) proposed in Chapter 2, one disposes of a set of precise
operators on linguistic labels (addition, subtraction, multiplication, division,
etc) which allows a direct extension of (quantitative) DSmP formula to its
qualitative version as follows: qDSmPε(∅) = L0 and ∀X ∈ GΘ \ {∅} by

qDSmPε(X) =
∑

Y ∈GΘ

∑
Z⊆X∩Y
C(Z)=1

qm(Z) + ε · C(X ∩ Y )

∑
Z⊆Y
C(Z)=1

qm(Z) + ε · C(Y )
qm(Y ) (3.30)

where all operations17 in (3.30) are referred to labels as explained in Chapter 2.

The derivation of a qualitative PIC from qualitative DSmP can be also
obtained as follows: Let’s consider a finite space of discrete exclusive events
Θ = {θ1, θ2, . . . , θn} and a subjective qualitative alike probability measure
qP (.) : Θ �→ L = {L0, L1, . . . , Lm, Lm+1}. Then one defines the entropy and
PIC metrics from qP (.) as

H(qP ) � −
n∑

i=1

qP{θi} log2(qP{θi}) (3.31)

PIC(qP ) = 1 +
1

Hmax
·

n∑
i=1

qP{θi} log2(qP{θi}) (3.32)

where Hmax = log2(n) and in order to compute the logarithms, one utilizes the
isomorphism Li = i/(m+ 1).

17In our previous papers, we used only approximate operators for labels. In working with
FLARL, we use precise operators for labels.
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3.10 Example for qualitative DSmP

Let’s consider the frame Θ = {A,B,C} with Shafer’s model and the following
set of linguistic labels L = {L0, L1, L2, L3, L4, L5} (m = 4) with L0 = Lmin

and L5 = Lmax. Let’s consider the following qualitative belief assignment
qm(A) = L1, qm(B ∪ C) = L4 and qm(X) = L0 for all X ∈ 2Θ \ {A,B ∪ C}.
qm(.) is quasi-normalized since

∑
X∈2Θ qm(X) = L5 = Lmax. In this example,

qm(B ∪C) = L4 is redistributed by qDSmPε(.) to B and C only, since B and
C were involved in the ignorance, proportionally with respect to their cardinals
(since their masses are L0 ≡ 0). Applying qDSmPε(.) formula (3.30), one gets
for this example:

qDSmPε(A) = L1

qDSmPε(B) =
qm(B) + ε · C(B)

qm(B) + qm(C) + ε · C(B ∪ C)
qm(B ∪ C)

=
L0 + ε · 1

L0 + L0 + ε · 2 · L4 =
L0+(ε·1)·5

L0+0+(ε·2)·5
· L4

=
Lε·5

Lε·10
· L4 = L 5ε

10ε ·5
· L4 = L2.5 · L4

= L2.5·4/5 = L10/5 = L2

Similarly, one gets

qDSmPε(C) =
qm(C) + ε · C(C)

qm(B) + qm(C) + ε · C(B ∪ C)
qm(B ∪ C)

=
L0 + ε · 1

L0 + L0 + ε · 2 · L4 = L2

Thanks to the isomorphism between labels and numbers, all the properties
of operations with numbers are transmitted to the operations with labels.
qDSmPε(.) is normalized since qDSmPε(A) + qDSmPε(B) + qDSmPε(C)
equals L1 + L2 + L2 = L5 = Lmax. Applying the PIC formula (3.32), one
obtains (here n =| Θ |= 3):

PIC(qDSmPε) = 1+
1

log2 3
(L1 log2(L1)+L2 log2(L2)+L2 log2(L2) ≈ 1

5
L1

where in order to compute the qualitative logarithms, one utilized the isomor-
phism Li =

i
m+1 .
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3.11 Conclusions

Motivated by the necessity to use a better (more informational) probabilistic
approximation of belief assignment m(.) for applications involving hard and/or
soft decisions, we have developed in this chapter a new probabilistic transfor-
mation, called DSmP , for approximating m(.) into a subjective probability
measure. DSmP provides the maximum of the Probabilistic Information Con-
tent (PIC) of the source because it is based on proportional redistribution of
partial and total uncertainty masses to elements of cardinal 1 with respect to
their corresponding masses and cardinalities. DSmP works with any model
(Shafer’s, hybrid, or free DSm model) of the frame. DSmPε=0 coincides with
Sudano’s PrBel transformation for the cases when all masses of singletons
involved in ignorances are nonzero. PrBel formula is restricted to work on
Shafer’s model only while DSmPε>0 is always defined and for any model. We
have clearly shown through simple examples that the classical BetP and Cuz-
zolin’s transformations do not perform well in term of PIC criterion. It has
been shown also how DSmP can be extended to the qualitative domain to ap-
proximate qualitative belief assignments provided by human sources in natural
language.
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Abstract: This chapter defines and implements a non-Bayesian
fusion rule for combining densities of probabilities, derived from im-
precise knowledge. This rule is the restriction to a strict probabilis-
tic paradigm of the Proportional Conflict Redistribution rule no 6
(PCR6) developed in the DSmT framework for fusing basic belief as-
signments. A sampling method for probabilistic PCR6 (p-PCR6) is
defined. It is shown that p-PCR6 allows to keep the modes of local
densities and preserve as much as possible the whole information in-
herent to each densities to combine. In particular, p-PCR6 is able
of maintaining multiple hypotheses/modes, when they are too distant
for fusion, contrariwise to classical technique. The question of se-
quential filtering by p-PCR6 is addressed, thus implying the necessity
to handle the redundancy of the information.
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Notations

• δ[x = y] is the Dirac distribution of variable x on value y ,

• I[b], function of Boolean b, is defined by I[true] = 1 and I[false] = 0 . In
particular, I[x = y] could be seen as a discrete counterpart of the Dirac
δ[x = y].

4.1 Introduction

Bayesian inference is a powerful principle for modeling and manipulating prob-
abilistic information. In many cases, Bayesian inference is considered as an
optimal and legitimate rule for inferring such information. Bayesian filters for
example, and their approximations by means of sequential Monte-Carlo, are
typically regarded as optimal filters [1, 2, 7].

However, Bayesian methods need strong hypotheses, in particular about
the information prior and the independence prior. A degradation of the per-
formance of Bayesian filter occurs if the filter is not correctly initialized or
updated, in accordance to the models in use. Being given a model of the sys-
tem kinematic and of the measurement process, the main issue is to develop
filtering methods which are sufficiently robust against the bias at the initializa-
tion as well as error in modeling. In this paper, a non-Bayesian rule for fusing
the probabilistic information is proposed. This rule, denoted p-PCR6, is the
restriction to the probabilistic paradigm of the Proportional Conflict redistri-
bution rule no.6 (PCR6) which has been proposed in [12] for combining basic
belief assignments. p-PCR6 is also an extension of discrete PCR6 version to
its continuous probabilistic counterpart.

PCR6 has been first established for combining evidences (i.e. discrete be-
lief assignments) in the DSmT framework. In particular, it has been designed
in order to cope with highly conflicting and uncertain information. This rule
could be considered in a probabilistic paradigm by restricting the basic be-
lief assignment involved to only probabilistic belief assignment1, and directly
extended to densities of probabilities. This rule is non-Bayesian by nature. Al-
though Bayesian techniques are widely well known and used in target tracking
community (including authors works in tracking), it is interesting to see how
such new approach can perform to estimate its real interest and potentiality.

1The denomination probabilistic belief assignment is preferred to Bayesian belief as-
signment, generally used in the literature, since we consider that Probability and Bayesian
inference are distinguishable notions.
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Surprisingly, it turns out through our works, that such approach is robust to an
erroneous modeling: in particular, it is able of maintaining multiple hypothe-
ses, when they are too distant for fusion. The resulting p-PCR6-based filter
happens to be essentially non-linear, and has been implemented in our simula-
tion using particle filtering techniques. In particular, the p-PCR6 multisensor
filter developed here is based on a quite simple and direct implementation in
terms of particles drawing and resampling. At the end of this chapter, the
question of sequential filtering is addressed. In this case, it is necessary to take
into account the redundancy of information over the time. Then, p-PCR6 is
adapted in order to remove this redundancy.

Section 4.2 introduces the PCR6 rules, and establishes some results about
probabilistic PCR6. A sampling method is deduced. Section 4.3 compares the
results of the Bayesian rule and of probabilistic PCR6 on a simple example. On
the basis of this comparison, some arguments about the robustness of PCR6
are given. Section 4.4 investigates the sequential filtering issue. Application of
p-PCR6 to distributed filtering is provided as example. Section 4.5 concludes.

4.2 PCR6 formula for probabilities

4.2.1 Definition and justification of PCR6

The Proportional Conflict Redistribution rule no. 6 (PCR6) of combination [5]
is an extension of rule PCR5 [10, 11]. These rules come from the necessity
to manage precisely and efficiently the partial conflicts when combining con-
flicting and uncertain information expressed in terms of (quantitative) belief
assignments. These rule have been proved useful and powerful in several ap-
plications where it has been used [12]. PCR5 and PCR6 are equivalent, when
restricted to only two sources of information.

Let be given an universe of events Θ . A distribution of evidence over Θ
is characterized by means of a basic belief assignment (bba) m : P(Θ) → IR+

such that:

m(∅) = 0 and
∑

X⊂Θ

m(X) = 1 ,

where P(Θ) is the set of subset of Θ.2

2In the general case, bba could also be defined over hyper-power sets (Dedekind’s lat-
tice) [12].
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A bba typically represents the knowledge, which can be both uncertain and
imprecise, that a sensor provides about its belief in the true state of the uni-
verse. The question then arising is How to fuse the bba’s related to multiple
sensor responses? The main idea is to corroborate the information of each
sensor in a conjunctive way.

Example: Let’s assume two sources with basic belief assignments m1 and m2

such that m1(A) = 0.6, m1(A∪B) = 0.4 and m2(B) = 0.3, m2(A∪B) = 0.7 .
The fused bba is then characterized in a conjunctive way by:

m∧(A ∩B) = m1(A)m2(B) = 0.18 ,
m∧(A) = m1(A)m2(A ∪B) = 0.42 ,
m∧(B) = m1(A ∪B)m2(B) = 0.12 ,
m∧(A ∪B) = m1(A ∪B)m2(A ∪B) = 0.28 .

The conjunctive consensus works well when there is no possibility of con-
flict. Now, make the hypothesis A∩B = ∅ . Then, it is obtained m∧(∅) = 0.18,
which is not an acceptable result for a conventional interpretation of ∅ as a
contradiction. Most existing rules solve this issue by redistributing the con-
flict m∧(∅) over the other propositions. In PCR6, the partial conflicting mass
m1(A)m2(B) is redistributed to A and B only with the respective proportions
xA = 0.12 and xB = 0.06 , according to the proportionalization principle:

xA

m1(A)
=

xB

m2(B)
=

m1(A)m2(B)

m1(A) +m2(B)
=

0.18

0.9
= 0.2 .

Basically, the idea of PCR6 is to transfer the conflicting mass only to the ele-
ments involved in the conflict and proportionally to their individual masses.

Some theoretical considerations and justifications already briefly aforemen-
tioned led to the following PCR6 combination rule. Being given two bba’s
m1 and m2, the fused bba mPCR6 according to PCR6, or equivalently to PCR5
in this case, is defined for any X ∈ P(Θ) \ {∅} by:

mPCR5/PCR6(X) = m∧(X)

+
∑

Y ∈P(Θ)
X∩Y =∅

(
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )

)
(4.1)

where m∧(·) corresponds to the conjunctive consensus:

m∧(X) �
∑

Y1∩Y2=X
Y1,Y2∈P(Θ)

m1(Y1)m2(Y2) .
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When fusing s ≥ 2 sources of informations, characterized by the bba’s m1 to
ms, the fused bba is defined in [5] by:

mPCR6(X) = m∧(X)

+
s∑

i=1

mi(X)2
∑

Ts−1
k=1 Yσi(k)∩X=∅

Yσi(1)
,··· ,Yσi(s−1)∈P(Θ)

⎛
⎜⎜⎜⎜⎜⎝

s−1∏
j=1

mσi(j)(Yσi(j))

mi(X) +

s−1∑
j=1

mσi(j)(Yσi(j))

⎞
⎟⎟⎟⎟⎟⎠ , (4.2)

where m∧(·) corresponds to the conjunctive consensus:

m∧(X) �
∑

Y1∩···∩Ys=X
Y1,··· ,Ys∈P(Θ)

s∏
i=1

mi(Yi) ,

and the function σi counts from 1 to s avoiding i :

σi(j) = j × I[j < i] + (j + 1)× I[j ≥ i] .

4.2.2 Reformulation of PCR6

Definition (4.2) could be reformulated into a more intuitive expression.

mPCR6(X) = m∧(X) +

s∑
i=1

∑
Ts

k=1 Yk=∅
Y1,··· ,Ys∈P(Θ)

⎛
⎜⎜⎜⎜⎝

I[X = Yi] mi(Yi)

s∏
j=1

mj(Yj)

s∑
j=1

mj(Yj)

⎞
⎟⎟⎟⎟⎠ ,

and then:

mPCR6(X) = m∧(X) +
∑

Ts
k=1 Yk=∅

Y1,··· ,Ys∈P(Θ)

s∏
i=1

mi(Yi)

s∑
j=1

I[X = Yj ] mj(Yj)

s∑
j=1

mj(Yj)

. (4.3)
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At last, a new formulation of PCR6 is derived for X ∈ P(Θ) \ {∅}:

mPCR6(X) =
∑

Y1,··· ,Ys∈P(Θ)

(
s∏

i=1

mi(Yi)

)
FPCR6(X |Y1:s) ,

where the function FPCR6 is defined by:

FPCR6(X |Y1:s) = I

[
s⋂

k=1

Yk = X

]
+ I

[
s⋂

k=1

Yk = ∅
] s∑

j=1

I[X = Yj ] mj(Yj)

s∑
j=1

mj(Yj)

=

s∑
j=1

(
I

[
s⋂

k=1

Yk = X

]
+ I

[
s⋂

k=1

Yk = ∅
]
I[X = Yj ]

)
mj(Yj)

s∑
j=1

mj(Yj)

. (4.4)

When considering probabilistic densities instead of belief functions, the com-

ponents
∏s

i=1 mi(Yi) and
Ps

j=1(I[
Ts

k=1 Yk=X]+I[
Ts

k=1 Yk=∅]I[X=Yj ]) mj(Yj)
P

s
j=1 mj(Yj)

have a

straightforward interpretation. The first is interpreted as an independent gen-
eration of answers by each source of information. The second is interpreted as a
random choice among the answers or the consensus, weighted by the respective
evidences.

4.2.3 Definition of probabilistic PCR6 (p-PCR6)

In [12], Dezert and Smarandache proposed a probabilistic version of the PCR5 /
PCR6 rule (4.1) for two sources, by restricting the bba’s m1 and m2 to discrete
probabilities P1 and P2 which are called then probabilistic belief assignments
(or masse1). Probabilistic belief masses are bba’s, which focal elements3 con-
sist only in elements of the frame Θ, i.e. the singletons only. When dealing
with probabilistic belief assignments m1 ≡ P1 and m2 ≡ P2, the conjunctive
consensus is restricted to the same singleton, so that m∧(X) = P1(X)P2(X).

3Focal elements are elements of P(Θ) having a strictly positive mass.
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As a consequence, the PCR5/PCR6 formula (4.1) for two sources reduces to:

PPCR5/PCR6(X) = P1(X)P2(X) + P1(X)
∑

Y ∈Θ\{X}

P1(X)P2(Y )

P1(X) + P2(Y )

+ P2(X)
∑

Y ∈Θ\{X}

P2(X)P1(Y )

P2(X) + P1(Y )
.

Now, it happens that:

P1(X)P2(X) = P1(X)
P1(X)P2(X)

P1(X) + P2(X)
+ P2(X)

P2(X)P1(X)

P1(X) + P2(X)
,

and finally:

PPCR5/PCR6(X) = P1(X)
∑
Y ∈Θ

P1(X)P2(Y )

P1(X) + P2(Y )
+P2(X)

∑
Y ∈Θ

P2(X)P1(Y )

P2(X) + P1(Y )
.

(4.5)

Of course, this formula generalizes in the case of PCR6 for any number of
sources. Since:

m∧(X) =

s∏
i=1

Pi(X) =

s∑
i=1

Pi(X)

∏s
i=1 Pi(X)∑s
i=1 Pi(X)

and, for X,Yσi(k) ∈ Θ,

s−1⋂
k=1

Yσi(k) ∩X = ∅ if and only if Yσi(1) = · · · = Yσi(s) = X , (4.6)

it comes:

PPCR6(X) =

s∑
i=1

Pi(X)2
∑

Yσi(1)
,··· ,Yσi(s−1)∈Θ

⎛
⎜⎜⎜⎜⎜⎝

s−1∏
j=1

Pσi(j)(Yσi(j))

Pi(X) +

s−1∑
j=1

Pσi(j)(Yσi(j))

⎞
⎟⎟⎟⎟⎟⎠ .

(4.7)

Equations (4.5) and (4.7) are however difficult to handle practically. The re-
formulated definition of p-PCR6 is introduced now.
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4.2.4 Reformulation of p-PCR6

From (4.4), it is deduced:

PPCR6(X) =

∑
Y1,··· ,Ys∈Θ

s∏
i=1

Pi(Yi)

s∑
j=1

 
I[X = Y1 = · · · = Ys] + I

"
s\

k=1

Yk = ∅

#
I[X = Yj ]

!
Pj(Yj)

s∑
j=1

Pj(Yj)

.

Now, the property (4.6) implies:

I[X = Y1 = · · · = Ys] + I

[
s⋂

k=1

Yk = ∅
]
I[X = Yj ] = I[X = Yj ] .

As a consequence, the p-PCR6 rules is equivalently defined by:

PPCR6(X) =
∑

Y1,··· ,Ys∈Θ

s∏
i=1

Pi(Yi)

s∑
j=1

I[X = Yj ] Pj(Yj)

s∑
j=1

Pj(Yj)

. (4.8)

4.2.5 Extension of p-PCR6 on continuous propositions

The previous discrete p-PCR6 formula is now extended to densities of proba-
bilities of random variables. Formula (4.7) is thus adapted for the fusion of
continuous densities p1, · · · , ps:

pPCR6(x) �
s∑

i=1

pi(x)

∫
Θs−1

pi(x)

s−1∏
j=1

pσi(j)(yσi(j))

pi(x) +

s−1∑
j=1

pσi(j)(yσi(j))

s−1∏
j=1

dyσi(j) . (4.9)

Notice that pi(x) is put inside the integration, so as to deal with possible
singularities, when pi(x) = 0. It is also necessary to prove that pPCR6 is a
probabilistic density. And of course, it is possible to guess a reformulated
definition of p-PCR6 for densities by means of (4.8). But, we establish now
these results by calculus. First at all, a result is proved for computing the
expectation based on pPCR6.
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4.2.5.1 Expectation

The expectation of a function according to the fused probability pPCR6 is ex-
pressed from the initial probabilities p1, · · · , ps by:

∫
Θ

pPCR6(y)f(y, z) dy =

∫
Θs

s∏
i=1

pi(yi)

s∑
i=1

pi(yi)f(yi, z)

s∑
i=1

pi(yi)

s∏
i=1

dyi . (4.10)

Proof.

∫
Θ

pPCR6(y)f(y, z) dy

=

s∑
i=1

∫
Θ

pi(y)

∫
Θs−1

pi(y)

s−1∏
j=1

pσi(j)(yσi(j))

pi(y) +

s−1∑
j=1

pσi(j)(yσi(j))

f(y, z)

⎛
⎝s−1∏

j=1

dyσi(j)

⎞
⎠ dy

=

s∑
i=1

∫
Θs

pi(yi)

s∏
j=1

pj(yj)

s∑
j=1

pj(yj)

f(yi, z)

s∏
j=1

dyj

=

∫
Θs

s∏
i=1

pi(yi)

s∑
i=1

pi(yi)f(yi, z)

s∑
i=1

pi(yi)

s∏
i=1

dyi .

���

Corollary. The density pPCR6 is actually probabilistic, since it is derived:

∫
Θ

pPCR6(y) dy = 1 ,

by taking f = 1 .
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4.2.5.2 Reformulated definition

pPCR6(z) =

∫
Θs

(
s∏

i=1

pi(yi)

)
π(z|y1:s)

s∏
i=1

dyi ,

where π(z|y1:s) =

s∑
i=1

pi(yi)δ[yi = z]

s∑
i=1

pi(yi)

.

(4.11)

Proof.
Apply lemma 1 to the Dirac distribution f(y, z) = δ[y = z] .
���

4.2.6 Sampling method

Being able to sample p1, · · · , ps, it is possible to sample pPCR6 by applying
the definition (4.11). The implied sampling process (let z be the sample to be
generated) is sketched as follows:

1. For any k ∈ {1, · · · , s}, generate yk according to pk, together with its
evaluation pk(yk),

2. Generate θ ∈ [0, 1] according to the uniform law,

3. Find j such that

∑j−1
k=1 pk(yk)∑s
k=1 pk(yk)

< θ <

∑j
k=1 pk(yk)∑s
k=1 pk(yk)

,

4. Set z = yj .

It is seen subsequently that p-PCR6 does not preserve the Gaussian distribu-
tions. As a consequence, its manipulation is essentially addressed by means of
a Monte-Carlo method, and the previous sampling method is implemented in
the applications.

The next section is devoted to a comparison of p-PCR6 and Bayesian rules on
very simple examples.
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4.3 Bayes versus p-PCR6

4.3.1 Bayesian fusion rule

In this section, we are interested in the fusion of two independent estimators
by means of the Bayesian inference. Such fusion has to take into account the
prior about the state of the system. Subsequently, this prior is chosen to be
uniform. Although this is just a particular case of application, it is sufficient for
our purpose, i.e. the illustration of essential differences between the Bayesian
and PCR6 approaches.

4.3.1.1 General case

In Bayesian filter, the estimator is explained by means of the posterior pro-
bability p(x|z1, z2) conditionally to the observation z1 and z2. Notice that
this posterior estimation should not be confounded with the true state of the
system. Now, our purpose here is to derive a rule for deriving the global es-
timator p(x|z1, z2) from the partial estimators p(x|z1) and p(x|z2). Applying
Bayes’ rule, one gets p(x|z1, z2) ∝ p(z1, z2|x)p(x) .4 To go further in the deriva-
tion, one must assume the conditional independence between the two proba-
bilistic sources/densities, i.e. p(z1, z2|x) = p(z1|x)p(z2|x) . As a consequence,
p(x|z1, z2) ∝ p(z1|x)p(z2|x)p(x) , and then:

p(x|z1, z2) ∝ p(x|z1)p(x|z2)

p(x)
. (4.12)

So, in order to compute p(x|z1, z2), it is needed both p(x|z1), p(x|z2) and the
prior p(x) . If one assumes uniform prior for p(x), and using notations pBayes =
p(·|z1, z2), p1 = p(·|z1) and p2 = p(·|z2), the Bayes’ fusion formula (4.12)
becomes:

pBayes(x) ∝ p1(x)p2(x) . (4.13)

(It is noticed that a discrete counterpart of this result could also be obtained by
applying Dempster Shafer rule to probabilistic belief masses)

4.3.1.2 Gaussian subcase

We investigate here the solution of the problem when p1 and p2 are Gaus-
sian distributions. So assume for simplicity that p1(x) and p2(x) are mono-
dimensional Gaussian distributions:

p1(x) =
1

σ1

√
2π

e
− 1

2
(x−x̄1)2

σ1
2 and p2(x) =

1

σ2

√
2π

e
− 1

2
(x−x̄2)2

σ2
2

4p(α|β) ∝ γ means “p(α|β) is proportional to γ for β fixed”.
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In absence of prior information, one assumes p(x) uniform. The Bayesian rule
requires to compute (4.13). Then, it is easily shown that pBayes is Gaussian:

pBayes(x) =
1

σBayes

√
2π

e
− 1

2

(x−x̄Bayes)2

σBayes
2

,

with

σ2
Bayes =

σ2
1σ

2
2

σ2
1 + σ2

2

,

and

x̄Bayes = σ2
Bayes

(
x̄1

σ2
1

+
x̄2

σ2
2

)
.

When σ1 = σ2 = σ, it is implied then:

σ2
Bayes(x) =

σ2

2
and x̄Bayes =

x̄1 + x̄2

2
.

Hence, the resulting standard deviation σBayes after Bayes fusion is equal to
the initial standard deviation divided by the factor

√
2 and thus σBayes < σ.

This fusion process is optimal, when the model parameters are correct. Now,
imagine that the difference x̄2 − x̄1 is obtained from a bias error of the model.
For example, let us consider that the estimation of sensor 1 is correct but
that the estimation of sensor 2 is erroneous, in regards to the deviation σ.
Assuming x being the true state of the system, it comes most likely: p1(x) �
pBayes(x) � p2(x) . Thus, the Bayesian fusion propagates the errors. This
implies an irrelevant estimation. It is noticed however, that the bias is divided
by two, each time a fusion with a good estimation occurs, while the deviation
is only divided by

√
2. Then, good estimations will make the process converge

correctly after some iteration.

The theoretical plots and those obtained with Monte Carlo simulation are
given in figures 4.1, 4.2 and 4.3. These figures make the comparison with the p-
PCR6 fused densities. This comparison will be discussed subsequently. It is yet
confirmed that the Bayesian rule just concentrates the information, by reducing
the deviation, even when the information are distant (that is putatively false).
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Figure 4.1: p-PCR6 fusion versus Bayesian fusion (theoretical).
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Figure 4.2: p-PCR6 fusion versus Bayesian fusion (theoretical).
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Figure 4.3: p-PCR6 fusion versus Bayesian fusion (based on 10000 samples).

4.3.2 Fusion based on p-PCR6 for Gaussian distributions

The same Gaussian distribution, p1 and p2, are considered, but are now fused by
p-PCR6 rule (4.9), thus resulting in density pPCR6 . The fused densities are both
computed, figures 4.1 and 4.2, and sampled, figure 4.3. Direct computations
are expensive, and are obtained in two steps:

• Compute Is(x) =
∫ ps(x)ps̄(y)

ps(x)+ps̄(y)dy, where s ∈ {1, 2} and s̄ ∈ {1, 2} \ {s} ,
• Then compute pPCR6(x) = p1(x)I1(x) + p2(x)I2(x) .

It appears clearly that computed and sampled densities match well, thus con-
firming the rightness of our sampling method. Now, contrariwise to the Bayesian
rule, it is noticed two different behaviors (which are foreseeable mathemati-
cally):

• When the densities p1 and p2 are close, pPCR6 acts as an amplifier of the
information by reducing the variance. However, this phenomena is weaker
than for pBayes. p-PCR6 is thus able to amplify the fused information,
but is less powerful than the Bayesian rule in this task.

• When the densities p1 and p2 are distant, pPCR6 keeps both modes present
in each density and preserves the richness of information by not merging
both densities into only one (unimodal) Gaussian density. This is a very
interesting and new property from a theoretical point of view, which
presents advantages for practical applications.
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In regards to these differences, it is thus foreseeable that the p-PCR6 should
be more robust to potential errors.

4.4 A distributed sequential filtering application

4.4.1 Whitened p-PCR6 rule

It has been seen that the p-PCR6 fusion of the same densities p1 = p2 will
result in an amplified density pPCR6. Of course, this is not practicable when
the densities p1 and p2 are related to correlated variables. Consider for exam-
ple that the state y are measured by z1 and z2. The (distributed) posterior
probabilities are ps(y) = p(y|zs) ∝ p(y)p(zs|y) for s = 1, 2 . It happens that
p1 and p2 are correlated, so that p-PCR6 should not be applied directly. In
particular, the fusion of p1 and p2 by means of p-PCR6 results in a density
pPCR6 stronger than the prior p over y, even when there is no informative mea-
sure, i.e. p(zs|y) = p(zs) ! In order to handle this difficulty, we propose a
whitened p-PCR6 rule, producing a fused density pwhitePCR6 from the updated
information only:

pwhitePCR6(y) =

∫ ∫
Θ2

p1(y1)p2(y2)π(y|y1, y2) dy1dy2 ,

where π(y|y1, y2) =

p(y1|z
1)

p(y1)
δ[y1 = y] + p(y2|z

2)
p(y2) δ[y2 = y]

p(y1|z1)
p(y1)

+ p(y2|z2)
p(y2)

.

(4.14)

In (4.14), the proportion p(y|zs)
p(y) should be considered as the information intrin-

sically obtained from sensor s. It happens that the whitened p-PCR6 does not
change the prior when there is no informative measure, i.e. pwhitePCR6(y) = p(y)
when p(zs|y) = p(zs) for s = 1, 2 .

4.4.2 Theoretical setting

A target is moving according to a known Markov prior law. Let yt be the state
of the target at time t. It is assumed:

p(y1:t+1) = p(yt+1|yt)p(y1:t) .

In order to estimate the state of the target, S sensors are providing some
measurements. Denote zs

t the measurement of the state yt by sensor s. The
measure is characterized by the law p(zs

t |yt), which is known. It is assumed
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that the measure are made independently, conditionally to the state:

p(z1:S
t |yt) =

S∏
s=1

p(zs
t |yt) .

Our purpose is to derive or approximate the optimal estimator, p(yt+1|z1:S
1:t+1) ,

from the distributed retroacted estimators, p(yt+1|z1:S
1:t , zs

t+1), related to sen-
sors s. There is a Bayesian approach to this problem, and we propose some
comparison with a p-PCR6 approach and a whitened p-PCR6 approach.

4.4.2.1 Distributed Bayesian filter

This filter is derived from:

p(yt+1|z1:S
1:t ) =

Z

yt

p(yt+1|yt)p(yt|z1:S
1:t ) dyt , (4.15)

p(yt+1|z1:S
1:t , zs

t+1) ∝ p(zs
t+1|yt+1)p(yt+1|z1:S

1:t ) , (4.16)

p(yt+1|z1:S
1:t+1) ∝

„ S
Y

s=1

p(yt+1|z1:S
1:t , zs

t+1)

p(yt+1|z1:S
1:t )

«

p(yt+1|z1:S
1:t ) . (4.17)

This approach is unstable, when some components of the target state are non-
observable; for example, adaptations of the method are necessary [2] for bearing
only sensors. However, the method will be applied as it is here to bearing only
sensors, in order to compare to the robustness of the PCR6 approach.

4.4.2.2 p-PCR6 filter

This filter is derived from (4.15), (4.16) and:

p(yt+1|z1:S
1:t+1) =

Z

y1:S
t+1

„ S
Y

s=1

p(ys
t+1|z1:S

1:t , zs
t+1)

«

π(yt+1|y1:S
t+1)dy1:S

t+1

where π(yt+1|y1:S
t+1) =

PS
s=1 p(ys

t+1|z1:S
1:t , zs

t+1)δ[yt+1 = ys
t+1]

PS
s=1 p(ys

t+1|z1:S
1:t , zs

t+1)
,

(4.18)

and p(ys
t+1|z1:S

1:t , zs
t+1) is an instance of p(yt+1|z1:S

1:t , zs
t+1), obtained by just re-

placing yt+1 by ys
t+1 .

It is noticed that this filter is necessary suboptimal, since it makes use of the p-
PCR6 rule on correlated variables. The whitened p-PCR6 filter will resolve this
difficulty. However, it is seen that the p-PCR6 filter still works experimentally
on the considered examples.
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4.4.2.3 Whitened p-PCR6 filter

This filter is derived from (4.15), (4.16) and:

p(yt+1|z1:S
1:t+1) =

Z

y1:S
t+1

„ S
Y

s=1

p(ys
t+1|z1:S

1:t , zs
t+1)

«

π(yt+1|y1:S
t+1)dy1:S

t+1

where π(yt+1|y1:S
t+1) =

PS
s=1

p(ys
t+1|z1:S

1:t ,zs
t+1)

p(ys
t+1|z1:S

1:t )
δ[yt+1 = ys

t+1]

PS
s=1

p(ys
t+1|z1:S

1:t ,zs
t+1)

p(ys
t+1|z1:S

1:t )

.

(4.19)

Again, ys
t+1 is just an instance of yt+1 for sensor s .

These filters have been implemented by means of particles. The sampling of p-
PCR6 has been explained yet, but it is not the purpose of this paper to explain
all the theory of particle filtering; a consultation of the literature, e.g. [9], is
expected.

4.4.3 Scenario and tests

These examples are retrieved from [4]. This work has been implemented by
Alöıs Kirchner during his internship in our team.

4.4.3.1 Scenario for passive multi-sensor target tracking

In order to test the p-PCR6 fusion rule, we simulate the following scenario: in
a 2-dimensional space, two independent passive sensors are located in (0,100)
and (100,0) in Cartesian coordinates. These sensors provide a noisy azimuth
measurement (0.01 rad. normal noise) on the position of a moving target. We
associate a tracking particle filter to each sensor. The motion model is the
following :

ẋt+1 = ẋt + 0.1 ∗ N(0, 1)
ẏt+1 = ẏt + 0.1 ∗N(0, 1)
xt+1 = xt + dt ∗ ẋt + 0.3 ∗N(0, 1)
yt+1 = yt + dt ∗ ẏt + 0.3 ∗N(0, 1)

(4.20)

where dt = 1 time unit and N(0,1) is the normal distribution.

In our simulations, each local particle filter is implemented by means of 200
particles. At each time step, we proceed to the fusion of the local posterior densities
and then re-inject the fused state density into each local filter (feedback loop). Three
different paradigms are considered for the fusion: Bayesian, p-PCR6 and whitened
p-PCR6 rules. These filters try to estimate both the position and speed of the target
which is assumed to follow a quasi-constant velocity model. It is noticed that we
are dealing directly with both the observable and non-observable components of the
target state.
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4.4.3.2 A simple example

In this first example, the filters are well initialized (we give them good starting speed
and position). The mobile follows a non-linear trajectory (figure 4.4), in order to show
the capability of this distributed filter to converge. On this example, the Bayesian
filter manages to track the target with some difficulties during the last curve in
figure 4.4. On the same example, p-PCR6 and whitened p-PCR6 rules have been
tested with success. While both filters have to reestimate the speed direction at each
turn, it appears that this reestimation is more difficult for p-PCR6. This difference
is also particularly apparent during the last curve.

Figure 4.4: Estimated trajectories using different tracking methods.

Figure 4.5 displays the particle cloud of the whitened PCR6 filter during and
after the last curve. The variance rises along the curve, resulting in the cross-like
cloud of sub-figure 4.5(a), which is characteristic to the p-PCR6 fusion: the branches
correspond to the direction the sensors are looking at. Then, the p-PCR6, by ampli-
fying the zone where the filters are according to see the object, allows the process to
converge again toward the object real position in an expansion-contraction pattern
(figure 4.5(b)).



Chapter 4: Probabilistic PCR6 fusion rule 155

(a) Time step 160.

(b) Time step 170.

Figure 4.5: Particle clouds for whitened p-PCR6 in the last curve.
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In more difficult cases, with poor initialization for instance (see figure 4.6), both
p-PCR6 and whitened p-PCR6 manage to follow the target, while the Bayesian filter
diverges in about one third of the cases and give mitigate results otherwise.

Figure 4.6: Estimated trajectories using different tracking methods. Poor ini-
tialization: null speed and 10 units away starting position.

Next sections investigate more thoroughly the properties of the whitened p-PCR6
filtering.

4.4.3.3 Whitened p-PCR6 robustness against poor initialization

In order to test the capability of (whitened) p-PCR6 to recover from erroneous mea-
surements or from a total contradiction of the local estimations, we considered two
scenarios in which the filters are badly initialized at various degrees. In these scenar-
ios, the real trajectory of the object is the same: it starts from (200, 0) and moves
toward (200, 150) at a constant speed (0, 1).

In the first scenario (figure 4.7), the first filter, which sensor is placed at (0, 100),
is initialized at position (190, 10) and at speed (0, 0). The second filter, which sensor
is at (100, 0), is initialized at position (210, 10) and at the same speed (figure 4.7(a)).
As the estimated positions are far from the real one and both sensors are looking
at the object from a remote position, the particle cloud quickly spread horizontally
(figure 4.7(b)). Then the (whitened) PCR6 begins to find zones where both filters es-
timate a non-negligible probability of presence and amplifies them until convergence
(figure 4.7(c)). Though the particle cloud still seems to be fairly spread (because of
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sensors remote position), the global estimate is very close from the real position and
speed, and will remain so until the last time step (figure 4.7(d)).

x y x speed y speed

First Filter 1 190 10 0 0

example Filter 2 210 10 0 0

Second Filter 1 190 10 0.1 -1

example Filter 2 210 10 0.5 1.5

Table 4.1: Initialization data.

(a) Time step 1. (b) Time step 10.

(c) Time step 20. (d) Time step 60.

Figure 4.7: The real mobile starts at (200, 0) and moves upward at constant
speed (0, 1); poor filters initialization.
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Our second example (figure 4.8) is an extreme case: the initialization is quite worse
(see table 4.1), since our motion model assumes nearly constant speed and therefore
makes it hard to recover from such erroneous and contradictory speed initialization.
An interesting point is that, for a tight prediction noise, p-PCR6 sometimes does not
converge on this example, while whitened p-PCR6 usually does. Artificially raising
the prediction noise solves this problem for ‘standard’ p-PCR6, showing its trend to
over-concentrate the particle cloud.

(a) Time step 1. (b) Time step 10.

(c) Time step 20. (d) Time step 60.

Figure 4.8: The real mobile starts at (200, 0) and moves upward at constant
speed (0, 1); bad filters initialization.
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4.4.3.4 Whitened p-PCR6 versus mean

As seen before, the PCR6-fusion of two probabilistic densities amplifies the areas
where both densities have a non-negligible value. Otherwise, it usually works like just
averaging the two densities. In order to measure the impact of the amplification, we
reprocessed the first example of previous subsection while using the mean, pmean =
p1+p2

2
, instead of p-PCR6. The result (figure 4.9) is self explanatory: the same

expansion as with p-PCR6 occurs (figure 4.7), but contraction never happens.

(a) Time step 1. (b) Time step 30. (c) Time step 45.

Figure 4.9: Using mean instead of p-PCR6. Red dots are the positions of the
particles after fusion. The real mobile starts from (200,0) at time step 0 and
moves at the constant speed (0,1).

4.4.3.5 Concluding remarks

The results presented here have clearly shown that p-PCR6, and especially whitened
p-PCR6, filters are more robust than the Bayesian filter against bad initialization.
However, it is clear that Bayesian filters are the best, when the priors are correctly
defined. The real interest of p-PCR6 is that it does not need a precise prior knowledge
about the antedating local particle filters.

4.5 Conclusions

This paper has investigated a new fusion rule, p-PCR6, for fusing probabilistic den-
sities. This rule is derived from the PCR6 rule for fusing evidences. It has a simple
interpretation from a sampling point of view. p-PRC6 has been compared to the
Bayesian rule on a simple fusion example. Then, it has been shown that p-PCR6 was
able to maintain multiple hypothesis in the fusion process, by generating multiple
modes. Thus, more robustness of p-PCR6 were foreseeable in comparison to Bayes’
rule. This robustness has been tested successfully on examples of distributed target
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tracking. It is expected that this new rule will have many applications, in particular
in case of ill-posed filtering problems.

4.6 References

[1] S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A Tutorial on Particle Filters
for On-line Non-linear/Non-Gaussian Bayesian Tracking, IEEE Trans. on Signal
Processing, Vol. 50 (2), pp. 174–188, 2002.

[2] Th. Bréhard, J.-P. Le Cadre, Hierarchical particle filter for bearings only tracking,
IEEE Trans. on Aerospace and Electronic Systems, 2006.

[3] Y. Bar-Shalom, Estimation and Tracking: Principles and Techniques, YBS Pub-
lishing, 1991.

[4] A. Kirchner, F. Dambreville, F. Celeste, J. Dezert, F. Smarandache, Application
of probabilistic PCR5 Fusion Rule for Multisensor Target Tracking, International
Conference on Information Fusion, Quebec, Canada, 9–12 July 2007.

[5] A. Martin, C. Osswald, A new generalization of the proportional conflict redis-
tribution rule stable in terms of decision, Applications and Advances of DSmT
for Information Fusion, Book 2, American Research Press Rehoboth, F. Smaran-
dache and J. Dezert, pp. 69–88 2006.

[6] K.S. Miller, Multidimensional Gaussian Distributions, John Wiley & Sons, Inc.,
New York, 1964.

[7] N. Oudjane, C. Musso, F. Legland, Improving regularized particle filters, in
Doucet, De Freitas, and Gordon, editors, Sequential Monte Carlo Methods in
Practice, NewYork, 2001. Springer-Verlag.

[8] A. Papoulis, Probability, random variables and stochastic processes, Mc Graw-
Hill Book Company, New York, 1965 (1984 reedition).

[9] B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter: Particle
Filters for Tracking Applications, Artech House, 2004.

[10] F. Smarandache, J. Dezert, Information Fusion Based on New Proportional
Conflict Redistribution Rules, International Conference on Information Fusion,
Philadelphia, U.S.A., 25–29 July 2005.

[11] F. Smarandache, J. Dezert, Proportional Conflict Redistribution Rules for In-
formation Fusion, Applications and Advances of DSmT for Information Fusion,
Book 2, American Research Press, Rehoboth, F. Smarandache and J. Dezert,
pp. 3–68, 2006.

[12] F. Smarandache, J. Dezert (Editors), Applications and Advances on DSmT for
Information Fusion (Collected Works), American Research Press, Rehoboth,
June 2006.

http://www.gallup.unm.edu/~smarandache/DSmT-book2.pdf.



Chapter 5

A class of fusion rules based on
the belief redistribution to
subsets or complements

Florentin Smarandache Arnaud Martin
Chair of Math. & Sciences Dept., ENSIETA E3I2-EA3876,

Univ. of New Mexico, 200 College Road, 2 Rue François Verny,
Gallup, NM 87301, U.S.A. 29806 Brest Cedex 9, France.

smarand@unm.edu Arnaud.Martin@ensieta.fr

Jean Dezert
The French Aerospace Lab,

29 Avenue de la Division Leclerc,
92320 Châtillon, France.

jean.dezert@onera.fr

Abstract:
In this chapter we present a class of fusion rules based on the re-
distribution of the conflicting or even non-conflicting masses to the
subsets or to the complements of the elements involved in the con-
flict proportionally with respect to their masses or/and cardinals. At
the end, these rules are presented in a more general theoretical way
including explicitly the reliability of each source of evidence. Some
examples are also provided.
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5.1 Introduction

In DSmT, we take very care of the model associated with the set Θ of hypothe-
ses where the solution of the problem is assumed to belong to. In particular, the
three main sets: 2Θ � (Θ,∪) (power set), DΘ � (Θ,∪,∩) (hyper-power set) and
SΘ � (Θ,∪,∩, c(.)) (super-power set) can be used depending on their ability to
fit adequately with the nature of the hypotheses of the frame under consideration.
These sets had been presented with examples in Chapter 1 of this volume and will
be not reintroduced here. We just recall that the notion of super-power set has been
introduced by Smarandache in the Chapter 8 of [13] and corresponds actually to
the theoretical construction of the power set of the minimal refined frame Θref of
Θ. Actually, Θ generates SΘ under operators ∪, ∩ and complementation c(.). SΘ

is a Boolean algebra with respect to the union, intersection and complementation.
Therefore working with the super-power set is equivalent to work with the power set
of a minimal theoretical refined frame Θref when the refinement is possible satisfy-
ing Shafer’s model as explained in Chapter 1. Of course, when Θ already satisfies
Shafer’s model, the hyper-power set DΘ and the super-power set SΘ coincide with
the classical power set 2Θ of Θ. In general, 2Θ ⊆ DΘ ⊆ SΘ. In this chapter, we
introduce a new family of fusion rules based on redistribution of the conflicting (or
even non-conflicting masses) to subsets or complements (RSC) for working either on
the super-power set SΘ or directly on 2Θ whenever Shafer’s model holds for Θ. This
RSC family of fusion rules which uses the complementation operator c(.) cannot be
performed on hyper-power set DΘ since by construction the complementation is not
allowed in DΘ.

Note that these last years, the DSmT has relaunched the studies on the combi-
nation rules especially in order to manage the conflict [1, 2, 7, 11, 12]. In [9], we
proposes in the context of the DSmT some rules where not only the conflict is trans-
ferred. In [15, 16] some new combination rules are proposed to redistribute the belief
to subsets or complements. Some of these rules are built similarly to the proportional
conflict redistribution rules [3]. Here we extend the idea of rules based on the belief
redistribution to subsets or complements.

5.2 Fusion rules based on RSC

Let Θ = {θ1, θ2, · · · , θn}, for n ≥ 2, be the frame of discernment of the problem
under consideration, and SΘ = (Θ,∪,∩, c(.)) its super-power set (see Chapter 1 for
details) where c(.) means the complementation operator in SΘ. Let’s denote It the
total ignorance, i.e. It � θ1 ∪ θ2 ∪ · · · ∪ θn. Let m1(.) and m2(.) be two normalized
basic belief assignments (bba’s) defined from SΘ to [0, 1]. We use the conjunctive rule
to first combine m1(.) with m2(.) to get m12(.) and then we redistribute the mass of
conflict m12(X∩Y ) �= 0, when X∩Y = ∅ or even when X∩Y different from the empty
set, in eight ways where all denominators in these fusion rule formulas are supposed
different from zero. In the sequel, we denote these rules with the acronym RSC
(standing for Redistribution to Subsets or Complements) for notation convenience.
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5.2.1 RSC rule no 1

If X ∩ Y = ∅, then m12(X ∩ Y ) is redistributed to c(X ∪ Y ) in the case we are not
confident in X nor in Y , but we use a pessimistic redistribution. Mathematically,
this RSC1 fusion rule is given by mRSC1(∅) = 0, and for all A ∈ SΘ \ {∅, It} by:

mRSC1(A) = m12(A) +
X

X, Y ∈ SΘ

X ∩ Y = ∅ and c(X ∪ Y ) = A

m1(X)m2(Y ) (5.1)

where m12(A) =
X

X, Y ∈ SΘ

X ∩ Y = A

m1(X)m2(Y ) is the mass of the conjunctive consensus

on A.

For the total ignorance, one has:

mRSC1(It) = m12(It) +
X

X, Y ∈ SΘ

X ∩ Y = ∅ and c(X ∪ Y ) = ∅

m1(X)m2(Y ) (5.2)

The second term of (5.2) takes care for the case where the complement of X ∪ Y is ∅
while X ∩ Y = ∅. In that specific case, the mass of X ∩ Y is transferred to the total
ignorance.

5.2.2 RSC rule no 2

If X∩Y = ∅, then m12(X∩Y ) is redistributed to all subsets of c(X∪Y ) proportionally
with respect to their corresponding masses in the case we are not confident in X nor
in Y , but we use an optimistic redistribution. Mathematically, this RSC2 fusion rule
is given by mRSC2(∅) = 0, and for all A ∈ SΘ \ {∅, It} by:

mRSC2(A) = m12(A) +
X

X, Y ∈ SΘ

X ∩ Y = ∅, A ∈ c(X ∪ Y )

m1(X)m2(Y )
X

Z∈c(X∪Y )⊂SΘ

m12(Z)
·m12(A)

(5.3)
where the denominator of the fraction is different from zero. If the denominator is
zero, that fraction is discarded.
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For the total ignorance, one has:

mRSC2(It) = m12(It) +
X

X, Y ∈ SΘ

X ∩ Y = ∅ and c(X ∪ Y ) = ∅

m1(X)m2(Y )

+
X

X, Y ∈ SΘ

X ∩ Y = ∅ and
P

Z∈c(X∪Y )⊂SΘ m12(Z) = 0

m1(X)m2(Y ) (5.4)

mRSC2(It) works similarly as mRSC1(It) in the first 2 parts; in addition of this, it also
assigns to It the masses of empty intersections whose all subsets have the mass equals
to zero, so no such proportionalization is possible in mRSC2(A) previous formula.

5.2.3 RSC rule no 3

If X∩Y = ∅, then m12(X∩Y ) is redistributed to all subsets of c(X∪Y ) proportionally
with respect to their corresponding cardinals (not masses as we did in RSC2) in the
case we are not confident in X nor in Y ; this is a prudent redistribution with respect
to the cardinals. Mathematically, this RCS3 fusion rule is given by mRSC3(∅) = 0,
and for all A ∈ SΘ \ {∅, It} by:

mRSC3(A) = m12(A) +
X

X, Y ∈ SΘ

X ∩ Y = ∅, A ∈ c(X ∪ Y )

m1(X)m2(Y )
X

Z∈c(X∪Y )⊂SΘ

Card(Z)
· Card(A)

(5.5)
where the denominator of the fraction is different from zero. If the denominator is
zero, that fraction is discarded.

For the total ignorance, one has:

mRSC3(It) = m12(It) +
X

X, Y ∈ SΘ

X ∩ Y = ∅ and c(X ∪ Y ) = ∅

m1(X)m2(Y )

+
X

X, Y ∈ SΘ

X ∩ Y = ∅ and
P

Z∈c(X∪Y )⊂SΘ Card(Z) = 0

m1(X)m2(Y ) (5.6)

5.2.4 RSC rule no 4

If X∩Y = ∅, then m12(X∩Y ) is redistributed to all subsets of c(X∪Y ) proportionally
with respect to their corresponding masses and cardinals (i.e. RSC2 and RSC3
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combined) in the case we are not confident in X nor in Y ; this is a mixture of
optimistic and prudent redistribution and this ressembles somehow to DSmP (see
Chapter 3 and we could also introduce an ε tuning parameter). Mathematically, this
RCS4 fusion rule is given by mRSC4(∅) = 0, and for all A ∈ SΘ \ {∅, It} by:

mRSC4(A) = m12(A)+
X

X, Y ∈ SΘ

X ∩ Y = ∅, A ∈ c(X ∪ Y )

m1(X)m2(Y )
X

Z∈c(X∪Y )⊂SΘ

[m12(Z) + Card(Z)]
· [m12(A) + Card(A)]

(5.7)

where the denominator of the fraction is different from zero. If the denominator is
zero, that fraction is discarded.

For the total ignorance, one has:

mRSC4(It) = m12(It) +
X

X, Y ∈ SΘ

X ∩ Y = ∅ and c(X ∪ Y ) = ∅

m1(X)m2(Y )

+
X

X, Y ∈ SΘ

X ∩ Y = ∅ and
P

Z∈c(X∪Y )⊂SΘ [m12(Z) + Card(Z)] = 0

m1(X)m2(Y ) (5.8)

5.2.5 RSC rule no 5

If X ∩ Y = ∅, then m12(X ∩ Y ) is redistributed to X and Y proportionally with
respect to their corresponding cardinals. Mathematically, this RSC5 fusion rule is
given by mRSC5(∅) = 0, and for all A ∈ SΘ \ {∅} by:

mRSC5(A) = m12(A) +
X

X ∈ SΘ

X ∩ A = ∅

m1(X)m2(A) + m1(A)m2(X)

Card(X) + Card(A)
· Card(A) (5.9)

where the denominator of the fraction is different from zero. If the denominator is
zero, that fraction is discarded.

5.2.6 RSC rule no 6

If X ∩Y = ∅, then m12(X ∩Y ) is redistributed to all subsets of X ∪Y proportionally
with respect to their corresponding cardinals. Mathematically, this RSC6 fusion rule
is given by mRSC6(∅) = 0, and for all A ∈ SΘ \ {∅} by:
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mRSC6(A) = m12(A) +
X

X, Y ∈ SΘ

X ∩ Y = ∅
A ⊆ X ∪ Y

m1(X)m2(Y )
X

Z∈SΘ,Z⊆X∪Y

Card(Z)
· Card(A) (5.10)

where the denominator of the fraction is different from zero. If the denominator is
zero, that fraction is discarded.

5.2.7 RSC rule no 7

If X∩Y = ∅, then m12(X∩Y ) is redistributed to X and Y proportionally with respect
to their corresponding cardinals and masses. Mathematically, this RSC7 fusion rule
is given by mRSC7(∅) = 0, and for all A ∈ SΘ \ {∅} by:

mRSC7(A) = m12(A)+
X

X ∈ SΘ

X ∩ A = ∅

m1(X)m2(A) + m1(A)m2(X)

Card(X) + Card(A) + m12(X) + m12(A)
· [Card(A) + m12(A)]

(5.11)

where the denominator of the fraction is different from zero. If the denominator is
zero, that fraction is discarded.

5.2.8 RSC rule no 8

If X ∩Y = ∅, then m12(X ∩Y ) is redistributed to all subsets of X ∪Y proportionally
with respect to their corresponding cardinals and masses. Mathematically, this new
fusion rule (denoted RSC8) is given by mRSC8(∅) = 0, and for all A ∈ SΘ \ {∅} by:

mRSC8(A) = m12(A)+
X

X, Y ∈ SΘ

X ∩ Y = ∅
A ⊆ X ∪ Y

m1(X)m2(Y )
X

Z∈SΘ,Z⊆X∪Y

Card(Z) + m12(Z)
· [Card(A) + m12(A)] (5.12)

where the denominator of the fraction is different from zero. If the denominator is
zero, that fraction is discarded.
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5.2.9 Remarks

We can generalize all these previous formulas for any s ≥ 2, where s is the number
of sources. We can adjust all these formulas for the case when X ∩ Y �= ∅ but we
still want to transfer m12(X ∩ Y ) to subsets of c(X ∪ Y ), or to subset of X ∪ Y , or
to both groups of subsets, but we need to have a justification for these.

In choosing a fusion rule, among so many, we apply the following criteria:

a) Reliability of sources of information mi(.): Are they all reliable or not ? In
what percentage is reliable each source ?

b) Confidence in the hypotheses of the frame of discernment and in elements of
SΘ: Are we confident in all of them ? In what percentage are we confident in
each of them ?

c) Optimistic,pessimistic, or medium redistribution of the conflicting masses -
depending on user’s experience.

5.3 A new class of RSC fusion rules

Using the conjunctive rule, let’s denote:

m∩(A) ≡ m12(A) = [m1 ⊕ m2](A) =
X

X, Y ∈ SΘ

X ∩ Y = A

m1(X)m2(Y )

For A ∈ SΘ \ {∅, It}, we have the following new class of fusion rule (denoted
CRSCc) for transferring the conflicting masses only:

mCRSCc(A) = m∩(A) + [α · m∩(A) + β · Card(A) + γ · f(A)]·

·
X

X, Y ∈ SΘ

X ∩ Y = ∅
A ⊆ M

m1(X)m2(Y )
X

Z∈SΘ,Z⊆M

[α ·m∩(Z) + β · Card(Z) + γ · f(Z)]
(5.13)

where M can be c(X ∪ Y ), or a subset of c(X ∪ Y ), or X ∪ Y , or a subset of X ∪ Y ;
α, β, γ ∈ {0, 1} but α + β + γ �= 0; in a weighted way we can take α, β, γ ∈ [0, 1] also
with α + β + γ �= 0; f(X) is a function of X, i.e. another parameter that the mass of
X is directly proportionally with respect to; card(X) is the cardinal of X.

And mCRSCc(It) is given by:

mCRSCc(It) = m∩(It) +
X

X, Y ∈ SΘ

{X ∩ Y = ∅ and M = ∅}
or{X ∩ Y = ∅ and Den(Z) = 0}

m1(X)m2(Y ) (5.14)
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where Den(Z) �
P

Z∈SΘ,Z⊆M [α ·m∩(Z) + β · Card(Z) + γ · f(Z)].

In mCRSCc(.) formula if we replace: α = 0 or 1, β = 0 or 1, γ = 0, M = c(X ∪Y )
or X∪Y , or {{X}, {Y }}, we obtain nine fusion rules including the previous 2-8 rules.
For α = 1, β = 0, γ = 0, M = {c(X), X ∩ Y, c(Y )}, we obtain one of Yamada’s
rules [15, 16] and discussed in [3]. For α = 1, β = 0, γ = 0, M = {X ∩ Y,X ∪ Y }, we
obtain another one of Yamada’s rules.

5.4 A general formulation

Let Θ = {θ1, θ2, · · · , θn}, for n ≥ 2 be the frame of discernment, and SΘ = (Θ,∪,∩, c(.))
its super-power set. The element Θ (also denoted It) represents the total ignorance.
When the elements θi are exclusive two by two SΘ reduces to the classical power

set 2Θ, otherwise SΘ ≡ 2Θref

if Θ is refinable and |SΘ| = 22|Θ|−1 (see chapter 1 for
details and examples). c(X) means the complement of X in SΘ. SΘ = (Θ,∪,∩, c(.))
can also be written as:

SΘ = DΘ∪Θc = 2Θref

(5.15)

where Θc represents the set of complements of the the elements of Θ in 2Θ.

Example: Let’s consider the example given in section 1.2.1 of Chapter 1 using
Θ = {θ1, θ2} with θ1 ∩ θ2 �= ∅. According to the definition and the construction of
the super-power set, one obtains directly

SΘ = (Θ,∪,∩, c(.)) = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2, c(θ1 ∩ θ2), c(θ1), c(θ2)}

If we consider both sets Θ = {θ1, θ2} and Θc = {c(θ1), c(θ2)}, then Θ ∪ Θc =
{θ1, θ2, c(θ1), c(θ2)} with the integrity constraints θ1 ∩ c(θ1) = ∅, θ2 ∩ c(θ2) = ∅,
c(θ1) ∩ c(θ2) = ∅ and (θ1 ∩ θ2) ∩ (c(θ1) ∩ c(θ2)) = ∅. The hyper-power set DΘ∪Θc

taking into account all integrity constraints is then given by:

DΘ∪Θc = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2, c(θ1) ∪ c(θ2), c(θ1), c(θ2)}

but since c(θ1) ∪ c(θ2) = c(θ1 ∩ θ2) (Morgan’s law), one sees that

DΘ∪Θc = ({Θ ∪Θc},∪,∩) = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2, c(θ1 ∩ θ2), c(θ1), c(θ2)} = SΘ

Moreover, if we consider the following theoretical refined frame Θref built from Θ
as follows: Θref = {c(θ1), θ1 ∩ θ2, c(θ2)} where now all elements of Θref are truly

exclusive, then 2Θref

= {∅, c(θ1), θ1∩θ2, c(θ2), c(θ1)∪(θ1∩θ2), c(θ1)∪c(θ2), (θ1∩θ2)∪
c(θ2), c(θ1) ∪ (θ1 ∩ θ2) ∪ c(θ2)} which can be simplified since by construction of the
refined frame, θ1 = (̧θ2)∪(θ1∩θ2), θ2 = (̧θ1)∪(θ1∩θ2) and θ1∪θ2 = (̧θ1)∪(θ1∩θ2)∪(̧θ2):

2Θref

= {∅, c(θ1), θ1 ∩ θ2, c(θ2), θ2, c(θ1) ∪ c(θ2), θ1, θ1 ∪ θ2}
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After rearranging the list of elements of 2Θref

and since c(θ1) ∪ c(θ2) = c(θ1 ∩ θ2),
one finally sees that

2Θref

= (Θref ,∪) = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2, c(θ1 ∩ θ2), c(θ1), c(θ2)} = SΘ

The proposed class of fusion rules is based on a proportional conflict transfer.
When there is no conflict between experts the conjunctive rule is used, otherwise the
masses of conflicts resulting from conjunctive fusion of experts for incompatible propo-
sitions of (super) power set is redistributed on some compatible propositions through
different mechanisms which give rise to different fusion rules as explained in the sequel.
The use of the conjunctive rule assumes that the experts are reliable, or the reliability
of each expert is known and taken into account in the mass values. We denote the set
of intersections/conjunctions by: S∩ = {X ∈ SΘ|X = Y ∩Z, where Y, Z ∈ SΘ �{∅}}
where all propositions are expressed in their canonical form and where Xcontains at
least an ∩ symbol in its expression. For example, A ∩ A /∈ S∩ since A ∩ A is not
in a canonical form and A ∩ A = A. Also (A ∩ B) ∩ B is not a canonical form but
(A ∩B) ∩B = A ∩ B ∈ S∩.

Let S∅
∩ be the set of all empty intersections from S∩ (i.e. the set of exclusivity

constraints), and Snon∅
∩ the set of all non-empty intersections from S∩, and Snon∅

∩,r

the set of all non-empty intersections from Snon∅
∩ whose masses are redistributed to

other sets/propositions. The set Snon∅
∩,r highly depends on the model for the frame of

the application under consideration.

5.4.1 A general formula for the class of RSC fusion rules

For A ∈ (SΘ � Snon∅
∩ ) � {∅, Θ}, we propose the general formula for the redistribution

of conflict and non-conflict to subsets or complements class of rules for the fusion of
masses of belief for two sources of evidence:

mCRSC(A) = m∩(A) +
X

X, Y ∈ SΘ

{X ∩ Y = ∅, A ∈ T (X, Y )}

or {X ∩ Y ∈ Snon∅
∩,r , A ∈ T ′(X, Y )}

f(A)
m1(X)m2(Y )
X

Z∈T (X,Y )

f(Z)
(5.16)

and for A = Θ:

mCRSC(Θ) = m∩(Θ) +
X

X, Y ∈ SΘ

X ∩ Y = ∅,

{T (X, Y ) = ∅ or
X

Z∈T (X,Y )

f(Z) = 0}

m1(X)m2(Y ) (5.17)

where f is a mapping from SΘ to IR+. For example, we can choose f(X) = m∩(X),

f(X) = |X|, fT (X) = |X|
|T (X,Y )| , or f(x) = m∩(X) + |X|, etc. The function T spec-

ifies a subset of SΘ, for example T (X, Y ) = {c(X ∪ Y )}, or T (X, Y ) = {X ∪ Y }
or can specify a set of subsets of SΘ. For example, T (X,Y ) = {A ⊂ c(X ∪ Y )},
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or T (X, Y ) = {A ⊂ X ∪ Y }. The function T ′ is a subset of SΘ, for example
T ′(X, Y ) = {X ∪ Y }, or T ′ is a subset of X ∪ Y , etc.

It is important to highlight that in formulas (5.13)-(5.14) one transfers only the
conflicting masses, whereas the formulas (5.16)-(5.17) are more general since one
transfers the conflicting masses or the non-conflicting masses as well depending on
the preferences of the fusion system designer. The previous formulas can be directly
extended for any s ≥ 2 sources of evidence as follows: For A ∈ (SΘ � Snon∅

∩ ) � {∅, Θ}
we have:

mCRSC(A) = m∩(A)+
X

X1, · · · , Xs ∈ SΘ

{∩s
i=1Xi = ∅, A ∈ T (X1, · · · , Xs)}

or {∩s
i=1Xi ∈ Snon∅

∩,r , A ∈ T ′(X1, · · · , Xs)}

f(A)

Qs
i=1 mi(Xi)
X

Z∈T (X1,··· ,Xs)

f(Z)
(5.18)

and for A = Θ:

mCRSC(Θ) = m∩(Θ) +
X

X1, · · · , Xs ∈ SΘ

∩s
i=1Xi = ∅,

{T (X1, · · · , Xs) = ∅ or
X

Z∈T (X1,··· ,Xs)

f(Z) = 0}

s
Y

i=1

mi(Xi) (5.19)

This class of rules of combination is a particular case of the rule given in [6].

5.4.2 Example

We illustrate here the previous general formulas on a simple example corresponding
to the hybrid model given in the figure 5.1. Θ = {A, B, C, D}, with A ∩ B �= ∅ and
all other intersections are empty.

Figure 5.1: Hybrid model.

Let’s consider two sources of evidence with their masses of belief m1(.) and m2(.)
given in the following table:
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m1 m2 m∩
A 0.2 0.4 0.18
B 0.3 0.2 0.13
C 0.1 0.2 0.07
D 0.2 0.1 0.06

A ∪ B ∪ C ∪D 0.2 0.1 0.02
A ∩B �= ∅ 0.16
A ∩ C = ∅ 0.08
A ∩ D = ∅ 0.10
B ∩ C = ∅ 0.08
B ∩ D = ∅ 0.07
C ∩D = ∅ 0.05

Let’s apply the general formula (5.16)-(5.17) with different choices of the function
f(.) and T (X,Y ):

• RSC2 rule: we take f(A) = m∩(A), T (X,Y ) = 2c(X∪Y ), T (X,Y ) = ∅.
m∩(A ∩ C) = 0.08 is transfered to all subsets of c(A ∪ C) proportionally with
respect to their masses, but D is a subset whose mass is not zero; so the whole
conflicting mass 0.08 is transfered to D. Similarly:

– m∩(A ∩D) = 0.10 is transfered to C only,

– m∩(B ∩ C) = 0.08 is transfered to D only,

– m∩(B ∩D) = 0.07 is transfered to C only,

But m∩(C ∩D) = 0.05 is transfered to A and B which are subsets of non-zero
mass of c(C ∪ D) proportionally with respect to their corresponding masses
0.18 and 0.13 respectively. We obtain:

A B C D A ∪ B ∪ C ∪D A ∩ B �= ∅
mRSC2 0.21 0.15 0.24 0.22 0.02 0.16

• RSC3 rule: we take f(A) = |A|, T (X, Y ) = 2c(X∪Y ), T (X, Y ) = ∅.
m∩(A ∩C) = 0.08 is transfered to the parts 2, 4 and 2∪ 4 proportionally with
respect to their cardinals: 1, 1, 2 respectively. Hence the parts 2 and 4 receive
0.02 and 2 ∪ 4 0.04. Similarly

– m∩(A ∩D) = 0.10 is transfered to 2, 3 and 2 ∪ 3 with respectively 0.025,
0.025 and 0.05.

– m∩(B ∩ C) = 0.08 is transfered to 1, 4 and 1 ∪ 4 with respectively 0.02,
0.02 and 0.04.

– m∩(B∩D) = 0.07 is transfered to 1, 3 and 1∪3 with respectively 0.0175,
0.0175 and 0.035.

– m∩(C∩D) = 0.05 is transfered to 1, 2, 12, 1∪2, 1∪12,2∪12, 1∪2∪12 with
respectively 0.004166, 0.004166, 0.004166, 0.008333, 0.008333, 0.008333,
0.012503.
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• RSC4 rule: we take f(A) = m∩(A)+ |A|, T (X, Y ) = 2c(X∪Y ) and T (X,Y ) =
∅.

• RSC5 rule: we take f(A) = |A|, T (X, Y ) = {X, Y } and T (X, Y ) = ∅.
• RSC6 rule: we take f(A) = |A|, T (X, Y ) = 2X∪Y and T (X, Y ) = ∅.
• RSC7 rule: we take f(A) = m∩(A)+|A|, T (X, Y ) = {X, Y } and T (X,Y ) = ∅.
• RSC8 rule: we take f(A) = m∩(A)+ |A|, T (X, Y ) = 2X∪Y and T (X,Y ) = ∅.

5.5 A general formulation including reliability

A general fusion formulation including explicitly the reliabilities of the sources of
evidence is given by the following formula: for all A ∈ SΘ, one has

m(X) =
X

Y∈(SΘ)s

s
Y

j=1

mj(Yj)w(X,m(Y), T (Y), α), (5.20)

where Y = (Y1, · · · , Ys) are the responses of the s experts and mj(Yj) their associated
mass of belief; α is a matrix of terms αij of the reliability of the expert j for the
element i of SΘ, and Y, T (Y) is the set of subsets of SΘ on which we can transfer
the masses mj(Yj) for the given Y vector. In this general formulation, the argument
Y of the transfer function T (.) is a vector of dimension s, whereas we did use the
notation T (X,Y ) in the two sources case in eq. (5.17).

5.5.1 Examples

We show how to retrieve the principal rules of combinations from the previous general
formula (5.20):

• Conjunctive rule: It is obtained from (5.20) by taking

w(X,m(Y), T (Y), α) = 1 if ∩s
j=1 Yj = X (5.21)

T (Y) = ∩s
j=1Yj and we do not consider α.

• Disjunctive rule in [4] : It is obtained from (5.20) by taking

w(X,m(Y), T (Y), α) = 1 if ∪s
j=1 Yj = X (5.22)

T (Y) = ∪s
j=1Yj and we do not consider α.

• Dubois & Prade rule in [5]: It is obtained from (5.20) by taking

w(X,m(Y), T (Y), α) =

j

1 if ∩s
j=1 Yj = X and X �= ∅

1 if ∪s
j=1 Yj = X and X = ∅ (5.23)

T (Y) = {∩s
j=1Yj ,∪s

j=1Yj} � ∅ and we do not consider α.
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• PCR5 rule introduced in [13], from the equation given in [7]: It is obtained
from (5.20) by taking

a) w(X,m(Y), T (Y), α) = 1 whenever ∩s
j=1Yj = X, and X �= ∅.

b) and whenever Yi = X, i = 1, · · · , s, and ∩s
j=1Yj = ∅,

w(X,m(Y), T (Y), α) =

M
X

i=1

mi(X)

s
Y

j=1

mj(Yj)

×

 

M−1
Y

j=1

mσi(j)(Yσi(j))1lj>i

!

Y

Yσi(j)
=X

mσi(j)(Yσi(j))

X

Z∈{X,Yσi(1)
,...,Yσi(M−1)}

Y

Yσi(j)
=Z

`

mσi(j)(Yσi(j)) · ξ(X=Z,mi(X))
´

(5.24)

where:
j

σi(j) = j, if j < i,
σi(j) = j + 1, if j ≥ i,

(5.25)

j

ξ(B,x) = x if B is true,
ξ(B,x) = 1 if B is false.

(5.26)

and T (Y) = {∩s
j=1Yj , Y1, · · · , Ys} � ∅ and we do not consider α.

• PCR6 rule in [7]: It is obtained from (5.20) by taking

a) w(X,m(Y), T (Y), α) = 1 whenever ∩s
j=1Yj = X, and X �= ∅,

b) and whenever Yi = X, i = 1, · · · , s, and ∩s
j=1Yj = ∅,

w(X,m(Y), T (Y), α) =

M
X

i=1

mi(X)

mi(X) +

M−1
X

j=1

mσi(j)(Yσi(j))

(5.27)

where:
j

σi(j) = j, if j < i,
σi(j) = j + 1, if j ≥ i,

(5.28)

T (Y) = {∩s
j=1Yj , Y1, · · · , Ys} � ∅ and we do not consider α.
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• RSC1 rule: It is obtained from (5.20) by taking

w(X,m(Y), T (Y), α) =

j

1 if ∩s
j=1 Yj = X and X �= ∅

1, if c
`

∩s
j=1Yj

´

= X and ∪s
j=1 Yj = ∅ (5.29)

T (Y) = {∩s
j=1Yj , c

`

∪s
j=1Yj

´

} � ∅ and we do not consider α.

• RSC2 rule: It is obtained from (5.20) by taking

a) w(X,m(Y), T (Y), α) = 1 whenever ∩s
j=1Yj = X, and X �= ∅.

b)

w(X,m(Y), T (Y), α) =
m∩(X)
X

Z⊆c(∪s
j=1Yj)

m∩(Z)
(5.30)

whenever X ∈ 2c(∪s
j=1Yj), ∩s

j=1Yj = ∅, c
`

∪s
j=1Yj

´

�= ∅ and

X

Z⊆c(∪s
j=1

Yj)

m∩(Z) �= 0.

c) w(X,m(Y), T (Y), α) = 1 whenever X = Θ, ∩s
j=1Yj = ∅, and

{c
`

∪s
j=1Yj

´

= ∅ or
X

Z⊆c(∪s
j=1Yj)

m∩(Z) = 0}.

T (Y) = {∩s
j=1Yj , {2c(∪s

j=1Yj)}, Θ} � ∅ and we do not consider α.

• RSC3 rule: It is obtained from (5.20) by taking

a) w(X,m(Y), T (Y), α) = 1 whenever ∩s
j=1Yj = X and X �= ∅.

b)

w(X,m(Y), T (Y), α) =
|X|
X

Z(∪s
j=1Yj)

|Z|
(5.31)

if X ∈ 2c(∪s
j=1Yj), m∩(X) �= 0, c

`

∪s
j=1Yj

´

�= ∅ and ∩s
j=1Yj = ∅.

c) w(X,m(Y), T (Y), α) = 1 if X = Θ, c
`

∪s
j=1Yj

´

= ∅ and ∩s
j=1Yj = ∅.

T (Y) = {∩s
j=1Yj , {2c(∪s

j=1Yj)}, Θ} � ∅ and we do not consider α.

Remark:
P

Z(∪s
j=1

Yj) |Z| �= 0 because c
`

∪s
j=1Yj

´

�= ∅.

• RSC4 rule: It is obtained from (5.20) by taking

a) w(X,m(Y), T (Y), α) = 1 whenever ∩s
j=1Yj = X and X �= ∅.
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b)

w(X,m(Y), T (Y), α) =
m∩(X) + |X|
X

Z⊆c(∪s
j=1Yj)

m∩(Z) + |Z|
(5.32)

if X ∈ 2c(∪s
j=1Yj), ∩s

j=1Yj = ∅ and c
`

∪s
j=1Yj

´

�= ∅.

c) w(X,m(Y), T (Y), α) = 1 if X = Θ, ∩s
j=1Yj = ∅ and c

`

∪s
j=1Yj

´

= ∅.

T (Y) = {∩s
j=1Yj , {2c(∪s

j=1Yj)}, Θ} � ∅ and we do not consider α.

• RSC5 rule: It is obtained from (5.20) by taking

a) w(X,m(Y), T (Y), α) = 1 whenever ∩s
j=1Yj = X and X �= ∅.

b)

w(X,m(Y), T (Y), α) =
|X|

s
X

j=1

|Yj |
(5.33)

if Yi = X, i = 1, · · · , s, and ∩s
j=1Yj = ∅.

T (Y) = {∩s
j=1Yj , Y1, · · · , Ys} � ∅ and we do not consider α.

• RSC6 rule: It is obtained from (5.20) by taking

a) w(X,m(Y), T (Y), α) = 1 whenever ∩s
j=1Yj = X and X �= ∅.

b)

w(X,m(Y), T (Y), α) =
|X|
X

Z⊆∪s
j=1

Yj

|Z|
(5.34)

if X ∈ 2∪s
j=1Yj , and ∩s

j=1Yj = ∅.

T (Y) = {∩s
j=1Yj , {2∪s

j=1Yj }} � ∅ and we do not consider α.

• RSC7 rule: It is obtained from (5.20) by taking

a) w(X,m(Y), T (Y), α) = 1 whenever ∩s
j=1Yj = X and X �= ∅.

b)

w(X,m(Y), T (Y), α) =
m∩(X) + |X|

s
X

j=1

m∩(Yj) + |Yj |
(5.35)

if Yi = X, i = 1, · · · , s, and ∩s
j=1Yj = ∅.

T (Y) = {∩s
j=1Yj , Y1, · · · , Ys} � ∅ and we do not consider α.
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• RSC8 rule: It is obtained from (5.20) by taking

a) w(X,m(Y), T (Y), α) = 1 whenever ∩s
j=1Yj = X and X �= ∅.

b)

w(X,m(Y), T (Y), α) =
m∩(X) + |X|
X

Z⊆∪s
j=1Yj

m∩(Z) + |Z|
(5.36)

if X ∈ 2∪s
j=1Yj , ∩s

j=1Yj = ∅, and ∪s
j=1Yj �= ∅.

c) w(X,m(Y), T (Y), α) = 1 if X = Θ, ∪s
j=1Yj = ∅.

T (Y) = {∩s
j=1Yj , {2∪s

j=1Yj }, Θ} � ∅ and we do not consider α.

5.6 A new rule including reliability

The idea we propose here consists in transferring the mass on DT � {∅}, with T =
{Y1, · · · , Ys, c(Y1), · · · , c(Ys)}, according with respect to their mass and reliability αij ,
i = 1, · · · , s and j = 1, · · · , |SΘ| an arbitrary order on SΘ. Hence with the previous
notations, T (Y) = DT � {∅}.

5.6.1 The fusion of two experts including their reliability

We first explain the idea for two experts given a basic belief assignment respectively
on X and Y . Hence T (X,Y ) = D{X,Y,c(X),c(Y )} � {∅}. We note that X ∪ c(X) =
Y ∪ c(Y ) = Θ and c(X) ∩ c(Y ) = c(X ∪ Y ) and if X ∩ Y = ∅: X ∩ c(Y ) = X,
Y ∩ c(X) = Y and c(X) ∪ c(Y ) = Θ. Hence:

T (X, Y ) = {X, Y, X ∩ Y, X ∪ Y, c(X), c(X) ∩ Y, c(X) ∪ Y, c(Y ),

c(Y ) ∩X, c(Y ) ∪X, c(X) ∪ c(Y ), c(X) ∩ c(Y ), Θ}

If X ∩ Y �= ∅, and if the reliability α1X = α1Y = 1, and if m1(X) = m2(Y ) = 1
then all the belief must be given on X ∩ Y . If the reliability α1X = α1Y = 1 but
m1(X) �= 1 and m2(Y ) �= 1, then the experts are not sure and a part of the mass
m1(X).m2(Y ) can also be transfered on X ∪ Y . If for example α1X = 0 then we
should also transfer mass on c(X). If X ∩ Y = ∅, we have a partial conflict between
the experts. If the experts are reliable then, we can transfer the mass on X, Y or
X ∪ Y , such as the DPCR proposed in [8]. If the experts are not sure then a part of
the mass can also be transfered on the complement of X and Y .
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Hence we propose the function w given in the Table 5.1 if X ∩ Y = ∅, and in the
Table 5.2 if X∩Y �= ∅. The given weights have to be normalized by a factor noted N .

When X ∩ Y = ∅
Element Weight N
X α1Xm1(X)
Y α2Y m2(Y )
c(X) (1− α1X)(1 −m1(X))
c(Y ) (1− α2Y )(1−m2(Y ))
X ∪ Y (1 − α1Xα2Y )(1−m1(X)m2(Y ))
c(X) ∩ c(Y ) = ∅ (1− α1X)(1 − α2Y )(1−m1(X))(1−m2(Y ))
c(X) ∪ c(Y ) = Θ (1− (1 − α1X)(1 − α2Y ))(1− (1−m1(X))(1−m2(Y )))

Table 5.1: Weighting function w when X ∩ Y = ∅.

When X ∩ Y = ∅
Element weight N
X ∩ Y α1Xα2Y m1(X)m2(Y )
X ∪ Y (1− α1Xα2Y )(1 −m1(X)m2(Y ))

Table 5.2: Weighting function w when X ∩ Y = ∅.

In this form, if the expert 1, for example, is not reliable, we do not transfer on
c(X). So we propose the function w is given by the Table 5.3, still for X ∩ Y �= ∅. In
this case, the rule will have a behavior nearer than the average than the conjunctive
because the weights on X and Y are higher than the weight on X ∩ Y . So, we can
also propose the function w as in Table 5.4 in order to avoid that.
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When X ∩ Y = ∅
Element weight N
X ∩ Y α1Xα2Y m1(X)m2(Y )
X ∪ Y (1− α1Xα2Y )(1−m1(X)m2(Y ))
X α1Xm1(X)
Y α2Y m2(Y )
c(X) = ∅ (1− α1X)(1−m1(X))
c(Y ) = ∅ (1 − α2Y )(1 −m2(Y ))
c(X) ∩ c(Y ) = ∅ (1− α1X)(1− α2Y )(1−m1(X))(1−m2(Y ))
c(X) ∪ c(Y ) (1− (1− α1X)(1 − α2Y ))(1− (1 −m1(X))(1−m2(Y )))
X ∪ c(Y ) (1− α1X(1− α2Y ))(1−m1(X)(1−m2(Y )))
c(X) ∪ Y (1− (1 − α1X)α2Y )(1− (1 −m1(X))m2(Y ))
X ∩ c(Y ) = ∅ α1X(1− α2Y )m1(X)(1− m2(Y ))
c(X) ∩ Y = ∅ (1− α1X)α2Y (1−m1(X))m2(Y )

Table 5.3: Weighting function w when X ∩ Y = ∅.

When X ∩ Y = ∅
Element weight N
X ∩ Y α1Xα2Y m1(X)m2(Y )
X ∪ Y (1− α1Xα2Y )(1−m1(X)m2(Y ))
X (α1Xm1(X))2

Y (α2Y m2(Y ))2

c(X) = ∅ ((1 − α1X)(1 −m1(X)))2

c(Y ) = ∅ ((1 − α2Y )(1−m2(Y )))2

c(X) ∩ c(Y ) = ∅ (1− α1X)(1− α2Y )(1−m1(X))(1−m2(Y ))
c(X) ∪ c(Y ) (1− (1− α1X)(1 − α2Y ))(1− (1 −m1(X))(1−m2(Y )))
X ∪ c(Y ) (1− α1X(1− α2Y ))(1−m1(X)(1−m2(Y )))
c(X) ∪ Y (1− (1 − α1X)α2Y )(1− (1 −m1(X))m2(Y ))
X ∩ c(Y ) = ∅ α1X(1− α2Y )m1(X)(1− m2(Y ))
c(X) ∩ Y = ∅ (1− α1X)α2Y (1−m1(X))m2(Y )

Table 5.4: Weighting function w when X ∩ Y = ∅.
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5.6.2 Some examples

• if X ∩Y = ∅ and α1X = α2Y = 1, then the only weights are m1(X) and m2(Y )
respectively on X and Y .

• if X ∩ Y = ∅ and α1X = 1 and α2Y = 0, then the only weights are m1(X),
(1−m2(Y )), m1(X)(1−m2(Y )) and 1−m1(X)m2(Y ) respectively on X, c(Y ),
X ∩ c(Y ) and X ∪ Y .

• if X ∩ Y �= ∅ and α1X = α2Y = 1, then the only weights are m1(X)m2(Y ),
m1(X) (or m1(X)2) and m2(Y ) (or m2(Y )2) respectively on X ∩Y , X and Y .

• if X ∩ Y �= ∅ and α1X = 1 and α2Y = 0, then the only weights are m1(X),
(1−m2(Y )), m1(X)(1−m2(Y )) and 1−m1(X)m2(Y ) respectively on X, c(Y ),
X ∩ c(Y ) and X ∪ Y .

• if X ∩ Y = ∅ and m1(X)m2(Y ) = 1, then the only weights are α1X and α2Y

respectively on X and Y .

• if X ∩ Y �= ∅ and m1(X)m2(Y ) = 1, then the only weights are α1Xα2Y , α1X

and α2Y respectively on X ∩ Y , X and Y .
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5.6.3 The fusion of s ≥ 2 experts including their reliability

We note Y1, · · ·Ys the responses of the experts. The function w is then given by the
Table 5.5 if ∩s

j=1Yj = ∅:

∩s
j=1Yj = ∅

Element Weight N
Yj αjYjmj(Yj)
c(Yj) (1 − αjYj )(1−mj(Yj))

∪n1

j1=1Yj1

⋃
∪n2

j2=1c(Yj2)

⎛
⎝1− n1∏

j1=1

αj1Yj1

n2∏
j2=1

(1 − αj2Yj2
)

⎞
⎠

with n1 + n2 = s
×
⎛
⎝1− n1∏

j1=1

mj1(Yj1 )

n2∏
j2=1

(1−mj2(Yj2))

⎞
⎠

∪s
j=1Yj (1−

s∏
j=1

αjYj )(1−
s∏

j=1

mj(Yj))

∩n1

j1=1Yj1

⋂
∩n2

j2=1c(Yj2)

n1∏
j1=1

αj1Yj1
mj1(Yj1 )

if = ∅, with n1 + n2 = s
×

n2∏
j2=1

(1− αj2Yj2
)(1 −mj2(Yj2))

∩s
j=1c(Yj)

s∏
j=1

(1− αjYj )(1 −mj(Yj))

if = ∅

∪s
j=1c(Yj)

⎛
⎝1− s∏

j=1

(1− αjYj )

⎞
⎠

×
⎛
⎝1− s∏

j=1

(1 −mj(Yj))

⎞
⎠

Table 5.5: Weighting function w when ∩s
j=1Yj = ∅.
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The function w given in Table 5.6 if ∩s
j=1Yj �= ∅:

∩s
j=1Yj = ∅

Element weight N

∩s
j=1Yj

s∏
j=1

αjYjmj(Yj))

∪s
j=1Yj (1−

s∏
j=1

αjYj )(1−
s∏

j=1

mj(Yj))

Yj αjYjmj(Yj)
c(Yj) if = ∅ (1 − αjYj )(1−mj(Yj))

∪n1

j1=1Yj1

⋃
∪n2

j2=1c(Yj2)

⎛
⎝1− n1∏

j1=1

αj1Yj1

n2∏
j2=1

(1 − αj2Yj2
)

⎞
⎠

if = ∅, with n1 + n2 = s
×
⎛
⎝1− n1∏

j1=1

mj1(Yj1)

n2∏
j2=1

(1 −mj2(Yj2))

⎞
⎠

∩n1

j1=1Yj1

⋂
∩n2

j2=1c(Yj2)

n1∏
j1=1

αj1Yj1
mj1(Yj1 )

if = ∅, with n1 + n2 = s
×

n2∏
j2=1

(1− αj2Yj2
)(1 −mj2(Yj2))

∩s
j=1c(Yj)

s∏
j=1

(1− αjYj )(1 −mj(Yj))

if = ∅

∪s
j=1c(Yj)

⎛
⎝1− s∏

j=1

(1− αjYj )

⎞
⎠

×
⎛
⎝1− s∏

j=1

(1 −mj(Yj))

⎞
⎠

Table 5.6: Weighting function w when ∩s
j=1Yj = ∅.

Note that with extension T (Y) �= D{Y,c(Y)} � {∅}, but T (Y) ⊂ D{Y,c(Y)} � {∅}.
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5.7 Conclusions

We have constructed a Redistribution to Subsets or Complements (RSC) class of
fusion rules and we gave eight particular examples. All RSC rules work on the fusion
spaces SΘ and 2Θ. But the RSC rules involving complements do not work on the
hyper-power set DΘ.

In order to choose what particular RSC rule to apply we need to take into con-
sideration the user’s feasability, confidence/non-confidence in some hypotheses, more
or less prudence of the user, optimistic/pessimistic redistribution, etc. In general,
if X ∩ Y = ∅, the mass of X ∩ Y is transferred either to c(X ∩ Y ), or to subsets
of c(X ∩ Y ), or to X and Y , or to subsets of X ∪ Y proportionally with respect to
the masses, or cardinals, or both masses and cardinals, or other parameters of the
elements that receive redistributed masses. We can even transfer the mass of X ∩ Y
when X ∩ Y �= ∅ in the same way as aforementioned; the transfer of m(X ∩ Y ) when
X ∩ Y �= ∅ is done or not depending on the confidence/non-confidence of the user in
the set X ∩ Y . A more general theoretical extension of these RSC rules is presented
at the end of this chapter. Those can generate new classes of fusion rules.
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Abstract: This chapter defines a new concept and framework for
constructing fusion rules for evidences. This framework is based on
a referee function, which does a decisional arbitrament conditionally
to basic decisions provided by the several sources of information. A
simple sampling method is derived from this framework. The pur-
pose of this sampling approach is to avoid the combinatorics which
are inherent to the definition of fusion rules of evidences. This def-
inition of the fusion rule by the means of a sampling process makes
possible the construction of several rules on the basis of an algo-
rithmic implementation of the referee function, instead of a mathe-
matical formulation. Incidentally, it is a versatile and intuitive way
for defining rules. The framework is implemented for various well
known evidence rules. On the basis of this framework, new rules
for combining evidences are proposed, which takes into account a
consensual evaluation of the sources of information.
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Notations

• I [b], function of Boolean b, is defined by I [true] = 1 and I [false] = 0 . Typi-
cally, I [x = y] has value 1 when x = y, and 0 when x �= y,

• Let be given a frame of discernment Θ. Then, the structure GΘ denotes any
lattice constructed from Θ. In particular, GΘ may be a distributive lattice like
the hyper-power set DΘ; or GΘ may be a Boolean algebra like the power set
2Θ, the super-power set SΘ, or the free Boolean algebra generated by Θ,

• x1:n is an abbreviation for the sequence x1, · · · , xn ,

• max{x1, · · · , xn}, or max{x1:n} , is the maximal value of the sequence x1:n .
Similar notations are used for min ,

• maxx∈X{f(x)}, or max{f(x) / x ∈ X}, is the maximal value of f(x) when
x ∈ X . Similar notations are used for min

6.1 Introduction

Evidence theory [3, 13] has often been promoted as an alternative approach for fusing
information, when the hypotheses for a Bayesian approach cannot be precisely stated.
While many academic studies have been accomplished, most industrial applications
of data fusion still remain based on a probabilistic modeling and fusion of the infor-
mation. This great success of the Bayesian approach is explained by at least three
reasons:

• The underlying logic of the Bayesian inference [1] seems intuitive and obvious
at a first glance. It is known however [9] that the logic behinds the Bayesian
inference is much more complex,

• The Bayesian rule is entirely compatible with the preeminent theory of Proba-
bility and takes advantage of all the probabilistic background,

• Probabilistic computations are tractable, even for reasonably complex prob-
lems.

Then, even if evidences allow a more general and subtle manipulation of the informa-
tion for some case of use, the Bayesian approach still remains the method of choice for
most applications. This chapter intends to address the three afore mentioned points,
by providing a random set interpretation of the fusion rules. This interpretation is
based on a referee function, which does a decisional arbitrament conditionally to ba-
sic decisions provided by the several sources of information. This referee function
will imply a sampling approach for the definition of the rules. Sampling approach is
instrumental for the combinatorics avoidance [12].

In the recent literature, there has been a large amount of work devoted to the defini-
tion of new fusion rules [4–6, 8, 10, 11, 14, 15, 17, 18] . The choice for a rule is often
dependent of the applications and there is not a systematic approach for this task.
The definition of the fusion rule by the means of a sampling process makes possible
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the construction of several rules on the basis of an algorithmic implementation of the
referee function, instead of a mathematical formulation. Incidentally, it is a versatile
and intuitive way for defining rules. Subsequently, our approach is illustrated by
implementing two well known evidence rules. On the basis of this framework, new
rules for combining evidences are also proposed. Typically, these new rules takes into
account a consensual evaluation of the sources, by invalidating irrelevant sources of
information on the basis of a majority decision.

Section 6.2 summarize some classical results in the domain of evidence. Section 6.3
introduces the notion of referee function and its application to the definition of fusion
rules. A sampling method is obtained as a corollary. Section 6.4 establishes the ref-
eree functions for two known rules. Section 6.5 defines new fusion rules. Section 6.6
makes some numerical comparisons. Section 6.7 concludes.

6.2 Belief fusion

This section introduces the notion of belief function and some classical rules of fusion.

6.2.1 Lattices

Lattices are algebraic structures which are useful for encoding logical information. In
particular, lattices are generalizations of structures like Boolean algebra, sets, hyper-
power sets or concept lattice [2, 7]. Sets and hyper-power sets are widely used as
a framework for defining and manipulating belief functions. Concept lattices are
frameworks used in the ontologic domain of formal concept analysis.

Definition 1. A (finite) lattice L is a partially ordered (finite) set, i.e. (finite)
poset, which satisfies the following properties:

• For any two elements X, Y ∈ L, there is a greatest lower bound X ∧ Y of the
set {X, Y } ,

• For any two elements X, Y ∈ L, there is a least upper bound X ∨ Y of the set
{X, Y } .

The notations X∩Y (respectively X∪Y ) are also used instead of X∧Y (respectively
X ∨ Y ).

Example. Concept lattices [7] (which are not defined here) are lattices. Concept
lattices are widely used for deriving ontologies.

Definition 2. A bounded lattice L is a lattice which have a least element ⊥ and a
greatest element �.

The notations ∅ or 0 (respectively Ω or 1) are also used instead of ⊥ (respectively �).
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Proposition. A finite lattice is a bounded lattice.

Proof is achieved by setting: ⊥ =
V

X∈L X and � =
W

X∈L X .

Definition 3. A distributive lattice L is a lattice such that ∧ and ∨ are mutually
distributive:

X ∧ (Y ∨ Z) = (X ∧ Y ) ∨ (X ∧ Z) and X ∨ (Y ∧ Z) = (X ∨ Y ) ∧ (X ∨ Z) ,

for any X, Y, Z ∈ L .

Example. Being given a frame of discernment Θ, the hyper-power set DΘ is typ-
ically the free distributive lattice generated by Θ.

Definition 4. A complemented lattice is a bounded lattice L, such that each
element X ∈ L has a complement, i.e. an element Y ∈ L verifying:

X ∨ Y = � and X ∧ Y = ⊥ .

The complement of X is often denoted ¬X or Xc .

Actually, the complementation is defined by introducing constraints on the lattice.
As a consequence, it is possible to have partial complementation on the lattice.

Definition 5. A Boolean algebra is a complemented distributive lattice.

Examples. Being given a frame of discernment Θ, the power set 2Θ, the super-
power set SΘ, or the free Boolean algebra generated by Θ, are Boolean algebras.

Conclusion. Bounded lattices (especially, finite lattices) are versatile structures,
which are able to address many kind of informational frameworks. Typically, bounded
lattices generalize power set and hyper-power set. But since complementation is
defined by introducing constraints on the lattice, it is also possible to derive lattice
with partial complementation (i.e. with a subset of the complementation constraints)
which are intermediate structure between hyper-power set and power set. Since
bounded lattices are such generalization, this chapter will define evidence fusion rules
within this framework. By using a lattice framework, we are also linking our work to
the domain of formal concept analysis.

In the domain of evidence theories, basic concepts are generally modeled by means of
a set of proposition, Θ, called frame of discernment. The structure GΘ is any finite
lattice constructed from Θ . In particular, GΘ may be DΘ, 2Θ or SΘ. Notice that
GΘ is not a lost of generality, and is able to address any finite lattice. From now on,
all notions and results are defined within GΘ, which make them applicable also to
any finite lattice.
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6.2.2 Belief functions

Belief functions are measures of the uncertainty that could be defined on the propo-
sitions of a bounded lattice. In the framework of evidence theory, beliefs are defined
so as to manage not only the uncertainty, but also the imprecision encoded within
the lattice structure.

Basic belief assignment. A basic belief assignment (bba) on GΘ is a mapping
m : GΘ → IR such that:

• m ≥ 0 ,

• m(∅) = 0 ,

•
X

X∈GΘ

m(X) = 1 .

The bba contains an elementary knowledge (in the form of a basic belief) about the
whole propositions of GΘ. The bba, however, does not provide directly the knowledge
about an individual proposition. This individual knowledge is imprecise and bounded
by the belief and the plausibility.

Belief. The belief bel is constructed from the bba m as follows:

bel(X) =
X

Y ∈GΘ

Y ⊂X

m(X) .

The belief is a pessimistic interpretation of the bba.

Plausibility. The plausibility pl is constructed from the bba m as follows:

pl(X) =
X

Y ∈GΘ

Y ∩X 
=∅

m(X) .

The plausibility is an optimistic interpretation of the bba.

While fusing beliefs, the essential computations are done by means of the bba’s. Our
contribution is focused on the bba fusion; belief and plausibility will not be manip-
ulated in this chapter. Notice however that some properties of the belief functions
may change, depending on the structure of the lattice being used.

6.2.3 Fusion rules

Let be given s sources of information characterized by their bba’s m1:s. How could
we fuse these information into a single fused bba? There is a variety of rules for fusing
bba’s. This section covers different classical rules.
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Dempster-Shafer. The fused bba mDST obtained from m1:s by means of Dempster-
Shafer fusion rule [3, 13] is defined by:

mDST(∅) = 0 and mDST(X) =
m∧(X)

1 −m∧(∅) for any X ∈ GΘ \ {∅} . (6.1)

where m∧(·) corresponds to the conjunctive consensus :

m∧(X) �
X

Y1∩···∩Ys=X

Y1,··· ,Ys∈GΘ

s
Y

i=1

mi(Yi) , (6.2)

for any X ∈ GΘ \ {∅} .

The rejection rate z = m∧(∅) is a measure of the conflict between the sources. Notice
that the conflict is essentially a conjunctive notion, here.

Historically, this is the first rule for fusing evidences. Essentially, this rule provides
a cross fusion of the information: it is based on a conjunctive kernel. However, the
conjunctive nature of this rule is altered by the necessary normalization implied by
the conflict measurement m∧(∅).

6.2.4 Disjunctive rule

The fused bba m∨ obtained from m1:s by means of a disjunctive fusion is defined by:

m∨(X) =
X

Y1∪···∪Ys=X

Y1,··· ,Ys∈GΘ

s
Y

i=1

mi(Yi) , (6.3)

for any X ∈ GΘ .

The disjunctive rule alone is not very useful, but it is interesting when fusing highly
conflicting information. When at least one sensor provides the good answer, the
disjunctive rule will maintain a minimal knowledge. Typically, this rule may be
combined with the conjunctive consensus, in an adaptive way [5, 6].

Rule of Dubois & Prade. Dempster-Shafer fusion rule will have some unsat-
isfactory behavior, when the conflict level is becoming high. If it is assumed that
at least one sensor provides the good answer, then it is wiser to replace the possible
conflict by a disjunctive repartition of the belief product. This idea is implemented
by the rule of Dubois and Prade [5].

The fused bba mD&P for any X ∈ GΘ \ {∅} obtained from m1:s is defined by:

mD&P(∅) = 0 ,

mD&P(X) =
X

Y1∩···∩Ys=X

Y1,··· ,Ys∈GΘ

s
Y

i=1

mi(Yi) +
X

Y1∩···∩Ys=∅
Y1∪···∪Ys=X

Y1,··· ,Ys∈GΘ

s
Y

i=1

mi(Yi) (6.4)
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Averaging rule. Averaging, although quite simple, may provide good results on
some applications.

Let be given the averaging parameters α1:s ≥ 0 such that
Ps

i=1 αi = 1 . The averaged
bba mμ[α] is obtained from m1:s by:

mμ[α] =

s
X

i=1

αimi .

PCR6. The proportional conflict redistribution rules (PCRn, n = 1, 5) have been
introduced by Smarandache and Dezert [15]. The rule PCR6 has been proposed by
Martin and Osswald in [10] . PCR rules will typically replace the possible conflict by
an adaptive averaging of the belief product.

The fused bba mPCR6 obtained from m1:s by means of PCR6 is defined by:

mPCR6(∅) = 0 ,

and, for any X ∈ GΘ \ {∅} , by:

mPCR6(X) = m∧(X)

+
s
X

i=1

mi(X)2
X

Ts−1
k=1

Yσi(k)∩X=∅
Yσi(1)

,··· ,Yσi(s−1)∈GΘ

0

B

B

B

B

B

@

s−1
Y

j=1

mσi(j)(Yσi(j))

mi(X) +

s−1
X

j=1

mσi(j)(Yσi(j))

1

C

C

C

C

C

A

,
(6.5)

where the function σi counts from 1 to s avoiding i :

σi(j) = j × I [j < i] + (j + 1) × I [j ≥ i] .

N.B. If the denominator in (6.5) is zero, then the fraction is discarded.

Prospective. The previous rules are just examples amongst many possible rules.
Most of the rules are characterized by their approaches for handling the conflict.
Actually, there is not a definitive criterion for the choice of a particular rule. There is
not a clearly intuitive framework for the comparison of the rules as well. This chapter
addresses this diversity by proposing a constructive interpretation of fusion rules by
means of the notion of referee functions.

6.3 Referee function and fusion rules

6.3.1 Referee function

Definition. A referee function on GΘ for s sources of information and with context
γ is a mapping X, Y1:s �→ F (X|Y1:s; γ) defined on propositions X, Y1:s ∈ GΘ , which
satisfies:
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• F (X|Y1:s; γ) ≥ 0 ,

•
X

X∈GΘ

F (X|Y1:s; γ) = 1 ,

for any X, Y1:s ∈ GΘ .

A referee function for s sources of information is also called a s-ary referee function.
The quantity F (X|Y1:s; γ) is called a conditional arbitrament between Y1:s in favor
of X. Notice that X is not necessary one of the propositions Y1:s ; typically, it could
be a combination of them. The case X = ∅ is called the rejection case.

Fusion rule. Let be given s basic belief assignments (bba’s) m1:s and a s-ary
referee function F with context m1:s . Then, the fused bba m1 ⊕ · · · ⊕ ms[F ] based
on the referee F is constructed as follows:

m1 ⊕ · · · ⊕ ms[F ](X) = I [X �= ∅]

X

Y1:s∈GΘ

F (X|Y1:s; m1:s)
s
Y

i=1

mi(Yi)

1 −
X

Y1:s∈GΘ

F (∅|Y1:s; m1:s)

s
Y

i=1

mi(Yi)

, (6.6)

for any X ∈ GΘ .

From now on, the notation ⊕[m1:s|F ] = m1 ⊕ · · · ⊕ ms[F ] is used.

The value z =
P

Y1:s∈GΘ F (∅|Y1:s; m1:s)
Qs

i=1 mi(Yi) is called the rejection rate. No-
tice that the rejection rate is derived from the rejection generated by F (∅|Y1:s; m1:s)
As a consequence, the rejection is not exclusively a conjunctive notion in this ap-
proach. An example of non conjunctive rejection is proposed in section 6.5.

Examples. Refer to section 6.4 and 6.5.

6.3.2 Properties

Bba status. The function ⊕[m1:s|F ] defined on GΘ is actually a basic belief
assignment.

Proof. It is obvious that ⊕[m1:s|F ] ≥ 0 .
Since I [∅ �= ∅] = 0 , it is derived ⊕[m1:s|F ](∅) = 0 .
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From
P

X∈GΘ F (X|Y1:s; m1:s) = 1 , it is derived:

X

X∈GΘ

X

Y1:s∈GΘ

F (X|Y1:s; m1:s)
s
Y

i=1

mi(Yi)

=
X

Y1:s∈GΘ

 

s
Y

i=1

mi(Yi)

!

X

X∈GΘ

F (X|Y1:s; m1:s)

=
X

Y1:s∈GΘ

s
Y

i=1

mi(Yi)

=
s
Y

i=1

X

Yi∈GΘ

mi(Yi) = 1 .

As a consequence:

X

X∈GΘ

I [X �= ∅]
X

Y1:s∈GΘ

F (X|Y1:s; m1:s)
s
Y

i=1

mi(Yi)

+
X

Y1:s∈GΘ

F (∅|Y1:s; m1:s)
s
Y

i=1

mi(Yi) = 1 .

���

Referee function without rejection. Let be given s basic belief assignments
(bba’s) m1:s and a s-ary referee function F with context m1:s . Assume that F does
not imply rejection, that is:

F (∅|Y1:s; m1:s) = 0 for any Y1:s ∈ GΘ \ {∅} .

Then, the fused bba ⊕[m1:s|F ] based on the referee F has the simplified definition:

⊕[m1:s|F ](X) =
X

Y1:s∈GΘ

F (X|Y1:s; m1:s)

s
Y

i=1

mi(Yi) , (6.7)

for any X ∈ GΘ .

Proof. It is a consequence of
X

Y1:s∈GΘ

F (∅|Y1:s; m1:s)
s
Y

i=1

mi(Yi) = 0 .

Separability. Let be given s basic belief assignments (bba’s) m1:s and a s-ary
referee function F with context m1:s . Assume that there is r and t such that r+t = s,
and two sequences u1:r and v1:t which constitute a partition of [[1, s]] , that is:

{u1:r} ∪ {v1:t} = [[1, s]] and {u1:r} ∩ {v1:t} = ∅ .
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Assume also that there are a r-ary referee function G with context mu1:r , a t-ary
referee function H with context mv1:t and a parameter θ ∈ [0, 1] such that:

F (X|Y1:s; m1:s) = θG(X|Yu1:r ; mu1:r ) + (1 − θ)H(X|Yv1:t ; mv1:t) .

Then F is said to be separable into the two sub-referee functions G and H . Moreover,
the fused bba is simplified as follows:

⊕[m1:s|F ] = θ ⊕ [mu1:r |G] + (1− θ) ⊕ [mv1:t |H ] (6.8)

Notice that the fusion is easier for small arity. As a consequence, separability provides
possible simplifications to the fusion.

Proof. It is derived:

X

X∈GΘ

X

Y1:s∈GΘ

F (X|Y1:s; m1:s)

s
Y

i=1

mi(Yi)

= θ
X

X∈GΘ

X

Y1:s∈GΘ

G(X|Yu1:r ; mu1:r )

s
Y

i=1

mi(Yi)

+ (1− θ)
X

X∈GΘ

X

Y1:s∈GΘ

H(X|Yv1:t ; mv1:t)

s
Y

i=1

mi(Yi) .

Now:

X

X∈GΘ

X

Y1:s∈GΘ

G(X|Yu1:r ; mu1:r )

s
Y

i=1

mi(Yi)

=

0

@

X

X∈GΘ

X

Yu1:r ∈GΘ

G(X|Yu1:r ; mu1:r )

r
Y

i=1

mui(Yui)

1

A

t
Y

i=1

X

Yvi
∈GΘ

mvi(Yvi)

= ⊕[mu1:r |G]
t
Y

i=1

1 = ⊕[mu1:r |G] .

It is derived similarly:

X

X∈GΘ

X

Y1:s∈GΘ

H(X|Yv1:t ; mv1:t)
s
Y

i=1

mi(Yi) = ⊕[mv1:t |H ] . ���

Of course, the notion of separability extends easily to more than two sub-referee
functions.
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6.3.3 Sampling process

The definition (6.6) makes apparent a fusion process which is similar to a proba-
bilistic conditional decision on the set of propositions. Notice that the basic belief
assignments are not related, in practice, to physical probabilities. But the implied
mathematics are similar, as well as some concepts. In particular, the fusion could be
interpreted as a two stages process. In a first stage, the sources of information gen-
erate independent entries according to the respective beliefs. Then, a final decision
is done by the referee function conditionally to the entries. As a result, an output is
produced or not.

This interpretation has two profitable consequences. First at all, it provides an in-
tuitive background for constructing new rules: in our framework, a new rule is just
the design of a new referee. Secondly, our interpretation makes possible sampling
methods in order to approximate and accelerate complex fusion processes. Notice
that the sampling method is used here as a mathematical tool for approximating the
belief, not for simulating an individual choice. Indeed, evidence approaches deal with
belief on propositions, not with individual propositions.

Sampling algorithm. Samples of the fused basic belief assignment ⊕[m1:s|F ]
are generated by iterating the following processes:

Entries generation: For each i ∈ [[1, s]] , generates Yi ∈ GΘ according to the
basic belief assignment mi, considered as a probabilistic distribution over
the set GΘ ,

Conditional arbitrament:

1. Generate X ∈ GΘ according to referee function F (X|Y1:s; m1:s), con-
sidered as a probabilistic distribution over the set GΘ ,

2. In the case X = ∅, reject the sample. Otherwise, keep the sample.

The performance of the sampling algorithm is at least dependent of two factors. First
at all, a fast implementation of the arbitrament is necessary. Secondly, low rejection
rate is better. Notice however that the rejection rate is not a true handicap. Indeed,
high rejection rate means that the incident bba’s are not compatible in regard to the
fusion rule: these bba should not be fused. By the way, the ratio of rejected samples
will provide an empirical estimate of the rejection rate of the law.

The case of separable referee function. Assume that F is separable into G
and H , i.e. there are θ ∈ [0, 1] and a partition ({u1:r}, {v1:t}) of [[1, s]] such that:

F (X|Y1:s; m1:s) = θG(X|Yu1:r ; mu1:r) + (1 − θ)H(X|Yv1:t ; mv1:t) .

Then, samples of the fused basic belief assignment ⊕[m1:s|F ] are generated by means
of the sub-arbitraments related to G and H :
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Choice of a sampling sub-process:

1. Generate a random number x ∈ [0, 1] according to the uniform dis-
tribution,

2. If x < θ then jump to Sampling process related to G,

3. Otherwise jump to Sampling process related to H ,

Sampling process related to G:

Entries generation: For each i ∈ [[1, r]] , generates Yui ∈ GΘ according
to the basic belief assignment mui ,

Conditional arbitrament:

1. Generate X ∈ GΘ according to G(X|Yu1:r ; mu1:r ) ,

2. In the case X = ∅, reject the sample. Otherwise, return the
sample.

Sampling process related to H:

Entries generation: For each i ∈ [[1, t]] , generates Yvi ∈ GΘ according
to the basic belief assignment mvi ,

Conditional arbitrament:

1. Generate X ∈ GΘ according to H(X|Yv1:t ; mv1:t) ,

2. In the case X = ∅, reject the sample. Otherwise, return the
sample.

This result is a direct consequence of the property of separability (6.8). This algorithm
will spare the sampling of useless entries. Therefore, it is more efficient to implement
the separability when it is possible.

6.3.4 Algorithmic definition of fusion rules

As seen previously, fusion rules based on referee functions are easily approximated by
means of sampling process. This sampling process is double-staged. The first stage
computes the samples related to the entry bba’s m1:s . The second stage computes the
fused samples by a conditional arbitrament between the different hypotheses. This
arbitrament is formalized by a referee function.

In practice, it is noteworthy that there is no need for a mathematical definition of the
referee function. The only important point is to be able to compute the arbitrament.
We have here a new approach for defining fusion rules of evidences. Fusion rules
may be defined entirely by the means of an algorithm for computing the conditional
arbitrament.

Assertion. There are three equivalent approaches for defining fusion rules in the
paradigm of referee:

• By defining a formula which maps the entry bba’s m1:s to the fused bba m1 ⊕
· · · ⊕ ms (classical approach),
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• By defining a referee function F , which makes the conditional arbitrament
F (X|Y1:s; m1:s) ,

• By constructing an algorithm which actually makes the conditional arbitrament
between Y1:s in favor of X .

It is sometimes much easier and more powerful to just construct the algorithm for
conditional arbitrament.

The following section illustrates the afore theoretical discussion on well known exam-
ples.

6.4 Example of referee functions

Let be given s sources of information characterized by their bba’s m1:s.

6.4.1 Dempster-Shafer rule

The fused bba mDST obtained from m1:s by means of Dempster-Shafer fusion rule
is defined by equation (6.1). It has an immediate interpretation by means of referee
functions.

Definition by referee function. The definition of a referee function for Dempster-
Shafer is immediate:

mDST = ⊕[m1:s|F∧] where F∧(X|Y1:s; m1:s) = I

"

X =

s
\

k=1

Yk

#

.

Algorithmic definition. The algorithmic implementation of F∧ is described
subsequently and typically implies possible conditional rejections:

Conditional arbitrament:

1. Set X =
Ts

k=1 Yk ,

2. If X = ∅ , then reject the sample. Otherwise, keep the sample.

6.4.2 Disjunctive rule

The fused bba m∨ obtained from m1:s by means of the disjunctive rule is defined by
equation (6.3). It has an immediate interpretation by means of referee functions.
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Definition by referee function. The definition of a referee function for the
disjunctive rule is immediate from (6.3):

m∨ = ⊕[m1:s|F∨]

where:

F∨(X|Y1:s; m1:s) = I

"

X =
s
[

k=1

Yk

#

.

Algorithmic definition. The algorithmic implementation of F∨ is described
subsequently. It does not imply rejections:

Conditional arbitrament:

1. Set X =
Ss

k=1 Yk .

6.4.3 Dubois & Prade rule

The fused bba mD&P obtained from m1:s by means of the rule of Dubois & Prade is
defined by equation (6.4). It has an interpretation by means of referee functions.

Definition by referee function. The definition of a referee function for Dubois
& Prade rule is deduced from (6.4):

mD&P = ⊕[m1:s|FD&P]

where:

FD&P(X|Y1:s; m1:s)

= I

"

s
\

k=1

Yk �= ∅
#

F∧(X|Y1:s; m1:s) + I

"

s
\

k=1

Yk = ∅
#

F∨(X|Y1:s; m1:s)

= I

"

X =
s
\

k=1

Yk �= ∅
#

+ I

"

s
\

k=1

Yk = ∅
#

I

"

X =
s
[

k=1

Yk

#

.

The first formulation of FD&P is particularly interesting, since it illustrates how to
construct a referee function by means of a conditional branching to already existing
referee functions. In the case of Dubois & Prade rule, the rule has a disjunctive
behavior when there is a conjunctive conflict, i.e.

Ts
k=1 Yk = ∅, and a conjunctive

behavior otherwise. Thus, the referee function is obtained as the summation of the
exclusive sub-arbitraments:

I

"

s
\

k=1

Yk = ∅
#

F∨(X|Y1:s; m1:s) (disjunctive case)

and

I

"

s
\

k=1

Yk �= ∅
#

F∧(X|Y1:s; m1:s) (conjunctive case).
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Algorithmic definition. The algorithmic implementation of FD&P is described
subsequently. It does not imply rejections:

Conditional arbitrament:

1. Set X =
Ts

k=1 Yk ,

2. If X = ∅ , then set X =
Ss

k=1 Yk .

6.4.4 Averaging rule

Let be given the averaging parameters α1:s ≥ 0 such that
Ps

i=1 αi = 1 . The averaged
bba mμ[α] =

Ps
i=1 αimi could be obtained by means of a referee function.

Averaging by referee function. The definition of a referee function for aver-
aging is immediate:

mμ[α] = ⊕[m1:s|Fμ[α]]

where:

Fμ[α](X|Y1:s; m1:s) =
s
X

i=1

αi I [X = Yi] .

Proof by applying the separability. It is noticed that F is separable:

Fμ[α](X|Y1:s; m1:s) =

s
X

i=1

αi idi(X|Yi, mi) ,

where the referee function idi is defined by:

idi(X|Yi, mi) = I [X = Yi] for any X, Yi ∈ GΘ

By applying the separability property (6.8), s − 1 times, it comes:

⊕[m1:s|Fμ[α]] =
s
X

i=1

αi ⊕ [mi|idi] .

It happens that:

⊕[mi|idi] = mi ,

so that:

⊕[m1:s|Fμ[α]] =
s
X

i=1

αi mi = mμ[α] .
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Algorithmic implementation of averaging. It is interesting here to imple-
ment the separability of the referee function. Therefore, the entire sampling algorithm
is derived from the separability property:

Choice of a sampling sub-process:

1. Generate a random integer i ∈ [[1, s]] according to probability α ,

2. Jump to Sampling process related to idi,

Sampling process related to idi:

Entries generation: Generates Yi ∈ GΘ according to the basic belief
assignment mi ,

Conditional arbitrament: Return X = Yi .

6.4.5 PCR6 rule

The fused bba mPCR6 obtained from m1:s by means of the PCR6 rule is defined by
equation (6.5). It has an interpretation by means of referee functions.

Definition by referee function. Definition (6.5) could be reformulated into:

mPCR6(X) = m∧(X) +
s
X

i=1

X

Ts
k=1 Yk=∅

Y1,··· ,Ys∈GΘ

0

B

B

B

B

@

I [X = Yi] mi(Yi)

s
Y

j=1

mj(Yj)

s
X

j=1

mj(Yj)

1

C

C

C

C

A

,

and then:

mPCR6(X) = m∧(X) +
X

Ts
k=1 Yk=∅

Y1,··· ,Ys∈GΘ

s
Y

i=1

mi(Yi)

s
X

j=1

I [X = Yj ] mj(Yj)

s
X

j=1

mj(Yj)

. (6.9)

At last, it is derived a formulation of PCR6 by means of a referee function:

mPCR6 = ⊕[m1:s|FPCR6] ,

where the referee function FPCR6 is defined by:

FPCR6(X|Y1:s; m1:s) =

I

"

X =

s
\

k=1

Yk �= ∅
#

+ I

"

s
\

k=1

Yk = ∅
#

s
X

j=1

I [X = Yj ] mj(Yj)

s
X

j=1

mj(Yj)

. (6.10)
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Algorithmic definition. Again, the algorithmic implementation is immediate:

Conditional arbitrament:

1. If
Ts

k=1 Yk �= ∅ , then set X =
Ts

k=1 Yk

2. Otherwise:

a) Define the probability P over [[1, s]] by:

Pi =
mi(Yi)

Ps
j=1 mj(Yj)

for any i ∈ [[1, s]] ,

b) Generate a random integer k ∈ [[1, s]] according to P ,

c) set X = Yk .

It is noticed that this process does not produce any rejection case X = ∅. As a
consequence, the last rejection step has been removed.

Essentially, this algorithm distinguishes two cases:

• there is a consensus; then, answer the consensus,

• there is not a consensus; then choose an entry among all entries proportionally
to its belief. It is noteworthy that there is no attempt to transform the entries
in this case.

This algorithm is efficient and is not time-consuming. The whole sampling approach
should be a good alternative for approximating PCR6, particularly on large frames
of discernment.

6.4.6 Non conjunctive rejection

As seen in section 6.3, the rejection, resulting from a fusion based on referee functions,
is not necessary a conjunctive conflict: this rejection is the result of the arbitrament
rejections F (∅|Y1:s; m1:s) . An example of rule with disjunctive rejection is proposed
now. This example is rather unnatural; it is only constructed for illustration. The
context of fusion is the following:

Case a: Entries which union is Ω (i.e. is totally imprecise) are rejected; the idea
here, is to reject entries which are insufficiently focused,

Case b: An averaging of the bba is done, otherwise.

The referee function is thus obtained by means of a conditional branching to the
rejection (case a) or to the averaging (case b). As a consequence, the referee function
is obtained as the summation of the following exclusive sub-arbitraments:

Case a: I

"

s
[

i=1

Yi = Ω

#

I [X = ∅] ,
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Case b: I

"

s
[

i=1

Yi �= Ω

#

s
X

i=1

I [X = Yi]

s
.

The referee function for this rule is:

F (X|Y1:s; m1:s) = I

"

s
[

i=1

Yi = Ω

#

I [X = ∅] + I

"

s
[

i=1

Yi �= Ω

#

s
X

i=1

I [X = Yi]

s
.

Let us apply this rule to the example of s = 2 bba’s m1 and m2 defined on 2{a,b,c}

by m1({a}) = 0.1 , m1({a, b}) = 0.9 , m2({b}) = 0.2 and m2({b, c}) = 0.8 . Then, the
fused bba m = m1 ⊕ m2[F ] is obtained as:

z = m1({a})m2({b, c}) + m1({a, b})m2({b, c}) = 0.8 ,

m({a}) = m1({a})m2({b})
2(1−z)

= 0.05 , m({a, b}) = m1({a,b})m2({b})
2(1−z)

= 0.45 ,

m({b}) = m1({a})m2({b})+m1({a,b})m2({b})
2(1−z)

= 0.5 .

In this example, the rejection rate z is not conjunctive, since it involves {a, b} and
{b, c} such that {a, b} ∩ {b, c} �= ∅.

6.4.7 Any rule?

Is it possible to construct a referee function for any existing fusion rule?

Actually, the answer to this question is ambiguous. If it is authorized that F depends
on m1:s without restriction, then the theoretical answer is trivially yes.

Property. Let be given the fusion rule m1⊕· · ·⊕ms , applying on the bba’s m1:s.
Define the referee function F by:

F (X|Y1:s; m1:s) = m1 ⊕ · · · ⊕ ms(X) for any X, Y1:s ∈ GΘ .

Then F is actually a referee function and ⊕[m1:s|F ] = m1 ⊕ · · · ⊕ ms .

Proof is immediate.

Of course, this result is useless in practice, since such referee function is inefficient.
It is inefficient because it does not provide an intuitive interpretation of the rule, and
is as difficult to compute as the fusion rule. Then, it is useless to have a sampling
approach with such definition.

As a conclusion, referee functions have to be considered together with their efficiency.
The efficiency of referee function is not a topic which is studied in this chapter.
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6.5 A new rule: PCR�

Definition. For any k ∈ [[1, s]], it is defined:

C[k|s] = {γ ⊂ [[1, s]] /card(γ) = k } ,

the set of k-combinations of [[1, s]] . Of course, the cardinal of C[k|s] is

„

s
k

«

.

For convenience, the undefined object C[s + 1|s] is actually defined by:

C[s + 1|s] =
˘

{∅}
¯

,

so as to ensure:

min
γ∈C[s+1|s]

(

I

"

\

i∈γ

Yi = ∅
#)

= 1

6.5.1 Limitations of PCR6

The algorithmic interpretation of PCR6 has shown that PCR6 distinguishes two cases:

• The entry information are compatible; then, the conjunctive consensus is de-
cided,

• The entry information are not compatible; then, a mean decision is decided,
weighted by the relative beliefs of the entries.

In other words, PCR6 only considers consensus or no-consensus cases. But for more
than 2 sources, there are many cases of intermediate consensus. By construction,
PCR6 is not capable to manage intermediate consensus. This is a notable limitation
of PCR6.

The new rule PCR�, which is defined now, extends PCR6 by considering partial con-
sensus in addition to full consensus and absence of consensus. This rule is constructed
by specifying the arbitrament algorithm. Then, a referee function is deduced.

6.5.2 Algorithm

The following algorithm tries to reach a maximal consensus. It first tries the full
consensus, then consensus of s−1 sources, s−2 sources, and so on, until a consensus
is finally found. When several consensus with k sources is possible, the final answer
is chosen randomly, proportionally to the beliefs of the consensus. In the following
algorithm, comments are included preceded by // (c++ convention).

Conditional arbitrament:

1. Set stop = false and k = s ,
// k is the size of the consensus, which are searched. At beginning, it is maxi-
mal.
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2. For each γ ∈ C[k|s] , do:
// All possible consensus of size k are tested.

a) If
T

i∈γ Yi �= ∅ , then set ωγ =
Q

i∈γ mi(Yi) and stop = true ,
// If a consensus of size k is found to be functional, then it is no more
necessary to diminish the size of the consensus. This is done by changing
the value of Boolean stop.
// Moreover, the functional consensus are weighted by their beliefs.

b) Otherwise set ωγ = 0 ,
// Non-functional consensus are weighted zero.

3. If stop = false , then set k = k − 1 and go back to 2 ,
// If no functional consensus of size k has been found, then it is necessary to
test smaller sized consensus. The process is thus repeated for size k − 1.

4. Choose γ ∈ C[k|s] randomly, according to the probability:

Pγ =
ωγ

P

γ∈C[k|s] ωγ
,

// Otherwise, choose a functional consensus. Here, the decision is random and
proportional to the consensus belief.

5. At last, set X =
T

i∈γ Yi .
// Publish the sample related to the consensus.

Algorithm without comment.

Conditional arbitrament:

1. Set stop = false and k = s ,

2. For each γ ∈ C[k|s] , do:

a) If
T

i∈γ Yi �= ∅ , then set ωγ =
Q

i∈γ mi(Yi) and stop = true ,

b) Otherwise set ωγ = 0 ,

3. If stop = false , then set k = k − 1 and go back to 2 ,

4. Choose γ ∈ C[k|s] randomly, according to the probability:

Pγ =
ωγ

P

γ∈C[k|s] ωγ
,

5. At last, set X =
T

i∈γ Yi .
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6.5.3 Referee function

Historically, PCR� has been defined by means of an algorithm, not by means of
a formal definition of the referee function. It is however possible to give a formal
definition of the referee function which is equivalent to the algorithm:

FPCR�(X|Y1:s; m1:s) =

s
X

k=1

min
γ∈C[k+1|s]

(

I

"

\

i∈γ

Yi = ∅
#)

× min

8

>

>

>

>

>

<

>

>

>

>

>

:

max
γ∈C[k|s]

(

I

"

\

i∈γ

Yi �= ∅
#)

,

X

γ∈C[k|s]
I

"

X =
\

i∈γ

Yi �= ∅
#

Y

i∈γ

mi(Yi)

X

γ∈C[k|s]
I

"

\

i∈γ

Yi �= ∅
#

Y

i∈γ

mi(Yi)

9

>

>

>

>

>

=

>

>

>

>

>

;

.

(6.11)
Sketch of the proof. The following correspondences are established between the ar-
bitrament algorithm and the referee function:

• The summation
Ps

k=1 is a formalization of the loop from k = s down to k = 1 ,

• At step k, the component:

min
γ∈C[k+1|s]

(

I

"

\

i∈γ

Yi = ∅
#)

ensures that there is not a functional consensus of larger size j > k . Typically,
the component is 0 if a larger sized functional consensus exists, and 1 otherwise.
This component is complementary to the summation, as it formalizes the end
of the loop, when a functional consensus is actually found,

• At step k, the component:

Ω =

X

γ∈C[k|s]
I

"

X =
\

i∈γ

Yi �= ∅
#

Y

i∈γ

mi(Yi)

X

γ∈C[k|s]
I

"

\

i∈γ

Yi �= ∅
#

Y

i∈γ

mi(Yi)

encodes the choice of a functional consensus of size k, proportionally to its
belief. The chosen consensus results in the production of the sample X ,

• At step k, the component:

max
γ∈C[k|s]

(

I

"

\

i∈γ

Yi �= ∅
#)

tests if there is a functional consensus of size k. The component answers 1 if
such consensus exists, and 0 otherwise. It is combined with a minimization of
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the form:

min

(

max
γ∈C[k|s]

(

I

"

\

i∈γ

Yi �= ∅
#)

, Ω

)

, where Ω ≤ 1 .

This is some kind of “if ... then” : if a functional consensus of size k exists, then
the value Ω is computed. Otherwise, it is the value 0 . Since the value Ω encodes
a sampling decision, we have here sampling decision, which is conditioned by
the fact that a functional consensus exists.

The equivalence is a consequence of these correspondences.
�

6.5.4 Variants of PCR�

Actually, card(C[k|s]) =

„

s
k

«

increases quickly when s is great and k is not near 1

or s . As a consequence, PCR� implies hard combinatorics, when used in its general
form. On the other hand, it may be interesting to reject samples, when a consensus
is not possible with a minimal quorum. In order to address such problems, a slight
extension of PCR� is proposed now.

Algorithm.

Let r ∈ [[1, s]] and let k1:r ∈ [[1, s]] be a decreasing sequence such that:

s ≥ k1 > · · · > kr ≥ 1 .

For convenience, the undefined object k0 is actually defined by:

k0 = s + 1 ,

so as to ensure:

min
γ∈C[k0|s]

(

I

"

\

i∈γ

Yi = ∅
#)

= 1

Then, the rule PCR�[k1:r] is defined by the following algorithm.

Conditional arbitrament:

1. Set stop = false and h = 1 ,

2. For each γ ∈ C[kh|s] , do:

a) If
T

i∈γ Yi �= ∅ , then set ωγ =
Q

i∈γ mi(Yi) and stop = true ,

b) Otherwise set ωγ = 0 ,

3. If stop = false , then:
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a) set h = h + 1 ,

b) If h ≤ r, go back to 2 ,

4. If h > r, then reject the entries and end,

5. Otherwise, choose γ ∈ C[kh|s] randomly, according to the probability:

Pγ =
ωγ

P

γ∈C[kh|s] ωγ
,

6. Set X =
T

i∈γ Yi . and end.

Referee function

FPCR�[k1:r](X|Y1:s; m1:s) =

I [X = ∅] min
γ∈C[kr |s]

(

I

"

\

i∈γ

Yi = ∅
#)

+

r
X

h=1

min
γ∈C[kh−1|s]

(

I

"

\

i∈γ

Yi = ∅
#)

× min

8

>

>

>

>

>

<

>

>

>

>

>

:

max
γ∈C[kh|s]

(

I

"

\

i∈γ

Yi �= ∅
#)

,

X

γ∈C[kh|s]
I

"

X =
\

i∈γ

Yi �= ∅
#

Y

i∈γ

mi(Yi)

X

γ∈C[kh|s]
I

"

\

i∈γ

Yi �= ∅
#

Y

i∈γ

mi(Yi)

9

>

>

>

>

>

=

>

>

>

>

>

;

.

proof is left to the reader.

PCR6 and PCR�. Assume that PCR6 is applied to s entries m1:s . Then:

PCR6=PCR�[s, 1]

DST and PCR�. Assume that DST is applied to s entries m1:s . Then:

DST=PCR�[s]

Variant with truncation and rejection. Let r ∈ [[1, s]] . The rule PCR�[s, s−
1, · · · , r] will search for maximally sized functional consensus. If it is not possible to
find functional consensus with size greater or equal to r , the algorithm rejects the
entries.

Variant with truncation and final mean decision. Let r ∈ [[1, s]] . The
rule PCR�[s, s − 1, · · · , r, 1] will search for maximally sized functional consensus. If
it is not possible to find functional consensus with size greater or equal to r , the
algorithm choose an entry proportionally to its belief.
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6.6 Numerical examples

It is assumed:

GΘ = {∅, {a}, {b}, {c}, {b, c}, {c, a}, {a, b}, {a, b, c}} .

Various examples of bba’s, m1:s , are considered on GΘ and fused by means of rules
based on different referee functions. The fused rule, m = ⊕[m1:s|F ], is computed both
mathematically or by means of the sampler. When the fusion is obtained by sampling
a particle cloud, the fused bba estimate is deduced from an empirical averaging. The
complete process arises as follows:

1. Repeat from n = 1 to n = N :

a) Generate the particle Xn ∈ GΘ by sampling ⊕[m1:s|F ] ,

b) If the sampling process failed, then set Xn = rejected ,

2. Compute bz, the estimate of z, by setting bz =
1

N

N
X

n=1

I [Xn = rejected] ,

3. For any X ∈ GΘ, compute bm(X), the estimate of m(X), by:

bm(X) =
1

N(1− bz)

N
X

n=1

I [Xn = X] .

It is known that the accuracy of this estimate is of the magnitude of 1√
N

. Typically,

when the rejection rate is zero, i.e. z = 0, the variance σ(bm(X)) is given by:

σ(m(X)) =

r

m(X) · (1− m(X))

N
.

6.6.1 Convergence

Example 1. The bba’s m1 and m2 are defined by:

m1({a, b}) = 0.2 , m1({a, c}) = 0.4 , m1({b, c}) = 0.3 , m1({a, b, c}) = 0.1 ,

m2({a, b}) = 0.4 , m2({a, c}) = 0.2 , m2({b, c}) = 0.3 , m2({a, b, c}) = 0.1 .

These bba’s are fused by means of DST, resulting in m = mDST:

z = 0, m({a}) = 0.2, m({b}) = 0.18, m({a, b}) = 0.14, m({c}) = 0.18,
m({a, c}) = 0.14, m({b, c}) = 0.15, m({a, b, c}) = 0.01.

The estimate bm of m is obtained by the following process:

1. Repeat from n = 1 to =n = N :

a) Generate Y1 and Y2 by means of m1 and m2 respectively,
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b) If Y1 ∩ Y2 = ∅ , then set Xn = rejected ,

c) Otherwise, set Xn = Y1 ∩ Y2 ,

2. Set bz =
1

N

N
X

n=1

I [Xn = rejected] ,

3. For any X ∈ GΘ , compute bm(X) by:

bm(X) =
1

N(1− bz)

N
X

n=1

I [Xn = X] .

The following table compares the empirical estimates of m, computed by means of
particle clouds of different sizes N :

log10 N 1 2 3 4 5 6 7 8 ∞
bz 0 0 0 0 0 0 0 0 0
bm({a}) 0.2 0.18 0.202 0.201 0.200 0.200 0.200 0.200 0.2
bm({b}) 0.1 0.19 0.173 0.182 0.181 0.180 0.180 0.180 0.18
bm({a, b}) 0.3 0.14 0.139 0.138 0.139 0.140 0.140 0.140 0.14
bm({c}) 0.1 0.15 0.179 0.177 0.181 0.180 0.180 0.180 0.18
bm({a, c}) 0.3 0.17 0.141 0.136 0.140 0.140 0.140 0.140 0.14
bm({b, c}) 0 0.15 0.153 0.155 0.149 0.150 0.150 0.150 0.15
bm({a, b, c}) 0 0.02 0.013 0.011 0.010 0.010 0.010 0.010 0.01

For this choice of m1 and m2, there is no conflict. The theoretical accuracy defined
previously thus applies. The results are compliant with the theoretical accuracy.

Example 2. This is an example with rejection. The bba’s m1 and m2 are defined
by:

m1({a}) = 0.4 , m1({a, b}) = 0.5 , m1({a, b, c}) = 0.1 ,

m2({c}) = 0.4 , m2({b, c}) = 0.5 , m2({a, b, c}) = 0.1 .

These bba’s are fused by means of DST, resulting in m = mDST:

z = 0.56, m({a}) = 0.091, m({b}) = 0.568, m({a, b}) = 0.114, m({c}) = 0.091,
m({b, c}) = 0.114, m({a, b, c}) = 0.022.

The estimate bm of m is obtained by the same process as for example 1. The following
table compares the empirical estimates of m, computed by means of particle clouds
of different sizes N :

log10 N 1 2 3 4 5 6 7 8 ∞
bz 0.7 0.6 0.56 0.558 0.560 0.559 0.560 0.560 0.56
bm({a}) 0.667 0.15 0.109 0.088 0.092 0.090 0.091 0.091 0.091
bm({b}) 0 0.375 0.573 0.565 0.566 0.569 0.568 0.568 0.568
bm({a, b}) 0 0.125 0.107 0.114 0.114 0.114 0.114 0.114 0.114
bm({c}) 0.333 0.225 0.091 0.091 0.091 0.091 0.091 0.091 0.091
bm({b, c}) 0 0.125 0.107 0.125 0.115 0.114 0.114 0.114 0.114
bm({a, b, c}) 0 0 0.013 0.017 0.022 0.022 0.022 0.022 0.022
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Notice that the theoretical accuracy should be corrected, since z > 0 .

Example 3. The bba’s m1 and m2 are defined by:

m1({a}) = 0.5 , m1({a, b}) = 0.1 , m1({a, b, c}) = 0.4 ,

m2({c}) = 0.3 , m2({a, c}) = 0.3 , m2({a, b, c}) = 0.4 .

These bba’s are fused by means of PCR6, resulting in m = mPCR6:

m({a}) = 0.385, m({b}) = 0.04, m({a, b}) = 0.007, m({c}) = 0.199,
m({a, c}) = 0.12, m({b, c}) = 0.249.

It is noticed that z = 0 in this case of PCR6. Then, the estimate bm is obtained by
the following process:

1. Repeat from n = 1 to =n = N :

a) Generate Y1 and Y2 by means of m1 and m2 respectively,

b) If Y1 ∩ Y2 �= ∅ , then set Xn = Y1 ∩ Y2 ,

c) Otherwise, do:

i. Compute θ = m1(Y1)
m1(Y1)+m2(Y2)

,

ii. Generate a random number x uniformly distributed on [0, 1],

iii. If x < θ, set Xn = Y1 ; otherwise, set Xn = Y2 ,

2. For any X ∈ GΘ , compute bm(X) by:

bm(X) =
1

N

N
X

n=1

I [Xn = X] .

The following table compares the empirical estimates of m, computed by means of
particle clouds of different sizes N :

log10 N 1 2 3 4 5 6 7 8 ∞
m({a}) 0.7 0.41 0.39 0.388 0.382 0.384 0.385 0.385 0.385
m({b}) 0.1 0.08 0.045 0.041 0.040 0.040 0.040 0.040 0.040
m({a, b}) 0 0.01 0.008 0.008 0.008 0.008 0.007 0.007 0.007
m({c}) 0.2 0.13 0.19 0.198 0.200 0.199 0.199 0.199 0.199
m({a, c}) 0 0.12 0.108 0.121 0.121 0.120 0.120 0.120 0.12
m({b, c}) 0 0.25 0.259 0.244 0.249 0.249 0.249 0.249 0.249
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6.6.2 Comparative tests

Example 4. It is assumed 3 bba’s m1:3 on GΘ defined by:

m1({a, b}) = m2({a, c}) = m3({c}) = 1 .

The bba’s m1 and m3 are incompatible. However, m2 is compatible with both m1

and m3 , which implies that a partial consensus is possible between m1 and m2 or
between m2 and m3 . As a consequence, PCR� should provide better answers by
allowing partial combinations of the bba’s. The fusion of the 3 bba’s are computed
respectively by means of DST, PCR6 and PCR� , and the results confirm the intuition:

• zDST = 1 and mDST is undefined,

• mPCR6({a, b}) = mPCR6({a, c}) = mPCR6({c}) = 1
3

,

• mPCR�({a}) = mPCR�({c}) = 1
2

derived from the consensus {a, b} ∩ {a, c} ,
{a, c} ∩ {c} and their beliefs m1({a, b})m2({a, c}) , m2({a, c})m3({c}).

Example 5. It is assumed 3 bba’s m1:3 on GΘ defined by:

m1({a}) = 0.6 , m1({a, b}) = 0.4 ,

m2({a}) = 0.3 , m2({a, c}) = 0.7 ,

m3({b}) = 0.8 , m3({a, b, c}) = 0.2 .

The computation of PCR� is done step by step:

Full consensus. Full functional consensus are:

Y1 {a, b} {a, b} {a} {a}
Y2 {a, c} {a} {a, c} {a}
Y3 {a, b, c}{a, b, c}{a, b, c}{a, b, c}
T

i Yi {a} {a} {a} {a}
Q

i mi(Yi) 0.056 0.024 0.084 0.036

Partial consensus sized 2. Then the possible partial consensus are:

Y1 {a, b} {a, b} {a} {a}
Y2 {a, c} {a} {a, c} {a}
Y3 {b} {b} {b} {b}

Y1 ∩ Y2 {a} {a} {a} {a}
Y2 ∩ Y3 ∅ ∅ ∅ ∅
Y3 ∩ Y1 {b} {b} ∅ ∅
m2(Y2)

m2(Y2)+m3(Y3)
0.467 0.273 1 1

m3(Y3)
m2(Y2)+m3(Y3)

0.533 0.727 0 0
Q

i mi(Yi) 0.224 0.096 0.336 0.144
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Notice that there is never a 2-sized consensus involving the pair (Y2, Y3) . As a
consequence, the belief ratios for the partial consensus, i.e.:

ωγ =

I

"

\

i∈γ

Yi �= ∅
#

Y

i∈γ

mi(Yi)

X

γ′∈C[2|3]
I

2

4

\

i∈γ′

Yi �= ∅

3

5

Y

i∈γ′

mi(Yi)

for γ ∈ C[2|3] ,

are simplified as follows:
8

<

:

ω{1,2} = m1(Y1)m2(Y2)
m1(Y1)m2(Y2)+m3(Y3)m1(Y1)

= m2(Y2)
m2(Y2)+m3(Y3)

,

ω{1,3} = m3(Y3)m1(Y1)
m1(Y1)m2(Y2)+m3(Y3)m1(Y1)

= m3(Y3)
m2(Y2)+m3(Y3)

,

The case γ = {2, 3} does not hold.

1-sized consensus. There is no remaining 1-sized consensus.

Belief compilation. The different cases resulted in only two propositions, i.e. {a}
and {b}. By combining the entry beliefs

Q

i mi(Yi) and ratio beliefs, the fused bba
m = mPCR� is then deduced:

m({a}) = 0.056 + 0.024 + 0.084 + 0.036 + 0.467 × 0.224
+ 0.273 × 0.096 + 1× 0.336 + 1× 0.144 = 0.811 ,

m({b}) = 0.533 × 0.224 + 0.727 × 0.096 = 0.189 .

As a conclusion:

mPCR�({a}) = 0.811 and mPCR�({b}) = 0.189 .

It is noticed that z = 0 for this general case of PCR�. Then, the estimate bm is
obtained by the following process, working for any choice of m1:3 :

1. Repeat from n = 1 to =n = N :

a) Generate Y1 , Y2 and Y3 by means of m1 , m2 and m3 respectively,

b) If Y1 ∩ Y2 ∩ Y3 �= ∅ , then set Xn = Y1 ∩ Y2 ∩ Y3 and return,

c) If (Y1 ∩ Y2) ∪ (Y1 ∩ Y3) ∪ (Y2 ∩ Y3) �= ∅ , then do:

i. For any γ ∈ C[2|3] =
˘

{1, 2}, {1, 3}, {2, 3}
¯

, do:

A. If
\

i∈γ

Yi = ∅, then set ωγ = 0 ,

B. Otherwise, set ωγ =
Y

i∈γ

mi(Yi) ,

ii. For any γ ∈ C[2|3], set ωγ =
ωγ

P

γ′∈C[2|3] ωgamma′
,

iii. Choose γ ∈ C[2|3] randomly accordingly to the probability ω ,
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iv. Set Xn =
\

i∈γ

Yi

v. return,

d) Otherwise, do:

i. Compute ωi =
mi(Yi)

m1(Y1) + m2(Y2) + m3(Y3)
,

ii. Choose k ∈ {1, 2, 3} randomly accordingly to the probability ω ,

iii. Set Xn = Yk ,

iv. return,

2. For any X ∈ GΘ , compute bm(X) by:

bm(X) =
1

N

N
X

n=1

I [Xn = X] .

The following table compares the empirical estimates of m, computed by means of
particle clouds of different sizes N :

log10 N 1 2 3 4 5 6 7 8 ∞
m({a}) 1 0.77 0.795 0.812 0.812 0.811 0.811 0.811 0.811
m({b}) 0 0.23 0.205 0.188 0.188 0.189 0.189 0.189 0.189

These results could be compared to DST and PCR6:

• zDST = 0.8 and mDST({a}) = 1,

• mPCR6({a}) = 0.391 , mPCR6({b}) = 0.341 ,
mPCR6({a, b}) = 0.073 , mPCR6({a, c}) = 0.195 ,

DST produces highly conflicting results, since source 3 conflicts with the other
sources. However, there are some partial consensus which allow the answer {b} .
DST is blind to these partial consensus. On the other hand, PCR6 is able to handle
hypothesis {b} , but is too much optimistic and, still, is unable to fuse partial con-
sensus. Consequently, PCR6 is also unable to diagnose the high inconstancy of belief
m3({b}) = 0.8 .

6.7 Conclusion

This chapter has investigated a new framework for the definition and interpreta-
tion of fusion rules of evidences. This framework is based on the new concept of
referee function. A referee function models an arbitrament process conditionally to
the contributions of several independent sources of information. It has been shown
that fusion rules based on the concept of referee functions have a straightforward
sampling-based implementation. As a consequence, a referee function has a natural
algorithmic interpretation. Owing to the algorithmic nature of referee functions, the
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conception of new rules of fusion is made easier and intuitive. Examples of exist-
ing fusion rules have been implemented by means of referee functions. Moreover, an
example of rule construction has been provided on the basis of an arbitrament algo-
rithm. The new rule is a quite general extension of both PCR6 and Dempster-Shafer
rule. This chapter also addresses the issue of fusion rule approximation. There are
cases for which the fusion computation is prohibitive. The sampling process implied
by the referee function provides a natural method for the approximation and the
computation speed-up. There are still many questions and improvements to be ad-
dressed. For example, samples regularization techniques may reduce possible samples
degeneration thus allowing smaller particles clouds. Some theoretical questions are
also pending; especially, the algebraic properties of the referee functions have almost
not been studied. However, this preliminary work is certainly promising for future
applications.
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7.1 Introduction

Today the belief function theory initiated by [6, 26] is recognized to propose one of the
more complete theories for human reasoning under uncertainty, and has been applied
in many kinds of applications [32]. This theory is based on the use of functions defined
on the power set 2Θ (the set of all the subsets of Θ), where Θ is the set of considered
elements (called discernment space), whereas the probabilities are defined only on Θ.
A mass function or basic belief assignment , m is defined by the mapping of the power
set 2Θ onto [0, 1] with:

X

X∈2Θ

m(X) = 1. (7.1)

One element X of 2Θ, such as m(X) > 0, is called focal element. The set of focal
elements for m is noted Fm. A mass function where Θ is a focal element, is called a
non-dogmatic mass functions.

One of the main goals of this theory is the combination of information given
by many experts. When this information can be written as a mass function, many
combination rules can be used [23]. The first combination rule proposed by Dempster
and Shafer is the normalized conjunctive combination rule given for two basic belief
assignments m1 and m2 and for all X ∈ 2Θ, X �= ∅ by:

mDS(X) =
1

1− k

X

A∩B=X

m1(A)m2(B), (7.2)

where k =
X

A∩B=∅
m1(A)m2(B) is the inconsistency of the combination (generally

called conflict).

However the high computational complexity, especially compared to the probabi-
lity theory, remains a problem for more industrial uses. Of course, higher the cardi-
nality of Θ is, higher the complexity becomes [38]. The combination rule of Dempster
and Shafer is #P -complete [25]. Moreover, when combining with this combination
rule, non-dogmatic mass functions, the number of focal elements can not decrease.

Hence, we can distinguish two kinds of approaches to reduce the complexity of the
belief function framework. First we can try to find optimal algorithms in order to code
the belief functions and the combination rules based on Möbius transform [18, 33]
or based on local computations [28] or to adapt the algorithms to particulars mass
functions [3, 27]. Second we can try to reduce the number of focal elements by
approximating the mass functions [4, 9, 16, 17, 36, 37], that could be particularly
important for dynamic fusion.

In practical applications the mass functions contain at first only few focal elements
[1, 7]. Hence it seems interesting to only work with the focal elements and not with
the entire space 2Θ. That is not the case in all general developed algorithms [18, 33].

Now if we consider the extension of the belief function theory proposed by [10],
the mass function is defined on the extension of the power set into the hyper-power
set DΘ (that is the set of all the disjunctions and conjunctions of the elements of
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Θ). This extension can be seen as a generalization of the classical approach (and it
is also called DSmT for Dezert and Smarandache Theory [29, 30]). This extension is
justified in some applications such as in [20, 21]. Try to generate DΘ is not easy and
becomes untractable for more than 6 elements in Θ [11].

In [12], a first proposition has been proposed to order elements of hyper-power
set for matrix calculus such as [18, 33] made in 2Θ. But as we said herein, in real
applications it is better to only manipulate the focal elements. Hence, some authors
propose algorithms considering only the focal elements [9, 15, 22]. In the previous
volume [15, 30] have proposed MATLABTM codes for DSmT hybrid rule. These
codes are a preliminary work, but first it is really not optimized for MATLABTM and
second have been developed for a dynamic fusion.

MATLABTM is certainly not the best program language to reduce the speed of
processing, however most of people using belief functions do it with MATLABTM.

In this chapter, we propose a codification of the focal elements based on a cod-
ification of Θ in order to program easily in MATLABTM a general belief function
framework working for belief functions defined on 2Θ but also on DΘ.

Hence, in the following section we recall a short background of belief function
theory. In section 7.3 we introduce our practical codification for a general belief
function framework. In this section, we describe all the steps to fuse basic belief
assignments in the order of necessity: the codification of Θ, the addition of the
constraints, the codification of focal elements, the step of combination, the step of
decision, if necessary the generation of a new power set: the reduced hyper-power set
DΘ

r and for the display, the decoding. We particularly investigate the step of the
decision for the DSmT. In section 7.5 we give the major part of the MATLABTM

codes of this framework.

7.2 Short background on theory of belief functions

In the DSmT, the mass functions m are defined by the mapping of the hyper-power
set DΘ onto [0, 1] with:

X

X∈DΘ

m(X) = 1. (7.3)

In the more general model, we can add constraints on some elements of DΘ,
that means that some elements can never be focal elements. Hence, if we add the
constraints that all the intersections of elements of Θ are impossible (i.e. empty) we
recover 2Θ. So, the constraints given by the application can drastically reduce the
number of possible focal elements and so the complexity of the framework. On the
contrary of the suggestion given by the flowchart on the cover of the book [29] and the
proposed codes in [15], we think that the constraints must be integrated directly in
the codification of the focal elements of the mass functions as we shown in section 7.3.
Hereunder, the hyper-power set DΘ taking into account the constraints is called the
reduced hyper-power set and noted DΘ

r . Hence, DΘ
r can be DΘ, 2Θ, have a cardinality

between these two power sets or inferior to these two power sets. So the normality
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condition is given by:
X

X∈DΘ
r

m(X) = 1, (7.4)

where we consider less terms in the sum than in the equation (7.3).
Once the mass functions coming from numerous sources are defined, many combi-

nation rules are possible (see [5, 20, 23, 31, 35] for recent reviews of the combination
rules). Most of the combination rules are based on the conjunctive combination rule,
given for mass functions defined on 2Θ by:

mc(X) =
X

Y1∩...∩Ys=X

s
Y

j=1

mj(Yj), (7.5)

where Yj ∈ 2Θ is the response of the source j, and mj(Yj) the corresponding basic
belief assignment. This rule is commutative, associative, not idempotent, and the
major problem which the majority of the rules try to resolve is the increase of the
belief on the empty set with the number of sources and the cardinality of Θ [19].
Now, in DΘ without any constraint, there is no empty set, and the conjunctive rule
given by the equation (7.5) for all X ∈ DΘ with Yj ∈ DΘ

r can be used. If we have
some constraints, we must transfer the belief mc(∅) on other elements of the reduced
hyper-power set. There is no optimal combination rule, and we cannot achieve this
optimality for general applications.

The last step in a general framework for information fusion system is the decision
step. The decision is also a difficult task because no measures are able to provide the
best decision in all the cases. Generally, we consider the maximum of one of the three
functions: credibility, plausibility, and pignistic probability. Note that other decision
functions have been proposed [13].

In the context of the DSmT the corresponding generalized functions have been
proposed [14, 29]. The generalized credibility Bel is defined by:

Bel(X) =
X

Y ∈DΘ
r ,Y ⊆X,Y 
≡∅

m(Y ) (7.6)

The generalized plausibility Pl is defined by:

Pl(X) =
X

Y ∈DΘ
r ,X∩Y 
≡∅

m(Y ) (7.7)

The generalized pignistic probability is given for all X ∈ DΘ
r , with X �= ∅ is defined

by:

GPT(X) =
X

Y ∈DΘ
r ,Y 
≡∅

CM(X ∩ Y )

CM (Y )
m(Y ), (7.8)

where CM(X) is the DSm cardinality corresponding to the number of parts of X in
the Venn diagram of the problem [14, 29] associated with a model M. Generally in
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2Θ, the maximum of these functions is taken on the elements in Θ. In this case, with
the goal to reduce the complexity we only have to calculate these functions on the
singletons. However, first, there exist methods providing decision on 2Θ such as in [2]
and that can be interesting in some application [24], and secondly, the singletons are
not the more precise elements on DΘ

r . Hence, to calculate these functions on the
entire reduced hyper-power set could be necessary, but the complexity could not be
inferior to the complexity of DΘ

r and that can be a real problem if there are a few
constraints.

7.3 A general belief function framework

We introduce here a practical codification in order to consider all the previous remarks
to reduce the complexity:

• only manipulate focal elements,

• add constraints on the focal elements before combination, and so work on DΘ
r ,

• a codification easy for union and intersection operations with programs such
as MATLABTM.

We first give the simple idea of the practical codification for enumerating the
distinct parts of the Venn diagram and therefore a codification of the discernment
space Θ. Then we explain how simply add the constraints on the distinct elements
of Θ and how to do the codification of the focal elements. The subsections 7.3.4
and 7.3.5 show how to combine and decide with this practical codification, giving
a particular reflexion on the decision in DSmT. The subsection 7.3.6 presents the
generation of DΘ

r and the subsection 7.3.7 the decoding.

7.3.1 A practical codification

The simple idea of the practical codification is based on the affectation of an integer
number in [1; 2n − 1] to each distinct part of the Venn diagram that contains 2n − 1
distinct parts with n = |Θ|. The figures 7.1 and 7.2 illustrate the codification for
respectively Θ = {θ1, θ2, θ3} and Θ = {θ1, θ2, θ3, θ4} with the code given in section 7.5.
Of course other repartitions of these integers are possible.

Hence, for example the element θ1 is given by the concatenation of 1, 2, 3 and 5
for |Θ| = 3 and by the concatenation of 1, 2, 3, 4, 6, 7, 9 and 12 for |Θ| = 4. We will
note respectively θ1 = [1 2 3 5] and θ1 = [1 2 3 4 6 7 9 12] for |Θ| = 3 and for |Θ| = 4,
with increasing order of the integers. Hence, Θ is given respectively for |Θ| = 3 and
|Θ| = 4 by:

Θ = {[1 2 3 5], [1 2 4 6], [1 3 4 7]}
and

Θ = {[1 2 3 4 6 7 9 12], [1 2 3 5 6 8 10 13], [1 2 4 5 7 8 11 14], [1 3 4 5 9 10 11 15]}.
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Figure 7.1: Codification for Θ = {θ1, θ2, θ3}.

The number of integers for the codification of one element θi ∈ Θ is given by:

1 +

n−1
X

i=1

Ci
n−1, (7.9)

with n = |Θ| and Cp
n the number of p-uplets with n numbers. The number 1 will be

always by convention be the intersection of all the elements of Θ. The codification of
θ1 ∩ θ3 is given by [1 3] for |Θ| = 3 and [1 2 4 7] for |Θ| = 4. And the codification of
θ1 ∪ θ3 is given by [1 2 3 4 5 7] for |Θ| = 3 and [1 2 3 4 6 7 9 12] for |Θ| = 4.

In order to reduce the complexity, especially using more hardware language than
MATLABTM, we could use binary numbers instead of the integer numbers.

The Smarandache’s codification [11], was introduced for the enumeration of dis-
tinct parts of a Venn diagram. If |Θ| = n, < i > denotes the part of θi with no
covering with other θj , i �= j. < ij > denotes the part of θi ∩ θj with no covering
with other parts of the Venn diagram. So if n = 2, θ1 ∩ θ2 = {< 12 >} and if n = 3,
θ1 ∩ θ2 = {< 12 >, < 123 >}, see the figure 7.3 for an illustration for n = 3. The
authors note a problem for n ≥ 10, but if we introduce space in the codification we
can conserve integers instead of other symbols and we write < 1 2 3 > instead of
< 123 >.

Contrary to the Smarandache’s codification, the proposed codification gives only
one integer number to each part of the Venn diagram. This codification is more
complex for the reader then the Smarandache’s codification. Indeed, the reader can
understand directly the Smarandache’s codification thanks to the meaning of the
numbers knowing the n: each disjoint part of the Venn diagram is seen as an inter-
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Figure 7.2: Codification for Θ = {θ1, θ2, θ3, θ4}.

section of the elements of Θ. More exactly, this is a part of the intersections. For
example, θ1 ∩ θ2 is given with the Smarandache’s codification by {< 12 >} if n = 2
and by {< 12 >, < 123 >} if n = 3. With the practical codification the same element
has also different codification according to the number n. For the previous example
θ1 ∩ θ2 is given by [1] if n = 2, and by [1 2] if n = 3.

The proposed codification is more practical for computing union and intersection
operations and the DSm cardinality, because only one integer represents one of the
distinct parts of the Venn diagram. With Smarandache’s codification computing
union and intersection operations and the DSm cardinality could be very similar
than with the practical codification, but adding a routine in order to treat the code
of one part of the Venn diagram.

Hence, we propose to use the proposed codification to compute union, intersection
and DSm cardinality, and the Smarandache’s codification, easier to read, to present
the results in order to save eventually a scan of DΘ

r .
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Figure 7.3: Smarandache’s codification for Θ = {θ1, θ2, θ3}.

7.3.2 Adding constraints

With this codification, adding constraints is very simple and can reduce rapidly the
number of integers. For example assume that in a given application we know θ1∩θ3 ≡
∅ (i.e. θ1 ∩ θ3 /∈ DΘ

r ), that means that the integers [1 3] for |Θ| = 3 and [1 2 4 7]
for |Θ| = 4 do not exist. Hence, the codification of Θ with the reduced discernment
space, noted Θr, is given respectively for |Θ| = 3 and |Θ| = 4 by:

Θr = {[2 5], [2 4 6], [4 7]}

and

Θr = {[3 6 9 12], [3 5 6 8 10 13], [5 8 11 14], [3 5 9 10 11 15]}.
Generally we have |Θ| = |Θr|, but it is not necessary if a constraint gives θi ≡ ∅, with
θi ∈ Θ. This can happen in dynamic fusion, if one element of the discernment space
can disappear.

Thereby, the introduction of the simple constraint θ1 ∩ θ3 ≡ ∅ in Θ, includes all
the other constraints that follow from it such as the intersection of all the elements
of Θ is empty. In [15] all the constraints must be given by the user.

7.3.3 Codification of the focal elements

In DΘ
r , the codification of the focal elements is given from the reduced discernment

space Θr. The codification of an union of two elements of Θ is given by the con-
catenation of the codification of the two elements using Θr. The codification of an
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intersection of two elements of Θ is given by the common numbers of the codifica-
tion of the two elements using Θr. In the same way, the codification of an union of
two focal elements is given by the concatenation of the codification of the two focal
elements and the codification of an intersection of two focal elements is given by the
common numbers of the codification of the two focal elements. In fact, for union and
intersection operations we only consider one element as the set of the numbers given
in its codification.

Hence, with the previous example (we assume θ1 ∩ θ3 ≡ ∅, with |Θ| = 3 or
|Θ| = 4), if the following elements θ1 ∩ θ2, θ1 ∪ θ2 and (θ1 ∩ θ2) ∪ θ3 are some focal
elements, there are coded for |Θ| = 3 by:

θ1 ∩ θ2 = [2],

θ1 ∪ θ2 = [2 4 5 6],

(θ1 ∩ θ2) ∪ θ3 = [2 4 7],

and for |Θ| = 4 by:
θ1 ∩ θ2 = [3 6],

θ1 ∪ θ2 = [3 5 6 8 9 10 12 13],

(θ1 ∩ θ2) ∪ θ3 = [3 5 6 8 11 14].

The DSm cardinality CM(X) of one focal element X is simply given by the number
of integers in the codification of X. The DSm cardinality of one singleton is given
by the equation (7.9), only if there is no constraint on the singleton, and is inferior
otherwise.

The previous example with the focal element (θ1 ∩ θ2) ∪ θ3 illustrates well the
easiness to deal with the brackets in one expression. The codification of the focal
elements can be made with any brackets.

7.3.4 Combination

In order to manage only the focal elements and their associated basic belief assign-
ment, we can use a list structure [9, 15, 22]. The intersection and union operations
between two focal elements coming from two mass functions are made as described
before. If the intersection between two focal elements is empty the associated cod-
ification is [ ]. Hence the conjunctive combination rule algorithm can be done by
algorithm 1. The disjunctive combination rule algorithm is exactly the same by
changing ∩ in ∪.

Once again, the interest of the codification is for the intersection and union op-
erations. Hence in MATLABTM, we do not need to redefine these operations as
in [15].

For more complicated combination rules such as PCR6, we have generally to con-
serve the intermediate calculus in order to transfer the partial conflict. Algorithms
for these rules have been proposed in [22], and MATLABTM codes are given in sec-
tion 7.5.
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Algorithm 1: Conjunctive rule

Data: n experts ex: ex[1] . . . ex[n], ex[i].focal, ex[i].bba
Result: Fusion of ex by conjunctive rule: conj
extmp ← ex[1];
for e = 2 to n do

comb ← ∅;
foreach foc1 in extmp.focal do

foreach foc2 in ex[e].focal do
tmp ← extmp.focal(foc1) ∩ ex[e].focal(foc2);
comb.focal ← tmp;
comb.bba ← extmp.bba(foc1)× ex[e].bba(foc2);

Concatenate same focal in comb;
extmp ← comb;

conj ← extmp;

7.3.5 Decision

As we wrote before, we can decide with one of the functions given by the equa-
tions (7.6), (7.7), or (7.8). These functions are increasing functions. Hence generally
in 2Θ, the decision is taken on the elements in Θ by the maximum of these functions.
In this case, with the goal to reduce the complexity, we only have to calculate these
functions on the singletons. However, first, we can provide a decision on any element
of 2Θ such as in [2] that can be interesting in some applications [24], and second, the
singletons are not the more precise or interesting elements on DΘ

r . The figures 7.4
and 7.5 show the DSm cardinality CM(X), ∀X ∈ DΘ with respectively |Θ| = 3 and
|Θ| = 4. The specificity of the singletons (given by the DSm cardinality) appears at
a central position in the set of the specificities of the elements in DΘ.

Hence, to calculate these decision functions on all the reduced hyper-power set
could be necessary, but the complexity could not be inferior to the complexity of DΘ

r

and that can be a real problem. The more reasonable approach is to consider either
only the focal elements or a subset of DΘ

r on which we calculate decision functions.

7.3.5.1 Extended weighted approach

Generally in 2Θ, the decisions are only made on the singletons [8, 34], and only a few
approaches propose a decision on 2Θ. In order to provide decision on any elements
of DΘ

r , we can first extend the principle of the proposed approach in [2] on DΘ
r . This

approach is based on the weighting of the plausibility with a Bayesian mass function
taking into account the cardinality of the elements of 2Θ.

In a general case, if there is no constraint, the plausibility is not interesting
because all elements contain the intersection of all the singletons of Θ. According to
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Figure 7.4: DSm cardinality CM(X), ∀X ∈ DΘ with |Θ| = 3.

the constraints the plausibility could be used.
Hence, we generalize here the weighted approach to DΘ

r for every decision func-
tion fd (plausibility, credibility, pignistic probability, ...). We note fwd the weighted
decision function given for all X ∈ DΘ

r by:

fwd(X) = md(X)fd(X), (7.10)

where md is a basic belief assignment given by:

md(X) = KdλX

„

1

CM(X)s

«

, (7.11)

s is a parameter in [0, 1] allowing a decision from the intersection of all the singletons
(s = 1) (instead of the singletons in 2Θ) until the total indecision Θ (s = 0). λX

allows the integration of the lack of knowledge on one of the elements X in DΘ
r . The

constant Kd is the normalization factor giving by the condition of the equation (7.4).
Thus we decide the element A:

A = arg max
X∈DΘ

r

fwd(X), (7.12)

If we only want to decide on whichever focal element of DΘ
r , we only consider

X ∈ Fm and we decide:
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Figure 7.5: DSm cardinality CM (X), ∀X ∈ DΘ with |Θ| = 4.

A = arg max
X∈Fm

fwd(X), (7.13)

with fwd given by the equation (7.10) and:

md(X) = KdλX

„

1

CM(X)s

«

, ∀X ∈ Fm, (7.14)

s and Kd are the two parameters defined above.

7.3.5.2 Decision according to the specificity

The cardinality CM(X) can be seen as a specificity measure of X. The figures 7.4
and 7.5 show that for a given specificity there is different kind of elements such as
singletons, unions of intersections or intersections of unions. The figure 7.6 shows well
the central role of the singletons (the DSm cardinality of the singletons for |Θ|=5
is 16), but also that there are many other elements (619) with exactly the same
cardinality. Hence, it could be interesting to precise the specificity of the elements
on which we want to decide. This is the role of s in the Appriou approach. Here we
propose to directly give the wanted specificity or an interval of the wanted specificity
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Figure 7.6: Number of elements of DΘ for |Θ| = 5, with the same DSm cardi-
nality.

in order to build the subset of DΘ
r on which we calculate decision functions. Thus we

decide the element A:

A = arg max
X∈Sfd(X),

(7.15)

where fd is the chosen decision function (credibility, plausibility, pignistic probability,
...) and

S =
n

X ∈ DΘ
r ; minS ≤ CM(X) ≤ maxS

o

, (7.16)

with minS and maxS respectively the minimum and maximum of the specificity of
the wanted elements. If minS �= maxS, if have to chose a pondered decision function
for fd such as fwd given by the equation (7.10).

However, in order to find all X ∈ S we must scan DΘ
r . To avoid to scan all DΘ

r ,
we have to find the cardinality of S , but we can only calculate an upper bound of the
cardinality, unfortunately never reached. Let us define the number of elements of the
Venn diagram nV . This number is given by:

nV = CM
 

n
[

i=1

θi

!

, (7.17)
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where n is the cardinality of Θr and θi ∈ Θr. Recall that the DSm cardinality is
simply given by the number of integers of the codification. The upper bound of the
cardinality of S is given by:

|S| <

maxS
X

s=minS

Cs
nV

, (7.18)

where Cs
nV

is the number of combinations of s elements among nV . Note that it also
works if minS = 0 for the empty set.

7.3.6 Generation of DΘ
r

The generation of DΘ
r could have the same complexity than the generation of DΘ if

there is no constraint given by the user. Today, the complexity of the generation of
DΘ is the complexity of the proposed code in [11]. Assume for example, the simple
constraint θ1 ∩ θ2 ≡ ∅. First, the figures 7.7(a) and 7.7(b) show the DSm cardinality
for the elements of DΘ

r with |Θ| = 4 and the previous given constraint. On the left
part of the figure, the elements are ordered by increasing DSm cardinality and on the
right part of the figure with the same order as the figure 7.5. We can observe that the
cardinality of the elements have naturally decreased and the number of non empty
elements also. This is more interesting if the cardinality of Θ is higher. Figure 7.8
presents for a given positive DSm cardinality, the number of elements of DΘ

r for
|Θ| = 5 and with the same constraint θ1 ∩ θ2 ≡ ∅. Compared to figure 7.6, the total
number of non empty elements (the integral of the curve) is considerably lower.

(a) Elements are ordered by increasing
DSm cardinality.

(b) Elements are ordered with the
same order than the figure 7.5.

Figure 7.7: DSm cardinality CM(X), ∀X ∈ DΘ
r with |Θ| = 4 and θ1 ∩ θ2 ≡ ∅.
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Thus, we have to generate DΘ
r and not DΘ. The generation of DΘ (see [11] for

more details) is based on the generation of monotone boolean functions. A monotone
boolean function fmb is a mapping of (x1, ..., xb) ∈ {0, 1}b to a single binary output
such as ∀x, x′ ∈ {0, 1}b, with x � x′ then fmb(x) ≤ fmb(x

′). Hence, a monotone
boolean function is defined by the values of the 2b elements (x1, ..., xb), and there
is |Db| different monotone boolean functions. All the values of all these monotone
boolean functions can be represented by a |Db| × 2b matrix. If we multiply this
matrix by the vector of all the possible intersections of the singletons in Θ with
|Θ| = b (there are 2b intersections) given an union of intersections, we obtain all the
elements of DΘ. We can also use the basis of all the unions of Θ (and obtain the
intersections of unions), but with our codification the unions are coded with more
integer numbers. So, the intersection basis is preferable.

Moreover, if we have some constraints (such as θ1 ∩ θ2 ≡ ∅), some elements of
the intersection basis can be empty. So we only need to generate a |Db| × nb matrix
where nb is the number of non empty intersections of elements in Θr. For example,
with the constraint given in example for |Θ| = 3, the basis is given by: ∅, θ1, θ2, θ3,
θ1 ∩ θ3, θ2 ∩ θ3, and there are no θ1 ∩ θ2 and θ1 ∩ θ2 ∩ θ3.

Hence, the generation of DΘ
r can run very fast if the basis is small, i.e. if there

are some constraints. The MATLABTM code is given in section 7.5.

7.3.7 Decoding

Once the decision on one element A of DΘ
r is taken, we have to transmit this decision

to the human operator. Hence we must to decode the element A (given by the integer
numbers of the codification) in terms of unions and intersections of elements of Θ.
If we know that A is in a subset of elements of DΘ

r given by the operator, we only
have to scan this subset. Now, if the decision A comes from the focal elements (a
priori unknown) or from all the elements of DΘ

r we must scan all DΘ
r with possibly

high complexity. What we propose here is to consider the elements of DΘ
r ordering

with first the elements most encountered in applications. Hence, we first scan the
elements of 2Θ and in the same time the intersection basis that we must build for the
generation of DΘ

r . Then, only if the element is not found we generate DΘ
r and stop

the generation when found (see the section 7.5 for more details).
Smarandache’s codification is an alternative to the decoding because the user can

directly understand it. Hence we can represent the focal element as an union of the
distinct part of the Venn diagram. Smarandache’s codification allows a clear under-
standing of the different parts of the Venn diagram unlike the proposed codification.
This representation of the results (for the combination or the decision) does not need
the generation of DΘ

r . However, if we need to generate DΘ
r according to the strategy

of decision, the decoding will give a better display without more generation of DΘ
r .
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Figure 7.8: Number of elements of DΘ
r for |Θ| = 5 and θ1 ∩ θ2 ≡ ∅, with the

same positive DSm cardinality.

7.4 Concluding remarks

This chapter presents a general belief function framework based on a practical cod-
ification of the focal elements. First the codification of the elements of the Venn
diagram gives a codification of Θ. Then, the eventual constraints are integrated giv-
ing a reduced discernment space Θr. From the space Θr, we obtain the codification
of the focal elements. Hence, we manipulate elements of a reduced hyper-power set
DΘ

r and not the complete hyper-power set DΘ, reducing the complexity according to
the kind of given constraints.

With the practical codification, the step of combination is easily made using union
and intersection functions.

The step of decision was particularly studied, because of the difficulties to decide
on DΘ or DΘ

r . An extension of the approach given in [2] in order to give the possibility
to decide on the unions in 2Θ was proposed. Another approach based on the specificity
was proposed in order to simply choose the elements on which to decide according to
their specificity.

The principal goal of this chapter is to provide practical codes of a general belief
function framework for the researchers and users needing the belief function theory.
However, for sake of clarity, all the MATLABTM codes are not in the listing, but can
be provided on demand to the author. The proposed codes are not optimized either
for MATLABTM, or in general and can still have bugs. All suggestions in order to
improve them are welcome.
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7.5 MATLABTM codes

We give and explain here some MATLABTM codes of the general belief function
framework1. Note that the proposed codes are not optimized either for MATLABTM,
or in general.

First the human operator has to describe the problem (see function 1) giving the
cardinality of Θ, the list of the focal elements and the corresponding bba for each
experts, the eventual constraints (‘ ’ if there is no constraint), the list of elements on
which he wants to obtain a decision and the parameters corresponding to the choice
of combination rule, the choice of decision criterion the mode of fusion (static or
dynamic) and the display. When this is done, he just has to call the fuse function 2.

Function 1. - Command configuration

% description of the problem

CardTheta=4; % cardinality of Theta

% list of experts with focal elements and associated bba

expert(1).focal={’1’ ’1u3’ ’3’ ’1u2u3’};

expert(1).bba=[0.5421 0.2953 0.0924 0.0702];

expert(2).focal={’1’ ’2’ ’1u3’ ’1u2u3’};

expert(2).bba=[0.2022 0.6891 0.0084 0.1003];

expert(3).focal={’1’ ’3n4’ ’1u2u3’};

expert(3).bba=[0.2022 0.6891 0.1087];

constraint={’1n2’ ’1n3’ ’2n3’}; % set of empty elements

elemDec={’F’}; % set of decision elements

%-------------------------------------------------------------

% parameters

criterionComb=1; % combination criterion

criterionDec=0; % decision criterion

mode=’static’; % mode of fusion

display=3; % kind of display

%-------------------------------------------------------------

% fusion

fuse(expert,constraint,CardTheta,criterionComb,criterionDec,...

mode,elemDec,display)

1Copyright c© 2009 Arnaud Martin. May be used free of charge for non commercial
products. Selling without prior written consent is prohibited. Obtain permission before
redistributing.
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The first step of the fuse function 2 is the coding. The cardinality of Θ gives
the codification of the singletons of Θ, thanks to the function 3, then we add the
constraints to Θ with the function 4 and obtain Θr. With Θr, the function 6 calling
the function 5 codes the focal elements of the experts given by the human operator.
The combination is made by the function 7 in static mode. For dynamic fusion,
we just consider one expert with the previous combination. In this case the order
of the experts given by the user can have an important signification. The decision
step is made with the function 11. The last step concerns the display and the hard
problem of the decoding. Thus, 4 choices are possible: no display, the results of the
combination only, the results of decision only and both results. These displays could
take a long time according to the parameters given by the human operator. Hence,
the results of the combination could have the complexity of the generation of DΘ

r and
must be avoided if the user does not need it. The complexity of the decision results
could also be high if the user does not give the exact set of elements on which to
decide, or only the singletons with ‘S’ or on 2Θ with ‘2T’. In other cases, with luck,
the execution time can be short thanks to the function 18.

Function 2. - Fuse function

function fuse(expert,constraint,n,criterionComb,criterionDec,...

...mode,elemDec,display)

% To fuse experts’ opinions

%

% fuse(expert,constraint,n,criterionComb,criterionDec,mode,...

% ...elemDec,display)

%

% Inputs:

% expertC = contains the structure of the list of coded focal

% elements and corresponding bba for all the experts

% constraint = the empty elements

% elemDec = list of elements on which we can decide

% n = size of the discernment space

% criterionComb = is the combination criterion

% criterionComb=1 Smets criterion

% criterionComb=2 Dempster-Shafer criterion (normalized)

% criterionComb=3 Yager criterion

% criterionComb=4 disjunctive combination criterion

% criterionComb=5 Florea criterion

% criterionComb=6 PCR6

% criterionComb=7 Mean of the bbas

% criterionComb=8 Dubois criterion (normalized and

% disjunctive combination)

% criterionComb=9 Dubois and Prade criterion

% (mixt combination)
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% criterionComb=10 Mixt Combination

% (Martin and Osswald criterion)

% criterionComb=11 DPCR (Martin and Osswald criterion)

% criterionComb=12 MDPCR (Martin and Osswald criterion)

% criterionComb=13 Zhang’s rule

%

%

% criterionDec = is the combination criterion

% criterionDec=0 maximum of the bba

% criterionDec=1 maximum of the pignistic probability

% criterionDec=2 maximum of the credibility

% criterionDec=3 maximum of the credibility with reject

% criterionDec=4 maximum of the plausibility

% criterionDec=5 Appriou criterion

% criterionDec=6 DSmP criterion

%

% mode = ’static’ or ’dynamic’

% elemDec = list of elements on which we can decide,

% or A for all, S for singletons only, F for focal elements

% only, SF for singleton plus focal elements, Cm for given

% specificity, 2T for only 2^Theta (DST case)

% display = kind of display

% display = 0 for no display,

% display = 1 for combination display,

% display = 2 for decision display,

% display = 3 for both displays,

% display = 4 for both displays with Smarandache

% codification

%

% Output:

% res = contains the structure of the list of focal elements and

% corresponding bbas for the combinated experts

%

% Copyright (c) 2008 Arnaud Martin

% Coding

[Theta,Scod]=codingTheta(n);

ThetaRed=addConstraint(constraint,Theta);

expertCod=codingExpert(expert,ThetaRed);

%--------

switch nargin

case 1:5
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mode=’static’;

elemDec=ThetaRed;

display=4;

case 6

elemDec=ThetaRed;

display=4;

case 7

elemDec=string2code(elemDec);

display=4;

end

%--------

if (display==1) || (display==2) || (display==3)

[DThetar,D_n]=generationDThetar(ThetaRed);

else

switch elemDec{1}

case {’A’}

[DThetar,D_n]=generationDThetar(ThetaRed);

otherwise

DThetar.s={[]};

DThetar.c={[]};

end

end

%--------

% Combination

if strcmp(mode, ’static’)

[expertComb]=combination(expertCod,ThetaRed,criterionComb);

else % dynamic case

nbexp=size(expertCod,2);

expertTmp(1)=expertCod(1);

for exp=2:nbexp

expertTmp(2)=expertCod(exp);

expertTmp(1)=combination(expertTmp,ThetaRed,...

...criterionComb);

end

expertComb=expertTmp(1);

end

% Decision

[decFocElem]=decision(expertComb,ThetaRed,DThetar.c,...

...criterionDec,elemDec);

% Display

switch display
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case 0

’no display’

case 1

% Result of the combination

sFocal=size(expertComb.focal,2);

focalRec=decodingExpert(expertComb,ThetaRed,DThetar);

focal=code2string(focalRec)

for i=1:sFocal

disp ( [ focal{i},’=’,num2str(expertComb.bba(i)) ] )

end

case 2

% Result of the decision

if isstruct(decFocElem)

focalDec=decodingFocal(decFocElem.focal,elemDec,...

...ThetaRed);

disp([’decision:’,code2string(focalDec)])

else

if decFocElem==0

disp([’decision: rejected’])

else

if decFocElem==-1

disp([’decision: cannot be taken’])

end

end

end

case 3

% Result of the combination

sFocal=size(expertComb.focal,2);

expertDec=decodingExpert(expertComb,ThetaRed,DThetar);

focal=code2string(expertDec.focal)

for i=1:sFocal

disp ( [ focal{i},’=’,num2str(expertDec.bba(i)) ] )

end

% Result of the decision

if isstruct(decFocElem)

focalDec=decodingFocal(decFocElem.focal,elemDec,...

...ThetaRed,DThetar);

disp([’decision:’,code2string(focalDec)])

else

if decFocElem==0

disp([’decision: rejected’])

else

if decFocElem==-1

disp([’decision: cannot be taken’])
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end

end

end

case 4

% Results with Smarandache codification display

% Result of the combination

sFocal=size(expertComb.focal,2);

expertDec=cod2ScodExpert(expertComb,Scod);

for i=1:sFocal

disp ([expertDec.focal{i},’=’,...

...num2str(expertDec.bba(i))])

end

% Result of the decision

if isstruct(decFocElem)

focalDec=cod2ScodFocal(decFocElem.focal,Scod);

disp([’decision:’,focalDec])

else

if decFocElem==0

disp([’decision: rejected’])

else

if decFocElem==-1

disp([’decision: cannot be taken’])

end

end

end

otherwise

’Accident in fuse: choice of display is uncorrect’

end

7.5.1 Codification

The codification is based on the function 3. The order of the integer numbers could be
different, here the choice is made to number the intersection of all the elements with
1 and the smallest integer among the |Θ| = n bigger integers for the first singleton.
At the same time this function gives the correspondence between the integer numbers
of the practical codification and Smarandache’s codification. This function 3 is based
on the MATLABTM function nchoosek(tab,k) given the array of all the combination
of k elements of the vector tab. If the length of tab is n, this function return an array
of Ck

n rows and k columns.

Function 3. - codingTheta function

function [Theta,Scod]=codingTheta(n)
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% Code Theta for DSmT framework

%

% [Theta,Scod]=codingTheta(n)

%

% Input:

% n = cardinality of Theta

%

% Outputs:

% Theta = the list of coded elements in Theta

% Scod = the bijection function between the integer of

% the coded elements in Theta and the Smarandache codification

%

% Copyright (c) 2008 Arnaud Martin

i=2^n-1;

tabInd=[];

for j=n:-1:1

tabInd=[tabInd j];

Theta{j}=[i];

Scod{i}=[j];

i=i-1;

end

i=i+1;

for card=2:n

tabPerm=nchoosek(tabInd,card);

for j=1:n

[l,c]=find(tabPerm==j);

tabi=i.*ones(1,size(l,1));

Theta{j}=[sort(tabi-l’) Theta{j}];

for nb=1:size(l,1)

Scod{i-l(nb)}=[Scod{i-l(nb)} j];

end

end

i=i-size(tabPerm,1);

end

The addition of the constraints is made in two steps: first the codification of the
elements in the list constraint is made with the function 5, then the integer numbers
in the codification of the constraints are suppressed from the codification of Θ. The
function string2code is just the translation of the brackets and union and intersection
operators in negative numbers (-3 for ‘(’, -4 for ‘)’, -1 for ‘∪’ and -2 for ‘∩’) in order
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to manipulate faster integers than strings. This simple function is not provided here.

Function 4. - addConstraint function

function [ThetaR]=addConstraint(constraint,Theta)

% Code ThetaR the reduced form of Theta

% taking into account the constraints given by the user

%

% [ThetaR]=addConstraint(constraint,Theta)

%

% Inputs:

% constraint = the list of element considered as constraint

% or ’2T’ to work on 2^Theta

% Theta = the description of Theta after coding

%

% Output:

% ThetaR = the description of coded Theta after reduction

% taking into account the constraints

%

% Copyright (c) 2008 Arnaud Martin

if strcmp(constraint{1}, ’2T’)

n=size(Theta,2);

nbCons=1;

for i=1:n

for j=i+1:n

constraint(nbCons)={[i -2 j]};

nbCons=nbCons+1;

end

end

else

constraint=string2code(constraint);

end

constraintC=codingFocal(constraint,Theta);

sConstraint=size(constraintC,2);

unionCons=[];

for i=1:sConstraint

unionCons=union(unionCons,constraintC{i});

end

sTheta=size(Theta,2);
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for i=1:sTheta

ThetaR{i}=setdiff(Theta{i},unionCons);

end

The function 5 simply transforms the list of focal elements given by the user
with the codification of Θ to obtain the list of constraints and with Θr for the focal
elements of each expert. The function 6 prepares the coding of focal elements and
returns the list of the experts with the coded focal elements.

Function 5. - codingFocal function

function [focalC]=codingFocal(focal,Theta)

% Code the focal element for DSmT framework

%

% [focalC]=codingFocal(focal,Theta)

%

% Inputs:

% focal = the list of focal element for one expert

% Theta = the description of Theta after coding

%

% Output:

% focalC = the list of coded focal element for one expert

%

% Copyright (c) 2008 Arnaud Martin

nbfoc=size(focal,2);

if nbfoc

for foc=1:nbfoc

elemC=treat(focal{foc},Theta);

focalC{foc}=elemC;

end

else

focalC={[]};

end

end

%%

function [elemE]=eval(oper,a,b)

if oper==-2

elemE=intersect(a,b);

else

elemE=union(a,b);

end
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end

%%

function [elemC,cmp]=treat(focal,Theta)

nbelem=size(focal,2);

PelemC=0;

oper=0;

e=1;

if nbelem

while e <= nbelem

elem=focal(e);

switch elem

case -1

oper=-1;

case -2

oper=-2;

case -3

[elemC,nbe]=treat(focal(e+1:end),Theta);

e=e+nbe;

if oper~=0 & ~isequal(PelemC,0)

elemC=eval(oper,PelemC,elemC);

oper=0;

end

PelemC=elemC;

case -4

cmp=e;

e=nbelem;

otherwise

elemC=Theta{elem};

if oper~=0 & ~isequal(PelemC,0)

elemC=eval(oper,PelemC,elemC);

oper=0;

end

PelemC=elemC;

end

e=e+1;

end

else

elemC=[];

end

end
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Function 6. - codingExpert function

function [expertC]=codingExpert(expert,Theta)

% Code the focal element for DSmT framework

%

% [expertC]=codingExpert(expert,Theta)

%

% Inputs:

% expert = structure containing the list of focal elements for

% each expert and the bba corresponding

% Theta = the description of Theta after coding

%

% Output:

% expertC = structure containing the list of coded focal element

% for each expert and the bba corresponding

%

% Copyright (c) 2008 Arnaud Martin

nbExp=size(expert,2);

for exp=1:nbExp

focal=string2code(expert(exp).focal);

expertC(exp).focal=codingFocal(focal,Theta);

expertC(exp).bba=expert(exp).bba;

end

end

7.5.2 Combination

The function 7 proposes many combination rules. Most of them are based on the
function 8, but for some combination rules we need to keep more information, so
we use the function 9 for the conjunctive combination. E.g. in the function 10
note the simplicity of the code for the PCR6 combination rule. The codes for other
combination rules are not given here for the sake of clarity.

Function 7. - combination function

function [res]=combination(expertC,ThetaR,criterion)

% Give the combination of many experts

%

% [res]=combination(expert,constraint,n,criterion)

%

% Inputs:
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% expertC = contains the structure of the list of focal elements

% and corresponding bba for all the experts

% ThetaR = the coded and reduced discernment space

% criterion = is the combination criterion

% criterion=1 Smets criterion (conjunctive rule in open world)

% criterion=2 Dempster-Shafer criterion (normalized)

% (conjunctive rule in closed world)

% criterion=3 Yager criterion

% criterion=4 disjunctive combination criterion

% criterion=5 Florea criterion

% criterion=6 PCR6

% criterion=7 Mean of the bbas

% criterion=8 Dubois criterion

% (normalized and disjunctive combination)

% criterion=9 Dubois and Prade criterion (mixt combination)

% criterion=10 Mixt Combination (Martin and Osswald criterion)

% criterion=11 DPCR (Martin and Osswald criterion)

% criterion=12 MDPCR (Martin and Osswald criterion)

% criterion=13 Zhang’s rule

%

% Output:

% res = contains the structure of the list of focal elements and

% corresponding bbas for the combinated experts

%

% Copyright (c) 2008 Arnaud Martin

switch criterion

case 1

%Smets criterion

res=conjunctive(expertC);

case 2

%Dempster-Shafer criterion (normalized)

expConj=conjunctive(expertC);

ind=findeqcell(expConj.focal,[]);

if ~isempty(ind)

k=expConj.bba(ind);

expConj.bba=expConj.bba/(1-k);

expConj.bba(ind)=0;

end

res=expConj;

case 3

%Yager criterion

expConj=conjunctive(expertC);

ind=findeqcell(expConj.focal,[]);
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if ~isempty(ind)

k=expConj.bba(ind);

eTheta=ThetaR{1};

for i=2:n

eTheta=[union(eTheta,ThetaR{i})];

end

indTheta=findeqcell(expConj.focal,eTheta);

if ~isempty(indTheta)

expConj.bba(indTheta)=expConj.bba(indTheta)+k;

expConj.bba(ind)=0;

else

sFocal=size(expConj.focal,2);

expConj.focal(sFocal+1)={eTheta};

expConj.bba(sFocal+1)=k;

expConj.bba(ind)=0;

end

end

res=expConj;

case 4

%disjounctive criterion

[res]=disjunctive(expertC);

case 5

% Florea criterion

expConj=conjunctive(expertC);

expDis=disjunctive(expertC);

ind=findeqcell(expConj.focal,[]);

if ~isempty(ind)

k=expConj.bba(ind);

alpha=k/(1-k+k*k);

beta=(1-k)/(1-k+k*k);

expFlo=expConj;

expFlo.bba=beta.*expFlo.bba;

expFlo.bba(ind)=0;

nbFocConj=size(expConj.focal,2);

nbFocDis=size(expDis.focal,2);

expFlo.focal(nbFocConj+1:nbFocConj+nbFocDis)=...

...expDis.focal;

expFlo.bba(nbFocConj+1:nbFocConj+nbFocDis)=...

...alpha.*expDis.bba;

expFlo=reduceExpert(expFlo);
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else

expFlo=expConj;

end

res=expFlo;

case 6

% PCR6

[res]=PCR6(expertC);

case 7

% Means of the bba

[res]=meanbba(expertC);

case 8

% Dubois criterion (normalized & disjunctive combination)

expDis=disjunctive(expertC);

ind=findeqcell(expDis.focal,[]);

if ~isempty(ind)

k=expDis.bba(ind);

expDis.bba=expDis.bba/(1-k);

expDis.bba(ind)=0;

end

res=expDis;

case 9

% Dubois and Prade criterion (mixt combination)

[res]=DP(expertC);

case 10

% Martin and Ossawald criterion (mixt combination)

[res]=Mix(expertC);

case 11

% DPCR (Martin and Osswald criterion)

[res]=DPCR(expertC);

case 12

% MDPCR (Martin and Osswald criterion)

[res]=MDPCR(expertC);

case 13

% Zhang’s rule

[res]=Zhang(expert)

otherwise

’Accident: in combination choose of criterion: uncorrect’

end

Function 8. - conjunctive function
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function [res]=conjunctive(expert)

% Conjunctive Rule

%

% [res]=conjunctive(expert)

%

% Inputs:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

%

% Output:

% res = is the resulting expert (structure of the list of focal

% element and corresponding bba)

%

% Copyright (c) 2008 Arnaud Martin

nbexpert=size(expert,2);

for i=1:nbexpert

nbfocal(i)=size(expert(i).focal,2);

nbbba(i)=size(expert(i).bba,2);

if nbfocal(i)~=nbbba(i)

’Accident: in conj: the numbers of bba and focal...

... element are different’

end

end

interm=expert(1);

for exp=2:nbexpert

nbfocalInterm=size(interm.focal,2);

i=1;

comb.focal={};

comb.bba=[];

for foc1=1:nbfocalInterm

for foc2=1:nbfocal(exp)

tmp=intersect(interm.focal{foc1},...

...expert(exp).focal{foc2});

if isempty(tmp)

tmp=[];

end

comb.focal(i)={tmp};

comb.bba(i)=interm.bba(foc1)*expert(exp).bba(foc2);

i=i+1;

end

end
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interm=reduceExpert(comb);

end

res=interm;

Function 9. - globalConjunctive function

function [res,tabInd]=globalConjunctive(expert)

% Conjunctive Rule conserving all the focal elements

% during the combination

%

% [res,tabInd]=globalConjunctive(expert)

%

% Input:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

%

% outputs:

% res = is the resulting expert (structure of the list of focal

% element and corresponding bba)

% tabInd = table of the indices given the combination

%

% Copyright (c) 2008 Arnaud Martin

nbexpert=size(expert,2);

for i=1:nbexpert

nbfocal(i)=size(expert(i).focal,2);

nbbba(i)=size(expert(i).bba,2);

if nbfocal(i)~=nbbba(i)

’Accident: in conj: the numbers of bba and focal...

... element are different’

end

end

interm=expert(1);

tabIndPrev=[1:1:nbfocal(1)];

for exp=2:nbexpert

nbfocalInterm=size(interm.focal,2);

i=1;

comb.focal={};

comb.bba=[];

tabInd=[];

for foc1=1:nbfocalInterm

for foc2=1:nbfocal(exp)
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tmp=intersect(interm.focal{foc1},...

...expert(exp).focal{foc2});

tabInd=[tabInd [tabIndPrev(:,foc1);foc2]];

if isempty(tmp)

tmp=[];

end

comb.focal(i)={tmp};

comb.bba(i)=interm.bba(foc1)*expert(exp).bba(foc2);

i=i+1;

end

end

tabIndPrev=tabInd;

interm=comb;

end

res=interm;

Function 10. - PCR6 function

function [res]=PCR6(expert)

% PCR6 combination rule

%

% [res]=PCR6(expert)

%

% Input:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

%

% Output:

% res = is the resulting expert (structure of the list of focal

% element and corresponding bba)

%

% Reference: A. Martin and C. Osswald, ’’A new generalization

% of the proportional conflict redistribution rule stable in

% terms of decision,’’ Applications and Advances of DSmT for

% Information Fusion, Book 2, American Research Press Rehoboth,

% F. Smarandache and J. Dezert, pp. 69-88 2006.

%

% Copyright (c) 2008 Arnaud Martin

[expertConj,tabInd]=globalConjunctive(expert);

ind=findeqcell(expertConj.focal,[]);
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nbexp=size(tabInd,1);

if ~isempty(ind)

expertConj.bba(ind)=0;

sInd=size(ind,2);

for i=1:sInd

P=1;

S=0;

for exp=1:nbexp

bbaexp=expert(exp).bba(tabInd(exp,ind(i)));

P=P*bbaexp;

S=S+bbaexp;

end

for exp=1:nbexp

expertConj.focal(end+1)=...

...expert(exp).focal(tabInd(exp,ind(i)));

expertConj.bba(end+1)=...

...expert(exp).bba(tabInd(exp,ind(i)))*P/S;

end

end

end

res=reduceExpert(expertConj);

7.5.3 Decision

The function 11 gives the decision on the expert focal element list for the correspond-
ing bba with one of the chosen criterion and on the elements given by the user for
the decision. Note that the choices ‘A’ and ‘Cm’ for the variable elemDec could take
a long time because it needs the generation of DΘ

r . This function can call one of the
decision functions 13, 14, 15, 16. If any decision is possible on the chosen elements
given by elemDec, the function returns -1. In case of rejected element, the function
returns 0.

Function 11. - decision function

function [decFocElem]=decision(expert,Theta,criterion,elemDec)

% Give the decision for one expert

%

% [decFocElem]=decision(expert,Theta,criterion)

%

% Inputs:

% expert = contains the structure of the list of focal elements

% and corresponding bba for all the experts

% Theta = list of coded (and reduced with constraint) of the
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% elements of the discernement space

% criterion = is the combination criterion

% criterion=0 maximum of the bba

% criterion=1 maximum of the pignistic probability

% criterion=2 maximum of the credibility

% criterion=3 maximum of the credibility with reject

% criterion=4 maximum of the plausibility

% criterion=5 DSmP criterion

% criterion=6 Appriou criterion

% criterion=7 Credibility on DTheta criterion

% criterion=8 pignistic on DTheta criterion

% elemDec = list of elements on which we can decide,

% or A for all, S for singletons only, F for focal elements

% only, SF for singleton plus focal elements, Cm for given

% specificity, 2T for only 2^Theta (DST case)

%

% Output:

% decFocElem = the retained focal element, 0 in case of reject, -1

% if the decision cannot be taken on elemDec

%

% Copyright (c) 2008 Arnaud Martin

type=1;

switch elemDec{1}

case ’S’

type=0;

elemDecC=Theta;

expertDec=expert;

case ’F’

elemDecC=expert.focal;

expertDec=expert;

case ’SF’

expertDec=expert;

n=size(Theta,2);

for i=1:n

expertDec.focal{end+1}=Theta{i};

expertDec.bba(end+1)=0;

end

expertDec=reduceExpert(expertDec);

elemDecC=expertDec.focal;

case ’Cm’

sElem=size(elemDec,2);

switch sElem
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case 2

minSpe=str2num(elemDec{2});

maxSpe=minSpe;

case 3

minSpe=str2num(elemDec{2});

maxSpe=str2num(elemDec{3});

otherwise

’Accident in decision: with the option Cm for ...

...elemDec give the specifity of decision element ...

...(eventually the minimum and the maximum of the ...

...desired specificity’

pause

end

elemDecC=findFocal(Theta,minSpe,maxSpe);

expertDec.focal=elemDecC;

expertDec.bba=zeros(1,size(elemDecC,2));

for foc=1:size(expert.focal,2)

ind=findeqcell(elemDecC,expert.focal{foc});

if ~isempty(ind)

expertDec.bba(ind)=expert.bba(foc);

else

expertDec.bba(ind)=0;

end

end

case ’2T’

type=0;

natoms=size(Theta,2);

expertDec.focal(1)={[]};

indFoc=findeqcell(expert.focal,{[]});

if isempty(indFoc)

expertDec.bba(1)=0;

else

expertDec.bba(1)=expert.bba(indFoc);

end

step =2;

for i=1:natoms

expertDec.focal(step)=codingFocal({[i]},Theta);

indFoc=findeqcell(expert.focal,...

...expertDec.focal{step});

if isempty(indFoc)
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expertDec.bba(step)=0;

else

expertDec.bba(step)=expert.bba(indFoc);

end

step=step+1;

indatom=step;

for step2=2:indatom-2

expertDec.focal(step)=...

...{[union(expertDec.focal{step2},...

...expertDec.focal{indatom-1})]};

indFoc=findeqcell(expert.focal,...

...expertDec.focal{step});

if isempty(indFoc)

expertDec.bba(step)=0;

else

expertDec.bba(step)=expert.bba(indFoc);

end

step=step+1;

end

end

elemDecC=expertDec.focal;

case ’A’

elemDecC=generationDThetar(Theta);

elemDecC=reduceFocal(elemDecC);

expertDec.focal=elemDecC;

expertDec.bba=zeros(1,size(elemDecC,2));

for foc=1:size(expert.focal,2)

expertDec.bba(findeqcell(elemDecC,...

...expert.focal{foc}))=expert.bba(foc);

end

otherwise

type=0;

elemDec=string2code(elemDec);

elemDecC=codingFocal(elemDec,Theta);

expertDec=expert;

nbElemDec=size(elemDecC,2);

for foc=1:nbElemDec

if ~isElem(elemDecC{foc}, expertDec.focal)

expertDec.focal{end+1}=elemDecC{foc};

expertDec.bba(end+1)=0;

end
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end

end

%---------------------------------------------------------

nbFocal=size(expertDec.focal,2);

switch criterion

case 0

% maximum of the bba

nbFocal=size(expertDec.focal,2);

nbElem=0;

for foc=1:nbFocal

ind=findeqcell(elemDecC,expertDec.focal{foc});

if ~isempty(ind)

bba(ind)=expertDec.bba(foc);

end

end

[bbaMax,indMax]=max(bba);

if bbaMax~=0

decFocElem.bba=bbaMax;

decFocElem.focal={elemDecC{indMax}};

else

decFocElem=-1;

end

case 1

% maximum of the pignistic probability

[BetP]=pignistic(expertDec);

decFocElem=MaxFoc(BetP,elemDecC,type);

case 2

% maximum of the credibility

[Bel]=credibility(expertDec);

decFocElem=MaxFoc(Bel,elemDecC,type);

case 3

% maximum of the credibility with reject

[Bel]=credibility(expertDec);

TabSing=[];

focTheta=[];

for i=1:size(Theta,2)

focTheta=union(focTheta,Theta{i});

end

for foc=1:nbFocal

if isElem(Bel.focal{foc}, elemDecC)
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TabSing=[TabSing [foc ; Bel.Bel(foc)]];

end

end

[BelMax,indMax]=max(TabSing(2,:));

if BelMax~=0

focMax=Bel.focal{TabSing(1,indMax)};

focComplementary=setdiff(focTheta,focMax);

if isempty(focComplementary)

focComplementary=[];

end

ind=findeqcell(Bel.focal,focComplementary);

if BelMax < Bel.Bel(ind)

% if ind is empty this is always false

decFocElem=0; % That means that we reject

else

if isempty(ind)

decFocElem=0; % That means that we reject

else

decFocElem.focal={Bel.focal{TabSing(1,indMax)}};

decFocElem.Bel=BelMax;

end

end

else

decFocElem=-1; % That means that we reject

end

case 4

% maximum of the plausibility

[Pl]=plausibility(expertDec);

decFocElem=MaxFoc(Pl,elemDecC,type);

case 5

% DSmP criterion

epsilon=0.00001; % 0 can allows problem

[DSmP]=DSmPep(expertDec,epsilon);

decFocElem=MaxFoc(DSmP,elemDecC,type);

case 6

% Appriou criterion

[Pl]=plausibility(expertDec);

lambda=1;

r=0.5;

bm=BayesianMass(expertDec,lambda,r);
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Newbba=Pl.Pl.*bm.bba;

% normalization

Newbba=Newbba/sum(Newbba);

funcDec.focal=Pl.focal;

funcDec.bba=Newbba;

decFocElem=MaxFoc(funcDec,elemDecC,type);

case 7

% Credibility on DTheta criterion

[Bel]=credibility(expertDec);

lambda=1;

r=0.5;

bm=BayesianMass(expertDec,lambda,r);

Newbba=Bel.Bel.*bm.bba;

% normalization

Newbba=Newbba/sum(Newbba);

funcDec.focal=Bel.focal;

funcDec.bba=Newbba;

decFocElem=MaxFoc(funcDec,elemDecC,type);

case 8

% pignistic on DTheta criterion

[BetP]=pignistic(expertDec);

lambda=1;

r=0.5;

bm=BayesianMass(expertDec,lambda,r);

Newbba=BetP.BetP.*bm.bba;

% normalization

Newbba=Newbba/sum(Newbba);

funcDec.focal=BetP.focal;

funcDec.bba=Newbba;

decFocElem=MaxFoc(funcDec,elemDecC,type);

otherwise

’Accident: in decision choose of criterion: uncorrect’

end

end

%%

function [bool]=isElem(focal, listFocal)

% The g oal of this function is to return a boolean on the test

% focal in listFocal

%

% [bool]=isElem(focal, listFocal)

%
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% Inputs:

% focal = one focal element (matrix)

% listFocal = the list of elements in Theta (all different)

%

% Output:

% bool = boolean: true if focal is in listFocal, elsewhere false

%

% Copyright (c) 2008 Arnaud Martin

n=size(listFocal,2);

bool=false;

for i=1:n

if isequal(listFocal{i},focal)

bool=true;

break;

end

end

end

%%

function [decFocElem]=MaxFoc(funcDec,elemDecC,type)

fieldN=fieldnames(funcDec);

switch fieldN{2}

case ’BetP’

funcDec.bba=funcDec.BetP;

case ’Bel’

funcDec.bba=funcDec.Bel;

case ’Pl’

funcDec.bba=funcDec.Pl;

case ’DSmP’

funcDec.bba=funcDec.DSmP;

end

if type

[funcMax,indMax]=max(funcDec.bba);

FocMax={funcDec.focal{indMax}};

else

nbFocal=size(funcDec.focal,2);

TabSing=[];

for foc=1:nbFocal

if isElem(funcDec.focal{foc}, elemDecC)



258 Chapter 7: Implementing general belief function framework . . .

TabSing=[TabSing [foc ; funcDec.bba(foc)]];

end

end

[funcMax,indMax]=max(TabSing(2,:));

FocMax={funcDec.focal{TabSing(1,indMax)}};

end

if funcMax~=0

decFocElem.focal=FocMax;

switch fieldN{2}

case ’BetP’

decFocElem.BetP=funcMax;

case ’Bel’

decFocElem.Bel=funcMax;

case ’Pl’

decFocElem.Pl=funcMax;

case ’DSmP’

decFocElem.DSmP=funcMax;

end

else

decFocElem=-1;

end

end

Function 12. - findFocal function

function [elemDecC]=findFocal(Theta,minSpe,maxSpe)

% Find the element of DTheta with the minium of specifity minSpe

% and the maximum maxSpe

%

% [elemDecC]=findFocal(Theta,minSpe,maxSpe)

%

% Input:

% Theta = list of coded (and eventually reduced with constraint)

% of the elements of the discernment space

% minSpe = minimum of the wanted specificity

% minSpe = maximum of the wanted specificity

%

% Output:

% elemDec = list of elements on which we want to decide with the

% minimum of specifity minSpe and the maximum maxSpe
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%

% Copyright (c) 2008 Arnaud Martin

elemDecC{1}=[];

n=size(Theta,2);

ThetaSet=[];

for i=1:n

ThetaSet=union(ThetaSet,Theta{i});

end

for s=minSpe:maxSpe

tabs=nchoosek(ThetaSet,s);

elemDecC(end+1:end+size(tabs,1))=num2cell(tabs,2)’;

end

elemDecC=elemDecC(2:end);

Function 13. - pignistic function

function [BetP]=pignistic(expert)

% Generalized Pignistic Transformation

%

% [BetP]=pignistic(expert)

%

% Input:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba

%

% Output:

% BetP = contains the structure of the list of focal elements and

% the matrix of the plausibility corresponding

% BetP.focal = list of focal elements

% BetP.BetP = matrix of the pignistic transformation

% Comment : 1- the code of the focal elements must inculde

% the constraints

% 2- The pignistic is given only on the elements

% in the list of focal of expert (the

% bba can be 0)

%
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% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

BetP.focal=expert.focal;

BetP.BetP=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

focI=intersect(expert.focal{focA},expert.focal{focB});

if ~isempty(focI)

BetP.BetP(focA)=BetP.BetP(focA)+size(focI,2)/...

...size(expert.focal{focB},2)*expert.bba(focB);

else

if isequal(expert.focal{focB},[])

% for the empty set:

% cardinality(empty set)/cardinality(empty set)=1,

% so we add the bba

BetP.BetP(focA)=BetP.BetP(focA)+expert.bba(focB);

end

end

end

end

Function 14. - credibility function

function [Bel]=credibility(expert)

% Credibility function

%

% [Bel]=credibility(expert)

%

% Input:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba

%

% Output:

% Bel = contains the structure of the list of focal elements and

% the matrix of the credibility corresponding

% Bel.focal = list of focal elements

% Bel.Bel = matrix of the credibility
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% Comment : 1- the code of the focal elements must inculde

% the constraints

% 2- The credibility is given only on the elements

% in the list of focal of expert (the

% bba can be 0)

%

% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

Bel.focal=expert.focal;

Bel.Bel=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

indMem=ismember(expert.focal{focB},expert.focal{focA});

if sum(indMem)==size(expert.focal{focB},2)...

&& ~isequal(expert.focal{focB},[])

Bel.Bel(focA)=Bel.Bel(focA)+expert.bba(focB);

else

if isequal(expert.focal{focB},[])...

&& isequal(expert.focal{focA},[])

% the empty set is included to all the focal elements

Bel.Bel(focA)=Bel.Bel(focA)+expert.bba(focB);

end

end

end

end

Function 15. - plausibility function

function [Pl]=plausibility(expert)

% Plausibility function

%

% [Pl]=plausibility(expert)

%

% Input:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba
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%

% Output:

% Pl = contains the structure of the list of focal elements and

% the matrix of the plausibility corresponding

% Pl.focal = list of focal elements

% Pl.Pl = matrix of the plausibility

% Comment : 1- the code of the focal elements must include

% the constraints

% 2- The plausibility is given only on the elements

% in the list of focal of expert (the

% bba can be 0)

%

% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

Pl.focal=expert.focal;

Pl.Pl=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

focI=intersect(expert.focal{focA},expert.focal{focB});

if ~isempty(focI)

Pl.Pl(focA)=Pl.Pl(focA)+expert.bba(focB);

else

if isequal(expert.focal{focB},[])...

&& isequal(expert.focal{focA},[])

% for the empty set we keep the bba for the Pl

Pl.Pl(focA)=Pl.Pl(focA)+expert.bba(focB);

end

end

end

end

Function 16. - DSmPep function

function [DSmP]=DSmPep(expert,epsilon)

% DSmP Transformation

%

% [DSmP]=DSmPep(expert,epsilon)

%
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% Inputs:

% expert = contains the structures of the list of focal elements

% and corresponding bba for all the experts

% expert.focal = list of focal elements

% expert.bba = matrix of bba

% epsilon = epsilon coefficient

%

% Output:

% DSmPep = contains the structure of the list of focal elements

% and the matrix of the plausibility corresponding

% DSmPep.focal = list of focal elements

% DSmPep.DSmP = matrix of the pignistic transformation

%

% Reference: Dezert & Smarandache, ’’A new probbilistic

% transformation of belief mass assignment’’,

% fusion 2008, Cologne, Germany.

%

% Copyright (c) 2008 Arnaud Martin

nbFocal=size(expert.focal,2);

DSmP.focal=expert.focal;

DSmP.DSmP=zeros(1,nbFocal);

for focA=1:nbFocal

for focB=1:nbFocal

focI=intersect(expert.focal{focA},expert.focal{focB});

sumbbaFocB=0;

sFocB=size(expert.focal{focB},2);

for elB=1:sFocB

ind=findeqcell(expert.focal,expert.focal{focB}(elB));

if ~isempty(ind)

sumbbaFocB=sumbbaFocB+expert.bba(ind);

end

end

if ~isempty(focI)

sumbbaFocI=0;

sFocI=size(focI,2);

for elB=1:sFocI

ind=findeqcell(expert.focal,focI(elB));

if ~isempty(ind)

sumbbaFocI=sumbbaFocI+expert.bba(ind);

end
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end

DSmP.DSmP(focA)=DSmP.DSmP(focA)+expert.bba(focB)...

...*(sumbbaFocI+epsilon*sFocI)/...

...(sumbbaFocB+epsilon*sFocB);

end

end

end

7.5.4 Decoding and generation of DΘ
r

For the displays, we must decode the focal elements and/or the final decision. The
function 17 decodes the focal elements in the structure expert that contains normally
only one expert. This function calls the function 18 that really does the decoding for
the user. This function is based on the generation of DΘ

r given by the function 21
that is a modified and adapted code from [11]. To generate DΘ

r we first must create
the intersection basis. Hence in the function 18 we use a loop of 2Θ in order to
generate the basis and at the same time to scan the power set 2Θ and also the
elements of the intersection basis. These two basis (intersection and union) are in
fact concatenated during the construction, so we scan also some elements such as
intersections of previous unions and unions of previous intersections. This generated
set of elements does not cover DΘ

r . When all the searching focal elements (that can
be only one decision element) are found, we stop the function and avoid to generate
all DΘ

r . Hence if the searching elements are not all found after this loop, we begin to
generate DΘ

r and stop when all elements are found. So, with luck, that can be fast.
We can avoid to generate DΘ

r for only the display if we use Smarandache’s codifi-
cation. The function 19 transforms the used code of the focal elements in the structure
expert in Smarandache’s code, easier to understand by reading. This function calls
the function 20 that really does the transformation. The focal elements are directly
in string for the display.

Function 17. - decodingExpert function

function [expertDecod]=decodingExpert(expert,Theta,DTheta)

% The goal of this function is to decode the focal elements in

% expert

%

% [expertDecod]=decodingExpert(expert,Theta)

%

% Inputs:

% expert = contains the structure of the list of focal elements

% after combination and corresponding bba for all the experts

% (generally use for only one after combination)

% Theta = list of coded (and reduced with constraint) of the
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% elements of the discernement space

% DTheta = list of coded (and reduced with constraint) of the

% elements of DTheta

%

% Output:

% expertDecod = contains the structure of the list of decoded

% (for human) focal elements and corresponding bba for

% all the experts

%

% Copyright (c) 2008 Arnaud Martin

nbExp=size(expert,2);

for exp=1:nbExp

focal=expert(exp).focal;

expertDecod(exp).focal=decodingFocal(focal,{’A’},Theta,...

...DTheta);

expertDecod(exp).bba=expert(exp).bba;

end

end

Function 18. - decodingFocal function

function [focalDecod]=decodingFocal(focal,elemDec,Theta,DTheta)

% The goal of this function is to decode the focal elements

%

% [focalDecod]=decodingFocal(focal,elemDec,Theta)

%

% Inputs:

% expert = contains the structure of the list of focal elements

% after combination and corresponding bba for all the experts

% elemDec = the description of the subset of uncoded elements

% for decision

% Theta = list of coded (and reduced with constraint) of the

% elements of the discernement space

% DTheta = list of coded (and reduced with constraint) of the

% elements of DTheta, eventually empty if not necessary

% Output:

% focalDecod = contains the list of decoded (for human) focal

% elements

%

% Copyright (c) 2008 Arnaud Martin
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switch elemDec{1}

case {’F’,’A’,’SF’,’Cm’}

opt=1;

case ’S’

opt=0;

elemDecC=Theta;

for i=1:size(Theta,2)

elemDec(i)={[i]};

end

case ’2T’

opt=0;

natoms=size(Theta,2);

elemDecC(1)={[]};

elemDec(1)={[]};

step =2;

for i=1:natoms

elemDecC(step)=codingFocal({[i]},Theta);

elemDec(step)={[i]};

step=step+1;

indatom=step;

for step2=2:indatom-2

elemDec(step)={[elemDec{step2} -1 ...

...elemDec{indatom-1}]};

elemDecC(step)={[union(elemDecC{step2},...

...elemDecC{indatom-1})]};

step=step+1;

end

end

otherwise

opt=0;

elemDecN=string2code(elemDec);

elemDecC=codingFocal(elemDecN,Theta);

end

if ~opt

sFoc=size(focal,2);

for foc=1:sFoc

[ind]=findeqcell(elemDecC,focal{foc});

if isempty(ind)

’Accident in decodingFocal: elemDec does not be 2T’

pause

else
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focalDecod(foc)=elemDec(ind);

end

end

else

focalDecod=cell(size(focal));

cmp=0;

sFocal=size(focal,2);

sDTheta=size(DTheta.c,2);

i=1;

while i<sDTheta && cmp<sFocal

DThetai=DTheta.c{i};

indeq=findeqcell(focal,DThetai);

if ~isempty(indeq)

cmp=cmp+1;

focalDecod(indeq)=DTheta.s(i);

end

i=i+1;

end

end

Function 19. - cod2ScodExpert function

function [expertDecod]=cod2ScodExpert(expert,Scod)

% The goal of this function is to code the focal elements in

% expert with the Smarandache’s codification from the practical

% codification in order to display the expert

%

% [expertDecod]=cod2ScodExpert(expert,Scod)

%

% Inputs:

% expert = contains the structure of the list of focal elements

% after combination and corresponding bba for all the experts

% (generally use for only one after combination)

% Scod = list of distinct part of the Venn diagram coded with the

% Smarandache’s codification

% Output:

% expertDecod = contains the structure of the list of decoded

% (for human) focal elements and corresponding bba

% for all the experts

%

% Copyright (c) 2008 Arnaud Martin
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nbExp=size(expert,2);

for exp=1:nbExp

focal=expert(exp).focal;

expertDecod(exp).focal=cod2ScodFocal(focal,Scod);

expertDecod(exp).bba=expert(exp).bba;

end

end

Function 20. - cod2ScodFocal function

function [focalDecod]=cod2ScodFocal(focal,Scod)

% The goal of this function is to code the focal elements with

% the Smarandache’s codification from the practical codification

% in order to display the focal elements

%

% [focalDecod]=cod2ScodFocal(focal,Scod)

%

% Inputs:

% expert = contains the structure of the list of focal elements

% after combination and corresponding bba for all the experts

% Scod = list of distinct part of the Venn diagram coded with the

% Smarandache’s codification

% Output:

% focalDecod = contains the list of decoded (for human) focal

% elements

%

% Copyright (c) 2008 Arnaud Martin

sFocal=size(focal,2);

for foc=1:sFocal

sElem=size(focal{foc},2);

if sElem==0

focalDecod{foc}=’{}’;

else

ch=’{’;

ch=strcat(ch,’<’);

ch=strcat(ch,num2str(Scod{focal{foc}(1)}));

ch=strcat(ch,’>’);

for elem=2:sElem

ch=strcat(ch,’,<’);

ch=strcat(ch,num2str(Scod{focal{foc}(elem)}));
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ch=strcat(ch,’>’);

end

focalDecod{foc}=strcat(ch,’}’);

end

end

Function 21. - generationDThetar function

function [DTheta]=generationDThetar(Theta)

% Generation of DThetar: modified and adapted code from

% Dezert & Smarandache Chapter 2 DSmT book Vol 1

% to generate DTeta

%

% [DTheta]=generationDThetar(Theta)

%

% Input:

% Theta = list of coded (and eventually reduced with constraint)

% of the elements of the discernment space

%

% Output:

% DTheta = list of coded (and eventually reduced with constraint

% in this case some elements can be the same) of the

% elements of the DTheta

%

% Copyright (c) 2008 Arnaud Martin

n=size(Theta,2);

step =1;

for i=1:n

basetmp(step)={[Theta{i}]};

step=step+1;

indatom=step;

for step2=1:indatom-2

basetmp(step)={intersect(basetmp{indatom-1},...

...basetmp{step2})};

step=step+1;

end

end

sBaseTmp=size(basetmp,2);

step=1;

for i=1:sBaseTmp

if ~isempty(basetmp{i})
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base(step)=basetmp(i);

step=step+1;

end

end

sBase=size(base,2);

DTheta{1}=[];

step=1;

nbC=2;

stop=0;

D_n1 =[0 ; 1];

sDn1=2;

for nn=1:n

D_n =[ ] ;

cfirst=1+(nn==n);

for i =1:sDn1

Li=D_n1(i,:);

sLi=size(Li,2);

if (2*sLi>sBase)&& (Li(sLi-(sBase-sLi))==1)

stop=1;

break

end

for j=i:sDn1

Lj=D_n1(j,:);

if(and(Li,Lj)==Li)&(or(Li,Lj)==Lj)

D_n=[D_n ; Li Lj ] ;

if size(D_n,1)>step

step=step+1;

DTheta{step}=[];

for c=cfirst:nbC

if D_n(end,c)

if isempty(DTheta{step})

DTheta{step}=base{sBase+c-nbC};

else

DTheta{step}=union(DTheta{step},...

...base{sBase+c-nbC});

end

end

end

end

end

end
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end

if stop

break

end

D_n1=D_n;

sDn1=size(D_n1,1);

nbC=2*size(D_n1,2);

end
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8.1 Introduction

Qualitative methods for reasoning under uncertainty have gained more and more
attention by Information Fusion community, especially by the researchers and system
designers working in the development of modern multi-source systems for information
retrieval, fusion and management in defense, in robotics and so on. This is because
traditional methods based only on quantitative representation and analysis are not
able to adequately satisfy the need of the development of science and technology
that integrate at higher fusion levels human beliefs and reports in complex systems.
Therefore qualitative knowledge representation and analysis become more and more
important and necessary in next generations of decision-making support systems.

In 1954, Polya was one of the pioneers to characterize formally the qualitative
human reports [15]. Then Zadeh [26–30] made important contributions in this field
in proposing a fuzzy linguistic approach to model and to combine qualitative/vague
information expressed in natural language. However, since the combination process
highly depends on the fuzzy operators chosen, a possible issue has been pointed out
by Yager in [25]. In 1994, Wellman developed Qualitative Probabilistic Networks
(QPN) based on a Qualitative Probability Language, which relaxed precision in rep-
resentation and reasoning within the probabilistic framework [24]. Subrahmanian
introduced the annotated logics, which was a powerful formalism for classical (i.e.
consistent), as well as paraconsistent reasoning in artificial intelligence [11, 22]. QPN
and Annotated Logics belong actually to the family of imprecise probability [23] and
probability bounds analysis (PBA) approaches [6]. Parsons proposed a Qualitative
Evidence Theory (QET) with new interesting qualitative reasoning techniques but
his QET unfortunately cannot deal efficiently with complex problems of qualitative
information fusion encountered in real world [12–14]. Dubois and Prade proposed a
Qualitative Possibility Theory (QPT) in Decision Analysis (DA) for the representa-
tion and the aggregation of preferences. QPT was driven by the principle of minimal
specificity [4]. They use refined linguistic quantifiers to represent either the possibil-
ity distributions which encode a piece of imprecise knowledge about a situation, or to
represent the qualitative belief masses over the elements in 2Θ. However, the combi-
nation process might produce approximate results because of the finite probabilistic
scale of the label set [5]. Hájek et al. in [7] proposed a Qualitative Fuzzy Possibilistic
Logic (QFPL) which was used to deal with both uncertainty (possibility) and vague-
ness (fuzziness). QFPL is different from our qualitative reasoning in DSmT, though
the propositional variables were mapped to a set of values i.e. {0, 1/n, 2/n, · · · , 1}
similar to 1-tuple linguistic model, since it built modality-free formulas from propo-
sitional variables using connectives, i.e. ∧,∨,→,¬.

The purpose of this chapter is to propose a model of imprecise qualitative belief
structures for solving fusion problems for applications and not to compare all pre-
vious theoretical approaches. We adopt here a pragmatic point of view in order to
deal with poor and imprecise qualitative sources of information since in reality the
requirement that precise labels are assigned to every individual hypotheses is often
regarded as too restrictive.
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Some research works on quantitative imprecise belief structures have been done at
the end of nineties by Denœux who proposed a representation model in DST frame-
work for dealing with imprecise belief and plausibility functions, imprecise pignistic
probabilities together with the extension of Dempster’s rule [1] for combining impre-
cise belief masses. Within the DSmT framework, Dezert and Smarandache further
proposed new interval-valued beliefs operators and generalized DSm combination
rules from precise belief structures fusion to imprecise/sub-unitary intervals fusion,
and more generally, to any set of sub-unitary intervals fusion [17]. In [9], Li proposed
a revised version of imprecise division operator and the Min and Max operators for
imprecise belief structures, which can be applied to fuzzy-extended reasoning com-
bination rules. Since all the extensions of belief structures proposed so far in the
literature concern only imprecise quantitative belief structures, we introduce here for
the first time a representation for imprecise qualititative belief structures. The rep-
resentation model presented in this chapter is based on the 2-tuple linguistic labels
model developed earlier [8] which offers an acceptable computational complexity by
working with a finite reduced/coarse granularity set of linguistic labels [3, 19, 20]. The
approach adopted here must be viewed as a particular case of the more theoretical
approach based on DSm Field and Linear Algebra of Refined Labels (DSm-FLARL)
proposed in Chapter 2 in this volume.

The 2-tuple linguistic labels representation allows to take into account some avail-
able richer information content (if any), like less good, good enough, very good which
is not represented within the 1-tuple linguistic labels representation. It can be in-
terpreted somehow as a remainder technique for linguistic labels. Actually, Herrera
and Mart́ınez in [8] were the first to propose a 2-tuple fuzzy linguistic representation
model for computing with words (CW) for offering a tractable method for aggregat-
ing linguistic information (represented by linguistic variables with equidistant labels)
through counting indexes of the corresponding linguistic labels. The advantages of
the 2-tuple Linguistic representation of symbolic method over methods based on the
extension principle in CW in term of complexity and feasibility have been shown in [8].
In 2007, Li et al. [10] have extended the 1-tuple linguistic representation model to
Qualitative Enriched Labels (QEL), denoted Li(ci), in the DSmT framework. It must
be noted that QEL Li(ci) is different from Herrera-Mart́ınez’ 2-tuple labels denoted
(Li, σ

h
i ). The difference lies in the fact that σh

i expresses a kind of refinement correct-
ing term of the standard linguistic label Li, whereas ci of QEL expresses a possible
confidence factor one may have on the standard linguistic label Li. In this work,
we use Herrera-Mart́ınez’ 2-tuple linguistic representation model and introduce new
operators for combining imprecise qualitative belief masses based on it.

This chapter is organized as follows: In section 8.2, we remind briefly the basis
of DSmT. In section 8.3, we present some 2-tuple linguistic operators and in section
8.4 we present the fusion rules for precise and imprecise qualitative beliefs in DSmT
framework. In section 8.5, we provide examples to show how these operators work
for combining 2- Tuple qualitative beliefs. Concluding remarks are then given in 8.6.
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8.2 DSmT for the fusion of beliefs

8.2.1 Basic belief mass

In Dempster-Shafer Theory (DST) framework [16], one considers a frame of dis-
cernment Θ = {θ1, . . . , θn} as a finite set of n exclusive and exhaustive elements
(i.e. Shafer’s model denoted M0(Θ)). The power set of Θ is the set of all sub-
sets of Θ. The cardinality of a power set , if the frame of discernment cardinality
|Θ| = n is 2n. The power set of Θ is denoted 2Θ. For example, if Θ = {θ1, θ2}, then
2Θ = {∅, θ1, θ2, θ1∪ θ2}. In Dezert-Smarandache Theory (DSmT) framework [17, 19],
one considers Θ = {θ1, . . . , θn} as a finite set of n exhaustive elements only (i.e. free
DSm-model denoted Mf (Θ)). Eventually some integrity constraints can be intro-
duced in this free model depending on the nature of problem we have to cope with.
The hyper-power set of Θ (i.e. the free Dedekind’s lattice) denoted DΘ [17] is defined
as:

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A, B ∈ DΘ, then A ∩B and A ∪B belong to DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1 or 2.

If |Θ| = n, then |DΘ| ≤ 22n

. Since for any finite set Θ, |DΘ| ≥ |2Θ|, we call DΘ the
hyper-power set of Θ. For example, if Θ = {θ1, θ2}, then DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪
θ2}. The free DSm model Mf (Θ) corresponding to DΘ allows to work with vague
concepts which exhibit a continuous and relative intrinsic nature. Such concepts
cannot be precisely refined in an absolute interpretation because of the unreachable
universal truth. The main differences between DST and DSmT frameworks are (i)
the model on which one works with, (ii) the choice of the combination rule and con-
ditioning rules [17, 19], and (iii) aside working with numerical/quantitative beliefs
DSmT allows to compute directly with words (more exactly to combine qualitative
belief masses as we will show in the sequel). Here we use the generic notation GΘ

for denoting either DΘ (when working in DSmT with free DSm model) or 2Θ (when
working in DST with Shafer’s model) or any other subset of DΘ (when working with
a DSm hybrid model).

From any finite discrete frame Θ, we define a quantitative basic belief assignment
(bba) as a mapping m(.) : GΘ → [0, 1] associated to a given body of evidence B which
satisfies

m(∅) = 0 and
X

A∈GΘ

m(A) = 1 (8.1)

8.2.2 Fusion of quantitative beliefs

When the free DSm model Mf (Θ) holds, the pure conjunctive consensus, called
DSm classic rule (DSmC), is performed on GΘ = DΘ. DSmC of two independent1

1While independence is a difficult concept to define in all theories managing epistemic
uncertainty, we consider that two sources of evidence are independent (i.e. distinct and
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sources associated with bba’s m1(.) and m2(.) is thus given by mDSmC(∅) = 0 and
∀X ∈ DΘ by [17]:

mDSmC(X) =
X

X1,X2∈DΘ

X1∩X2=X

m1(X1)m2(X2) (8.2)

DΘ being closed under ∪ and ∩ operators, DSmC guarantees that m(.) is a proper
bba.

When Shafer’s model holds, instead of distributing the total conflicting mass onto
elements of 2Θ proportionally with respect to their masses resulted after applying the
conjunctive rule as within Demspter’s rule (DS) through the normalization step [16],
or transferring the partial conflicts onto partial uncertainties as within DSmH rule
[17], we propose to use the Proportional Conflict Redistribution rule no.5 (PCR5)
[18, 19] which transfers the partial conflicting masses proportionally to non-empty
sets involved in the model according to all integrity constraints. PCR5 rule works for
any degree of conflict in [0, 1], for any models (Shafer’s model, free DSm model or any
hybrid DSm model) and both in DST and DSmT frameworks for static or dynamical
fusion problems. The PCR5 rule for two sources is defined by: mPCR5(∅) = 0 and
∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X)+

X

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (8.3)

where each element X, and Y , is in the disjunctive normal form. m12(X) corresponds
to the conjunctive consensus on X between the two sources. All denominators are
different from zero. If a denominator is zero, that fraction is discarded. No matter
how big or small is the conflicting mass, PCR5 mathematically does a better redis-
tribution of the conflicting mass than Dempster’s rule and other rules since PCR5
goes backwards on the tracks of the conjunctive rule and redistributes the partial
conflicting masses only to the sets involved in the conflict and proportionally to their
masses put in the conflict, considering the conjunctive normal form of the partial con-
flict. PCR5 is quasi-associative and preserves the neutral impact of the vacuous belief
assignment. General PCR5 fusion formula and improvement for the combination of
k ≥ 2 sources of evidence can be found in [19] with many detailed examples.

noninteracting) if each leaves one totally ignorant about the particular value the other will
take.
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8.3 Linguistic models of qualitative beliefs

8.3.1 The 1-tuple linguistic model

In order to compute qualitative belief assignments expressed by pure linguistic labels
(i.e. 1-tuple linguistic representation model) over GΘ, Smarandache and Dezert have
defined in [19] a qualitative basic belief assignment q1m(.) as a mapping function from
GΘ into a set of linguistic labels L = {L0, L̃, Ln+1} where L̃ = {L1, · · · , Ln} is a finite
set of linguistic labels and where n ≥ 2 is an integer. For example, L1 can take the
linguistic value “poor”, L2 the linguistic value “good”, etc. L̃ is endowed with a total
order relationship ≺, so that L1 ≺ L2 ≺ · · · ≺ Ln,where ≺ means inferior to, or less (in
quality) than, or smaller than, etc. To work on a true closed linguistic set L under lin-
guistic addition and multiplication operators, Smarandache and Dezert extended nat-
urally L̃ with two extreme values L0 = Lmin and Ln+1 = Lmax, where L0 corresponds
to the minimal qualitative value and Ln+1 corresponds to the maximal qualitative
value, in such a way that L0 ≺ L1 ≺ L2 ≺ · · · ≺ Ln ≺ Ln+1. In the sequel Li ∈ L are
assumed linguistically equidistant labels such that we can make an isomorphism φL

between L = {L0, L1, L2, . . . , Ln, Ln+1} and {0, 1/(n+1), 2/(n+1), . . . , n/(n+1), 1},
defined as φL(Li) = i/(n + 1) for all i = 0, 1, 2, . . . , n, n + 1.

From the extension of the isomorphism between the set of linguistic equidistant
labels and a set of numbers in the interval [0, 1], one can built exact operators on
linguistic labels which makes possible the extension of all quantitative fusion rules
into their qualitative counterparts [10]. We briefly remind the basic (approximate)
qualitative operators2 (or q-operators for short) on (1-tuple) linguistic labels:

• q-addition:

Li + Lj =

(

Li+j if i + j < n + 1,

Ln+1 = Lmax if i + j ≥ n + 1.
(8.4)

The q-addition is an extension of the addition operator on equidistant labels
which is given by Li + Lj = i

n+1
+ j

n+1
= i+j

n+1
= Li+j .

• q-subtraction:

Li − Lj =

(

Li−j if i ≥ j,

−Lj−i if i < j.
(8.5)

where −L = {−L1,−L2, . . . ,−Ln,−Ln+1}. The q-subtraction is justified since
when i ≥ j, one has with equidistant labels Li − Lj = i

n+1
− j

n+1
= i−j

n+1
.

• q-multiplication3:
Li · Lj = L[(i·j)/(n+1)]. (8.6)

2more approximate q-operators can be found in [3] and new accurate operators are in-
troduced in Chapter 2 of this volume.

3The q-multiplication of two linguistic labels defined here can be extended directly to the
multiplication of n > 2 linguistic labels. For example the product of three linguistic label
will be defined as Li · Lj · Lk = L[(i·j·k)/(n+1)(n+1)], etc.
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where [x] means the closest integer4 to x (with [n + 0.5] = n + 1, ∀n ∈ N).
This operator is justified by the approximation of the product of equidistant
labels given by Li · Lj = i

n+1
· j

n+1
= (i·j)/(n+1)

n+1
. A simpler approximation of

the multiplication, but less accurate (as proposed in [19]) is thus

Li × Lj = Lmin{i,j} (8.7)

• Scalar multiplication of a linguistic label: Let a be a real number. The multi-
plication of a linguistic label by a scalar is defined by:

a · Li =
a · i

n + 1
≈
(

L[a·i] if [a · i] ≥ 0,

L−[a·i] otherwise.
(8.8)

• Division of linguistic labels:

a) q-division as an internal operator: Let j �= 0, then

Li/Lj =

(

L[(i/j)·(n+1)] if[(i/j) · (n + 1)] < n + 1,

Ln+1 otherwise.
(8.9)

The first equality in (8.9) is well justified because with equidistant labels,

one gets: Li/Lj = i/(n+1)
j/(n+1)

= (i/j)·(n+1)
n+1

≈ L[(i/j)·(n+1)].

b) Division as an external operator: �. Let j �= 0. We define:

Li � Lj = i/j. (8.10)

since for equidistant labels Li � Lj = (i/(n + 1))/(j/(n + 1)) = i/j.

From the q-operators we now can easily and directly extend all quantitative fusion
rules like DSmC or PCR5 (8.2) or (8.3) into their qualitative version by replacing
classical operators on numbers with linguistic labels defined above. Many detailed
examples can be found in [3, 10, 18, 19].

8.3.2 The 1-tuple linguistic enriched model

In order to keep working with a coarse/reduced set of linguistic labels for main-
taining a low computational complexity, but for taking into account the confidence
one may have on the label value declared by a source, we proposed in [10] a qual-
itative enriched linguistic representation model denoted by Li(ci), where the first
component Li is a classical linguistic label and the second component ci is an as-
sessment (confidence) value. ci can be either a numerical supporting degree5 in

4When working with labels, no matter how many operations we have, the best (most
accurate) result is obtained if we do only one approximation, and that one should be just at
the very end.

5In our previous publication [10], we considered ci ∈ [0,∞) but it seems more natural to
take it actually in [0, 1] as in statistics.
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[0, 1] or a qualitative supporting degree taken its value in a given (ordered) set X
of linguistic labels. When ci ∈ [0, 1], Li(ci) is called an enriched label of type 1,
whereas when αi ∈ X, Li(ci) is called an enriched label of type 2. The (quanti-
tative or qualitative) value ci characterizes the confidence weight one has when the
source declares label Li for committing its qualitative belief to a given proposition
A ∈ GΘ. For example with enriched labels of type 1, if the label L1 � L1(1) rep-
resents our full confidence in the linguistic variable Good declared by the source,
L1(0.7) means than we are a bit less confident (i.e. 70% confident only) in the dec-
laration Good provided by the source, etc. With enriched labels of type 2, if one
chooses by example X = {SC, MC, HC}, where elements of X have the following
meaning: SC � “Small Condidence”, MC � “Medium Confidence” and FC �“Full
Confidence”, then the enriched label L1 � L1(FC) represents linguistic variable Good
with the full confidence we grant in this declaration (similarly as L1(1) for type 1),
etc. In [10], we have shown how to work (i.e. how to define new qe-operators) and how
to combine qualitative beliefs based on this enriched linguistic representation model.
The computations are based on an independent derivation mechanism of the 1st and
2nd components of the enriched labels Li(ci) because the label Li and its confidence
factor ci, i = 1, . . . , n do not carry the same intrinsic nature of information.

Herrera-Mart́ınez’ approach (i.e. the 2-tuple linguistic model) presented in the
next section is totally different as it will be shown. In the 2-tuple linguistic model, one
tries to refine the value of the labels in order to deal with a richer/finer information
but without regards to the confidence one may have on the (refined/2-tuple) labels.
Of course, the enrichment of 2-tuple labels can be easily done following ideas presented
in [10].

8.3.3 The precise 2-tuple linguistic model

Herrera and Mart́ınez’ (precise) 2-tuple model has been introduced in detail in [8].
Here we denote this model (Li, σ

h
i ) where σh

i is chosen in Σ � [−0.5/(n+1), 0.5/(n+
1)), i ∈ {1, · · · ,∞}. The 2-tuple model can be justified since each distance be-
tween two equidistant labels is 1/(n + 1) because of the isomorphism between L
and {0, 1/(n+1), . . . , n/(n+1), 1}, so that Li = i/(n+1) for all i = 0, 1, 2, . . . , n, n+
1. Therefore, we take half to the left and half to the right of each label, i.e.
σh

i ∈ Σ. So a 2-tuple equidistant linguistic representation model is used to rep-
resent the linguistic information by means of 2-tuple item set �L(L, σh) with L =
{L0, L1, L2, . . . , Ln, Ln+1} isomorphic to {0, 1/(n + 1), 2/(n + 1), . . . , n/(n + 1), 1}
and the set of qualitative assessments isomorphic to Σ. This 2-tuple approach is
an intricate/hybrid mechanism of derivation using jointly Li and σh

i where σh
i is a

positive or negative numerical remainder with respect to the labels.



Chapter 8: Fusion of qualitative information . . . 283

8.3.3.1 Symbolic translation

Let’s define the normalized index6 i = round((n + 1) × β) = [(n + 1) × β], with i ∈
[0, (n+1)] and β ∈ [0, 1], and the Symbolic Translation σh � β−i/(n+1) ∈ [−0.5/(n+
1), 0.5/(n + 1)). Roughly speaking, the Herrera-Mart́ınez symbolic translation of an
assessment linguistic value (n+1)×σh

i is a numerical value that supports the difference
of information between the (normalized) index obtained from the fusion rule and its
closest value in {0, 1, . . . , n + 1}.

8.3.3.2 Herrera-Mart́ınez transformations

• �(.) : conversion of a numerical value into a 2-tuple

�(.) : [0, 1] → L×Σ is defined by [8]

�(β) = (Li, σ
h) �

(

Li, i = round((n + 1) · β)

σh = β − i/(n + 1), σh ∈ Σ
(8.11)

Thus Li has the closest index label to β and σh is the value of its symbolic translation.

• ∇(.) : conversion of a 2-tuple into a numerical value

The inverse/dual function of �(.) is denoted ∇(.) and ∇(.) : L×Σ → [0, 1] is defined
by

∇((Li, σ
h
i )) = i/(n + 1) + σh

i = βi (8.12)

8.3.3.3 Main operators on 2-tuples

Let’s consider two 2-tuples (Li, σ
h
i ) and (Lj , σ

h
j ), then the following operators are

defined as follows.

• Addition of 2-tuples

(Li, σ
h
i ) + (Lj , σ

h
j ) ≡ ∇((Li, σ

h
i ) + (Lj , σ

h
j ))

= ∇((Li, σ
h
i )) + ∇((Lj , σ

h
j )) = βi + βj = βz

=

(

�(βz) if βz ∈ [0, 1]

Ln+1 otherwise
(8.13)

• Product of 2-tuples

(Li, σ
h
i ) × (Lj , σ

h
j ) ≡ ∇((Li, σ

h
i ) × (Lj , σ

h
j ))

= ∇((Li, σ
h
i ))×∇((Lj , σ

h
j )) = βi × βj = βp ≡ �(βp) (8.14)

with βp ∈ [0, 1]. It can be proved that 2-tuple addition and product operators are
commutative and associative.

6where round(.) is the rounding operation denoted [.] in our previous q-operators [10].
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• Scalar multiplication of a 2-tuple

α · (Li, σ
h
i ) ≡ ∇(α · (Li, σ

h
i )) = α · ∇((Li, σ

h
i ))

= α · βi = βγ ≡
(

�(βγ) βγ ∈ [0, 1]

Ln+1 otherwise
(8.15)

• Division of a 2-tuple by a 2-tuple

Let’s consider two 2-tuples (Li, σ
h
i ) and (Lj , σ

h
j ) with7 (Li, σ

h
i ) < (Lj , σ

h
j ), then the

division is defined as

(Li, σ
h
i )

(Lj , σh
j )

≡ ∇(
(Li, σ

h
i )

(Lj , σh
j )

) =
∇((Li, σ

h
i ))

∇((Lj , σh
j ))

=
βi

βj
= βd ≡ �(βd) with βd ∈ [0, 1] (8.16)

If (Li, σ
h
i ) ≥ (Lj , σ

h
j ), then

(Li, σ
h
i )

(Lj , σh
j )

≡ ∇(
(Li, σ

h
i )

(Lj , σh
j )

) =
∇((Li, σ

h
i ))

∇((Lj , σh
j ))

=
βi

βj
≥ 1

and in such case
(Li,σh

i )

(Lj ,σh
j )

is set to the maximum label, i.e.
(Li,σh

i )

(Lj ,σh
j )

= (Ln+1, 0) ∼ Ln+1.

8.3.4 The imprecise 2-tuple linguistic model

Since qualitative belief assignment might be imprecise by expert on some occasions,
in order to further combine this imprecise qualitative information, we introduce op-
erators on imprecise 2-tuple labels (i.e. addition, subtraction, product and division,
etc.). The definition adopted here is the qualitative extension of the one proposed
by Denœux’ in [1] for reasoning with (quantitative) Interval-valued Belief Structures
(IBS).

Definition 1 (IQBS): Let �LGΘ denotes the set of all qualitative belief structures (i.e.
precise and imprecise) over GΘ. An imprecise qualitative belief structure (IQBS) is
defined as a non-empty subset m from �LGΘ , such that there exist n subsets F1, · · · , Fn

over GΘ and n qualitative intervals [ai, bi], 1 ≤ i ≤ n (with L0 ≤ ai ≤ bi ≤ Ln+1)
such that

m = {m ∈ �LGΘ | ai ≤ m(Fi) ≤ bi, 1 ≤ i ≤ n,

and m(A) = (L0, 0), ∀A /∈ {F1, . . . , Fn}}

7The comparison operator is defined in [8].
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Proposition 1: A necessary and sufficient condition for m to be non-empty is that
L0 ≤

Pn
i=1 ai ≤ Ln+1 ≤

Pn
i=1 bi because there should be at least a qualitative value

ci ∈ [ai, bi], for each i, such that
Pn

i=1 ci = Ln+1, i.e. the condition of qualitative
normalization of m(.). This is an extension of Denœux’ proposition [1].

In order to combine imprecise qualitative belief structures, we use the operations
on sets proposed by Dezert and Smarandache in [2].

8.3.4.1 Addition of imprecise 2-tuple labels

The addition operator is very important in most of combination rules for fusing infor-
mation in most of belief functions theories (in DST framework, in Smets’ Transferable
Belief Model (TBM) [21] as well as in DSmT framework). The addition operator for
imprecise 2-tuple labels (since every imprecise mass of belief is represented here qual-
itatively by a 2-tuple label) is defined by:

m1 � m2 = m2 � m1 � {x | x = s1 + s2, s1 ∈ m1, s2 ∈ m2} (8.17)

where the symbol + means the addition operator on labels and with
(

inf(m1 + m2) = inf(m1) + inf(m2)

sup(m1 + m2) = sup(m1) + sup(m2)

Special case: if a source of evidence supplies precise information, i.e. m is a precise
2-tuple, say (Lk, αh

k), then

(Lk, σh
k ) � m2 = m2 � (Lk, σh

k ) = {x | x = (Lk, σh
k ) + s2, s2 ∈ m2} (8.18)

with
(

inf((Lk, σh
k ) + m2) = (Lk, σh

k ) + inf(m2)

sup((Lk, σh
k ) + m2) = (Lk, σh

k ) + sup(m2)

Example: if 9 labels are used, i.e. n = 9,

[(L1, 0.01), (L3, 0.02)] � [(L2, 0.02), (L5, 0.03)] = [(L3, 0.03), (L9,−0.05)]

L3 � [(L2, 0.02), (L5, 0.03)] = [(L5, 0.02), (L8, 0.03))

8.3.4.2 Subtraction of imprecise 2-tuple labels

The subtraction operator is defined as follows:

m1 � m2 � {x | x = s1 − s2, s1 ∈ m1, s2 ∈ m2} (8.19)

where the symbol − represents the subtraction operator on labels and with
(

inf(m1 −m2) = inf(m1)− sup(m2)

sup(m1 −m2) = sup(m1) − inf(m2)
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When sup(m1 − m2) ≤ (L0, 0), one takes m1 � m2 = (L0, 0); If inf(m1 − m2) ≤
(L0, 0), sup(m1−m2) ≥ (L0, 0), then m1 �m2 = [(L0, 0), sup(m1−m2)]; Otherwise,
m1 � m2 = [inf(m1 −m2), sup(m1 −m2)].

Special case: if one of sources of evidence supplies precise information, i.e. m is a
precise 2-tuple, say (Lk, αh

k), then

(Lk, σh
k ) � m2 = {x | x = (Lk, σh

k ) − s2, s2 ∈ m2} (8.20)

with
(

inf((Lk, σh
k ) −m2) = (Lk, σh

k ) − sup(m2)

sup((Lk, σh
k ) −m2) = (Lk, σh

k ) − inf(m2)

Similarly,
m1 � (Lk, σh

k ) = {x | x = s1 − (Lk, σh
k ), s1 ∈ m1} (8.21)

with
(

inf(m1 − (Lk, σh
k )) = inf(m1) − (Lk, σh

k )

sup(m1 − (Lk, σh
k )) = sup(m1) − (Lk, σh

k )

Example: if 9 labels are used, i.e. n = 9,

[(L2, 0.02), (L5, 0.03)] � [(L1, 0.01), (L3, 0.02)] = [(L0, 0), (L4, 0.02)]

[(L1, 0.01), (L3, 0.02)] � (L5, 0.03) = (L0, 0)

L3 � [(L2, 0.02), (L5, 0.03)] = [(L0, 0), (L1,−0.02)]

8.3.4.3 Multiplication of imprecise 2-tuple labels

The multiplication operator plays also an important role in most of the rules of
combinations. The multiplication of imprecise 2-tuple labels is defined as follows:

m1 � m2 = m2 � m1 � {x | x = s1 × s2, s1 ∈ m1, s2 ∈ m2} (8.22)

where the symbol × represents the multiplication operator on labels and with
(

inf(m1 ×m2) = inf(m1) × inf(m2)

sup(m1 ×m2) = sup(m1) × sup(m2)

Special case: if one of sources of evidence supplies precise information, i.e. m is a
precise 2-tuple, say (Lk, αh

k), then

(Lk, σh
k ) � m2 = m2 � (Lk, σh

k ) = {x | x = (Lk, σh
k ) × s2, s2 ∈ m2}

with
(

inf((Lk, σh
k ) ×m2) = (Lk, σh

k ) × inf(m2)

sup((Lk, σh
k ) ×m2) = (Lk, σh

k ) × sup(m2)

Example: if 9 labels are used, i.e. n = 9,

[(L1, 0.01), (L3, 0.02)] � [(L2, 0.02), (L5, 0.03)] = [(L0, 0.0242), (L2,−0.0304)]

L3 � [(L2, 0.02), (L5, 0.03)] = [(L1,−0.034), (L2,−0.041)]
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8.3.4.4 Division of imprecise 2-tuple labels

The division operator is also necessary in some combinations rules (like in Demp-
ster’s rule or PCR5 by example). So we propose the following division operator for
imprecise 2-tuple labels based on division of sets introduced in [2]:

If m2 �= (L0, 0), then

m1 � m2 � {x | x = s1 ÷ s2, s1 ∈ m1, s2 ∈ m2} (8.23)

where the symbol ÷ represents the division operator on labels and with

(

inf(m1 ÷m2) = inf(m1)÷ sup(m2)

sup(m1 ÷m2) = sup(m1) ÷ inf(m2)

when sup(m1) ÷ inf(m2) ≤ Ln+1. Otherwise we take sup(m1 ÷m2) = Ln+1.

Special case: if one of sources of evidence supplies precise information, i.e. m is a
precise 2-tuple, say (Lk, αh

k) �= (L0, 0), then

(Lk, σh
k ) � m2 = {x | x = (Lk, σh

k ) ÷ s2, s2 ∈ m2} (8.24)

with
(

inf((Lk, σh
k ) ÷m2) = (Lk, σh

k ) ÷ sup(m2)

sup((Lk, σh
k ) ÷m2) = (Lk, σh

k ) ÷ inf(m2)

Similarly,
m1 � (Lk, σh

k ) = {x | x = s1 ÷ (Lk, σh
k ), s1 ∈ m1} (8.25)

with
(

inf(m1 ÷ (Lk, σh
k )) = inf(m2) ÷ (Lk, σh

k )

sup(m1 ÷ (Lk, σh
k )) = sup(m2) ÷ (Lk, σh

k )

Example: if 9 labels are used, i.e. n = 9,

[(L1, 0.01), (L3, 0.02)] � [(L2, 0.02), (L5, 0.03)] = [(L2, 0.0075), (L10, 0)]

L3 � [(L2, 0.02), (L5, 0.03)] = [(L6,−0.034), (L10, 0)]

[(L2, 0.02), (L5, 0.03)] � L3 = [(L7, 0.033), (L10, 0)]

8.4 Fusion of qualitative beliefs

8.4.1 Fusion of precise qualitative beliefs

From the 2-tuple linguistic representation model of qualitative beliefs and the previ-
ous operators on 2-tuple labels, we are now able to extend the DSmC, PCR5 and
even Dempster’s (DS) fusion rules into the qualitative domain following the track of
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our previous works [3, 10, 19]. We denote q2m(·) the qualitative belief mass/assign-
ment (qba) based on 2-tuple representation in order to make a difference with the qba
q1m(·) based on 1-tuple (classical/pure) linguistic labels and qem(·) based on qual-
itative enriched linguistic labels [10]. Mathematically, q2m(·) expressed by a given
source/body of evidence S is defined as a mapping function q2m(·): GΘ → L × α
such that:

q2m(∅) = (L0, 0) and
X

A∈GΘ

q2m(A) = (Ln+1, 0) (8.26)

From the expressions of quantitative DSmC (8.2), PCR5 (8.3) and Dempster’s
(DS) [16] fusion rules and from the operators on 2-tuple labels, we can define the
classical qualitative combination or proportional redistribution rules (q2DSmC and
q2PCR5) for dealing with 2-tuple linguistic labels (Li, αi). This is done as follows:

• when working with the free DSm model of the frame Θ: q2mDSmC(∅) = (L0, 0)
and ∀X ∈ DΘ \ {∅}

q2mDSmC(X) =
X

X1,X2∈DΘ

X1∩X2=X

q2m1(X1)q2m2(X2) (8.27)

• when working with Shafer’s or hybrid model of the frame Θ: q2mPCR5(∅) =
(L0, 0) and ∀X ∈ GΘ \ {∅}

q2mPCR5(X) = q2m12(X) +
X

Y ∈GΘ\{X}
X∩Y =∅

[
q2m1(X)2q2m2(Y )

q2m1(X) + q2m2(Y )

+
q2m2(X)2q2m1(Y )

q2m2(X) + q2m1(Y )
] (8.28)

where q2m12(X) corresponds to the qualitative conjunctive consensus.

It is important to note that addition, product and division operators involved in
formulas (8.27) and (8.28) are 2-tuple operators defined in the previous section. These
rules can be easily extended for the qualitative fusion of k > 2 sources of evidence.
The formulas (8.27) and (8.28) are well justified since every 2-tuple (Li, αi) can be
mapped into a unique β numerical value corresponding to it which makes the quali-
tative fusion rules q2DSmC and q2PCR5 equivalent to the corresponding numerical
fusion rules DSmC and PCR5 because of the existence of Δ(.) transformation.

Theorem 1: (Normalization) If
P

A∈GΘ

q2m(A) = (Ln+1, 0),

then
P

A∈GΘ

q2mDSmC(A) = (Ln+1, 0), and
P

A∈GΘ

q2mPCR5(A) = (Ln+1, 0).

Proof : Let’s assume that there is a frame of discernment Θ which includes sev-
eral focal elements. According to DSm model, one defines its hyper-power set
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DΘ, Ai ∈ DΘ, i = {1, 2, · · · , n}. There exist k evidential sources with qualita-
tive belief mass aij , i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n}. According to the premise, i.e.
P

A∈GΘ

q2m(A) = (Ln+1, 0), that is,
P

j∈{1,2,...,n}
aij = (Ln+1, 0). According to (8.14)

and the characteristics of Product operator,

Y

i∈{1,2,...,k}

X

j∈{1,2,...,n}
aij =

Y

i∈{1,2,...,k}
(Ln+1, 0) = (Ln+1, 0)

because

q2mDSmC(X) =
X

X1,X2,···Xk∈DΘ

X1∩X2···Xk=X

q2m1(X1)q2m2(X2) · · · q2mk(Xk)

=
Y

i∈{1,2,...,k}

X

j∈{1,2,...,n}
aij = (Ln+1, 0).

Moreover, since qPCR5 redistributes proportionally the partial conflicting mass to
the elements involved in the partial conflict by considering the canonical form of the
partial conflict, the total sum of all qualitative belief mass after redistribution doesn’t
change and therefore it is equal to (Ln+1, 0). This completes the proof.

Similarly, Dempster’s rule (DS) can be extended for dealing with 2-tuple linguistic
labels by taking q2mDS(∅) = (L0, 0) and ∀A ∈ 2Θ \ {∅}

q2mDS(A) =

P

X,Y ∈2Θ

X∩Y =A

q2m1(X)q2m2(Y )

(Ln+1, 0) −
P

X,Y ∈2Θ

X∩Y =∅

q2m1(X)q2m2(Y )
(8.29)

8.4.2 Fusion of imprecise qualitative beliefs

Let’s consider k sources of evidences providing imprecise qualitative belief assign-
ments/masses mij defined on GΘ with |GΘ| = d. We denote by mij central value of
the label provided by the sourc no. i (1 ≤ i ≤ k) for the element Xj ∈ GΘ, 1 ≤ j ≤ d.
For example with qualitative interval-valued beliefs, mij = [mij − εij , mij + εij ] ∈
[(L0, 0), (Ln+1, 0)], where (L0, 0) ≤ εij ≤ Ln+1. More generally, mij can be either an
union of open intervals, or of closed intervals, or of semi-open intervals.

The set of imprecise qualitative belief masses provided by the sources of evidences
can be represented/characterized by the following belief mass matrices with

inf(M) =

2

6

6

4

m11 − ε11 m12 − ε12 · · · m1d − ε1d

m21 − ε21 m22 − ε22 · · · m2d − ε2d

· · · · · · · · · · · ·
mk1 − εk1 mk2 − εk2 · · · mkd − εkd

3

7

7

5
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sup(M) =

2

6

6

4

m11 + ε11 m12 + ε12 · · · m1d + ε1d

m21 + ε21 m22 + ε22 · · · m2d + ε2d

· · · · · · · · · · · ·
mk1 + εk1 mk2 + εk2 · · · mkd + εkd

3

7

7

5

All the previous qualitative fusion rules working with precise 2-tuple labels can
be extended directly for dealing with imprecise 2-tuple labels by replacing precise
operators on 2-tuple labels by their counterparts for imprecise 2-tuple labels as defined
in section 8.5. We just here present the extensions of DSmC, PCR5 and DS rules of
combinations. The extensions of other combination rules (DSmH, Dubois & Prade’s,
Yager’s, etc) can be done easily in a similar way and will not be reported here.

• The DSmC fusion of imprecise qualitative beliefs

The DSm classical rule of combination of k ≥ 2 imprecise qualitative beliefs
is defined for the free DSm model of the frame Θ, i.e. GΘ = DΘ as follows:
q2m

I
DSmC(∅) = (L0, 0) and ∀X ∈ DΘ \ {∅}

q2m
I
DSmC(X) =

X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1

q2mi(Xi) (8.30)

• The PCR5 fusion of imprecise qualitative beliefs

When working with Shafer’s or DSm hybrid models of the frame Θ, the PCR5
rule of combination of two imprecise qualitative beliefs is defined by: q2m

I
PCR5(∅) =

(L0, 0) and ∀X ∈ GΘ \ {∅}

q2m
I
PCR5(X) = q2m

I
12(X) +

X

Y ∈GΘ\{X}
X∩Y =∅

[
q2m1(X)2q2m2(Y )

q2m1(X) + q2m2(Y )

+
q2m2(X)2q2m1(Y )

q2m2(X) + q2m1(Y )
] (8.31)

where q2m
I
12(X) corresponds to the imprecise qualitative conjunctive consensus

defined by

q2m
I
12(X) =

X

X1,X2∈GΘ

X1∩X2=X

q2m1(X1)q2m2(X2) (8.32)

• Dempster’s fusion of imprecise qualitative beliefs

Dempster’s rule can also be directly extended for dealing with imprecise qual-
itative beliefs by taking q2mDS(∅) = (L0, 0) and ∀A ∈ 2Θ \ {∅}
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q2m
I
DS(A) =

P

X,Y ∈2Θ

X∩Y =A

q2m1(X)q2m2(Y )

(Ln+1, 0) −
P

X,Y ∈2Θ

X∩Y =∅

q2m1(X)q2m2(Y )
(8.33)

Theorem 2: The following equality holds

q2m
I
DSmC(X) = [inf(q2m

I
DSmC(X)), sup(q2m

I
DSmC(X))]

with

inf(q2m
I
DSmC(X)) =

X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1

inf(q2mi(Xi))

sup(q2m
I
DSmC(X)) =

X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1

sup(q2mi(Xi))

Proof : Let’s assume inf(q2mi(Xj)) and sup(q2mi(Xj)) (1 ≤ i ≤ k) be represented
by aij ∈ inf(M) and bij ∈ sup(M) with aij ≤ bij (≤ represents here a qualitative
order). For any label cmj ∈ [amj , bmj ], one has

X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1

aij ≤
X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1,i
=m

aijcmj

and also

X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1,i
=m

aijcmj ≤
X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1

bij

Therefore, q2m
I
DSmC(X) = [inf(q2m

I
DSmC(X)), sup(q2m

I
DSmC(X))] which com-

pletes the proof. Similarly, q2m
I
PCR5(X) = [inf(q2m

I
PCR5(X)), sup(q2m

I
PCR5(X))].

This theorem shows that we can compute the upper and lower bounds of imprecise
qualitative beliefs by applying the corresponding combination and redistribution rule
directly on the bounds.

8.5 Examples of fusion of qualitative beliefs

All examples from this article could easier be calculated using the DSm Field and
Algebra of Refined Labels.
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8.5.1 Example of fusion of precise qualitative beliefs

Let’s consider an investment corporation which has to choose one project among three
proposals Θ = {θ1, θ2, θ3} based on two consulting/expert reports. The linguistic
labels used by the experts are among the following ones: I �→ Impossible, EU �→
Extremely-Unlikely, VLC �→ Very-Low-Chance, LLC �→ Little-Low-Chance, SC �→
Small-Chance, IM �→ IT-May, MC �→ Meanful-Chance, LBC �→ Little-Big-Chance,
BC �→ Big-Chance, ML �→ Most-likely, C �→ Certain. So, we consider the following
ordered set L (with |L| = n = 9) of linguistic labels

L � {L0 ≡ I, L1 ≡ EU,L2 ≡ V LC, L3 ≡ LLC, L4 ≡ SC, L5 ≡ IM,

L6 ≡ MC, L7 ≡ LBC, L8 ≡ BC, L9 ≡ ML, L10 ≡ C}

The qualitative belief assignments/masses provided by the sources/experts are
assumed to be given according to Table 8.1.

Source 1 Source 2
θ1 m1(θ1) = (L4, 0.03) m2(θ1) = (L5, 0)
θ2 m1(θ2) = (L3,−0.03) m2(θ2) = (L2, 0.01)
θ3 m1(θ3) = (L3, 0) m2(θ3) = (L3,−0.01)

Table 8.1: Precise qualitative belief assignments given by the sources.

When working with the free DSm model and applying the qualitative DSmC rule
of combination (8.27), we obtain:

q2mDSmC(θ1) = Δ(0.43 × 0.50) = (L2, 0.015)

q2mDSmC(θ2) = Δ(0.27 × 0.21) = (L1,−0.0433)

q2mDSmC(θ3) = Δ(0.30 × 0.29) = (L1,−0.013)

q2mDSmC(θ1 ∩ θ2) = Δ(0.43 × 0.21 + 0.50 × 0.27) = (L2, 0.0253)

q2mDSmC(θ1 ∩ θ3) = Δ(0.43 × 0.29 + 0.50 × 0.30) = (L3,−0.0253)

q2mDSmC(θ2 ∩ θ3) = Δ(0.27 × 0.29 + 0.21 × 0.30) = (L1, 0.0413)

We can verify the validity of the Theorem 1, i.e.
P

A∈DΘ

q2m(A) = (L10, 0), which

proves that is q2mDSmC(.) is normalized.

Now, let’s assume that Shafer’s model holds for Θ. In this case the sets θ1∩θ2,θ1∩
θ3,θ2 ∩ θ3 must be empty and the qualitative conflicting masses q2mDSmC(θ1 ∩ θ2),
q2mDSmC(θ1∩θ3) and q2mDSmC(θ2∩θ3) need to be redistributed to the sets involved
in these conflicts according to (8.28) if the PCR5 fusion rule is used. So, with PCR5
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one gets:

q2mPCR5(θ1) = q2mDSmC(θ1) + q2mxA1(θ1) +

q2mxB1(θ1) + q2mxA2(θ1) + q2mxB2(θ1)

= (L5, 0.03155626126)

q2mPCR5(θ2) = q2mDSmC(θ2) + q2myA1(θ2) +

q2myB1(θ2) + q2mxA3(θ2) + q2mxB3(θ2)

= (L2,−0.00263968798)

q2mPCR5(θ3) = q2mDSmC(θ3) + q2myA2(θ3) +

q2myB2(θ3) + q2myA3(θ3) + q2myB3(θ3)

= (L3,−0.02891657328)

Because q2mPCR5(θ1) is larger than q2mPCR5(θ2) and q2mPCR5(θ3), the invest-
ment corporation will choose the first project to invest.

Now, if we prefer to use the extension of Dempter’s rule of combination given by
the formula (8.33), the total qualitative conflicting mass is qKtotal = q2mDSmC(θ1 ∩
θ2) + q2mDSmC(θ1 ∩ θ3) + q2mDSmC(θ3 ∩ θ2) = (L6, 0.0413), and so we obtain:

q2mDS(∅) � (L0, 0)

q2mDS(θ1) =
q2mDSmC(θ1)

L10 − qKtotal
=

(L2, 0.015)

L10 − (L6, 0.0413)
= (L6,−0.0006133)

q2mDS(θ2) =
q2mDSmC(θ2)

L10 − qKtotal
=

(L1,−0.0433)

L10 − (L6, 0.0413)
= (L2,−0.0419292)

q2mDS(θ3) =
q2mDSmC(θ3)

L10 − qKtotal
=

(L1,−0.013)

L10 − (L6, 0.0413)
= (L2, 0.0425425)

We see that q2mDS(θ1) is larger than q2mDS(θ2) and q2mDS(θ3), so the first
project is also chosen to invest. The final decision is same to the previous one ob-
tained by q2PCR5. However, when the total conflict becomes nearer and nearer to
L10, then q2DS formula will become invalid.

If we adopt the simple arithmetic mean method, the results of the fusion are:

θ1 :
(L4, 0.03) + (L5, 0)

2
= (L5,−0.035)

θ2 :
(L3,−0.03) + (L2, 0.01)

2
= (L2, 0.04)

θ3 :
(L3, 0) + (L3,−0.01)

2
= (L3,−0.005)



294 Chapter 8: Fusion of qualitative information . . .

According to the above results, we easily know which project will be chosen to
invest. Though the arithmetic mean is the simplest method among three methods, for
some complex problems, it will provide unsatisfactory results since it is not neutral
with respect to the introduction of a total ignorant source in the fusion process. This
method can also be ill adapted to some particular problems. For example, one also
investigates the possibility of investment in two projects together, i.e. θi ∩ θj �= ∅.
However, the corporation only choose one of them to invest. How to do it in this
case with simple arithmetic mean method? It is more easy to take decision from
q2PCR5(.).

If all qualitative masses involved in the fusion are normalized, no matter what
qualitative fusion rule we use the normalization is kept (i.e. the result will also be a
normalized mass).

8.5.2 Example of fusion of imprecise qualitative beliefs

Let’s consider again the previous example with imprecise qualitative beliefs providse
by the sources according to Table 8.2:

Source 1 Source 2
θ1 m1(θ1) = [(L4, 0.03), (L5, 0.03)] m2(θ1) = [(L5, 0), (L5, 0.04)]
θ2 m1(θ2) = [(L3,−0.03), (L4,−0.03)] m2(θ2) = [(L2, 0.01), (L3,−0.03)]
θ3 m1(θ3) = [(L3, 0), (L4, 0.03)] m2(θ3) = [(L3,−0.01), (L3, 0)]

Table 8.2: Imprecise qualitative belief assignments given by the sources.

If one works with the free DSm model for the frame Θ, one gets from (8.30) and
the theorem 2 the following results:

q2m
I
DSmC(θ1) = [(L2, 0.015), (L3,−0.0138)]

q2m
I
DSmC(θ2) = [(L1,−0.0433), (L1,−0.0001)]

q2m
I
DSmC(θ3) = [(L1,−0.013), (L1, 0.029)]

q2m
I
DSmC(θ1 ∩ θ2) = [(L2, 0.0253), (L3, 0.0429)]

q2m
I
DSmC(θ1 ∩ θ3) = [(L3,−0.0253), (L4,−0.0088)]

q2m
I
DSmC(θ2 ∩ θ3) = [(L1, 0.0413), (L2, 0.0271)]

If one works with Shafer’s model for the frame Θ (i.e. all elements of Θ are
assumed exclusive), then the imprecise qualitative conflicting masses q2m

I
DSmC(θ1 ∩

θ2), q2m
I
DSmC(θ1 ∩ θ3) and q2m

I
DSmC(θ2 ∩ θ3) need to be redistributed to elements

involved in these conflicts if PCR5 is used. In such case and from (8.31) and the
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Theorem 2, one gets:

q2m
I
PCR5(θ1) = [(L5,−0.02036), (L8, 0.01860)]

q2m
I
PCR5(θ2) = [(L2,−0.02909), (L4,−0.0089)]

q2m
I
PCR5(θ3) = [(L3,−0.03308), (L5, 0.01112)]

From the values of q2m
I
PCR5(.), one will choose the project θ1 as final decision. It

is interesting to note that q2DSmC and q2PCR5 can be interpreted as special case
(lower bounds) of qI

2DSmC and qI
2PCR5.

The approach proposed in this work for combining imprecise qualitative beliefs
presents the following properties:

1) If one utilizes the q2-operators on 2-tuples without doing any approximation
in the calculations one gets an exact qualitative result, while working on 1-
tuples we round the qualitative result so we get approximations. Thus addition
and multiplication operators on 2-tuple are truly commutative and associative
contraiwise to addition and multiplication operators on 1-tuples. Actually,
Herrera-Mart́ınez’ representation deals indirectly with exact qualitative (re-
fined) values of the labels. This can be done directly and easier (without
2-tuple representation) from the DSm Field and Linear Algebra of Refined La-
bels (DSm-FLARL) presented in Chapter 2 of this volume. In DSm-FLARL
we get the exact qualitative result.

2) Since the 2-tuples {(L0, σ
h
0 ), . . . , (Ln+1, σ

h
n+1)} express actually continuous qual-

itative beliefs, they are equivalent to real numbers. So all quantitative fusion
rules (and even the belief conditioning rules) can work directly using this quali-
tative framework. The imprecise qualitative DSmC and PCR5 fusion rules can
deal easily and efficiently with imprecise belief structures, which are usually
well adapted in real situations dealing with human reports.

3) The precise qualitative DSmC and PCR5 fusion rules can be seen as special
cases of Imprecise qualitative DSmC and PCR5 fusion rules as shown in our
examples.

8.6 Conclusion

In this chapter, we have proposed a new approach for combining imprecise qualitative
beliefs based on Herrera-Mart́ınez’ 2 -Tuple linguistic labels. This approach allows the
combination of information in the situations where no precise qualitative information
is available. The underlying idea is to work with refined labels expressed as 2-tuples
to keep working on the original set of linguistic labels. We have proposed precise and
imprecise qualitative operators for 2-tuple labels and we have shown through very
simple examples how we can combine precise and/or imprecise qualitative beliefs.
The results obtained by this approach are more precise than those based on 1-tuple
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representation since no rounding approximation is done in operations and all the
information is preserved in the fusion process. An enrichment of 2-tuples representa-
tion model can be done similarly to the enrichment done for 1-tuple representation in
order to take into account the confidence we may commit to each qualitative (precise
or imprecise) 2-tuple label given by the sources. The imprecise qualitative DSmC and
PCR5 fusion rules are the extensions of precise qualitative DSmC and PCR5 fusion
rules.
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Abstract: The theory of belief functions allows to build a large
family of combination operators, based mostly on intersections and
unions between the focal elements expressed by the experts, and mul-
tiplications and additions on the masses affected to these focal ele-
ments. This chapter explores some algebraic structures where these
operators behave differently, masses being linguistic labels, or focal
elements being more, or less, than an union of singletons of a dis-
cernment space. In some cases, it will be necessary to forget this
space and the notion of singleton to work within a space of possible
focal elements. We propose five new definitions of labels, with the
corresponding algebras, to replace the masses of [0, 1]. Adaptations
of the theory of belief functions to six constrained spaces for the focal
elements expressed by the experts are presented.
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9.1 Introduction

The theory of belief functions, also called theory of evidence or Dempster-Shafer
theory [4, 20], relies on the definition of basic belief assignments. A large family of
combination operators provides information fusion capabilities. An overview of their
behaviour, based on the decisions they induce, has been made with some analysis of
similarity tools [18]. This chapter extends some previous works of the authors [19].

However, an automatic process is likely to express a mass between 0 and 1, but
a human expert may find it difficult. Interpreting the result can even be a bit more
difficult. The operations applied on the focal elements, particularly the union, may
lead to elements that cannot be interpreted, nor expressed in the expert’s syntax.
Therefore, the objective of providing a meaningful basic belief assignment implies the
ability to constrain its focal elements within an extension of the discernment space
that is restricted to acceptable elements. Dempster and Shafer propose to build this
extension by closing the discernment space by the union operator, while Dezert and
Smarandache [21] close it by union and intersection (and even by complementation
in [23]), and define an equivalence class of the empty set to restrict the hyper-power
set obtained. An aim of this chapter is to explore the question of the other closures
of the discernment space, with an algebraic point of view, and some algorithmic com-
plexity concerns.

The interpretability and robustness of the values given to the masses in a man-
machine interaction is another of the topics of this chapter, and we propose some
algebraic constructions to address both the formulas of the theory of belief functions
and the human processes of decision making.

The section 9.2 browses the most common definitions, functions and operators
of the theory of belief functions. They are classified by their needs of algebraic
structures, considering the operators appearing in their definitions – a list of their
structures used in the chapter is given in appendix. The section 9.3 proposes three new
types of linguistic labels: auto-indenting labels, unfinite auto-indenting labels and soft
auto-indenting labels, test their algebraic properties, and illustrates their differences
on an example, including a max−min algebra reference. Two other extensions of
the [0, 1] real segment are proposed. The section 9.4 shows how to adapt the theory
of belief functions to six situations where the properties of the space containing the
focal elements of the basic belief assignment are more constrained than a power set
or a hyper-power set. Next to the list of the compatible operators, one should keep
an eye to the combinatorial complexity they require.
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9.2 Theories of belief functions

9.2.1 Basic belief assignments

On a finite or discrete set Θ, called the discernment space, it allows to provide mass
on any subset of Θ instead of its singletons. Such a mass repartition is called a basic
belief assignment (bba) m:

X

X∈2Θ

m(X) = 1 (9.1)

∀X ∈ 2Θ m(X) � 0 (9.2)

The hypothesis of closed world [20] can be added to this definition:

m(∅) = 0 (9.3)

It is equivalent to allow an open world, or add a special element to Θ, receiving
the mass ∅, and use the properties of a closed world.

If A is an element of 2Θ with a non-zero mass, it is called a focal element. As a
possible bearer of mass, Θ is the ignorance. We will call F(m) the set of the focal
elements of m, the focal set of m. The notation n will be reserved for the cardinal of Θ.

The equation (9.1) can be extended to the hyper-power set DΘ, closure of Θ
under union and intersection operators. Therefore the exclusivity between elements
of Θ is not necessary, and one can put some mass on their intersection:

X

X∈DΘ

m(X) = 1 (9.4)

The set of the possible focal elements will be called the extension of Θ, noted
E(Θ). It may be 2Θ (the power set), DΘ (the hyper-power set), SΘ (the super-power
set), or another closure of Θ.

9.2.2 Decision-aid functions

Belief (Bel), plausibility (Pl) and pignistic probability (BetP) can be used to build
increasing monotonic functions on 2Θ : A ⊂ B implies f(A) � f(B). As Bel(A) �
BetP(A) � Pl(A), the pignisitic probability is often considered as an interesting
compromise. For any X ∈ E(θ), these functions are defined by:

Bel(X) =
X

Y ∈E(Θ),Y ⊂X,Y 
=∅
m(Y ) (9.5)

Pl(X) =
X

Y ∈E(Θ),Y ∩X 
=∅
m(Y ) (9.6)
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BetP(X) =
X

Y ∈E(Θ),Y 
=∅

|X ∩ Y |
|Y |

m(Y )

1− m(∅) (9.7)

To take a decision, one can choose the maximum of mass, the maximum of belief,
the maximum of plausibility or the maximum of pignistic probability. As the three
last functions are increasing, their maximum is reached for the ignorance Θ. They
will be used for decision-making after selecting a subset of E(Θ), where all elements
are pair-wise incomparable, by example by fixing the cardinal of a possible decision,
generally limiting it to the singletons. It is also possible to use a discounting method
to deceive the larger elements of E(Θ).

The cardinal |X| is the number of singletons of Θ included in X when E(Θ) is
2Θ, and is defined by the number of regions of the Venn diagram of Θ included in
X when E(Θ) is DΘ [5]. Many other decision functions have been proposed on 2Θ,
most recently by Cuzzolin [3] and Sudano [27] and adapted to DΘ and qualitative
labels by Dezert and Smarandache [7].

9.2.3 Usual combination operators

A combination operator takes two or more bba’s to build another bba. It is an inner
operation (Bel, Pl or BetP are not).

The mean operator is the simpler one. Its focal set is the union of the focal sets
of the input bba’s.

Mean(m1, . . . , mN)(X) =
1

N

N
X

i=1

mi(X) (9.8)

The conjunctive operator, proposed by Smets [25] for two input bba’s m1 and m2,
is given by the equation (9.9). It puts the mass m1(A)m2(B) on the set A ∩ B. It
is an associative operator, so it is useless to write its expression for N input bba’s1.
Dempster [4] prefers a normalized version, multiplying all terms by 1

1−m(∅) : it has the

same associativity property. Yager transfers the conflicting mass m(∅) on ignorance
m(Θ), loosing associativity.

mConj(X) =
X

A∩B=X

m1(A)m2(B) (9.9)

The disjunctive operator tranfers the mass m1(A)m2(B) on the set A ∪ B. It is
usually seen as insufficiently informative, as it transfers mass on a local ignorance
in case of distinct focal elements; it preserves the closed world hypothesis. Like the
conjunctive operator, it is associative.

mDis(X) =
X

A∪B=X

m1(A)m2(B) (9.10)

1Fusing N bbas of p focal elements, such an expression would decline into a O(pN )
algorithm, but the associativity can lead to an algorithm in O(npN) operations, if the number
of possible focal elements is linearly limited to n = |Θ|.
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The Dubois & Prade combination operator [8] is an interesting compromise be-
tween the conjunctive and the disjunctive ones. It puts the mass m1(A)m2(B) on
A ∩ B if A ∩ B is not empty, and on A ∪ B if it is. It respects the closed world
hypothesis, adds information like the conjunctive rule (and even better, as local ig-
norance should be preferred to conflict), but is not associative. The extension of this
rule, called hybrid DSm rule (DSmH) in Dezert-Smarandache Theory (DSmT) frame-
work for dealing with dynamic frames of discernment with non existential integrity
constraints has been proposed in [21].

mDP(X) =
X

A∩B=X

m1(A)m2(B) +
X

A∩B=∅
A∪B=X

m1(A)m2(B) (9.11)

mDP(∅) = 0 (9.12)

A panel of conflict redistributing rules have been proposed [12, 14, 22, 23]; none
is associative. The most used is the PCR5/6 combination operator2 which is defined
for two bba’s by.

mPCR5/6(X) = mConj(X) +
X

Y ⊂Θ,
X∩Y =∅

„

m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )

«

(9.13)

9.2.4 Enough operators available?

To define a basic belief assignment, to compute its belief, plausibility and pignistic
probability, to apply combination operators, we need to have access to many operators
on the masses and the focal elements:

• Masses: For most operators, they are multiplied and added. For the Mean
combination, they are multiplied by a real number. For the normalization
procedure of Demspter, the PCR5/6 operator or the pignistic probability, it is
necessary to divide by a mass.

• Elements: They pass through intersection and union operators. They are also
compared with ∅ and with a given element of E(Θ).

The methods exposed in section 9.2.5 need that the masses are expressed in a
R-algebra (addition, inner invertible multiplication, external multiplication). They
need that the focal elements are expressed in a lattice where Θ and ∅ are extremum.
The appendix provides a list of definitions for all the algebraic structures presented
in this chapter.

2PCR5 and PCR6 are identical when combining two bba’s, and differ for more.
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In this chapter, we are interested in the following question:

Q: What does happen if the masses and focal elements live in poorer algebraic struc-
tures?

9.2.5 Operators for the usual bba operations

As 2Θ is built by taking all the possible unions of elements of Θ, it is a semi-lattice.
If there is no union operator, but a meet operator ∨, one gets the closure of Θ by ∨.

The lattice (2Θ,∩,∪) (power set of Θ) is obtained by closing Θ by the operator
∪. Its bottom is ∅, its top is Θ.

The lattice (DΘ,∩,∪) (hyper-power set of Θ), used as basis of DSmT [21], is
obtained by closing Θ by the operators ∩ and ∪. If Θ = {θ1, . . . , θn}. Its bottom is
∩n

i=1θi, its top is Θ.

Adding constraints on intersections and unions to build an equivalence class for
∅ corresponds to an anti-chain in the more general lattice. The anti-chain cuts the
lower part of the lattice, and its bottom becomes ∅, as an efficient element of the
equivalence class.

The section 9.4 explores some of the lattices that can also be used to express focal
elements.

As a mass is usually a real number, the term label will be used when the values
assigned to focal elements are not necessarily in a field.

To define a basic belief assignment, the normalization condition (9.1) implies the
labels can be added, and a constant value takes the role of “1”. The fact 1 is the
neutral element for the multiplication operator, which eliminates the normalization
step for the Conj, Dis, DP or PCR combination operators.

This normalization condition may have to be relaxed in an other label algebra, if
the “addition” operator cannot have these comfortable properties.

Calculating the plausibility Pl(A) (9.6) requires an inner addition for the labels
(semi-group structure), and determines if an intersection between A and another el-
ement of E(Θ) is empty.

Calculating the belief Bel(A) (9.5) requires an inner addition for the labels, and
determine if an element X of E(Θ) is included in A. This can be extended to any
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partial order � on E(Θ):

Bel(A) =
X

X�A

m(X) (9.14)

Calculating the pignistic probability Bel(A) (9.7) requires an inner addition, an
inner multiplication and a scalar multiplication – an algebra over R or Q – for the
labels. In an open world hypothesis (m(∅) can be nonzero) the inner multiplication
operator must be invertible.

Non-numeric labels will hardly support a pignistic transformation, but in using
the DSm Field and Linear Algebra of Refined Labels (FLARL) proposed in this vol-
ume. On E(Θ), an intersection and a cardinal are required.

For the Mean operator (9.8), the only requirements are an inner addition and a
scalar multiplication. Labels can be elements of a vector space.

For the Dis operator (9.10), the requirement is an union operator on E(Θ). It
can be the same operator that the one used to extend Θ to E(Θ): we get 2Θ. Then
E(Θ) only needs to be a semi-lattice (Θ,∨). Labels live in a ring.

For the Conj operator (9.9), the requirement is an intersection operator, distinct
of the one used to extend Θ to E(Θ). So we need a complete lattice structure on Θ.
If E(Θ) exists without any reference to Θ, a semi-lattice (E(Θ),∧) can be sufficient.
Labels must be in a ring too. The DP combination operator (9.11) and Yager’s rule
have the same constraints.

The normalized Dempster rule needs the multiplication and the addition on the
labels to be invertible, because of the multiplication by 1/(1 − m(∅)).

The PCR5/6 operator, like the pignistic transformation, needs the labels to be
expressed in a R-algebra, with an invertible inner multiplication. An intersection
operator is needed, but not the cardinal. That makes the hyper-power set DΘ a
convenient lattice for this operator.

9.3 Extending the definition of labels

Smarandache and Dezert proposed in this volume and in [13, 24] a field structure for
linguistic labels, allowing all the combination operators and functions described in
the sections 9.2.2 and 9.2.3. Their approach requires a hypothesis of equi-repartition
of the linguistic labels which may be hard to fit with human experts’ outputs. The
normalization condition (9.1) is hard to satisfy, as the value 1 should be reached after
at least one integer approximation step, that’s why we explore here other algebraic
structures.
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The section proposes five algebraic structures to associate a belief level with a
focal element. None of them is concerned by an equi-repartition hypothesis: the
intervals bear the repartition information, where a discretization just give an element
of all the admissible values, possibly the center of them. The four other ones just
take into account an order or a lattice, and are not concerned with the repartition
question, bound to field structure.

The first three structures are variations around the max−min algebra on a finite
total order, which contains all the possible labels. So, the finite linguistic set L
is predetermined ordered set. Some structures allows it to evolve: the soft auto-
indenting labels is such an example.

The fourth structure concerns an extension to any lattice for the labels. It is
illustrated by a partial order on semantic labels, but placing the labels in the [0, 1]3

cube would fell in this algebra too.
The interval structure extends real numbers of [0, 1] to real intervals of [0, 1].

Therefore the normalization condition becomes 1 ∈ PX∈F(m) m(X); a drawback of
this system is that what the information on the focal elements is refined by the fusion
operators, the information on the labels is diluted. It approaches the behaviour of a
Galois lattice.

9.3.1 Discrete and totally ordered labels

The Conj, Dis and DP combination operators are based on a ring structure over
the labels: (L, +,×). These operators can be replaced to get some other rings:
(L, +, max) or (L, max, min).

In the first case, they form a structure equivalent to N: one can take a positive
non-zero element of L, and define the successor of an element � of L by � + x. So L
either is not finite, and therefore inadequate for linguistic labels, either there is an
element whose successor is zero, and it is impossible to define an order on L (that’s
why Z/nZ is not useful for semantic labels).

As L is a finite ordered set, s(x) denotes the successor of an element x: x � s(x),
x �= s(x), and if x �= y and x � y, then s(x) � y. the minimum of L is noted 0L, and
ML its maximum. An element of E(Θ) with a label 0L is not a focal element.

9.3.2 Max-Min algebra

The max and min operators effectively fulfill the distribution property, and define a
ring on L:

min(a, max(b, c)) = max(min(a, b), min(a, c))

Note that this ring3 is also a lattice.
For any elements a and b of an ordered set L, min(a, b) ∈ L and max(a, b) ∈ L.

So, the result of any expression involving elements of L, min and max is still in L. If

3As this ring is compatible with the multiplication by a positive number, it is usually
called an algebra. Here, of course, its ring properties are the only useful ones.
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such an expression involves elements a1, . . . , ak, then

f(a1, . . . , ak) � max(a1, . . . , ak) (9.15)

Therefore, if � is the top of the lattice or semi-lattice E(Θ),

Pl(�) = max
A∈F(m)

m(A) (9.16)

A normalization condition can be that at least one label of m is ML. This condition
is robust to the Conj, Dis and DP combination operators.

However, this algebra lacks a useful property of the usual combination operators
of the theory of belief functions: many small amounts of evidence cannot make a high
amount of evidence.

In the two following structure, min is kept as a replacement for the inner multi-
plication, but the max operator is slightly transformed.

9.3.3 Auto-indenting labels

The operators for the auto-indenting labels (AIL) treat differently the case of equality
for the max.

x ⊕AIL y =

8

>

>

<

>

>

:

max(x, y) if x �= y
s(x) if x = y, x �= 0L, x �= ML

0L if x = y = 0L

ML if x = y = ML

(9.17)

The second condition allows to enforce a focal element receiving many similar
labels. The third condition guarantees that OL is a neutral element for ⊕. The fourth
condition guarantees that ML remains the higher possible label. If it is removed, new
labels over ML are allowed. This defines an other operator, which creates unfinite
auto-indenting labels, but appearing more slowly than in a (L, +, max) ring. It is
noted AIL∞:

x⊕AIL∞ y =

8

<

:

max(x, y) if x �= y
s(x) if x = y, x �= 0L, x �= ML

0L if x = y = 0L

(9.18)

Note that, for AIL and AIL∞, x⊕x⊕x⊕x = s(s(x)). The later example, in the
section 9.3.5, corresponds to x⊕x⊕x⊕x⊕s(s(x)) = x(s(s(x))).

These operators are not distributive over min:

min(1, 2⊕ 2) = min(1, 3) = 1 (9.19)

min(1, 2) ⊕min(1, 2) = 1⊕ 1 = 2 (9.20)

So using AIL or AIL∞ suppresses the associativity property of the Conj and Dis
combination operators. AIL respects the normalization property (9.1) through the
Conj, Dis and DP combination operators, but AIL∞ does not.
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9.3.4 Soft auto-indenting labels

To distinguish between a label reached by the bba’s’ information and a label reached
by accumulation of lower labels, one should prefer to create intermediary labels than
jump to the next one4. This new label, taking place between x and s(x), is noted x+

and called “a bit more than x”.

x ⊕SAIL y =

8

>

>

<

>

>

:

max(x, y) if x �= y
x+ if x = y, x = y+, or x+ = y
0L if x = y = 0L

ML if x = y = ML

(9.21)

The following table gives the value of x⊕SAIL y for x and y taking their values in
a label set extended from {0, 1, 2, M}.

x\y 0 1 1+ 2 M

0 0 1 1+ 2 M
1 1 1+ 1+ 2 M
1+ 1+ 1+ 1+ 2 M
2 2 2 2 2+ M
M M M M M M

SAIL respects the normalization property (9.1) through the Conj, Dis and DP
combination operators.

9.3.5 Example

The set of linguistic labels is L = {no, low, mod, high} (where mod means moderate).
The label “no” is the non-focal label 0L, and the label “high” is the maximum of L,
ML.

In the following table, we consider the labels in a ring or a pseudo-ring (L,⊕,⊗).
We eventually transform the ⊗ operator in a more usual multiplication symbol on

4To formalize a debate initiated by Terry Gillian, an African swallow is stronger than an
European swallow, but how many European swallows are required to carry as much weight
as an African swallow?
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the labels (x.y or x2). The Conj combination operator gives:

m(A) = m1(A)⊗m2(A)⊕ m1(A)⊗m2(A∪B) ⊕
m1(A)⊗m2(A∪C) ⊕ m1(A∪B)⊗m2(A) ⊕
m1(A∪B)⊗m2(A∪C) ⊕m1(Θ)⊗m2(A)

= low2 ⊕ low2 ⊕ low.high ⊕ high.low ⊕
high2 ⊕ mod.low

m(A∪B) = m1(A∪B)⊗m2(A∪B) ⊕ m1(Θ)⊗m2(A∪B)

= high.low ⊕ mod.low

m(A∪C) = m1(Θ)⊗m2(A∪C) = mod.high

A A ∪B A ∪ C Θ

m1 low high no mod

m2 low low high no

max−min high low mod no

AIL high mod mod no

AIL∞
more than

high
mod mod no

SAIL high
a bit more
than low

mod no

The label systems AIL, AIL∞ and SAIL are purely discrete and semantic; they
allow a certain form of normalization (at least, the bba’s they produce respect a
normalization constraint); they allow a decision step by maximizing belief, plausibility
or mass; they can’t produce a pignistic probability.

9.3.6 Lattice Labels

A projection on a total order – numeric or linguistic – may be insufficiently for
modeling a confidence on a piece of information. In the TTA150, a French mili-
tary manual, a confidence on a communication channel should be characterized by
its strength (strong, quite strong, feeble, very feeble) and its quality (clear, read-
able, deformed, with interference). Therefore, the quality of an information received
through such a channel should be characterized by the pair formed by its strength
and its quality. The pairs (strength, quality) live in a lattice, where (x, y) � (x′, y′)
if x � x′ and y � y′. Therefore, (x, y) ∨ (x′, y′) = (max(x, x′), max(y, y′)) and
(x, y)∧ (x′, y′) = (min(x, x′), min(y, y′)). The top of the lattice is “strong and clear”
while its bottom is “very feeble with interferences”. A lattice is usually not dis-
tributive and this one, unlike the max and min operators of section 9.3.2, is not
distributive. So using with more than two input bba’s make it depend on the order
of the fusion.
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In the following example, the strength labels are compressed into (Str, QS, Fee,
VF) and the quality labels into (Cl, Read, Def, Int).

A A ∪B A ∪ C Θ

m1 Str, Cl Str, Def Fee, Int
m2 QS, Def Fee, Read VF, Read

mConj QS, Read Fee, Def Fee, Int VF, Int

The label on A is obtained through:

m(A) = m1(A)∧m2(Θ) ∨m1(A)∧m2(A ∪B) ∨m1(A)∧m2(A ∪ C)

∨m1(A ∪B)∧m2(A ∪ C)

= (V F, Read)∨ (QS,Def) ∨ (Fee,Read) ∨ (Fee,Def)

= (QS,Read)

9.3.7 Interval masses

A way to make easier the numerical expression of a human expert is to allow him
to give a lower and an upper bound for each mass he commits to a focal element.
Therefore the label on X is an interval [x] = [x, x] where 0 � x � x � 1. X is a focal
element unless x = x = 0. This idea for working with imprecise mass of belief has
been proposed and extended to unions of intervals by Dezert and Smarandache [6];
this section focus on the algebraic properties of such extension.

Interval arithmetic [10] does not have a true distributivity property, but only
[x]× ([y] + [z]) ⊂ [x]× [y] + [x]× [z], it is better to factorize the expression obtained
before calculation of the upper and lower bounds. But if the lower bounds of [x], [y]
and [z] are positive, the equality is reached. Therefore, the context of bba’s brings
the distributivity property.

Considering [x] and [y] two intervals of [0, 1], the operators + and × are defined
as follows. The last line is only valid if 0 �∈ [x], and the second one cease to be valid
if x < 0 or y < 0.

[x] + [y] = [x + y, x + y]

[x] × [y] = [x × y, x× y]

1/[x] = [1/x, 1/x]

A real x is also the interval [x, x], as stated by the bba 1 for the focal element A.
As all the m(A) are intervals,

P

A∈E(Θ) m(A) is also an interval and one can verify
that both bba’s are valid toward the relaxed normalization rule:

1 ∈
X

A∈E(Θ)

m(A) (9.22)
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Example:

m1 m2 mConj mDS BetP

∅ [0.12, 0.16] 0 0

A 0.2 0 [0.22, 0.26] [0.25, 0.31] [0.29, 0.524]

B 0 0 [0.18, 0.41] [0.205, 0.488] [0.381, 1]

C 0 0 0 0 [0.137, 0.333]

A ∪ B [0.3, 0.5] [0.6, 0.8] [0.07, 0.36] [0.08, 0.429] 0

B ∪ C 0 [0.1, 0.3] [0.24, 0.56] [0.273, 0.667] 0

A ∪B ∪ C [0.4, 0.7] 0 0 0 0

As the normalization step between the conjunctive fusion operator and the Dempster-
Shafer operator is also a part of the pignistic transformation, we obtain the same
pignistic probability from any of the two bba’s obtained by fusion of bba’s 1 and 2.
One should verify that mConj, mDS and BetP still satisfy the relaxed normalization
rule, but the width of

P

A∈E(Θ) m(A) increases.

The calculus of BetP(B) through the interval arithmetic should provide [0.381, 1.036],
but it can be truncated without any information loss, if the further treatments do
not resume the intervals by their centers5.

9.4 Constraints over the focal elements

What does happen if the lattice E(Θ) uses operators different of ∩ and ∪? These
operators may create focal elements incompatible with the model elements that should
appear in the bba produced by the experts (human or artificial). The following
examples browse some of these situations, from an order set to a formalism near
the natural language, through some classification models. It is possible that the
“singletons of Θ” are difficult to exhibit; in this case, E(Θ) should be considered as
the set of interest, as browsing the singletons is interesting only if they are privileged
by the experts, or are necessary to calculate a pignistic probability.

9.4.1 Ordered set

If Θ is an ordered set, a subset A of Θ is connected if, for any x and y in A, x � y
brings x � z � y implies z ∈ A (resp. y � x brings y � z � x implies z ∈ A).
Disconnected subsets do not have any signification in the context of an ordered set
(Θ can be a discretization of some real value : {36, 39, 42, 45, 48, 51}). Therefore,
the elements of E(Θ) should be the intervals of �, noted [[x, y]]. If x = y the interval
is a singleton. If y < x, the interval is ∅.

5This procedure, anyway, should not lead to a probability, as the the sum of the centers
is not expected to be 1.
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To remain within E(Θ), the ∩ operator is convenient, as it preserves the connec-
tiveness of its operands, but ∪ is not: {36}∪{42} = {36, 42} �∈ E(Θ), but {36, 39, 42}
is. The hull of the operands gives the smallest interval:

[[x1, y1]] ∨� [[x2, y2]] = [[min(x1, x2), max(x2, y2)]] (9.23)

The cardinal of an element of E(Θ) holds as usual, so all the combination opera-
tors and decision-aid functions of section 9.2.5 can be used.

As the cardinal of F(m) is bounded by (n+2)(n+1)
2

, where 2Θ has a size of 2n,
the constraint of a total order on Θ can limit the combinatorial explosion inherent to
most combinatorial operators.

9.4.2 Intervals of RN

In a context of interval analysis [10, 16], the manipulated objects and the results are
intervals of RN . If the theory guarantees some non-void intersections when manip-
ulating the solutions of an equation, its application in an information fusion system
with unpredicted events may lead to conflicting situations.

Here an interval [x,y] corresponds to a Cartesian product [x1, y1]× . . .× [xN , yN ].
The intersection works as usual, giving an join operator ∧I for the lattice E(Θ):

[x1,y1] ∧I [x2,y2] =
n
×

i=1
[max(x1

i , x
2
i ), min(y1

i , y2
i )] (9.24)

If for some dimension i, max(x1
i , x

2
i ) > min(y1

i , y2
i ), then

[x1, y1] ∧I [x2,y2] = ∅ (9.25)

For the ∨I operator, the smallest interval of RN containing the operands is taken:

[x1,y1] ∨I [x2,y2] =
N
×

i=1
[min(x1

i , x
2
i ), max(y1

i , y2
i )] (9.26)

The measure of Lebesgue gives the cardinal of interval:

μ([x,y]) =

N
Y

i=1

(yi − xi) (9.27)

Therefore, all the combination operators and decision-aid functions of section
9.2.5 can be used in a context of interval calculus.

Unlike the usual (∪,∩) lattice or the (∨� ,∧�) lattice on an ordered set, the
(∨I ,∧I) lattice is just a lattice, not a ring: ∨I does not distribute over ∧I . On
figure 9.1 the intervals are A = [0, 1] × [2, 3], B = [2, 3] × [4, 5], C = [2, 3] × [0, 1],
D = [4, 5] × [2, 3]. So:

(A ∨I B) ∧I (C ∨I D) = [2, 3] × [2, 3]

(A ∧I C) ∨I (A ∧I D) ∨I (B ∧I C) ∨I (B ∧I D) = ∅
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Figure 9.1: Non-distributivity.

9.4.3 Partitions

A set P of subsets of Θ is a partition if for any pair A, B of elements of P , either
A = B or A∩B = ∅, and

S{A ∈ P} = Θ. This structure is popular for unsupervised
classification problems; a vast family algorithms, around K-means [15], produce re-
sults within this model. The intersection between two partitions, P1 and P2, can be
easily defined:

P1 ∧P P2 = {A ∩B |A ∈ P1, B ∈ P2} (9.28)

However, replacing ∩ by ∪ in (9.28) does not produce a partition. An operator ∨P

should be constructed by considering the connected parts of the hyper-graph P1∪P2,
but this tends to give a degenerated partition even if P1 and P2 differs only slightly.
See Guénoche and Garreta [9] for robust methods of comparison between partitions.
It is necessary to limit the operators to a closed semi-lattice, whose bottom ⊥ is a
partition in n singletons and top � is a partition containing only Θ.

The cardinal of a partition n−|P| where n is the cardinal of Θ and |P| the number
of subsets of Θ in P . So

Card (⊥) = 0

Card (�) = n − 1 (9.29)

Card (P1 ∧P P2) � min(Card (P1) , Card (P1))

The partitions on Θ can be used as focal elements for bba’s, and use them for all
the decision-aid functions, including BetP, and for the Conj and PCR5/6 combination
operators.
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9.4.4 Hierarchies

A hierarchy on Θ is a set H of subsets of Θ such that:

• for any x ∈ Θ, {x} ∈ H;

• Θ ∈ H;

• for any A and B in H, A ∩ B ∈ {A, B, ∅}.

This structure is also very popular for unsupervised classification. It is produced
by Ward’s algorithm, single linkage, complete linkage and many others [11]. A merg-
ing operation between two hierarchies H1 and H2 can be defined by A ∈ (H1 �H2)
if

A =
\

{X ∈ H1 or X ∈ H2 | A ∩X �= X} (9.30)

This operation is not associative, but it is idempotent, and admits H0, the hi-
erarchy containing only the singletons and Θ, as a neutral element. The structure
defined is only a pseudo-semi-lattice using this operator �. Its bottom is H0. It has no
unique top, but the complete hierarchies (containing exactly 2n−1 subsets of Θ) have
no dominating hierarchy: if H and H′ are complete, H′�H = H implies that H′ = H.

The usual intersection operator works on hierarchies. However, it destroys infor-
mation instead of making it sharper when possible. The usual union of two hierarchies
is not necessarily a hierarchy. So a semi-lattice (H,∩) is obtained, whose bottom is
H0, and whose greatest elements are the complete hierarchies.

A ∈ (H1 ∩H2) iff A ∈ H1 and A ∈ H2 (9.31)

Taking the number of subsets of Θ the hierarchy content is efficient to identify the
complete hierarchies, but it is not decreasing with ∧H . Other definitions are hardly
constant on the complete hierarchies.

The pseudo-semi-lattice defined by � can be used to model bba’s in a hierar-
chy space, apply on them the decision-aid functions Bel and Pl, and combine them
through the PCR5/6 and Conj operators. However, in this latter case, the associa-
tivity of the operator is lost.
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Figure 9.2: Dealing with hierarchies.
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9.4.5 Binary clustering systems

A binary clustering system [1] on Θ is a set E of subsets of Θ (called clusters) such
that, for any x and y in Θ, the set E(x, y) = {A ∈ E | x ∈ A, y ∈ A} admits an unique
smallest element, called A(x, y). It is said proper if A(x, x) = {x}. Hierarchies de-
fined in section 9.4.4 are binary clustering systems; partitions defined in section 9.4.3
are non-proper binary clustering systems (add singletons and Θ for a better system);
the closure by intersection of set of intervals of a complete order (see section 9.4.1)
is a binary clustering system. E can be seen as a hyper-graph, its elements are its
hyper-edges and its vertex set is Θ [2].

Therefore, the definition of E can be restricted to clusters that can be built as a
smallest cluster containing a pair of elements of Θ. So the size of E is bounded by
O(n2), and the restriction of the intersection of two binary clustering systems on Θ
has the same size, and can be calculated in O(n4) operations. A join operator ∧E

can be defined by :

E1 ∧E E2 =
[

x∈Θ,y∈Θ

{A1(x, y) ∩ A2(x, y)} (9.32)

It defines a semi-lattice whose bottom is E⊥, a hyper-graph containing all the
possible hyper-edges with 1 or 2 vertices. Its non-proper version is the complete
graph whose vertex set is Θ. Its top is the hyper-graph E� whose only hyper-edge is
Θ. A cardinal function can be defined by:

Card (E) =
X

{x,y}⊂Θ

(|A(x, y)| − 2) (9.33)

So Card (E⊥) = 0, Card (E�) = 1
2
n(n + 1)(n − 2), and E � E ′ (see section 9.7.2 for

the definition of � in a lattice) brings Card (E) � Card (E ′).

So the binary clustering systems on Θ can be used as focal elements for bba’s,
and they can feed all the decision-aid functions, including BetP, and the Conj and
PCR5/6 combination operators.

9.4.6 Semantic assertions

Semantic assertions can be modelized by conceptual graphs [26] or ontologies. Meet
and join operators can be defined, but these operations can lead to NP-hard prob-
lems in a general case. However, some sub-classes of conceptual graphs avoid this
combinatorial problem [17].

With the same restrictions on the shape of graphs than the other operations on
them, to avoid combinatorial explosion, they can be combined by Conj and Dis op-
erators. As obtaining ∅ by conjunction of two conceptual graphs is very unlikely, the
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PCR5/6 and DP combination operators should not be used: they are nearly equiva-
lent to Conj.

The usual ways to calculate the cardinal of a graph (number of edges or number
or vertices) is not compatible with the meet operator, and does not make sense with
the specialization of labels. The decision-aid functions should be limited to Pl and Bel.

Then, the conjunctive combination operator, receiving bba’s containing “Johann
have seen a Leclerc” and “A man have seen a tank near the river” can put a mass
(or a label) on the assertion “Johann have seen a Leclerc tank near the river”.

9.5 Conclusion

The combination operators of the theory of belief functions are often heavy to ma-
nipulate: cumbersome equations6, data ill-adapted to matrix calculus under popular
scientific software, real risks of combinatorial explosion, by example. However, they
are more likely than Bayesian approaches or fuzzy sets to be adapted to many forms
of symbolic data. In this chapter, we have shown that the link between the theory
of belief functions and the probabilities, the pignistic transformation, relies on ”diffi-
cult” operations: scalar multiplication and cardinal calculus. Dropping only this link
and keeping most of their properties allows bba’s to explore many facets of experts’
opinions, and build a fused information from them, while other theories only deal
with a projection of the experts’ assertions on a too small space.
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Fusion, Québec, Canada, 9-12 July 2007.

[15] J. McQueen, Some methods for classification and analysis of multivariate obser-
vations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, pp. 281–297, 1967.

[16] R.E. Moore, Methods and Application of Interval Analysis, SIAM Publ.,
Philadelphia, 1979.

[17] M.-L. Mugnier, Knowledge Representation and Reasonings Based on Graph Ho-
momorphism, Research report LIRMM 00-098, Montpellier, 2000.

[18] C. Osswald and A. Martin, Understanding the large family of Dempster-Shafer
theory’s fusion operators - a decision-based measure, International Conference on
Information Fusion, Florence, Italy, 10-13 July 2006.



Chapter 9: Non-numeric labels and constrained focal elements 319

[19] C. Osswald and A. Martin, Discrete labels and rich foci in theory of
evidence, International Conference on Information Fusion, pp 1426–1423,
K
√

∂ln, Germany, July2008.

[20] G. Shafer, A mathematical theory of evidence, Princeton University Press, 1976.

[21] F. Smarandache, J. Dezert (Editors), Application and Advances of DSmT for
Information Fusion, Collected Works, American Research Press, Rehoboth, 2004.

[22] F. Smarandache, J. Dezert, Information Fusion Based on New Proportional
Conflict Redistribution Rules, International Conference on Information Fusion,
Philadelphia, U.S.A., 25-29 July 2005.

[23] F. Smarandache, J. Dezert, Proportional Conflict Redistribution Rules for In-
formation Fusion, Advances and Applications of DSmT for Information Fusion,
Vol. 2, pp. 3-38, American Research Press, Rehoboth, 2006.

[24] F. Smarandache, J. Dezert, Qualitative Belief Conditioning Rules (QBCR), In-
ternational Conference on Information Fusion, Québec, Canada, 9-12 July 2007.
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9.7 Appendix: algebras

All the operators defined on the following structures are inner operators : x, y ∈ Θ
brings x�y ∈ Θ for the inner operator �. As most of the algebraic properties of this
chapter concern the set of possible focal elements E(Θ), the symbol Θ is used for the
algebraic structures. Obviously, dealing with the space of the labels is not different.

9.7.1 Orders and partial orders

(Θ,�) is a partially ordered set (poset), if for any a, b, and c in Θ, we have that:

reflexivity : a � a,

antisymmetry : a � b and b � a implies a = b,
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transitivity : a � b and b � c implies a � c.

If x � y and x �= y, we will note x < y.

If for any a and b of Θ we have either a � b or b � a then Θ is called a totally
ordered set or simply an ordered set.

Expressing a label in a ordered or partially ordered set is easier for an human
expert than expressing a significant mass in [0, 1].

9.7.2 Lattice

(Θ,∨,∧) is a lattice if the join operator ∨ and the meet operator ∧ satisfy for any a,
b and c of Θ:

commutativity : a ∨ b = b ∨ a, a ∧ b = b ∧ a,

associativity : (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c),

idempotence : a ∨ a = a, a ∧ a = a,

absorbtion : a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a.

The lattice is closed if it has a smallest element ⊥ (its bottom) and a greatest
element � (its top): for any x ∈ Θ, ⊥∧ x = ⊥, ⊥ ∨ x = x, �∧ x = x, � ∨ x = �.

If we just define a join operator, we get a semi-lattice.

For any set Θ, (2Θ,∩,∪) is a lattice.
Defining the relation � by a � b iff a ∨ b = b, makes (Θ,�) a poset.

9.7.3 Ring and semi-ring

(Θ,+,×) is a ring if

• the addition operator is invertible, associative and commutative, and has a
neutral element, called 0Θ or 0 if not ambiguous;

• the multiplication operator is associative, commutative, and has a neutral ele-
ment, called 1Θ or 1 if not ambiguous;;

• the multiplication distributes over the addition:

a × (b + c) = (a × b) + (a × c)

This implies (Θ, +) is a group, and (Θ,×) is a monoid.
For most of the fusion applications, the addition does not need to be invertible,

so we just need (Θ, +) be a semi-group. So a semi-ring structure for (Θ,+,×) is
sufficient.
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9.7.4 Field

A field (Θ, +,×) is a ring where the multiplication is invertible on Θ\{0}. The set of
real numbers R with the usual addition and multiplication is a field.

It is because the real interval [0, 1] is a part of a field that we can use all of the
operators and functions of the section 9.2.5, but they are not inner operations for this
segment [0, 1] : taking x and y in [0, 1] can lead to x−1 �∈ [0, 1] and x+y �∈ [0, 1].

9.7.5 Vector space

(Θ,+, •) is a vector space over a field F if + is an inner operator which is invertible,
associative and commutative, and has a neutral element 0. The operator • is the ex-
ternal multiplication, also called scalar multiplication, by an element of F, satisfying,
for any a and b in F and x and y in Θ:

• Distributivity of • over + : a • (x + y) = a • x + a • y,

• Distributivity of addition over •: (a +F b) • x = a • x + b • x,

• Associativity of multiplications: (a ×F b)x = a • (b • x).

9.7.6 Algebra over a field

(Θ,+,×, •) is an algebra over a field F if (Θ, +,×) is a ring, (Θ,+, •) is vector space
over F, and for any a and b in F and x and y in Θ we have (a•x)×(b•y) = (ab)•(x×y).
The multiplication between a and b in (ab) is the multiplication defined in the field
F : ab = a ×F b.

A field can be seen as an algebra over itself, indentifying the inner multiplication
and the scalar multiplication: (R, +, •, •).

No richer algebraic structure will be considered for the fusion applications pre-
sented in this chapter.
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10.1 Introduction

This chapter is devoted to belief conditioning in DSmT. We have a (generalized)
belief function (BF) given by a (generalized) basic belief assignment (bba) m on a
hyper-power set DΘ, which should be conditioned assuming a sure assumption that
the truth is in a given A where A ∈ DΘ \ ∅.

A long series of 31 belief conditioning rules (BCRs) was defined in DSm book vol.
2 [11]. One of the rules — BCR12 — was regarded to be a generalization of Shafer’s
(i.e., Dempster’s) rule of conditioning in the free DSm model, the others are its
alternatives. Several techniques are combinatorically combined to define BCRs there.
A detailed analysis of all the 31 BCRs has just appeared in Technical Report [6]. The
report presents also a comparison of all BCRs with Dempster’s rule of conditioning
and with its real generalization to DSm hyper-power sets. Based on the presented
analysis, extended definitions of BCRs are introduced there. These definitions as
much as possible enable to extend definition domains of the rules to increase their
applicability to wider class of belief functions.

In this chapter we present the main results of the analysis, the idea of extended
definitions, and the complete formal definition of the extended version of BCR12.
This theoretical text provides also a series of examples illuminating its theoretical
results.

This chapter follows Chapter 9 [12] from DSm book vol. 2 [11], thus it is rec-
ommended (but not necessary) to read [12] in advance. Also, the reader can find
author’s notation of DSmT in Chapter 3 of [11].

10.2 Brief preliminaries

As this is a chapter in the 3rd volume on DSmT we suppose that reader is already
familiar with the basis of DSmT, otherwise Chapters 1 and 4 of the 1st volume and/or
Chapter 3 of the 2nd volume or the brief introduction from DSmT homepage1 are
recommended. Hence we do not repeat all the general basic notions here, but only
principal of those which are closely related to belief conditioning rules.

Conditioning of a basic belief assignment (bba) m by a set A: Smarandache &
Dezert assume in [12] that A ∈ DΘ \∅, this works in the free DSm model Mf . Unfor-
tunately there is no explicit mention of any hybrid DSm model in [12], assumptions
about hybrid models are hidden there. Nevertheless when working with hybrid DSm
models we have to explicitly say these assumptions. We assume that A �≡ ∅ and that
all bbms are correctly defined on the hybrid DSm model which is used. Further all
denominators of formulas are assumed to be non-zero, see corrigenda of Chapter 9
of [11].

Rules BCR2–11 use splitting of Θ as it is defined in DSm Book vol. 2 Chap. 9, i.e.,
Θ = D1 ∪D2 ∪D3, where D1 = {X | ∅ �= X ∈ DΘ, X ⊆ A}, D2 = ((Θ \ s(A)),∩,∪),
s(A) is the set of all elements of Θ, which compose A, D3 = DΘ \ (D1 ∪D2 ∪ ∅).

1www.gallup.unm.edu/∼smarandache/DSmT.htm.
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Rules BCR12–31 use D2 further splitted in two parts D2D = {X|X ∈D2 &X∩A ≡
∅}, D2I = {X|X ∈ D2 & X ∩A �≡ ∅}, where bbms of focal elements for D2I are
processed in the same way (BCR12-BCR21) or in a similar way (BCR22-BCR31) as
those from D3. Hence there is a new modified splitting of Θ into 3 disjoint parts:
Θ = DS ∪ DD ∪ DI = D1 ∪ D2D ∪ (D2I ∪ D3), defined in [6]. The new splitting
Θ = DS ∪ DD ∪ DI (to DS = D1 ... non-empty subsets2 of A, DD = D2D ... sets
disjunctive from A, DI = D2I ∪D3 ... non-subsets of A, but intersecting A) is more
intuitive. Nevertheless due to editors’ wish, and to consistency with DSm book vol. 2
and chapters of this volume we use the original notation Θ = D1 ∪ (D2D ∪D2I)∪D3

in this text.

Let W ∈ D3, we say that X ∈ D1 is the k-largest, k ≥ 1, element from D1 that is
included in W , if ( � ∃Y ∈ D1\{X})(X ⊂ Y, Y ⊂ W ); depending on the model, there
are k ≥ 1 such elements, see [12], corrigenda of page 240. The same is used also for
W ∈ D2, such that W ∩A �= ∅. For definitions of k-smallest, k-median and k-average
elements from D1, D2 see [12].

10.3 Belief conditioning rule BCR1

Belief Conditioning Rule no. 1 (BCR1) is defined for X ∈ D1 by the formula3

mBCR1(X|A) = m(X) +
m(X)

P

Z∈D2∪D3
m(Z)

P

Y ∈D1
m(Y )

= m(X)
P

Y ∈D1
m(Y )

.

Alternatively, we can write:

mBCR1(X|A) =
m(X)

P

Y ∈D1
m(Y )

=
m(X)

P

Y ⊆A m(Y )
=

m(X)

Bel(A)
.

mBCR1(X|A) = 0 for X ∈ DΘ \D1.

BCR1 is the simplest belief conditioning rule. This rule is a generalization of
Belief Focusing Rule4 defined in D-S theory.

The rule is not defined for Vacuous Belief Function (V BF ) for which mV BF (Θ) =
1, it is further not defined e.g. for m′

BCR1(X|{θ1 ∪ θ2 ∪ θ3 ∪ θ4}), when m′(θ2 ∪
θ3 ∪ θ4 ∪ θ5) = 1, etc. In general, mBCR1(X|A) is not defined whenever Bel(A) =
P

Y ⊆A m(Y ) =
P

Y ∈D1
m(Y ) = 0.

The rule is very sensitive with respect to m(X) for X ⊆ A, on the other hand
all bbms m(Y ) such that Y ∩ A �≡ ∅ & Y �⊆ A are completely ignored by BCR1, see

2 More precisely subsets which are not equal to empty set in the case of hybrid DSm
models.

3We have to put stress on the fact, that it is necessary to keep in mind, that definition
of sets D1, D2, D3, i.e. splitting of DΘ, depends on the conditioning set A, which is included
in the formula through the set D1.

4This rule was mentioned in [8], unfortunately, the author of this chapter does not know
its original publication.
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example 1. Bbm m(Y ), where Y ∩A �≡ ∅ may be even assigned to subset of A, which
is disjoint from Y (i.e., which has empty intersection5 with Y ), see example 2.

Example 1. Let us suppose Θ = {a, b, c}, the free DSm model Mf , m(a) = 0.001,
m(b) = 0.004, m(a ∪ c) = 0.800, m(b ∪ c) = 0.195 and conditioning set A = {a, b} =
a ∪ b. We obtain mBCR1(a|A) = 0.20, mBCR1(b|A) = 0.80, regardless to large bbm
m(a ∪ c).
Moreover if we significantly decrease the bbm of b ∪ c �⊆ A in favour of a ∪ c �⊆ A
as it follows in m′, the resulting conditional bba m′

BCR1(X|A) does not reflect it:
m′(a) = 0.001, m′(b) = 0.004, m′(a ∪ c) = 0.990, m′(b ∪ c) = 0.005, m′

BCR1(a|A) =
0.20, m′

BCR1(b|A) = 0.80.
On the other side, if we slightly decrease the same bbm of b ∪ c �⊆ A in favour of
a ⊆ A then the conditioned bba is changed (ignoring size of m(X) for X �⊆ A again):
m′′(a) = 0.006, m′′(b) = 0.004, m′′(a ∪ c) = 0.800, m′′(b ∪ c) = 0.190, m′′

BCR1(a|A) =
0.60, m′′

BCR1(b|A) = 0.40.

Example 2. Let us suppose Θ = {a, b, c} and any hybrid DSm model, where a, b∪c �≡
∅. For m(a) = 0.1, m(a ∪ c) = 0.1, m(b ∪ c) = 0.8 and conditioning set A = a ∪ b.
We obtain mBCR1(a|A) = 1 regardless to large value m(b∪ c). Set a may be disjoint
from b ∪ c, e.g. in Shafer’s DSm model.

For comparison with the other belief conditioning rules we can rewrite BCR1 as
it follows:

mBCR1(X|B) = m(X) + m(X)

P

W∈D2
m(W )

P

Y ∈D1
m(Y )

+ m(X)

P

W∈D3
m(W )

P

Y ∈D1
m(Y )

.

Thus m(X) is kept to be assigned to X for all X ⊆ A, and m(X) is proportionalized
according to m(Y ) for all Y ⊆ A (i.e., Y ∈ D1) otherwise.

10.4 Belief conditioning rules BCR2–BCR11

Generalized basic belief masses of all focal elements X from D1 are kept to be assigned
to X again, and generalized basic belief masses of all focal elements W from D2 are
in the same way proportionalized among all subsets of conditioning set A by all belief
conditioning rules BCR2–BCR11. These subsets are proportionalized according to
belief masses m(Y ) of subsets Y of the conditioning set A.

10.4.1 Belief conditioning rules BCR2–BCR6

Generalized basic belief masses of all focal elements W from D3 are in similar ways
reallocated by belief conditioning rules BCR2–BCR6. Ways of this reallocation spec-
ify and mutually differ BCRs from this group. What does it mean W ∈ D3? It means

5This feature depends from a hybrid DSm model which is used; it cannot occur in the
case of the free DSm model, where there is no empty intersection.
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that W is neither from D1, i.e. W �⊆ A, nor from D2, thus some θi appear(s) in W
which appear(s) also in A, hence W ∩A �≡ 0.

Similarly to BCR1, none of BCR2 – BCR6 rules are defined for BFs, such that
Bel(A) =

P

Y ∈D1
m(Y ) = 0; these cases6 are not even mentioned in [12].

We will repeat neither the original formulas from [12] for all BCRs, nor the new
compact parametric ones from [6], and make only comments related to BCR2 and
BCR6.

10.4.1.1 BCR2 — intersection of W ∈ D3 with conditioning set A

Rule BCR2 relocates m(W ) for W ∈ D3 to k-largest (k-maximal) elements of D1

which are subset of W , i.e. to k-largest (k-maximal) elements of W ∩A. The largest
(maximal) subset of W ∩ A is W ∩ A itself and it is unique, thus it is 1-largest and
we can write BCR2 as it follows:

mBCR2(X|A) = m(X) + m(X)

P

W∈D2
m(W )

P

Y ∈D1
m(Y )

+
X

W∈D3
X=W∩A

m(W ),

for all bbas m and conditioning sets A, such that Bel(A) =
P

Y ∈D1
m(Y ) �= 0. Hence

all bbms m(W ) from D3 are relocated to W ∩A by this rule.

10.4.1.2 BCR6 — all non-empty subsets of W ∩A

BCR6 splits bbms m(W ) from D3 into same portions and redistributes them among
all subsets of W ∩A, thus we can slightly simplify its formula as follows:

mBCR6(X|A) = m(X) + m(X)

P

W∈D2
m(W )

P

Y ∈D1
m(Y )

+
X

W∈D3
X⊆W

m(W )

Card{V |∅ �≡ V ⊆ W ∩A} .

10.4.1.3 Analysis of BCR2–BCR6

The problems which are presented in examples 1 and 2 do not occur using rules
BCR2–BCR6 as bbms of sets from D3 are not proportionalized according to m(X)
for X ∈ D1. On the other hand these bbms m(W ) are blindly distributed among
several or all subsets of W ∩ A by rules BCR3–BCR6, see continuation of Example
2. We also have to note, that as BCR1, rules BCR2–BCR6 proportionalize all bbms
of sets from D2 according to bbms m(X) for X ∈ D1; which can be often odd and
not intuitive, see Example 3.

6The cases where Bel(A) = 0 are denoted to be degenerated in [13], and any BCR is
defined as m(A|A), m(X|A) = 0 for X �= A in the section on BCRs in [13] (the paper on
new qualitative belief conditioning rules (QBCRs)). For more details see the appendix.
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Example 2 (cont.). Let us suppose the free DSm model Mf now. When redis-
tributing bbm m(b ∪ c) = 0.8 we have W ∩ A = (b ∪ c) ∩ (a ∪ b) = b ∪ (a ∩ c)
with DSm cardinality CardDSm = 5, there are 9 proper subsets of W ∩ A in the
free DSm model; CardDSm = 1 : a ∩ b ∩ c, CardDSm = 2 : a ∩ b, a ∩ c, b ∩ c,
CardDSm = 3 : a∩(b∪c), b∩(a∪c), c∩(a∪b), CardDSm = 4 : b, (a∩b)∪(a∩c)∪(b∩c).
m(b ∪ c) is relocated to whole W ∩A by BCR2, W ∩A = b ∪ (a ∩ c) in the free DSm
model and it naturally can be different in various hybrid DSm models, e.g., just b in
Shafer’s model. m(b ∪ c) is relocated to a ∩ b ∩ c by BCR3 in the free DSm model;
it is divided by 3 and redistributed among a ∩ (b ∪ c), b ∩ (a ∪ c), c ∩ (a ∪ b) by BCR4
and BCR5 in the free DSm model; and it is divided by 10 and redistributed among
all subsets of b ∪ (a ∩ c) in the free DSm model. In this simple example, m(b ∪ c) is
relocated to b by all of BCR2–BCR6 rules in the case of Shafer’s model.

Example 3. Let us suppose Θ = {a, b, c} and the free DSm model Mf again. For
m(a) = 0.01, m(b) = 0.04, m(a ∪ c) = 0.50, m(b ∪ c) = 0.05, m(c) = 0.40 and condi-
tioning set A = a∪ b. c is in D2, thus m(c) is proportionalized between a and b in the
ration m(a) : m(b), i.e. 1 : 4, by all of BCR2–BCR6 rules, regardless the fact that a
is significantly more plausible through m(a ∪ c) than b is through m(b ∪ c).

In the modified example m′(a) = 0.001, m′(b ∪ c) = 0.450, m′(c) = 0.549 whole m′(c)
is relocated to a by all BCR2–BCR6 rules; m′(b∪c) is relocated or redistributed among
subsets of m′(b ∪ c) ∩ (a ∪ b) as it follows:
m′

BCR2(a|A) = 0.550, m′
BCR2((b ∪ c) ∩ (a ∪ b)|A) = 0.450,

m′
BCR3(a|A) = 0.550, m′

BCR3(a ∩ b ∩ c|A) = 0.450,
m′

BCR4(a|A) = 0.550, m′
BCR4(a ∩ (b ∪ c)|A) = 0.150,

m’BCR4(b ∩ (a ∪ c)|A) = 0.150, m′
BCR4(c ∩ (a ∪ b)|A) = 0.150,

m′
BCR6(a|A) = 0.550, m′

BCR6((b ∪ c) ∩ (a ∪ b)|A) = 0.045, m′
BCR6(b|A) = 0.045,

m′
BCR6((a ∩ b) ∪ (a∩) ∪ (b ∩ c)|A) = 0.045, m′

BCR6(a ∩ (b ∪ c)|A) = 0.045,
m’BCR6(b ∩ (a ∪ c)|A) = 0.045, m′

BCR6(c ∩ (a ∪ b)|A) = 0.045, m′
BCR6(a ∩ b|A) =

0.045, m′
BCR6(a ∩ c|A) = 0.045,

m′
BCR6(b ∩ c|A) = 0.045, m′

BCR6(a ∩ b ∩ c|A) = 0.045
(results by BCR5 are the same as those by BCR4 in this example).
For comparison we obtain m′

DRC(a|A) = 0.0022, m′
DRC((b∪ c)∩ (a∪ b)|A) = 0.9978,

by the generalized Dempster’s rule of conditioning [3].

As it is mentioned in [12], bbms m(W ) for W ∈ D3 are blindly divided by k
according the number of sets among those it should be redistributed, regardless of
bbms of those sets.

The way of bbm relocation in BCR2 rule is referred as the most pessimistic/pru-
dent one and that in BCR3 as the most optimistic one. Nevertheless the difference
among the rules does not seem to be related to optimism/pessimism, but it is a
question of addition or non-addition of an extra additional information when m(W )
is redistributed for W ∩ A �= ∅, W �⊆ A, or what additional information is added.
Similarly relocation of all m(W ) to absorbing ∩i=1,...,nθi by BRC3 really does not
express any optimism.
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When relocating m(W ) to W ∩A in BCR2 no additional information is added. All
other redistributions of m(W ) for W ∈ D3 in BRC3–BCR6 add to m some additional
information, which is mainly based on the specific rule and partly on bbms m(Y ) for
Y ∈ D1. Nevertheless there is no need to add any information within conditioning,
and definitely there is no reasonable motivation for redistribution of m(X) among
sets given by k-median or by k-average as it is performed by BCR4 and BCR5.

Really, from conditioning set A we only know that m(W ) should be located to A
and/or some of its subsets. From m we only know that m(W ) should be located to
W (if it is acceptable by A). Hence we know that m(W ) conditioned by A should
be located to W ∩ A. We do not know anything more using both the sources of
information bba m and conditioning set A. Any other precision of focal elements is
addition of some kind of an extra information (out of m and A).

10.4.2 Belief conditioning rules BCR7–BCR11

Analogically to the previous subsection, we can formulate also BCR7–BCR11 rules
in the more compact parametric form, see [6]. Similarly to BCR1–BCR6, BCR7 –
BCR11 rules are defined for BFs, such that Bel(A) =

P

Y ∈D1
m(Y ) �= 0 again. Rules

BCR8–BCR11 really improve belief conditioning, as they remove blind redistribution
of bbm W (i.e., division by k) whenever S(W ) �= 0; m(W ) is redistributed respecting
W (only among subsets of W ), nevertheless it is proportionalized according m(Y ) for
Y ⊂ A, thus sensitivity to the values m(Y ) for Y ⊂ A increases and the problem of
relocation/redistribution of m(W ) for W ∈ D2 continues.

Because a part of {m(W )|W ∈ D2} is redistributed among subsets of W ∩ A
even by BCR7, which uses the k-largest element, the rule BCR7 also add some more
additional information within the combination in comparison with BCR2. Thus the
change obtained using fractions m(W )/S(W ) is counter intuitive in the case of BCR7.

10.5 Belief conditioning rules BCR12–BCR31

The rules from this large group start to distinguish whether W ∩A is empty or non-
empty for W ∈ D2. m(W ) are relocated or redistributed in the same or analogical
way as those form D3 in the case of non-empty intersection with A. Thus we can
use DS , DI , DD instead of D1, D2, D3 for simplification and higher understandability
of formulas, see [6]. Similarly to all the previous rules, BCR12 – BCR31 rules are
defined7 for BFs, such that Bel(A) =

P

Y ∈D1
m(Y ) �= 0.

10.5.1 Belief conditioning rules BCR12–BCR16

Bbms of focal elements from both intersective sets of D2I and D3 are processed in
the same way of particular redistribution; this corresponds to class (Dp

2 , Dp
3) in the

7None of BCRs is defined for Bel(A) = 0 in [12].
All BCRs are defined m(A|A) = 1, m(X|A) = 0 for X �= 0 if Bel(A) = 0 in [13].
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classification of the BCRs, see Section 5 in [12].
The rules really improve conditioning again, as m(W ) is redistributed only inside

W ∩ A whenever it is non-empty. The difference among individual rules BCR12–
BRC17 is again related to an extra additional information which is added to the
original belief within conditioning. Why some information is added within condition-
ing? There is really no need for it. No information is added when m(W ) is relocated
to W ∩ A by BCR12, thus the rule is the best from these rules. It also corresponds
to the fact that it is one of two rules which are recommended by Dezert and Smaran-
dache in [12]. Nevertheless, in the case of hybrid DSm models, the sensitivity with
respect to m(W ) for W ∈ D1 within conflicting bbm (when W ∩ A = ∅) redistribu-
tion remains similarly to all other DSm BRC rules from [12]. This sensitivity was
removed only in the case of the free DSm model, where D2I = D2 and D2D = ∅, thus
all m(W ) are redistributed inside W ∩ A for all W ∈ D2 ∪ D3. This of course does
not hold for hybrid DSm model in general.

Example 3 (cont.). Let us suppose the free DSm model Mf , again. c ∈ D2, c∩ (a∪
b) �≡ ∅ in Mf , thus c ∈ D2I more precisely. Hence m(c) is relocated to c ∩ (a ∪ b)
using BCR12, or redistributed among subsets of c ∩ (a ∪ b) using BCR13–BCR16.
Let us suppose a hybrid DSm model with a constraint c ∩ (a ∪ b) ≡ ∅ now; it trivially
holds e.g. in Shafer’s model M0. In this case c ∈ D2D and m(C) is redistributed
between a and b in the ratio 1 : 4 by all BCR11–BCR16, in the same way as by
BCR2–BCR6.
Similarly in the modified example under the constraint c∩(a∪b) ≡ ∅, the entire m′(c)
is relocated to the element a by all BCR11–BCR16 in the same way as it is done by
BCR2–BCR6.

10.5.1.1 A simplification of BCR12

Using of intersection ∩ instead of the superflous notion k-largest and the equation
P

Y ∈D1
m(Y ) =

P

Y ⊆A m(Y ) = Bel(A) we can simplify formula for BCR12 as it
follows (for detail see [6]):

mBCR12(X|A) =
X

W∩A≡X

m(W ) +
m(X)

Bel(A)
·
X

Z∩A≡∅
m(Z).

In the special case of the DSm free model we have8

mBCR12(X|A) =
X

W∩A ≡
Mf X

m(W ).

In Shafer’s DSm model we have

mBCR12(X|A) =
X

W∩A=X

m(W ) +
m(X)

Bel(A)
·
X

Z∩A=∅
m(Z).

8Note, that this simplification for the free DSm model is already extended in the sense
of Section 10.7.
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10.5.2 Belief conditioning rules BCR17–BCR21

Focal elements of both D2I and D3 are processed in the same way again, this time
in the way of ’splitted redistribution’; this corresponds to class (Ds

2, D
s
3), see Section

5 in [12].

Rules BCR17–BCR21 are improvements of BCR7–BCR11, as m(W ) is not relo-
cated out of W ∩ A whenever non-empty. Moreover rules BCR18–BCR21 decrease
a ’blind’ redistribution (i.e. division by k) of m(W ) with respect to rules BCR13–
BCR16. BCR17 does not add any additional information when m(W ) is relocated to
W ∩A for W ∈ D2I or W ∈ D3 where Bel(W∩A) = 0. On the other hand, similarly
to BCR7, also BCR17 brings some additional information, which is not added by
BCR12, this arises whenever W ∈D2I ∪ D3 & Bel(W∩A) �=0.

10.5.2.1 BCR17

Analogically to BCR12, we can simplify BCR17 as it follows

mBCR17(X|A) =

X

W∩A≡X
W⊆A∨Bel(W∩A)=0

m(W ) +
m(X)

Bel(A)
·
X

Z∩A≡∅
m(Z) + m(X) ·

X

X⊆W, W �⊆A
Bel(W∩A)�=0

m(W )

Bel(W∩A)
.

For special cases in the free DSm model and in Shafer’s DSm model see [6].

10.5.3 The remaining belief conditioning rules

These rules are just variations of BCR17-BCR21, where the idea of proportionaliza-
tion of m(X)/Bel(W ∩A) (cf. m(X)/S(W ) in [12]) is applied only to D2I or to D3.
It is applied to m(W ) for W from D3 in BCR22–BCR26, whereas for W from D2I ,
in BCR27–BCR31.

We can notice that Bel(W∩A) is always 0 for W ∈ D2D, thus difference between
the above two groups of rules can arise only for W ∈ D2I and W ∈ D3.
We can further notice that a part of m(W ) where W ∩ A �≡ ∅ (i.e. W ∈ D2I ∪ D3)
is proportionalized, whereas the rest is blindly divided by k (it correspods to classes
(Dp

2 , Ds
3) and (Ds

2, D
p
3) in [12]), unfortunately there is no reasonable explanation

or motivation for it. This seems to be non-intuitive or even counter-intuitive; in
correspondence with this, both of the groups of rules are counter-intuitive. It also
corresponds to the fact, that there is no formula for any of BCR22–BCR31 presented
in [12]. Hence there is no need for further analysis of these rules.
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10.6 Comparison of BCRs with the classic rules

10.6.1 BCR1

As it was already mentioned in Section 10.3, BCR1 rule is just the generalization of
the belief focusing rule [3]. From the generalized Dempster’s rule of conditioning9

(DRC) it differs by processing of m(W ) both for W from D2 and from D3. Thus
BCR1 coincides with DRC just for belief functions with focal elements from D1, i.e.,
whenever all focal elements are subsets of the conditioning set A; m(X|A) = m(X)
in such a case.

In the same way all BCRs coincide with the generalized belief focusing rule and
(hence also with DRC) whenever Bel(A) = 1, and differ from it otherwise.

10.6.2 BCR2–BCR6

All BCRs from this group differ from DRC by processing of m(W ) for W from D2.
BCR2 coincides with DRC whenever BCR2 is defined and all focal elements are from
D1 ∪ D3. Rules BCR3–BCR6 add more additive information, than BCR2 does, and
they differ from DRC also for BFs with focal elements from D3.

10.6.3 BCR7–BCR11

All of these rules add more information than BCR2 does, thus all of these rules differ
from DRC whenever their focal elements are out of D1 (i.e., if there exists a focal
element which is not subset of A, i.e. if Bel(A) < 1).

10.6.4 BCR12–BCR16

All BCRs from this group differ from DRC by processing of m(W ) for W from D2D.
BCR12 coincides with DRC whenever it is defined and all the focal elements are from
D1 ∪ D3 ∪ D2I . Rules BCR13–BCR16 add more additive information, than BCR12
does, and they differ from DRC also for BFs with focal elements from D2I ∪D3.

9 The original rule was defined by Shafer in [9] and called Dempster’s rule of conditioning
there. This name is generally used in belief function literature, see e.g. [10]. Nevertheless
the editors of this volume started to call the rule Shafer’s conditioning rule in [12].

The generalization to hyper-power sets was defined by the author of this chapter in [3] as:

m(X|A) = K
X

A∩Y ≡X

m(Y ) =

P
A∩Y ≡X m(Y )P
A∩Y 
≡ ∅ m(Y )

for ∅ �≡ X ⊆ A, X, A ∈ DΘ
M , where K = 1

1−κ
, κ =

P
Y ∈DΘ, A∩Y ≡ ∅ m(Y ), and m(X|A) = 0

otherwise, i.e., for X ≡ ∅, X �⊆ A and for X �∈ DΘ
M . The rule is defined (applicable) whenever

κ < 1, i.e., whenever there exists Y ∈ DΘ
M , Y ∩ A �≡ ∅, such that m(Y ) > 0.

To avoid any confusions with the name of the rule, we will not use any personal name in
this chapter a denote the rule simply as (the generalized) DRC.
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We have seen that the mechanism of BCR12 does not coincide with DRC in
general as the rules handle focal elements from D2D in different ways. From the same
reason, the rules do not coincide either in Shafer’s model, see also the special case of
the formula for BCR12 in Subsection 10.5.1.1. Hence we cannot consider BCR12 as
a generalization10 of DRC, which conservatively extends the original DRC.

10.6.5 BCR17–BCR21

All of these rules add more information than BCR12 does, thus all of these rules differ
from DRC whenever their focal elements are out of D1 (i.e., if there exists a focal
element which is not subset of A).

10.6.6 BCR22–BCR31

Formulas for the rules BCR22–BCR26 (resp. BCR27-BCR31) are similar to those
for BCR12–BCR16, but the rules add more information when processing m(W ) for
W ∈ D3 (W ∈ D2I resp.). Thus all BCRs from this group differ from DRC by
processing of m(W ) for W from D2D ∪ D3 (from D2D ∪ D2I = D2 resp.). BCR22
coincides with DRC whenever all focal elements are from D1 ∪ D2I . Rules BCR23–
BCR26 add more additive information, than BCR22 does, and they differ from DRC
also for BFs with focal elements from D2I .

BCR27 coincides with DRC, similarly to BCR2 whenever all focal elements are
from D1 ∪ D3. Rules BCR28–BCR31 add more additive information, than BCR27
does, and they differ from DRC also for BFs with focal elements from D3.

We have to mention, that the information added in the case of W ∈ D2I is dif-
ferent from that which is added by BCR2–BCR6. It is based on proportionalization
according to m(Y ) for Y ⊆ A in BCR2–BCR6, whereas on ’splitted proportionaliza-
tion’ according to m(Y ), Y ∩A �≡ 0 in BCR27-BCR31. Thus even if the coincidence
with DRC is the same for two groups of BCRs BCR2–BCR6 and BCR27–BCR31,
this does not mean that these two groups of rules coincide themselves in general. The
coincidence of the whole groups holds only when these rules coincide with DRC and
for other special situations.

10.6.7 Comparison of definition domains

All BCR1-BCR31, as they are defined in [12], have the same definition domain. These
rules are not defined11 whenever Bel(A) = 0, i.e., if m(W ) = 0 for all W ⊆ A. DRC

10Let us note, that the extension of BRC12 from [13] does not coincide with the generalized
DRC either in the DSm free model.

11We follow [12] here. In [13], there is Dom(BCRs) = {BFs}, i.e., the set of all belief
functions. But the extension m(A|A) = 1 [13] has a nature of BCR1 and does not correspond
with nature and mutual differences of other BCRs.



334 Chapter 10: Analysis of DSm belief conditioning rules . . .

is not defined only when m(W ) = 0 for all W ∩A �= 0, i.e., when P l(A) = 0. Thus
the definition domain fo BCRs is the proper subset of that of DRC:

Dom(BCRs) = {m|Bel(A) �= 0} ⊂ {m|P l(A) �= 0} = Dom(DRC).

From it, we can easily see again, that BCR12 (as it is published in [12]) is not a
generalization of DRC either in the free DSm model.

Further we can see that both BCR2 and BCR12 do coincide with DRC neither
for all belief functions, which should be processed in the same way, simply because
BCR2 and BCR12 are not defined for some of them, thus they are not applicable in
such cases.

10.7 Extension of applicability of BCRs

We can see from the above comparison in the previous section, that some of the rules
can coincide with DRC even out of their definition domain. We will extend definition
domains of BCRs as much as possible in this section. In the same time we will extend
the applicability of the rules12.

10.7.1 Extension of applicability in general DSm models

Limitation for definition domains of all BCRs is division by

X

Y ∈D1

m(Y ) =
X

Y ⊆A

m(Y ) = Bel(A)

which should be non-zero. E.g. we cannot conditionalize the vacuous belief function
V BF (where mV BF (Θ) = 1, mV BF (X) = 0 otherwise) by any of BCRs.

We cannot do anything more with BCR1, thus its definition domain is really
{m|Bel(A) �= 0}. It also corresponds with definition domain of belief focusing.

Division by
P

Y ∈D1
m(Y ) appears when processing bbms from D2 in BCR2–

BCR11: in summand m(X)
P

W∈D2
m(W )

P

Y ∈D1
m(Y )

. We can extend the definition with a for-

mula without this summand for conditioning in the case of
P

W∈D2
m(W ) = 0.

In this case there is no necessity to redistribute zero bbms of elements of D2 and
the rules produce correct bbas even without the problematic summand. In this
way we extend the definition domain of BCR2–BCR11 also for all BFs such that
P

W∈D1∪D2
m(W ) = 0. Thus Dom(BCR2−BCR11) = {m|PY ∈D1

m(Y ) �= 0} ∪
{m|PW∈D1∪D2

m(W ) = 0} = {m|PY ∈D1
m(Y ) �= 0} ∪ {m|PW∈D2

m(W ) = 0} =
{m|Bel(A) �= 0} ∪ {m|PW∈D2

m(W ) = 0}.

12We keep the original Smarandache & Dezert’s ideas of BCRs [12] in this chapter. We
only try to extend their definition domains and applicability as much as possible, thus we
continue to speak about BCR1–BCR31. Just a reformulation and a completion of their
definitions is suggested here, not any new rules.
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Example 4. Making a new friend:
I’ve met an interesting person in a conference in Paris. His affiliation is in U.S., but
I have a strong feeling that he has European origin. He speaks French very well, he
has a French friend, he understands my weak Italian, he has spoken about Romania
several times. What is my subjective belief about his origin?

Let us suppose a 4-element frame of discernment Θ = {U, I, F, R}, where U stands
for U.S., I for Italy, F for France, and R for Romania. An origin of my new friend
may be mixed, thus application of hyper-power set is adequate. For simplicity, we do
not suppose any constraints, and use the free DSm model on Θ in this example.

Let my belief be given by the following bba m: m(F ∪ R) = 0.6, m(I ∪ R) = 0.1,
m(Θ) = 0.3. Let us learn a sure evidence that my new friend’s origin is American
or Romanian, thus my belief represented by m should be conditionalized by U ∪ R:
F ∪R, I∪R, Θ ∈ D3,

P

Y ∈D1
m(Y ) = 0, thus a conditioning by U ∪R is not possible

using the original definition of BCRs.
P

Y ∈D2
m(Y ) = 0 as well, thus we can use the

extending simplified formula for this case and perform conditionalization as it follows:
mBCR2(R |U∪R) = 0.7, mBCR2(U∪R |U∪R) = 0.3;
mBCR3(R |U∪R) = 0.7, mBCR3(U∩R |U∪R) = 0.3;
mBCR4(R |U∪R) = 0.85, mBCR4(U |U∪R) = 0.15;
mBCR5(R |U∪R) = 0.85, mBCR5(U |U∪R) = 0.15;
mBCR6(R |U∪R) = 0.775, mBCR6(U |U∪R) = 0.075, mBCR6(U∩R |U∪R) = 0.075,
mBCR6(U∪R |U∪R) = 0.075.
Because of

P

Y ∈D1
m(Y ) = Bel(U∪R) = 0 it holds true also S(W ) = Bel((U∪R) ∩

W ) = 0, hence rules BCR7–BCR11 produce the same results as BCR2–BCR6 do in
our example.

We have seen in Example 4 that the definition domains of BCR2–BCR6 and
BCR7 – BCR11 were really extended for a class of generalized belief functions given
by bbas such that

P

Y ∈D2
m(Y ) = 0. Of course our extension is not sufficient for

conditioning of all bbas, see the modified version of Example 4.

Example 4 (modif.). Let my belief be given by a modified bba m′: m′(F ∪R) = 0.6,
m′(I ∪R) = 0.1, m′(I ∪F ) = 0.1, m′(Θ) = 0.2. It holds true that

P

Y ∈D1
m′(Y ) = 0

again, I∪F ∈ D2 thus
P

Y ∈D2
m′(Y ) = m′(I ∪ F ) = 0.1 > 0, hence we can use

neither the original formulas for BCRs (because of division by zero ”0.1
0

”) nor the
simplified formulas (because their assumptions are not satisfied). Thus we cannot
apply BCR2–BCR11 in this modified example.

Division by
P

Y ∈D1
m(Y ) appears when processing bbms from D2D in BCR12–

BCR21: in summand m(X)
P

W∈D2D
m(W )

P

Y ∈D1
m(Y )

. Analogically to the previous group of

BCRs, we can extend the definition with a formula without this summand for con-
ditioning in the case of

P

W∈D2D
m(W ) = 0. In this case there is no necessity

to redistribute zero bbms of elements of D2D and the rules produce correct bbas
even without the problematic summand. In this way we extend the definition do-
main of BCR12–BCR21 also for all BFs such that

P

W∈D1∪D2D
m(W ) = 0. Thus
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Dom(BCR12−BCR21) = {m|PY ∈D1
m(Y ) �= 0} ∪ {m|PW∈D2D

m(W ) = 0} =
{m|Bel(A) �= 0} ∪ {m|P l(A) = 1}.

The same holds also for BCR22–BCR31, hence we obtain Dom(BCR22−BCR31) =
Dom(BCR12−BCR21) = {m|Bel(A) �= 0} ∪ {m|P l(A) = 1}.
Example 4 (cont.). It holds true that

P

Y ∈D2
m(Y ) = 0 in the example, thus it

holds true also
P

Y ∈D2D
m(Y ) = 0 and

P

Y ∈D2I
m(Y ) = 0. From the first equality

we can see that we can apply also BCR12-BCR31, and from the second one, that rules
BCR12–BCR16 and BCR27–BCR31 produce the same results as rules BCR2–BCR6.
From Bel(U ∩R) = Bel(A) = 0 it follows also Bel(W ∩A) = 0 and S(W ) = 0, and
that also rules BCR17–BCR21 and BCR22–BCR26 similarly to rules BCR7–BCR11
produce the same results as BCR2–BCR6 in this example. Thus we have:
m(R |U∪R) = 0.7, m(U∪R |U∪R) = 0.3 also for BCR12,BCR17,BCR22,BCR27;
m(R |U∪R) = 0.7, m(U∩R |U∪R) = 0.3 also for BCR13,BCR18,BCR23,BCR28;
m(R |U∪R) = 0.85, m(U |U∪R) = 0.15 also for BCR14,BCR19,BCR24,BCR29;
m(R |U∪R) = 0.85, m(U |U∪R) = 0.15 also for BCR15,BCR20,BCR25,BCR30;
m(R |U∪R) = 0.775, m(U |U∪R) = 0.075, m(U∩R |U∪R) = 0.075, m(U∪R |U∪R) =
0.075 also for BCR16,BCR21,BCR26,BCR31.

For more distinguishing of BCRs we present the following example:

Example 5. Let us take a 3 colour R-G-B example from DSm web page now. Hence
we have 3-element Θ = {R, G, B}. Let us further suppose the free DSm model Mf

and a simple bba m such that m(G) = 0.5, m(R∪G∪B) = 0.5, m(X) = 0 otherwise.
Let us make a conditioning by A = R ∪ B.

P

Y ∈D1
m(Y ) = 0 and

P

Y ∈D2
m(Y ) = m(G) = 0.5 > 0 thus we cannot apply

rules BCR2–BCR11 either in their extended versions. G ∩ (R ∪B) �≡ ∅ in Mf , thus
G ∈ D2I and

P

Y ∈D2D
m(Y ) = 0 in this example. Hence we can apply BCR12–

BCR31as it follows:
mBCR12(G∩(R∪B) |R∪B) = 0.5, mBCR12(R∪B |R∪B) = 0.5;
mBCR13(R∩G∩B |R∪B) = 1.0;
mBCR14(R∩G |R∪B) = mBCR14(B∩G |R∪B) = 0.25,
mBCR14((R∩G)∪(R∩B) |R∪B) = mBCR14((R∩G)∪(G∩B) |R∪B) =
mBCR14((R∩B)∪(G∩B) |R∪B) = 0.166;
mBCR15(R∩G |R∪B) = mBCR15(B∩G |R∪B) = 0.25,
mBCR15((R∩G)∪(R∩B) |R∪B) = mBCR15((R∩G)∪(G∩B) |R∪B) =
mBCR15((R∩B)∪(G∩B) |R∪B) = 0.166;
mBCR16(R∩G∩B |R∪B) = mBCR16(R∩G |R∪B) = mBCR16(B∩G |R∪B) =
mBCR16((R∩G)∪(B∩G) |R∪B) = 0.163461538,
mBCR16(R∩B |R∪B) = mBCR16((R∩G)∪(R∩B) |R∪B) =
mBCR16((R∩B)∪(B∩G) |R∪B) = mBCR16((R∩G)∪(B∩G)∪(R∩B) |R∪B) =
mBCR16(R |R∪B) = mBCR16(B |R∪B) = mBCR16(R∪(B∩G) |R∪B) = mBCR16(B∪
(R∩G) |R∪B) = mBCR16(R∪B |R∪B) = 0.038461538.

From Bel(A) = 0 it follows that Bel(A ∩ W ) = S(W ) = 0, hence rules BCR17–
BCR21 produce the same results as rules BCR12–BCR16 do. The same holds true
also for rules BCR22–BCR26 and BCR27–BCR31.
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Example 4 (modif. cont.). Analogically, we can continue also modified example of
new friend as (U∪R) ∩ (I∪F ) �≡ ∅ in the free DSm model and (I∪F ) ∈ D2I , thus
P

Y ∈D2D
m(Y ) = 0 again. In this example we obtain:

m′
BCR12(U∪R |U∪R) = 0.2, m′

BCR12((F∪R)∩(U∪R) |U∪R) = 0.6,
m′

BCR12((I∪R)∩(U∪R) |U∪R) = m′
BCR12((I∪F )∩(U∪R) |U∪R) = 0.1;

m′
BCR13(U∩R∩F ∩I |U∪R) = 1.0;

etc.

We can summarize our analysis and extension of the definition domains of BCRs
now. In the extended case for general hybrid DSm models the following holds:

Dom(BCR1) ⊂ Dom(BCR2−BCR11) ⊂ Dom(BCR12−BCR31) ⊂ Dom(DRC),

Dom(BCR1) = {m|Bel(A) �= 0} ⊂ Dom(BCR2 −BCR11) ⊂ {m|Bel(A) �= 0} ∪
{m|P l(A)=1} = Dom(BCR12 −BCR31) ⊂ {m|P l(A) �=0} = Dom(DRC).

Hence we can see that applicability of the extended BCRs is still less then that
one of DRC in general.

10.7.2 Extension of applicability in the free DSm model

In the special case of the free DSm model Mf , X ∩ Y �≡ ∅ and P l(X) = P l(Y ) = 1
always holds true for any X, Y ∈ DΘ. Therefore, we can remove the summand

m(X)
P

W∈D2D
m(W )

P

Y ∈D1
m(Y )

from the definitions of the rules regardless of the condition
P

W∈D2D
m(W ) = 0 which always holds true in Mf .

Dom(BCR1) ⊂ Dom(BCR2−BCR11)

⊂ Dom(BCR12−BCR31) = Dom(DRC).

Where Dom(BCR1) = {m|Bel(A) �= 0} as in a general case, and Dom(BCR12−
BCR31) is a set of all bbas defined on DΘ now.

Under this extension, we finally obtain BCR12 as a full generalization of DRC in
Mf , and BCR12 is completely equivalent to the generalized DRC in the DSm free
model Mf .

10.7.3 Extended definition of BCR12

As an example of full formal definition of BRC, we present here the extended version
of BCR12, for extended versions of other BCRs see [6].

The extended version of Belief Conditioning Rule no. 12 (BCR12) is defined for
X ⊆ A by the formula

mBCR12(X|A) =
X

W∩A≡X

m(W ) +
m(X)

Bel(A)
·
X

Z∩A≡∅
m(Z),
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when Bel(A) �= 0, and by the formula

mBCR12(X|A) =
X

W∩A≡X

m(W ),

when
P

W∈D2D
m(W ) = 0.

mBCR12(X|A) = 0 for X �⊆ A as in the original definition. Our extended BCR12 is
not defined for BFs such that Bel(A) = 0 &

P

W∈D2D
m(W ) > 0.

In the special case of the DSm free model Mf we have

mBCR12(X|A) =
X

W∩A ≡
Mf X

m(W )

in full generality for any BF.
Thus it is the real and complete generalization13 of DRC in Mf .

10.8 Summary of comparison

10.8.1 Summary of coincidence of BCRs with DRC

As it was already mentioned, BCR12 is the best of BCRs as it does not add any
additional information when processing m(W ) for W from D3 ∪ D2I . This rule has
also the greatest coincidence with (the generalized) DRC. BCR12 coincides14 with
DRC for BFs where all focal element are from D1 ∪D3 ∪D2I , i.e. if P l(A) = 1; this
trivially holds for any BF which is defined in the free DSm model Mf .

This coincidence is based on the fact, that there are no conflicts in Mf and subse-
quently several combination rules, which are based on intersection of focal elements,
mutually coincide in Mf , see [2] and also Chapter 3 in [11]. Similarly, also DRC and
BCR12 coincide in the free DSm model Mf with the conjunctive rule of combination
(with the 2nd argument fixed to mA, where mA(A) = 1, mA(X) = 0 for X �= A),
hence, also with the generalization of Dempster’s rule of combination [2].

DRC performs a normalization, i.e., proportionalization of m(X) according to
m(Y ) for Y such that Y ∩ A �≡ ∅, whereas BCR12 performs a proportionalization
according to m(Y ) for Y ⊆ A. Thus all bbms of Y for Y ∩A �≡ ∅ & Y �⊆ A are
ignored within the proportionalization in BCR12, hence the rule is more sensitive
with respect to bbms of Y ⊆ A.

BCR2 coincides with DRC for BFs where all focal element are from D1 ∪D3.
BCR27 coincides with DRC for BFs where all focal element are from D1 ∪D3.
BCR22 coincides with DRC for BFs where all focal element are from D1 ∪D2I .
All 27 other BCRs coincide with DRC only for BFs where all focal elements are from
D1 (i.e., if Bel(A) = 1), i.e., only in the case of trivial conditioning m(X|A) = m(X)
for X ∈ A, and m(X|A) = 0 otherwise.

13This evidently does not hold true for the extension from [13].
14We consider the generalized DRC and the new extended version of BCRs in this section.
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10.8.2 Comparison of BCR1, BCR12 and BCR17 with
classic rules of conditioning

Rule BCR12 is somewhere in between BRC1 (that is equivalent to the generalized
belief focusing [3]) and the generalized DRC, as bbms of X ⊆ A are kept located to
X by all 3 conditioning rules, bbms of X for X ∩ A = ∅ are proportionalized in the
same way by BCR1 and BCR12 (according to m(Y ) for Y ⊆ A), whereas bbms of X
for X∩A �= 0& X �⊆ A are in the same way relocated to X ∩ A by BCR12 and (the
generalized) DRC.

The ways of relocation/redistribution of bbms m(W ) of focal elements in depen-
dence on their relation to conditioning set A are presented in Table 1.

There is a little bit more complicated situation for BCR17, which is somewhere
between BCR1 and BCR12. Bbms m(W ) are either redistributed as by BCR1 or
relocated as by BCR12 according to S(W ) = Bel(W ∩A) for W ∈ D2I ∪ D3, bbms
m(W ) are relocated as by BCR12 for other focal elements, i.e. for W ∈ D1 ∪ D2D,
see Table 1 again.

BCR1 BCR12 BCR17 DRC

1 D1 W ⊆ A W W W W

2 D2D W∩A ≡ ∅ Y : Y ⊆A Y : Y ⊆A Y : Y ⊆A Y : Y ∩A ≡ ∅
3 D2I W∩A ≡ ∅ Y : Y ⊆A W ∩A ∗ W ∩A

D3 W∩A ≡ ∅ Y : Y ⊆A W ∩A ∗ W ∩A

∗ .... m(W ) should be redistributed among Y : Y ⊆ W∩A if Bel(W∩A) =0,
or relocated to W ∩A otherwise.

Table 10.1: Relocation/redistribution of bbm m(W )

The second column of the table contains the domain of focal element W , relation
of focal element W and of conditioning set A is in the 3rd column, the 4th – 7th
columns display the element of DΘ

M to which bbm m(W ) should be relocated or the
set of elements of DΘ

M among them m(W ) should be distributed. Note: when m(W )
to be proportionalized among Y such that Y ⊆ A or Y ∩A �= 0, m(Y ) must be
positive; when m(W ) to be relocated to W ∩A or redistributed among Y such that
Y ⊆ W∩A, m(W∩A) and m(Y ) may be also equal to zero.

When computing BCRs according to Table 1, we have to keep the order15 of
steps (see the first column of the table), due to performing step 3 (redistribution of

15 Notice, that in the changed order (step 3 before step 2) it would be necessary to
normalize conflicts in DRC among all non-conflicting elements (i.e. among all elements of
D2I ∪ D3).
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D2I ∪ D3) before step 2 changes BCR12 to DRC as step 2 (redistribution of D2D)
differs DRC from BCR12.

In the case of other BCRs, it is not possible to say uniquely which rule adds more
information within conditioning process in general, i.e. which rule is closer to DRC
than another.

For a table of relocation/redistribution of bbm m(W ) for all BCRs see [6].

10.9 Conclusions

All of the 31 Belief Conditioning Rules (BCRs) are analysed in this chapter. The
important role of the splitting of D2 into D2D and D2I is underlined here. And a
comparison of all 31 BCRs with Shafer’s (i.e. Dempster’s) rule of conditioning (DRC)
is presented.

Based on the results of the presented analysis and the comparison, the definitions
of BCRs are extended to be applicable to as wide definition domain as possible. A
series of examples illuminating wider applicability of the new extended version of
BCRs are displayed.

From the presented theoretical results it follows that BCR12 and BCR17 are really
the best of all 31 BCRs, where BCR12 is better, as it adds less additive information
within conditioning process. On the other hand, BCR12 cannot be considered a
generalization of DRC. The real generalized DRC [3] is briefly recalled.

As the final recommendation for belief conditioning in DSmT, we recommend
using BCR12 or the generalized DRC.
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10.11 Appendix: comments to implementation

The extension of BCRs defined in section on BCRs in [13] has already been mentioned
in several footnotes in this chapter. It is simply defined for all BCRs as m(A|A) = 1,
m(X|A) = 0 for X �= A when Bel(A) = 0. This definition extends definition domain
of all BCRs to the entire set of all (generalized) belief functions. The extension
enables implementation of BCRs which always produce a result. This extension fits
with the nature of BCR1 which is based only on belief masses of focal elements from
D1, the other focal elements are simply ignored.

Nevertheless, the results of all other BCRs are related also to the focal elements
from D3 and results of BCR12–BCR31 also to the focal elements from D2 which
intersect conditioning set A. This is ignored by the extension from [13]. Our extension
defined in this chapter extends BCRs respecting their nature as much as possible,
see different results of particular BCRs in Examples 4 and 5. When applying the
extension from [13], we obtain m(U∪R|U∪R) = 1, m(X|U∪R) = 0 for X �= U∪R
for all BCRs in Example 4, and m(R∪B|R∪B) = 1, m(X|R∪B) = 0 for X �= R∪B
for all BCRs in Example 5; all bbms of original focal elements from D2 and D3 are
ignored by all BCRs.

Of course our extension has one disadvantage from the point of view of its imple-
mentation. There are still some possible non-trivial input belief functions, for which
some (extended) BCRs are not defined, hence no implementation can provide any
result for such an input. In such a case we can combine both the extensions: our
from this chapter and that from [13] to extend definitions domains of BCRs as much
as possible respecting the nature of particular BCRs. And whenever this extension
is not defined we can apply the idea of the extension from [13] and transfer the con-
flicting belief masses to m(A|A). Thus we obtain BCRs which are defined for all BFs
and implementations which always produce some resulting bbms.

In the case of BCR12 we obtain the following formulas:

mBCR12(X|A) =
X

W∩A≡X

m(W ) +
m(X)

Bel(A)
·
X

Z∩A≡∅
m(Z),

for X ⊆ A when Bel(A) �= 0, and by the formulas

mBCR12(A|A) =
X

A⊆W

m(W ) +
X

W∈D2D

m(W ),

mBCR12(X|A) =
X

W∩A≡X

m(W ),

for X ⊂ A when Bel(A) = 0,

mBCR12(X|A) = 0 for X �⊆ A as in the original definition.

In a special case of BFs such that all focal elements are from D2D we obtain
mBCR12(A|A) = 1, mBCR12(X|A) = 0 for X �≡ A. D2D = ∅ in the free DSm model
Mf thus the extension remains the same as it was in subsection 10.7.3 in the case of
Mf .
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Considering this combined extension we can apply BCR2-BCR11 also in the case
of modified example 4 obtaining the following results:
mBCR2(R |U∪R) = 0.7, mBCR2(U∪R |U∪R) = 0.3;
mBCR3(R |U∪R) = 0.7, mBCR3(U∩R |U∪R) = 0.2, mBCR2(U∪R |U∪R) = 0.1;
mBCR4(R |U∪R) = 0.8, mBCR4(U |U∪R) = 0.1, mBCR2(U∪R |U∪R) = 0.1;
mBCR5(R |U∪R) = 0.8, mBCR5(U |U∪R) = 0.1, mBCR2(U∪R |U∪R) = 0.1;
mBCR6(R |U ∪R) = 0.75, mBCR6(U |U ∪R) = 0.05, mBCR6(U ∩R |U ∪R) = 0.05,
mBCR6(U∪R |U∪R) = 0.15.
Bel(A) = 0 implies S(W ) = 0 and that BCR7–BCR11 produce the same results
as BCR2–BCR6 do. Analogically we can make conditioning by any other BCR in
situations where our extension from Section 10.7 is not defined.

Applying the idea from this section, we obtain extensions of all BCRs to the
set of all (generalized) belief functions such that the original ideas of BCRs [12] are
conserved as much as possible.
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Abstract: This chapter describes what particular pieces of in-
formation about a source should be taken into account in order to
get a reasonable assessment of an attribute information retrieved
based on the sensor data or human originated information. It has
been proven that actual sensor weights and hypotheses masses do not
change randomly, but they vary in time according to tracked target
motion, however not directly to the target position. It is postulated
that the knowledge about target position only is insufficient and at
least two dynamical coordinates target state vectors are required to
reflect the target orientation, which has an influence on actual hy-
potheses assessment formed, on the basis of the sensor data or visual
sightings.
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11.1 Introduction

Maritime Command and Control (C&C) systems, like other information systems need
fusion techniques to deal with evidence (of both kinds: kinematic and attribute)
gathered from miscellaneous sensors. When the evidence is imprecise and conflicting,
DSmT fusion seems to be an excellent choice. However, DSmT requires basic belief
assignment defined to perform the conditioning and combining algorithms [7, 8]. Thus
the problem arises, namely how to evaluate the information gathered from diverse
sources (including human being), to get a reasonable starting point for the DSmT
engine?

The research goal is to invent an attribute information evaluation method for
C&C systems purposes to reasonably assess the information from diverse sources.
The method must deal with specific sensor characteristics, target motion and provide
the results usable for DSmT fusion engine, as well.

Thus, the research problem may be decomposed into two problems:

• Finding a method of evaluating the evidence related to target attributes from
diverse types of sources;

• Converting the obtained quality of information into a basic belief assignment.

11.2 Assessing information

Assessing the information source is the first step to be taken in the whole information
evaluation process. Usually this kind of evaluation includes source characteristics, like
detection and classification zones, reliability parameters and other factors like terrain
features, for example.

The analysis of marine C&C systems’ needs proves that the evaluation of the
information source (even regularly updated) is not enough to perform information
fusion on the satisfactory level.

Most of applied soft-decision fusion methods (including DSmT) utilize current
state of knowledge related to each possible hypothesis. The hypotheses may be as-
sessed in terms of statistics, how observations differ from the expected values, related
to subsequent hypotheses.

11.2.1 Evaluation factors

In order to standardize evaluation terminology it is suggested to accept the following
distinction of all the elements of the evaluation process, so called evaluation factors:

• Source related:

– Time invariant factors:
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∗ The number of sources;

∗ Source reliability;

∗ Terrain features (not discussed in this chapter);

– Time variant factors:

∗ Quality measure, regarding source characteristics;

∗ Quality measure, regarding target motion parameters;

• Hypotheses related:

– Time invariant factors:

∗ The total number of hypotheses;

– Time variant factors:

∗ Hypotheses instantaneous quality value.

11.2.2 Not only distance matters

Many methods rely on the target position when defining source time dependent qual-
ity parameter [3, 6]. It is quite natural that the distance between the target and the
sensor influences the sensor performance. Some of successfully applied information
evaluation algorithms [1, 2] assume that the closer the target, the more precise the
measurement. This may be correct for specific types of sources however in general
there are situations when applying this rule may bring paradoxical results.

Figure 11.1 shows that the classification of a target via visual sightings or a video
camera may be imprecise when the target’s heading is closely aligned to its bearing
from the sensor (or the source) because fewer of its features may be extracted. As
such, it may be easily confused with other vessels. However, when the target’s head-
ing and bearing from the sensor substantially differ, then more of the structure of the
vessel is typically revealed making its classification simpler, even if it lies at a great
distance from the sensor.

According to the authors’ knowledge and opinion, information evaluation algo-
rithms should be aware of such problems. This may be done if the evaluation process
takes two independent steps:

• utilize the information about source classification zones, usually not identical
with detection zones;

• utilize the information about the target course (if possible) or retrieve the
aspect angle information taking target state vector consisting of two (at least)
dynamical coordinates: position and velocity.
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Figure 11.1: Classification problem: not always the distance metric is the best.

That certainly requires state estimation. For the purpose of marine C&C systems
that seems not to be problematic for the reason that state estimation is usually
performed independently outside attribute information evaluation modules. If that
is so, evaluation methods may take advantage of target tracking functions.

11.3 The attribute information evaluation model

Based on observations described in the previous section, the attribute information
evaluation process may be expressed with a concept and finally a model is presented
below. The basic block scheme of information evaluation process is shown on Figure
11.2.

Figure 11.2: Information evaluation basic block scheme.
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Target – an object to be detected and classified by subsequent blocks. The target is
assumed to be described by a threat attribute and a kinematic state vector.

Sensor – a source of information. There are possible diverse source types, namely
radar, video camera and visual sightings, for example. It is assumed that all these
types have different characteristics (detection and classification zones) and reliability.

Classifier – a block which associates the sensor data with particular possible hypothe-
ses. Based on primary hypotheses distinguished by the sensor (frame of discernment),
the classifier results in creating additional hypotheses using ∪ and ∩ operators to form
an extended set which may be dealt with the DSmT fusion engine.

Evaluator – a block which assesses the classified information. This is the key part of
the whole model. The evaluator uses information concerning:

• Information source (source characteristics, source reliability information);

• Sensor measurements (concerning hypotheses actually supported directly by
sensors);

• Target kinematics information (to evaluate exact hypotheses).

Global evaluator – an auxiliary evaluation block which updates local evaluation prod-
ucts with external information about the qualities of the sources (not shared by local
evaluators) like bias corrections or human-originated preferences, for example.

A more detailed diagram is depicted on Figure 11.3. Each block of Figure 11.2 has
been reconsidered to view its main functions. The arrows show the block interactions
on the functional level. In addition, a block of the state estimator has been introduced
which provides target kinematic information in real systems.

The blocks of Target and State estimator perform auxiliary functions only, to
show the reader the point where the exact information is processed. They will not
be discussed in details here.

11.3.1 The types of sensors

For the purpose of the evaluation model, the sensor block is assumed to consist of
two components:

• Characteristics;

• Observation process.

The characteristics describe theoretically how a source performance should change
depending on the tracked target position. It may be treated as a deterministic com-
ponent.
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Figure 11.3: Further insight into information evaluation.

The observation process component acts mainly as a stochastic one. It introduces
random disturbance noise to model a source imperfection, according to the reliability
parameter value;

Such a decomposition of deterministic and stochastic sensor components is re-
quired for the reason that sensor performance is going to be modeled in a following
(after classifier) block of evaluator. Deterministic information about characteristics
is assumed to be possible to share, while stochastic source behavior information is
never completely known in the real world, therefore it is assumed to be unknown
outside the sensor block.

Concentrating on the characteristics component it is important to notice that
one can deal with diverse types of sensors (using diverse ontologies), however it was
assumed for simplicity to constrain the sensor model to the classification level.

Therefore, the only two types of zones are to be taken into account:

• Detection zone;

• Classification zones;

The detection zone is a region where the target detection is possible. Any region
outside that zone is not taken into account.

The classification zones are the subsets of the detection zone, where the target
may be classified with precision determined by its actual kinematic state vector. The
classification zones can be distinguished as follows:

• Perfect classification conditions (Fc = 1);
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• Perfect azimuth and imperfect range conditions;

Fc(t) = ωφ(t) · ωd(t) (11.1)

• Perfect range and imperfect azimuth conditions;

Fc(t) = ωφ(t) · ωa(t) (11.2)

• Imperfect classification conditions;

Fc(t) = ωφ(t) · ωd · ωa(t) (11.3)

where Fc (the conditions factor) is a function which summarizes a classification qual-
ity and where ωφ, ωd and ωa are the target validation weights regarding target aspect,
distance and azimuth respectively.

Figure 11.4: Classification zones: (I) perfect classification conditions, (II) –
perfect azimuth imperfect range conditions, (III) – perfect range imperfect
angle conditions, (IV) imperfect classification conditions.

The observation process disturbance may be modeled using a normal distribution
with known mean value, determined by expected undisturbed (simulated) value and
standard deviation, depending on the sensor characteristics.

σ = σmin + δ(1− Fc) (11.4)

where σmin is the minimal standard deviation value and δ is a condition dependence
coefficient.
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11.3.2 Classifier

Wherever a soft-decision fusion approach is applied, the classifier block appears. In
the evaluation model presented here the classifier has to carry out two tasks.

• Extracting the primary hypotheses (source frame of discernment);

• Generating additional hypotheses using ∪ and ∩ operators.

Extracting the primary hypotheses is a classical task for classifiers. For a given
type of sensor each possible hypothesis is extracted and established in a hypotheses
table for future evaluation.

The hypotheses distinguished by sensors are mostly exclusive and the set of possi-
ble value depending on the exact source may not be sufficient for proper classification.
For this reason it is suggested to append to the classifier an additional function of
generating extensional (middle) hypotheses using union and intersection operators.

If the threat attribute is human-originated the following translation rules should
be applied1:

• SUSPECT = UNKNOWN ∩ HOSTILE

• ASSUMED FRIEND = UNKNOWN ∩ FRIEND

• FAKER = FRIEND ∩ HOSTILE

• JOKER = SUSPECT ∩ FRIEND = UNKNOWN ∩ HOSTILE ∩ FRIEND

A suspicion that there are two targets within considered area may also be estab-
lished as union hypothesis, for example: FRIEND ∪ HOSTILE.

11.3.3 Evaluator

Some soft-decision fusion models apply the classifier as a module responsible, not
only for proper classification (and interpretation) of data obtained from sensors, but
also as some kind of evaluator.

Since this chapter refers mainly to attribute information evaluation, the evaluator
has been distinguished as a separate block that follows the classifier. However, in the
presented model one also receives information directly from other blocks. It is due to
the fact that the evaluation process requires a combination of:

• Sensor model: to access the source characteristics information;

1Presented threats’ values are defined in [4]. It is authors’ suggestion to put them in
terms of hypotheses union or intersection to be easily dealt by DSmT fusion.
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• Classifier information: to acquire information about particular hypotheses to
evaluate;

• Target state vector: necessary to utilize the characteristics information;

• Reliability data: to know about how defective the source is;

• Consequently: sensor data to have the basis for the evaluation.

Sensor model information may be easily derived from the deterministic part of
the sensor block. If that is so, source related time variant parts may be summarised
with one function Fc(t), described as in section 11.3.1.

Considering the distinction presented in section 11.2.1 the evaluation of hypothe-
ses may be expressed by the following formula:

mi(θj) =
βRiFc(t)

Nθ
· 1

ΔΘ2
j

(11.5)

where i is the sensor index; j is the classifier hypotheses index; Ri is the sensor
reliability; Nθ number of primary hypotheses; ΔΘj is the hypothesis weight based
distance metric and β ∈ [2, Nθ ] is a compensation coefficient.

The first term acts as a source related component. It consists of conditions factor,
source reliability and the number of primary hypotheses2. The coefficient β should be
treated as a compensator of prior hypotheses number. The second term is related to
hypotheses component. For each hypothesis from the set obtained from the classifier,
the respective hypothesis weight ΔΘj is calculated based on the distance metric, as
Figure 11.5 shows.

Figure 11.5: Distance metric for calculating hypotheses weights. Numerical
values specify distribution distances.

2Number of primary hypotheses (not classifier hypotheses) is taken into account, because
unlike primary hypotheses classifier, hypotheses may not be treated as an intrinsic feature
of the source.
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This rule may be easily applied for each prior hypothesis. Otherwise, if for exam-
ple the hypothesis is created upon intersection of prior hypotheses, it is suggested to
apply another rule described below. The problem that occurs concerns the evaluation
of hypotheses related to the target threat parameter. It is assumed that:

• The frame of discernment is defined as:

Θ = {U � UNKNOWN, F � FRIEND, H � HOSTILE}

• The measurements are performed in three steps:

– Step I: HOSTILE vs. FRIEND;

– Step II: HOSTILE vs. UNKNOWN;

– Step III: UNKNOWN vs. FRIEND

• The first (sensor related) term is omitted for simplicity;

Based on the frame of discernment and rules described in this section additional
hypotheses may be formed. Graphical relationship among threat attributes are shown
in Figure 11.7.

It is important to realize that the method presented here, if applicable to resolve
problems other than those related to the target threat evaluation, requires recon-
sideration since some of prior classes are specific. The class UNKNOWN is specific
because, apart from the fact that it is one of prior classes, it represents the ignorance
about the target.

The idea the of three-step measurements comes from the fact that in marine sys-
tems the most important is to firstly classify the target either FRIEND or HOSTILE.
The rest of the observations may be used to update the degree of evidence that the
target is a FRIEND or HOSTILE and to update the target classification accord-
ingly. That also may become the basis to create the following additional hypotheses:
JOKER, FAKER etc. Certainly, the following measurements may be treated as com-
pletely different sources of evidence and hence the DSmT fusion may be applied.
However, in this chapter, it is suggested to consider them related to the same source
of information and to utilize some extra knowledge about the definition of threat
values, described below. Omitting the first (sensor related) term, as assumed, hy-
potheses weights may be calculated as follows:

mi(θj) ≈ 1

ω(θj)
(11.6)

The weights ω should be calculated as follows:

ω(θj) = νT (θI) · ν(θI) (11.7)
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Figure 11.6: Calculating hypotheses weights using distance metric (steps I-III).

where

νT (F ) = [ΔθI(F ) ΔθII(F ) ΔθIII(F )] (11.8)

νT (H) = [ΔθI(H) ΔθII(H) ΔθIII(U)] (11.9)

νT (U) = [DHF ΔθII(U) ΔθIII(U)] (11.10)
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Figure 11.7: Relations among threat values (UNKNOWN is specific) where
Fk � FAKER, J � JOKER, S � SUSPECT and AF � ASSUMED FRIEND.

ν(F ∩ H) =

2

4

ΔθI(F )− ΔθI(H)
ΔθII(U)
ΔθIII(F )

3

5 (11.11)

ν(F ∩ U ∩ H) =

2

4

ΔθI(F ) − ΔθI(H)
ΔθII(H)− ΔθII(U)

ΔθIII(U) − ΔθIII(F )

3

5 (11.12)

ν(F ∩ U) =

2

4

ΔθI(F )
ΔθII(U)

ΔθIII(U) − ΔθIII(F )

3

5 (11.13)

ν(H ∩ U) =

2

4

ΔθI(H)
ΔθII(H)− ΔθII(U)

ΔθIII(U)

3

5 (11.14)

νT (F ∪H) = [DHF ΔθII(H) ΔθIII(F )] (11.15)

where ω(F ∩ H) is the weight of FAKER; ω(F ∩ U ∩ H) is the weight of JOKER;
ω(F ∩U) is the weight of ASSUMED FRIEND; ω(H ∩U) is the weight of SUSPECT
according to the translation rules described in the section and DHF is the distance
between distributions HOSTILE and FRIEND.

The weights, generally, consist of three terms which represent how much evidence,
retrieved based on every measurement step, is for a particular hypothesis (for exam-
ple: in equation (11.8) they are distances: ΔθI(F ) and ΔθIII(F )) or how much it is
against the contrary hypothesis (ΔθII(U) - for the same equation). However, when
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creating the hypotheses using ∩ operator, it is important to notice that the intersec-
tion of particular prior hypotheses changes the graphic interpretation to what extent
the evidence is for particular hypothesis. For example equation (11.12) shows that
JOKER is the most probable if in all three steps measurements will place somewhere
in the middle between distributions. Therefore, each term consists of distance differ-
ences, not just distances. It must be also mentioned that in equation (11.11) though
defined as F ∩ H the second term is ΔθII(U) not ΔθII(H). That results from the
fact that the target FAKER is always a friendly (for exercise purposes acting as HOS-
TILE). The high measurement of ‘how much HOSTILE it is’ does not really support
the hypothesis of FAKER.

11.4 Numerical experiments

The techniques described in previous sections have been subjected to series of numer-
ical experiments. This section presents details of the experiments and is followed by
the discussion of obtained results.

11.4.1 Assumptions

Target simulation:

• The target is described with the threat attribute value, which can be changed
by the user and a state vector;

• The target is assumed to be moving (with random or deterministic trajectories)
to simulate that it can reside in sensors’ diverse classification zones;

Sensor (of threat attribute):

• There are three types of sensors (radar, visual sighting and video camera) each
of which has different detection and classification parameters;

• All types of the sensors uses different ontology;

• It is possible to set sensor reliability parameter, sensor position

• Sensor performance is target state vector dependent, directly as described in
section 11.3.1.

• Sensor performance is modeled stochastically by using Gaussian distributions
with specified mean values and standard deviations to represent the measuring
noise.

Classifier:

• Classifier extends the set of prior hypotheses with some hypotheses created
based on prior hypotheses as described in section 11.3.3.
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• It is assumed to extend the hypotheses set with fixed predefined values (SUS-
PECT, FAKER, ASSUMED FRIEND);

Evaluator:

• Only the hypotheses related factor is assumed to be normalized (the source
related factor is assumed to be excluded from the normalization process);

• An additional class of PENDING is created with mass defined as follows:
m(P ) = 1–Fc, to complete bba;

• β is designed to compensate the prior hypotheses number in the source factor
with optimal hypotheses number;

• If the target exceeds the sensor detection range, this results in m(P ) = 1 and
zero for the rest of the values;

Global evaluator:

• It is assumed to utilize here only a priori information about local evaluators
(any information about the source quality and reliability should be used in
previous stages of evaluation;

11.4.2 Settings and other model information

Three-step measurement enables to identify targets described with the threat at-
tribute outside the sensor ontology. For example if the target is friendly and acts
as hostile, the evaluator will place the first step measurement somewhere in between
HOSTILE and FRIEND, the second step measurement close to UNKNOWN and the
third step measurement close to FRIEND which leads to assigning the FAKER with
the biggest mass value, even though, the value of FAKER is not present in the sensor
ontology.

Setting the proper value for a ‘beta’ coefficient is very important. In evaluation
model particular hypothesis mass is inversely proportional to the number of prior
hypotheses. It is due to the fact that diversity of prior hypotheses decreases possible
mass value assigned to a particular hypothesis. The value of three seems to be
perfect because the basic set consists of {FRIEND, HOSTILE, UNKNOWN}3 . This
optimal value may be transferred to beta to compensate the real (sensor originated)
hypotheses number. Ideally, when the hypotheses number is equal to the optimal
hypotheses number (beta), the source related factor depends on the source reliability
and the conditions factor only.

3 In some cases (radar equipped with IFF device, distinguishing only HOSTILE and
FRIEND) this number should be reduced to the value of two. This seems to be reasonable
since the UNKNOWN represents the ignorance thus it may be omitted.



Chapter 11: Attribute information evaluation in C&C systems 361

11.4.3 Results

In the first experiment the HOSTILE target track was generated randomly. The
threat attribute information evaluation was performed over twenty one samples. The
resulting trajectory is shown on Figure 11.8.

Figure 11.8: Randomly generated target trajectory. Attribute information
evaluation performed by a single source - Visual Sighting (VS). Target aspect
problem detected.

The figure 11.8 shows that the target was constantly within the sensor range, how-
ever some of the measurements have been better conditioned than others. Table 11.1
presents resulting bba calculated for each sample. It is immediately clear from Table
11.1 that in most of cases the bba was mainly distributed between the HOSTILE and
the PENDING. It is quite reasonable about the HOSTILE but the PENDING is not
so obvious. The reason why the PENDING got relatively high resides in coefficient β,
which has been set to three while the prior hypotheses number was five. In all cases
where PENDING mass was 0.68, measurements were perfectly conditioned (in terms
of Fc(t) function). Starting with 10-th sample PENDING mass began to rise which
was caused by the fact that the target passed the perfect classification condition zone
(the range condition began to get worse). In last two samples bba was completely
transferred to the PENDING which is by default when the target threat attribute
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evaluation is not possible. In these particular cases it was caused by the target aspect.
This phenomenon perfectly illustrates the problem described in section 11.2.

The next thing concerning the Table 11.1 is how the bba was distributed to the
rest of the hypotheses. It must be noticed that each time the FRIEND has the least
mass assigned while the SUSPECT was always the second high, after the HOSTILE
(excluding the PENDING). The abbreviations used in this tables are: HOS=hostile,
UNK=unknown, NEU=neutral, JOK=joker, FRD=friend, FAK=faker, SUS=suspect,
AFR=assumed friend and PEN=pending.

HOS UNK NEU JOK FRD FAK SUS AFR PEN
0.3027 0.0013 0.0004 0.0034 0.0008 0.0011 0.0093 0.0011 0.6800
0.3145 0.0004 0.0001 0.0010 0.0002 0.0003 0.0031 0.0003 0.6800
0.3119 0.0006 0.0002 0.0016 0.0004 0.0005 0.0041 0.0006 0.6800
0.3131 0.0004 0.0001 0.0012 0.0003 0.0004 0.0040 0.0004 0.6800
0.3066 0.0009 0.0002 0.0024 0.0006 0.0008 0.0077 0.0008 0.6800
0.3106 0.0007 0.0002 0.0017 0.0005 0.0006 0.0051 0.0006 0.6800
0.3001 0.0016 0.0005 0.0043 0.0011 0.0014 0.0095 0.0014 0.6800
0.2996 0.0013 0.0004 0.0033 0.0008 0.0011 0.0124 0.0011 0.6800
0.3178 0.0002 0.0000 0.0004 0.0001 0.0001 0.0012 0.0001 0.6800
0.3088 0.0005 0.0001 0.0014 0.0003 0.0005 0.0042 0.0005 0.6836
0.3060 0.0004 0.0001 0.0011 0.0003 0.0004 0.0032 0.0003 0.6882
0.2977 0.0007 0.0002 0.0017 0.0004 0.0006 0.0059 0.0006 0.6922
0.2860 0.0011 0.0003 0.0029 0.0007 0.0010 0.0109 0.0010 0.6961
0.2921 0.0005 0.0001 0.0014 0.0003 0.0004 0.0046 0.0004 0.7002
0.2937 0.0002 0.0000 0.0004 0.0001 0.0001 0.0012 0.0001 0.7041
0.2841 0.0006 0.0002 0.0017 0.0004 0.0005 0.0042 0.0005 0.7078
0.2754 0.0011 0.0003 0.0028 0.0007 0.0009 0.0066 0.0010 0.7112
0.2714 0.0009 0.0002 0.0024 0.0006 0.0008 0.0080 0.0008 0.7150
0.2455 0.0019 0.0005 0.0053 0.0012 0.0017 0.0227 0.0017 0.7196
0.2699 0.0004 0.0001 0.0010 0.0003 0.0003 0.0028 0.0004 0.7248
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 11.1: Bba calculated for each of 21 target track sample based on sensor
and hypotheses information. The real target is HOSTILE.

The second experiment was meant to show how to retrieve the information the
target is of any class, which does not reside in sensor ontology. The real threat
attribute value had been set to FRIEND but the measurement was disturbed in such
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a way so as to provide the uncertainty whether the target is HOSTILE or FRIEND
during first stage of measuring process. The obtained measurement numerical values
for a single sample have been depicted in Fig. 11.9.

Figure 11.9: The example of hypotheses weights calculation using the distance
metric (steps I-III).
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The first step measurement places in between the HOSTILE and the FRIEND
value, the second step measurement does not prove the hypothesis that the target is
HOSTILE and the third step clearly shows the target is FRIEND. Combining these
pieces of information it is reasonable to claim that the target is FAKER, which is
shown in the resulting Table 11.2.

Threat value Mass
HOSTILE(i.e HOS) 0.0007

UNKNOWN (i.e UNK) 0.0012
NEUTRAL (i.e NEU) 0.0028
JOKER (i.e JOK) 0.0028
FRIEND (i.e FRD) 0.0056
FAKER (i.e FAK) 0.5125

SUSPECT (i.e SUS) 0.0010
ASSUMED−FRIEND (i.e AFR) 0.0029

PENDING (i.e PEN) 0.4704

Table 11.2: Bba calculated for the chosen test sample.

The next experiment aimed at multi-sensor information evaluation. A FRIEND
track has been generated randomly starting between two sources: Visual Sighting
(VS) and Video Camera (VC). The resulting trajectory is depicted on Fig. 11.10. In
this particular case, applying two sources enabled to keep attribute information eval-
uation continuity. Table 11.3 presents the bba’s of the three chosen samples. JOKER
dashes for Video Camera (VC) means that it does not recognise the JOKER.

It must be emphasized that VS and VC compensate each other’s performances.
The reason why any of them could not make a measurement was the aspect problem.
It must be noticed that from the 18th up to 22nd sample, the critical aspect is for
the visual sighting despite the fact the target is closer to this very source.
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Figure 11.10: Randomly generated target trajectory. Attribute information
evaluation performed by two sources: Visual Sighting (o – symbol) and Video
Camera (square symbol).

Sample # 5 5 6 6 22 22
Source Type V S V C V S V C V S V C

HOS 0.0019 0 0.0014 0.0024 0 0.0017
UNK 0.0047 0 0.0040 0.0066 0 0.0049
NEU 0.0077 0 0.0038 0.0097 0 0.0064
JOK 0.0075 − 0.0062 − 0 −
FRD 0.2877 0 0.3045 0.3626 0 0.1463
FAK 0.0325 0 0.0206 0.0213 0 0.0126
SUS 0.0025 0 0.0019 0.0030 0 0.0022
AFR 0.0154 0 0.0176 0.0245 0 0.0166
PEN 0.6400 1 0.6400 0.5700 1 0.8093

Table 11.3: Bba’s calculated for chosen samples no. 5, 6 and 22 for Visual
Sighting (VS) and Video Camera (VC).
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The last experiment meant to check the evaluation model accuracy with determin-
istically generated target trajectory. The figures 11.11 and 11.12 show the evaluation
samples of this track.

Figure 11.11: Deterministically generated target trajectory. Attribute infor-
mation evaluation performed by three sources: Visual sighting (o – symbol),
Video camera (square symbol) and Radar (diamond symbol).

For a better visualization, the decluttering function has been applied (Fig. 11.12)
to spread samples originated from different sources. The figure 11.12 shows that
radar attribute evaluation measurements were constrained mainly by the azimuth
sector (light symbols), only the upper part of the track is visible (solid symbols).
Video camera performance was constrained both by the azimuth sector and the target
aspect (dark symbols), while visual sighting measurements were constrained only by
the target aspect.
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Figure 11.12: Deterministically generated target trajectory as in Fig. 11.11.
For better visualization, a decluttering function has been applied.

11.4.4 Discussion

It is worth discussing if a lack of sensor specification, expressed in terms of mass
should be transferred to the PENDING or to the UNKNOWN. The UNKNOWN
class generally describes the uncertainty of the hypotheses related part. Therefore,
the authors decided to transfer the lack of specification to the new class of PENDING,
which in terms of [4, 5] means ‘any of the rest of the classes’. A demanding reader
may raise a question concerning the ‘acceptance logic’, mentioned in the previous
subsection. Why does the target aspect factor act here in a binary manner? Within
the perfect classification zone ignores the aspect problem while just after exceeding
that zone it completely precludes the whole attribute information evaluation? The
answer is very simple: It is not the intention of this model to build as realistic logic as
possible. The importance of this evaluation model resides in the fact that calculated
masses, resulting from the sensor characteristics and the target motion parameters
may be described as reasonable (to be expected in real world). If, for example, the
evaluation model assigns the biggest mass to the FAKER it is very unlikely to find the
smallest mass assigned to the FRIEND because FAKER = FRIEND ∩ HOSTILE.
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11.5 Latest concepts

In our latest research works, we propose two alternative target threat models. The
first one is called an “Activity-oriented model” while the second is a “Threat-oriented
model. These two models are based on different definitions of the three stages of threat
measurement according to Table 11.4.

Threat Activity-oriented model Threat-oriented model

FRD

⎡
⎣ ΔθI(F )
ΔθII(U)
ΔθIII(F )

⎤
⎦

⎡
⎣ ΔθI(F )
ΔθII(U)
ΔθIII(F )

⎤
⎦

HOS

⎡
⎣ ΔθI(H)
ΔθII(H)
ΔθIII(U)

⎤
⎦

⎡
⎣ ΔθI(H)
ΔθII(H)
ΔθIII(U)

⎤
⎦

UNK

⎡
⎣ΔθI(H)−ΔθI(F )

ΔθII(U)
ΔθIII(U)

⎤
⎦

⎡
⎣ΔθI(H)−ΔθI(F )

ΔθII(U)
ΔθIII(U)

⎤
⎦

FAK

⎡
⎣ΔθI(F )−ΔθI(H)

ΔθII(H)
ΔθIII(F )

⎤
⎦

⎡
⎣ ΔθI(F )
ΔθII(H)
ΔθIII(U)

⎤
⎦

JOK

⎡
⎣ ΔθI(F )
ΔθII(H)−ΔθII(U)

ΔθIII(F )

⎤
⎦

⎡
⎣ ΔθI(F )
ΔθII(H)−ΔθII(U)

ΔθIII(U)

⎤
⎦

SUS

⎡
⎣ ΔθI(H)
ΔθII(H)−ΔθII(U)

ΔθIII(U)

⎤
⎦

⎡
⎣ ΔθI(H)
ΔθII(H)−ΔθII(U)

ΔθIII(U)

⎤
⎦

AFR

⎡
⎣ ΔθI(F )

ΔθII(U)
ΔθIII(U)−ΔθIII(F )

⎤
⎦
⎡
⎣ ΔθI(F )

ΔθII(U)
ΔθIII(U)−ΔθIII (F )

⎤
⎦

Table 11.4: Threat target models comparison.

Fig. 11.13 and Fig. 11.14 show threat relations in activity-oriented model and
threat-oriented model respectively. The activity-oriented model in the first measure-
ment stage resolves whether (according to observed target’s activity) the target seems
to be more like FRIEND or HOSTILE. In the following two next stages, the degrees
of belief of these two hypotheses are defined by the observation of the real target.
This means that the real target’s threat description resides in last two measurements
whereas the first one influences the possible training type (JOKER or FAKER).
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Figure 11.13: Activity-oriented model. Relations among threat values.

The threat-oriented model in the first measurement stage resolves the real threat
of the target. In the following two next stages, the degrees of belief (whether the
target acts as SUSPECT or HOSTILE) are defined according to the current target’s
activity. This means that the stage of measurement is the most important from the
military point of view due to the fact it clearly shows the real threat. According to
this model, JOKER and FAKER types are always described as FRIENDs. Therefore
this very model seems to be the most adequate for applicable military solutions.

Figure 11.14: Threat-oriented model. Relations among threat values.
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11.6 Conclusion

An evaluation of the attribute information plays a very important role in information
fusion systems. Among many possible attributes of maneuvering target the threat is
one of the most important. Many practical fusion problems proved that this kind of
information often happens to be even more important than the precise information
about the target position. However, to assess properly the attribute information, the
target state vector is necessary, as well as, a specific evaluation method.

Conflicting attribute information needs a reasonable bba calculating method if it
is meant to be fused according to DSmT. The research work described in this chapter
is a part of extensive works devoted to sensor networks in a NEC environment.

In the near future it is planned to extend the presented evaluation model from
the navigation point of view, as well as, from the mathematics (concentrating on
attribute-oriented model4) and additionally to provide a tool for assessing different
attributes (other than the threat) of maneuvering targets.
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Abstract: This chapter describes how the conflict encountered by
the PCR6 rule can be utilized in sensor management. We there-
fore discuss the classification model that is used in the fusion prob-
lem and two different types of conflict. To enable operators to exert
constraints on singletons we propose a (slightly) altered PCR6 rule,
dubbed PCR6a. We show how the algorithm works and we illus-
trate how the amount of conflict can be used for sensor management
and/or for operator feedback by using an example.
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12.1 Introduction

In recent decennia, a need has occured to develop support functionalities for obtaining
and maintaining situation awareness within the combat management system aboard
the frigates of the Royal Netherlands Navy. This is due to three factors. Firstly,
because the missions have become more complex in several ways. The mission goals
are more diverse and the political climate in which these goals need to be met, are
more complex compared to the Cold War period. The geographical location where
the mission is executed, has shifted to the littoral, which means the meteorological
conditions can change rapidly and there is much presence of civilian traffic. The latter
makes missions more complex because the threat has shifted from military forces to
asymetrical threats.

Secondly, much more complex and modern sensor systems, like multifunction
radar and optical sensor with staring 360 degrees capabilities, are being placed aboard
the Dutch frigates. This means that deploying these sensors and combining their
information is a difficult and highly knowledge intensive task. Especially in the
littoral environment, choosing the right sensor for the right task at the right time,
given the meteorological conditions, is quite difficult.

Finally, budget cuts have led to reduced training and education time as well
as a tendancy for a reduction in ships’ complement. This means that the readily
available knowledge aboard our frigates is decreasing. This discrepancy between
required and available knowledge requires more support from the CMS for gathering
and combining sensor information and for sensor management. Work has already
been done in the field of automatic classification and how different classifier opinions
can be combined, [3, 6]. This chapter describes how the results from the PCR6 rule
of combination within the Dezert-Smarandache theory (DSmT) can be used as a
feedback mechanism for automated sensor management.

Section 12.2 revisits the general rule of combination from DSmT, [8], and the
PCR6 rule described by Martin and Oswald in [4]. Section 12.3 describes how clas-
sification and sensor management are related within Command and Control. Fur-
thermore, it discusses the classification space within the military domain and shortly
discusses the required interaction with the operator. Section 12.4 introduces how the
conflict can be utilized within the PCR6 algorithm. The way this conflict can be used
as a feedback to sensor management is discussed in section 12.5. Finally, section 12.6
closes with conclusions and future work.

12.2 Combination rules

Within the DSmT framework, the generalized basic belief that is assigned1 by k dif-
ferent and independent sources or experts — E1, E2, . . . , Ek — can be combined using
equation (12.1). This equation holds ∀X ∈ DΘ and X /∈ Ø, where DΘ denotes the
hyper power set of Θ, the belief of each expert Ei with i = [1, 2, . . . , k] is denoted

1This is called a generalized belief assignment, or just a gbba for short.
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mi(X) and Ø denotes the classical empty set. Since this classic rule of combination
only assumes exhaustiveness within the frame of discernment, Θ = {θ1, θ2, . . . , θn},
other rules of combination have been proposed to redistribute the conflict that might
occur for applications in real fusion problems [9]. One of those rules is the PCR6 rule
proposed by Martin and Oswald in [4] and is given in equation (12.2) for ∀X ∈ DΘ

and X /∈ ØM, where ØM denotes both the classical empty set and the set containing
all elements from DΘ that are constrained by fusion model M. In equation (12.2),
Fi is defined by equation (12.3). In equation (12.3) properties for the summation are
given by equation (12.4) and equation (12.5).

In equation (12.3–12.5), ϕ(i) denotes a function that ensures that i is skipped in
a summation and is given by equation (12.6). In [4] this function is denoted σi. We
use a different notation to prevent notational confusion for the classifiers that assume
Gaussian distributions where σi denotes the standard deviation in variable i given
some measurements. In [4], algorithm 3 gives the implementation of the PCR6 rule.

mf
c (X) =

X

Y1,Y2,...,Yk∈DΘ

Y1∩Y2∩...∩Yk=X

k
Y

i=1

mi(Yi) (12.1)

mPCR6
c (X) = mf

c (X) +
k
X

i=1

Fi · mi(X)2 (12.2)

Fi =
X

P1
P2

Qk−1
l=1 mϕi(l)(Yϕi(l))

mi(X) +
Pk−1

l=1 mϕi(l)(Yϕi(l))
(12.3)

P1 :

k−1
[

j=1

Yϕi(j) ∩X ∈ ØM (12.4)

P2 : (Yϕi(1), Yϕi(2), . . . , Yϕi(k−1)) ∈ (DΘ)k−1 (12.5)

ϕi(l) →
j

ϕi(l) = l if l < i
ϕi(l) = l + 1 if l ≥ i

(12.6)

12.3 Classification and sensor management

This chapter discusses how the conflict in combining classification solutions can be
utilized in sensor management. Before modeling the classification model itself and
how solutions are combined, this section will first briefly discuss how this may improve
automated sensor management performance.
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12.3.1 Sensor management

Optimally deploying a total sensor suite requires knowledge about:

• the meteorological and oceanographical conditions;

• the geographical location;

• the available sensor systems and their specifications; and

• the (expected) target characteristics.

The use of the target characteristics is e.g. discussed by Bar-Shalom in [1]. Further-
more, we know that prioritizing sensor functions can be done using risk, as proposed
in [2]. This notion of risk requires characteristics of possible objects in the environ-
ment. Obtaining a good classification solution is therefore important to execute the
process of sensor management.

On the other hand, the classification process itself has a certain need for informa-
tion provided by the available sensor systems. In order to achieve good classification
solutions, the sensor(s) need to be deployed as optimal as possible. This research
therefore focuses on the information requirements of the classification process. In
order to do this, we need to describe the classification model.

12.3.2 Modeling the classification space

In general, the possible solutions for classification are given by a so-called classifi-
cation tree, [5, 7]. The drawback of using such trees is that the branching order is
fixed. Describing the different classes as sets at different levels of specificity provides
more flexibility in reducing the search space [6]. In the case of classification in the
maritime military environment, we define three different levels of specificity. At the
lowest specificity level we define the set of super classe, S = {ϑ1, ϑ2, . . . , ϑs} to con-
tain s exhaustive elements. In this set the different domains are represented: air,
surface, subsurface, land and sea respectively, therefore s = 5 holds.

At the medium specificity level we define generic classes, G = {γ1, γ2, . . . , γg}
with g mutually exclusive and exhaustive elements. At the final level we define the
specific classes, C = {ς1, ς2, . . . , ςc}, with c mutually exclusive and exhaustive ele-
ments. Joined, these three sets define the frame of discernment for classification,
Θ = S � G � C. We define the operator � in a way that when A = {α1, . . . , αa} and
B = {β1, . . . , βb} are joined then A � B = {α1, . . . , αa, β1, . . . , βb}.

Throughout this work we assume an example frame of discernment and three
classifiers that assign generalized belief, given by tables 12.1–12.3. In these tables,
Hh with h = [1, 2, . . . , (s + g + c)] is used to denote elements from the frame of
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discernment Θ. Also, when set A = {α1, . . . , αa} holds, we define bA as:

bA =
a
[

i=1

αi.

H ϑ1 ϑ2 ϑ3 ϑ4 ϑ5

Name Air Surface Subsurface Land Sea
m1(H) 0.15 0.1 0 0.01 0.04
m2(H) 0.13 0.12 0.005 0.02 0.025
m3(H) 0.4 0.4 0.2 0 0

Table 12.1: Super classes in the database with their gbba’s.

H Name m1(H) m2(H) H Name m1(H) m2(H)
γ1 Helo 0.25 0.175 γ4 Frigate 0.041 0.1
γ2 Fighter 0.002 0.002 γ5 Tank 0.005 0.01
γ3 Submarine 0 0.01 γ6 Airliner 0.002 0.003

Table 12.2: Generic classes in the database with their gbba’s.

H Name m1(H) m2(H) H Name m1(H) m2(H)
ς1 Seahawk 0.15 0.075 ς6 Apache 0.15 0.075
ς2 F-16 0.005 0.01 ς7 M-frigate 0.04 0.0075
ς3 Walrus 0 0.02 ς8 Kilo sub 0 0.002
ς4 7 Provinciën 0.036 0.075 ς9 F-14 Tomcat 0.005 0.02
ς5 Leopard II 0.009 0.01 ς10 Boeing 747 0.005 0.02

Table 12.3: Specific classes in the database with their gbba’s.

12.3.3 Intersection between elements

The set-up of the classification model with three specificity levels immediately im-
poses that not all elements in the frame of discernment are mutually exclusive. This,
of course, fits well within the DSmT framework. Each element at the most specific
level has a parent at a higher level. E.g., the Seahawk and the Apache in table 12.3
are children of the generic class Helicopter. In turn, the helicopter belongs to the air
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domain, ς1∪ ς6 ⊆ γ1 ⊆ ϑ1, where a ⊆ b is used to denote that a is a subproposition of
b which holds if and only if a ∩ b = a. Due to the helicopter’s low-flight capabilities,
it can also belong to the surface domain, γ1 ⊆ (ϑ1 ∩ ϑ2) . Similar reasoning can
be done for all elements at the three specificity levels. From this example, we can
already say that elements in S are not all mutually exclusive. For set S we know
that ϑ1 ∩ ϑ2 /∈ ØM, ϑ1 ∩ ϑ4 /∈ ØM, ϑ1 ∩ ϑ5 /∈ ØM and that ϑ3 ∩ ϑ5 /∈ ØM holds.
Furthermore, we know that (ϑ4 ∪ ϑ5) ∩ ϑ2 = (ϑ4 ∪ ϑ5) and bC ⊂ bG ⊂ bS hold in the
classification solution space.

For the intersections between elements of S and set G we can say that the following
equalities hold: ϑ1 ∩ bG = {γ1, γ2, γ6}, ϑ2 ∩ bG = {γ1, γ3, γ4, γ5}, ϑ3 ∩ bG = {γ3},
ϑ4 ∩ bG = {γ5} and ϑ5 ∩ bG = {γ3, γ4}. Furthermore, we can say that the following
equalities also hold for the intersections of elements from G intersected with elements
from C: γ1 ∩ bC = {ς1, ς6}, γ2 ∩ bC = {ς2, ς9}, γ3 ∩ bC = {ς3, ς8}, γ4 ∩ bC = {ς4, ς7},
γ5 ∩ bC = {ς5} and γ6 ∩ bC = {ς10}.

12.3.4 Interaction with the user

In [3] it was already stated how classifier belief can be combined using the PCR6
rule. Here, we expand the usage of PCR6 by having the user — or operator — as an
additional information source. This user-influence can be exerted in two ways:

1. the operator is an information source and

2. the operator can place additional constraints.

Figure 12.1 depicts the resulting system architecture to achieve the required user in-
teraction. The main difference between the user-imposed constraints (denoted ØU )
and the model constraints is that in ØU singletons can occur as opposed to combina-
tions of elements from DΘ that occur in ØM: ØM∩ bΘ ∈ Ø whereas ØU ∩ bΘ /∈ Ø. This
means that the PCR6 rule needs to be adapted slightly to cope with this, section 12.4
describes how this is done. In [10] the Belief Conditioning Rules (BCR) were intro-
duced to perform simular operations. Here however, we use the known structure of
the frame of discernment to transfer belief. This has the advantage that we do not
need to compute the subsets D1, D2 and D3, where Θ\Ø = D1 ∪D2 ∪D3, where b\a
denotes all elements in b that are not in a. The approach mentioned in this chapter
can therefore be seen as a specific BCR rule (somewhat similar to BCR17) where the
construction of the subsets of Θ is not required since they are already given in the
structure of the classification solution space.

Another difference is that the belief conditioning rules are used to indicate where
belief should be held and that the methodology presented here indicates where belief
should not be held. In other words: the operator indicates that what is absolutely
not possible given the circumstances. Belief on what can be true is added into the
fusion algorithm as just another source. This is done to keep options open as much
as possible, following the operational credo: expect the unexpected !
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Figure 12.1: System Architecture where the user interacts with the system.

12.4 Conflict

Where belief from different sources is combined, chances are that conflict occurs.
This conflict can be utilized in various ways. Firstly, we can look at which of the
sources is responsible for most of this conflict. This could indicate that a particular
source is malfunctioning. Also, in the case of automated classifiers it could indicate
that an object is behaving unexpectedly, an important discovery when dealing with
asymmetrical threats. By allowing the user to constrain elements from the frame of
discernment, more conflict is introduced. This section describes how the conflict can
be tracked within the PCR6 combination rule.

12.4.1 Tracking conflict in PCR6

In order to take the user-imposed constraints into account we say that equation (12.2)
holds ∀X ∈ DΘ\(ØU ∪ ØM). Furthermore, the property P1 of the summation in
equation (12.4) is changed to equation (12.7). This adaptation ensures that all con-
straints are taken into account during combination. Now, suppose an operator indi-
cates that the object under consideration does not belong to the subsurface domain
ØU = {ϑ3, γ3, ς3, ς8}. Combining the three sources while taking the user-imposed
constraints into account produces the combined gbba’s in figure 12.2. However, there
is a drawback to this approach. Not all conflict is redistributed due to the fact that
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singletons are being constrained, a situation that is usually not taken into account
in applications of PCR6. This is illustrated by the fact that the assignments from
figure 12.2 sum up to 0.756.

P1 →
k−1
[

j=1

Yϕi(j) ∩X ∈ (ØM ∪ØU ) (12.7)

This does however give us a measure of the conflict, namely 0.244, that is produced
by the user constraints. Within the PCR6 algorithm we can track the total conflict
from both the model constraints and the user-imposed constraints. Tracking the total
conflict — that is conflict from both ØU and ØM — to the responsible sources for
this conflict, CEi , produces table 12.4.

Source, i 1 2 3 total
CEi(.) 0.0777 0.0564 0.2514 0.3855

Table 12.4: Conflict produced by each source.

Figure 12.2: Combined generalised belief assignments.

In table 12.4 we see that source three is responsible for a great deal of conflict: an
expected result looking at tables 12.1–12.3. However, the total output does not sum
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up to 1, which is an undesired result. We therefore use a modified PCR6 rule, denoted
mPCR6a

c that is given by equation (12.8), ∀X ∈ DΘ\(ØM ∪ØU ). In equation (12.8),
equations (12.9) and (12.10) hold. In order to keep track of the conflict on each
individual element in ØU , we define equation (12.11) which holds ∀X ∈ (ØU ∩DΘ).
Within equation 12.11, equations (12.12) and (12.13) are defined. The adaptations
on PCR6 proposed here, lead to the algorithm in appendix. In this algorithm the
function call Intersect is used. This function is based on section 12.3.3.

mPCR6a
c (X) = mf

c (X) +

k
X

i=1

Qi ·mi(X)2 (12.8)

Qi =
X

P3
P2

Qk−1
l=1 mσi(l)(Yσi(l))

mi(X) +
Pk−1

l=1 mσi(l)(Yσi(l))
(12.9)

P3 →
k−1
[

j=1

Yϕi(j) ∩X ∈ (ØM\ØU ) (12.10)

CH(X) = mf
c (X) +

k
X

i=1

Ti ·mi(X)2 (12.11)

Ti =
X

P4
P2

 

Qk−1
l=1 mϕi(l)(Yϕi(l))

mi(X) +
Pk−1

l=1 mϕi(l)(Yϕi(l))

!

(12.12)

P4 →
k−1
[

j=1

Yϕi(j) ∩X ∈ ØU (12.13)

12.4.2 Redistribution of remaining conflict

For the redistribution of conflict introduced by the assumed model M, we use the
adapted PCR6a rule. Since,

X

∀X∈DΘ\(ØU∪ØM)

mPCR6a

c (X) �= 1

holds, we want to distribute the masses in CH to the masses on mPCR6a

c to obtain
mPCR6distr

c ,

mPCR6distr
c = ReDistribute(mPCR6a

c , CH, ØU).

Due to the fact that

X

∀X∈DΘ\ØM

(mPCR6a

c (X) + CH(X)) = 1
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holds, the quantity will sum up to 1 after this operation while maintaining the insights
in the conflict produced by ∅U and ∅M. The distribution of masses from CH is done
based on the same priniciples as the general PCR rules. That means that masses are
distributed to related elements as much as possible. Therefore, when a element with
high specificity is constrained, its gbba is distributed to its parent at the next level
since that element was involved in calculating mf

c (X), equation (12.1). A problem
occurs when elements at the lowest specificity level are constrained since they have no
parent to distribute the mass to. This is solved by looking at the possible intersections
of elements in set S .

from to
ϑ1 ϑ2, ϑ4, ϑ5

ϑ2 ϑ1, ϑ3

ϑ3 ϑ2, ϑ5

ϑ4 ϑ2

ϑ5 ϑ2, ϑ3

Table 12.5: Distributing masses at the highest hierarchical level.

Table 12.5 shows how these transfers should be handled when using this approach.
Only when these distributions are no longer possible, are masses distributed to the
other non-constrained elements. We already mentioned that masses are distributed
based on the principles of PCR, all transfers are therefore done proportionally. Let
us look at the example given in tables 12.1–12.3 and place a user constraint on all
elements of the air domain, note that this also means all underlying children in sets G
and C. When combining the sources using equation (12.8) and distributing CH using
the aforementioned method figure 12.3 is produced.

These results are not very intuitive and a change in transferral methodology is
required. We expand the distribution scheme in order to transfer masses to other
elements on the same specificity levels. To do this, a distribution tree is built based
on ∅U to transfer masses from elements in C to other elements in C according to
its parents and table 12.5, this produces figure 12.4, which corresponds to a more
intuitive result.

Since the elements to which the mass is transferred to is not directly involved
in the original conflict, one could argue that within this redistribution scheme the
transfers do not need to be proportional.
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Figure 12.3: Results for PCR6a after a redistribution of conflict from ØU when
conflict goes to parent elements.

Figure 12.4: Results for PCR6a after a proportional redistribution of conflict
from ØU .
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Figure 12.5: Results for PCR6a after unproportional redistribution of conflict
from ØU .

Figure 12.5 shows the results when masses are not transferred proportionally.
The difference with figure 12.4 is the relative difference between the masses assigned
to elements is maintained better when transferring proportionally. In figure 12.6
we see the results from the different steps combined, first we see the results when
equation (12.1) is used, then the results from PCR6a and finally the results of the
PCR6a after proportionally redistributing masses from CH.

12.5 Utilizing the conflict in sensor management

In previous sections we have seen how belief on classification solutions from different
sources can be combined and how user-imposed constraints on singletons can be taken
into account with a slightly altered PCR6 algorithm. The question of course is: why
do we want to track the conflict?

In essence the answer is simple, once we know where conflict is introduced we can
try to reduce it. In this section we will first discuss tracking the conflict per source
or expert and we will follow up with the conflict traced back to elements in ∅U .

12.5.1 Conflict per source

Where belief from different sources is combined, conflict occurs. Combined belief is
obtained by proportionally redistributing these conflict using by the PCR6a rule. By
tracking the conflicting masses that need to be redistributed, we can say which of the
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Figure 12.6: Results for unconstrained PCR6 (black), constrained PCR6a

(gray) and after redistribution of conflict from ØU (white).

sources is responsible for an amount of conflict. When one specific source produces
the most conflict this could indicate that:

1. a sensor system that provides information to that source is degraded;

2. the classifier is malfunctioning or ill-trained;

3. the object under consideration is behaving unexpectedly.

Tracking the conflict does not answer the question as to which one of these three
is the case, but it gives a trigger to take actions to find out. Especially the case
when the classification solution is visually confirmed and all sensors are performing
correctly is operational important. Section 12.1 already mentioned the amount of
civil traffic in the current mission environments. When the conflict based on a subset
of attributes indicates that one of those objects is behaving strangely, this is valuable
in situations where asymetrical threats are expected.

Another option for a large conflicts between different sources occurs when a lot
of uncertainty resides in the sensor measurements. By looking at the source that
produces most conflicting information and combining that with the knowledge about
the source, namely the attributes it uses to find solutions, we know which types of
sensor measurements are required to reduce the conflict between sources, which in
turn improves the combined classification solution.
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12.5.2 Conflict per hypotheses

When the operator imposes constraints, ØU /∈ Ø, the conflict that each of these
constraints introduces can be tracked. When combined with a machine learning algo-
rithm, this conflict can be used to do some online training of automated classification
algorithms to have them adapt to the current situation. On the other hand, it can
be used to train personnel aboard during transit to the mission area. In order to
find out whether the system was mistaken or if the user was mistaken, sensor func-
tions can be requested to reduce the conflict on each of the elements in ØU . If the
newly obtained sensor measurements confirm the combined belief of the sources (the
conflict increases) the operator can be alerted to further investigate this conflict and
then remove the constraint for instance. When the operator is certain about the con-
straint, the conflict on the specific hypothesis can indicate a malfunctioning sensor
or ill-trained classifiers although this is not very probable if the sources do not have
much conflict amongst themselves. The most likely option then is an object that is
behaving very unexpectedly.

12.6 Conclusions

This papes shows that it is possible to combine the information of different automated
classifiers using the PCR6 rule of combination. By introducing an addition to the
PCR6 rule we show that constraints on singletons can be taken into account. By
tracking the conflict during the execution of the PCR6, the sources of the conflict can
be identified. Furthermore, the quantity of the conflict can be utilised in automated
sensor management and provides valuable feedback to the operator.

Future work is to implement more accurate sensor models and objects in order
to validate this methodology in more realistic scenarios. After this validation it will
be implemented in an actual combat management system in order to further test the
system with real operators. In this stage a comparison is planned to validate the
improved performance of our system compared to the systems currently in use.
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Appendix

The PCR6 algorithm with embedded conflict tracking and that enables constraints
on singletons.

Data : k experts ex: ex[i], ... , ex[n]

: User-imposed constraints UC

Results : Fusion of ex by PCR6, ep

: Conflict on each hypothesis, CH

: Conflict per expert, CE

for i = 1 to k do
foreach c in ex[i] do append c to cl[i];

foreach ind in [1,size(cl[1])] x . . . x [size(cl[k])] do
[c,u] ← Intersect (s, ind);
if s ≡ Ø then
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lconf ← 1; sum ← 0;
for i=1 to k do
lconf ← lconf * ex[i](cl[i][ind[i]]);
sum ← sum + ex[i](cl[i][ind[i]]);

for i=1 to k do
if u ∩UC ≡ Ø then
ep(ex[i][ind[i]]) ← ep(ex[i][ind[i]]) +
ex[i](cl[i][ind[i]]) * lconf/sum;

if u �= Ø then
CE(i) ← CE(i) + ex[i](cl[i][ind[i]]) * lconf/sum;

endif
else
CH(u) ← CH(u) + (ex[i](cl[i][ind[i]] * lconf/sum)/size(u);

endif
else
lconf ← 1;
for i = 1 to k do
lconf ← lconf * ex[i](cl[i][ind[i]]);
ep(s) ← ep(s) + lconf;

endif
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Abstract: In this chapter, we propose an approach for assigning
an interest level to the goals of a planetary rover. Assigning an in-
terest level to goals, allows the rover to autonomously transform and
reallocate the goals. The interest level is defined by data-fusing pay-
load and navigation information. The fusion yields an interest map,
that quantifies the level of interest of each area around the rover. In
this way the planner can choose the most interesting scientific objec-
tives to be analyzed, with limited human intervention, and reallocates
its goals autonomously. The Dezert-Smarandache Theory of Plausi-
ble and Paradoxical Reasoning was used for information fusion: this
theory allows dealing with vague and conflicting data. In particular,
it allows us to directly model the behavior of the scientists that have
to evaluate the relevance of a particular set of goals. This chapter
shows an application of the proposed approach to the generation of
a reliable interest map.
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13.1 Introduction

Based on the experience gathered with past Mars robotic missions, a number of future
space missions envisage the use of robots for the exploration of distant planets [1]. All
of them have strong scientific requirements but the poor knowledge of the environment
where the robots will operate, makes the definition of specific goals dependent on
contingent events and observations. If the allocation the goals is performed entirely
on the ground, the robot will have to wait for new instructions every time a new,
unforeseen event occurs or a new set of scientific data is available.

Therefore, it would be desirable to have an autonomous system able to make deci-
sions not only on how to reach a given set of goals, but also on which mission goals to
select. Furthermore, the persistency of a mission goal may lead the system to repeat-
edly re-plan in order to meet the goal though the goal is unreachable or has lost its
original importance. Goal transformation or goal reallocation is an important feature
required in dynamic and rapidly changing environments but can become extremely
important also in poorly known environments or when exploration and discovery are
the main drivers of a mission [9]. For example, assume that, for a mission to Mars,
a set of observations from space is used to define a set of goals for a planetary rover.
During the mission, however, the rover may find that the goals are unreachable (e.g.
if the goal was to collect a sample of a specific rock, the rock could be unreachable) or
not interesting anymore (e.g. a different rock may display more interesting features).
Then, the ground control team, together with the scientific community, would have
to decide what to do. While the ground control team is devising a new plan and
a new set of goals the rover would remain idle waiting for instructions. In order to
avoid this waiting time, the idea is to adjust mission goals of the planner in addition
to the adjustment of the plans themselves. Previous works on goal transformation
addressed terrestrial or military applications [9, 13], and did not include the scientific
data coming from the payload in the reallocation process.

In this work, we propose the autonomous generation or reallocation of given
mission goals in order to maximize mission return. The aim is to have the most
rewarding sequence of goals or the addition, deletion, modification of goals depending
on contingent events or discoveries. Payload information is integrated in the planning
process in order to make the rover mimicking the behavior of scientists. Goals are
generated, modified or reallocated in order to maximize the overall scientific return of
the mission. A family of plans is then generated for each set of ordered goals and the
most reliable feasible plan of the most interesting set of goals is executed. Reliability
is taken into account, together with interest, in the process of choosing the plan to be
executed [15]. The planner and the goal transformation algorithm are part of a multi-
layer autonomous system called Wisdom. The Wisdom system is a non-deterministic,
deliberative-reactive system for rover autonomy in harsh, unknown environments.
The system was developed and implemented on a six wheeled prototype rover (named
Nausicaa) at Politecnico di Milano, as part of a study, supported by the European
Space Agency, for the development of advanced systems for space autonomy [11].
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In this chapter, we present specifically the approach used in Wisdom to generate
an interest value through the data fusion of navigation and payload data for an
autonomous planetary rover. The definition of an interest value avoids wild goal
sequences for which only an empty set of actions is feasible (a plan with no steps),
since only goals that are interesting for the mission can be generated or transformed.
In Wisdom, goals are extracted from a pool of high level conceptual directives and are
organized into a sequence by using the STRIPS paradigm for planning [12]. Briefly,
goals are distributed in a logical sequence from an initial goal to a final one with
preconditions and post-conditions, but are not scheduled unless the time is explicitly
part of a goal (e.g. reach a given location in a given time). The sequence can be
adjusted during execution and is qualified according to the total level of interest of
all the goals. The definition of a pool of high level directives limits the set of goals
to those for which the autonomous system was designed but avoids the persistency
of unreachable goals.

Previous attempts to model vague concepts such as interest or curiosity for au-
tonomous agents can be found in the work of Schmidhuber [6], who proposed the use
of a co-evolutionary algorithm to evolve curiosity in an artificial intelligence system.
In this case, however, there is no specific use of instruments or any mission-specific
measurements or data to support the decision-making process. Instead, in this chap-
ter, a full exploitation of scientific data is proposed in order to build an interest map
of the surroundings. Pieces of scientific data from different sources are fused with
navigation one to yield a single value for each point on the map. The map, then,
evolves during the mission depending on the available observations.

In general terms, data fusion is the use of independent and/or redundant ancillary
data from various sources to improve the data already available. Wald formally
defined data fusion as: “A formal framework in which are expressed the means and
tools for the alliance of data originating from different sources. It aims at obtaining
information of greater quality” [14]. Here we understand data fusion as a way to
combined information from different sources in order to obtain a single unambiguous
value, useful to make decisions on the interest of a particular set of goals.

The combination of scientific and navigation data requires the fusion of pieces of
information coming from physically different sensors. Each sensor measures a different
parameter, has its own characteristics, reliability and uncertainty on measurements.
Moreover, if each instrument is interpreted as a scientist expressing an opinion, we
can associate to each data set an interest level with associated uncertainty. This
would mimic the process performed on ground when a new set of scientific data is
available. The data fusion process is then required to collect all the different pieces
of information, with associated uncertainty, and combine them together [2].

In order to fuse data from the sensors and find the most interesting areas of
the surrounding environment, the Dezert-Smarandache theory of plausible and para-
doxical reasoning [4] was used. This theory has been successfully applied to many
engineering problems, like the estimation of behavior tendencies of a target [10], or
the prediction of the land cover change [3]. In those works, it was proven that this
modern theory overcomes the limitations of both fuzzy logic and evidence theory.
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The main advantage of the paradoxical reasoning is that it allows dealing simulta-
neously with uncertain and paradoxical data from different, providing a solution even
in the case of conflicting information. A conflict leads to a non-decidable situation
that would put the rover into idle mode, waiting for instructions. The conflict could
arise when different sources (different instruments) are assigning opposite interest
values to the same area or when the navigation expert suggests avoiding an area that
has a high level of interest. Conflicts on the ground would be resolved through a
discussion among the scientists and the mission control team, leading to a new set
of goals. An autonomous resolution of conflicts by the rover, would reduce the time
spent to wait for instructions from the ground station.

In this chapter, after a brief introduction to the theory of Plausible and Para-
doxical Reasoning, the application to modeling interest for the Wisdom system is
explained. The way of modeling interest fusing information from different sensors is
described, and an application to a synthetic environment is shown. At the end, we
will present a brief discussion about the possible use of Dempster-Shafer theory for
the assignment of an interest. It should be noted that the key point of this work is
not to propose a new theory of information fusion or to present the advantages of
one theory over another. The key point is to propose an innovative way to assign
a value of interest to mission goals for a planetary rover so that the goals can be
autonomously adapted to contingent mission events.

13.2 Plausible and paradoxical reasoning

The theory of plausible and paradoxical reasoning (or Dezert-Smarandache theory,
DSmT [4]) is a generalization of the Dempster-Shafer evidence theory [7], which is
in turn a generalization of the classical probability. The foundation of the DSmT is
to abandon the rigid models of the previous theories, because for some fusion prob-
lems it is impossible to define or characterize the problem in terms of well-defined
and precise and exclusive elements. Given an experiment, the frame of discernment
Θ = {θ1, θ2, ..., θn} is the set of all possible events. The model on which the DSmT
is based allows dealing with imprecise (or vague) notions and concepts between ele-
ments θi of the frame of discernment Θ. The DSmT includes the possibility to deal
with evidences arising from different sources of information which do not have access
to absolute interpretation of the elements θi under consideration. This means that
some events may also be overlapped and/or not well defined.

If Θ is the frame of discernment, we can define the space DΘ, called hyper-power
set [5], as follows:

1. ∅, θ1, ..., θn ∈ DΘ;

2. ∀A, B ∈ DΘ, (A ∪B) ∈ DΘ, (A ∩B) ∈ DΘ;

3. No other elements belong to DΘ, except those obtained by using rules 1 and 2.
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Once DΘ is defined, we can apply the map m(.) : DΘ −→ [0, 1], called general
basic belief assignment, or gbba [4], or belief mass, such that:

m(∅) = 0,
X

A∈DΘ

m(A) = 1. (13.1)

A set of gbba’s defined on DΘ referred to the frame of discernment Θ, is called
evidence. This approach allows us to model any source that supports paradoxical (or
intrinsically conflicting) information. The theory of Dezert-Smarandache defines a
rule of combination for intrinsically conflicting and/or uncertain independent sources.
If two experts give their opinions in terms of bodies of evidence m1 and m2, their
combination is given by:

m12(A) =
X

B,C∈DΘ

B∩C=A

m1(B)m2(C),∀A ∈ DΘ. (13.2)

Note that this rule is commutative and associative and requires no normalization
procedure. Moreover, it can manage the paradoxical information without any other
assumption, thus overtaking some limitations of other probability theories - like the
evidence theory - in which the frame of discernment shall be based on a set of ex-
haustive and exclusive elements. All the pieces of evidence in (13.2) are then used to
give two uncertainty values, the belief and the plausibility:

Bel(A) =
X

B∈DΘ|B⊆A

m(B);

P l(A) =
X

B∈DΘ|B∩A
=∅
m(B).

(13.3)

The belief of an event A is the sum of all the propositions that totally agree with
event A, while plausibility sums up all the propositions that agree with A totally or
partially. An estimation through classical probability theory would fall in the interval
defined by the values of belief and plausibility.

13.3 Modeling interest for a planetary rover

The high level of autonomy required to a planetary rover demands for the ability
to choose the mission goals, without human intervention, once high level mission
objectives are defined, in order to maximize the scientific return of the mission. These
objectives, such as “look for water”or “look for traces of life”, do not identify exactly
where to go and which experiments to perform. The rover should be able to uniquely
define what is interesting, by means of the information gathered during the mission,
and make decisions without waiting for instructions from the ground station. The
collected pieces of information can be incomplete and uncertain. In particular, the
Wisdom system uses different sensors to obtain the pieces of evidence required to
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make a decision. Each instrument plays the role of a scientist or of a ground control
specialist. DSmT is used to model the following situation: each scientist (or specialist)
expresses an opinion on the interest of a given object or portion of the surrounding
area; the scientist admits no uncertainty but the one that comes from the instruments.
On the other hand, every scientist leaves some margin for discussion, accepting the
existence of opposite opinions.

13.3.1 Modeling of sensor information

Nausicaa, the rover used to test the Wisdom system, is equipped with an infrared
camera (the scientific payload) and two optical navigation cameras that give a stere-
ographic view of the surrounding environment (the navigation module). The optical
stereo images are used to generate an elevation map of the ground, called Digital
Elevation Map or DEM. The DEM is a matrix containing the height of the corre-
sponding point on the ground. The DEM can be a partial reconstruction of the
surroundings. Some parts of the terrain may not be in sight, because hidden by other
parts (e.g. rocks or hills), and thus it is not possible to have any information about
them. Furthermore, the algorithm can fail to determine the height of some points,
especially if the image quality is poor. For these reasons, a second matrix is stored
together with the DEM: it contains the uncertainty on the elevation of each point
in the DEM. Values are between 0 and 1, where the former means total certainty
on the elevation. Besides giving information on the elevation of the ground, optical
images provide information on the texture of objects and surfaces. A texture map
is then created by associating to each point in view an integer value identifying a
specific material. Since this information might not be accurate or the image could be
poor, a map of uncertainty is associated to the texture map. The payload mounted
on Nausicaa generates a thermal map of the environment. This map is analogous to
the DEM, but contains the temperature of each visible point. An uncertainty map is
then associated to the thermal map, in order to take into account partial information
due to occultation or the measurement noise of the infrared sensor. The final step
consists of fusing the data of the three maps, to generate a single one: the interest
map.

13.3.2 Definition of the Interest Map

The interest map is a matrix in which each element represents the belief that a
particular spot on the ground is interesting. A frame of discernment Θ = {I,NI}
was defined, where I is the hypothesis interesting and NI is the hypothesis not-
interesting. Interest is a vague concept and is subjective in nature. The associated
hyper-power set is defined as DΘ = {∅, I,NI, I∪NI, I∩NI}, and gbbas are assigned
to the interesting and not interesting hypotheses, but also to:

• I ∪NI: uncertain hypothesis. Represents the amount of ignorance, or the lack
of knowledge of the expert which is dealing with the gbba assignment. The
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expert assigns evidence to this hypothesis when the uncertainty on the data is
high, due for example to distance, error on the sensor, or even lack of data.

• I ∩ NI: paradoxical hypothesis. This is the case in which two distinct scien-
tists disagree on the interest level of a particular area. One of the scientists,
according to the readings of his instruments, assigns a very high gbba to the
interesting hypothesis while the other assigns a very high gbba to the not in-
teresting hypothesis.

Note that in the classical probability theory, these two additional hypotheses
do not exist. Furthermore, the difference between the uncertain and the paradoxical
cases is that the former expresses uncertainty due to lack of knowledge or information,
while the latter does not claim any ignorance, but the possibility that both hypotheses
could be true at the same time.

As a consequence, the two associated hypotheses are vague, can be overlapped,
and cannot be considered as mutually exclusive. The various pieces of information
can be conflicting and highly uncertain. These types of information can be effectively
handled through DSmT since it can manage conflicts among various experts and
provides a single rule of combination.

The interest map is created point by point (see Fig. 13.1), by fusing all the
available pieces of information (or evidence that a point is interesting or not) about
each one of the maps as summarized in Fig. 13.2.
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Figure 13.1: The interest map.
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Figure 13.2: Diagram of the procedure to create the interest map.
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A set of independent experts (the instruments) creates the bodies of evidence
that will be fused. For each point on the map the expert has to express an opinion
on whether the point is interesting or not based on some evidence. The opinion is
expressed by assigning gbba to each point on the map. The evidence comes from
the readings of the navigation and scientific instruments. In particular, three experts
were created, one for each map. The gbba that each expert assigns to a point on the
map depends on the scientific objectives of the mission and on the available measure-
ments. The measured values are compared against the values in a reference look-up
table (the tables for the three experts can be found in Table 13.1 to Table 13.3). For
example, in this work, we assume that the expert associated to the DEM is interested
in sharp edges and in the lateral surface of the rocks since they are easily accessible.
Thus, it assigns much gbba to the interesting case (and little to the not interesting
case), when the value of the gradient of the DEM is high, and vice-versa (Table 13.1).
In addition, for some values of the gradient, gbba is also assigned to the paradoxical
case. This is done not because of lack of knowledge of the roughness of the terrain
(in which case, gbba is assigned to the uncertain hypothesis), but because the value
of the gradient alone would not be sufficient to completely define whether an area is
interesting or not. Assigning gbba to the paradoxical case allows for the integration
of the opinions of other experts even if they are conflicting with the one of the DEM
expert.

In the same way, the temperature expert assigns interest to some temperatures
(Table 13.2), and the texture expert assigns interest to some specific textures (Table
13.3). Non-dimensional units have been used in these tables. As before, gbba is
assigned to the paradoxical hypothesis when the values associated to temperature
and texture cannot be used to completely establish whether the point is interesting
or not.

Modulus of the
gradient of the DEM m(I ∩NI) m(NI) m(I)

[0, 1) 0.20 0.80 0
[1, 3) 0.30 0.60 0.10
[3, 5) 0.10 0.10 0.80
[5, 7) 0.15 0.05 0.80
[7, 9) 0.05 0.05 0.90

[9,+∞) 0.05 0 0.95

Table 13.1: Table for the DEM expert.

At first no gbba is assigned to the uncertain hypothesis I ∪ NI; subsequently,
each expert redistributes part of the basic probability associated to the hypothesis
I ∩ NI, NI, I to the hypothesis I ∪ NI. The gbba are redistributed proportionally
to the value u of the corresponding uncertainty map associated to each expert map,
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Temperature m(I ∩NI) m(NI) m(I)
[0, 20) 0.20 0.80 0
[20, 40) 0.40 0.50 0.10
[40, 60) 0.05 0 0.95
[60, 80) 0.15 0.05 0.80
[80, 100) 0.05 0.05 0.90

Table 13.2: Table for the temperature map expert.

Texture m(I ∩NI) m(NI) m(I)
Texture not in database 0.20 0.80 0

1 0.30 0.60 0.10
2 0.10 0.10 0.80
3 0.15 0.05 0.80
4 0.05 0 0.95

Table 13.3: Table for the texture expert.

by using the following classical discounting procedure:

δ(i) ←− m(i) · u
m(i) ←− m(i)− δ(i)

m(I ∪ NI) ←− m(I ∪NI) + δ(i)

)

i = I ∩NI, NI, I (13.4)

The value of u depends on the characteristics of the sensor (e.g. measurement
errors).

In this work, uncertainty maps will be simulated in order to provide a variety of
test cases for the data fusion process. Therefore, the value of u will not be chosen to
reproduce the actual measurements but just to test the proposed methodology. Note
that, if the instruments are ideal and no uncertainty in their measurements is present,
no mass is assigned to the hypothesis I ∪ NI. The assignment process presented in
(13.4) is applied to each point on the DEM. Given the three sets of evidence by each
expert, the general combination rule for paradoxical sources of DSmT is applied, and
the combined evidence is computed. The following step is to compute the belief in
the hypothesis interesting, Bel(I). This value gives a pessimistic estimation (lower
boundary) of the probability of that point to be actually interesting. Therefore,
the interest map will contain, for each point on the DEM, the belief that point is
interesting, according to the high level mission goals. The planner will then give more
importance to those areas that are more likely to be interesting, and will reallocate
the goals in order to maximize the cumulative value of interest with the highest
reliability. In the following section, we will present how each maps are generated and
how the belief is computed for a specific test case.
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13.4 Some results with DSmT

The proposed approach was initially tested in a simulated environment. A synthetic
landscape was generated inserting typical features like rocks with different textures
and slopes with different gradients. The algorithm was run simulating the behavior
of the two navigation and the infrared cameras mounted on Nausicaa. The aim of
this sample test case was to generate an interest map that was consistent with the
simulated features. The result was then used by the planner [11] to generate a set
of mission goals in order to visit only the spots that are considered to be the most
rewarding in terms of science. The synthetic landscape, represented in Fig. 13.3,
was converted into a DEM. The x-y plane in the figure represents an ideal horizontal
plane, while z is the elevation of each point of the terrain with respect to this plane.
Non-dimensional units for distances and temperatures have been used. Assuming that
the rover is in the centre of the map, and the height of the camera from the ground is
40 units, it has been possible to calculate whether each point of the map was in sight
of the camera or not (Fig. 13.4). As explained above, the module that generates the
DEM provides also an uncertainty map based on visibility (partial information about
the landscape) and on the intrinsic measurement errors of the digital cameras. The
uncertainty map is initially created with values of zero (point in sight, no uncertainty
on its elevation) or one (hidden point, no information about its elevation). Then,
the uncertainty due to errors of recognition of the disparity maps are simulated by
introducing a noise component, with a value in the interval [0, 0.2]. The resulting
uncertainty map is represented in Fig. 13.5.
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Figure 13.3: DEM of the synthetic landscape: bumped features represent rocks.
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The expert that creates the evidence from the DEM first computes the map of
the gradient of the terrain, starting from its elevation; then, it assigns high interest
to the points which have a high gradient, and low interest to other points (Table 13.1).

In Fig. 13.6, there is a representation of the absolute value of the gradient of the
DEM, as computed by the corresponding expert. The virtual infrared map contains
the temperature of the corresponding point on the DEM.
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Figure 13.6: Representation of the absolute value of the gradient of the DEM.

The expert associated to the infrared camera assigns high levels of interest to hot
areas. The Fig. 13.7 shows the temperature distribution in the virtual environment:
the whole terrain as an average temperature below 5 (in the non-dimensional units
of temperature) which correspond to a cold terrain, apart from single circular hot area.

The texture distribution is represented in Fig. 13.8: four different patterns have
been considered, each one corresponding to one color in the figure. The reference
textures with their associated level of interest are stored in a database onboard. The
expert of this map assigns the gbba according to the reference values in Table 13.3: it
was assumed texture 4 (colored in brown in Fig. 13.8) has the a greatest probability
to be interesting for this particular mission.
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The experts associated to the texture and infrared maps generate the correspond-
ing uncertainty maps in a similar fashion as the expert of the DEM: they check for
visibility of each point and surface in the map. In fact, if the infrared image and
optical image are captured simultaneously, without moving the rover, the unknown
areas must be the same. However, this yields the same level of uncertainty for the
same points on all the three maps. Therefore it was assumed that the uncertainties
for the infrared map grows linearly from the bottom end of the map to the upper end
of the map, while the uncertainty on the texture grows linearly from the right end
to the left end of the map, as shown in Fig. 13.9. Note that this assumption has no
particular physical meaning, but it allows us to have areas with very different and
mixed levels of uncertainties, thus testing properly the proposed data fusion frame-
work. A different distribution of uncertainty, though producing different values, does
not change the significance of the results presented in this chapter. As stated above,
in a real case, the uncertainty map would depend on the properties of the instruments
and on the level of confidence of the scientists in their own judgment.
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Figure 13.9: The uncertainty associated to the infrared map (left) and to the
texture map (right).

Given the maps and the experts, the result of the fusion process, as explained in
paragraph 13.3.2, is the interest map shown in Fig. 13.10. The value associated to
each point in the map represents the belief that the point is interesting. The areas
identified by the letters A, B, C, D, E, F, G, H and I in Fig. 13.10, corresponding
to rock borders, are marked as very interesting because of the high gradient value.
It shall be noted that only the parts in sight of the cameras are interesting (this is
particularly noticeable in the case of spots B, C, D and G). Where the rock is hidden,
the gradient is high, but its unreliability is high, as well; thus, the assignment from
the expert is uncertain and the associated belief is low. The circular area identified
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with letter L is considered interesting mainly by the expert of the infrared map but its
visibility is high as well as its reliability. In fact, Fig. 13.7 shows that the temperature
is high in that area and Fig. 13.9a shows that for that area, the infrared map has
a low uncertainty value; thus the information it gives is considered to be very reliable.
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Figure 13.10: Interest map: different colors represent different values of Bel(I).

The small area with letter M is the most interesting of the whole map, with a
value close to one. This is due to the synergy between the DEM and the infrared
experts: both have certain information, and the gradient and the temperature are
very high. The sudden change in the level of interest on area N is a consequence
of the discontinuity of the soil texture, as can be seen in Fig. 13.8. Looking at the
map, starting from the area N, and moving right, the degree of interest gradually
decreases because the texture information is gradually less reliable on the right part
of the map, as can be seen in Fig. 13.9b.

Notice how both the infrared and the DEM expert regarded this area as not
interesting but both the DEM and the texture experts stated that the reliability of
what observed was good while the infrared stated the opposite. Nonetheless, the
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fused reliability of the texture and of the DEM maps supports the hypothesis that
this area is worth a visit and is safe enough; as a consequence the associated belief
is moderately high. Finally a three dimensional representation of the interest map
superimposed onto the DEM can be seen in Fig. 13.11.
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Figure 13.11: Interest map superimposed on the DEM.

13.4.1 DST applied the generation of the Interest Map

The DSmT can be considered as an extension of the Dempster-Shafer Theory of
Evidence (DST), from which it was derived. In fact, the DST is a particular case
of the DSmT, in which all the sets of a given frame of discernment are disjoint (i.e.,
∀A,B ∈ Θ, A �= B → A ∩ B = ∅). As a consequence, the set of possible hypotheses
for a frame of discernment Θ = {θ1, θ2} is its power set 2Θ = {∅, A, B, A ∪ B}.
As for the DSmT, we have m(∅) = 0 and

P

A∈DΘ m(A) = 1 but in this case DΘ

reduces to 2Θ. In the literature, the function m(.) is generally called basic probability
assignment (bpa), when referred to the DST framework. There are several different
rules for combining bodies of evidence from different experts under this framework.
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The classical Dempster’s rule, which is associative and commutative, fuses the bpa
m1 and m2 of two experts referred to the same frame of discernment in the following
way:

m12(A) =

X

B,C∈2Θ

B∩C=A

m1(B)m2(C)

1 −
X

B,C∈2Θ

B∩C=∅

m1(B)m2(C)
,∀A ∈ 2Θ (13.5)

The Belief and Plausibility functions are computed in the same way as in the
DSmT, that is using (13.3), given that the power set 2Θ shall be considered. The
different behavior of the two theories is evident when conflicting bba’s are given by
the experts. In particular, the famous Zadeh’s example [4] highlights the counter-
intuitive results which the DST can lead to, while the DSmT is able to solve the
contradiction in the sources of information quite easily, thank to the presence of the
paradoxical hypothesis.

A simple case that brings to quite different results is when the assignments of
two different sources are given, as in Table 13.4. In this case, the evidence of the
two experts is almost totally conflicting, with a small uncertainty: this situation
can happen, for example, when the terrain is flat (then not interesting for the DEM
expert) but the texture is very interesting. The fusion through the DST, according to
(13.5), leads to the combined bpa shown in the first column of Table 13.5. The DST
combination rule assigns the same amount of evidence to both the hypotheses I and
NI. In this framework, the value of Bel(I) is the same as m(I). In essence, the DST
states that the point has the same probability of being interesting or not interesting,
which does not allows the rover to take a decision on whether to investigate that point
or not. On the other hand, the DSmT assigns most of the evidence to the paradoxical
hypothesis I ∩NI , which is contributing in the value of Bel(I) .

Expert 1 Expert 2
mi(I) 0.99 0

mi(NI) 0 0.99
mi(I ∪NI) 0.01 0.01

Table 13.4: Example of conflicting bodies of evidence for two different experts.

To show the different results in fusing the data using either the DST or the DSmT,
let us consider the border of the rock D. As an example, we take the point (67, 20):
for this point, we have the values for the gradient of DEM, texture and temperature
listed in Table 13.6, with corresponding uncertainties.

According to these values, the consequent bba’s (or gbba’s) are also shown in the
same table.
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DST DSmT
m12(I) 0.4975 0.0099

m12(NI) 0.4975 0.0099
m12(I ∪NI) 0.005 0.0001
m12(I ∩NI) - 0.9801

Bel(I) 0.4975 0.99

Table 13.5: Combined evidence and Belief according to DST and DSmT, for
evidence provided by the two experts in Table 13.4.

Value m(I ∩NI) m(NI) m(I) m(I ∪NI)
Gradient

of the DEM
6.088 0.15 0.05 0.8 0

Texture 4 0.017 0 0.323 0.66
Temperature 10.23 0.162 0.648 0 0.19

Table 13.6: Values of the three maps at point (67, 20), uncertainties, and
corresponding assignments made by the experts.

The result of the combination through the DSmT is shown in Table 13.7. In
conclusion, according to the DSmT, the point should be highly interesting, as the
belief of the I hypothesis is close to one.

DSmT Combined Evidence
m(I ∩NI) 0.82293004
m(NI) 0.02765400
m(I) 0.14941600

m(I ∪NI) 0
Bel(I) 0.97234607

Table 13.7: Combined evidence and Belief using the DSmT combination rule,
for bodies of evidence given in Table 13.6.

The use of the DST, instead, leads to a different result. The DST associative rule
can be applied to the same point, but considering that in the DST framework, all the
sets are disjoint, so I ∩ NI = ∅, it would make no sense to assign bpa to this case.
We decided here to reassign the gbba of the hypothesis I ∩ NI to the hypothesis
I ∪ NI, as in Table 13.8, since a conflict of opinions would lead to a stall in the
decision making process, analogous to a lack of information. Note that, for this case,
a different choice of the bpa re-assignment would not change substantially the result
obtained with the DST. Applying the DST combination rule, we obtain the evidence
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in Table 13.9. Then we can state that, using the DST, the belief in the interesting
hypothesis is significantly lower than for the DSmT. The border of the rock will not
be a primary objective to analyze for the rover in this case.

m(NI) m(I) m(I ∪NI)
Gradient of the DEM 0.05 0.8 0 + 0.15

Texture 0 0.323 0.66 + 0.017
Temperature 0.648 0 0.19 + 0.162

Table 13.8: Re-assignment of the gbba of the paradoxical hypothesis to the
uncertain hypothesis.

Dempster Combined Evidence
m(NI) 0.2296
m(I) 0.6881

m(I ∪NI) 0.0824
Bel(I) 0.6881

Table 13.9: Combined evidence and Belief using the Dempster combination
rule, for bodies of evidence given in Table 13.8.

A great number of fusion rules exists, in the DST framework: among those, a set
of Proportional Conflict Redistribution rules (PCR) has been studied. The so-called
PCR5 is claimed to be the most mathematically exact rule for redistributing the
conflicting mass [8]. Since the computation of the combined bba’s using the PCR5
becomes quite complicated when more than 2 sources are involved (and in this exam-
ple they are 3), we decided to show the results of the fusion using the approximated
formulation PCR5b. The final masses are obtained in two steps: first, the masses
m1(·) and m2(·) relative to experts 1 and 2 are combined using the DSmT classical
rule, obtaining m12(·); then the resulting masses are combined again with source
3, giving m123(·). At this point, the conflicting mass m123(A ∩ B) is redistributed
proportionally to the basic probability assignments of the experts, according to the
rule. If we call mPCR5b{12}3(·) the combined evidence after the redistribution of the
conflict, we have:



Chapter 13: Automatic goal allocation for a planetary rover . . . 407

mPCR5b{12}3(I) = m123(I) + m3(I)m12(I ∩ NI)+

m12(I)
m12(I)m3(NI)

m12(I) + m3(NI)
+ m3(I)

m3(I)m12(NI)

m3(I) + m12(NI)

mPCR5b{12}3(NI) = m123(NI) + m3(NI)m12(I ∩ NI)+

m3(NI)
m12(I)m3(NI)

m12(I) + m3(NI)
+ m12(NI)

m3(I)m12(NI)

m3(I) + m12(NI)

mPCR5b{12}3(I ∪ NI) = m123(I ∪ NI) + m3(I ∪NI)m12(I ∩NI)

(13.6)

This rule leads to the combined evidence shown in Table 13.10. Although the
redistribution of the conflicting masses changed the results slightly with respect to the
classical DST combination rule, the difference with the DSmT remains remarkable.

PCR5b Combined Evidence
m(NI) 0.3482
m(I) 0.6104

m(I ∪NI) 0.0414
Bel(I) 0.6104

Table 13.10: Combined evidence and Belief using the PCR5b combination rule,
for bodies of evidence given in Table 13.8.

13.4.1.1 Application of DST to a modified frame of discernment

If the frame of discernment is refined in the following way: Θref = {I ∩ NI, I/(I ∩
NI),NI/(I ∩NI)}, then we can apply DST and obtain a result equivalent to the one
computed using DSmT. Given the new refined frame of discernment, the power set
is:

2Θref = {∅, X, Y, Z, X ∪ Y, X ∪ Z, Y ∪ Z, X ∪ Y ∪ Z} (13.7)

where:

X = I ∩NI
Y = I ∪ (I ∩NI)
Z = NI ∪ (I ∩NI)

(13.8)

Let us denote with prime the bba’s referred to the refined frame of discernment.
If we assign the bba’s for each generic expert i in the following way:
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m′
i(X) = mi(I ∩NI)

m′
i(X ∪ Y ) = mi(I)

m′
i(X ∪ Z) = mi(NI)

m′
i(X ∪ Y ∪ Z) = mi(I ∪NI)

m′
i(A ∈ 2Θref , A �= X, X ∪ Y, X ∪ Z, X ∪ Y ∪ Z) = 0

(13.9)

and the DST combination rule in (13.5) is applied, we see that the denominator in
(13.5) is:

1−
X

B,C∈2Θref
B∩C=∅

m′
1(B)m′

2(C) = 1 (13.10)

Computing the bba, for example, for m′
12(X), we obtain:

m′
12(X) = m′

1(X)m′
2(X) + m′

1(X ∪ Y )m′
2(X ∪ Z)+

m′
1(X ∪ Z)m′

2(X ∪ Y ) + m′
1(X)m′

2(X ∪ Y )+

m′
1(X)m′

2(X ∪ Z) + m′
1(X)m′

2(X ∪ Y ∪ Z)+

m′
2(X ∪ Y )m′

2(X) + m′
1(X ∪ Z)m′

2(X)+

m′
1(X ∪ Y ∪ Z)m′

2(X)

(13.11)

On the other hand, applying the DSmT combination rule (13.2) to the standard
frame Θ = {I, NI} , we obtain for m12(I ∩NI):

m12(I ∩NI) = m1(I ∩NI)m2(I ∩NI)+

m1(I)m2(NI) + m1(NI)m2(I) + m1(I ∩NI)m2(I)+

m1(I ∩ NI)m2(NI) + m1(I ∩NI)m2(I ∪ NI)+

m1(I)m2(I ∩NI) + m1(NI)m2(I ∩NI)+

m1(I ∪ NI)m2(I ∩NI)

(13.12)

Eq. (13.11) and (13.12) are equivalent and return the same value. The same
happens for m′

12(X ∪ Y ∪ Z), m′
12(X ∪ Z), m′

12(X). Therefore, the fusion obtained
using the DST with the refined frame of discernment, and the one obtained with the
original model and DSmT are identical. Note that, the refinement of the frame of
discernment would require a probability assignment to the hypotheses I/(I ∩ NI)
and NI/(I ∩NI) that have little physical meaning and are not intuitive. Therefore,
although DST can be used to define the interest map, DSmT offers a more direct
definition and treatment of the two hypotheses I and NI without the need for an
artificial redefinition of the frame of discernment. Furthermore, it should be noted
that DSmT allows the direct treatment of a case in which a source is totally sure
about its assignment and therefore cannot assign any probability to the hypothesis
I∪NI. In this case assigning a probability to the hypothesis I∩NI would correspond
to allowing some room for discussion and opposite opinions as mentioned above.
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13.5 Final remarks

In this chapter, an algorithm for the definition of the level of interest of mission goals
for a planetary rover was presented. By fusing navigation data and payload data
(infrared camera in this specific case), the rover was endowed with the capability to
autonomously assign a level of interest to mission goals. The interest level allows the
rover to prioritize, reallocate and choose the most appropriate set of goals depending
on contingent situations. The modern theory of Plausible and Paradoxical Reasoning
was used to generate an interest map by which the rover can reallocate its goals
autonomously in order to maximize the scientific return of the mission. The theory
gives the possibility of dealing with vague quantities, like the degree of interest of an
object. In particular, the advantage of DSmT is the possibility to directly assign a
level of interest to hypothesis I and NI for each point of the DEM, leaving room for
potential disagreements among the scientists or between the scientists and the ground
control team. The results showed that the proposed approach is suitable to uniquely
identify the interesting zones, given the high level scientific goals of the mission. The
goals can be easily modified or tuned, by changing the experts used into the data
fusion process.
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Abstract: The main objective of this work is to investigate the
impact of the quality of attribute data source on the performance of
a target tracking algorithm. An array of dense scenarios arranged
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by different confusion matrices. The used algorithm is General-
ized Data Association algorithm for Multiple Target Tracking (GDA-
MTT) processing kinematic as well as attribute data. The fusion rule
for attribute data is based on Dezert-Smarandache Theory (DSmT).
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algorithm and an algorithm with Kinematic based only Data Asso-
ciation (KDA-MTT). The measures of performance are evaluated
using intensive Monte Carlo simulation.
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14.1 Introduction

Target tracking of closely spaced targets is a challenging problem. The kinematic
information is often insufficient to make correct decision which observation to be
associated to some existing track. A new approach presented in [15] describes a
Generalized Data Association (GDA) algorithm incorporating attribute information.
The presented results are encouraging, but it is important to study the algorithm
performance for more complex scenarios with more maneuvering targets and different
levels of quality of attribute data source. It is important to know the level of quality
of the attribute detection used to assure robust target tracking in critical, highly
conflicting situations. The goal of this paper is by using Monte Carlo simulation
to determine the sufficient level of quality of attribute measurements that for given
standard deviations of the kinematic measurements (in our case azimuth and distance)
to overcome allowable miscorrelations.

14.2 Problem formulation

Classical target tracking algorithms consist mainly of two basic steps: data association
to associate proper measurements (usually kinematic measurement z(k)) representing
either position, distance, angle, velocity, accelerations etc.) with correct targets;
track filtering to estimates and predict the state of targets once data association
has been performed. The first step is very important for the quality of tracking
performance since its goal is to associate correctly observations to existing tracks. The
data association problem is very difficult to solve in dense multitarget and cluttered
environment. To eliminate unlikely (kinematic-based) observation-to-track pairings,
the classical validation test [3, 7] is carried on the Mahalanobis distance

d2
j (k) = v

′

j(k)S−1vj(k) ≤ γ, (14.1)

where vj(k) = ẑ(k) − zj(k) is the difference between the predicted position ẑ(k)
and the j − th validated measurement zj(k), S is the innovation covariance matrix,
γ is a threshold constant defined from the table of the chi-square distribution [3].
Once all the validated measurements have been defined for the surveillance region,
a clustering procedure defines the clusters of the tracks with shared observations.
Further the decision about observation-to-track associations within the given cluster
with n existing tracks and m received measurements is considered. The Converted
Measurement Kalman Filter (CMKF) [5] coupled with a classical Interacting Multiple
Models (IMM) [1, 4, 8] for maneuvering target tracking is used to update the targets’
state vectors.

When CMKF is used, one advantage and one drawback arise. Receiving measure-
ments in (x, y) coordinates allows us to continue our tracking with a simple Linear
Kalman Filter (KF) instead of more complicated Extended Kalman Filter (EKF).
The more sophisticated calculation of the measurement matrix in EKF is replaced
with a more sophisticated calculation of converted measurement covariance at each
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recursion of the filter. The drawback is that CMKF accuracy strongly depends not
only on the original measurement accuracy but on scenario geometry, as well. In
some cases the mean of the errors is significant and unbiased compensation is needed.
In [11], a limit of validity is derived when classical linearized conversion in CMKF

is used - (
rσ2

θ
σr

< 0.4), where σθ and σr are the standard deviations for azimuth and
distance measurements respectively. The quantity from the left-hand side in our sce-
narios is most often less than 0.01 and, hence, the validity limit is fully satisfied. The
GDA-MTT improves data association process by adding attribute measurements, like
amplitude information or RCS (radar cross section) [16], or eventually [6], target type
decision coupled with the confusion matrix to classical kinematic measurements in
order to increase the performance of the MTT system. When attribute data is avail-
able, the generalized (kinematic and attribute) likelihood ratios are used to improve
the assignment. The Global Nearest Neighbor (GNN) approach is used in order to
make a decision for data association on an integral criterion base. The used GDA ap-
proach consists in choosing a set of assignments {χij} for i = 1, ..., n and j = 1, ..., m
, that assures maximum of the total generalized likelihood ratio sum by solving the
classical assignment problem min

Pn
i=1

Pm
j=1 aijχij , where aij = −log(LRgen(i, j))

with

LRgen(i, j) = LRk(i, j)LRa(i, j). (14.2)

LRk(i, j) and LRa(i, j) are kinematic and attribute likelihood ratios respectively, and

χij =

(

1 if measurement j is assigned to track i,

0 otherwise.

When the assignment matrix A[aij ] is constructed its elements aij take the following
values [12]:

aij =

(

∞ if d2
ij > γ,

− log(LRk(i, j)LRa(i, j)) if d2
ij ≤ γ.

The solution of the assignment matrix is the one that minimizes the sum of
the chosen elements. We solve the assignment problem by realizing the extension of
Munkres algorithm, given in [9]. As a result one obtains the optimal measurements-to-
tracks association. Once the optimal assignment is found, i.e. the correct association
is available, the standard tracking filter is used depending on the dynamics of the
tracked targets.

14.2.1 Kinematic likelihood ratios for GDA

The kinematic likelihood ratios LRk(i, j) involved into aij are easily to obtain because
they are based on the classical statistical models for spatial distribution of false alarms
and for correct measurements [5]. LRk(i, j) is evaluated as:

LRk(i, j) = LFtrue(i, j)/LFfalse
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where LFtrue(i, j) is the likelihood function that the measurement j originates from
a target (track) i and LFfalse is the likelihood function that the measurement j
originates from a false alarm. At any given time k, LFtrue is defined as:

LFtrue =

r
X

l=1

μl(k)LFl(k)

where r is the number of the models used for CMKF-IMM (in our case of two nested
models r = 2). μl(k) is the probability (weight) of the model l for the scan k, LFl(k)
is the likelihood function that the measurement j originates from target (track) i
according to the model l, i.e.

LFl(k) = (1/
q

|2πSi
l (k)|) · exp

−d2
l (i, j)

2
.

LFfalse is defined as LFfalse =
Pfa

Vc
, where Pfa is the false alarm probability and

Vc is the resolution cell volume chosen in [6] as Vc =
Qnz

i=1

√
12Rii . In our case,

nz = 2 is the measurement vector size and Rii are sensor error standard deviations
for azimuth β and distance D measurements.

14.2.2 Attribute likelihood ratios for GDA

The major difficulty to implement GDA-MTT depends on the correct derivation of co-
efficients aij , and more specifically the attribute likelihood ratios LRa(i, j) for correct
association between measurement j and target i based only on attribute information.
When attribute data are available and their quality is sufficient, the attribute like-
lihood ratio helps a lot to improve MTT performance. In our case, the target type
information is utilized from RCS attribute measurement through a fuzzification inter-
face. A particular confusion matrix is constructed to model the sensor’s classification
capability.

The approach for deriving LRa(i, j) within DSmT [10, 14, 15] is based on relative
variations of pignistic probabilities for the target type hypotheses, Hj (j = 1 for
Fighter, j = 2 for Cargo), included in the frame Θ2 conditioned by the correct
assignment. These pignistic probabilities are derived after the fusion between the
generalized basic belief assignments of the track’s old attribute state history and
the new attribute/ID observation, obtained within the particular fusion rule. It is
proven that this approach outperforms most of the well known ones for attribute data
association. It is defined as :

δi(P
∗) �

˛

˛

˛

Δi(P
∗|Z) − Δi(P

∗|Ẑ = Ti)
˛

˛

˛

Δi(P ∗|Ẑ = Ti)
, (14.3)
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where
8

>

<

>

:

Δi(P
∗|Z) =

P2
j=1

˛

˛

˛

P∗
TiZ(Hj)−P∗

Ti
(Hj)

˛

˛

˛

P∗
Ti

(Hj)

Δi(P
∗|Z = Ti) =

P2
j=1

˛

˛

˛

P∗
TiZ=Ti(Hj)−P∗

Ti
(Hj)

˛

˛

˛

P∗
Ti

(Hj)

i.e. Δi(P
∗|Ẑ = Ti) is obtained by forcing the attribute observation mass vec-

tor to be the same as the attribute mass vector of the considered real target, i.e.
mZ(.) = mTi(.) . The decision for the right association relies on the minimum
of expression (14.3). Because the generalized likelihood ratio LRgen is looking for
the maximum value, the final form of the attribute likelihood ratio is defined to be
inversely proportional to the δi(P

∗) with i defining the number of the track, i.e.
LRa(i, j) = 1/δi(P

∗).

14.3 Scenario of simulations and results

14.3.1 Scenario of simulations

For the simulations, we use an extension of the program package TTLab developed
under MATLABTM for target tracking [13]. This extension takes into account the
attribute information. A friendly human-computer interface facilitates the changes
of the design parameters of the algorithms.

The simulation scenario consists of twenty five air targets (Fighter and Cargo)
moving in three groups from North-West to South-East with constant velocity of
170 m/sec. The stationary sensor is at the origin with Tscan = 5 sec, measurement
standard deviations 0.3 deg and 100 m for azimuth and range respectively. The head-
ings of the central group are 135 deg from North and for the left and right groups are
150 deg and 120 deg respectively. During the scans from 15th to 17th and from 48th
to 50th the targets of the left and right groups perform maneuvers with transversal
acceleration 4.4 m/sec2. The targets are closely spaced especially in the middle part
of their trajectories. The scenario is shown on figure 14.1.

The typical tracking performances for KDA-MTT and GDA-MTT algorithms are
shown on figures 14.2 and 14.3 respectively. The Track Purity performance metrics
is used to examine the fraction/percent of the correct associations. Track purity is
defined as a ratio of the number of correct observation-to-track associations to total
number of all possible associations during the process of tracking. Track purity met-
rics concerns every single target and could be averaged over all targets in the scenario
as well as over all Monte Carlo runs.

Our aim in these simulations is to investigate what level of classifier accuracy we
need in a particular scenario with the given separation between the closely spaced
targets. We have performed consecutive simulations starting with a confusion matrix
(CM) corresponding to the highest (prior) accuracy and ending with a matrix close
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Figure 14.1: Multitarget scenario with 25 targets.

to what is expected in pratice with common classifiers.

Before this, we did several simulations with highest accuracy CM and different
separations of the targets starting with prohibitively close separation (approximately
d = 1.5 σresid; here σresid is the residual standard deviation, ranging from 260 m at
the beginning of the trajectory to 155 m) [2]. From these simulations, we try to find
out the particular target’s separation which insures good results in term of tracks’
purity metrics.

14.3.2 Numerical results

We started our experiments with series of runs with different target separation and
confusion matrix

CM =

»

0.995 0.005
0.005 0.995

–

Hereafter, because of symmetry we will show the first row of the matrix only.
All the values in the next tables are averaged over the 50 Monte Carlo runs. At a
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Figure 14.2: Typical performance with KDA-MTT.
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Figure 14.3: Typical performance with GDA-MTT.
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distance of 300 m between targets the results are extremely discouraging for both
the kinematic only and kinematic and attribute data used (the first row of the Table
14.1). There is no surprise because this separation corresponds to less than 1.5 σresid.
This row stands out with remarkable ratio of ’attribute’ to ’kinematic’ percents of
tracks’ purity. In the ’kinematic’ case, less than one tenth of tracks are processed
properly while with using the attribute data almost two thirds of targets are not lost.
Nevertheless, the results are poor and unacceptable from the practical point of view.
In the next rows ot the table, we have increased gradually the distance between the
targets until reaching a separation of 600 m. This distance corresponds to 2.5 σresid

and the results are good enough especially for the DSmT based algorithm.

Distance in m Track purity [%]
GDA(PCR5 ) KDA

300 57.99 8.65
350 74.47 12.43
400 87.45 21.17
450 93.24 35.47
500 95.94 56.12
550 96.74 74.74
600 97.76 86.40

Table 14.1: Pd = 0.995, CM(0.995, 0.005).

The next step is to choose this medium separation size which ensures highly
acceptable results. We take the distance of 450 m because it is in the middle of
the table and its results are very close to that of larger distances. Now we start
our runs with confusion matrix (0.995;0.005) corresponding to highest accuracy and
gradually change its elements to more realistic values according to the Table 14.2. In
this table, the tracks’ purity for the pure data kinematic-based algorithm are omitted
because they do not depend on the confusion matrix values. Then we have chosen the
threshold of 85% for tracks’ purity value since this threshold provides results which
are considered as satisfying enough.

Actually, the choice of threshold is a matter of an expert assessment and strongly
depends on the particular implementation. It can be seen from the Table 14.2 that
the last row from the top with tracks’ purity value above the chosen threshold is
the row with CM(0.96;0.04). So that, if our task is to track targets separated at
normalized distance approximately 1.5σresid to 3σresid, we have to ensure a classifier
with mentioned above confusion matrix. We recall that the value of the tracks’ purity
ratio for the pure data kinematic-based algorithm for this separation is only 35.47%.

More simulations have been performed by degrading the quality of the classi-
fier/CM for trying to find the values of CM which does not influence the value of
tracks’ purity ratio, i.e. when the ’attribute’ algorithm gives the same results as
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Distance d = 450 m
Confusion Matrix Track Purity
0.995 0.005 93.24
0.99 0.01 91.51
0.98 0.02 89.53
0.97 0.03 86.83
0.96 0.04 85.26
0.95 0.05 82.48
0.94 0.06 79.41
0.93 0.07 75.38
0.92 0.08 75.25
0.91 0.09 74.27
0.90 0.10 70.69

Table 14.2: Track purity with different CM for a scenario with d = 450 m.

’kinematic’ one for the chosen targets separation. The results we have obtained are
given in Table 14.3.

Distance d = 450 m
Confusion Matrix Track Purity
0.995 0.005 93.24
0.95 0.05 82.48
0.90 0.10 70.69
0.80 0.20 52.04
0.70 0.30 46.90
0.60 0.40 43.01
0.55 0.45 42.20

Table 14.3: Distance = 450 m, PCR5 algorithm.

We can see that even for the values of elements of CM close to the probability
mass limit values of (0.5;0.5) the investigated ratio remains slightly better (the last
row of table 14.3) than that of ’kinematic’ algorithm.

Once the data association is made, the classical IMM Kalman filtering algorithm
is used for target state estimation and to reduce position errors. The figures 14.4
and 14.5 show the errors along axes X and Y with and without filtering. It can be
seen a significant reduction of the sensor errors after filtering. The figure 14.4 shows
the result of the more precise model (model 1), and in the figure 14.2 the result of
model 2 with bigger values for errors is presented. The figure 14.6 shows the result
for distance errors for the two models. We can verify that we naturally obtain lower
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errors when using the most precise model.
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Figure 14.4: Monte Carlo estimation of errors allong axes x and y for model 1.
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Figure 14.5: Monte Carlo estimation of errors allong axes x and y for model 2.
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Figure 14.6: Monte Carlo estimation of distance errors for first and second
models.

14.4 Conclusions

In this work, we have proposed and evaluated a multiple target tracking algorithm
called GDA-MTT dealing with both kinematic and atrribute data. GDA-MTT is
based on a global nearest neighbour alike approach which uses Munkres algorithm to
solve the generalized data association problem. The PCR5 combination rule devel-
oped in Dezert-Smarandache Theory has been used for managing efficiently attribute
data which allows to improve substantially the tracking performances. Our sim-
ulation results show that, even in dense target scenarios and realistic accuracy of
attribute data classifier, the GDA-MTT algorithm’s performance meets requirements
concerning its practical implementation. Our results highlight the advantage of using
a tracking algorithm exploiting both kinematic and attribute data over a classical
tracking approach based only on kinematic data.
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15.1 On Blackman’s association problem

15.1.0.1 Introduction

Data association with its goal to select the most probable and correct associations
between sensors’ measurements and target tracks, from a large set of possibilities,
is a fundamental and important component for each radar surveillance system. In
general, the focus of tracking algorithms has centered on kinematics state estimation.
However, targets’ attribute information has the potential to not only estimate the
identity/type information of the tracking targets, but it may also improve data asso-
ciation and kinematics tracking performance. Attribute data association can become
a crucial and challenging problem in case when the sources of information are impre-
cise, uncertain, even conflicting and paradoxical. The specifics of the data association
problem can vary according to both: the different fusion methods and the criteria
to estimate the correct associations. There are various methods for combining such
information and the choice of method depends on the richness of abstraction and
diversity of sensor data. The most used until now Dempster-Shafer Theory (DST)
( [2] and [5]) proposes a suitable mathematical framework for representation of un-
certainty. Although very appealing, DST presents some weaknesses and limitations,
related with the law of the third excluded middle. The Dempster’s rule of combina-
tion can give rise to some paradoxes/anomalies and can fail to provide the correct
solution for some specific association problems. This has been already pointed out
by Samuel Blackman in [1], where the famous Blackman Association Problem (BAP)
is formulated. In this chapter we focus our attention on the ability of one new, al-
ternative class fusion rule, interpreting the fusion in terms of fuzzy T-Conorm and
T-Norm operators (TCN rule), to solve efficiently the paradoxical Blackman’s Associ-
ation Problem on the base of relative variations of generalized pignistics probabilities
measure, defined within recently developed Dezert-Smarandache Theory (DSmT) of
plausible and paradoxical reasoning ( [6] and [7]). It proposes a new general math-
ematical framework for solving fusion/association problems. This theory overcomes
the practical limitations of DST, coming essentially from its inherent constraints,
which are closely related with the acceptance of the law of the third excluded middle
and can be interpreted as a general and direct extension of probability theory and the
DST. We first recall the BAP, then we browse the state-of-the-art to find the correct
solution through different approaches available in the literature. After a brief presen-
tation of DSmT, DSmT based Proportional Redistribution Rule number 5 (PCR5),
the new TCN combination rule and DSmT based, relative variations of generalized
pignistics probabilities measure, we provide a new solution of this problem, which is
encountered in modern multisensor multitarget tracking and identification systems
involved in defense applications. The last part of the chapter provides a compari-
son of the performances of all the proposed approaches from Monte-Carlo simulation
results.
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15.1.1 Blackman’s association problem

The main purpose of information fusion/association is to produce reasonably aggre-
gated, refined and/or completed useful pieces of information obtained from a single
or multiple sources of information with a consequent adequate reasoning process. It
means, that the main problem here consists not only in the way to aggregate correctly
the sources of information, which in general are imprecise, uncertain, or/and conflict-
ing, but it is also important to dispose of proper criterion to estimate the correct
association. Actually, there is no a single, unique rule to deal simultaneously with
such kind of information peculiarities, but a huge number of possible combinational
rules, appropriate only for a particular application conditions, as well as a number of
criterion to estimate the correct association.

15.1.1.1 Original Blackman’s Association Problem

The well known association problem, denoted BAP1, provided by Samuel Blackman
considers a very simple frame of discernment according to only two target’s attribute
types Θ = {θ1, θ2} .

It corresponds to a single attribute observation and two estimated targets tracks
T1 and T2 associated with two predicted basic belief assignments (bba): mT1(.) and
mT2(.) respectively:

mT1(.) = {mT1 (θ1) = 0.5; mT1 (θ2) = 0.5; mT1 (θ1 ∪ θ2) = 0.0}
mT2(.) = {mT2 (θ1) = 0.1; mT2 (θ2) = 0.1; mT2 (θ1 ∪ θ2) = 0.8}

It should be mentioned that both sources of information are independent and
share one and the same frame of hypotheses, on which their basic belief assignment
are defined. During the next time instant, a single new attribute observation is
detected. It is characterized with an associated bba, mZ(.), described within the
same frame of discernments:

mZ(.) = {mZ (θ1) = 0.5; mZ (θ2) = 0.5; mZ (θ1 ∪ θ2) = 0.0}
It is evident here, the new observation perfectly fits with the predicted bba of

the first track, i.e. mZ(.) = mT1(.), whereas mZ(.) has some disagreement with the
predicted bba of the second track mT2(.). It should lead to a categorical decision
about the correct assignment: mZ(.) = mT1(.). However, counter-intuitively, the
solution, taken on the base of DST is just the opposite one: mZ(.) = mT2(.).

15.1.1.2 Second Blackman’s association problem.

In order to complete and compare all possible cases, we modify the first association
problem into a second one, denoted BAP2, with preserving the same predicted tracks’
bbas: mT1(.) and mT2(.) . In the opposite of the first case, we consider the new
attribute measurement to fit with the second track’s bba, i.e. mZ(.) = mT2(.).
Because of perfect fitting, the correct decision here is apparently trivial: mZ(.) ⇔
mT2(.) .
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15.2 State-of-the-art to find a correct solution

In [6] there are described, examined and discussed several approaches to resolve the
BAP. The first group includes approaches based on DST: (i) a minimum conflict crite-
rion; (ii) a relative attribute likelihood function criterion, proposed by Blackman; (iii)
minimum distance criterion; (iiii) Shubert’s meta-conflict function criterion; (iiiii)
entropy-based approaches. The results obtained via Monte Carlo simulations indi-
cate that there is no reliable approach to solve the assignment problem based on
DST for both cases described above. The numerical computation of the conflict for
BAP1 yields an unexpected, non-adequate, counter-intuitive result. The fusion/asso-
ciation process actually assigns the lower degree of conflict to the incorrect solution:
mZ(.) ⇔ mT2(.) , providing a larger discrepancy between observation’s bba mZ(.)
with the predicted bba mT1(.) , than with the predicted bba mT2(.) , nevertheless
mZ(.) = mT1(.). Therefore, the search for the minimum conflict between sources
cannot be taken as a reliable solution for the general assignment problem since at
least one example exists for which the method fails. The meta-conflict approach,
proposed by Shubert [4], does not allow getting the optimal efficiency. Blackman’s
approach gives the same performance. All entropy-based methods are less efficient
than the min-conflict approach. The min-distance approach is the least efficient one.
According to the combination rule used, it has been already reported in [3, 6], and [4]
that the use of DST must usually be done with extreme caution if one has to take
a final and important decision from the result of the Dempter’s rule of combination.
Always there is a need to be added some ad-hoc or heuristic techniques to the asso-
ciation process, in order to manage or reduce the possibility of high degree of conflict
between sources. Otherwise, the fusion results lead to non-adequate conclusions, or
cannot provide reliable results at all. The second group of approaches rely on the new
DSmT of plausible and paradoxical reasoning. Its foundation is to allow imprecise/-
vague notions and concepts between elements of the frame of discernment. The main
approaches to examine and estimate the correct data association within DSmT are
based on the generalized pignistic transformation [6]: minimum variation of entropy-
like measure, minimum variation of generalized pignistic entropy, minimum of relative
variation of pignistic probabilities conditioned by the correct assignment. The results
obtained show that the method based on the relative variations of generalized pignis-
tic probabilities conditioned by the correct assignment, yields adequate and proper
decisions and outperforms all above approaches examined.

15.3 Basics of Dezert-Smarandache theory

DSmT of plausible and paradoxical reasoning proposes a new general mathematical
framework for solving fusion problems and a formalism to describe, analyze and com-
bine all the available information, allowing the possibility for conflicts and paradoxes
between the elements of the frame of discernment. DSmT differs from DST because
it is based on the free Dedekind lattice. It works for any model (free DSm model
and hybrid models - including Shafer’s model as a special case) which fits adequately
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with the true nature of the fusion problem under consideration, expressed in terms
of belief functions, with static and dynamic fusion problematics. DSmT includes the
possibility to deal with evidences arising from different sources of information, which
don’t have access to absolute interpretation of the elements under consideration and
can be interpreted as a general and direct extension of probability theory and the
DST.

15.3.1 Free DSm model

Let Θ = {θ1, θ2} be a set of elements, which cannot be precisely defined and sepa-
rated. A free-DSm model, denoted as Mf (Θ), consists in assuming that all elements
θi, i=1,...n of Θ are not exclusive. The free-DSm model is an opposite to the Shafer’s
model Mo(Θ), which requires the exclusivity and exhaustivity of all elements in Θ.

15.3.2 Hybrid DSm model

A DSm hybrid model M(Θ) is defined from the free-DSm model Mf (Θ) by introduc-
ing some integrity constraints on some elements θi ∈ DΘ, if there are some certain
facts in accordance with the exact nature of the model related to the problem under
consideration. An integrity constraint on θi ∈ DΘ consists in forcing θi to be empty
through the model M(Θ), denoted as θi ≡ ∅. There are several possible kinds of
integrity constraints:

• exclusivity constraints - when some conjunctions of elements θi, i=1,...n of Θ
are truly impossible, i.e. θi ∩ ... ∩ θk ≡ ∅ ;

• non-existential constraints - when some disjunctions of elements θi, i=1,...n of
Θ are truly impossible, i.e. θi ∪ ... ∪ θk ≡ ∅;

• mixture of exclusivity and non-existential constraints , for example (θi∩θj)∪θk

The introduction of a given integrity constraint θi ≡ ∅ implies the set of inner con-
straints B ≡ ∅ for all B ⊂ θi. Shafer’s model Mo(Θ) can be considered as the most
constrained DSm hybrid model including all possible exclusivity constraints without
non-existential constraint, since all elements in the frame are forced to be mutually
exclusive.

15.3.3 Hyper-power set and classical DSm fusion rule

The hyper-power set DΘ is defined as the set of all composite possibilities built from
Θ with ∪ and ∩ operators such that:

1. ∅, θ1, ...θn ∈ DΘ

2. ∀AΘ, B ∈ DΘ, (A ∪B) ∈ DΘ, (A ∩ B) ∈ DΘ
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3. No other elements belong to DΘ, except those, obtained by the previous rules
1 and 2.

From a general frame of discernment Θ with its free-DSm model, it is defined a
mapping m(.) : DΘ → [0, 1] , associated to a given source of evidence, which can
support paradoxical, or conflicting information, as follows:

m(∅) = 0 and
X

A∈DΘ

m(A) = 1

The quantity m(A) is called A’s general basic belief assignment (gbba) or the
general basic belief mass for A. The belief and plausibility functions are defined for
∀A ∈ DΘ :

(

Bel(A) =
P

B∈DΘ,B⊆A m(B)

P l(A) =
P

B∈DΘ,B∩A
=∅ m(B)

The DSm classical rule of combination is based on the free-DSm model. For k ≥ 2
independent bodies of evidence with gbbas , m1(.), m2(.), ...mk(.) over DΘ becomes:

mMf Θ(A) =
X

X1,...,Xk∈DΘ

X1∩...∩Xk=A

k
Y

i=1

mi(Xi) (15.1)

with mMf (Θ) = 0 by definition. This rule is commutative and associative and requires
no normalization procedure.

15.4 Proportional conflict redistribution rule no.5

Instead of distributing equally the total conflicting mass onto elements of power
set as within Dempster’s rule through the normalization step, or transferring the
partial conflicts onto partial uncertainties as within DSm hybrid rule, the idea behind
the Proportional Conflict Redistribution rules is to transfer conflicting masses (total
or partial) proportionally to non-empty sets involved in the model according to all
integrity constraints. The general principle is to :

• calculate the conjunctive rule of the belief masses of sources;

• calculate the total or partial conflicting masses ;

• redistribute the conflicting mass (total or partial) proportionally on non-empty
sets involved in the model according to all integrity constraints.

The way the conflicting mass is redistributed yields to several versions of PCR rules
[7]. These PCR fusion rules work both in DST and DSmT frameworks and for static
or dynamical fusion problematic, for any degree of conflict in [0, 1], for any DSm
models (Shafer’s model, free DSm model or any hybrid DSm model). The most
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sophisticated rule among them is the proportional conflict redistribution rule no. 5
(PCR5). The PCR5 combination rule for only two sources of information is defined
by: mPCR5(∅) = 0 and for ∀X ∈ GΘ{∅

mPCR5(X) = m12(X)+

X

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2.m2(Y )

m1(X) + m2(Y )
+

m2(X)2.m1(Y )

m2(X) + m1(Y )
] (15.2)

where GΘ is the generalized power set; m12(X) corresponds to the conjunctive con-
sensus on X between the two sources and where all denominators are different from
zero. If a denominator is zero, that fraction is discarded. All sets involved in the for-
mula are in canonical form. No matter how big or small is the conflicting mass, PCR5
mathematically does a better redistribution of the conflicting mass than Dempster’s
rule and other rules since PCR5 goes backwards on the tracks of the conjunctive
rule and redistributes the partial conflicting masses only to the sets involved in the
conflict and proportionally to their masses put in the conflict, considering the con-
junctive normal form of the partial conflict. PCR5 is quasi-associative and preserves
the neutral impact of the vacuous belief assignment. An improvement of PCR5, called
PCR6, for the fusion of three sources or more can be found in [7].

15.5 T-conorm/T-norm based combination rules

The TCN rule of combination [8] represents a new class of combination rules based
on specified fuzzy T-Conorm/T-Norm operators. This rule takes its source from
the T-norm and T-conorm operators in fuzzy logics, where the AND logic operator
corresponds in information fusion to the conjunctive rule and the OR logic operator
corresponds to the disjunctive rule. In this work we propose to interpret the fusion/as-
sociation between the sources of information as a vague relation, characterized by the
following two characteristics:

• The way of association between the possible propositions. It is built on the
base of the frame of discernment. It is based on the operations of union and
intersection, and their combinations. These sets’ operations correspond to logic
operations Conjunction and Disjunction and their combinations.

• The degree of association between the propositions. It is obtained as a T-norm
(for conjunction) or T-conorm (for disjunction) operators applied over the pro-
bability masses of corresponding focal elements. While the logic operators deal
with degrees of truth and false, the fusion rules deal with degrees of belief of
hypotheses. Within this work, we focus only on the Minimum T-norm based
Conjunctive rule. It yields results very close to the conjunctive rule, which
is appropriate for identification problems, restricting the set of hypotheses we
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are looking for. It has an adequate behavior in cases of total conflict. It is
commutative and simply to apply.

The general principle of the TCN rule consists in the following steps:

• Step 1: Defining the min T-norm conjunctive consensus. The min T-norm
conjunctive consensus is based on the default min T-norm function. The de-
gree of association between particular propositions X, Y of given two sources
of information m1(.) and m2(.), is defined for A = X ∩ Y as m̃12(A) =
min{m1(X), m2(Y )}, where m̃12(A) represents the basic belief assignments af-
ter the fusion, associated with the given proposition A by using T-norm based
conjunctive rule. The TCN combination rule in Dempster Shafer theory frame-
work is defined for ∀A ∈ 2Θ by the equation:

m(A) =
X

X,Y ∈GΘ

X∩Y =A

min{m1(X), m2(Y )} (15.3)

• Step 2: Distribution of the mass, assigned to the conflicts. To some degree it
follows the distribution of conflicting mass in the most sophisticated DSmT
based Proportional Conflict Redistribution rule number 5 (PCR5) proposed
in [7], but the procedure here relies on fuzzy operators. The particular partial
and total conflicting masses are distributed to all non-empty sets proportionally
with respect to the Maximum between the elements of corresponding mass
matrix’s columns, associated with the given element of the power set. It means
the bigger mass is redistributed towards the element, involved in the conflict
and contributing to the conflict with the maximum specified probability mass.
If X ∩ Y = ∅, and m12(X ∩ Y ) > 0 then X and Y are involved in a particular
partial conflict. One needs to redistribute it to the non-empty sets X and Y
with respect to both: max{m1(X), m2(Y )} and max{m1(Y ), m2(X)}.

• Step 3: The basic belief assignment, obtained as a result of the applied TCN
rule becomes:

m̃12TCN (A) =
X

X,Y ∈GΘ

X∩Y =A

min{m1(X), m2(Y )}+

X

X∈GΘ

X∩A=∅

(m1(A)× min{m1(A),m2(X)}
max{m1(A), m2(X)}+

m2(A)× min{m2(A), m1(X)}
max{m2(A),m1(X)} ) (15.4)

where GΘ is a DSm generalized hyper power set, which in case of Shafer’s
model becomes reduced to the power set 2Θ.
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• Step 4: Normalization of the result. The final step of the TCN fusion rule
concerns the normalization procedure:

m̃TCN (A) =
m̃TCN (A)

P

A∈Gθ m̃TCN (A)
(15.5)

The TCN combinational rule does not belong to the general Weighted Operator
Class. The nice features of the new rule could be defined as: very easy to
implement, satisfying the impact of neutrality of Vacuous Belief Assignment;
commutative, convergent to idempotence, reflecting majority opinion, assuring
an adequate data processing and interpretation in case of total conflict. These
main features make it appropriate for the needs of temporal data fusion.

15.6 Measure of estimation based on generalized
pignistic probabilities

The minimum of relative variation of generalized pignistic probabilities within DSmT,
conditioned by the correct assignment δi(P


) is chosen as a measure of correct data
association. It is defined from a partial ordering function of the hyper-power set,
which is the base of DSmT. It is proven that this measure outperforms all methods,
examined in [6] for correct solving of Blackman’s association problem. Our goal is to
estimate and compare the performance of the TCN combination rule on the base of
the best criterion:

δi(P
∗) =

| Δi(P
∗|Z) − Δi(P

∗/Ẑ = Ti) |
Δi(P ∗/Ẑ = Ti)

(15.6)

where
8

>

<

>

:

Δi(P
∗/Z) =

Pn
j=1

|P∗
TiZ(θj)−P∗

Ti
(θj)|

P∗
Ti

(θj)
,

Δi(P
∗/Ẑ = Ti) =

Pn
j=1

|P∗
TiZ=Ti

(θj )−P∗
Ti

(θj )|
P∗

Ti
(θj )

.

The term P 
(.) represents a generalized pignistic probability, according to a given
proposition; Δi(P


) defines the relative variations of corresponding pignistic proba-
bilities; Δi(P


/Ẑ = Ti) is obtained as for Δi(P

) by forcing the new measurement’s

bba to be equal to the given track’s bba, i.e. mZ(.) = mT1(.) for pignistic probabi-
lities P 


TiZ(θj) derivation. In the next section we will test its performance to resolve
the BAP on the base of the TCN rule and will compare it with the results, obtained
by DST, i.e. Δi(P

∗/Ẑ = Ti) is obtained by forcing the measurement’s attribute mass
vector to be the same as the attribute mass vector of the considered target’s bba,
i.e. mZ(.) = mTi(.). The decision for the right association relies on the minimum of
Δi(P


).
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15.7 Simulation results

In table 15.1, the performance evaluation of several methods for solving the BAP
are shown. We compare the percentage of success in correct BAP resolving by the
new TCN combination rule, DSmT based Proportional Conflict Redistribution rule
number 5 and Dempster’s rule with the corresponding measure of correct association
as follows:

• TCN combinational rule and the best criterion based on the relative varia-
tions of generalized pignistic probabilities build from DSmT (and the free DSm
model)

• DSmT based Proportional Conflict Redistribution rule number 5 and the crite-
rion based on the relative variations of generalized pignistic probabilities build
from DSmT

• Dempster’s rule of combination and: (i) Dempster-Shafer theory based Black-
man approach; (ii) DST based Min Conflict approach; (iii) DST based Meta
conflict approach; (iiii) DST based Min Entropy approach.

The evaluation of methods’ performances/efficiency is estimated through Monte-
Carlo simulations. They are based on 10.000 independent runs. A basic run consists
in generating randomly the two predicted bba: mT1 , mT2 and the new observed bba
mZ according to a random assignment mZ(.) ⇔ mT1(.) or mZ(.) ⇔ mT2(.) . Then
we evaluate the percentage of right assignments for the given association criterion.
The evaluation of the method proposed here for BAP’s solving is performed on the
base of the association criterion, proven to be the best among the investigated ones
in [6]. The results show that all the methods, applied as measures of correct data
associations within Dempster-Shafer theory lead to non-adequate and non-reliable
decisions. Dempster’s rule of combination can give rise to some paradoxes/anomalies
and can fail to provide the correct solution for some specific association problems.
Monte Carlo simulations show that only methods based on the new TCN combination
rule and DSmT based PCR5 rule with the minimum relative variations of generalized
pignistic probabilities measure outperform all methods examined in this work.
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Rule and Approach for solving BAP % of success

TCN rule
Relative variations of generalized pignistic probabilities
build from DSmT (free DSm model) 100

DSmT based PCR5 rule
Relative variations of generalized pignistic probabilities
build from DSmT (free DSm model) 100

Dempster’s rule
DST based Blackman approach 70.31

Dempster’s rule
DST based Min Conflict approach 70.04

Dempster’s rule
DST based Meta Conflict approach 70.04

Dempster’s rule
DST based Min Entropy approach 64.50

Table 15.1: Performance Evaluation of Methods for Solving Blackman’s Asso-
ciation Problem.

15.8 Conclusions

We focused our attention on the paradoxical Blackman’s association problem and
propose a new approach to outperform Blackman’s solution. The proposed approach
utilizes the recently defined new class fusion rule based on fuzzy T-conorm/T-norm
operators. It is applied and tested together with a Dezert-Smarandache theory based,
relative variations of generalized pignistics probabilities measure of correct associa-
tion, defined from a partial ordering function of the hyper-power set. The ability of
this approach to solve the problem against the classical Dempster-Shafer’s method,
proposed in the literature, is proven. It is shown that it assures an adequate data
processing in case of high conflict between sources of information, when Dempster’s
rule yields counter-intuitive fusion results and improves the separation power of the
decision process for the considered association problem.
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16.1 Introduction

In order to improve the performances of Generalized Data Association (GDA) in
tracking algorithms [12]1, we investigate here the possibility of using uncertain clas-
sifier attribrute decisions coupled with a sequential fusion mechanism based either
on a Proportional Conflict Redistribution (PCR [12]) fusion rule or on a hybrid
(DSmH [10]) rule. The novelty of this chapter lies (aside the fusion mechanism itself)
in the way the decision-making is carried out for tracking the types of targets under
observation. In this work we analyze and show the difference of performances ob-
tained for the decision-making support by the classical betting/pignistic probability
(BetP) introduced in nineties by Smets [13], and the new probabilistic transformation,
denoted DSmP, developed by Dezert and Smarandache in [5]. We will show that BetP
and DSmP yield to same performances when the optimistic PCR fusion rule is used,
but that DSmP outperforms slightly BetP if the more prudent/cautious DSmH fusion
rule is preferred by the fusion system designer. This chapter extends and improves our
previous works on the Target Type Tracking problem (TTT) published in [3] and [12].

In section 16.2 and 16.3, we briefly introduce DSmT (Dezert-Smarandache The-
ory) and its two main rules of combination: the PCR rule no. 5 and the DSm hybrid
rule2. In section 16.4, we recall the classical pignistic transformation of a belief
mass into a subjective probability measure and we also present our new probabilistic
transformation DSmP which provides in general a better Probabilistic Information
Content (PIC) than with BetP. In section 16.5, we present the general mechanism
for solving the TTT problem and simulations results and comparisons presented and
discussed in section 16.6. The section 16.7 concludes this work.

16.2 A short introduction of DSmT

In Dempster-Shafer Theory (DST) framework [8], one considers a frame of discern-
ment Θ = {θ1, . . . , θn} as a finite set of n exclusive and exhaustive elements (i.e.
Shafer’s model denoted M0(Θ)). The power set of Θ is the set of all subsets of Θ.
The order of a power set of a set of order/cardinality |Θ| = n is 2n. The power set of Θ
is denoted 2Θ. For example, if Θ = {θ1, θ2}, then 2Θ = {∅, θ1, θ2, θ1 ∪ θ2}. In Dezert-
Smarandache Theory (DSmT) framework [10, 12], one considers Θ = {θ1, . . . , θn} be
a finite set of n exhaustive elements only (i.e. free DSm-model denoted Mf (Θ)).
Eventually some integrity constraints can be introduced in this free model depending
on the nature of problem we have to cope with. The hyper-power set of Θ (i.e. the
free Dedekind’s lattice) denoted DΘ [10] is defined as:

1. ∅, θ1, . . . , θn ∈ DΘ.

1Chapter 12.
2DSmH is a natural extension of Dubois and Prade fusion rule [6] for dealing with dy-

namical frames of discernments.
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2. If A, B ∈ DΘ, then A ∩B and A ∪B belong to DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1 and 2.

If |Θ| = n, then |DΘ| ≤ 22n−1. Since for any finite set Θ, |DΘ| ≥ |2Θ|, we
call DΘ the hyper-power set of Θ. For example, if Θ = {θ1, θ2}, then DΘ =
{∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}. The free DSm model Mf (Θ) corresponding to DΘ allows
to work with vague concepts which exhibit a continuous and relative intrinsic nature.
Such concepts cannot be precisely refined in an absolute interpretation because of the
unreachable universal truth. It is clear that Shafer’s model M0(Θ) which assumes
that all elements of Θ are truly exclusive is a more constrained model than the free-
DSm model Mf (Θ) and the power set 2Θ can be obtained from hyper-power set DΘ

by introducing in Mf (Θ) all exclusivity constraints between elements of Θ. Between
the free-DSm model Mf (Θ) and Shafer’s model M0(Θ), there exists a wide class of
fusion problems represented in term of the DSm hybrid models denoted M(Θ) where
Θ involves both fuzzy continuous hypothesis and discrete hypothesis. The main dif-
ferences between DST and DSmT frameworks are (i) the model on which one works
with, and (ii) the choice of the combination rule and conditioning rules [10, 12]. In
the sequel, we use the generic notation GΘ for denoting either DΘ (when working in
DSmT with free DSm model) or 2Θ (when working in DST with Shafer’s model).

From any finite discrete frame Θ, we define a generalized basic belief assignment
as a mapping m(.) : GΘ → [0, 1] associated to a given body of evidence B which
satisfies

m(∅) = 0 and
X

A∈GΘ

m(A) = 1 (16.1)

m(A) is the generalized basic belief assignment/mass (bba) of A. The belief and
plausibility functions are defined as:

Bel(A) �
X

B⊆A

B∈GΘ

m(B) and Pl(A) �
X

B∩A
=∅
B∈GΘ

m(B) (16.2)

These definitions are compatible with the Bel and Pl definitions given in DST when
M0(Θ) holds. When the free DSm model Mf (Θ) holds, the pure conjunctive con-
sensus, called DSm classic rule (DSmC), is performed on GΘ = DΘ. DSmC of two
independent3 sources associated with gbba m1(.) and m2(.) is thus given ∀C ∈ DΘ

by [10]:

mDSmC(C) =
X

A,B∈DΘ

A∩B=C

m1(A)m2(B) (16.3)

DΘ being closed under ∪ and ∩ operators, DSmC guarantees that m(.) is a proper
bba.

3While independence is a difficult concept to define in all theories managing epistemic
uncertainty, we consider that two sources of evidence are independent (i.e. distinct and
noninteracting) if each leaves one totally ignorant about the particular value the other will
take.
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16.3 DSmH and PCR5 combination rules

16.3.1 DSmH combination rule

When Mf (Θ) does not hold (some integrity constraints exist), one deals with a
proper DSm hybrid model M(Θ) �= Mf (Θ). The DSm hybrid rule (DSmH) for
k ≥ 2 independent sources is thus defined for all A ∈ DΘ as [10]:

mDSmH(A) � φ(A) ·
h

S1(A) + S2(A) + S3(A)
i

(16.4)

where φ(A) is the characteristic non-emptiness function of a set A, i.e. φ(A) = 1 if
A /∈ ∅ and φ(A) = 0 otherwise, where ∅ � {∅M, ∅}. ∅M is the set of all elements of
DΘ which have been forced to be empty through the constraints of the model M and
∅ is the classical/universal empty set. S1(A) ≡ mMf (θ)(A), S2(A), S3(A) are defined
by

S1(A) �
X

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

k
Y

i=1

mi(Xi) (16.5)

S2(A) �
X

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k
Y

i=1

mi(Xi) (16.6)

S3(A) �
X

X1,X2,...,Xk∈DΘ

u(X1∩X2∩...∩Xk)=A
(X1∩X2∩...∩Xk)∈∅

k
Y

i=1

mi(Xi) (16.7)

where each element is in the disjunctive normal form (i. e. disjunctions of conjunc-
tions); U � u(X1) ∪ . . . ∪ u(Xk) where u(X) is the union of all θi that compose X,
It � θ1 ∪ . . . ∪ θn is the total ignorance. S1(A) is nothing but the DSmC rule for k
independent sources based on Mf (Θ); S2(A) is the mass of all relatively and abso-
lutely empty sets which is transferred to the total or relative ignorances associated
with non existential constraints (if any, like in some dynamic problems); S3(A) trans-
fers the sum of relatively empty sets directly onto the canonical disjunctive form of
non-empty sets. DSmH generalizes DSmC and allows to work on Shafer’s model. It
is definitely not equivalent to Dempster’s rule since these rules are different. DSmH
works for any models (free DSm model, Shafer’s model or any hybrid models) when
manipulating precise bba and is actually an extension of Dubois and Prade’s rule for
working with static or dynamic frames as well [10].

16.3.2 PCR5 combination rule

Instead of distributing equally the total conflicting mass onto elements of 2Θ as within
Dempster’s rule through the normalization step, or transferring the partial conflicts
onto partial uncertainties as within DSmH rule, the idea behind the Proportional
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Conflict Redistribution rules [11, 12] is to transfer conflicting masses (total or partial)
proportionally to non-empty sets involved in the model according to all integrity
constraints. The general principle of PCR rules is then to :

1. calculate the conjunctive rule of the belief masses of sources ;

2. calculate the total or partial conflicting masses ;

3. redistribute the conflicting mass (total or partial) proportionally on non-empty
sets involved in the model according to all integrity constraints.

The way the conflicting mass is redistributed yields actually to several versions of
PCR rules. These PCR fusion rules work for any degree of conflict in [0, 1], for any
DSm models (Shafer’s model, free DSm model or any hybrid DSm model) and both
in DST and DSmT frameworks for static or dynamical fusion problems. We just now
present only the most sophisticated proportional conflict redistribution rule no. 5
(PCR5) since this rule that we feel is the most efficient PCR fusion rule proposed so
far for sequential fusion problem like in this TTT problem. The PCR5 combination
rule for only two sources is defined by: mPCR5(∅) = 0 and ∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X)+

X

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (16.8)

where each element X, and Y , is in the disjunctive normal form. m12(X) corresponds
to the conjunctive consensus on X between the two sources. All denominators are
different from zero. If a denominator is zero, that fraction is discarded. No matter
how big or small is the conflicting mass, PCR5 mathematically does a better redis-
tribution of the conflicting mass than Dempster’s rule and other rules since PCR5
goes backwards on the tracks of the conjunctive rule and redistributes the partial
conflicting masses only to the sets involved in the conflict and proportionally to their
masses put in the conflict, considering the conjunctive normal form of the partial
conflict. PCR5 is quasi-associative and preserves the neutral impact of the vacuous
belief assignment.

16.3.3 How to choose between PCR5 and DSmH

It is important to note that we don’t claim that PCR5 is better than DSmH, neither
the opposite, since they apply differently. All depends actually on the point of view
the fusion system designer and the risk he/she is ready to accept. If the fusion system
designer is pessimistic (not confident) about the singletons of the frame, then it is safer
to use DSmH and transfer the partial conflicting mass to the corresponding partial
ignorance. But if he/she is optimistic (confident) about the singletons of the frame,
then he/she can apply PCR5 to transfer the conflicting mass back to the singletons
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involved in that conflict for more specificity. In short summary, the main differences
between DST and DSmT are (1) the model on which one works with, and (2) the
choice of the combination rule and its possibility to deal with qualitative beliefs as
well [12].

16.4 Probabilistic belief transformations

In order to take a decision from a basic belief assignment m(.), a common adopted
approach consists in approximating the bba m(.) by a subjective probability measure
P (.) through a given probabilistic transformation and then choose the element of the
frame which has the highest probability. Several transformations have been proposed
in the literature mainly by Smets in the nineties [13, 14], later by Sudano [15–18]
and last year by Cuzzolin [1, 2]. In chapter 3, we proposed a new probabilistic
transformation, denoted DSmP (.), which outperforms all previous transformations
in term of maximum of Probabilistic Information Content (PIC) [15, 16, 18]. In
this chapter, we focuse our presentation and comparison only on Smets’ pignistic
transformation, denoted BetP (.) and on our new DSmP (.) since BetP (.) is well
known and generally adopted by the community of researchers and engineers working
with belief functions. A detailed comparison of all main probabilistic transformations
of bba can be found in [5].

16.4.1 Classical and generalized pignistic probabilities

The basic idea of Smets’ pignistic transformation [13], denoted BetP (.) consists in
transferring the positive mass of belief of each non specific element (also called partial
or total ignorance) onto the singletons involved in that element split by the cardinality
of the proposition. In Dempster-Shafer framework [8] (when working with normalized
basic belief assignments (bba’s) and with m(∅) = 0), BetP (.) is defined by BetP (∅) =
0 and ∀X ∈ 2Θ \ {∅} by:

BetP (X) =
X

Y ∈2Θ

X⊆Y

1

|Y |m(Y ) = m(X) +
X

Y ∈2Θ

X⊂Y

1

|Y |m(Y ) (16.9)

where 2Θ is the power set of the finite and discrete frame Θ with Shafer’s model,
i.e. all elements of Θ are assumed truly exclusive. This transformation has been
generalized in DSmT for any model of the frame (free DSm model, hybrid DSm model
and Shafer’s model as well) [10]. It is defined by BetP (∅) = 0 and ∀X ∈ GΘ \ {∅} by

BetP (X) =
X

Y ∈GΘ

CM(X ∩ Y )

CM(Y )
m(Y ) (16.10)

where GΘ corresponds to the hyper-power set including all the integrity constraints
of the model (if any); CM(Y ) denotes the DSm cardinal of Y , i.e. the number of parts
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of Y in the Venn diagram of the model M of the frame Θ under consideration [10]4.
The formula (16.10) reduces to (16.9) when GΘ reduces to classical power set 2Θ

when one adopts Shafer’s model.

16.4.2 A new generalized pignistic transformation

In chapter 3 and [5], we have developed a new generalized quantitative pignistic trans-
formation denoted DSmP (.) to avoid confusion with the previous BetP (.) transfor-
mation. DSmP (.) has also been extended in [5] to deal with qualitative belief as-
signments but it is out of the scope of this chapter and this will not be presented
here. The new DSmP (.) transformation is straightforward, different from Smets’,
Sudano’s and Cuzzolin’s transformations. The two last ones are more refined than
Smets’ approach but less interesting and efficient in our opinions than DSmP (.)
as proved in [5]. The basic idea of our DSmP (.) transformation consists in a new
way of proportionalizations of the mass of each partial ignorance such as A1 ∪A2 or
A1 ∪ (A2 ∩ A3) or (A1 ∩ A2) ∪ (A3 ∩ A4), etc., and the mass of the total ignorance
A1 ∪ A2 ∪ . . . ∪ An, to the elements involved in the ignorances. The main innova-
tion in this new transformation is to take into account both the values of the belief
masses and the cardinality of elements in the redistribution process, contrariwise to
previous transformations proposed in the literature so far. We first recall what is the
Probabilistic Information Content (PIC) of any given discrete probability measure
P (.) and then we briefly present the DSmP (.) formula. In the next section, after
presenting the Target Type Tracking problem, we will show how DSmP (.) performs
with respect to BetP (.) from Monte Carlo simulations based on classifier decisions
in a three-targets-type scenario.

16.4.2.1 The probabilistic information content

The probabilistic information content (PIC) is a criterion introduced by John Su-
dano [16] for depicting the strength of a critical decision by a specific probability
distribution. PIC is an essential measure in any threshold-driven automated decision
system. A PIC value of one indicates the total knowledge (i.e. minimal entropy)
or information to make a correct decision (one hypothesis has a probability value of
one and the rest of zero). A PIC value of zero indicates that the knowledge or infor-
mation to make a correct decision does not exist (all the hypothesis have an equal
probability value), i.e. one has the maximal entropy. Mathematically, the PIC of a
probability measure P{.} associated with a probabilistic source over a discrete frame
Θ = {θ1, . . . , θn} is defined by:

PIC(P ) = 1 +
1

Hmax
·

n
X

i=1

P{θi} log2(P{θi}) (16.11)

4Chapter 7.
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The PIC is nothing but the dual of the normalized Shannon entropy [9] and thus
is actually unit less. PIC(P ) takes its values in [0, 1]. PIC(P ) is maximum, i.e.
PICmax = 1 with any deterministic probability and it is minimum, i.e. PICmin = 0,
with the uniform probability over the frame Θ. The simple relationships between
Shannon’s entropy H(P ) and PIC(P ) are PIC(P ) = 1 − H(P )

Hmax
and H(P ) = Hmax ·

(1 − PIC(P )) where Hmax is the maximum value achievable by Shannon’s entropy,
i.e. Hmax = −Pn

i=1
1
n

log2(
1
n
) = log2(n).

16.4.2.2 The DSmP formula

Let’s consider a discrete frame Θ with a given model (free DSm model, hybrid DSm
model or Shafer’s model), the DSmP transformation is defined by DSmPε(∅) = 0
and ∀X ∈ GΘ \ {∅} by

DSmPε(X) =
X

Y ∈GΘ

X

Z⊆X∩Y
C(Z)=1

m(Z) + ε · C(X ∩ Y )

X

Z⊆Y
C(Z)=1

m(Z) + ε · C(Y )
m(Y ) (16.12)

where ε ≥ 0 is a tuning parameter and GΘ corresponds to the hyper-power set in-
cluding eventually all the integrity constraints (if any) of the model M; C(X ∩ Y )
and C(Y ) denote the DSm cardinals5 of the sets X ∩ Y and Y respectively.

The parameter ε allows to reach the maximum value the Probabilistic Information
Content (PIC) of the approximation of m(.) into a subjective probability measure.
The smaller ε is, the better/bigger PIC value is. In some particular degenerate
cases however, the DSmPε=0(.) values cannot be derived, but the DSmPε>0(.) val-
ues can however always be derived by choosing ε as a very small positive number, say
ε = 1/1000 for example in order to be as close as we want to the maximum of the
PIC (see examples in [5]). It is interesting to note also that when ε = 1 and when
the masses of all elements Z having C(Z) = 1 are zero, the DSmP formula (16.12)
reduces to the formula (16.10), i.e. DSmPε=1(.) = BetP (.). The passage from a free
DSm model to a Shafer’s model involves the passage from a structure to another one,
and the cardinals change as well in the DSmP formula.

16.4.2.3 Advantages of DSmP

It has been shown in [5] that among all main probabilistic belief transformations
proposed so far, only DSmP (.) transformations yields the highest PIC value and its

5We have omitted the index of the model M for notational convenience.
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main advantage is that it works for all models (free, hybrid and Shafer’s) - while
other transformations work for Shafer’s model only. In order to apply other transfor-
mations we had to first refine the frame Θ (the cases when it is possible!) in order
to work with Shafer’s model, and then apply their formulas. In the case when it is
possible to build a ultimate refined frame, then one can apply the other subjective
probabilities on the refined frame. DSmPε(.) works on the refined frame as well and
gives the same result as it does on the non-refined frame. Thus DSmPε>0 transfor-
mation works on any model and so is very general and appealing. DSmPε(.) can be
seen as a combination of Sudano’s PrBel(.) transformation [17] and Smets’ BetP (.).
The advantages and limitations of Smets [13],ChapterTTTDSmP-Sudano [15–18] and
Cuzzolin [1, 2] transformations have been discussed in details in [5].

16.5 The target type tracking problem

The Target Type Tracking Problem can be simply stated as follows [3, 4]:

• Let k = 1, 2, ..., kmax be the time index and consider M possible target types
Ti ∈ Θ = {θ1, . . . , θM} in the environment; for example in air target surveil-
lance systems Θ could be Θ = {Interceptor,F ighter,Cargo} and T1 � Interceptor,
T2 � Fighter, T3 � Cargo, in ground target surveillance systems Θ could be
Θ = {Tank, T ruck, Car, Bus} [7], etc.

• at each instant k, a target of true type T (k) ∈ Θ (not necessarily the same
target) is observed by an attribute-sensor (we assume a perfect target detection
probability here).

• the attribute measurement of the sensor (say noisy Radar Cross Section for
example) is then processed through a classifier which provides a decision Td(k)
on the type of the observed target at each instant k.

• The sensor is in general not totally reliable and is characterized by a M × M
confusion matrix

C = [cij = P (Td = Tj |TrueTargetType = Ti)]

We had proposed and analyzed in [3, 4] a method for solving the Target Type
Tracking Problem which was based on Shafer’s model for the frame of Target Types Θ
and the sequential/temporal combination of basic belief assignments (measurements)
with prior belief mass available at previous step/scan to update at each current step
the belief in each target type. So we gave a solution to estimate T (k) from the se-
quence of declarations done by the unreliable classifier up to time k, i.e. we built
an estimator T̂ (k) = f(Td(1), Td(2), . . . , Td(k)) of T (k). The decision about the tar-
get type was then taken from Smets’ BetP (.) transformations of the updated belief
assignment/mass. We had shown the efficiency of PCR5 fusion rule with respect
to its main alternatives to track efficiently the true target type of the target under
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observation at each scan. Our Target Type Tracker consisted in the sequential com-
bination of the current basic belief assignment (drawn from classifier decision, i.e.
our measurements) with the prior bba estimated up to the current time from all past
classifier declarations and can be sketched by the following steps:

• a) Initialization step (i.e. k = 0). Select the target type frame Θ = {θ1, . . . , θM}
and set the prior bba m−(.) as vacuous belief assignment, i.e m−(θ1∪. . .∪θM ) =
1 since one has no information about the first target type that will be observed.

• b) Generation of current observation: We investigate in this chapter three
possible modelings for building mobs(.) from the current decision Td(k) and
the confusion matrix. Let’s assume that Td(k) = Tj , j ∈ {1, 2, . . . , M} and
let’s denote by Sj the sum of the j-th column of the confusion matrix C, i.e.
Sj =

P

i=1,M cij .

– Modeling #1 (probabilistic bba modeling) : For i = 1, . . . , M , one takes
mobs(θi) = cij/Sj .

– Modeling #2: We commit a belief only to θj and to the 2D partial
ignorances which include θj , i.e. one takes mobs(θi ∪ θj) = cij/Sj .

– Modeling #3: We commit a belief only to θj and the full ignorance, i.e.
one takes mobs(θj) = cjj/Sj and mobs(θ1 ∪ . . . ∪ θM ) = 1− cjj/Sj .

• c) Combination of current bba mobs(.) with prior bba m−(.) to get the esti-
mation of the current bba m(.). Symbolically we will write the generic fusion
operator as ⊕, so that m(.) = [mobs ⊕m−](.) = [m− ⊕mobs](.). The combina-
tion ⊕ is done according either with DSmH fusion rule (i.e. m(.) = mDSmH(.))
or with PCR5 rule (i.e. m(.) = mPCR5(.)) to show what happens in simulation
if one adopts a pessimistic or an optimistic point of view of the fusion process.

• d) Estimation of True Target Type is obtained from m(.) by taking the singleton
of Θ, i.e. a Target Type, having the maximum of BetP (.) or the maximum of
DSmP (.).

• e) set m−(.) = m(.); do k = k + 1 and go back to b).

In this chapter, we follow the same target type tracking approach as in [3, 4] but
we complicate a bit the scenario and we want to see how the new proposed DSmP (.)
transformation performs with respect to BetP (.) with the different bba modelings
for observations. For doing this we examine the PCR5 and DSmH fusion rules for
the sequential update of belief mass of target types. The two fusion rules correspond
actually to the confidence the fusion system designer has in the singletons of the
frame. If the fusion system designer is not confident in the singletons, then he/she
would prefer to use DSmH, otherwise he/she would prefer to use PCR5.
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16.6 Simulations results

In order to analyze, evaluate and to compare fairly the performances of both proba-
bilistic belief transformations (BetP(.) and the new DSmP(.) one), for the sequential
(temporal) estimation of target ID in the Target Type Tracking problem considered
here, we did a set of Monte-Carlo simulations, based on an assumed scenario for a
3D Target Type frame, i.e.

Θ = {(I)nterceptor, (F )ighter, (C)argo}
for a given classifier, corresponding to the following confusion matrix:

C =

2

4

0.7 0.2 0.1
0.15 0.7 0.15
0.1 0.2 0.7

3

5

The confusion matrix is asymmetric, reflecting the degree of mutual discrimina-
tion between the considered target types. In our scenario we consider that there are
three closely-spaced targets: one interceptor, one fighter and one cargo. Due to cir-
cumstances, attribute measurements received come from one or another target, and
all three targets generate actually one single (unresolved kinematically) track.

In the real world, the tracking system should in this case maintain three separate
tracks: one for interceptor, one for fighter and one for cargo, and then, based on
the classification, allocate the measurement to the proper track. But in a difficult
scenario like this one, there is no way in advance to know the true number of targets
because they are unresolved and that’s why only a single track is maintained. Of
course, the single track can further be split into three separate tracks as soon as three
different targets are declared based on the attribute tracking. This is not the purpose
of our work however since we only want to examine how the new probabilistic belief
transformation works, and to compare its performance with the well known BetP
transformation for Target Type Tracking.

To simulate such scenario, a true Target Type sequence over 200 scans was gen-
erated according to figure 16.1. The target type sequence (Groundtruth) is charac-
terized with variable switches’ time steps, starting with the observation of a Cargo
Type (called Type 3) during the first 20 scans. Then the observation of the Target
Type switches four times: onto Fighter Type (called Type 2) during time duration
of 25 scans; again onto Cargo Type during the next 25 scans; onto Interceptor Type
(called Type 1) during the next 15 scans and finally, again to Cargo Type during the
last 115 scans. As a simple analogy, tracking the target type changes committed to
the same (hidden unresolved) track can be interpreted as tracking color changes of a
chameleon moving in a tree on its leaves and on its trunk.

Our simulation consists in 500 Monte-Carlo runs and we compute, show and
analyze in the sequel the averaged performances of the two probabilistic belief trans-
formations, applied over the results of sequential fusion, performed via PCR5 and
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DSmH combinational rules. At each time step k the decision Td(k) is randomly gen-
erated according to the corresponding row of the confusion matrix of the classifier
given the true Target Type (known in simulations). Then the algorithm presented in
the previous section is applied.
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Figure 16.1: Sequence of True Target Type (Groundtruth).

16.6.1 Results based on DSmH fusion

The lack of confidence about the singletons of the frame justifies the application of
DSmH combination rule and we test the three modelings for the measurement’s basic
belief assignment as proposed in step b) of the TTT algorithm described in the section
16.5. Figures 16.2 and 16.3 show the performances of DSmP and BetP probabilistic
belief transformations obtained by our Target Type Tracker based on DSmH fusion
rule for the three measurement’s bba modelings. We have set the tuning parameter
ε = 0.0001 when applying the DSmP transformation. From these figures, one clearly
sees the advantage of DSmP transformation with respect to BetP transformation
since the level of probabilty of the true target type under observation is clearly bigger
with DSmP than with BetP. DSmP shows a faster reaction to the target type changes
than BetP, shortening that way the time for correct decision-making in comparison
to BetP. It is also interesting to note that modelings 2 and 3 provide significantly
higher PIC than with modeling 1. This is because modelings 2 and 3 are less strict
than modeling 1 and thus offer a better ability to readapt after Target ID switches.
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Figure 16.2: DSmP (.) results after using DSmH rule of combination.
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Figure 16.3: BetP (.) results after using DSmH rule of combination.
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16.6.2 Results based on PCR5 fusion

The possible confidence of the fusion system designer about the singletons of the
frame justifies the application of PCR5 combination rule of our TTT algorithm. Fig-
ures 16.4 and 16.5, show the performances of DSmP and BetP probabilistic belief
transformations obtained by our Target TypeTracker based on PCR5 fusion rule,
according to Interceptor, Fighter and Cargo types respectively and for the three
measurements’ bba modelings considered in this work. Here again ε = 0.0001 when
applying DSmP (.) transformation.

It had been proven in [3, 4] that the TTT based on PCR5 fusion rule tracks
properly the quick changes of target type, with a very short latency delay in order
to produce the correct target type decision. Since PCR5 reacts faster to the target
target changes, then the mass of ignorance quickly decreases because of the strict
redistribution of conflicting mass (total or partial) proportionally on non-empty sets
involved in the considered model. In parallel, the mass to be transferred to single-
tons decreases very fast. Because of this, the behavior of both probabilistic belief
transformations (DSmP and BetP) converge very quickly. When the mass assigned
to the ignorance becomes zero, DSmP and BetP coincide. Here again we see the ad-
vantage of using bba modeling 2 and 3 with respect to bba modeling 1, even though
the difference between performances is less important than when using DSmH fusion
rule.

16.6.3 Results based on Dempster-Shafer rule

We provide in figures 16.6 and 16.7 the results obtained when applying Dempster-
Shafer rule for this scenario with same inputs and bba modelings 1, 2 or 3. We clearly
see that this rule under same conditions cannot track correctly the types of targets
under observation whichever probabilistic transformation DSmP (.) or BetP (.) is
chosen for decision-making.
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Figure 16.4: DSmP (.) results after using PCR5 rule of combination
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Figure 16.5: BetP (.) results after using PCR5 rule of combination.
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Figure 16.6: DSmP (.) results after using DS rule of combination.
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Figure 16.7: BetP (.) results after using DS rule of combination.
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16.7 Conclusions

This chapter concerned the application of a new probabilistic belief transformation,
denoted DSmP, for solving the Target Type Tracking problem (TTT). We have con-
sidered three types of targets (Interceptor, Fighter and Cargo) in our scenario and
have shown how the types of each target can be efficiently estimated from the se-
quential outputs/decisions of a classifier and its confusion matrix when using differ-
ent belief mass modelings with DSmT fusion rules couples with DSmP. The advan-
tages of DSmP over the classical pignistic transformation have been shown through
Monte-Carlo simulations. Based on our previous works for the justification of rules
of combination for the TTT problem, only the Proportional Conflict Redistribution
rule no. 5 and the DSm hybrid fusion rules were considered in this work for their
ability to deal consistently with high conflicting sources of evidence in an optimistic
or a pessimistic/cautious way. From our analysis one can clearly conclude on the
advantage of the new DSmP transformation with respect to BetP whenever the cau-
tious DSmH fusion rule is used. When PCR5 fusion rule is preferred, DSmP and
BetP provide very quickly almost the same performances because PCR5 reduces effi-
ciently and quickly the masses committed to ignorances (partial or total) and in such
case, DSmP and BetP mathematically coincide. We can claim that DSmP provides
a stable and faster reacting behavior than BetP and reduces the delay for correct
decision-making in comparison with BetP. Our simulation results show also the ad-
vantage of using uncertain bba modelings of type 2 and/or 3 over the probabilistic
bba modeling 1 in term of higher level of probability of correct ID estimation.
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Abstract: This chapter presents a framework for multi-biometric
match score fusion when non-ideal conditions cause conflict in the
results of different unimodal biometrics classifiers. The proposed
framework uses belief function theory to effectively fuse the match
scores and density estimation technique to compute the belief assign-
ments. Fusion is performed using belief models such as Transferable
Belief Model and Proportional Conflict Redistribution rule followed
by the likelihood ratio based decision making. Two case studies on
multiclassifier face verification and multiclassifier fingerprint veri-
fication show that the proposed fusion framework with PCR5 rule
yields the best verification accuracy even when individual biometric
classifiers provide conflicting match scores.
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17.1 Introduction

The performance of the biometric recognition algorithms depends on several factors
such as biometric modality, application environment, and database. For example,
the performance of fingerprint recognition algorithms depend on the quality of fin-
gerprint to be recognized, the resolution and the type of the fingerprint sensor, and
the number of features present in the image. The face recognition algorithms require
good quality images with representative training database. Signature biometrics de-
pend on the type of pen and mode of capture. Variation in any of these factors often
lead to poor verification performance. To overcome this problem, researchers have
proposed the use of multi-biometrics for recognition. Multi-biometrics combines two
or more biometric modalities and it has been established that fusion of multiple bio-
metric evidences enhances the recognition performance [12, 19]. Biometric fusion can
be performed at data level, at feature level, at match score level, at decision level,
or at rank level. Data level fusion combines raw biometric data such as infrared and
visible face images. Feature level fusion combines multiple features extracted from
the individual biometric data to generate a new feature vector which is subsequently
used for recognition. In match score fusion, the features extracted from individual
biometric are first matched to compute the corresponding match scores which are
then combined to generate a fused match score. In decision level fusion, decisions
of individual biometric classifiers are fused to compute a combined decision. Rank
level fusion involves combining identification ranks obtained from multiple unimodal
identification systems. Further, multi-biometrics can be a multiclassifier system, a
multi-unit system, or a multimodal system. In multiclassifier systems, different clas-
sifiers are used to extract different types of features to perform matching and fusion.
For example, in face biometrics, global and local facial features can be extracted us-
ing different classifiers/algorithms and then information can be fused. In multi-unit
system, multiple samples of the same biometrics are used for feature extraction and
fusion. For example, texture features can be extracted for both left and right iris im-
ages and then information from these images are combined. In multimodal system,
information from two or more modalities are combined, e.g. face-fingerprint bimodal
system.

In this research, we focus on match score fusion to enhance the performance of
biometric systems. Existing biometric match score fusion algorithms can be divided
into three categories: statistical fusion algorithms, learning based fusion algorithms,
and belief function theory based fusion algorithms. Statistical fusion algorithms are
based on statistical rules such as AND rule, OR rule, and SUM rule [15]. Learning
based fusion algorithms use learning techniques such as support vector machine and
neural network to train the fusion algorithm and then use the trained model to decide
whether an individual is genuine or an impostor [2]. Belief function theory based
fusion algorithms [18, 21] use the match scores to compute the belief assignments and
then combine them. Existing evidence based fusion algorithms use Dempster Shafer
(DS) theory [16, 33] and Dezert Smarandache (DSm) theory [5, 6] in which match
scores are considered as evidence over a frame of discernment.
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A major problem with statistical and learning based multi-biometric fusion algo-
rithms occurs when different biometric classifiers generate highly conflicting results
for the same individual. Specifically, if one classifier strongly supports one hypothesis
and the other classifier strongly rejects the same hypothesis. For example, in a face
and fingerprint based bimodal biometric system, variance in image capture, image
quality, lighting conditions, facial expressions, and sensor noise could generate a face
match score of 0.8 (perfect accept is 1) and a fingerprint match score of 0.2 (perfect
reject is 0). Existing fusion algorithms may not be able to handle such conflicting
information and degrade the performance drastically. Further, belief function theory
based fusion algorithms are computationally expensive. To address these issues and
improve the verification performance of a biometric system, we propose a framework
for multi-biometric fusion which combines the belief function theory with statisti-
cal methods. Further, density estimation technique is used for computing the belief
models such as DS theory, Transferable Belief Model (TBM) [23, 25], DSm fusion,
and Proportional Conflict Redistribution (PCR) rule [6] for information fusion, and
likelihood ratio for decision making.

Section 17.2 briefly presents the fundamental concepts and notations involved
in the belief function theory based fusion algorithms. Section 17.3 describes the
proposed biometric match score fusion framework and Section 17.4 describes the al-
gorithms and databases used for evaluation. Sections 17.5 discuss the experimental
results of the proposed fusion framework. Section 17.6 briefly presents the concept
of a biometric unification framework.

17.2 Overview of belief function theory based fusion
algorithms

Belief function theory or the theory of evidence is a theoretical framework for rea-
soning with imperfect data. It is a generalization of probability theory and includes
many approaches of reasoning under uncertainty. Examples of such approaches are
Dempster Shafer theory, Transferable Belief Model, Dezert Smarandache fusion, and
Proportional Conflict Redistribution rule. In this section, only the main concepts
and notations of DS theory, TBM, DSm fusion, and PCR rule are presented for a two
class - two classifier problem. A detailed explanation of belief function theory can be
found in [16, 31].

Let m ∈ [0, 1] be a mapping function and Θ = {θ1, θ2} be the frame of discern-
ment that represents the finite set of exhaustive and mutually exclusive hypothesis.
Probability theory, as mentioned before, is the basis of belief function theory. Be-
lief function, also known as the basic probability assignment, (bpa) is defined as
m(·) : Θ → [0, 1], such that m(θ1) + m(θ2) = 1. Here, m(θ1) represents the belief of
data belonging to class θ1 and m(θ2) represents the belief of data belonging to θ2.
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In the probabilistic framework, basic fusion rule is sum rule as defined in Equations
(17.1) and (17.2) (for two information sources).

mfused(θ1) =
m1(θ1) + m2(θ1)

2
(17.1)

mfused(θ2) =
m1(θ2) + m2(θ2)

2
(17.2)

The basic sum rule fusion, though effective for simple non-conflicting cases, is not
very effective for imprecise, uncertain, and conflicting cases. To address the limita-
tions of the sum rule, approximate reasoning approach based fusion rules including
DS theory, TBM and DSm fusion have been proposed. In DS theory, belief func-
tions have been computed on the power set of Θ (i.e. 2Θ) and Dempster’s rule of
combination [16, 33] for fusing two information sources, X and Y , is defined as,

mDS(A) =

P

(X, Y ∈2Θ),(X∩Y =A) m(X)m(Y )

1 −P(X, Y ∈2Θ),(X∩Y =∅) m(X)m(Y )
(17.3)

Although DS theory based fusion has been efficiently used for many practical ap-
plications, it has some limitations. As presented by Zadeh [34], Dubois and Prade [7],
Voorbraak [31], and Dezert and Smarandache [6], DS theory is not reliable when con-
flict between the sources is very large. To circumvent the limitations of DS fusion
algorithm, researchers have proposed several other models. Smets proposed the trans-
ferable belief model [23] that quantitatively represents the epistemic uncertainty. Ac-
cording to Smets, the TBM conjunctive combination rule for fusing two information
sources, X and Y , can be represented as,

mTBM (A) =
X

X, Y ∈2Θ

m(X)m(Y ) (17.4)

Recently, Dezert and Smarandache proposed a fusion algorithm using plausible
and paradoxical reasoning [6] that addresses the limitations of DS theory and includes
Bayes theory and DS theory as special cases. It operates on the hyper-power set
defined as DΘ = {∅, θ1, θ2, θ1 ∪ θ2, θ1 ∩ θ2}. This algorithm uses generalized basic
belief assignment (gbba) on Θ which is defined as m(·) :DΘ → [0, 1] such that

m(∅) = 0
m(θ1) + m(θ2) + m(θ1 ∪ θ2) + m(θ1 ∩ θ2) = 1

(17.5)

For fusing two information sources, X and Y , the DSm rule of combination [5] is
defined as,

mM(Θ)(A) = ψ(A) [S1(A) + S2(A) + S3(A)] (17.6)

where, M(Θ) is the model over which DSm theory operates and ψ(A) is the char-
acteristic non-emptiness function of A which is 1 if A /∈ ∅ and 0 otherwise. S1(A),
S2(A), and S3(A) are defined as,
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S1(A) =
P

(X,Y ∈DΘ, X∩Y =A) m1(X) m2(Y )

S2(A) =
P

(X,Y ∈Φ, [υ=A]∨ [(υ∈Φ)∧ (A=It)])
m1(X) m2(Y )

S3(A) =
P

(X,Y ∈DΘ, X∪Y =A, X∩Y ∈Φ) m1(X) m2(Y )

(17.7)

where It is the total ignorance and is the union of all θi (i = 1, 2), i.e. It = θ1 ∪ θ2.
Φ = {Φ, φ} is the set of all elements of DΘ which are empty under the constraints
of some specific problem and φ is the empty set. υ = u(X) ∪ u(Y ), where u(X)
is the union of all singletons θi that compose X and Y . Here, S1(A) corresponds
to the classical DSm rule on the free DSm model [5], S2(A) represents the mass of
all relatively and absolutely empty sets which is transferred to the total or relative
ignorance, and S3(A) transfers the sum of relative empty sets to the non-empty sets.

In the DSm fusion algorithm, the partial conflicts are redistributed onto corre-
sponding partial ignorance [5]. However, in some cases this redistribution may yield
very non-specific generalized basic belief assignments and thus decrease the perfor-
mance. Further analysis by Smets [25] suggests that the term S2 in Equation (17.7) is
a “potential source of difficulties” and “seems to be language dependent”. To address
this issue, Dezert and Smarandache proposed a set of proportional conflict redistribu-
tion rules [6] which consists of five different versions of the PCR rule; PCR1 to PCR5
in order of increasing complexity and correctness. They have reported that among
the five rules, PCR5 is the most efficient and precise for information fusion under
uncertainty and conflict. In PCR5, redistribution of the partial conflicts is performed
only to the elements which are truly involved in each partial conflict and moreover
this is done according to the proportion or weight of each source. For a two class -
two classifier problem and ∀X ∈ DΘ \ {∅}, the PCR5 rule [6] is defined as

mPCR5(X) = m12(X)

+
X

Y ∈DΘ\{X}, X∩Y =∅

»

m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )

–

(17.8)

In this equation, m1 and m2 represent the corresponding belief assignments to the
two classifiers; m12(X) corresponds to the conjunctive consensus on X between the
two sources and where all denominators are different from zero. If a denominator is
zero, that fraction is discarded. All sets involved in the formula are in canonical form.

The PCR5 fusion rule precisely combines and redistributes the information even with
conflicting gbba’s. A detailed explanation of the PCR rules can be found in [6].

17.3 Framework for biometric match score fusion

In biometrics, DS theory has been used for match score and decision fusion [4, 18].
However, as mentioned in Section 17.2, DS theory has some limitations and it can-
not always provide good results with imprecise, imperfect or uncertain data. In our
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Figure 17.1: Proposed match score fusion framework.

previous research, we proposed the use of DSm theory for biometrics match score
fusion [21, 28]. In our experiments, we found that there are few cases when DSm
theory is not able to yield correct results and sometimes the decisions are not accu-
rate. As discussed in Section 17.2, sometimes DSm fusion generates non-specific belief
assignments which reduce the performance because of the term S2 in Equation (17.7).

In this chapter, a generalized framework is presented in which the belief theory
based fusion approach is combined with the statistical approach. In the proposed
framework, the first step is to transform the match scores into belief assignments
using density estimation technique. In the next step, a belief theory based algorithm
is used for match score fusion and finally a statistical likelihood ratio test is applied
for classification. In this manner, the properties of both statistical and belief function
theories are combined for biometric match score fusion. Figure 17.1 shows the steps
involved in the proposed framework. This fusion framework consists of two steps:
(1) match score fusion and (2) classification. In this chapter, the description of the
proposed framework uses two class - two classifier approach and the subscript c1 rep-
resents the first biometric classifier and subscript c2 represents the second biometric
classifier.

17.3.1 Match score fusion

Let the frame of discernment Θ = {θgen, θimp}, where θgen represents the genuine
hypothesis and θimp represents the impostor hypothesis. The first step in the pro-
posed fusion framework is to transform the match scores into belief assignments.
We use a density estimation technique for this task assuming that the match scores
follow a Gaussian distribution. This method transforms a match score into the pro-
bability measure which is helpful in computing belief assignment. Gaussian density
estimation [8] can be written as,

p(si, μij , σij) =
1

σij

√
2π

exp

"

−1

2

j

si − μij

σij

ff2
#

(17.9)

where si, (i = 1, 2) are the two match scores to be fused, μij and σij are the mean
and standard deviation of the ith classifier corresponding to the jth element of z (in
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basic sum rule z = Θ, in DS theory z = 2Θ and in DSm theory z = DΘ). Therefore
the Gaussian distribution is used to compute the belief mi(j),

mi(j) =
p(si, μij , σij)

Pz
j=1 p(si, μij , σij)

(17.10)

The belief assignments of each biometric classifier are then fused using eq. (17.11)

mfused = mc1 ⊕ mc2 (17.11)

where ⊕ represents the fusion rule described in Section 17.2. Note that, in this
research, we evaluate the performance of the proposed fusion framework with the
basic sum rule, DS theory fusion, TBM conjunctive combination rule, DSm fusion
rule, and PCR rule.

17.3.2 Statistical classification

Match score fusion using the proposed framework yields the fused belief and a decision
of accept or reject is made using the statistical classification technique. First, the
fused beliefs are converted into probability measure using the pignistic probability,
BetP , that maps a belief measure to a probability measure [23].

BetP (θi) =
X

θi∈A⊆Θ

1

|A|
mfused(A)

1− mfused(∅) (17.12)

If mfused(∅) = 0, Equation (17.12) can be written as,

BetP (θi) =
X

θi∈A⊆Θ

mfused(A)

|A| (17.13)

In this manner, we transform fused belief assignment into probability measure
so that we can apply the statistical classification approach for computing the final
decision. We perform likelihood ratio test for decision making as shown in Equation
(17.14).

Decision =

(

genuine if
BetP (θgen)

BetP (θimp)
≥ t

impostor otherwise
(17.14)

where t is the decision threshold and is chosen based on a specific false accept rate.
The advantage of this statistical classification approach is its simplicity, control over
false accept and false reject rates, and it satisfies the Neyman-Pearson theorem [13]
for decision making.
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17.4 Algorithms and databases used for evaluation

To evaluate the verification performance of the proposed fusion framework described
in Section 17.3, we use two case studies: (1) multiclassifier face verification and
(2) multiclassifier fingerprint verification. In this section, we briefly describe the
algorithms and databases used for evaluation.

17.4.1 Face verification algorithms

The first case study for evaluating the performance of the proposed fusion framework
is performed with multiclassifier face verification. The face is first detected from the
input images using the triangle based face detection algorithm [17]. Global and local
facial features are extracted and match scores are computed from the detected face
images using the two face verification algorithms described below.

• 2D Log Polar Gabor Transform: In the 2D log polar Gabor transform
based face recognition algorithm, the face image is transformed into polar co-
ordinates and texture features are extracted using the neural network archi-
tecture based 2D log polar Gabor transform [20]. These features are matched
using Hamming distance to generate the match scores.

• Local Binary Pattern: In this algorithm, a face image is divided into several
regions and weighted Local Binary Pattern (LBP) features are extracted to
generate a feature vector [3]. Matching of two LBP feature vectors is performed
using the weighted Chi-square distance measure.

In this case study, the two face classifiers are represented as c1 and c2, and the
match scores computed using these classifiers are combined using the proposed fusion
framework.

17.4.2 Fingerprint verification algorithm

Multiclassifier fingerprint verification is used as the second case study for evaluating
the performance of the proposed fusion framework. Level-2 minutiae and level-3 pore
features based verification algorithms are used to compute the match scores.

• Level-2 Minutia Verification Algorithm: A ridge tracing minutiae ex-
traction algorithm [11] is used to extract the level-2 minutia features from a
fingerprint image. Gallery and probe minutiae are matched using a dynamic
bounding box based matching algorithm [10].

• Level-3 Pore and Ridge Verification Algorithm: The level-3 pore and
ridge feature extraction algorithm [29] uses Mumford Shah functional curve
evolution based fast feature extraction algorithm to efficiently segment contours
and extract the intricate level-3 features. Matching of gallery and probe feature
sets is performed using the Mahalonobis distance measure.
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These minutiae and pore based matching algorithms are used as classifiers c1 and
c2 and the corresponding match scores are fused using the proposed fusion framework.

17.4.3 Biometric databases used for evaluation

We use two biometric databases for these case studies. These databases are: Notre
Dame face database [1, 9] used for evaluating the performance for multiclassifier face
verification and high resolution fingerprint database for the experiments related to
multiclassifier fingerprint verification.

1. Notre Dame Face Database [9]: This database is a part of the NIST Face
Recognition Grand Challenge (FRGC). We use collection B of the Notre Dame
face database which contains around 35,000 high resolution frontal face images
under different lighting conditions and expressions. It is one of the most com-
prehensive face databases widely used for evaluating the performance of face
recognition algorithms.

2. High Resolution Fingerprint Database [28]: The high resolution finger-
print database contains 5500 images from 550 classes. For each class, there are
10 fingerprints. The resolution of fingerprint images is 1000 ppi to facilitate
the extraction of both level-2 minutiae and level-3 pore features.

17.5 Experimental evaluation

As mentioned before, the proposed fusion framework is evaluated for two multi-
biometric scenarios. For each case study, we compute the verification accuracy of the
proposed fusion framework with sum rule, DS theory fusion, TBM, DSm and PCR
rule. For performance evaluation, we use cross validation with 20 trials. Three im-
ages are randomly selected for training (estimating densities, thresholds, and learning
classifiers) and the remaining images are used as the test data to evaluate the algo-
rithms. This train-test partitioning is repeated 20 times and the Receiver Operating
Characteristics (ROC) curves are generated by computing the genuine accept rates
(GAR) over these trials at different false accept rate (FAR). This section presents the
experimental results with their analysis.

To evaluate the performance of the proposed fusion framework, we use multiclas-
sifier face verification using the Notre Dame face database as the first case study.
The ROC plot in Figure 17.2 and Table 17.1 show the verification accuracies of this
case study. Here classifier 1 is the 2D log polar Gabor transform based verification
algorithm that yields an average verification accuracy of 93.1% at 0.01% FAR and
classifier 2 is the local binary pattern based verification algorithm that yields an
average verification accuracy of 82.3% at 0.01% FAR.

The sum rule based fusion algorithm (using bpa) improves the verification per-
formance by 4.6%. During our experiments, we analyze that the Sum rule fusion
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Verification Accuracy (%)
Algorithms Multiclassifier Multiclassifier

Face Verification Fingerprint Verification
Average [Max., Min.] Average [Max., Min.]

Classifier 1 93.1 [94.3, 85.7] 88.9 [92.1, 83.6]
Classifier 2 82.3 [90.5, 78.1] 91.5 [93.5, 90.8]
Sum Rule 97.7 [98.8, 92.6] 97.1 [98.2, 93.5]
DS Theory Fusion 98.0 [98.9, 95.7] 97.7 [99.0, 95.4]
TBM Fusion Rule 98.2 [99.0, 96.1] 98.2 [99.1, 96.6]
DSm Fusion Rule 98.5 [99.1, 97.3] 98.7 [99.3,98.1]
PCR5 Fusion Rule 98.9 [99.8, 98.2] 99.1 [99.9, 98.5]

Table 17.1: Experimental results of fusion algorithms at 0.01% FAR.

algorithm is not able to handle most of the conflicting cases. Furthermore, during
different cross validation trials, we also observe that the variance in the verification
accuracies obtained by the sum rule is very large. This shows that the Sum rule
is not very stable and it depends upon the training images. The proposed fusion
framework with DS fusion, TBM, and DSm fusion improves the verification accuracy
in the range of 4.9-5.4% and is more stable compared to the Sum rule. Analysis of
the experimental results of the proposed fusion framework with DS fusion, TBM rule,
and DSm fusion show that the these three rules efficiently redistribute the beliefs and
fuse the match scores which are not highly conflicting. However, with highly conflict-
ing match scores that are caused due to variations in expression, lighting and time
difference between gallery and probe face images, they do not provide reliable deci-
sion. The proposed framework with PCR5 rule yields the best verification accuracy
of 98.9%. This is because the fusion framework with PCR5 rule first performs effi-
cient redistribution of the partial conflicts according to the proportion/weight of each
source. After redistribution, the belief measure is transformed into the probability
measure and likelihood ratio test is used for decision. In this manner, it includes the
properties of the theory of evidence and satisfies the Neyman-Pearson theorem [13] as
well. Finally, the proposed framework with PCR5 fusion is the most stable algorithm
across all cross validation trials whereas verification accuracies pertaining to other
fusion algorithms vary significantly.

The second case study on multiclassifier fingerprint verification shows similar
results. The ROC plot in Figure 17.3 and Table 17.1 show the verification accuracies
of this case study. Level-2 minutiae verification algorithm is classifier 1 that yields
an average verification accuracy of 88.9% at 0.01% FAR and level-3 pore and ridge
verification algorithm is the classifier 2 that yields an average verification accuracy
of 91.5% at 0.01% FAR. We evaluate the performance of the fusion algorithms and
the results are consistent with multiclassifier face verification. The proposed fusion
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Figure 17.2: ROC of the proposed fusion framework with Sum rule, DS theory
fusion, TBM, DSm and PCR rule for multiclassifier face verification.

framework with PCR5 rule efficiently handles highly conflicting cases that are caused
due to variations in fingerprint image quality compared to other belief model based
fusion rules. The proposed framework with PCR5 rule is the most stable fusion
algorithm and yields 99.1% average verification accuracy.

17.6 Unification of fusion rules

Existing fusion algorithms, including the proposed fusion framework, may not fulfill
all the requirements (i.e. high verification accuracy and low computational time) of
a real world biometric system and provide optimal performance for all scenarios. In
our recent research paper, we proposed an unification framework to efficiently address
both accuracy and time complexity of multimodal biometric fusion [30]. Inspired from
Smarandache’s theoretical concept [22] and research by Woods et al. on dynamic clas-
sifier selection [32], the unification algorithm includes a collection of fusion algorithms.
For a probe case, the input biometric evidences such as match scores, image quality
scores and verification accuracy prior are used to dynamically select the optimal fu-
sion algorithm for information fusion. In [30], we proposed a framework that unifies
the sum rule fusion with the DSm fusion rule. The sum rule is simple and effective
for cases with minor conflict whereas DSm fusion performs redistribution of conflict-
ing beliefs and yields good performance with highly conflicting information at the
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Figure 17.3: ROC of the proposed fusion framework with Sum rule, DS theory
fusion, TBM, DSm and PCR rule for multiclassifier fingerprint verification.

expense of computational time. The proposed unification framework, in which sum
rule and DSm fusion algorithms are unified, improves the verification performance
both in terms of accuracy and computational time. More details of the unification
algorithm can be obtained from [30].

17.7 Conclusion

This chapter presents a framework for multi-biometric match score fusion when non-
ideal conditions cause conflict in the results of different classifiers. The proposed
framework uses a belief model based fusion algorithm to effectively fuse the match
scores. The framework combines statistical model with belief function models by
using density estimation technique, belief model fusion rules and statistical classifica-
tion. Thus, it has the properties of both statistical fusion approaches as well as belief
function rules. Experimental results on multiclassifier face verification and multiclas-
sifier fingerprint verification show that the proposed fusion framework with PCR5
rule yields the best verification accuracy even when the individual biometric classi-
fiers provide highly conflicting match scores. As a future work, the fusion framework
can be generalized without Gaussian assumption and the recently proposed DSmP
can be included for improved performance.
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Abstract: We propose in this chapter a content-based information
retrieval framework to select documents in a database, consisting of
several images with semantic information. Information in these doc-
uments is not only heterogeneous, but also often incomplete. So,the
method we propose may cover a wide range of applications. To se-
lect the most relevant cases in the database, for a query, a degree of
match between two cases is defined for each case feature, and these
degrees of match are fused. Two different fusion models are pro-
posed: a Shafer’s model consisting of two hypotheses and a hybrid
DSm model consisting of N hypotheses, where N is the number of
cases in the database. They allow us to model our confidence in
each feature, and take it into account in the fusion process, to im-
prove the retrieval performance. To include images in such a system,
we characterize them by their digital content. The proposed meth-
ods are applied to two multimodal medical databases for computer
aided diagnosis; a comparison with other retrieval methods we pro-
posed recently is provided. A mean precision at five of 81.8% and
84.8% was obtained on a diabetic retinopathy and a mammography
database, respectively: the methods are precise enough to be used in
a diagnosis aid system.
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18.1 Introduction

Case-based reasoning (CBR) [1] was introduced in the early 1980s as a new decision
support tool. It is based on the assumption that analogous problems have similar
solutions: to help interpreting a new case, similar cases are retrieved from a database
and returned to the user. In this chapter, we focus on CBR in multimodal databases.
To retrieve heterogeneous information, some simple approaches, based on early fu-
sion [21, 24] or late fusion [14, 26] have been introduced in the literature. Recently, an
elaborate retrieval method, based on dissimilarity spaces and relevance feedback, has
also been proposed [5]. In the same time, we proposed several other approaches that
do not rely on relevance feedback, and can efficiently manage missing information
and the aggregation of heterogeneous features (symbolic and multidimensional digi-
tal information). The first approach is based on decision trees [15]. The second one
is based on Bayesian networks [16]. We introduce in this chapter a third approach,
based on DSmT: information coming from each case feature Fi, i = 1..M , is used
to derive an estimation of the degree of match between a query case and a case in
the database. A case feature Fi can be either a nominal variable, an image acquired
using a given modality, or any other type of signal. These estimations are then fused,
in order to define a consensual degree of match, which is used to retrieve the most
relevant cases for the query. In order to model our confidence in the estimation pro-
vided by each source of evidence, we propose two fusion models based on DSmT. The
first one is based on a Shafer’s model consisting of two hypotheses. The second one is
based on a hybrid DSm model consisting of N hypotheses, where N is the number of
cases in the database. Finally, the cases in the database maximizing the consensual
degree of match with the query are returned to the user.

The proposed approach is applied to computer-aided diagnosis. In medicine, the
knowledge of experts is a mixture of textbook knowledge and experience through real
life clinical cases. So, the assumption that analogous problems have similar solutions
is backed up by physicians’ experience. Consequently, there is a growing interest in
the development of medical decision support systems based on CBR [4], especially to
assist the diagnosis of physicians. Such systems are intended to be used as follows:
when a physician has doubts about his diagnosis, he sends the available patient data
to the system. The most similar cases, along with their medical interpretations, are
retrieved from the database and returned to the physician, who can then compare his
case to these retrieved cases. Reasoning by analogy, the physician may so confirm or
invalidate his diagnosis.

Medical cases often consist of digital information like images and symbolic in-
formation such as clinical annotations. Diabetic retinopathy experts, for instance,
analyze multimodal series of images together with contextual information, such as
the age, the sex and the medical history of the patient. So, to use all the information
available, we have to manage both digital and semantic information. On one hand,
there are some medical CBR systems designed to manage symbolic information [6].
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On the other hand, some systems, based on Content-Based Image Retrieval [20], have
been designed to manage digital images [13]. However, few attempts have been made
to merge the two kinds of approaches. Actually, in some systems, it is possible to
formulate both textual and digital queries in parallel [2, 11], but the two kinds of
information are processed separately. In another system, a text based and an image
based similarity measure are combined linearly into a common similarity measure [18].
Nevertheless, in our application, none of those solutions is suitable to use at best the
relationships between symbolic and digital information. Our approaches are efficient
solutions for information retrieval based on both clinical descriptors and digital image
features. More, they take into account the fact that the information is often incom-
plete and uncertain.

The objectives are detailed in section 18.2. Shafer’s model is presented in section
18.3 and the hybrid DSm model in section 18.4. The proposed approaches are applied
to computer-aided diagnosis of diabetic retinopathy and mammography in section
18.5: we provide a comparison with the other two multimodal information retrieval
methods we proposed [15, 16]. We end with a discussion and a conclusion in section
18.6.

18.2 Objectives

As mentioned before, we have already proposed methods to manage databases with
heterogeneous information. But they do not take into account the uncertainty of
information and the possible conflicts between some feature values. We propose to
evaluate the contribution of DSmT for medical CBR, in comparison with the other
two multimodal retrieval methods we proposed. For this purpose, let us remind the
evaluation procedure we use. Let (xj)j=1..N be the cases in the database and xq

be a case placed as a query to the retrieval system. The system retrieves k cases
from the database, where k is chosen by the users. The objective is to maximize the
percentage of relevant cases, according to the users, among the k retrieved cases. This
percentage is called the precision at k. For each method, we define a degree of match
(or a similarity measure) between cases, and the k cases in the database maximizing
the degree of match with xq are retrieved. We tune the definition of the degree of
match in order to maximize the percentage of relevant cases among the k retrieved
cases, by training these methods. For this purpose, the cases in the database have
to be classified by the users, in order to catch their perception of relevance between
cases. Then, the database is divided into a training dataset (xT

j )j=1..NT and an

evaluation dataset (xE
j )j=1..NE .

18.3 Shafer’s model for information retrieval

In order to select the k cases to retrieve for a query xq, we compute the similarity
of each case xj in the database, j = 1..N , with xq. For this purpose, we first es-
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timate, for each case feature Fi, the degree of match between xj and xq according
to Fi, denoted dmi(xj , xq). To compute these estimations, we define a finite num-
ber of states fis for each feature Fi, i = 1..M , and we compute the membership
degree of any case y to each state fis of Fi, noted αis(y). y denotes either xq or xj ,
j = 1..N . If Fi is a nominal variable, αis(y) is Boolean; for instance, if y is a male
then α“sex′′,“male′′ (y) = 1 and α“sex′′,“female′′ (y) = 0. If Fi is an image (or any type
of signal), the definition of fis and αis(y) is given in section 18.3.1. The estimation
of the degree of match between xj and xq according to Fi, namely dmi(xj , xq), is
computed as described in section 18.3.2.

These estimations are then combined. The frame of discernment used in the fusion
process is described in section 18.3.3. A belief mass function is first derived from each
estimation of the degree of match, provided by a case feature (see section 18.3.4). It is
designed in order to give more importance in the fusion process to sources of evidence
in which we have more confidence. These belief mass functions are then fused (see
section 18.3.5) and a consensual degree of match between xj and xq is derived: this
consensual degree of match is used to find the k cases in the database maximizing
the similarity with xq (see section 18.3.6).

18.3.1 Image processing

If the case feature is a nominal variable, defining states fis for Fi is straightforward,
it is more difficult for images. To define states for images of a given type, we propose
to follow the usual steps of Content-Based Image Retrieval (CBIR) [20], that is: 1)
building a signature for each image (i.e. extracting a feature vector summarizing their
digital content), and 2) defining a distance measure between two signatures. As a
consequence, measuring the distance between two images comes down to measuring
the distance between two signatures. Similarly, defining states for images of a given
type comes down to defining states for the signatures of the corresponding images.
For this purpose, we cluster similar image signatures, as described below, and we
associate each cluster with a state. By this procedure, images can be processed by
the retrieval method like any other feature.
In previous studies on CBIR, we used a customized wavelet decomposition to ex-
tract signatures from images [10]. These signatures characterize the distribution of
the wavelet coefficients in each subband of the decomposition. Wouwer [25] showed
that the wavelet coefficient distribution, in a given subband, can be modeled by a
generalized Gaussian function. We define the signature as the juxtaposition of the
maximum likelihood estimators of the wavelet coefficient distribution in each sub-
band. To define a distance measure between signatures, we used a symmetric version
of the Kullback-Leibler divergence between wavelet coefficient distributions [8]: the
distance between two images is a weighted sum of these symmetrized divergences [10].
The ability to select a weight vector and a wavelet basis makes this image represen-
tation highly tunable.
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In order to define states for images of a given type Fi, we cluster similar images
with an unsupervised classification algorithm, thanks to the image signatures and
the associated distance measure above. The Fuzzy C-Means algorithm (FCM) [3]
was used for this purpose: each case y is assigned to each cluster s with a fuzzy
membership αis(y), 0 ≤ αis(y) ≤ 1, such that

P

s αis(y) = 1.

Other features can be discretized similarly: the age of a person, monodimensional
signals, videos, etc.

18.3.2 Estimation of the degree of match for a feature Fi

We have to define a similarity measure between two cases from their membership
degree to each state of a feature Fi. We could assume that cases with membership
degrees close to that of xq are the most liable to be relevant for xq. So, a similarity
measure between xj and xq, according to a case feature Fi, may be

P

s αis(xj)αis(xq).
However, this assumption is only appropriate if all cases in a given class tend to be
at the same state for Fi. Another model, more general, is used: we assume that
cases in the same class are predominantly in a subset of states for Fi. So, to estimate
the degree of match, we define a correlation measure Sist between couples of states
(fis, fit) of Fi, regarding the class of the cases at these states. Sist is computed using
the cases (xT

j )j=1..NT in the training dataset. Let c = 1..C be the possible classes for
a case in the database. We first compute the mean membership Disc (resp. Ditc) of
cases xT

j in a given class c to the state fis (resp. fit):

Disc = β

P

j δ(xT
j , c)αis(x

T
j )

P

j δ(xT
j , c)

(18.1)

C
X

c=1

D2
isc = 1,∀(i, j) (18.2)

where δ(xT
j , c) = 1 if xT

j belongs to class c, δ(xT
j , c) = 0 otherwhise, and β is a

normalizing factor chosen so that equation 18.2 holds. Sist is given by equation 18.3:

Sist =

C
X

c=1

DiscDitc (18.3)

So we estimate the degree of match between the two cases xj and xq, with respect to
a case feature Fi, as follows:

dmi(xj , xq) =
X

s

X

t

αis(xj)Sistαit(xq) (18.4)

18.3.3 Designing the frame of discernment

In order to estimate the relevance of a case xj for the query xq, as a consensus
between all the sources of evidence, we define two hypotheses: Q=“xj is relevant for
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xq” and Q̄=“xj is not relevant for xq”. The following frame of discernment is used
in the fusion problem: Θ(1) = {Q, Q̄}. To define the belief mass function associated
with a given source of evidence, i.e. a feature Fi, we assign a mass to each element

in DΘ(1)

=
˘

∅, Q, Q̄, Q ∩ Q̄, Q ∪ Q̄
¯

. In fact, it is meaningless to assign a mass to

Q ∩ Q̄, as a consequence, we only assign a mass to elements in DΘ(1) \ Q ∩ Q̄ =
˘

∅, Q, Q̄, Q ∪ Q̄
¯

= 2Θ(1)

. We are thus designing a Shafer’s model consisting of two
hypotheses.

18.3.4 Defining the belief mass functions

To compute the belief mass functions, we define a test Ti on the degree of match
dmi(xj, xq): Ti is true if dm(xj, xq) >= τi and false otherwise, 0 ≤ τi ≤ 1. The belief
masses are then assigned according to Ti:

• if Ti is true:

• mi(Q) = P (Ti|xj is relevant for xq) → the sensitivity of Ti

• mi(Q ∪ Q̄) = 1 − mi(Q)

• mi(Q̄) = 0

• else

• mi(Q̄) = P (T̄i|xj is not relevant for xq) → the specificity of Ti

• mi(Q ∪ Q̄) = 1 − mi(Q̄)

• mi(Q) = 0

The sensitivity (resp. the specificity) represents the degree of confidence in a positive
(resp. negative) answer to test Ti; mi(Q ∪ Q̄), the belief mass assigned to the total
ignorance, represents the degree of uncertainty: the higher this term, the lower our
confidence in the case feature Fi. The sensitivity and the specificity of Ti, for a
given threshold τi, are estimated using each pair of cases (xT

a , xT
b ) in the training

dataset, one playing the role of xq, the other playing the role of xj . The sensitivity
(resp. the specificity) is estimated by the average number of pairs for which Ti is
true (resp. false) among the pairs of cases belonging to the same class (resp. to
different classes). Ti is appropriate if it is both sensitive and specific. As τi increases,
sensitivity increases and specificity decreases. So, we set τi as the intersection of the
two curves “sensitivity according to τi” and “specificity according to τi”. A binary
search is used to find the optimal τi.

18.3.5 Fusing the belief mass functions

If the ith case feature is available for both xj and xq, the degree of match dmi(xj , xq)
is estimated (see section 18.3.2) and the belief mass function is computed according to
test Ti (see section 18.3.4). The computed belief mass functions are then fused. Let
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M ′ ≤ M be the number of belief mass functions to fuse. Usual rules of combination
have a time complexity exponential in M ′, which might be a limitation. So we
propose a rule of combination for problems consisting of two hypotheses (Q and
Q̄ in our application), adapted from the Proportional Conflict Redistribution (PCR)
rules [19], with a time complexity evolving polynomially with M ′ (see appendix 18.8).

18.3.6 Identifying the most similar cases

Once the sources available for xq are fused by the proposed rule of combination,
a decision function is used to compute the consensual degree of match between xj

and xq. We express this consensual degree of match either by the credibility (cf.
equation 18.5), the plausibility (cf. equation 18.6), or the pignistic probability of Q
(cf. equation 18.7).

Bel(A) =
X

B∈DΘ,B⊆A,B 
≡∅
m(B) (18.5)

P l(A) =
X

B∈DΘ,A∩B 
≡∅
m(B) (18.6)

BetP (A) =
X

B∈DΘ,B 
≡∅

CM(A ∩B)

CM(B)
m(B) (18.7)

The notation B �≡ ∅ means that B �= ∅ and B has not been forced to be empty
through the constraints of the model M; CM(B) denotes the number of parts of B
in the Venn diagram of the model M(Θ) [7, 22]. It emerges from our applications
that using the pignistic probability of Q leads to a higher mean precision at k (more
elaborate decision functions might improve the retrieval performance). The pignistic
probability of Q, BetP (Q), is computed according to equation 18.8.

BetP (Q) = mf (Q) +
mf (Q ∪ Q̄)

2
(18.8)

The k cases maximizing BetP (Q) are then returned to the user.

18.3.7 Managing missing values

The proposed method works even if some features are missing for xj and xq: we sim-
ply take into account the sources of evidence available for both xj and xq. However,
it may be more efficient to take also into account information available for only one
of the two cases.

A solution is to use a Bayesian network modeling the probabilistic dependencies
between the features Fi, i = 1..M . The Bayesian network is built from the training
dataset automatically [16]. We use it to infer the posterior probability of the features
Fi unavailable for xj , but available for xq. As a consequence, all the features available
for xj are used to infer the posterior probability of the other features. And all the
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features available for xq are involved in the fusion process: a belief mass function is
defined for each feature available for xq.

18.4 Hybrid DSm model for information retrieval

In the model presented in section 18.3, we have estimated the probability that each
case xj in the database is relevant for the case xq placed as a query, j = 1..N . In this
second model, we slightly reformulate the retrieval problem: we estimate the probabi-
lity that xq is relevant for each case xj in the database, j = 1..N . The interest of this
new formulation is that we can include in the model the similarity between cases xj .
To find the cases maximizing the similarity with the query in the database, we assess
the following hypotheses Xj=“xq is relevant for xj”, j = 1..N , and we select the k
most likely: the k corresponding cases xj are thus returned to the user. As a conse-
quence, a different frame of discernment is used (see section 18.4.1). The likelihood
of each hypothesis Xj , j = 1..N , is estimated for each feature Fi, i = 1..M . These
estimations are based on the same degree of match that was used in the previous
model (see section 18.3.2).

Since we use a new frame of discernment, a new belief mass function is defined
for each feature Fi (see section 18.4.2). These belief mass functions are then fused
(see section 18.4.3). And a consensual estimation of the likelihood of Xj is derived:
this consensual estimation of the likelihood is used to find the cases in the database
maximizing the similarity with xq (see section 18.4.4).

18.4.1 Designing the frame of discernment

The following frame of discernment is used in the new fusion problem: Θ(2) =

{X1, X2, ..., XN}. The cardinal of DΘ(2)

is hyper-exponential in N . As a conse-
quence, to solve the fusion problem, it is necessary to set some constraints in the
model. We are thus designing a hybrid DSm model. These constraints are also jus-
tified from a logical point of view: a priori, if two cases xa and xb are dissimilar,
or if xa and xb belong to different classes (as indicated by the users), then the two
hypotheses Xa and Xb are incompatible.

To design the frame of discernment, we first build an undirected graph Gc =
(V, E), that we call compatibility graph. Each vertex v ∈ V in this graph represents
an hypothesis, and each edge e ∈ E represents a couple of compatible hypotheses. To
build the compatibility graph, each case xj in the database, j = 1..N , is connected in
the compatibility graph Gc to its l nearest neighbors. The distance measure we used to
find the nearest neighbors is simply a linear combination of heterogeneous distance
functions (one for each case feature Fi), managing missing information [24]. The
complexity of the fusion process mainly depends on the cardinality of the largest clique
in Gc (a clique is a set of vertices V such that for every pair of vertices (u, v) ∈ V 2,



Chapter 18: Multimodal information retrieval based on DSmT . . . 479

there is an edge connecting u and v). The number l is closely related to the cardinality
of the largest clique in Gc and consequently to the complexity of the fusion process.
l was set to five in the application (see section 18.5). The Venn diagram of the model
M(Θ(2)) is then built: for this purpose, we identify the cliques in Gc, as described in
figure 18.1.

(a) Compatibility graph (b) Venn diagram

Figure 18.1: Building the frame of discernment from the compatibility graph.
Hypotheses associated with cases in the same class are represented with the
same color.

18.4.2 Defining the belief mass functions

For each feature Fi, the belief mass function mi is defined as follows. We first identify
the set of cases (xj)j=1..N′≤N such that dmi(xj , xq) is greater than a threshold τ ′

i ,
j = 1..N ′ ≤ N :

• a belief mass mi1 is assigned to the set
SN′≤N

j=1 Xj ,

• and a belief mass mi2 = 1− mi1 is assigned to the total ignorance
SN

j=1 Xj .

τ ′
i is searched similarly to threshold τi (see section 18.3.4) with the following test:

Xj is true if dmi(xj , xq) ≥ τ ′
i , otherwise Xj is false; we perform a binary search to

find the threshold maximizing the minimum of the sensitivity and of the specificity of
that test, whatever Xj (a single threshold τ ′

i is searched for each case feature). mi1

is defined as the sensitivity of that test.
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18.4.3 Fusing the belief mass functions

Once the Venn diagram of the model M(Θ(2)) has been designed, we associate a
unique number with each element in this diagram. The belief mass function mi

defined above is then encoded as follows:

• a binary string denoted ei(A) is assigned to each set A ∈ DΘ(2)

such that
mi(A) �= 0,

• the jth character in the string ei(A) is 1 if and only if the jth set in the Venn
diagram is included in A.

In memory, the binary strings are encoded as byte strings: we associate each element
in the diagram with a bit, and bits are grouped eight by eight into bytes. The elements
of the Venn diagram form a partition of Ω =

SN
j=1 Xj , as a consequence, the following

equation holds:
ei(A ∩B) = ei(A) ∩ ei(B) (18.9)

Let us consider the following three-source problem, illustrated in figure 18.2.

The frame of discernment consists of five elements: Θ(2) = {X1, X2, X3, X4, X5},
where X1 = {0, 5, 6, 9}, X2 = {1, 5, 7, 9}, X3 = {2, 6, 7, 9}, X4 = {3, 8} and X5 =
{4, 8}.

These belief mass functions are fused sequentially:

• fusion of m1 and m2 by the PCR5 rule → m12 [19],

• fusion of m12 and m3 by the PCR5 rule → m123,

• etc.

As we fuse the belief mass functions, the number of elements A ∈ DΘ(2)

satisfying
mj(A) �= 0 increases. To access these elements and update their mass, we rank them
in alphabetical order of ei(A): we can thus access them quickly with a binary search
algorithm.

Detecting conflicts between two sources is made easier with this representation:

if ei(A) ∩ ei(B) = 0, A ∈ DΘ(2)

, B ∈ DΘ(2)

, then A and B are conflicting. On the
example above, the fused belief mass function we obtain is illustrated in figure 18.3.
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(a) m1

m1(X1 ∪X2) = 0.6, m1(Ω) = 0.4

******98, 76543210
e1(X1 ∪X2) = 00000010, 11100011

e1(Ω) = 00000011, 11111111

(b) m2

m2(X4) = 0.7, m2(Ω) = 0.3

******98, 76543210
e2(X4) = 00000001, 00001000
e2(Ω) = 00000011, 11111111

(c) m3

m3(X2 ∪X5) = 0.8, m3(Ω) = 0.2

******98, 76543210
e3(X2 ∪X5) = 00000011, 10110010

e3(Ω) = 00000011, 11111111

Figure 18.2: Encoding the belief mass functions.
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(a) mass=0.075 (b) mass=0.405

(c) mass=0.101 (d) mass=0.299

(e) mass=0.096 (f) mass=0.024

Figure 18.3: Fused belief mass function: this figure represents the sets to which
a non-zero belief mass has been assigned.
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18.4.4 Identifying the most similar cases

Once the belief mass functions are fused, the pignistic probability of each element
Xj ∈ Θ(2) is computed (see equation 18.7), like in the previous model (see section
18.3.6): it is used as the consensual estimation of the likelihood of Xj . For instance,
the computation of BetP (X4) is given below:

BetP (X4) =
1

1
· 0.405 +

2

2
· 0.101 +

1

6
· 0.096 +

2

10
· 0.024 = 0.527 (18.10)

Then, the k cases xj in the database maximizing BetP (Xj) are returned to the user.

18.4.5 Managing missing values

Like in the previous model, we can use a Bayesian network to better manage missing
information. The Bayesian network described in section 18.3.7 is used to infer the
posterior probability of the features Fi unavailable for the query xq.

18.5 Application to computer-aided medical diagnosis

The proposed methods have been evaluated on two multimodal medical databases, for
computer-aided medical diagnosis. The first one (DRD) is being built at the Inserm
U650 laboratory in collaboration with ophthalmologists of Brest University Hospital.
The second one (DDSM) is a public access database.

18.5.1 Diabetic retinopathy database (DRD)

The diabetic retinopathy database contains retinal images of diabetic patients, with
associated anonymized information on the pathology. Diabetes is a metabolic disorder
characterized by a sustained high sugar level in the blood. Progressively, blood vessels
are affected in many organs, which may lead to serious renal, cardiovascular, cerebral
and also retinal complications. In the latter case, the pathology, namely diabetic
retinopathy, can cause blindness. Patients have been recruited at Brest University
Hospital since June 2003.
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The database consists of 67 patient records containing 1112 photographs alto-
gether. The disease severity level, according to ICDRS classification [23], was as-
sessed by experts for each patient. The distribution of the disease severity among
the 67 patients is given in table 18.1. Images have a definition of 1280 pixels/line for
1008 lines/image. They are lossless compressed images, acquired by experts using a
Topcon Retinal Digital Camera (TRC-50IA) connected to a computer.

Database Disease severity Number of
patients

DRD no apparent diabetic retinopathy 7
mild non-proliferative 9

moderate non-proliferative 22
severe non-proliferative 9

proliferative 9
treated/non active diabetic retinopathy 11

DDSM normal 695
benign 669
cancer 913

Table 18.1: Patient disease severity distribution.

An example of image sequence is given in figure 18.4. The contextual information
available is the age, the sex and structured medical information about the patient
(see table 18.2). Patient records consist of 10 images per eye (see figure 18.4) and 13
contextual attributes at most; 12.1% of these images and 40.5% of these contextual
attribute values are missing.
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Attributes Possible values

General clinical context
family diabetes, glaucoma,

clinical context blindness, misc.
medical arterial hypertension,

clinical context dyslipidemia, protenuria,
renal dialysis, allergy, misc.

surgical cardiovascular,
clinical context pancreas transplant,

renal transplant, misc.
ophthalmologic cataract, myopia, AMD,
clinical context glaucoma,unclear medium,

cataract surgery,
glaucoma surgery, misc.

Examination and
diabetes context

diabetes type none, type I, type II
diabetes duration < 1 year, 1 to 5 years,

5 to 10 years,> 10 years
diabetes stability good, bad, fast modifications,

glycosylated hemoglobin
treatments insulin injection, insulin pump,

anti-diabetic drug + insulin,
anti-diabetic drug,
pancreas transplant

Eye symptoms before
the angiography test

ophthalmologically none, systematic ophthalmologic
symptomatic screening-known diabetes,

recently diagnosed diabetes by check-up,
diabetic diseases other
than ophthalmic ones

ophthalmologically none, infection, unilateral decreased
asymptomatic visual acuity (DVA), bilateral DVA,

neovascular glaucoma, intra-retinal
hemorrhage, retinal detachment, misc.

Maculopathy
maculopathy focal edema, diffuse edema, none, ischemic

Table 18.2: Structured contextual information for diabetic retinopathy pa-
tients.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Images (a), (b) and (c) are photographs obtained
applying different color filters. Images (d) to (j)
form a temporal angiographic series: a contrast
product is injected and photographs are taken
at different stages (early (d), intermediate (e)-(i)
and late (j)). For the intermediate stage, pho-
tographs from the periphery of the retina are
available.

Figure 18.4: Photograph sequence of a patient’s eye.
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18.5.2 Digital database for screening mammography

The Digital Database for Screening Mammography (DDSM) project [9], involving the
Massachusetts General Hospital, the University of South Florida and the Sandia Na-
tional laboratories, has led to the setting-up of a mammographic image database for
research on breast cancer screening. This database consists of 2277 patient records.
Each one includes two images of each breast, associated with some information about
the patient (the age, rating for abnormalities, American College of Radiology breast
density rating and keyword description of abnormalities) and information about im-
ages (the scanner, the spatial resolution, etc). The following contextual attributes
are taken into account in the system:

• the age of the patient,

• the breast density rating.

Images have a varying definition, of about 2000 pixels/line for 5000 lines/image. An
example of image sequence is given in figure 18.5.

(a) LCC (b) LMLO (c) RCC (d) RMLO

Figure 18.5: Mammographic image sequence of the same patient. (a) and (b)
are two views of the left breast, (c) and (d) are two views of the right one.

Each patient record has been graded by a physician. Patients are then classified
into three groups: ’normal’, ’benign’ and ’cancer’. The distribution of grades among
the patients is given in table 18.1.
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18.5.3 Objective of the computer-aided diagnosis system

For each case placed as a query by a user, we want to retrieve the most similar cases
from a given database. In DRD, the number of cases selected by the system is set
to k = 5, at ophthalmologist’s request; they consider this number sufficient for time
reasons and in view of the good results provided by the system. For comparison
purposes, the same number of cases is displayed in DDSM. The satisfaction of the
user’s needs can thus be assessed by the precision at five, the percentage of cases
relevant for the query among the topmost five results.

18.5.4 Features of the patient records

In those databases, each patient record consists of both digital images and contextual
information. Contextual features (13 in DRD, 2 in DDSM) are processed as in the
CBR system. Images need to be processed in order to extract digital features. A
usual solution is to segment images and extract domain specific information (such as
the number of lesions). For DRD, we use the number of microaneurysms (the most
frequent lesion of diabetic retinopathy) detected by the algorithm described in [17],
in conjunction with other features. However, this kind of approach requires expert
knowledge for determining pertinent information in images, and a robust segmenta-
tion of images, which is not always possible because of acquisition variability. This
is the reason why we characterized images as described in section 18.3.1. An image
signature is thus computed for each kind of image (10 for DRD, 4 for DDSM).

18.5.5 Training and evaluation datasets

Both databases are divided randomly into a training dataset (80% of the database)
and an evaluation dataset (20% of the database). To assess the system, each case
in the evaluation dataset is placed sequentially as a query to the system, and the
five closest cases within the training dataset, according to the retrieval system, are
retrieved. The precision at five is then computed. Because the datasets are small,
especially for DRD, we use a 5-fold cross-validation procedure, so that each case in
the database appears once in the evaluation dataset.

18.5.6 Results

The mean precision at five obtained with each method, on the two medical databases,
is given in table 18.3; the proposed methods were compared to an early [24] and a late
fusion method [14], and to the other two multimodal information retrieval methods
we proposed [15, 16], as well. For both databases, we obtain a mean precision at five
greater than 80%: it means that, on average, more than four cases out of the five
cases retrieved by the system are relevant for the query.
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Model DRD DDSM

Early fusion [24] 42.8% 71.4%
Late fusion [14] 39.4% 70.3%
Decision trees [15] 81.0% 92.9%
Bayesian networks [16] 70.4% 82.1%

Shafer’s model 74.3% 77.3%
Shafer’s model + Bayesian networks 80.8% 80.3%
Hybrid DSm model 78.6% 82.1%
Hybrid DSm model + Bayesian networks 81.8% 84.8%

Table 18.3: Mean precision at five for each method.

Clearly, simple early or late fusion methods are inappropriate to retrieve patient
records efficiently: in the rest of the section, we will focus on the other methods.

The mean computation time required to retrieve the five most similar cases, using
each method, is given in table 18.4. All experiments were conducted using an AMD
Athlon 64-bit based computer running at 2 GHz. Most of the time is spent during the
computation of the image signatures. However, note that, if the wavelet coefficient
distributions are simply modeled by histograms, the time required to compute the
signatures can be greatly reduced (0.25 s instead of 4.57 s for DRD, 2.21 s instead of
35.89 s for DDSM).

To study the robustness of these methods, with respect to missing values, the
following procedure has been carried out:

• for each case xj in the database, j = 1..N , 100 new cases are generated as
follows. Let nj be the number of features available for xj , each new case is
obtained by removing a number of features randomly selected in {0, 1, ..., nj}.

• we plot the precision at five according to the number of available features for
each generated case (see figure 18.6).



490 Chapter 18: Multimodal information retrieval based on DSmT . . .

Database DRD DDSM

computing the signatures 4.57 s 35.89 s
(for 1 image)
computing the distance with 0.033 s 1.14 s
each image signature
in the database (for 1 image)

mean retrieval time 17.24 s 99.50 s
(decision trees [15])
mean retrieval time 40.12 s 148.23 s
(Bayesian networks [16])

mean retrieval time 32.21 s 148.13 s
(Shafer’s model)
mean retrieval time 40.58 s 148.27 s
(Shafer’s model + Bayesian networks)
mean retrieval time 33.02 s 149.94 s
(Hybrid DSm model)
mean retrieval time 40.77 s 150.01 s
(Hybrid DSm model + Bayesian networks)

Table 18.4: Computation times.
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Figure 18.6: Robustness with respect to missing values.
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We can see from these plots that, using the two DSmT based methods, a satisfying
precision at five can be obtained faster, as new features are available, than if using
the decision tree based method. However, when the patient records are complete,
the decision tree based method is more efficient. It is the case for DDSM, in which
there are no missing information (see table 18.3). With the proposed methods, a
sufficient precision can be reached before all the features are inputted by the user.
As a consequence, the user can stop formulating his query when the returned results
are satisfactory. On DRD for instance, a precision at five of 60% can be reached
after inputting less than 30% of the features (see figure 18.6): with this precision, the
majority of the retrieved cases (3 out of 5) belong to the right class.

18.6 Discussion and conclusion

In this chapter, we introduced two methods to include image sequences, with contex-
tual information, in a CBR system. The first method is based on a Shafer’s model
consisting of two hypotheses. It is used to assess the relevance of each case in the
database, independently, for the query. The second model is based on a hybrid DSm
model consisting of N hypotheses, one for each case in the database. This model
takes into account the similarities between cases in the database, to better assess
their relevance for the query. Whatever the model used, the same similarity measure,
between any case in the database and the query, is defined for each feature. Then,
based on these similarity measures, a belief mass function, modeling our confidence
in each feature, is designed. Finally, these belief mass functions are fused, in order
to estimate the relevance of a case in the database for the query, as a consensus be-
tween all the available case features. For both models, a PCR rule of combination
was used to fuse the belief mass functions. For Shafer’s model, a new rule of com-
bination, with a time complexity evolving polynomially with the number of sources
is introduced in appendix 18.8. For the hybrid DSm model, a new encoding of the
elements in the Dedekind lattice is proposed to allow the computation of the PCR5
rule of combination. The use of a Bayesian network is proposed to improve the man-
agement of unavailable features. These methods are generic: they can be extended
to databases containing sound, video, etc: the wavelet transform based signature,
presented in section 18.3.1, can be applied to any n-dimensional digital signal, using
its n-dimensional wavelet transform (n = 1 for sound, n = 3 for video, etc). The
methods are also convenient for they do not require being trained each time a new
case is added to the database.



492 Chapter 18: Multimodal information retrieval based on DSmT . . .

These methods have been successfully applied to two medical image data-bases,
for computer aided diagnosis. For this application, the goal of the retrieval system is
to select the five patient records, in a database, maximizing the similarity with the
record of a new patient, examined by a physician. On both databases, a higher mean
precision at five is obtained with the hybrid DSm model than with Shafer’s model.
The mean precision at five obtained for DRD (81.8%) is particularly interesting, con-
sidering the few examples available, the large number of unavailable features and the
large number of classes taken into account. On this database, the methods outper-
form usual methods [14, 24] by almost a factor of 2 in precision. The improvement
is also noticeable on DDSM (84.8% compared to 71.4%). On this database, these
DSmT based methods are less precise than a previously proposed decision tree based
method [15]. However, we showed that a satisfying precision at five can be obtained
faster, as new features are available, using the DSmT based methods: this is interes-
ting in a medical application, where patient records are sometimes incomplete. As a
conclusion, the results obtained on both medical databases show that the system is
precise enough to be used in a diagnosis aid system.
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18.8 Appendix: PCR rule with polynomial complexity

In this appendix, we focus on frames of discernment consisting of two hypotheses Θ =
{θ1, θ2}. We make no assumptions on the model used for the fusion problem: it can
either be Shafer’s model, the free DSm model or a hybrid DSm model. We propose, in
section 18.8.1, an algorithm to compute the conjunctive rule m∩(X),∀X ∈ DΘ (see
equation 18.11), whose complexity evolves polynomially with the number of sources
s.

m∩(X) =
X

(X1,...,Xs)∈(DΘ)s,X1∩...∩Xs=X

s
Y

i=1

mi(Xi) (18.11)

Then we propose a new PCR rule, based on the same principle, in section 18.8.2. Let
k12...s be the total conflicting mass:

k12...s =
X

(X1,...,Xs)∈(DΘ)s,X1∩...∩Xs≡∅

s
Y

i=1

mi(Xi) (18.12)

Each term in this sum is called a partial conflicting mass. The principle of the PCR
rules is to redistribute the total conflicting mass k12...s (PCR1, PCR2) or the partial
conflicting masses (PCR3, ..., PCR6) between the sets Xc ∈ DΘ involved in the con-
flict [12, 19]. The conflict is redistributed to each set Xc proportionally to their belief
mass. We illustrate the PCR5 rule on the following problem with two hypotheses
and two sources. Suppose for instance that θ1 and θ2 are exclusive, as a consequence
mPCR5(θ1 ∩ θ2) = 0 and k12 = m1(θ1)m2(θ2) + m1(θ2)m2(θ1). So m1(θ1)m2(θ2)
is redistributed between mPCR5(θ1) and mPCR5(θ2) proportionally to m1(θ1) and
m2(θ2), respectively. Similarly, m1(θ2)m2(θ1) is redistributed between mPCR5(θ1)
and mPCR5(θ2) proportionally to m2(θ1) and m1(θ2), respectively. Indeed, θ1 ∪ θ2 is
not involved in the conflict. As a consequence, we obtain the following fused mass
function:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

mPCR5(∅) = mPCR5(θ1 ∩ θ2) = 0

mPCR5(θ1) = m∩(θ1) + m1(θ1)
m1(θ1)+m2(θ2)

m1(θ1)m2(θ2)

+ m2(θ1)
m2(θ1)+m1(θ2)

m2(θ1)m1(θ2)

mPCR5(θ2) = m∩(θ2) + m2(θ2)
m1(θ1)+m2(θ2)

m1(θ1)m2(θ2)

+ m1(θ2)
m2(θ1)+m1(θ2)

m2(θ1)m1(θ2)

mPCR5(θ1 ∪ θ2) = m∩(θ1 ∪ θ2)

(18.13)

The algorithms we propose impose a constraint on the belief mass function mi defined
for each source i = 1..s to fuse: only elements X ∈ {θ1, θ2, θ1 ∪ θ2} can have a non-
zero mass. Nevertheless, the set θ1 ∩ θ2 is taken into account within the rules of
combination. The generalization to problems involving more hypotheses is discussed
in section 18.8.3.
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18.8.1 Algorithm for the conjunctive rule

Let m1, m2, ..., ms be the belief mass functions defined for each source of evidence.
From the constraint above, a belief mass mi(X) is assigned to each element X ∈ DΘ

for each source i = 1..s according to:
j

mi(θ1) + mi(θ2) + mi(θ1 ∪ θ2) = 1
mi(θ1 ∩ θ2) = 0

(18.14)

Consequently, the conjunctive rule is simplified as follows:

m∩(X) =
X

(X1,...,Xs)∈{θ1,θ2,θ1∪θ2}s,X1∩...∩Xs=X

s
Y

i=1

mi(Xi) (18.15)

For a two-source problem, we obtain:
8

>

>

<

>

>

:

m∩(θ1 ∪ θ2) = m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)
m∩(θ1) = m1(θ1)m2(θ1) + m1(θ1)m2(θ1 ∪ θ2) + m1(θ1 ∪ θ2)m2(θ1)
m∩(θ2) = m1(θ2)m2(θ2) + m1(θ2)m2(θ1 ∪ θ2) + m1(θ1 ∪ θ2)m2(θ2)
m∩(θ1 ∩ θ2) = m1(θ1)m2(θ2) + m1(θ2)m2(θ1)

(18.16)

Let us interpret the computation of m∩ graphically. For this purpose, we cluster the
different products p =

Qs
i=1 mi(Xi), (X1, ..., Xs) ∈ {θ1, θ2, θ1 ∪ θ2}s according to:

• the number n1(p) of terms mi(θ1), i = 1..s, in p,

• the number n2(p) of terms mi(θ2), i = 1..s, in p.

Precisely, we create a matrix Ts in which each cell Ts(u, v) contains the sum of the
products p =

Qs
i=1 mi(Xi), (X1, ..., Xs) ∈ {θ1, θ2, θ1 ∪ θ2}s such that n1(p) = u

and n2(p) = v. In the case s = 1 and s = 2, we obtain the matrices T1 and T2,
respectively, given in figure 18.7.

From figure 18.7 and equation 18.16, we can see that m∩ can be computed from
Ts:

8

>

>

<

>

>

:

m∩(θ1 ∪ θ2) = Ts(0, 0)
m∩(θ1) =

Ps
u=1 Ts(u, 0)

m∩(θ2) =
Ps

v=1 Ts(0, v)
m∩(θ1 ∩ θ2) =

Ps
u=1

Ps
v=1 Ts(u, v)

(18.17)

The structure of matrix Ts is illustrated on figure 18.8.

Equation 18.17 can be explained from equation 18.15 as follows:

• in cell Ts(0, 0), the intersection of the propositions X1∩...∩Xs is θ1∪θ2 because
the product assigned to this cell does not contain any terms mi(θ1) or mi(θ2),

• in cells Ts(u, 0), u ≥ 1, the intersection of the propositions X1 ∩ ... ∩ Xs is θ1

because each product assigned to these cells contains at least one term mi(θ1)
(u terms, precisely) and does not contain any term mi(θ2),
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(a) T1

(b) T2

Figure 18.7: Matrices T1 and T2

Figure 18.8: Structure of matrix Ts. According to equation 18.17, the black
cells, the dark gray cells, the light gray cells and the white cells contain the
belief mass assigned to θ1 ∪ θ2, θ1, θ2 and θ1 ∩ θ2, respectively.
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• in cells Ts(0, v), v ≥ 1, the intersection of the propositions X1 ∩ ... ∩ Xs is θ2

because each product assigned to these cells contains at least one term mi(θ2)
(v terms, precisely) and does not contain any term mi(θ1),

• in cells Ts(u, v), u, v ≥ 1, the intersection of the propositions X1 ∩ ... ∩ Xs is
θ1 ∩ θ2 because each product assigned to these cells contains at least one term
mi(θ1) (u terms, precisely) and at least one term mi(θ2) (v terms, precisely).

From equation 18.17, we see that if Ts can be built in a time polynomial in s, then
m∩ can also be computed in a time polynomial in s.
We describe below an algorithm to build Tj from Tj−1 in a time polynomial in j,
j = 2..s. Its principle is illustrated on figure 18.9, in the case j = 2. We first compute
three intermediate matrices T θ1

j , T θ2
j and T θ1∪θ2

j :

T θ1
j (u, v) =

j

Tj−1(u− 1, v) × mj(θ1), u = 1..j, v = 0..j
0, u = 0, v = 0..j

(18.18)

T θ2
j (u, v) =

j

Tj−1(u, v − 1) × mj(θ2), u = 0..j, v = 1..j
0, u = 0..j, v = 0

(18.19)

T θ1∪θ2
j (u, v) = Tj−1(u, v) ×mj(θ1 ∪ θ2), u = 0..j, v = 0..j (18.20)

Tj is then obtained as the sum of the three matrices:

Tj = T θ1
j + T θ2

j + T θ1∪θ2
j (18.21)

We first check that all the products
Qj

i=1 mi(Xi), X1, ..., Xj ∈ {θ1, θ2, θ1∪θ2} are
generated by this procedure (hypothesis H1(j)). Then we check that these products
appear in the correct cell of Tj (hypothesis H2(j)). Both hypothesis are checked by
induction.

1. Basis: hypotheses H1(1) and H2(1) can be easily checked on figure 18.7 (a).

2. Suppose hypothesis H1(j−1) is true. Each term p =
Qj

i=1 mi(Xi), (X1, ..., Xj) ∈
{θ1, θ2, θ1 ∪ θ2}j , can be written as the product of a term q =

Qj−1
i=1 mi(Xi),

(X1, ..., Xj−1) ∈ {θ1, θ2, θ1 ∪ θ2}j−1, which appears in Tj−1, according to
hypothesis H1(j − 1), and a belief mass m: m is either mj(θ1), mj(θ2) or
mj(θ1 ∪ θ2). According to m, p appears either in T θ1

j , or in T θ2
j , or in T θ1∪θ2

j

(see equations 18.18, 18.19 and 18.20). As a consequence, p appears in Tj (see
equation 18.21): hypothesis H1(j) is true.

3. Suppose hypothesis H2(j−1) is true. Let p =
Qj

i=1 mi(Xi), (X1, ..., Xj) ∈ {θ1,
θ2, θ1∪θ2}j . If Xj is θ1, then by definition of n1 and n2, n1(p) = n1(

p
mj (θ1)

)+1

and n2(p) = n2(
p

mj (θ1)
). According to equation 18.18, p appears in T θ1

j (and

in Tj , consequently) one row below p
mj (θ1)

in Tj−1. Since p
mj (θ1)

appears in

the correct cell of Tj−1 (hypotheses H2(j − 1)), p appears in the correct cell of
Tj . A similar reasoning is applied if Xj is θ2 (using equation 18.19) or θ1 ∪ θ2

(using equation 18.20). As a consequence, hypothesis H2(j) is true.
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To compute Tj from Tj−1, 3( j(j+1)
2

) multiplications are required. Therefore,
3
2

Ps
j=1 j(j + 1) = O(s3) multiplications are required to compute Ts: the complexity

of the proposed algorithm is polynomial in s.

18.8.2 Proposed PCR rule of combination

If hypotheses θ1 and θ2 are exclusive, then the belief mass assigned to θ1 ∩ θ2 by
the conjunctive rule is conflicting: k12...s = m∩(θ1 ∩ θ2). θ1 ∪ θ2 is not involved in
the conflict, as a consequence k12...s should be redistributed between θ1 and θ2. In
view of the number of partial conflicting masses

Qs
i=1 mi(Xi), (X1, ..., Xs) ∈ {θ1, θ2,

θ1 ∪ θ2}s, which is exponential in s, it is impossible to redistribute them individually
(according to the PCR5 rule, for instance), if s is large. On the other hand, one
could redistribute the total conflicting mass k12...s (according to the PCR2 rule, for
instance). Anyway a better solution is possible, taking advantage of the algorithm
above: the conflicting mass can be redistributed more finely using matrix Ts.

As we build matrix Ts with the algorithm above, we compute in each cell c the
percentages p1(c) and p2(c) of the belief mass in c that should be assigned to θ1 and
θ2, respectively, in case of conflict. These percentages are initialized according to
equation 18.22.

8

>

>

<

>

>

:

p1(T1(0, 0)) = p1(T1(0, 1)) = 0
p1(T1(1, 0)) = 1
p2(T1(0, 0)) = p2(T1(1, 0)) = 0
p2(T1(0, 1)) = 1

(18.22)

At iteration j, after computing T θ1
j (u, v) = Tj−1(u − 1, v) × mj(θ1), we compute for

u + v > 1 and u + v ≤ j:

(

p1(T
θ1
j (u, v)) =

p1(Tj−1(u−1,v))Tj−1(u−1,v)+mj(θ1)

Tj−1(u−1,v)+mj(θ1)

p2(T
θ1
j (u, v)) =

p2(Tj−1(u−1,v))Tj−1(u−1,v)

Tj−1(u−1,v)+mj(θ1)

(18.23)

Similarly, after computing T θ2
j (u, v) = Tj−1(u, v−1)×mj(θ2), we compute for u+v >

1 and u + v ≤ j:

(

p1(T
θ2
j (u, v)) =

p1(Tj−1(u,v−1))Tj−1(u,v−1)

Tj−1(u,v−1)+mj(θ2)

p2(T
θ2
j (u, v)) =

p2(Tj−1(u,v−1))Tj−1(u,v−1)+mj(θ2)

Tj−1(u,v−1)+mj(θ2)

(18.24)

Then, after computing Tj(u, v) = T θ1
j (u, v) + T θ2

j (u, v) + T θ1∪θ2
j (u, v), we compute

for u + v > 1 and u + v ≤ j:
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8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

p1(Tj(u, v)) = β(u, v)(p1(Tj−1(u, v))+
p1(T

θ1
j

(u,v))T
θ1
j

(u,v)+p1(T
θ2
j

(u,v))T
θ2
j

(u,v)

T
θ1
j (u,v)+T

θ2
j (u,v)

)

p2(Tj(u, v)) = β(u, v)(p2(Tj−1(u, v))+
p2(T

θ1
j (u,v))T

θ1
j (u,v)+p2(T

θ2
j (u,v))T

θ2
j (u,v)

T
θ1
j (u,v)+T

θ2
j (u,v)

)

(18.25)

β(u, v) is a normalization factor, chosen so that p1(Tj(u, v)) + p2(Tj(u, v)) = 1
∀ u, v. Finally, the belief mass in each cell (Ts(u, v))u>0,v>0 is redistributed between
θ1 and θ2 proportionally to p1(Ts(u, v)) and p2(Ts(u, v)), respectively.

Note that, for a two-source problem, the proposed rule of combination is equiva-
lent to PCR5. The only cell of T2 involved in the conflict is T2(1, 1) (see figure 18.9
(e)), as a consequence, the mass redistributed to θ1 and θ2 is m′

1 = p1(T2(1, 1))(T θ1
2 (1, 1)+

T θ2
2 (1, 1)) and m′

2 = p2(T2(1, 1))(T θ1
2 (1, 1) + T θ2

2 (1, 1)), respectively.

p1(T
θ1
2 (1, 1)) = p1(T1(0,1))T1(0,1)+m2(θ1)

T1(0,1)+m2(θ1)
= m2(θ1)

m1(θ2)+m2(θ1)
(18.26)

p2(T
θ1
2 (1, 1)) = p2(T1(0,1))T1(0,1)

T1(0,1)+m2(θ1)
= m1(θ2)

m1(θ2)+m2(θ1)
(18.27)

p1(T
θ2
2 (1, 1)) = p1(T1(1,0))T1(1,0)

T1(1,0)+m2(θ2)
= m1(θ1)

m1(θ1)+m2(θ2)
(18.28)

p2(T
θ2
2 (1, 1)) = p2(T1(1,0))T1(1,0)+m2(θ2)

T1(1,0)+m2(θ2)
= m2(θ2)

m1(θ1)+m2(θ2)
(18.29)

From equation 18.25 (with p1(T1(1, 1)) = p2(T1(1, 1)) = 0), we obtain the following
expression for m′

1 and m′
2:

j

m′
1 = p1(T

θ1
2 (1, 1))T θ1

2 (1, 1) + p1(T
θ2
2 (1, 1))T θ2

2 (1, 1)

m′
2 = p2(T

θ1
2 (1, 1))T θ1

2 (1, 1) + p2(T
θ2
2 (1, 1))T θ2

2 (1, 1)
(18.30)

(

m′
1 = m2(θ1)

m1(θ2)+m2(θ1)
m1(θ2)m2(θ1) + m1(θ1)

m1(θ1)+m2(θ2)
m1(θ1)m2(θ2)

m′
2 = m1(θ2)

m1(θ2)+m2(θ1)
m1(θ2)m2(θ1) + m2(θ2)

m1(θ1)+m2(θ2)
m1(θ1)m2(θ2)

(18.31)

which is what we obtained for PCR5 (see equation 18.13).
The proposed PCR rule is compared qualitatively with other rules of combination,
on a two-source problem supposing hypotheses θ1 and θ2 incompatible, in table 18.5.

The number of operations required to compute p1(c) and p2(c), for each cell c
in Ts, is proportional to the number of operations required to compute Ts. Once p1

and p2 have been computed, the number of operations required to redistribute the
conflicting mass is proportional to s(s−1)

2
(the number of white cells in figure 18.8).

As a consequence, the complexity of this algorithm is also polynomial in s. It is thus
applicable to a large class of fusion problems: for instance, it is applied to a problem
involving 24 sources of evidence in section 18.5.1.
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(a) T1(u, v)

(b) T θ1
2 (u, v) = T1(u − 1, v) × m2(θ1)

(c) T θ2
2 (u, v) = T1(u, v − 1) × m2(θ2)

(d) T θ1∪θ2
2 (u, v) = T1(u, v) × m2(θ1 ∪ θ2)

(e) T2(u, v) = T θ1
2 (u, v) + T θ2

2 (u, v) + T θ1∪θ2
2 (u, v)

Figure 18.9: Computation of T2 from T1.
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set θ1 ∪ θ2 θ1 θ2 θ1 ∩ θ2

m1 0.7 0.1 0.2 0
m2 0.3 0.4 0.3 0

conjunctive rule 0.21 0.35 0.33 0.11
Dempster’s rule 0.24 0.39 0.37 0
PCR2 0.21 0.405 0.385 0
PCR5 0.21 0.411 0.379 0
proposed PCR rule 0.21 0.411 0.379 0

Table 18.5: Qualitative comparison with other rules of combination.

The memory requirements for the proposed rule of combination are also inte-

resting compared to PCR5:
“

7 s(s+1)
2

+ 3 (s−1)s
2

”

× 8 bytes for the proposed method

(which corresponds to the cumulated size of matrices Ts, p1(Ts), p2(Ts), p1(T
θ1
s ),

p2(T
θ1
s ), p1(T

θ2
s ), p2(T

θ2
s ), Ts−1, p1(Ts−1) and p2(Ts−1): the largest amount of mem-

ory needed at the same time), compared to 3s×8 for PCR5, if we use double precision
real numbers.

18.8.3 Conclusion

In this appendix, we proposed an algorithm to compute the conjunctive rule in a
time evolving polynomially with the number of sources. From this first algorithm, we
derived a new Proportional Conflict Redistribution (PCR) rule of combination with a
similar complexity. This rule is equivalent to the PCR5 rule for two-source problems
(it is also equivalent to PCR6, in this case [12]). We restricted our algorithms to
fusion problems consisting of two hypotheses: our goal was to reduce the complexity
regarding the number of sources. However, the same principle could be applied to
problems consisting of n hypotheses, using n-dimensional matrices.
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Abstract: Electronic Support Measures consist of passive re-
ceivers which can identify emitters coming from a small bearing
angle, which, in turn, can be related to platforms that belong to 3
classes: either Friend, Neutral, or Hostile. Decision makers pre-
fer results presented in STANAG 1241 allegiance form, which adds
2 new classes: Assumed Friend, and Suspect. Dezert-Smarandache
theory (DSmT) is particularly suited to this problem, since it allows
for intersections between the original 3 classes. In this way, an in-
tersection of Friend and Neutral can lead to an Assumed Friend,
and an intersection of Hostile and Neutral can lead to a Suspect.
Results are presented showing that the theory can be successfully ap-
plied to the problem of associating ESM reports to established tracks,
and its results identify when miss-associations have occurred and to
what extent. Results are also compared to Dempster-Shafer theory
(DST) which can only reason on the original 3 classes. Thus deci-
sion makers are offered STANAG 1241 allegiance results in a timely
manner, with quick allegiance change when appropriate and stability
in allegiance declaration otherwise.
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19.1 Background

Electronic Support Measures (ESM) consists of passive receivers which can identify
emitters coming from a small bearing angle, but cannot determine range (although
some are in development to provide a rough measure of range). The detected emitters
can be related to platforms that belong to 3 classes: either Friend (F = 1), Neutral
(N = 2) or Hostile (H = 3), heretofore called ESM-allegiance, within that bearing
angle.

In the case of dense targets, ESM allegiance can fluctuate wildly due to miss-
associations of an ESM report to established track. Hence, decision makers would
like the target platforms to be identified on a more refined basis, belonging to 5
classes: Hostile (or Foe), Suspect (S), Neutral, Assumed Friend (AF), and Friend,
since they realize that no fusion algorithm can be perfect and would prefer some
stability in an allegiance declaration, rather than oscillations between extremes. This
will heretofore be referred to as STANAG 1241 allegiance (or STANAG-allegiance for
short).

With this more refined STANAG-allegiance, a decision maker would probably
take no aggressive action against either a friend or an assumed friend (although he
would monitor an assumed friend more closely). Similarly a decision maker would
probably take aggressive action against a foe and send a reconnaissance force (or a
warning salvo) towards a suspect. Neutral platforms would correspond to countries
not involved in the current conflict, or to commercial airliners.

All incoming sensor declarations correspond to a frame of discernment of 3 classes,
and several theories exist to treat a series of such declarations to obtain a fused
result in the same frame of discernment, like Bayesian reasoning and Dempster-Shafer
(DS) reasoning (often called evidence theory). However, when the output frame of
discernment is larger that the input frame of discernment, an interpretation has to
be made as to what this could mean, or how that could be generated. This is the
subject of the next sub-section.

19.1.1 An interpretation of STANAG 1241

Both Bayes and Dempster-Shafer assume that the universe of discourse remains fixed
(at 3 singletons “Hostile”, “Neutral”, and “Friend”), and is the same for the in-
put declarations and the fused output results, after repeated use of their respective
combining rules.

However, there exists a new theory called Dezert-Smarandache theory which can
coherently, with well-defined fusion rules, lead to an output amongst 5 classes, even
though the input classes number only 3, because the theory allows for intersections.
For example, “Suspect” might be the result obtained after fusing “Hostile” with
“Neutral” (although other possibilities also exist), and “Assumed Friend” might be
the result obtained after fusing “Friend” with “Neutral” (although again other pos-
sibilities also exist).

This is illustrated in the Venn diagram of Figure 19.1.
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Figure 19.1: Venn diagram for the STANAG allegiances.

19.1.2 Another interpretation of STANAG 1241

The interpretation in the preceding sub-section is a conservative one, namely that
there is only one easy way to become suspect. This could correspond to a deci-
sion maker being in a non-threatening situation due to the choice of mission, e.g.
peace-keeping. There could be situations where there is a need for a more aggressive
response. In the case of a combat mission for example, the appropriate Venn diagram
might be the one of Figure 19.2, where there are many more ways to become suspect,
namely all the intersections bordering Hostile.

Note that for Figure 19.1, the intersection of Friend = θ1 and Hostile = θ3 is
empty (i.e. not allowed, or θ1 ∩ θ3 = ∅, the null set), and this corresponds to an
interesting constraint situation in Dezert-Smarandache theory, as we shall see. It
also corresponds to a more likely mission for Canadian Forces (CF), namely peace-
keeping, or general surveillance.

On the other hand, Figure 19.2 corresponds to a combat situation more appropri-
ate for the U.S.A., or to the CF as long as they play an active role in the Kandahar
region of Afghanistan. For these reasons, and also because all of the features of
Dezert-Smarandache theory will be exercised, without the additional complexity of
keeping all the intersections of Figure 19.2, the situation of Figure 19.1 will correspond
to the one implemented in this chapter.
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Figure 19.2: Another possible Venn diagram for the STANAG allegiances.

19.2 Dezert-Smarandache theory

19.2.1 Formulae for DST and DSmT

Since Dempster-Shafer (DS) Theory (DST) has been in use for over 40 years, the
reader is assumed to be familiar with it. Only a brief review will be provided here,
in order to stress the difference between it and Dezert-Smarandache (DSm) Theory
(DSmT). DSmT encompasses DST as a special case, namely when all intersections are
null. Both use the language of masses assigned to each declaration from a sensor (in
our case the ESM sensor). A declaration is a set made up of singletons of the frame of
discernment Θ , and all sets that can be made from them through unions are allowed
(this is referred to as the power set 2Θ). In DSmT, all unions and intersections are
allowed for a declaration, thus forming the much larger hyper-power set DΘ. For our
special case of cardinality 3, Θ = {θ1, θ2, θ3}, with |Θ| = 3, DΘ is still of manageable
size:

DΘ (|Θ| = 3) ≡ {{∅} , {θ1} , {θ2} , {θ3} , {θ1 ∪ θ2} , {θ1 ∪ θ3} , {θ2 ∪ θ3} ,

{θ1 ∩ θ2} , {θ1 ∩ θ3} , {θ2 ∩ θ3} , {(θ1 ∪ θ2) ∩ θ3} , {(θ1 ∪ θ3) ∩ θ2} ,

{(θ2 ∪ θ3) ∩ θ1} , {(θ1 ∩ θ2) ∪ θ3} , ({θ1 ∩ θ3) ∪ θ2} , {(θ2 ∩ θ3 ∪ θ1)} ,

{θ1 ∩ θ2 ∩ θ3} , {θ1 ∪ θ2 ∪ θ3} , {(θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)}}.

For larger cardinalities, the hyper-power set makes computations prohibitively
expensive (in CPU time) as the following table summarizes (the cardinal of DΘ

follows the Dedekind sequence, and both 2Θ and DΘ include the null set):
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Cardinal of Θ 2 3 4 5 6
Cardinal of 2Θ 4 8 16 32 64
Cardinal of DΘ 5 19 167 7580 7828353

Table 19.1: Cardinalities for DST vs DSmT.

This is one of the reasons why this application is well suited to DSmT, because a
low cardinality of Θ (three) generates a cardinality in DSmT which is computationally
feasible (nineteen).

In DST, a combined “fused” mass is obtained by combining the previous (pre-
sumably the results of previous fusion steps) m1 (A) with a new m2 (B) to obtain a
new fused result as follows:

(m1 ⊕ m2) (C) =
1

1 −K∩

X

A ∩B = C

m1 (A)m2 (B) ∀C ⊆ Θ (19.1)

The renormalization step using the conflict K∩, corresponding to the sum of
all masses for which the set intersection yields the null set, is a critical feature of
DST, and allows for it to be associative, whereas a multitude of alternate ways of
redistributing the conflict (proposed by numerous authors) lose this property. The
associativity within the DST is key when the time tags of the sensor reports are
unreliable, since associative rules are impervious to a different order of reports coming
in, but all others rules can be extremely sensitive to the order of reports. This is the
main reason we concentrate only on DST vs. DSmT, but another reason is the
ridiculous proliferation of alternatives to DST.

In DSmT, the hybrid rule (called DSmH in [4]) appropriate for constraints such
as described previously (corresponding to Figure 19.1) turns out to be much more
complicated:

mM(Θ)(X) � φ(X)
h

S1(X) + S2(X) + S3(X)
i

(19.2)

where all sets involved in formulas are in canonical form and where φ(X) is the char-
acteristic non-emptiness function of a set X, i.e. φ(X) = 1 if X /∈ ∅ and φ(X) = 0
otherwise, where ∅ � {∅M, ∅}. ∅M is the set of all elements of DΘ which have been
forced to be empty through the constraints of the model M and ∅ is the classical/u-
niversal empty set. S1(X), S2(X) and S3(X) are defined by

S1(X) �
X

X1,X2∈DΘ

X1∩X2=X

2
Y

i=1

mi(Xi) (19.3)
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S2(X) �
X

X1,X2∈∅

[U=X]∨[(U∈∅)∧(X=It)]

2
Y

i=1

mi(Xi) (19.4)

S3(X) �
X

X1,X2∈DΘ

X1∪X2=X
X1∩X2∈∅

2
Y

i=1

mi(Xi) (19.5)

with U � u(X1)∪u(X2)∪ . . .∪u(Xs) where u(X) is the union of all θi that compose
X and It � θ1 ∪ θ2 ∪ . . . ∪ θn is the total ignorance. The reader is referred to a
series of books on DSmT [4, 5] for lengthy descriptions of the meaning of this for-
mula. A three-step approach [3] is proposed in the second of these books [4, 5], which
is used in this chapter. From now on, the term “hybrid” will be dropped for simplicity.

If the incoming sensor reports are in DST-space Friend (F = 1), Neutral (N = 2)
or Hostile (H = 3), then Figure 19.1 has the interpretation in DSmT fused space
(allowing intersections) is:

{θ1 − θ1 ∩ θ2} = Friend
{θ3 − θ3 ∩ θ2} = Hostile

{θ1 ∩ θ2} = Assumed Friend
{θ2 ∩ θ3} = Suspect

{θ2 − θ1 ∩ θ2 − θ2 ∩ θ3} = Neutral

As expected, all STANAG-allegiances (masses assigned to the sets mentioned
above) sum up to 1. Hence the first line of eq.(19.6)1, which is the sum for all 5
considered classes of STANAG 1241, yields the second line after using the DSmT
cardinality criterion (with a multiplying factor of -1 for each non-null intersection)
and since θ1 ∩ θ3 = ∅ by construction of Figure 19.1.

θ1 − θ1 ∩ θ2 + θ3 − θ3 ∩ θ2 + θ1 ∩ θ2 + θ2 ∩ θ3 + θ2 − θ1 ∩ θ2 − θ3 ∩ θ2

= θ1 + θ2 + θ3 − θ1 ∩ θ2 − θ3 ∩ θ2 = 1 (19.6)

19.2.2 A typical simulation scenario

In order to compare DST with DSmT, one must list the pre-requisites that the sce-
nario must address. It must:

1. be able to adequately represent the known ground truth,

1In eq. (19.6), we use a concise notation for the masses, i.e. θ1 means m(θ1), etc.
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2. contain sufficient countermeasures (or miss-associations) to be realistic and to
test the robustness of the theories,

3. only provide partial knowledge about the ESM sensor declaration, which there-
fore contains uncertainty,

4. be able to show stability under countermeasures, yet

5. be able to switch allegiance when the ground truth does so.

The following scenario parameters have therefore been chosen accordingly:

1. Ground truth is FRIEND for the first 50 iterations of the scenario and HOS-
TILE for the last 50.

2. The number of correct associations is 80%, corresponding to countermeasures
appearing 20% of the time, in a randomly selected sequence.

3. The ESM declaration has a mass (confidence value in Bayesian terms) of 0.7,
with the rest (0.3) being assigned to the ignorance (the full set of elements,
namely Θ).

Items 4 and 5 of the first list would translate into stability (item 4) for the first 50
iterations and eventual stability (item 4) for the last 50 iterations after the allegiance
switch at iteration 50 (item 5).

This scenario will be the one addressed in the next section, while a Monte-Carlo
study is described in the subsequent section. Each Monte-Carlo run corresponds to a
different realization using the above scenario parameters, but with a different random
seed.

The scenario chosen is depicted in Figure 19.3 below.
Roughly 80% of the time the ESM declares the correct allegiance according to

ground truth, and the remaining 20% is roughly equally split between the other two

allegiances. There is an allegiance switch at the 50th iteration, and the selected
randomly selected seed in the above generated scenario generates a rather unusual
sequence of 4 false Friend declarations starting at iteration 76 (when actually Hostile
is the ground truth), which will be very challenging for the theories.

19.3 Results for the simulated scenario

Before presenting the results for DST, it should be noted that the original form of
DST tends to be overly optimistic. Given enough evidence concerning an allegiance,
it will be very hard for it to change allegiances at iteration 50. This is a well-known
problem, and a well-known ad hoc solution exists, and consists in renormalizing after
each fusion step by giving a value to the complete ignorance which can never be below
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0 10 20 30 40 50 60 70 80 90 100
Friend

Neutral

Hostile

Figure 19.3: Chosen scenario.

a certain factor (chosen here to be 0.02). A comparison will be made with DSmH and
the Proportional Conflict Redistribution rule number 5 (PCR5) preferred by Dezert
and Smarandache.

19.3.1 DST results

The result for DST is shown in Figure 19.4 below.

DST never becomes confused, reaches the ESM-allegiance quickly and maintains
it until iteration 50. It then reacts reasonably rapidly and takes about 6 reports
before switching allegiance as it should. Furthermore after being confused for an
iteration around the sequence of 4 Friend reports starting at iteration 76, it quickly
reverts to the correct Hostile status.

Note that a decision maker could look at this curve and see an oscillation point-
ing to miss-associations without being able to clearly distinguish between a miss-
association with the other two possible allegiances. This fairly quick reaction is due
to the 0.02 assigned to the ignorance, which translates to DST never being more than
98% sure of an ESM-allegiance, as can be seen by the curve topping out at 0.98. The
Figure 19.4 shows the mass, which is also the pignistic probability for this case, with
the latter being normally used to make a decision.
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Figure 19.4: DST result for the chosen scenario. Masses in function of time.

19.3.2 DSmH results

For the hybrid rule of the DSmT, it was suggested to use the Generalized Pignistic
Probability [4] in order to make a decision on a singleton belonging to the input
ESM-allegiance. This seems to cause problems [1]. Since the whole idea behind using
DSmT was to present the results to the decision maker in the STANAG-allegiance
format, the result of Figure 19.5 would be shown to the decision maker.

The decision maker would clearly be informed that miss-associations have oc-
curred, since Assumed Friend dominates for the first 50 iterations and Suspect for
the latter 50. DSmH is more susceptible to miss-associations than DST (the dips
are more pronounced), but it has the advantage of giving extra information to the
decision maker, namely that the fusion algorithm is having difficulty with associating
ESM reports to established tracks.

Just like DST, the 4 Friend declarations starting at iteration 76 cause confusion,
as it should. The change in allegiance at iteration 50 is detected nearly as fast as
DST. What is even more important is that F and AF are clearly preferred for the
first 50 iterations and S and H for the last 50, as they should.

19.3.3 PCR5 results

PCR5 shows a similar behaviour, but is much less sure of what’s going on (the peaks
are not as pronounced), as seen in Figure 19.6. Again, F and AF are clearly preferred
for the first 50 iterations and S and H for the last 50, as they should.
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Figure 19.5: DSmH result for the chosen scenario.
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Figure 19.6: PCR5 result for the chosen scenario.

19.3.4 Decision-making threshold

Because of the sometimes oscillatory nature of some combination rules, one has to
ask oneself when to make a decision or recommend one to the commander. This is
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illustrated in figure 19.7 for DST although the same is applicable for all the others.
A threshold at a very secure 90% would result in a longer time for allegiance change,
and result in a longer period of indecision around iteration 76, compared to one at
70%.
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Figure 19.7: Decision thresholds. Masses in function of time.

19.4 Monte-Carlo results

Although a special case such as the one described in the previous section offers valu-
able insight, one might question if the conclusions from that one scenario pass the
test of multiple Monte-Carlo scenarios. This question is answered in this section.

In order to sample the parameter space in a different way, the simulations below
correspond to 90% correct associations (higher than the previous 80%), an ESM
confidence at 60% (lower than the previous 70%) and an ignorance threshold at 0.02
as before. The number of Monte-Carlo runs was set to 100.

19.4.1 DST results

The result for DST is shown in Figure 19.8. As expected, since DST reasons over
the 3 input classes, Suspect and Assumed Friend are not involved. Naturally, since
Assumed Friend and Suspect do not exist in DST, these are calculated as zero. Friend,
Neutral and Hostile have the expected behaviour. One sees the same response times,
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after an average over 100 runs, as was seen in the selected scenario of the previous
section.
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Figure 19.8: DST result after 100 Monte-Carlo runs. Stanag probabilities in
function of time.

19.4.2 DSmH results

The similar result for DSmH is shown in Figure 19.9. In this case, AF dominates for
the first 50 iteration, on average (over 100 runs) and S for the last 50, confirming
that the chosen scenario was representative of the behaviour of DSmH. The response
times are similar on average also. DSmH is slightly less sure (plateau at 70%) than
DST (plateau at 80%), but this can be adjusted by lowering the decision threshold
accordingly.

19.4.3 PCR5 results

Finally, the PCR5 result is shown in Figure 19.10. In this case also, AF dominates
for the first 50 iterations, on average (over 100 runs), and S for the last 50, confirming
that the chosen scenario was representative of the behaviour of PCR5. The response
times are similar on average also. PCR5 is slightly less sure (plateau at 60%) than
DST (plateau at 80%) or DSmH (plateau at 70%).

19.4.4 Effect of varying the ESM parameters

In order to study the effects of varying the ESM parameters, the simulations below
correspond to an ESM confidence at 80% (higher than the previous 60%) and an
ignorance threshold at 0.05 (higher than the 0.02 used previously). The number of
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Figure 19.9: DSmH result after 100 Monte-Carlo runs. Stanag probabilities in
function of time.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Friend
Neutral
Hostile
Assumed Friend
Suspect

Figure 19.10: PCR5 result after 100 Monte-Carlo runs. Stanag probabilities in
function of time.

Monte-Carlo runs was again set to 100.

A filter was also applied to the input ESM declarations over a window of 4 itera-
tions then assigns lesser confidence to ESM reports which are not well represented in
the window. The results are shown in Figure 19.11 for DST, Figure 19.12 for DSmH
and Figure 19.13 for PCR5. From these figures, one can see the smoothing effect of
the filter, but more importantly all of the conclusions of the previous Monte-Carlo
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runs, as well as the selected scenario of the previous section hold in their totality.
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Figure 19.11: DST result after 100 Monte-Carlo runs and input filter. Stanag
probabilities in function of time.
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Figure 19.12: DSmH result after 100 Monte-Carlo runs and input filter. Stanag
probabilities in function of time.
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Figure 19.13: PCR5 result after 100 Monte-Carlo runs and input filter. Stanag
probabilities in function of time.

19.5 Conclusions

Because of the nature of Electronic Support Measures which consist of passive re-
ceivers that can identify emitters coming from a small bearing angle, and which, in
turn, can be related to platforms that belong to 3 classes: either Friend, Neutral,
or Hostile, and to the fact that decision makers would prefer results presented in
STANAG 1241 allegiance form, which adds 2 new classes: Assumed Friend, and Sus-
pect, Dezert-Smarandache theory was used instead, but also compared to Dempster-
Shafer theory. In DSmT an intersection of Friend and Neutral can lead to an Assumed
Friend, and an intersection of Hostile and Neutral can lead to a Suspect. Recent re-
sults were presented showing that the theory can be successfully applied to the prob-
lem of associating ESM reports to established tracks confirming the work published
in [2]. Results are also compared to Dempster-Shafer theory which can only reason
on the original 3 classes. Thus decision makers are offered STANAG 1241 allegiance
results in a timely manner, with quick allegiance change when appropriate and sta-
bility in allegiance declaration otherwise. In more details, results were presented for
a typical scenario and for Monte-Carlo runs with the same conclusions, namely that
Dempster-Shafer works well over the original 3 classes, if a minimum to the ignorance
is applied. The same can be said for Dezert-Smarandache hybrid rule, and to a lesser
extent for a popular Proportional Conflict Redistribution rule, but with the added
benefit that Dezert-Smarandache theory identifies when miss-associations occur, and
to what extent.



518 Chapter 19: Fusion of ESM allegiance reports using DSmT

19.6 References

[1] P. Djiknavorian, Fusion d’informations dans un cadre de raisonnement de
Dezert-Smarandache appliquée sur des rapports de capteurs ESM sous le
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Québec, Canada, July 2007.

[3] P. Djiknavorian, D. Grenier, Reducing DSmT hybrid rule complexity through
optimisation of the calculation algorithm, Chapter 15 in [5], 2006.

[4] F. Smarandache, J. Dezert (Editors), Advances and Applications of DSmT for
Information Fusion., Vol. 1, American Research Press, 2004.

[5] F. Smarandache, J. Dezert (Editors), Advances and Applications of DSmT for
Information Fusion., Vol. 2, American Research Press, 2006.



Chapter 20

Object identification using
T-conorm/norm fusion rule

Albena Tchamova1 Jean Dezert
IPP, Bulgarian Academy of Sciences, ONERA/DTIM/SIF,
”Acad. G. Bonchev” Str., bl. 25-A, 29 Avenue de la Division Leclerc,

1113 Sofia, Bulgaria. 92320 Châtillon, France.
tchamova@bas.bg jean.dezert@onera.fr

Florentin Smarandache
Chair of Math. & Sciences Dept.,

University of New Mexico,200 College Road,
Gallup, NM 87301, U.S.A.

smarand@unm.edu

Abstract: This small chapter presents an approach providing fast
reduction of total ignorance in the process of target identification. It
utilizes the recently defined fusion rule based on fuzzy T-conorm/T-
norm operators, as well as all the available information from the
adjoint sensor and additional information obtained from the a pri-
ori defined objective and subjective considerations, concerning re-
lationships between the attribute components at different levels of
abstraction. The approach performance is estimated on the base of
the pignistic probabilities according to the nature of the objects con-
sidered here. The method shows better efficiency in comparison to
the pure Dempster-Shafer theory based approach. It also allows to
avoid the application of the Bayesian principle of indifference and
improves the separation power of the decision process.
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20.1 Introduction

Object identification is an important problem of considerable interest to many civilian
and military sectors. In this chapter the process of object state recognition by an
IFF (Identification Friend/Foe) sensor is examined. The information received from
the sensor pertains to a single attribute: ’friend target’ (F). The absence of evidence
(so-called response), however, does not a priori ensure 100 percents reliability for the
hypothesis ’hostile target’(H) and the problem of possible wrong target recognition
arises. This problem is especially complicated when the moment of decision-making
cannot be postponed. In this case, the total ignorance presence renders the probability
of alternative hypotheses of ’friendly target’ or ’hostile target’ equally ambiguous and
plausible. As a result, alternative decisions made on this basis pose an equal degree of
risk. From the point of view of Dempster-Shafer theory (DST) [2, 4, 9], the proposition
ought to be supported is: ’an availability of full ignorance’, i.e. m(Θ) = 1. In
Bayesian theory [1], according to the principle of indifference, this problem is handled
by setting equal a priori probabilities to each alternative hypothesis. One way out of
the described problem is to incorporate additional attribute information at a different
level of abstraction from another disparate sensor [3, 5, 14]. For this reason, the IFF
sensor is often adjoined with a radar or infrared sensor (IRS). Evidence from the
additional sensor should help to resolve this dilemma. The measurement coordinates
originating from a target moving in an air-traffic corridor is an example for such
evidence. The measurement’s spatial and spectral signal parameters are another
example. Unfortunately, this information does not always provide an implicit answer
at the time the question is posed (due to the sensors’ technical particularities). A
more expensive solution is to increase the number of sensors [3], but this often leads to
increased conflicts between them. In such cases Dempster’s rule yields unfortunately
unexpected, counter-intuitive results [11].

In this work, one utilizes a new class of fusion rules introduced in [13] in the
framework of Dezert-Smarandache Theory (DSmT) of plausible and paradoxical rea-
soning [11, 12]. Our approach is based on fuzzy T-conorm/T-norm operators and on
all the available information - from the adjoint sensor (radar) and additional informa-
tion obtained from a priori defined objective and subjective considerations concerning
relationships between the attribute components at different levels of abstraction. In
the next section we present briefly the main principles of fuzzy based T-Conorm/Norm
(TCN) fusion rule. Then the proposed approach for object identification is described,
tested and evaluated. Concluding remarks are given in the last section.

20.2 Approach description

• The a priori dataBase definition. The a priori database is realized as a fuzzy re-
lation [7]. It takes into account the defined objective considerations connecting
the components of some attributes expressed at different levels of abstraction
(for example the fuzzy relation ’target type - target nature’ ). For this purpose,
it is defined:
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– The set X = {x1, x2, ...x2n−1}, relating to the level of abstraction of
the adjoint sensor (the object type Oi, i = 1, 2, ..., n) corresponds to the
Dempster-Shafer Theory power set 2Θ.

x1 = O1, x2 = O2, ..., Xn = On

xn+1 = O1 ∪O2, ...

x2n−1 = O1 ∪O2 ∪ ... ∪On

– The set Y corresponds to the level of abstraction of the base sensor
(Y = {y1 = F(riend), y2 = H(ostile) ).

– The matrix R : X ⇒ Y is a fuzzy relation with a membership function
(MF): μR(xk, yl) ∈ [0, 1]; k = 1, 2, ..., 2n − 1 ; l = 1, 2 , where n is
the number of considered object’s types. The conditions that MF must
satisfy according to the DSmT and DST are:

P2n−1
k=1 μR(xk, yl) = 1, l = 1, 2

• Semantic transformation. The information granule mX pertaining to the ob-
ject’s type is transformed in a corresponding fuzzy set SX :

μSX (xk) = mX(xk), k = 1, ..., (2n − 1)

• Application of Zadeh’s compositional rule. The image of the fuzzy set SXthrough
the particular mapping [15–17] is received. The output fuzzy set TY corre-
sponds to the target’s nature by means of:

μTY (yl) = supxk∈X{min[μR(yl, xk), μSX (xk]})

where TY represents the non-implicit attribute information extracted from the
measurement.

• Inverse semantic transformation. The fuzzy set TY is transformed into an
information granule mYR through a normalization of membership values with
respect to the unity interval.

• Application of the TCN rule of combination. The TCN fusion rule introduced
in [13] is described in section 15.5 of chapter 15 in this book and therefore
it will not be presented in details here. It is used to combine two evidences:
mX(.) and mYR . This aggregation immediately reduces the total ignorance
with regard to the target’s nature.

• Decision making based on the pignistic probabilities. The Generalized Pignistic
Transformation [11] is used to take a rational decision about the target’s nature
within the DSmT framework:

P{A} =
P

X∈DΘ
CM(X∩A)

CM(X)
.m(X),∀A ∈ DΘ

The decision is taken by the maximum of the pignistic probability function P.
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20.3 Simulation scenario and results

Sensor evidence defines a frame of discernment for the target’s type: Θ = O1, O2, O3,
where object O1 means ’fighter’, O2 means ’airlift cargo’, O3 means ’bomber’, and the
target’s nature: H ⊂ O1, O3 (Hostile) , F ⊂ O2 (Friend). The attribute components
corresponding to these objects’ types are the angular sizes A of objects’ blips measured
on the radar screen. In order to define the influence of these components on this
problem, it is sufficient to know the specific features of their probabilistic ’behavior’
and to assign fuzzy values to them. It is supposed that:

• the average Ā1 of the angular size A1 corresponding to O1 is the minimal value
(Ā1 depends on the size of the elementary radar’s volume AV );

• the probability of the event this angular size will exceed the elementary radar’s
volume can be neglected (i.e. P (A1 > AV ) ≈ 0);

• the average Ā2 of the angular size A2, corresponding to target O2 is the maximal
one;

• the probability of the event that some realization of this stochastic variable A2

will be lower than the angular size of the elementary radar’s volume AV can
be neglected too (i.e.P (A2 < AV ) ≈ 0);

• the average Ā3 of the angular size A3 , corresponding to the target O3, obeys
to the relation Ā1 < Ā3 < Ā2;

• the probabilities P (A3 < AV ), P (A3 > A2) cannot be neglected.

The worst case is when a hostile target is observed and the obtained respective
radar blip has a medium angular size. It can originate from a target of any type, i.e.
Θ = O1 ∪O2 ∪O3 . This is the case, when the approach proposed here demonstrates
its advantages in comparison with the DST based approach. The information granule
is defined as:

mX = {mX(O1) = 0.2 mX(O2) = 0.2 mX(O3) = 0.3 mX(Θ) = 0.3}

Also, the ’worst’ evidence is obtained from the IFF-sensor (it has not received a
response from the observed target):

mY = {mY (F ) = 0 mY (H) = 0 mY (Θ) = 1.0}

If the DS rule of combination (mX⊕mY ) is used to fuse these two sources of evidence,
the result will not change the target nature estimate because of the effect of vacuous
belief assignment.

• Step 1. For the considered example, the sets X and Y are:

X = {O1, O2, O3, O1 ∪O2, O1 ∪O3, O2 ∪O3, Θ}, Y = {F,H}
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R y1 = F y2 = H

x1 = O1 μR(O1, F ) = 0 μR(O1, H) = 0.3
x2 = O2 μR(O2, F ) = 0.8 μR(O2, H) = 0.3
x3 = O3 μR(O3, F ) = 0 μR(O3, H) = 0.3

... 0 0
x5 = Θ μR(Θ, F ) = 0.2 μR(Θ, H) = 0.1

Table 20.1: Fuzzy relation for the database definition.

The a priori defined relation R : X ⇒ Y (the particular database) is described
in Table 20.1.

This relation is not arbitrarily chosen [10]. It is presumed that the information
obtained from some particular schedule of civilian and military aircraft flights
excludes flights of friendly fighters and bombers but allows planned flights of
friendly civil passenger aircrafts and friendly military airlift operations. It is
possible (but as it follows from the example, it is not recommendable) to make
general inferences by using only this a priory information, because of the sig-
nificant cost of the wrong decision ’target is friend’.

On the other hand, the uncertainty with respect to the hostile intentions im-
poses an equal distribution of the probabilities, concerning propositions for:

– a reconnaissance mission performed by a hostile fighter;

– an assault dropped by a hostile cargo aircraft;

– a strike mission performed by a hostile bomber.

Obviously, it is not realistic to expect an appearance of hostile targets, while
the proposition for the alternative event possesses a high degree of probability

• Step 2. The evidence mX from the radar sensor is transformed in a fuzzy set
SX .

• Step 3. The image TY of the fuzzy set SX , defined through the mapping R

infers an information concerning target’s nature as follows:

μTY (y1 = F) = 0.2 μTY (y2 = H) = 0.3

• Step 4. The normalization procedure yields:

μTY (y1 = F) = 0.4 μTY (y2 = H) = 0.6
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It contains the non-implicit information about the target’s nature in the radar
measurement.

• Step 5. TCN fusion rule is used to combine the evidence mX and mYR . In
accordance with the true nature of the problem (Shafer’s model), the following
integrity constraints are introduced:

O1 ∩ O2 = ∅, O2 ∩O3 = ∅, O1 ∩O3 = ∅, F ∩H = ∅

The conjunction of propositions gives:

O1 ∩ F = O1 ∩ O2 = ∅

O2 ∩ F = O2 ∩O2 = O2

O3 ∩ F = O3 ∩ O2 = ∅

Θ ∩ F = O2

O1 ∩ H = O1

O2 ∩ H = F ∩ H = ∅

O3 ∩ H = O3

Θ ∩H = H

By applying TCN fusion rule, the updated vector of masses of belief m̃upd(.)
concerning both levels of abstraction (target’s type and target’s nature) is ob-
tained below:

m̃upd(.) =

(

m̃upd(O1) = 0.13 m̃upd(O2) = 0.44 m̃upd(O3) = 0.22

m̃upd(H = O1 ∪O3) = 0.21

(20.1)

• Step 6. Finally, the pignistic probabilities are calculated in order to take deci-
sions about the object’s nature: P (H) = 0.56 P (F) = 0.44. Other pignistic
probabilities of interest are: P (O1) = 0.235 P (O3) = 0.355. It is obvious
that the evidence supporting propositions ’target type is O1’ and ’target type is
O3’ increase the support for proposition ’Hostile target’. But the evidence for
a target being ’Hostile target’ does not increase the support for the proposition
’target type is O1’ or ’target type is O3’. These results illustrate and confirm
the benefits we can expect from the application of the proposed approach.
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For the completion of this study and to demonstrate its efficiency, two other
possible radar measurements are considered: the possible presence of target type
’fighter’ (and related to it ’bomber’ ) or the possible presence of target type ’airlift
cargo’ (and related to it ’bomber’ ):

m
′

X(.) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

mX(O1) = 0.3

mX(O2) = 0.2

mX(O3) = 0.2

mX(O1 ∪O3) = 0.3

mX(Θ) = 0

and m
′′
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>

>

>
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>

>

:

mX(O1) = 0.2

mX(O2) = 0.3

mX(O3) = 0.2

mX(O1 ∪O3) = 0.3

mX(Θ) = 0

The measurement mX
′ (.) supports the probability for ’hostile fighter’, addition-

ally increasing the corresponding pignistic probability P (H) = 0.65 and decreasing
the opposite one P (F ) = 0.35. The measurement mX

′′ (.) supports ’friend’s airlift
cargo’, additionally increasing the pignistic probability P (F ) = 0.41 and decreasing
P (H) = 0.59. It can be noted that both probabilities tend toward each other due
to the lack of more categorical evidence supporting ’Hostile’. The small difference
remaining between them is due to the ambiguous evidence O2 ∩ O3. The considered
sub-case illustrates the single inefficient application of the proposed approach (but
there is no reason to make categorical decisions if the available information does not
provide any support for this).

In the alternative case of this example, when the target ’Friend’ is considered,
the numerical results remain the same. They support the wrong decision, but have
to be ignored because of the obvious conflict with the air-traffic control’s schedule.
This schedule excludes the appearance of a ’friend’s fighter’ or a ’friend’s bomber’.
Generalizing, there is no reason to check these propositions due to the lack of IFF-
sensor’s answer and because of the arising serious conflict with the air-traffic control
rules. The case of arriving measurement m

′′

X(.) is commented above as the single
inefficient approach application.

The benefits of the proposed approach are also demonstrated in comparing the
results with those obtained by the direct utilization of the mentioned database and
TCN rule. For this purpose, the database consists of two separate databases (mH

DB

and mF
DB ) related with the propositions H and F respectively. Each database

contains two columns (1,2 and 1,3 respectively). These granules can be used for the
direct updating of mX(.) so as to check both alternatives: mX

′ ⊕mH
DB = mH

upd and
mX

′′ ⊕mF
DB = mF

upd. The pignistic probabilities obtained for both alternatives are:

P H
upd(H) = 0.61, P H

upd(F ) = 0.39, P F
upd(H) = 0.41, P F

upd(F ) = 0.59

The obtained probabilities thus show some improvement from the initial total igno-
rance, however this improvement does not suffice in practical application due to the
high similarity of the results for the pignistic probabilities P H

upd(H) and P F
upd(F ).
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20.4 Conclusions

A new approach for a fast reduction of the uncertainty in the process of object identi-
fication has been proposed. The new class of fusion rules based on fuzzy T-conorm/T-
norm operators is used for reducing ignorance according to the object’s nature. This
approach which combines fuzzy set theory and DSmT, utilizes the information from
the adjoint sensor and additional information obtained from a priori defined objec-
tive and subjective considerations. This forms a database representing a set of fuzzy
relations, correlating some measurement components expressed at different levels of
abstraction. This approach generates its results from all available information about
the stochastic events considered in the database and it improves the separation power
of the decision process which is based on the generalized pignistic transformation.
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Abstract: Our results demonstrated the ability of the Free Dezert-
Smarandache (DSm) model to improve thematic classification of for-
est regeneration over the use of Dempster-Shafer Theory (DST) and
a classical Maximum Likelihood Algorithm (MLA). Overall, a classi-
fication accuracy of 82.75% was obtained with the reference method,
MLA but it was improved by 7.4% by applying the fusion method
DST (90.14%). Further improvement of 1% (to 91.13%), compared
to those from the DST, was modest but noticeable when using the
free DSm model. The study also showed the critical aspect of the
design of the mass functions of each ancillary source and the dif-
ficulty to model the associated vagueness and uncertainty. Finally,
the ability of the algorithms to take advantage of data fusion provided
an excellent tool to test various combinations. After testing series
of potential inputs, we found that drainage and surface deposit were
the two best ancillary inputs in addition to spectral information to
improve classification on the growth potential of regenerating forest
stands in Southern Québec.
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21.1 Introduction

This impetus of our work spurred from the necessity to improve map accuracy in the
regenerating forest stands of the Province of Québec in Canada to facilitate forest
management in general and more specifically field operations. Current forest inven-
tory maps divide the landscape into polygons of uniform characteristics based on
stand type, tree density and average height as delineated by an experienced photo-
interpret. The polygon dimensions are larger than 2ha and we wish to develop a
method that provides information at a finer resolution. Another limitation is the up-
date frequency of the maps: inventory cycles imply production of a new map every 8
years. We wish to develop a method that can provide information between inventory
update.

The Maximum Likelihood Algorithm (MLA) is commonly used in forest mapping
context [5, 14] and thus can be used as a reference result for the fusion algorithms.
The limitation of the MLA for thematic classification lies with its incapacity to deal
with heterogeneous data (nominal and ordinal data). Thus, only satellite imagery
is usually used to produce such maps. We selected the Dempster-Shafer Theory
(DST) and the Dezert-Smarandache Theory (DSmT) with its free DSm model to
improve mapping accuracy of regeneration for their ability to fuse satellite imagery
with heterogeneous and complementary data but also for their ability to deal with
data uncertainty and vagueness. We therefore compared the results from the DST
and those when free DSm model was used. Results obtained in [18, 19] suggested
that free DSm model was more adapted to deal with conflicting fusion cases compared
with DST and we felt it needed to be tested further for our purpose.

The main objective of our study is to test if DST and DSmT based on the free
DSm model allow improving map accuracy for area under regeneration. In such case,
specific objectives are included to compare results with MLA and also to assess the
best supplementary input for data fusion to improve the results. This work was ex-
tracted from a study with extended objectives which will be submitted by Mora et
al. [11]. This chapter below focused only on the fusion case that provided the best
results.

21.2 Reasoning theories

21.2.1 Dempster-Shafer theory (DST)

Unlike the theory proposed by Bayes [1], the works from Dempster [4] and Shafer [17]
allows fusing sources of information. Data fusion using DST takes into account the
uncertainty and the vagueness linked to the data and the knowledge that we have
about their influence on a given purpose. The following description is a reminder of
the theoretical bases of the fusion method.
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The first step of data fusion with DST involves defining the frame of discernment
Θ that includes all the classes of the stratification:

Θ = {θ1, θi, ....θn}. (21.1)

Then a power set 2Θ is deduced from Θ including all the subsets of Θ and the
empty set ∅. For instance, for 3 singleton hypotheses we have :

2Θ = {θ1, θ2, θ3, θ1 ∪ θ2, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3, ∅}. (21.2)

In DST, Dempster’s combination rule allows fusing information sources with mass
functions describing all states of each source. These mass functions can be equated
to a confidence level given to each focal element, i.e. each element of 2Θ with a non
null mass. Thus, the mass functions m(.) of each hypothesis of 2Θ will comply with
the following requirements, for a given source:

m: 2Θ → [0,1],

X

A∈2Θ

m(A) = 1, (21.3)

m(∅)=0.

The combination rule (21.4) combines the sources two by two according to the
mass functions defined at the previous step. If we fuse three sources, a second iteration
will fuse the third source with the results of the first combination. The same process
can be expanded to larger number of sources. The combination rule is associative
and commutative. This means that the order for which the sources are combined
is not important. Thus for two distinct sources characterized by their belief masses
m1(.) and m2(.), the combination rule is written as m(∅) = 0 and ∀C ∈ 2Θ \ {∅}:

m(C) = [m1 ⊕ m2](C) =

P

A∩B=C m1(A)m2(B)

1−PA∩B=∅ m1(A)m2(B)
. (21.4)

The denominator of (21.4), also represented by the letter K, equals zero if the sources
are completely contradictory. In such case it means that conflict between sources,
symbolized by k, equals 1 knowing that:

K = 1− k. (21.5)

Zadeh [20] showed that in the case of highly conflicting combinations, the DST can
provide counterintuitive results. Some authors proposed different solutions to solve
this problem. We decided to test the DSmT which has been designed specifically to
assess conflicting cases.
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21.2.2 Dezert-Smarandache theory (DSmT)

DSmT is a generalization of the DST for dealing with conflicts and/or paradoxical
hypotheses [18, 19]. This generalization brings a more adapted framework to take into
account conflicts existing between sources. There is a suite of DSm models available
according to the application [18, 19]. Among all the different adaptations of DSm
models we selected the free DSm model for our study because of its ability to deal
with conflicts and for its simplicity of implementation.

The classic DSm combination rule (DSmC) works with the free DSm model and
keeps the properties of commutativity and associativity of the DST. A hyper-power set
is now derived from the frame of discernment Θ. This set is built with disjunctive and
conjunctive operators ∪ and ∩. Consequently for the frame of discernment presented
in (21.1), the derived hyper-power set DΘ will be as follows:

DΘ = {θ1, θ2, θ1 ∪ θ2, θ1 ∩ θ2, ∅}. (21.6)

The requirements to build mass functions for each focal element of DΘ are iden-
tical to what was presented for the DST. The DSmC rule of combination for two
distinct sources is defined as m(∅) = 0 and ∀C ∈ DΘ \ {∅}:

m(C) = [m1 ⊕ m2](C) =
X

A,B∈DΘ,A∩B=C

m1(A)m2(B). (21.7)

As we can see in (21.7), the parameter k representing the conflict in the DST
combination rule (21.4) disappeared. Now the conflict (or the paradox) is represented
by every composed class resulting in the intersection of two singleton hypothesis.

21.2.3 Decision rule

Various decision rules are proposed in the literature. The most common are the
maximum credibility and maximum plausibility and the pignistic probability. For
our study we choose to deal only with two singletons hypotheses. Consequently, the
maximum credibility decision rule was chosen for its simplicity of implementation.
Indeed in this case, all the other common decision rules cited above will provide the
same decision. For a hypothesis A, it is computed as:

Cr(A) =
X

B⊆A

m(B). (21.8)

21.3 Information used in this work

21.3.1 Study area

The study area is located in the Watopeka forest located in Southern Québec, Canada
with a center latitude and longitude at 45◦35’00” N 71◦46’00” W. The study area can
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be delimited by a square of 50km2 in which 2.5km2 is occupied by regenerating forest
stands. This forest is mainly composed of maple species, yellow birch and coniferous
species like balsam fir, jack pine and black spruce. Due to this species composition,
this forest is dedicated to wood production for a paper factory. The local climate can
be defined as ”continental, sub-humid”. The mean altitude of the area varies from
250 to 400m above see level. The growth season varies from 170 to 190 days per year
and the cumulative number of day degrees varies from 2400 to 3400◦C.

21.3.2 Satellite imagery

We used a multispectral SPOT-5 HRG image taken on September 9 2002 and covering
the study area. The image was orthorectified using a DEM (Digital Elevation Map
which was interpolated with the Spline method applied to contour lines (1:20 000)
extracted from the Québec topographic database. The SPOT-5 image was composed
of pixels with 10m spatial resolution. Such spatial resolution is a good compromise
between the lower resolution provided by Landsat images at 30m and the very high
spatial resolution images (e.g. QuickBird, IKONOS) ranging from 0.6 to 4m. Land-
sat images do not provide sufficient spatial resolution to identify efficiently spatial
patterns of regenerating forest often in stripes. In contrast, very high spatial reso-
lution satellite images at the level of 1 to 4m provide a sufficient level of details but
are far more complex to process. In addition to supplying with a suitable spatial
resolution to identify regeneration areas, multispectral SPOT-5 image also offers a
good compromise between cost and total surface covered.

21.3.3 Sample plots

We collected field sample plots for the three classes of stand regeneration: Decidu-
ous commercial species, Non commercial, Conifers. The main commercial deciduous
found in the study area were maple sugar and yellow birch. Non commercial species
included shrubs, ferns and typical species from humid sites like lycopods, horsetails.
The conifer class included balsam fir, jack pine and black spruce. For each of the
three classes, plot localization was chosen at random inside known areas having re-
generating stands in the study area. During the field visit, a GPS reference value was
taken at the center of each sample plot for location and the following attributes were
recorded as an average considering all trees in the plot: species composition, density,
age, and height, approximate radius of stand homogeneity from the center. Sample
plots diameter could vary depending on the homogeneity of the species distribution.
This did not add any difficulty in the analysis as we did not need to compare these
plot diameter and all plots had a minimum radius of 12m which allowed all plots to
be used in the analysis. We superimposed the satellite image over the sample plots
to assigned pixels that corresponded to each plots. Table 21.1 provides the number
of sample plots and their associated number of pixels obtained for each class.
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Commercial deciduous Non Commercial Conifers
Sample plots 61 53 36
Pixels 334 168 164

Table 21.1: Numerical description of each class of the stratification.

The spectral separability of the three classes was evaluated by using the pixel
radiometric values at the location of each plot. We first applied the Jarque-Bera
test [9] which examined the normality of radiometric values of each class. Each
class was evaluated for each of the four bands of the satellite image. Half of the
combinations were proved to be normal. The others were rejected with an alpha
coefficient of 5 or 1%. Then we computed the Bhattacharrya distance to examine the
separability of the class distributions. Results provided a good separability between
classes from 1.31 to 1.46 (Table 21.2) knowing that a perfect separability is equal to 2.
According to these tests we decided to use the maximum likelihood algorithm (MLA)
as the first reference test to compare its results from those of the fusion algorithms.
We divided randomly the datasets into two parts in order to obtain first a dataset
for the training of the MLA (66% of the sample plots) and second another dataset to
evaluate the results of the classification (34% remaining).

Commercial deciduous Non Commercial
Non Commercial 1.43 /
Conifers 1.31 1.46

Table 21.2: Bhattacharrya distance on the sample plots distributions.

21.3.4 Drainage and surface deposit

In our first series of tests to map regeneration of forest stands, we only considered
two pedological attributes, surface deposit and drainage, among all the potential
biophysical parameters involved in the growth potential of forest stands. The value
of these two attributes will be added to the spectral values as input of the classification
methods using evidential reasoning. We focused on these two pedological attributes
because they have been identified in the scientific and professional literature as the
major explanatory variables for the stand growth for ecosystems. Roy et al. [15,
16], Gagnon and Roy [6], Robitaille [13] and MRNQ [12] provide more details on the
importance of surface deposit and drainage on the spatial distribution of the species
in Eastern Canada. Both attributes were available from the maps published by the
provincial government of Québec which served as a base for forest inventory. These
maps are produced from the interpretation of aerial photography taken at a scale of
1 : 15000.
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21.4 Methods

A flowchart of the steps required to apply our method is given in Figure 21.1. Before
applying the classification methods we identified the areas with regenerating stands
from the interpreted provincial forest inventory and created a spatial mask to apply
the analysis over that area only. Then we processed to image classification using
the MLA. The result of this reference method allowed mapping the coniferous areas
in the regenerating stands. We therefore identified pixels of the image and in the
regeneration stands that were dominated by conifer trees. These pixels can therefore
be treated separately in the analysis. Once the delimitation of regeneration area
is completed, we start the analysis for belief assignment, i.e., we defined the mass
functions for the two remaining classes: Commercial deciduous and Non commercial.
Then we processed the data fusion according to the DST and DSmT with the decision
rule of the maximum credibility. The results are validated by comparing with a
reference method (MLA) or with the validation plots.

Figure 21.1: Flowchart of the methodology.
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21.4.1 Reference methods

The first step of the process consisted in pre-identifying the regenerating stands with
the provincial forest inventory. This allowed reducing the number of classes including
only the regeneration stands to be considered in the study area. Then we were able to
mask the satellite image only on these areas which were relevant for the analysis. We
applied the MLA on the masked image by using the training sample plots. The results
were not only used as a reference to evaluate the performance of the fusion methods
but were also used to identify the coniferous pixels in the regenerating stands.

21.4.2 Data fusion methods

We were not able to define mass functions for the conifer class of the stratification
because of a lack of references leading to support mass function values. Therefore
the fusion process was applied only to pixels of the two other remaining parts of the
regenerating stands identified as ”Commercial deciduous” or ”Non commercial”.

The belief assignment was processed according two specific ways, one for the
satellite image and one for the ancillary sources. We used the Fuzzy Statistical Ex-
pectation Maximization algorithm (FSEM) [7] to define the mass functions for the
satellite image. This supervised multi-iterative method is based on Gaussian distri-
bution classes and compute posterior probabilities. The use of the FSEM requires
having strictly independent sources. Consequently we used as data input the first
two principal components (90% of the variance) of a principal component analysis
(PCA) applied to the four spectral bands of the satellite imagery. The FSEM has
the ability to produce fuzzy classes. This automatic way to design the mass func-
tions was only applied to the satellite image because it was not possible to obtain
normal distributions with the other two ancillary sources of input: surface deposit
and drainage.

We designed the mass functions of the two ancillary sources manually according
to the references and some expert interviews. Corgne [3] and Cayuela et al. [2]
also adopted this way to define mass functions of their models. Firstly, the references
indicated in what way each source had a positive influence on the growth development
of the deciduous species of interest. This focuses mostly on the sugar maple, the most
common species of interest in the area. Secondly, we designed the mass functions so
that the sum of all masses of pure classes was equal to 1. A normalization occurred
later in order to integrate the mass of fuzzy classes to follow the rule defined by (21.3).
Thus, at this step we have the following relationship for two pure classes:

m(θ2) = 1− m(θ1). (21.9)

In the case of our study, we can replace the class name ”Deciduous species” by θ1

and ”Non commercial species” by θ2. At this point we had values for mass functions
only for pure classes. However the next step impose that we define new masses for
union classes or fuzzy classes and that we renormalize with these new mass values.
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We defined the mass functions for fuzzy classes in the discounting framework
[10, 17]. This helps also to weaken the bba’s associated with sources believed to be
less reliable or of lesser importance for the fusion procedure. The discounting method
is defined in our 2D case as follows:

m′(θ1) = α · m(θ1), (21.10)

m′(θ2) = α · m(θ2),

m′(θ1 ∪ θ2) = (1− α) + α · m(θ1 ∪ θ2). (21.11)

Given the vagueness and uncertainty related to the sources (scale digitization,
quality of the manufacturing process), we fixed the coefficient α to a value of 0.5
empirically. According to (21.11), this is equivalent to considering the mass of the
fuzzy class as the mean of the masses of the pure classes before the normalization.
On the one hand this choice appeared as the best compromise to model the vagueness
and the uncertainty of the sources. On the other hand, we were not able to define
the masses of the fuzzy class manually on a scientific basis. Then we applied a linear
normalization to follow the requirement of (21.3).

References from the scientific literature provided the necessary information to
define the influence of each state of the sources on the growth development of the
deciduous species. In other words, we were able to design the general shape of the
mass functions. Then, we had to interpret numerically the specific influence of each
sources when the reference did not provide such information. This was done empiri-
cally so we applied a sensitivity analysis to assess the influence of the variation of the
mass values on the quality of the fusion.

• Drainage

Roy et al. [16] established a curve linking the drainage with dieback rate of forty
deciduous forest stands in Southern Québec. We used this curve to quantify
the influence of soil drainage on growth development of the sugar maple (see
Table 21.3). We noticed that the two levels ’Excessive’ and ’Fast’ were not
found in our study area. The codes of Table 21.3 correspond to the provincial
forest inventory standards.

• Surface deposit

According to Roy et al. [15, 16], Gagnon and Roy [6], Robitaille [13] and MRNQ
[12] and also to expert interviews, we translated the influence of the amount of
clay and the thickness of the soils on the growth of sugar maple as indicated
in Table 21.4. These codes also corresponded to the Québec provincial forest
inventory standards.

• Data fusion

As motivated above, the fusion model did not consider conifer pixels. Iden-
tification of conifer pixels was accomplished with the MLA. When applying
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Level Code Mass of θ1 Mass of θ2

Excessive 0 0 1
Fast 1 0.69 0.31
Good 2 0.77 0.23

Moderate 3 0.77 0.23
Imperfect 4 0.60 0.40

Bad 5 0 1
Very poor 6 0 1

Table 21.3: Mass values for the drainage.

Type Code Mass of θ1 Mass of θ2

Thin organic deposits 7T 0.15 0.85
Thin glacial deposits 1aM 0.3 0.7

Medium thickness glacial deposits 1aY 0.4 0.6
Thick glacial deposits 1a 0.5 0.5
Juxtaglacial deposits, 2A,
Proglacial deposits, 2B, 0.7 0.3

Ancient fluviatil deposits 3AN
Glaciolacustral deposits 4GS 0.9 0.1

Table 21.4: Mass values for the surface deposit.

the DST algorithm we tested the possible combinations of the results of the
PCA from the SPOT-5 image with one and two ancillary sources. The results
from data fusion using the DST were compared with those from the reference
method (MLA).

We applied a Hill-Smith test [8] to study the link between the masses, the
quality of the result obtained by the DST and the conflict level (Figures 21.2
and 21.3). The result shows a positive correlation between the conflict and the
misclassified pixels which justified the use of DSmT with the free DSm model
to fuse the sources. In the application of the free DSm model we followed the
same procedure as the DST fusion process. Here, we fused the sources with a
total transfer of fuzzy masses to the paradoxical class as in Corgne [3].
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Figure 21.2: Histogram of the conflict for the best source combination.

Figure 21.3: Correlation circle of the Hill-Smith test on the best DST fusion
parameters. The prefix ”Res” means ”Result”, ”NCom” refers to the Non
commercial class and ”ComD” refers to the Commercial deciduous class.
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21.5 Results and their interpretation

21.5.1 Results based on the maximum likelihood algorithm

Table 21.5 presents the correct classification results obtained using the MLA with
the three classes of the original stratification and those obtained after adding the
conifers to the mask. These results served as a base of comparison for those that
were obtained with the fusion algorithms. The ”two classes” case provided better
results (82.75%) than the ”three classes” case (70.03%). This can be explained by
the reduction of the confusion produced by the removal of the Conifers class. For
the ”two class” case both classes were well classified; above 90% for the Commercial
deciduous class and above 70% for the Non commercial class. Such good results were
expected in view of the normality of spectral values within the sample plots and the
Bhattacharrya distance obtained for the classes (Table 21.2).

ComD NCom Conifers Mean
”three classes” case 85% 40.96% 81.48% 70.03%
”two classes” case 90.83% 71.08% / 82.75%

Table 21.5: Results of the MLA with according to the number of classes.
”NCom” refers to the Non commercial class and ”ComD” refers to the Com-
mercial deciduous class.

21.5.2 Results based on the fusion in DST framework

Comparison of results obtained with the MLA with those obtained with the FSEM
(Table 21.6), shows that the FSEM was less efficient than the MLA to classify the
satellite image. Consequently we decided to stop the FSEM after one iteration in
order to obtain a fuzzy MLA classification. In fact the first iteration of the FSEM fixed
the prior probabilities for each of the n classes at 1/n which is equivalent to applying
the MLA. When compared to the FSEM (Table 21.6), the fuzzy MLA provided an
improvement of 6.4% on the overall accuracy. The result provided by the MLA used
as a reference result was lower than the one obtained with the fuzzy MLA by about
1%. This can be explained by the fact that the last method computed the masses for
a third class (the fuzzy class). This induced a new distribution of mass values which
led to a new hierarchy between the singleton classes. Moreover when using the fuzzy
MLA, the input data were not the spectral bands but the bands provided by a PCA.
Therefore this can lead to a slight difference in the results from the MLA applied to
the spectral bands of the satellite image.
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Commercial deciduous Non commercial Mean
MLA 90.83% 71.08% 82.75%
FSEM 96.67% 49.40% 77.34%
Fuzzy MLA 85% 81.93% 83.74%

Table 21.6: Results obtained by the MLA and the FSEM.

Table 21.7 presents the results obtained when the satellite image was fused with
one and both ancillary sources. The fusion of the satellite image with the Surface
deposit or the Drainage provided better results compared with those from the MLA
and the fuzzy MLA, respectively by +3.94% and +3.45%. The best results were
obtained with the fusion of Surface deposit with the PCA values of the SPOT-5
image. Adding the second ancillary source (Drainage) to the combination provided
a small but noticeable improvement of +2.46% on the overall accuracy.

Commercial deciduous Non commercial Mean
Drainage 95% 75.90% 87.19%
Surface deposit 90% 84.34% 87.68%
Drainage /
Surface deposit 95.83% 81.93% 90.14%

Table 21.7: Results obtained using DST framework.

Table 21.8 provides information about the conflict level for the whole area and
within the validation sample plots for the fusion of the satellite image and both
ancillary sources. As shown in Figure 21.2 the mean conflict level in the image is not
high (0.27) but some pixels have high values (until 0.89). The Hill-Smith test showed
a positive correlation between the conflict level and the misclassified pixels. From
the table we noticed that the validation sample plots were not within the highest
conflicting areas (maximum conflict value of 0.42). Nonetheless, the fusion with
DSmT and the free DSm model remains relevant. Next section presents the results
obtained with this fusion method.

Minimum Mean Standard deviation Maximum
Whole area 0 0.27% 0.1 0.89
Validation

sample plots 0 0.24% 0.07 0.42

Table 21.8: Conflict levels for the fusion with both ancillary sources.
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21.5.3 Results based on the fusion in DSmT framework

Table 21.9 presents the results obtained for the fusion of the satellite image with the
ancillary sources. The use of the free DSm model induced a small improvement of
0.49% of the overall accuracy for the DST fusion using the combination of the satellite
image with the Drainage. Applying the free DSm model using only Surface deposit
with the PCA bands provided worse results for the Commercial deciduous class and
also induced a slight decrease of the overall accuracy by 0.49%. The best results were
obtained with the combination of the PCA values of satellite image with the Drainage
and the Surface deposit. It induced an improvement of 1% on the overall accuracy
compared to the DST.

Commercial deciduous Non commercial Mean
Drainage 93.33% 79.51% 87.68%
Surface deposit 89.16% 84.33% 87.19%
Drainage /

Surface deposit
95% 85.54% 91.13%

Table 21.9: Best results obtained using DST framework and the free DSm
model.

21.6 Sensitivity analysis

21.6.1 Mass functions of the ancillary sources

Because some mass function values were determined empirically, we decided to apply
sensitivity tests. This analysis implied varying the mass values through their potential
range to study the impact of the initial choice. We aimed at preserving the shape
of the curves which represents the hierarchy between the state values of the source.
Figure 21.4 represents the evolution of the overall accuracy according to the mass
variations. Note that the mass variation displayed in the x-axis is the variation of the
Commercial deciduous class. When the mass values of one hypothesis are increased,
this automatically leads to an improvement of the overall accuracy of the class, and a
decrease in the other one. Figure 21.4 also shows that the initial mass values provided
the best overall accuracy which is the best compromise for the quality of the detection
of both classes.

21.6.2 Discounting coefficient

Previously we justified why we chose to fix the α coefficient at a value of 0.5. Nonethe-
less we studied the variation of this parameter that could influence the overall accu-
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Figure 21.4: Evolution of the overall accuracy according to the variation of the
masses for the combination with two ancillary sources.

racy. Figure 21.5 represents the evolution of the results according to the variation
of this coefficient. A zero value for α means that the discounted mass functions will
be equivalent to a Bayesian belief structure and will be very specific whereas a value
equals to 1 will transform the mass functions to a non-informative belief structure.
It shows the small influence of the discounting coefficient on the overall accuracy.
Only a slight improvement is obtained with the highest values (α = 0.8 and 0.9) of
the coefficient. With a value of α = 0.8, the identification of the Non commercial
class is improved by 1.35%. With a value of α = 0.9, the identification of the Non
commercial class is improved by 4% and the ability to identify Commercial deciduous
decreased by a value of -0.82%. Thus we realized the small impact of the discounting
coefficient on the overall results for our study.
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Figure 21.5: Evolution of the overall accuracy according to the value of α for
the combination with two ancillary sources.

21.7 Discussion

From our preliminary runs of the algorithms we quickly realized that results from
multiple iteration of the FSEM were not as useful as using only the first iteration
(which is equivalent to the fuzzy MLA). It seems to be an interesting way to com-
pute automatically the masses of the spectral bands of a satellite image. We think
that this automatic way is preferable than an empirical one. However the normality
of the spectral information within the training samples has to be considered. Also,
the classification resulting from the fuzzy MLA gave an interesting overall accuracy
(83.74%) and balanced results for each class (both above 80%). This also confirmed
the interest of the fuzzy MLA.

Our study also showed the difficulty to establish the mass functions of the ancil-
lary sources. This is due to the lack of scientific knowledge about the influence of
the attributes on the growth potential of regenerating forest stands. Moreover the
sensitivity tests showed the high sensitivity of the results to the design of the mass
functions. We also showed the low influence of the discounting coefficient on the
global quality of the fusion but we still think the way we used the discounting frame
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by fixing α at a value of 0.5 is a best way to deal with the lack of knowledge we
have about the influence of each ancillary source and their quality. This value is a
compromise because it equals the mean of the masses of the pure hypotheses before
the linear normalization that considers the mass of the fuzzy class. Nonetheless, we
advise to test different α values for each source to be fused according to its quality
and the uncertainty about the design of the mass functions. For example the scale of
each source could be considered for this. We could not test this in our study because
all the sources had the same scale.

Note that for this first study about the regenerating forest stands, we only con-
sidered pedological attributes. Some references and experts, also cite topographic
and hydrographical information as attributes of interest for our purpose. Thus, in
order to improve the results, we should review all potential sources of information.
Also, on a technical point of view, a way to improve the results may be to condi-
tion the transfer of the fuzzy mass to the ”intersection class” according to conflict
level encountered during the DST fusion. Lastly we benefited in our study from only
modest improvements while applying the free DSm model. This might be partially
due to the fact that validation plots were not taken in high conflict areas (see Table
21.8). This situation shows the importance of plot distribution to make sure they are
also present in areas presenting high conflict. Therefore, the level of conflict should
always be tested as a prior indication to choose the most relevant fusion method.

21.8 Conclusion

Our study showed the ability of DSmT and the free DSm model to improve the clas-
sification results (91.14%) compared to those from DST (90.14%) and a also those
from reference method like MLA that is typically used in forestry (82.75%). DSmT
using the free DSm model gave better results than the DST but only with a small
improvement of 1% which indicates that the DST provided most of the improvements
in accuracy that was expected for the purpose of mapping stand regeneration. Tradi-
tional methods like MLA use satellite image as their only source of information. Data
fusion methods proposed in DST and DSmT allow the inclusion of other parameters
that are known to explain forest regeneration. In our case it allowed to model the
influence of surface deposit and drainage which are both known by forester to influ-
ence the growth potential of regenerating forest stands in Southern Québec. As a
continuation of this contribution, further studies should focus on the mass function
structuring prior to the fusion. This is a recurring issue for any project wishing to
adopt DST model framework. An adapted uncertainty to each source should provide
better results. This would be done according to the quality of the data (statistics
about its accuracy, the scale . . . ).
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[3] S. Corgne, Modélisation prédictive de l’occupation des sols en contexte agricole
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microrelief in two forests in Québec, Canadian Journal of Soil Science, 82 (1),
pp. 23–31, 2002.

[16] G. Roy, L. Robitaille, G. Gagnon, Étude des principaux facteurs du
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Abstract: Free and hybrid models of multisource satellite images
fusion are developed using the plausible and paradoxical reasoning
theory of Dezert-Smarandache. The aim of this work is to show
the contribution of these fusion models for improving the thematic
classification and the quantification of change. The maps obtained by
the free model are composed by simple classes and compound classes.
Nevertheless, they contain no significant thematic classes and require
an important computing time. In the other hand, the hybrid model
with a constraint introduced using a prior knowledge relatively of the
study area, can have maps composed of more realistic classes in a
reduced time. These models are implemented and tested on images
acquired by SPOT HRV and Landsat ETM+ sensors.
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22.1 Introduction

Recently, the number of satellite sensors is growing. Information acquired by the
various satellite sensors is very rich and complementary. The combination or the
fusion of different types of information become very interesting. It must take into
account the sources of information increasingly numerous and varied. Information
fusion resulting from different sources remains an open and important problem. The
difficulty of this process is due to both uncertain and conflicting information available.

In this context, several approaches and theories have been developed [2, 5, 13, 17].
The probabilistic approach which is the oldest and most widespread, it can represent
well the uncertainty in the information but does not represent its imprecision [2].
Moreover, it reasons on only simple classes that represent different hypothesis. How-
ever, the Dempster-Shafer Theory (DST) can be an alternative to the probabilistic
approach, it is often recommended and used by some authors [2, 3, 10–12] because it
can also put up with the uncertain nature of information through a solid mathematical
formalism and Dempster combination rule.

Nevertheless, this theory has certain weaknesses when the combined evidence
sources become very conflicting (conflict close to the unit) and when the problem to
be processed cannot be directly described within the frame of discernment of this
theory due the paradoxical nature of information. Consequently a new theory which
can be considered as a generalization of DST was elaborate, it is the plausible and
paradoxical reasoning theory of Dezert-Smarandache (DSmT) [6, 7, 13, 14], it was
applied in the field of remote sensing by [3, 4]. This theory can solve some delicate
problems where DST is usually fails.

DSmT starts with the notion of free DSm model. This model is free because no
other assumption is done on the hypotheses. When the free DSm model holds, the
classic commutative and associative DSm rule of combination is performed. In this
free model, the rule of combination takes into account both uncertain and paradoxical
information. Thus, it generates a frame of discernment more general. But, if the
cardinal of this frame increases the computing time increases and moreover some
classes of the power set are not significant. Therefore, a integrity constraints are
explicitly and formally introduced into the free DSm model in order to adapt it
properly to fit as close as possible with the reality and permit to construct the hybrid
model. There exist actually many possible hybrid models between the two extreme
models (Shafer model and free model) for the frames depending on the real intrinsic
nature of elements. The hybrid DSm rule works in any model and is involved in
calculating the combined mass of any number of information sources, no matter
how big is the conflict/paradoxism of sources, and on any frame (exhaustive or non-
exhaustive, with elements which may be exclusive or non-exclusive or both) [13].

The aim of our work is the improvement of the thematic classification and the
quantification of changes by a fusion process of optical satellite images using two
models of DSmT (the free and the hybrid models). These images are covering a zone
of study located at the east of Algiers.
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The remainder of the paper is organized as follows. In the next section, we recall
the mathematical basis of DSmT and its application to fusion process. Section 22.3 is
devoted to the presentation and the implementation of the free model and the hybrid
model of DSmT. In section 22.4, the two models of DSmT will be applied to the
fusion of two multisource and multitemporal images. Finally, section 22.5 gathers
our conclusions and the possible prospects to this work.

22.2 Dezert Smarandache theory basis

The DSmT of plausible, uncertain and paradoxical reasoning [6, 8, 9, 13, 15] is a
generalization of the classical DST [5, 16] which allows to formally combine any
types of sources of information (rational, uncertain or paradoxical). The DSmT
is able to solve complex data/information fusion problems where the DST usually
fails, especially when conflicts (paradoxes) between sources become large and when
the refinement of the frame of discernment Θ is inaccessible because of the vague,
relative and imprecise nature of Θ elements. The foundation of DSmT is based on
the definition of the hyper-power set DΘ (Dedekind’s lattice) of a general frame of
discernment Θ [8, 9]. The foundation of DSmT is based on the definition of the
hyper-power set DΘ [8, 9] which detailed in section 1.2.1 of the chapter 1, in the
beginning of this book.

22.2.1 Mass functions

The determination of mass functions in DSmT represents a crucial step in a fusion
process and remains a largely unsolved problem, which did not yet find a general
answer. In image processing, Bloch [2] describes three different levels from where a
mass function may be derived: at the highest level where information representation
is used in a way similar to that in artificial intelligence and masses are assigned to
propositions; at an intermediate level, masses are computed from attributes, and may
involve simple geometrical models; at the pixel level, mass assignment is inspired
from statistical pattern recognition. Recall that the difficulty increases when we
are interested on the compound hypotheses and their mass functions. The most
widely used approach is to assign to simple hypotheses masses that are computed
from conditional probabilities. Then a transfer model is introduced to distribute
the initial masses over all compound hypotheses (union and intersection of classes).
This transfer operation is done through a coarsening (discounting) factor and/or a
conditioning factor applying to the conditional probabilities (initial masses).

In this paper, the mass functions are estimated using a dissonant model of Appriou
that was initially developed for only two classes [1] and we have generalized and
extrapolated for more than two classes as follows [3]. In the following equations, xb

s

stands for the value of a pixel of the SPOT or Landsat image at spectral band b and
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spatial location s.

∀i = 1, . . . , k mb
i [x
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i ,

where k is the number of the considered classes, ε is a sensitivity factor that weighted
the mass functions in order to have their sum over all the hypothesis equal to 1,
P(xb

s|θi) is the conditional probability, αb
i is a coarsening factor, and Rb represents a

normalization factor that is introduced in the axiomatic approach in order to respect
the mass and plausibility definitions, and is given by:

Rb =
1

maxi=1,...,k P(xb
s|θi)

.

To fuse paradoxical or rational sources of information (bodies of evidence), we have
used in this paper the DSm classical rule and the DSm hybrid rule. These rules are
detailed in the sections 1.2.4 and 1.2.5 of the chapter 1 in this book.

For a future work, we plan to test the PCR5 for the multi-source satellite image
fusion. This rule redistributes every partial conflict only to propositions only which
are truly involved in it and proportionally to their masses put in the conflict [15].

22.2.2 Decision Rule

After the combination of different sources, a decision is made according to a certain
criteria. Several decision rules have been proposed:

1. maximum of plausibility which is advocated by some authors [2–4, 11, 12],

2. maximum of belief over the simple hypothesis which is the most used [11],

3. maximum of belief without overlapping of belief intervals which is very strict
and called absolute decision rule [3, 11, 12],

4. maximum of pignistic probability [13, 17].

22.3 Implementation of the free and hybrid models

22.3.1 Implementation of the free model

The fusion process with the free model Mf (Θ) is given in Fig. 22.1.
The fusion process is detailed by the following steps:
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Figure 22.1: Multi-source fusion process using the free model.

1. A geometrical correction in the same reference frame using the interpolation
by the polynomial model.

2. A radiometric corrections for both images.

3. According to an a prior knowledge, two data bases are constructed: a training
base to be used in a supervised classification process, and a test base to be used
during the assessment of the classification accuracy.

4. A Bayesian classification is performed using a maximum likelihood algorithm.

5. A confusion matrix is established between a Bayesian classification result and
a test data base.

6. For each class, a coarsening factor is obtained from the confusion matrix and
it can be seen as the accuracy of that class which is computed by dividing the
total number of correct pixels in that class by each of the total number of pixels
in that category as derived from the test data base.

7. The mass function is estimated using transfer model of Appriou, detailed in
sec. 22.2.1.
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8. The mass function is estimated one more time by using transfer model of Ap-
priou.

9. A combination rule of DSmT between sources is applied to obtain the combined
mass S1 given by:

S1(A) �
X

X1,X2,...,Xk∈DΘ

X1∩X2∩...∩Xk=A

k
Y

i=1

mi(Xi) (22.2)

10. The combined mass S1 is saved.

11. The belief and the plausibility functions are deduced from the combined mass
function.

12. The uncertainty for each pixel is calculated.

13. Finally, a multispectral classification is released according to a decision rule.

22.3.2 Implementation of the hybrid model

The fusion process with the hybrid model M(Θ) is given in Fig. 22.2 and detailed by
the following steps.

1. Introduction of the combined mass S1 calculated in the free model Mf (Θ).

2. Introduction of the constraints by forcing some elements of DΘ to be empty.

3. Determination of the characteristic non-emptiness function φ(A) and the total
empty set ∅ � {∅M, ∅}.

4. Calculation of the sum based on the technique of absorption, transferred the
mass from each empty element to total or relative ignorance using the expres-
sion of S2 (see section 1.2.5 in chapter 1) given by:

S2(A) �
X

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k
Y

i=1

mi(Xi) (22.3)

5. Calculation of the sum transferred the masses of relative empty sets to nonempty
sets using the following expression of S3 (see section 1.2.5 in chapter 1):

S3(A) �
X

X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xk=A
X1∩X2∩...∩Xk∈∅

k
Y

i=1

mi(Xi) (22.4)
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6. Calculation of the combined masses using the general rule of hybrid combina-
tion of DSm [7] defines as follows:

∀Ai ∈ DΘ, mM(Θ)(Ai) = φ(Ai)
ˆ

mMf (Θ)(Ai) + S2(Ai) + S3(Ai)
˜

.

7. The belief and the plausibility functions are deduced from the combined mass
function.

8. The uncertainty for each pixel is calculated.

9. Finally, a multispectral classification is released according to a decision rule.
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Figure 22.2: Multi-source fusion process using the hybrid model.
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22.4 Application

22.4.1 Site of study and data used

The methodology proposed is tested on an area located approximately at 10km to
the east of Algiers. This area is characterized by high urban concentration and a very
dense road network in the north of the airport and an agricultural area with bare soil
in the south of the airport.

For a multisource study of the site, we often used a data set acquired by different
satellite sensors at the same date on the same study area and for a multitemporal
study of the site, it is preferable to use a data set acquired by the same sensor on
different times on the same scene. However, currently we do not have this ideal data
set. Therefore, two multisource and multitemporal images were put at contribution
in this study: a multispectral image acquired on April 1st, 1997 by the sensor HRV1
of SPOT-1 satellite, a multispectral image acquired on June 3rd, 2001 by the sensor
ETM+ of Landsat-7 satellite. The joint exploitation of these images requires a step
of geo-referencing through a method of geometric correction.

In our case, we applied the polynomial method through a second order polynomial.
Then, we proceeded to the resampling of HRV image at a resolution of 30 m using
the method of Nearest Neighbour. Thus, the RGB compositions of the two images
corrected are shown in Fig. 22.3.

(a) SPOT HRV 1997 (b) Landsat ETM+ 2001

Figure 22.3: RGB composition of the Algiers scene, Algeria.
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The methodology of fusion and classification adopted in this work is supervised
based on a prior knowledge on the study site and the various themes which are there.
Then, we extracted a training base and a test base for each image. These bases
contain three thematic classes: Dense Urban (DU), Bare Soil (BS) and Vegetation
(V) that have been identified and defined by an expert knowing well this area of
study.

The validity of the choice of the three classes for the steps of training and evalu-
ation is carried out and justified in [10]. Indeed, for the two images, we notice that
the difference between the envelope of the three normal distributions associated with
the three classes and the form of the real histogram is very negligible. This means
that the two images are dominated by the three classes considered.

22.4.2 Fusion based on the free model

In a multitemporal study of a site, it is preferable to use a multitemporal data set
acquired by the same satellite sensor on the same study area. However, we do not
have this data set. Therefore, two multisource and multitemporal images were used
in this study.

The improvement of the land cover maps obtained is based on the joint exploita-
tion of the two essential characteristics of the sensors which provide the images. The
first characteristic is the wealth of the spectral information of the image acquired by
sensor ETM+ (six spectral bands) which allows a better identification and discrim-
ination of the themes on the ground, and the second characteristic is the wealth of
the spatial information of the image acquired by the sensor HRV (spatial resolution
of 20 m) which allows a more detailed description of the objects.

The result of multisource classification and fusion obtained by the free model is
given by Fig. 22.4.

The evaluation of this result will focus only on the invariant sites between the
two dates of acquisition (1997 and 2001). The airport’s runways are considered as in-
variant site and have not undergone any changes between the two dates of acquisition.

We note, from Fig. 22.4, that the multisource image obtained by the free model
and more exactly the sites invariant of the airport’s runways, constitute of the simple
classes DU on which the two sensors of acquisition (ETM+ and HRV) give the same
opinion with certainty, and of the compound classes (intersection of classes) like the
classes U ∩ V, (BS ∪ V) ∩ U and BS ∩ V, on which the two sensors give different
opinions, i.e., there is a confusion between the two sensors.

By taking a pixel located in the airport’s runways, belonging to the class of in-
tersection U ∩ V generated by the free model, we note that its spectral signature in
image HRV corresponds to the signature of the class U, and that its signature in
image ETM+ thus corresponds to the signature of the class V, the attribution of this
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U
BS
V
U ∩ BS ∩V
BS ∩V
U ∩V
(U ∪ BS) ∩V
U ∩ BS
(U ∪V) ∩ BS
(BS ∪V) ∩U
[(U ∩ BS) ∪V] ∩ [U ∪ BS]

Figure 22.4: Result of multi-source fusion based on the free model. U: Urban
area, V: Vegetation, BS: Bare soil.

pixel to the class U ∩V is well justified (see Fig.22.5).

(a) Class Urban (U) (b) Class Vegetation (V)

Figure 22.5: Spectral signatures of the classes Urban (HRV 1997) and Veg-
etation (ETM+ 2001) in the invariant site of airport’s runways by the free
model.

The evaluation of the result in the case of multitemporal fusion will carry only
on the sites varying between the two dates (1997 and 2001). We take as an example
of variant sites, an agricultural zone located at the south of the airport.
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We note that the multitemporal image obtained by the free model in more exactly
the variant sites, constitute of simple classes representing the stable zones as the class
V not having undergone any change, and of the compound classes representing the
zones of changes during the time considered, as the class of intersection BS∩V which
is an unstable zone.

By taking a pixel, located in the agricultural zone, belonging to the class BS ∩V
generated by our methodology, we notice that its spectral signature in image HRV
corresponds to the signature of the class BS, and that its signature in image ETM+
corresponds to the signature of the class V (Fig. 22.6). Therefore, the attribution of
this pixel which changed class BS towards V to the class BS ∩V is well justified.

(a) Class Bare Soil (BS) (b) Class Vegetation (V)

Figure 22.6: Spectral signatures of the classes Bare soil (HRV 1997) and Veg-
etation (ETM+ 2001) in the variant site of the agricultural zone by the free
model.

The result of the binary changes detection between 1997 and 2001 by multisource
and multitemporal classification and fusion using the free model is given in Fig. 22.7.
The simple classes represent the no change (in black), on the other hand the com-
pound classes represent the change (in white).

From a qualitative evaluation of this image, we see that there are a great dynamics
in the study area between the two dates considered, an evolution of the thematic
classes “bare soil” and “vegetation” in the south of the airport which is due one side,
to the clearing of the land agricultural and another side to the farm of the bare areas
and a dense urbanization in the north of the airport, in particular in the area of El
Hamiz.
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Figure 22.7: Binary changes image between 1997 and 2001 obtained by the free
model.

22.4.3 Fusion based on the hybrid model

From a prior knowledge on the study area, we take as constraint, the proposition:
U∩V. Therefore, the set of the focal elements of DΘ is reduced to the following set:

˘

U, BS, V, U ∪ BS, U ∪V, BS ∪V, U ∪ BS ∪V, U ∩ BS, BS ∩V,

(U ∪V) ∩ BS, (U ∩ BS) ∪V, (BS ∩V) ∪U
¯

.

Decision making will be done on the simple classes and the classes of intersection, by
neglecting the masses associated to the unions of classes which are very weak. These
classes are:

{U, BS, V, U ∩ BS, BS ∩ V, (U ∪V) ∩ BS} .

The result of multisource classification and fusion based on the hybrid model is given
by Fig. 22.8.

The evaluation of the result obtained by multisource fusion using the hybrid model
will always focus to the invariant sites between the dates 1997 and 2001. We note that
the multisource image obtained by the hybrid model M(Θ) and more exactly in the
airport’s runways constitutes of pure classes as the class U on which the two sensors
give a common opinion and the class of intersection as the class BS ∩ V on which
the two sensors give a different opinion. This result is well illustrated by the trace
of the spectral signatures (Fig. 22.9) of a pixel of airport’s runways the belonging to
the class of intersection BS ∩V.

In multitemporal fusion, we see that there is a change of themes which has oc-
curred on the agricultural zone in the south of the airport. A great change of the
Bare Soil (origin) towards Vegetation (destination). The validation of this result is
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U
BS
V
BS ∩V
BS ∩U
(U ∪V) ∩ BS

Figure 22.8: Result of multi-source fusion based on the hybrid model.

(a) Class Bare Soil (BS) (b) Class Vegetation (V)

Figure 22.9: Spectral signatures of the classes bare Soil (HRV 1997) and Vege-
tation (ETM+ 2001) in the invariant site of the airport’s runway by the hybrid
model.

done by taking a pixel belonging to the class BS∩V and then, to observe its variation
between 1997 and 2001.

From the spectral signatures of Fig. 22.10, we see that a pixel of the class “Bare
Soil” in this variant site in 1997 changed class after four years towards the simple
class “Vegetation”.

In the multisource and multitemporal fusion using the hybrid model, the binary
changes map obtained is the same one as for the free model, that is due to the decision
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(a) Class Bare Soil (BS) (b) Class Vegetation (V)

Figure 22.10: Spectral signatures of the classes Bare Soil (HRV 1997) and
Vegetation (ETM+ 2001) in the variant site of the agricultural zone by the
hybrid model.

rule which we applied. The pixels which represent no change (simple classes) are the
pixels which belong to the same simple class in the two results obtained by Maximum
Likelihood (ML). On the other hand, the pixels which represent the change are the
pixels which belong to compound classes.

The only difference between both change maps is at the level of the compound
classes. In case of the free model, the number of change classes is greater than the
number of change classes in case of the hybrid model.

22.4.4 Comparison between the free and hybrid models

After having obtained the land cover map and changes map using the free and hybrid
models of DSmT, we carried out a comparative study between these two models. The
various results of this study are listed on Table 22.1.

22.5 Conclusion

Multisource classification using the free model of DSmT presents an image composed
from simple classes on which both acquisition sensors (ETM + and HRV) express
the same opinion, and compound classes (intersection of classes) on which the two
sensors express different opinions, relatively to the multitemporal classification that
provides a changes map composed of simple classes representing stable areas which
have not undergone any change, and compound classes represent the change areas
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Free model Hybrid model

Cardinality of hyper-
power set

Important, accord-
ing to the number of
Dedekind

Reduced, according
to the introduced
constraints

Computing time
Important and for n �
6 very important

Acceptable

Size of memory needed
Important and for n �
6 insufficient

Sufficient

Obtained image
Includes non-significant
classes

Includes more realistic
classes

Table 22.1: Comparison between the free model and the hybrid model.

during the time considered. To obtain these results, we require much computing
time. On the other hand, the hybrid model allows to have maps composed of classes
more significant and concordant with the ground reality. The results obtained will
be exploited in cartography.

We propose as possible prospects for our work: the integration within the fu-
sion/classification process different types of satellite data known as heterogeneous for
example: the contextual information or a satellite image from SAR (Synthetic Aper-
ture Radar) to include topographic information or relief of the surface to classify for a
more realistic and optimal, the use of the recent data and the update of the training
base, the use of other rules of combination such as the PCR5 (Proportional Con-
flict Redistribution), URR (Uniform Redistribution Rule), PURR (Partially Uniform
Redistribution Rule).
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Abstract: From a real case application based on snow-avalanche
risk management, an integrated framework mixing evidential reason-
ing and multi-criteria decision analysis (ER-MCDA) is proposed.
This methodology considers a simplified decision sorting problem
based on qualitative and quantitative criteria on which more or less
reliable sources provide uncertain and imprecise evaluations. The
Analytical Hierarchy Process (AHP) is used both to model the prob-
lem in a conceptual way and to elicit preferences between key criteria.
Fuzzy Sets and Possibilities theories are used to transform quanti-
tative and qualitative criteria into a common frame for Dempster-
Shafer Theory (DST) and Dezert-Smarandache Theory (DSmT). It
is shown that DSmT offers an interesting framework to take incom-
plete information into account and we use it for decision-making.
Evidential reasoning allows merging different uncertain and incom-
plete pieces of information to identify the sensitivity of an avalanche
prone area and to determine an avalanche hazard map. This ap-
proach emphasizes some implementation guidelines based on a Uni-
fied Modeling Language (UML) of the problem. We point out also
some important issues of information fusion such as basic belief as-
signment elicitation, conflict identification, fusion rules choice and
results validation.
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23.1 Introduction

23.1.1 Natural hazards in mountains

How and why expertise is needed in the risk management process?

Natural hazards in mountains such as snow avalanches or floods threaten hu-
man or material stakes with sometimes dramatic consequences including damages for
people and material assets (see Fig. 23.1).

Figure 23.1: Examples of natural hazards in mountains.

The effects of physical phenomenon on existing stakes such buildings, persons,
infrastructures are cross-analyzed with their temporal occurrence. In a classical
way, risk can be considered as a combination of Hazard level and Vulnerability (see
Fig. 23.2):
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• Hazard level represents the physical effects of a natural phenomenon de-
scribed through its intensity and frequency. This produces a hazard level factor
mixing frequency and intensity. For a snow avalanche, the effects can be snow
deposition, impacts of avalanche and/or blocks, trees carried by the flow, etc.
For debris flows, the effects can be the static and/or dynamic pressure due to
the height of fluid, the impacts of blocks, etc. The more intense and frequent
is the phenomenon, the higher will be the hazard level. A same hazard level
can be due either to a very frequent phenomenon with low-medium intensity
or to a rare event with high intensity (potential effects);

• Vulnerability represents the consequences due to the direct physical or indi-
rect effects of the phenomenon on people, material assets, organization. These
consequences correspond to losses or damages which are first described in a
physical way and then valuated according to their economic value for material
assets and evaluate a risk level.

Figure 23.2: Risk is a combination of hazard and vulnerability.

Risk management can be also viewed as a decision process : in a given situation,
several strategies do exist to reduce the level of risk [Tacnet and Richard 2008].
Prioritization and choice have always to be done by the decision-makers (ministries,
local authorities, private companies or technical staff involved in risk management).
The risk management process can be considered as a combination of decisions related
both to the temporal steps of the physical process and to the functional steps of
the risk management framework in itself. Therefore, decision support systems are
helpful to propose synthesis of the different criteria involved in the decision. To a
certain extent, the decision process when it dysfunctions can also induce disasters
[Weichselgartner and Bertens 2000].
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23.1.2 Experts are expected to manage and integrate the
overall uncertainty

In a natural hazard context, the practical implementation of these principles will con-
cern approaches going from physical phenomenon description (the risk analysis) to
risk evaluation and management. Risk analysis begins with the hazard assessment. It
requires first to identify the phenomena and the physical processes such as triggering,
propagation and deposition. These processes correspond to the successive temporal
steps of phenomena. This begins with a qualitative description of the different phe-
nomenon that have already occurred or that may occur in the risk basin. For each
step, different characteristics related to the possible effects are analyzed by the ex-
perts. For avalanche risk analysis, experts collect and choose parameters that are used
to define the intensity and characteristics of the reference phenomena: the expertise
process can be seen as a serial of decisions related to the different parameters (see
Fig. 23.3). In a second step, frequency of the phenomena is evaluated. Data sources
are historical information, pictures, hydrological chronicles, topographic information.
Risk analysis consists afterwards in the estimation of consequences on exposed people
and assets.

All over this expertise process, uncertainty arises both from expert basic knowl-
edge of the different phenomena, the intermediate tools such as models, the expert
evaluations for data collection and finally from the decision step. In most of cases,
choosing limits on continuous physical values does not make much sense: if a natural
slope is supposed to highly contribute to the sensitivity level of an exposed site and
if its inclination is over 30%, what should we think of a 28% slope? Reasoning on
classes with artificial thresholds does not correspond to the reality. In the natural
hazards risk management context, there is a great need for tools and methodologies
that allow considering both uncertain and imprecise information. Specific needs and
developments about uncertainty in natural hazards risk management processes con-
cern floods [Apel et al. 2004, Van Der Most and Wehrung 2005], rock-falls in relation
with spatial data accuracy [Dorren and Heuvelink 2004], debris-flows [Lin et al., 2004]
or snow-avalanches [Barbolini and Savi 2001].
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This justifies the development of general framework to consider decision and un-
certainty.

Figure 23.3: Expertise required during the hazard analysis step.

The problem complexity requires using different approaches to analyze the risk
situation: descriptive and qualitative approaches are used as well as numerical mod-
eling. In many cases, they must be considered as complementary [Ancey 2006]. In-
volving experts whose backgrounds, methods are different is as useful as necessary to
capture all the complexity of the studied phenomena [Lacroix 2006]. Natural hazards
expertise consists in a complex framework involving several decision levels based on
incomplete and uncertain information (see Fig. 23.4). Expertise is required to fill
the gap between the needs and the available knowledge. This lack of knowledge can
exist at different stages of the risk management process and can be due to incom-
plete historical information describing the extension area [Tacnet et al. 2006], lack of
scientific knowledge, unknown phenomenon scenarios but also to insufficient means
(time,money) for risk analysis and evaluation, etc.
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Figure 23.4: The uncertainty comes from the different steps of the expertise.

Expertise is therefore the result of multiple thematic evaluations based on more
or less reliable and conflicting sources. All the different steps of the expertise are
based on uncertainties that will influence the final result. At the end, the whole
expertise process appears as a sequential process ranging from primary and more or
less uncertain data to the processed data (or decision) is quite difficult to trace in a
detailed way. It is therefore possible to settle decision on very uncertain hypothesis
without being really able to know it precisely (see Fig. 23.5). Even when advanced
tools such as numerical modeling are used for hazard and risk assessment, the experts
always never consider the results directly as decisions but always interpret to provide
an operational result [Tacnet et al. 2005a]. This reality corresponds to the difference
between decision-aid and decision-making [Roy 1990].

23.1.3 A more realistic description of the expertise process

Expertise is expected to help for decision-making in poor available knowledge condi-
tions but appears as a very paradoxical and difficult exercise. Uncertainty and im-
precision do exist on their main steps because of lack of data and knowledge without
being clearly elicited. Final results often come from various sources whose reliabil-
ity and mutual conflict are not easily traced all along the technical decision process.
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Figure 23.5: From primary data to processed data in the expertise process.

Uncertainty does not affect equally all the decision parameters which are themselves
known to be more or less important.

Three main questions can therefore be pointed out:

• Can we find theoretical frameworks that would help decision-making and would
be able to represent in a more realistic way the available knowledge level, the
reliability of sources and the uncertainty of their evaluations?

• How far can we be confident in the expertise results? How can we make a link
between a decision and the way it was obtained: what is the global confidence
in the result? do all the sources agree with this result (in particular when
results come from contradicting positions and criteria)?

• Assuming that we are able to describe and evaluate the uncertainty sources,
how can we make a decision that would be considered?

This chapter proposes an alternative methodology to the classical risk evaluation
method used in the natural hazards mountains management. It is based on a combi-
nation of a multi-criteria hierarchical method and Evidence Theory based approaches.
We present a mixed framework involving both information fusion and multi-criteria
decision analysis (MCDA) in the context of natural hazards in mountains. In the next
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sections, we focus on the different ways to introduce evidential reasoning in a multi-
criteria decision analysis model. In Section 23.2, we briefly remind of formal theories
to manage uncertainty insisting on the advantages of the DST and DSmT. We also
present multi-criteria methods and the way they can use or consider uncertainty in
the DST context. Section 23.3 focuses on methodology used to mix multi-criteria
approach and information fusion. Section 23.4 deals with two applications. The first
one is a simplified version of a global framework to analyze the exposure level of a
snow-avalanche prone area. The second one relates to the risk zoning methodology
and focuses on specific points related to spatial applications. Section 23.5 is a general
discussion and section 23.6 is the conclusion.

23.2 Backgrounds on MCDA and evidential reasoning

Managing uncertainty requires being able to analyze its sources, to evaluate it and
to propagate it through the evaluation process. This section briefly presents existing
approaches for decision based either on multi-criteria decision analysis (MCDA) and
evidential reasoning (ER).

23.2.1 Multi-criteria decision analysis

23.2.1.1 MCDA methods

MCDA is usually used in cases where optimization is not efficient.

In the decision theory, the first theory developed in Economics [Von Neumann
and Morgenstern 1967], the concept of decision under risk corresponds to situations
where objective probabilities of events can be calculated. in that context, the decision
relies on the maximum of expected utility. Due to the complexity of real-life problems
and the limited rationality of human decision, the concept of utility and optimum
for decision have been criticized [Scharlig 1985, Roy 1989, Climaco 2004] leading to
the development of alternative methods for decision-making known as multi-criteria
methods. Decisions support systems based on multi-criteria paradigm try to reach
a compromise through various aggregation methods. Several methods are available
to produce an evaluation of solutions or alternatives but none of the numerous exist-
ing multi-criteria decision aid methods can be considered as a perfect and universal
method that would be appropriate for any decision problem. A comparative analy-
sis has been handled by [Guitouni and Martel 1998] to propose some guidelines for
choosing the ad-hoc method. Another review is proposed by [Linkov et al. 2006] in
the context of environmental comparative risk assessment.
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Multi-criteria decision analysis mainly focuses on reaching a compromise between
those sources. Most of existing methods have been initially developed to consider
only one decision maker [Jabeur and Martel 2005]. Others approaches related to
group-decision making consider the case of several decision-makers. In such cases,
compromises are searched between at the valuation level.

A complete review of all the MCDA methods would be difficult. Two main
classes of methods can be distinguished: those whose final evaluation is the result of
a complete aggregation process as Analytic Hierarchy Process (AHP), Multi Attribute
Utility Theory (M.A.U.T.) and those based on an incomplete aggregation process or
outranking methods such as ELECTRE or PROMETHEE . The first category of
methods is widely used in Anglo-Saxon community which is sometimes described
as the ”MCDA 1 American school” (MCDA). The second class corresponds to the
so-called ”MCDA European school”. The complete aggregation methods have been
criticized notably because they do not consider un-comparability and preferences
un-transitivity. [Guitouni and Martel 1998] proposes some guidelines to choose a
MCDA framework between all the existing methods. We only cite here elements of
comparison between three advanced MCDA methods [Linkov et al. 2006, Guitouni
and Martel 1998]:

• MAUT or MAVT: The Multi-Attribute Utility Theory (MAUT) [Keeney
and Raiffa 1976] or Multi-Attribute Value Theory (MAVT) is certainly the
MCDA method which looks like the classical decision theory in a closer way.
MAUT relies on the hypothesis that decision-maker is rational (he prefers more
an higher utility level than a lower one), that he has perfect knowledge and
that he is consistent in his judgments. For each attribute, the decision maker
must be able to propose a utility function (using as example indirect methods
such as UTA);

• AHP: The Analytic Hierarchy Process (AHP) [Saaty 1980] is a single synthe-
sizing criterion approach. It uses pairwise comparisons with a semantic and
ratio scale to assess the decision maker preferences. The axiomatic foundations
suppose that there must be outer and inner independence between the different
hierarchical levels.

• ELECTRE: This outranking synthesizing method [Roy 1968] is based on the
principle that one alternative may have a degree of dominance over another.
Dominance occurs when one option performs better than another on at least
one criterion and not worse than the other on all criteria. These methods accept
and manage potential un-comparability between different criteria through as
an example, the principle of discordance in ELECTRE methods.

1multi-criteria decision analysis
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Three main problematics are identified to describe the MCDA methods which are
presented in Fig. 23.6 below.

Figure 23.6: Main problematics addressed by MCDA methods [Scharlig 1985].

The main steps of a multi-criteria analysis can be summarized as follows:

1. decision purpose identification;

2. criteria identification;

3. preferences between criteria;

4. evaluation;

5. sensitivity analysis with regard to weights, thresholds, . . .

MCDA: an useful tool to aid decision and elicit the natural hazard expert
reasoning process.

From a conceptual point of view, Risk evaluation is based on a combination of
hazard and vulnerability. In most cases, this combination appears more as an expert
choice than a real deterministic process based on a precise quantification. This is
due both to the uncertainty attached to the two parts of the global risk equation. In
Risk Prevention Plans, expert choices are often the main sources for risk zoning. A
so-called risk equation is supposed to be used but in fact its terms are not evaluated
on the same scale. Some recent progress does exist with the use of deterministic
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modeling in connection with protection works. A risk level can be calculated and
optimized using Bayesian probabilistic framework. The risk level is optimized on the
basis of a utility economic function.

23.2.1.2 The original Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) method is world-wide used in almost all ap-
plications related with decision-making [Vaidya and Kumar 2006]. AHP is a special
case of complete aggregation method and can be considered as an approximation of
multi-attribute preference models [Dyer 2005]. Its principle is to arrange the fac-
tors considered as important for a decision in a hierarchic structure descending from
an overall goal to criteria, sub-criteria and finally alternatives in successive levels
(see Fig. 23.7). It is therefore based on three basic principles: decomposition of the
problem, comparative judgments and hierarchic composition or synthesis of priorities.

At each level, a preference matrix is built up with pairwise comparison between
the criteria of each level [Saaty 1982, Saaty 1990]. Through the AHP pairwise com-
parison process, weights and priorities are derived from a set of judgments that can be
expressed either verbally, numerically or graphically [Forman and Selly 2002]2 . It can
be considered as a kind of conjunctive consensus between different criteria evaluation.
The original AHP method uses an additive preference aggregation.

Figure 23.7: A multi-criteria hierarchical structure is broken down into unitary
hierarchic components.

2p.45
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The final evaluation index is the result of a sum of products of weights from the
tree root to the leaves (see Fig. 23.8). At the leave level, the evaluation expert has
to choose in an exclusive way between several classes.

To implement the AHP method, two different strategies can be used to provide
valuations of alternatives on which we want to make a decision. The original AHP
process consists in comparing the solutions from one to each other in a so-called
”Criterion-alternative approach”. This implies to make pairwise comparisons between
all the solutions or alternatives in order to obtain preferences levels between these
alternatives. A methodology based on a relative verbal scale is provided to calibrate
the numeric scale for measurement of quantitative as well as qualitative performances
(see Fig. 23.9). When dealing with great amount of data, this becomes quickly quite
difficult. The preferences are here the result of a comparative approach of solutions
according to criteria. It is impossible to calculate an index or a rating value for a
unique solution.

Figure 23.8: Principle of the Analytic Hierarchy Process (AHP).
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Figure 23.9: Saaty’s verbal scale for pairwise comparison.

A second approach so-called ”Criterion-index (or estimator)-alternative” can be
imagined (see Fig. 23.10). Instead of comparing all the alternatives, the decision ana-
lyst proposes classes for each criterion. To a certain extent, theses classes correspond
to an increasing or decreasing level of satisfaction of a given criterion. These classes
code some kind of ordinal levels corresponding to a low, medium or strong contri-
bution (or satisfaction) to (or of) the criterion. For example, the criterion human
vulnerability exposed to natural hazards can be assessed according to three classes
based on a number of existing and exposed buildings. This approach prevents from
the well-known ”Rank reversal” problem of the AHP method [Wang and Elhag 2006]:
introducing twice the same alternative modify its relative rank compared to all the
others unchanged alternatives. In that way, the AHP method, despite the known
issues of complete aggregation methods, fits quite well to decision ranking problems
where the alternatives are not all known.

Figure 23.10: Criterion-Alternative and Criterion-Estimator-Solution ap-
proaches.
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23.2.1.3 Uncertainty and MCDA methods

Uncertainty and imprecision in multi-criteria decision models has been early consid-
ered [Roy 1989]. Different kinds of uncertainty can be considered: on the one hand
the internal uncertainty is linked to the structure of the model and the judgmental
inputs required by the model, on the other hand the external uncertainty refers to
lack of knowledge about the consequences about a particular choice. Forma modeling
of uncertainties is necessary when risk and uncertainties are as critical as the issue of
conflicting management goals [Stewart 2005].

Several different techniques have been used to manage uncertainty in the MCDA
process. Fuzzy approaches have been introduced either in the analytic hierarchy
process (AHP) context [Salo and Hamalainen 1995, Salo 1996], in the multi at-
tribute value theory (MAVT or MAUT) preferences ratios based methods [Salo and
Haimailaiinen 2001]. Interval judgments are introduced as a an easy way to handle
imprecise information [Mustajoki et al. 2005].

Fuzzy sets theory is used to consider, according to [Fenton and Wang 2006], risk
and confidence of a decision maker in a multi-criteria decision making problem. Fuzzy
number are then used to valuate the performance index (weights) of the criteria (”risk
attitude” depending on the decision attitude of the decision maker ranging from an
optimistic to pessimistic) and to valuate the alternatives denoted as a ”confidence”
level. Fuzzy approaches have been introduced into the AHP to valuate the alterna-
tives [Kuo et al. 2006, Pan 2008, Dweiri 1999]. This method can be (has already
been) criticized [Linkov et al. 2006]3 notably on the basis of the aggregation is-
sues and its ability to deal with uncertainty [Forman 1993]. [Saaty and Vargas 1987]
has studied the way to consider uncertainty in the AHP process but considers that
such an approach of fuzzifying the numerical judgments used in AHP has no interest
since the numerical values used for pairwise comparisons already correspond to some
fuzzy evaluation by the decision-maker [Saaty and Tran 2007]. Taking perturbations
or catastrophes into account in the decision process was an earlier issue recognized
by [Saaty 1990]4. He suggested to always including a criterion that would gather all
what is unknown and represent a cluster of unforeseen threats in the decision model.
He also considers that the AHP is able to manage uncertainty through its ability to
elicit the subjective probabilities [Ozdemir and Saaty 2006].

More recently, the question of decision under risk has been addressed by Matos
in [Matos 2007]. He suggests a two-step decision method. The first step consists in
the evaluation of the alternatives according to their uncertainty level using differ-
ent theories such as classical probabilities, fuzzy sets theory. The second step uses
multi-criteria methods to interpret the result. He advocates that the ”transformation
of a decision problem under uncertainty into a deterministic multi-criteria problem
provides more meaningful information to the Decision maker”.

3p. 1076
4p.23, §10
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The integration of multiple criteria decision analysis and scenario planning is
presented as a future way of development. Scenario planning is a ”technique for
facilitating the process of identifying uncertain and uncontrollable factors that may
impact the consequence of decision in a strategic management context”. Integration
of external uncertainties in a mixed approach using MCDA and scenario planning is
still a research challenge [Stewart 2005]. On this basis, the methodology proposed in
the following sections tries to follow the main previous guidelines and principles:

• to evaluate the uncertainty about input evaluation (using the different theories
for uncertainty and imprecision) and inject those results into a decision-aid
method;

• to propose a scenario-based approach that would remain understandable for
decision-makers. This scenario planning approach fits perfectly to the con-
text of natural hazards where knowledge and objective probabilities are often
lacking.

23.2.2 Evidential reasoning (ER)

Several theoretical frameworks exist to handle uncertainty in human rea-
soning and decision processes.

Three main theories are mainly used to handle uncertain and incomplete informa-
tion in a decision process: probabilities, possibilities and evidence theories. Classical
probabilities are the traditional tool for situations of incomplete information. Most
of time, the decision processes used for risk evaluation supposes that objective pro-
babilities are available for each component of the risk. This principle is considered
as imperfect since probabilities and data used for numerical modeling often result
from expert assessments. Moreover, these expert opinions in an uncertain context
are known to be influenced by cognitive biases leading to different types of risk aver-
sion [Ellsberg 1961]. For environmental or sustainable development related problems,
other decision models are required: they should consider, from one hand, the risk eval-
uation step and from the other hand, the decision process itself [Magne and Vasseur
2006]5.

Probabilities are criticized especially when they are known to be highly subjec-
tive. Recent developments have studied the use of probability-possibility to improve
decision making under uncertainty in the classical decision theory framework [Gaj-
dos et al. 2008]. Subjective approaches of probability have been recently proposed
according to Bayesian approaches (probability on probability law parameters). This
Bayesian framework can take this subjectivity into account in a rigorous and ax-
iomatically based framework. Soundappan et al. [Soundappan et al. 2004] states
that Bayesian framework and evidential reasoning can be used to model uncertainty

5Chapter 12, p.397
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and safety of a model when the available evidence consists of intervals bounding
the values of input variables. Bayesian approach has recently been applied to snow
avalanches context using large available data bases about avalanches extension to
optimize the size of a passive avalanche defense structure [Eckert et al. 2008, Eckert
et al. 2008a]. The decision application is based on (mostly economic) optimization
principle. This ”optimum” resulting from a complex calculation process is proposed
as a unique result to the decision maker.

When data are not available, when experts judgments are essential part of the
expertise process or to capture the reasoning hypotheses, this powerful probabilis-
tic framework is not fully adapted. Alternative methods may be useful to complete
this approach. Though probabilities remain the traditional tool and powerful tool
for uncertainty management (as long as data are certain and available), others the-
ories for uncertainty fit quite well to the context of expertise for natural hazards in
mountains. Fuzzy Sets, Possibilities and Belief Functions theories can be used in
the natural hazards management context to consider information at its effective level
including uncertainty, imprecision, heterogeneity and reliability of sources. Never-
theless, evidential reasoning which has already been widely used in domains such as
classification, cartography, expert systems, decision-making, . . ., as reviewed by [Sentz
and Ferson 2002], has quite few applications in the natural hazards context [Binaghi
et al. 1998].

Our methodology explores a way to introduce evidential reasoning and its more
recent developments such as DSmT theory in decision processes related to natural
hazards management. Main goals are to make decision but also to trace the reasoning
process used by the experts to build their judgments in the complex and uncertain
context of natural hazards in mountains. The following section presents some no-
tions about evidential reasoning. Basic principles of the belief function theory, and
specifically Dempster-Shafer (DST) and Dezert-Smarandache (DSmT) theories are
widely and extensively described in the others chapters of this volume, and will not
be described again. We will only focus on some interesting features and specifici-
ties of these theories in relations with our application context. Secondly, the fusion
rules still work even in a high level of conflict between sources. The DSmT theoretical
framework appears as quite versatile but in fact it is quite difficult to find applications
based on a non-exhaustive frame of discernment.
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What is fusion?

Information fusion consists of merging or exploiting conjointly, several sour-ces of
information so as to answer questions of interest and make proper decisions [Dubois
and Prade 2004]. The following definition was proposed: ”Fusion consists in con-
joining or merging information that stems from several sources and exploited that
conjoined or merged information in various tasks such as answering questions, mak-
ing decisions, numerical estimation, . . . ” from European working group FUSION
cited in [Bloch et al. 2001].

In practice, fusion is operated through fusion rules that allow aggregating the more
or less uncertain information issued from the different sources. The DST framework
is based on exhaustive and exclusive hypotheses while DSmT framework does not
require such constraints (e.g. in Fig. 23.33). In comparison with other theories,
DST and DSmT offer a wide and powerful range of fusion methods to aggregate the
different basic belief assignments (bba). An exhaustive review of the fusion rules has
been proposed by [Sentz and Ferson 2002]. Their analysis also provide a valuable
summary of the elements under consideration in a combination problem in DST
context (see Fig. 23.11).

Figure 23.11: Elements under consideration for the fusion with DST.

For [Haenni 2002], there is no need for alternative fusion rules to classical Demp-
ster’s fusion rule, refining the model is sufficient. Such argumentation doesn’t hold
because the refinement becomes very hard to do when the cardinality of the frame
of discernment and the number on non-empty intersections increases (the model’s
complexity increases), and the elements of the refined space can have no physical
sense/meaning/existence at all and finally they cannot truly be considered as useful
finer exclusive information granules. Moreover, several authors such as [Smarandache
and Dezert 2006b] and [Martin and Osswald 2006] show that alternative fusion rules
perform better than the classical Dempster’s fusion rule in high conflict situation. For
this reason, we will compare in our applications the classical normalized Dempster
fusion rule with proportional conflict redistribution rule such as PCR6 rule. To illus-
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trate the conflict level, we will also use in our application Smets’ rule which transfers
conflict on the empty set. From a general point of view, the fusion process depends
on a great number of elements (see Fig. 23.11). A fusion approach used in a decision
context implies four steps: modeling (often considered as the most difficult step), pa-
rameters estimation (depending on the model), combination and decision [Martin and
Osswald 2006]. In the following section, we briefly analyze the existing approaches
that use both MCDA and evidential reasoning.

23.2.3 Mixing MCDA and evidential reasoning

Trying to mix multi-criteria decision analysis (MCDA) and evidential reasoning (ER)
quickly leads the question of the difference between aggregation of preferences and
information fusion and therefore to the validity of an analogy between aggregation of
preferences and data fusion. Data fusion is considered as a way to extract the truth
between a set of hypothesis evaluated by different sources. Those two problems are
considered as different: aggregation problem consists in deriving a global preference
profile corresponding to a consensus between the preference profiles induced by the
various sources [Dubois and Prade 2004]6 . Fusion and aggregation should be consid-
ered as mainly different problems [Dubois and Prade 2006] while some applications
do not make such a difference between the two application domains [Dubois et al.
2001]. Despite of these analysis, many authors have already introduced evidential
reasoning (fusion) in MCDA frameworks (based on aggregation of preferences).

23.2.3.1 Existing approaches

Evidential reasoning and multi-criteria decision analysis have already been used in a
common framework. In these approaches, data fusion is mainly applied either to the
criteria considered as sources of a fusion process. Our analysis briefly focuses here
on four main points: How do these models consider the complexity and the implicit
hierarchy between criteria? How does the analyst extract the basic belief assignment
elicitation? How is considered the difference between the importance and the uncer-
tainty level linked to each criterion? Which fusion rules are used? Do they consider
conflict? ER has been already combined with multiple attribute decision analysis
(MADA) problems of both qualitative and quantitative nature [Yang 2001, Yang and
Xu 2002, Yang et al. 2006]. Basic belief assignments (bba’s) are derived directly from
utility functions. A specific process, based on Dempster’s rule of combination is used
to mix criteria without specific consideration of conflict between sources (criteria).
This methodology is applied to environmental problems [Wang et al. 2006].

Using Belief function theory and multi-criteria decision analysis requires evalu-
ating all the criteria on the basis of the same frame of discernment. Including DST

6§5.2
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or DSmT in a multi-criteria approach requires adopting a common frame of discern-
ment. Total aggregation methods such as MAUT 7 or AHP8 gather in a unique index
the result of the evaluation of alternative. For the partial aggregation methods, such
as outranking methods, un-comparability and intransitivity of preferences are basic
paradigms: alternatives are compared to each other without aggregating all the cri-
teria into one and only value. If we consider total aggregation methods, the attempt
to mix multi-criteria approaches and evidence theory using a unique common frame
of discernment for all the criteria does not sound initially so illegitimate.

Such an approach has been proposed by [Beynon et al. 2000] in a mixed framework
called DS-AHP. His decision problem consists in choosing the best alternative between
a complete set of alternatives according several criteria. Belief function theory is
used essentially to reduce the high number of pairwise comparisons required when the
number of alternatives increase. DS-AHP was first proposed as a way to compare sets
of alternatives instead of unique alternatives [Beynon et al. 2000]. Preferences of each
criterion are calculated according the classical pairwise comparison method. For each
criterion, basic belief assignments are calculated on singletons or sets of alternatives
on the basis of the perceived amount of favorable information in comparison with a
total ignorance (i.e. the whole set of alternatives). The basic belief assignment (bba)
on each evaluation grade or alternative is assessed through an indirect analysis of
the ”favorability” of knowledge. Each criterion is always compared to the whole set
of hypothesis using a very specific pairwise comparison matrix. Some issues can be
identified in its process:

• The mass elicitation mixes to different kinds of concepts: in the Belief function
Theory, putting bba on a group of alternatives does not mean that all the
included alternatives have the same level of information. On the contrary, it
implies that knowledge is shared between all the groups without being able to
put some more precise probability (of satisfying the criterion) on each of them.
Reasoning on sets in the Evidential reasoning framework is not a faster way to
put masses on singletons;

• As this principle mixes preferences and uncertainty in a unique bba, classical
preference weights are then applied to reduce this bba without assigning any
additional bba;

• Despite of the presumed ability to consider high number of alternatives, exposed
examples only deal with rather small numbers of alternatives. With a high
number of alternatives, reasoning with sets do not facilitate the decision since
assigning basic belief assignments on sets mean that we are not able to share
the knowledge between all the elements included inside. Taking a decision
resulting from a fusion process is not that easy to interpret;

7Multi Attribute Utility Theory
8Analytic Hierarchy Process
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• Decision rules used only use minimum or maximum of credibility and plausi-
bility. In fact, the decision is possible only if some focal elements exist;

• Because of the use of the (grouped) pairwise comparison matrix, mass elicita-
tion is sensitive to the number of levels in the evaluation scale [Beynon 2002]:
a residual mass is always put on the total ignorance even whatever the choices
of the decision analyst;

• Only a basic one level hierarchic model is considered. Criteria are considered
as the only sources to be fused while several experts may proceed to evaluation;

• The fusion process is only based on the classical Dempster’s rule known as a
failure cause when the level of conflict increases.

This approach is presented as extended by [Hua et al. 2008] for the case where in-
formation is incomplete. However, we can consider here that Beynon’ s approach had
only not emphasized this intrinsic ability of the belief function theory. Another ex-
tension of this method was proposed to consider a multi-expert environment [Beynon
2005].

23.2.3.2 Requirements for an ER-MCDA methodology

If the belief function theory appears as a powerful framework to consider both un-
certainty and imprecision, one of its main drawback consists of choosing bba’s to
be used in the fusion process, especially when information only comes from expert
judgments. Many different methods have been proposed to elicit those bba [Bryson
et al. 1994, Wong and Lingras 1994]. Using a common scale in order to describe
a reasoning process can consist of some kinds of correspondence tables between a
common numerical or ordinal scale and evaluation made by the experts as used as an
example to evaluate the damage level of dams: each failure piece of evidence is rated
in a numerical scale corresponding to an increasing level of gravity [Curt 2008]. This
difficulty does exist in our framework: at least, our proposition introduces a way to
fully describe the decision process (from its design to the evaluation steps) in a less
ambiguous and more complete manner.

Face to the problematic of expertise of natural hazards in mountains, our goal is a
methodology that would allow to make decision such as determining the most danger-
ous areas, the best prevention strategy, . . . according to the following requirements:
on the one hand, the decision framework should allow and trace a multi-expert anal-
ysis of the criteria importances, on the other hand, the model should allow to gather
the more or less uncertain, imprecise evaluations provided by more or less reliable
different sources (data sensors, data-sets, expert judgments). Many combinations re-
lated to the nature and quality of information can be observed. A secondary criterion
can be assessed in a very precise and certain way by a fully reliable source. On the
contrary, an important criterion can be evaluated precisely, in a certain way by a not
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reliable source. Our model aims to support decision in an uncertain context where
several sources provide information about the problem. Its initial main purposes are
not only to provide a help for decision but also to consider the way the decision is
reached considering the reliability of sources and the uncertainty of information. The
system must be able to model a complex hierarchical decision framework (some crite-
ria are more important than others), different kinds of criteria (either qualitative or
quantitative criteria). This versatile system (see Fig. 23.12) should therefore consider
importance, uncertainty, imprecision and reliability in a multi-sources environment.

Figure 23.12: Principle of a versatile ER-MCDA.

We will use one of the most simple multi-criteria decision analyses (MCDA)
method denoted as AHP recognized as a powerful and easy framework to help decision
and reduce complexity in real-case decision situations. Our goal is to help decision
but also to trace reasoning process. Evidential reasoning through Dempster-Shafer
and Dezert-Smarandache theories is used to consider uncertainty and imprecision.
The global methodology is presented in section 23.3 and a simplified application case
in section 23.4.

23.3 ER-MCDA methodology

This section describes the global ER-MCDA framework and its two main parts: the
multi-criteria model and the evaluation and fusion step. The proposed global method-
ology mixes those theories with an evidential reasoning (ER) process, known as a more
general, versatile and integrating framework. These approaches are used in a multi-
criteria decision framework. Many solutions do exist and we discuss in following
sections some issues related to class level belonging, fusion order, etc.
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What and how should we fuse?

Several alternatives or actions are evaluated according to different criteria through
a preference relation. In addition to this, the evidential reasoning theories and their
associated fusion rules are used to evaluate and propagate an uncertainty level in the
decision process. This methodology considers both experts and criteria used in the
hierarchic approach as sources in the fusion process. Different strategies to aggregate
or fuse information are analyzed according to fusion rules, fusion order.

The methodology can be summarized as following:

• Identification and prioritization of criteria in a hierarchic MCDA framework;

• Definition of the frame of discernment considering either exclusive hypotheses
(Dempster-Shafer model) or non exclusive hypotheses (DSmT framework).

In our problem, both quantitative (mainly related to physical data) and quali-
tative criteria are used in the model. Quantitative criteria are evaluated with some
imprecision (corresponding to intervals values) and uncertainty (corresponding to a
confidence level linked to these evaluations). The number of sources can also be dif-
ferent from one source to another. In that way, this model offers a versatile framework
where several criteria are valuated by several sources whose reliability and kinds of
valuation (precise or imprecise way) may also change.

23.3.1 Possibility and Evidence Theory: why and what for?

In our context, expert evaluations often deal with continuous factors such as slope,
surface, etc. These quantitative values are then linked to class levels according to
a common qualitative scale enabling the fusion and/or aggregation process. A nu-
merical value becomes correspond to a linguistic such as high sensitive, sensitive, low
sensitive. This means that, for a given alternative (avalanche site), a numerical value
would respectively, accordingly to their relative importance in the whole process,
induce a global evaluation at the levels high sensitive, sensitive and low sensitive.
Change of sensitivity level correspond to a fuzzy relation: let us suppose that the
expert evaluation is 6% and that the two different classes of slopes are between 5%
and 10% (low sensitive) and between 10% and 15% (sensitive). From a strict point
of view, a 6% value belongs to the class sensitive but everybody has got the feeling
that it is not so far from the low sensitive level. This relative belonging strength must
be valuated. Expert evaluations can also result from an imprecise evaluation. An
expert may be unable to fix a unique value for a slope inclination. In many cases,
the only result that expert can provide is an interval with some confidence values: as
an example, the expert would be able to say that the slope inclination is between 4%
and 7%. For those reasons, it appears that the mixed use of fuzzy set and possibilities
theories is useful to take into account the real knowledge that the expert is able to
put inside the decision process.
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23.3.2 AHP and ER within uncertain and complex context

23.3.2.1 Description of AHP-ER framework

The global framework is based on a combination of multi-criteria decision analysis
(MCDA) techniques and evidential reasoning (ER) through the use of the theory of
belief functions which is implemented in a classical way through DST framework and
also in the new DSmT framework. The global framework considers both importance,
uncertainty and imprecision in criteria assessment. Uncertainty and imprecision are
considered through Belief Functions, Fuzzy Sets [Zadeh 1978] and Possibility the-
ories [Dubois et al. 2000]. Importance is assessed according to the multi-criteria
framework and especially through the classical pairwise comparison matrix using
Saaty’s scale. As recommended in literature [Saaty and Tran 2007], we do not intro-
duce some additional fuzziness on the comparison rates in this matrix. Such attempts
to mix different approaches related to uncertainty management already exist. As an
example Omnari et al. [Omrani et al. 2007] have proposed a model for transportation
strategies evaluation.

Figure 23.13: The six steps of ER-MCDA framework.
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This framework implies the following steps (see Fig. 23.13):

• Hierarchical model implementation with the experts of the domain (criteria
elicitation, qualitative and quantitative criteria identification);

• Choice of decision model (criteria-solution) or (criteria-estimator-solution);

• Choice of the common decision frame of discernment (criteria-solution frame-
work implies that the frame consists of solutions while criteria-estimator-solution
implies that the frame consists of a common scale for every criterion;

• Mapping process to transform the evaluations of the basic level criteria (han-
dled according the hierarchical decision framework) into a common frame of
discernment allowing a fusion process;

• Choice of fusion strategy (fusion of the different experts choices at the criterion
level or at the evaluation stage);

• Choice of decision rule.

The fuzzy mapping for qualitative and quantitative criteria.

The second step of the ER-MCDA framework (see Fig. 23.13) consists of setting
up, for each criterion cj , a fuzzy mapping process that enables to transform uncertain
evaluation of the criteria into bba’s according to the common frame of discernment.
This mapping process proposes a correspondence between the evaluation of the crite-
ria and the elements of common frame of discernment used for the fusion process and
the decision. A mapping model is a set of fuzzy numbers (see Fig. 23.14) or fuzzy
intervals (see Fig. 23.15).

Since the evaluation of criteria can be uncertain and imprecise, the fuzzy inter-
vals used for this mapping process may differ from one source to another. Therefore,
nbModels mapping models mapModelx,cj (for x = 1 to nbModels) can exist de-
pending from one hand on the experts involved in the model building and from the
other hand on the theory used to represent the decision (DST or DSmT mapping).
Two different mapping rules are used depending from one hand on the qualitative
or quantitative nature of the criteria and on the other hand from the nature of the
evaluation (numerical or membership assessment). For quantitative criteria, the map-
ping process transforms a possibility distribution, derived from necessity inputs, into
bba’s. For a given quantitative criterion cj , each source s provide nbInts numerical
evaluation intervals described by a minimum, a maximum and a necessity value. This
necessity value represents the minimum confidence of the source in the proposition
”the value of the criterion cj belongs to the interval”. For qualitative criterion, the
fuzzy number are defined according to credibility values defined on each class.
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Figure 23.14: Fuzzy number L−R.

Figure 23.15: Fuzzy interval L−R.

Figure 23.16: Possibility and necessity distributions.
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Valuations of the criteria: from possibility to bba.

In [Dubois and Prade 2006]9 , the authors describe relations between Possibility
theory and Belief function theory. Given a bba m defined on a finite set S, the
possibility distribution π resulting from m is defined by π(s) = P l({s}) (singletons
plausibility). For different consonant focal elements Ei such as E1 ⊂ E2 ⊂ . . . En,
with Ei = {s1, . . . , si}, the possibility measure Π and the necessity measure N cor-
respond to plausibility and credibility functions (see Fig. 23.16).

Example [Baudrit et al. 2005a, Baudrit et al. 2005b, Baudrit et al. 2007]: An expert
provides n evaluation intervals of a quantitative criterion and assigns a confidence
level λi to each of them. Ei corresponds to the ith interval chosen by the expert
(considered as a source) with i ∈ {1, 2, . . . , n}. λi is the confidence degree associated
to the interval Ei with λi = N(Ei) (see Fig. 23.17).

∀x ∈ R, π(x) = min
i∈{1,2,...,n}

(max(1− λi), XEi(x))) (23.1)

with

XEi(x) =

(

1 if x ∈ Ei

0 if x $ Ei

(23.2)

Figure 23.17: From expert necessity values to bba: numerical example.

9vol. 1, p. 140.
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23.3.3 Step 1: Problem modeling

Risk management process is a complex framework in itself. Faced to any decision
problem, the decision analyst always begins with a modeling phase which is an es-
sential part and a main difficulty of the methodology. In our context, the modeling
both concerns and cumulates known difficulties related both to the multi-criteria ap-
proach [Roy 1985] and to the evidential reasoning process [Martin and Osswald 2006].
To a certain extent, one of the more natural and intuitive way to cope with the com-
plexity of the problem is very often to break its components down into several smaller
ones. This approach is used in the hierarchical analysis proposed in AHP [Saaty 1982]
but also in reliability and safety models through failure trees [Wang et al. 1996] or
any systemic-like models. In [Forman and Selly 2002], Forman considers that hi-
erarchical analysis is equivalent to the well-known cause tree or Ishikawa diagram.
As a standard language, the Unified Modeling Language (UML) [Rumbaugh et al.
1999, Fowler 2000] is used to model the problem. This language is widely used in
Computer Sciences and Information systems design to elicit the initial requirements,
to represent the data model. In comparison with any other graphical flowcharts or
diagrams, it represents a normalized framework that can be understood in the same
way by all of its possible users: every graphical software is able to provide flow-charts
diagrams that are not always interpreted in the same way. In our context, building
conceptual models is one of the first and essential step to describe to consider the
different types of sources, including both experts, databases or criteria evaluation
involved in the fusion process. This approach allows building a link with calculation
tools such as PCR5, PCR6 or DSmH routines.

The modeling step concerns on the one hand the decision problem description
(through a hierarchical decision structure) and, on the other hand, the fusion prob-
lem modeling.

In a criterion-estimator-solution framework, the decision consists of choosing an
evaluation grade for a given alternative. The common Decision Frame of discern-
ment used in our ER-MCDA framework consists of a set of evaluation grades denoted
ΘDecision = {HD1, HD2, . . . , HDk, . . . , HDGD} with k ∈ {1, 2, . . . , GD}. The deci-
sion is broken down into qualitative and/or quantitative criteria (see Fig. 23.18 and
Fig. 23.19).

Figure 23.18: ER-MCDA framework - UML modeling - Main packages.
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Figure 23.19: Principle of the AHP based ER-MCDA framework.

23.3.3.1 The multi-criteria analytical hierarchical model

The real problem is first analyzed through the hierarchical decision framework used
a conceptual support for criteria and preferences identification. Criteria are ranked
and weighted according to their importance in the decision process. The basic level
criteria are assessed according either quantitative (numerical) evaluation grades. The
criterion Human vulnerability, as an example of quantitative criterion, is assessed
through the number of winter occupants. This number can be a single integer or an
interval with a minimum and a maximum value such as [1, 5]. The Living places/in-
frastructures, as an example of qualitative classes, is assessed through a membership
level for each class.

Unitary Hierarchic Component.

The Hierarchic Structure is composed of Unitary Hierarchic Components such as
described in Fig. 23.7

SubCj = SubC[r1,r2,...,rl] = {C[r1,r2,...,rl,1], C[r1,r2,...,rl,2], . . . ,

C[r1,r2,...,rl,k], . . . , C[r1,r2,...,rn]} (23.3)

For a given medium level criterion Cj or for the general attribute of the hierarchic
structure , SubCj is the set of its ML sub-criteria.
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Criterion Identification Vector (CIV).

A practical and simple codification is used to identify any criterion in the hierar-
chical structure and to implement the software application. For the criterion number
j, at the level l of the hierarchy, the Criterion Identification Vector denoted as CIVj

is defined as CIVj = [r1, r2, . . . , rk, . . . , rl−1, rl]
| {z }

l terms

where CIVj(l) = rl is the lth term of

CIVj.

By definition, the general attribute of the hierarchic structure is the first criterion
of any Criterion Identification Vector : ∀j ∈ {1, 2, . . . , M}, CIV1 = [1]. It is also called
the root of the hierarchic structure. CIVj(k) is the kth term of CIV . CIVj(k) = rk

means that the rank of the given criterion is rk relatively to its parent-criterion in
the unitary hierarchic component whose root criterion is the criterion denoted as
CIV = [r1, r2, . . . , rl−1] which has l − 1 terms.

Example: Let’s consider a criterion defined by its identification vector CIV = [1, 3, 2, 2].
Its vector length is 4. This criterion is the 2nd sub-criterion of the criterion whose CIV
is [1, 2, 3]. The criterion cj is described by CIVj . ML(CIVj) = ML([(r1, . . . , rk, . . . , rl]
is the number of sub-criteria of the criterion described by its identification vector
CIVj. The sub-criteria of cj are referenced by Criterion Identification Vector such
as [(r1, r2, . . . , rk, . . . , rl, rl+1] with rl+1 ∈ {1, 2, . . . , ML(CIVj)} (see Fig. 23.20).
For any criterion, ML is a function of a vector whose length ranges from 1 to
D (maximal depth of the hierarchic structure) defined by ML : Cj −→ N and
CIVj −→ ML(CIVj).

Figure 23.20: Criterion and sub-criteria codification in the hierarchical struc-
ture.
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An UML class diagram using a composite pattern diagram [Gamma et al. 1995] can
represent this hierarchical structure as described in (see Fig. 23.21).

Figure 23.21: ER-MCDA framework - UML Class diagram - Decision hierar-
chical structure.

Evaluation of the basic level criteria.

For each basic level criterion (or attribute), S sources provide an evaluation of
the criterion based on a common evaluation scale H = {H1, H2, . . . , HG} with G
corresponding to the number of levels of the scale. H is the frame of discernment on
which the evaluation is done.

23.3.3.2 A sample decision model

We introduce here a simplified model to illustrate the coupled use of fusion process
and MCDA approaches. This model is derived from a real decision-aid model that
calculates the sensitivity level of a natural site exposed to avalanches.
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A common frame of discernment is required for decision.

Any fusion problem requires defining a common frame of discernment. Its def-
inition is closely linked to the nature of decision such as choosing a sensitivity or
exposure level for a site in a natural hazards prone area, choosing the more impor-
tant areas to protect, choosing the level of confidence for an expertise. The fusion
process will provide basic belief assignments on each or combination of the elements
of the frame of discernment. We can obviously question ourselves about the interest
of using the DSmT framework (allowing non-empty intersections) instead of the clas-
sical DST framework based on exhaustive and exclusive hypotheses.

Two frames of discernment Θ are considered in this work:

• in the DST framework (see Fig. 23.22), the frame Θ is composed of 4 exclusive
elements defined by HD1 = ’No sensitivity’, HD2 = ’Low sensitivity’, HD3 =
’Medium sensitivity’ and HD4 = ’High sensitivity’;

Figure 23.22: Modeling the common evaluation grades in a DST framework.
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• in the DSmT framework (see Fig. 23.23), the frame Θ is composed of 3
elements defined by HD1 = ’No sensitivity’, HD2 = ’Low sensitivity’ and
HD3 = ’High sensitivity’;

Figure 23.23: Modeling the common evaluation grades in a DSmT framework:
simplified version.

23.3.4 Step 2: Mapping quantitative criterion into a
common frame

This section describes the transformation of the evaluations provided by the different
sources on quantitative criteria into the common frame of discernment.

23.3.4.1 Mapping quantitative criteria

For a given quantitative criterion cj , the mapping process mapModelx transforms a
quantitative evaluation into bba defined in the common frame of discernment (see
Fig. 23.24):

(

mapModel(x,cj) : [0, 1] → [0, 1]

mapModel(x,cj)(I(s,intj)) = {ms,I(s,intj )
(HD1), . . . , ms,I(s,intj )

(HDGD)}
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Figure 23.24: Mapping from quantitative criterion assessment to the common
frame of discernment.

For a quantitative criterion cj , the evaluation by a source s (an expert) can be
either a single value (e.g. x1) or numerical intervals. Different consonant intervals,
corresponding to different levels of confidence can be proposed by the source. The
evaluation of the source s is therefore a possibility distribution whom we are able to
extract intervals denoted I(s,intj) and corresponding basic belief assignments denoted
ms(I(s,intj)) [Dubois and Prade 2006]. For each interval I(s,intj), the fuzzy mapping

function of the xth mapping model, for the criterion cj distributes ms(I(s,intj)) on the
elements of the common frame of discernment ΘDecision = {HD1, HD2, . . . , HDk, . . . ,
HDGD} on which the global decision is taken. The distribution of ms(I(s,intj)) on
HDk (k ∈ {1, 2, . . . , GD}) is proportional to the intersection of the following areas
(see Fig. 23.25):

• a rectangle whose width is equal to the length of the interval ms(I(s,intj)) and
height is equal to 1;

• intersection of the previous rectangle with the areas of fuzzy intervals defined
in the mapping model mapModelx,cj , denoted AmapModelx,cj

(HDk).

The evaluation source is described through:

• its confidence, resulting from its own assessment and valuated by a necessity
value attached to each interval;

• its reliability, resulting from an external assessment, and valuated through a
discounting factor.
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Different cases are considered depending on the nature and number of evaluations
provided by one source for a given criterion (numerical intervals or single discrete
values).

23.3.4.2 Case of one source with one evaluation

• Case of one totally reliable source with one imprecise evaluation This
case corresponds to a source s which evaluates the quantitative criterion with
a unique interval (nbInts = 1) whose necessity value equals to 1. The bba
of the interval (ms(Is,1) = 1) is transferred to the elements of the common
frame of discernment (see Fig. 23.25). The interval I(s,1) = [xInf(s,1)

, xSup(s,1)
]

corresponds to a total area of

AI(s,1)
= length(I(s,1)) = xSup(s,1)

− xInf(s,1)
.

AI(s,1)
represents the total membership area of the interval with AI(s,1)

=
AI(s,1)

(HDk−1) + AI(s,1)
(HDk).The bba transferred on HDk−1 is

ms,I(s,1)
(HDk−1) =

AI(s,1)
(HDk−1)

AI(s,1)

·ms(I(s,1)).

The bba transferred on HDk is

ms,I(s,1)
(HDk) =

AI(s,1)
(HDk)

AI(s,1)

· ms(I(s,1)).

Figure 23.25: Quantitative criterion mapping: One totally reliable source with
imprecise evaluation.
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• Case of one partially reliable source with imprecise evaluation

The source s is assumed partially reliable. A discounting factor is applied to
the bba corresponding to the evaluated intervals (see Fig. 23.26).

Figure 23.26: Quantitative criterion mapping: One partially reliable source
with imprecise evaluation.

• Case of a partially reliable source with precise evaluation

The source s provides a single discrete evaluation x1 of the quantitative criterion
cj . m(x1) is derived from the fuzzy mapping intervals by the intersection of a
vertical line with these fuzzy intervals (see Fig. 23.27). The reliability of the
source is taken into account by a discounting factor αs ∈ [0, 1].

23.3.4.3 Case of one source with two evaluation intervals

Based on the necessity-possibility functions inputs, one transfers the initial bba to a
bba related to the common frame of discernment chosen for decision. This transfer
uses the proportion of intersected areas of the whole area of the interval with each
fuzzy L− R interval of the mapping model (see Fig. 23.28).

We consider here a source s that provides two evaluation intervals (nbInts = 2).
The first evaluation of the source s is interval I(s,1) = [xInf(s,1)

, xSup(s,1)
]. The

membership area (see Fig. 23.29) of this interval equals to

AI(s,1)
= AI(s,1)

= AI(s,1)
(HDk−1) + AI(s,1)

(HDk).

The bba’s transferred respectively on HDk−1 and on HDk are: ms,I(s,1)
(HDk−1) =

(AI(s,1)
(HDk−1)/AI(s,1)

) · ms(I(s,1)) and ms,I(s,1)
(HDk) = (AI(s,1)

(HDk)/AI(s,1)
) ·

ms(I(s,1)).
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Figure 23.27: Quantitative criterion mapping: One partially reliable source
with precise evaluation.

Figure 23.28: Quantitative criterion mapping: Two imprecise evaluations -
Principle of area mapping calculation.

The second evaluation of the source s is I(s,2) = [xInf(s,2)
, xSup(s,2)

]. The mem-
bership area (see Fig. 23.30) of the interval equals to

AI(s,2)
= AI(s,2)

= AI(s,2)
(HDk−1) + AI(s,2)

(HDk) + AI(s,2)
(HDk+1).

The bba’s transferred on HDk−1, on HDk and on HDk+1 are respectively given
by:

ms,I(s,2)
(HDk−1) =

AI(s,2)
(HDk−1)

AI(s,2)

·ms(I(s,2))



Chapter 23: Information fusion for natural hazards in mountains 601

Figure 23.29: Quantitative criterion mapping: One partially confident source
and a totally reliable source - interval 1.

ms,I(s,2)
(HDk) =

AI(s,2)
(HDk)

AI(s,2)

· ms(I(s,2))

ms,I(s,2)
(HDk+1) =

AI(s,2)
(HDk+1)

AI(s,2)

·ms(I(s,2)).

Figure 23.30: Quantitative criterion mapping: One partially confident source
and a partially reliable source - interval 2.
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23.3.4.4 Generalization: evaluation of one source s with nbInt
numerical intervals

• One totally reliable source with nbInt imprecise evaluations

We consider here the source s that provides nbInt evaluation intervals. The jth

interval is defined by I(s,Intj) = [xInf(s,Intj)
, xSup(s,Intj)

] with the index j ∈
{1, 2, . . . , nbInts}. The length of the interval is length(I(s,Intj)) = xSup(s,Intj)

−
xInf(s,Intj )

. The membership area of the interval AI(s,Intj)
depends on the

length of the considered interval with hAI(s,Intj )
corresponding to the height

of the area ( hAI(s,Intj )
= 1 corresponds to a full membership) as shown in

eq. (23.4).

AI(s,Intj)
= length(I(s,Intj)) ∗ hAI(s,Intj )

(23.4)

The whole area AI(s,Intj )
is the sum of the intersected areas of intervals with

the fuzzy intervals of the mapping model.

AI(s,Intj)
=

nbInts
X

j=1

AI(s,Intj)
(HDk)

with k such as AI(s,Intj )
∩Amodelx(HDk) �= ∅.

The bba transferred on HDk results from the intersection of the interval I(s,Intj)

with the mapping model Amodelx - see eq. (23.5) - with:

– AI(s,Intj)
corresponding to the intersection area of the interval with the

mapping model Amodelx (as an example DST or DSmT mapping models
as described in applications section;

– AI(s,Intj)
(HDk) corresponding to the intersection of the interval AI(s,Intj )

with the fuzzy L−R interval coding for the kth element of the frame of
discernment Θ.

ms,I(s,Intj)
(HDk) =

AI(s,Intj )
(HDk)

AI(s,Intj)

·ms(I(s,Intj)) (23.5)

For each element of the frame of discernment HDk, we sum the bba transferred
by each interval. Finally, the resulting mapped bba of the source s for nbInts

evaluation intervals is defined by eq. (23.6):

ms(HDk) =

nbInts
X

j=1

ms,I(s,Intj )(HDk) (23.6)
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• A partially reliable source with nbInt imprecise evaluations

For a partially reliable source, the bba are discounted according the classical
reliability discounting process. m′

s(HDk) = αs · ms(x1) and m′
s(Θ) = (1 −

αs) + αs · ms(Θ). In case of a partially reliable source, the bba transferred on
each element HDk of the considered frame of discernment (corresponding to a
given mapping model Amodelx is

m′
s,I(s,Intj)

(HDk) =
AI(s,Intj )

(HDk)

AI(s,Intj )

· αs ·ms,I(s,Intj )
.

A synthetic view of the quantitative mapping process from evaluation intervals
to the mapped bba is described in Fig. 23.31 for nbInts = 2.

Figure 23.31: Quantitative criterion mapping: One partially confident source
and a partially reliable source - Fusion

23.3.5 Step 3: Mapping qualitative criterion into a common
frame

Qualitative mapping transforms an evaluation of a qualitative criterion into basic be-
lief assignments (bba’s) expressed on the common frame of discernment. At the end
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of the scaling process, the result of the evaluation of qualitative criterion cj by the
the source s is summarized in a belief interval belInt(s,cj) and a weighted discounted
factor αs.

Instead of choosing only one evaluation grade, the expert can distribute his con-
fidence between different combinations depending on the model used. Therefore, he
can express the strength of his belief in the different classification levels. He can even
notify that he has no information about the evaluation of the criterion by assigning
his confidence to the whole set of classes (corresponding to the total ignorance).

Qualitative criteria correspond to criteria whose evaluation is carried out in a
Boolean way. For a given criterion cj and its gth evaluation grade HQualg,cj , a given
alternative belongs or does not belong to the evaluation grade. A numerical interval
[xInf , xSup] can be considered as a qualitative criterion as soon as its limits cannot
change. The qualitative mapping process transforms an uncertain evaluation of qual-
itative criteria into basic belief assignments and discounting factor compliant with
the global fusion process.

The basic belief assignment elicitation for qualitative criteria is a two steps pro-
cess. We consider a qualitative criterion cj , for which a given expert or source, has to
provide an evaluation according to the evaluation grades of the common frame of dis-
cernment Θ = {HD1, HD2, . . . , HDk, . . . , HDGD}. The criterion cj is evaluated ac-
cording to the qualitative evaluation grades {HQual1,cj , HQual2,cj , . . . , HQualg,cj , . . . ,
HQualGD,cj}. A qualitative (DST or DSmT based) mapping model is used to link
expert’s evaluation to the evaluation grades of the common frame Θ. The belief is cal-
culated for each qualitative evaluation grade using the importance bba (see Fig. 23.32)
and the comparative confidence qualitative discounting factor using a (DST or DSmT
based) scaling model.

23.3.5.1 Global mapping process for qualitative criterion

As for quantitative criteria, the global process aims at build links between evaluation
grades related to qualitative criteria and the element of the common frame of discern-
ment. Each evaluation grade is assessed first according to its importance according
to the decision to take (e.g. the sensitivity level) and secondly to the confidence level
related to its assessment by the source. As for qualitative criteria, two frames of
discernment and mapping models are considered as shown on Fig. 23.33.

The mapping process corresponds to the following steps:

• Choice of evaluation grades scaling model with regard to the acceptance (DSmT
scaling model) or non-acceptance (DST scaling model) of non empty intersec-
tions between the evaluation grades;
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Figure 23.32: Mapping from qualitative criterion assessment to the common
frame of discernment.

• Importance assessment of each evaluation grade (to calculate weights consid-
ered as equivalent to basic belief assignments);

• Confidence level assessment for the evaluation by a given source s;

• Gathering of these evaluation into a common belief interval with lower and an
upper limits;

• mapping of this belief interval to the common frame of discernment.

23.3.5.2 Importance of each qualitative evaluation grade: DST or
DSmT scaling

A qualitative criterion cj is assessed according to a set of g evaluation grades denoted
as H(Qualg,cj) with g ∈ {1, 2, . . . , G}. These evaluation grades correspond to real
situations that the source may encounter while trying to assess a real problem. As an
example, the criterion C[112] coding for the part of global sensitivity due to the living
places or infrastructures is described by a set of evaluation grades corresponding to
industrial equipments ({Ind}), collectivities ({Col}) or rescue equipments ({Resc}).
They respectively correspond to an increasing level of sensitivity: rescue equipment
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Figure 23.33: Frame of discernment corresponding to DST and DSmT mapping
models.

is considered as more important than a collective equipment which is itself more
important than an industrial equipment. Ranking the different evaluation grades
according to their importance is handled through an AHP based pairwise comparison
matrix. For each evaluation grade, weights are considered as basic belief assignments.
As focal elements are singletons, according to the modeling principles, these bba’s
are equivalent to beliefs following eq. (23.7).

w(HQualg,cj ,s) = m(HQualg,cj ,s) = Bel(HQualg,cj ,s) (23.7)

In a real-case application, different combinations of these equipments can exist:
industrial equipments such as telephonic exchanges, power plants, roads, bridges can
also be considered as rescue equipments. A finest gradation in term of sensitivity
can be proposed. An equipment whose contribution to sensitivity is multiple will be
more sensitive than as many separate equipments: such an equipment concentrating
different functions on a unique geographical point represents an higher potential of
damage. The evaluation model should be able to consider this case. Therefore, two
models are proposed:

• A DST based model considers that the evaluation grades are totally exclusive.
This model cannot take into account the intersection of two evaluation grades;

• A DSmT based model allows intersection between the evaluation grades. Basic
belief assignments put on these empty intersections correspond to the situations
where equipments belong to several evaluation grades.
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We could have obviously imagined modeling the intersection cases through a
refinement of the initial DST model. To our point of view, the DSmT model fits in a
closer way to the real case application. In such a model, the case of an equipment that
would be both an industrial and an rescue equipment corresponds to an evaluation
of the elements {Ind}, {Col} and {Ind ∩ Col}.

23.3.5.3 Confidence level of qualitative evaluation grade

Once the source s has chosen whether an evaluation grade was existing on the studied
area, it must valuate its confidence related to its valuation. For a given qualitative
criterion cj , its evaluation grades can be partially assessed by the source s. Any
evaluation attempt by the source s of the evaluation grade g of the criterion cj cor-
responds to a Boolean factor denoted as input(HQualg,cj ,s). This factor is important

to calculate the weighted discounted factor depending on the evaluated grades.

For each evaluation grade of the criterion cj , the source s has to valuate its confi-
dence level through a confidence ranking interval confRankInt defined in eq. (23.8)
with its minimum and maximum values chosen in a ”Saaty-like” ordinal scale ranging
from confRankmin = 1 (no confidence at all in the valuation) to confRankmax = 9
(total confidence in the valuation).

confRankInt = [inputConfRankmin, inputConfRankmax] (23.8)

These rankings are normalized to calculate lower and upper confidence index following
as follows:

confmin =
inputConfRankmin − confRankmin

confRankmax − confRankmin

confmax =
inputConfRankmax − confRankmin

confRankmax − confRankmin

confmean =
confmin − confmax

2

with inputConfRank = inputConfRank(HQualg,cj ,s).

23.3.5.4 Belief interval

For each evaluation grade g of the criterion cj by the source s, a belief interval
BelInt(HQualg,cj ,s) is derived from the confidence ranking interval confRankInt and

the importance bba m(HQualg,cj ,s). The confidence level associated to this belief inter-

val αcj ,s the ratio between the importance bba weighted by the mean confidence and
the maximum belief value. The final data used to map the qualitative criterion cj are
αcj ,s and BelIntcj = [BelIntmin,cj , BelIntmax,cj ], BelIntmin,g = confmin,g · Belg,
BelIntmax,g = confmax,g · Belg, BelIntmin,cj =

P

g=1,...,G inputg · BelIntmin,g,
BelIntmax,cj =

P

g=1,...,G inputg · BelIntmax,g with inputg = input(HQualg,cj ,s),

Belg = Bel(HQualg,cj ,s), αg = α(HQualg,cj ,s) and BelIntmin,g = BelInt(min,HQualg,cj ,s),
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(similarly with max), BelIntmin,cj = BelInt(min,cj ,s) (similarly with max), confmin,g =
conf(min,HQualg,cj ,s) (similarly with max and mean).

23.3.5.5 Fusion order

The fusion process can be different from the hierarchical decision model. These fusion
orders are parts of the description of the fusion processes in the model. Several
strategies can be imagined depending whether the decision is taken by one source
(see Fig. 23.34) or by several sources (see Fig. 23.35).

Figure 23.34: How far does the fusion process must follow the hierarchical
decision model (case of one source)?

In this work, the implemented model corresponds to (⊕Criterion (⊕Source −
Evaluation)) depicted in Fig. 23.36) below.

23.3.5.6 Fusion of mapped bba of nbSources sources

A given criterion is identified by its criterion identification vector CIV = [r1, r2, . . . , rn].
s sources, denoted as si with i ∈ {1, 2, . . . , s}, provide nbEvalsi interval-based eval-
uations. Each evaluation by the source s, denoted as evalj,s, consists of nbIntj,s

intervals. nbFusedSources represents the total number of all the sources that are
fused for the criterion (sum of all the evaluations of the sources for the given criterion)
(Eq. 23.9).Several fusion processes can be proposed. The following equations concern
the (⊕Criterion(⊕Source−Evaluation)) process. An example is given for the crite-
rion C[111] for which two sources s1 and s2 provide each one evaluation (Eq. 23.10).

nbFusedSourcesCIV =

s
X

si=1

(

nbEvalsi
X

j=1

j) (23.9)
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Figure 23.35: How far does the fusion process must follow the hierarchical
decision model (case of several sources)?

Figure 23.36: Description of the implemented fusion process.
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m(C[111])
(HDk) = (m(C[111],s1,eval1) ⊕ m(C[111],s2,eval1))(HDk) (23.10)

In a UML standard, the fusion process can partially be represented as in Fig. 23.37
below.

Figure 23.37: ER-MCDA framework - UML Class diagram - Principle of the
fusion process.

23.3.5.7 Discounting factors for reliability and importance
assessment

The classical reliability discounting factor

In a classical way, discounting factors are used to take into account the reliabilities
of the sources. For each source of evidence, αr with r ∈ {1, 2, . . . , S} represents the
confidence given by the system to this source. αr = 1 corresponds to a totally
reliable source of evidence and αr = 0 corresponds to totally unreliable source of
evidence [Dezert 2003]10 .

The AHP method can be used to calculate the discounting factors. A preference
matrix using pairwise comparisons gives the relative weight of importance wr of
each source. After a normalization step based on the maximum of the weights, the
discounting factor αr can be defined as [Beynon 2005]11 :

10p.21
11p.1891
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αr =
wr

max(wk)
with k ∈ {1, 2, . . . , S} (23.11)

In our ER-MCDA framework, discounting factors are used at many different steps
of the process:

• following the classical approach, a discounting factor is applied to the different
sources providing an evaluation for qualitative or quantitative criteria. Normal-
ization factor is used at the evaluation step of qualitative criterion to evaluate
the confidence of the assessor in its judgment (confidence qualitative discounting
factor);

• normalized weights of the basic level criteria are transformed in discounting
factors (with a maximum based normalization instead of a direct use of weights
– see Fig. 23.38).

Figure 23.38: From preference weights to discounting factors for S = 5 sources.

The last situation may appear as a misunderstanding of the concept of discounting
factor. In fact, we consider here that the evaluation of a criterion results both from its
importance in the decision process and from the evaluation uncertainty. For a given
criterion cj , the pairwise comparison of qualitative evaluation grades produce weights
considered as basic belief assignment related to their contribution to the sensitivity:
they are named importance bba. This principle justifies the fact that they are used
to calculate the bba in the common frame of discernment. For this criterion, the
evaluator has some variable confidence about its evaluation: ”Does this evaluation
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grade really belong to the site that I am evaluating?”. The singletons (extended with
intersections in a DSmT framework) are considered to compare the levels of confidence
on each of these evaluation grades. The weights are then considered as discounting
factors as they reduce the importance of the previous evaluation. A fusion would not
have any sense since the discernment frame and the meaning is different.

Can importance be assessed by a (new) discounting factor?

Mixing fusion and multi-criteria decision approaches can lead to the difficulty of
making a difference between uncertainty and importance. This also corresponds to a
classical discussion about difference between aggregation of preferences and informa-
tion fusion. In an ideal framework, we do consider that fusion should mainly concern
uncertain pieces of evidence and not the preferences between criteria. The final fu-
sion step of mapped basic level criteria should be compared to an aggregation method
based on the result of fusion. Nevertheless, we propose in the following section, an
experimental approach to take importance into account through a new discounting
factor.

Figure 23.39: DST and DSmT models for importance discounting model.

The classical discounting method transforms a basic belief assignment m(·) through
a discounting factor α that reduces the basic belief assignment for each focal element
and increases the basic belief assignment assigned to the total ignorance Θ. In our
ER-MCDA framework, the mapping process leads to mapped basic belief assignments
taking into account the reliability of the different sources. During that first step (so-
called mapping and scaling steps), the classical discount method is appropriate since
it really corresponds to a variable level of confidence for each evaluation.

The second step of the process aims at fuse the basic level criteria evaluation
according to their importance. This last fusion step produces the final basic belief
assignment that can be analyzed to make a decision according different rules such as
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maximum of bba, maximum of credibility, etc. The question is to represent the pref-
erences weights issued from MCDA model in a fusion model. The weights represent
relative importance from one criterion to another and not relative uncertainty: a lower
importance basic level criterion can be assessed in a certain way while a very impor-
tant criterion can be very uncertain. Using the classical discounting factor [Beynon
2005] cannot represent this difference since it only corresponds to a reduction of the
reliability.

Definition (importance discounting factor): To represent the relative importance of
the basic level criteria in a same way than in a multi-criteria decision problem, we
propose (following more or less some principles proposed by Smets), a specific (and
experimental) importance discounting factor denoted as αImp and defined as follows:
For a source B described by a bba m(·) relatively to the frame of discernment Θ and
used in an ER-MCDA12 process, the importance discounting factor αImp,B is defined
as αImp ∈]0, 1] such as for any subset A ⊂ Θ, the importance discounted bba m′

Imp(·)
is defined by the following eq. (23.12):

(

m(A)

m(∅)
−→

(

m′
Imp(A) = αImp · m(A), ∀A �= ∅

m′
Imp(∅) = (1− αImp) + αImp ·m(∅)

(23.12)

The case where αImp = 1 corresponds to a source B that has the maximum
reachable relative importance value. The principle of this importance discounting
factor is to reduce the basic belief assignment related to a given basic level criterion
without increasing the total ignorance corresponding to m(Θ). It is therefore possible
to discount a source according by using both to its reliability and its importance.

As it involves basic belief assignment on the empty set, this double discounting
method should be used with fusion rules that are able to redistribute conflict and with
models that make a difference between the real conflict between hypotheses and the
basic belief assignment put on the empty set. The classical Dempster’s rule is known
to fail when conflict increases: we can expect than it will not be the best choice in
our experimental model that consists in artificially transfer bba’s on the empty set
at the final stage of fusion.

The following examples show the principle of using this importance discounting
factor in a very simple case (Card(Θ) = 2) in DST and DSmT frameworks. The
source c1 is supposed to be poor reliable (αRel,1 = 0.1) but very important in the
decision process (αImpRel,1 = 1) while the source c2 is considered as fully reliable
(αRel,2 = 1) but not very important in the decision process (αImpRel,2 = 0.1). Basic
belief assignments correspond to the highest possible level of conflict between sources
(see Fig. 23.40).

12Evidential reasoning - Multi-criteria decision analysis
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Figure 23.40: Reliability and importance of sources (experts) c1 and c2.

First approach: The classical discounting factor is applied twice (succes-
sively)

The Table 23.1 (for DST framework) and the Table 23.2 (for DSmT framework)
of discounted criteria using a double successive reliability discounting show that no
usable difference appears between the different hypotheses.

Using the classical discounting process to represent the relative importance of a
criterion compared to another does not seem to be efficient to make a decision. We
therefore introduce a new importance discounting factor in that simple test case.

Second (experimental) approach: The classical discounting factor is first
applied, a new discounting factor is applied

The Tables 23.3 (for DST framework) and 23.4 (for DSmT framework) of dis-
counted criteria using first a classical reliability discounting and then an importance
discounting. The figure 23.41 shows the comparison with a successive discounting
process based on the classical discounting factor.

Conclusion and interpretation

In our opinions, using twice the classical discounting factor to represent both
reliability and importance does not provide any valuable information for decision (see
left side of Fig. 23.41): the bba resulting from fusion are equal for any elements of the
frame of discernment. The fusion process fails here to take importance or preference
into account. Note also that the bba have been voluntarily chosen with ”extreme”
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Θ = {HD1, HD2}
Discounted bba

Discounting steps Source discounting factor ∅ HD1 HD2 Θ
initialization: None c1 none 0 0 1 0

c2 none 0 1 0 0
Step 1: Reliability c1 αRel,1 = 0.1 0 0 0.1 0.9

c2 αRel,2 = 1 0 1 0 0

Step 2: Reliability c1 αImpRel,1 = 1 0 0 0.1 0.9
c2 αImpRel,2 = 0.1 0.9 1 0 0

Fusion rule: Dempster’s rule
Result of fusion c1 ⊕ c2 bba 0 0.0909 0.0909 0.8182

Bel 0 0.0909 0.0909 1
Pl 0 0.9091 0.9091 1

BetP 0 0.5 0.5 1
DSmP 0 0.5 0.5 1

Fusion rule: Smets rule
Result of fusion c1 ⊕ c2 bba 0.01 0.09 0.09 0.81

Bel 0.01 0.1 0.1 1
Pl 0.01 0.9 0.9 0.99

BetP 0.01 0.5050 0.505 1
DSmP 0.01 0.4950 0.495 0.99

Fusion rule: PCR6 rule
Result of fusion c1 ⊕ c2 bba 0 0.095 0.095 0.81

Bel 0 0.095 0.095 1
Pl 0 0.905 0.905 1

BetP 0 0.5 0.5 1
DSmP 0 0.5 0.5 1

Table 23.1: ER-MCDA framework - double reliability discounting of two
criteria c1 and c2 - DST framework.

Θ = {HD1, HD2}
Discounted bba

Discounting steps Source discounting factor ∅ H
D

1

H
D

1
∩

H
D

2

H
D

2

Θ

initialization: None c1 none 0 0 0 0.1 0.9
c2 none 0.9 0.1 0 0 0

Step 1: Reliability c1 αRel,1 = 0.1 0 0 0 0.1 0.9
c2 αRel,2 = 1 0 1 0 0 0

Step 2: Reliability c1 αImpRel,1 = 1 0 0 0 0.1 0.9
c2 αImpRel,2 = 0.1 0.9 0.1 0 0 0

Fusion rule: DSm, Smets or PCR6 rules
Result of fusion c1 ⊕ c2 bba 0 0.09 0.01 0.09 0.81

Bel 0 0.1 0.01 0.1 1
Pl 0 1 1 1 1
BetP 0 0.685 0.37 0.685 1
DSmP 0 0.99 0.9982 0.999 1

Table 23.2: ER-MCDA framework - double reliability discounting of two
criteria c1 and c2 - DSmT framework.

values in our example. In such a case, only the partial conflict redistribution rules
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Θ = {HD1, HD2}
Discounted bba

Discounting steps Source discounting factor ∅ HD1 HD2 Θ
initialization: None c1 none 0 0 1 0

c2 none 0 1 0 0
Step 1: Reliability c1 αRel,1 = 0.1 0 0 0.1 0.9

c2 αRel,2 = 1 0 1 0 0

Step 2: Importance c1 αImp,1 = 1 0 0 0.1 0.9
c2 αImp,2 = 0.1 0.9 1 0 0

Fusion rule: Dempster’s rule
Result of fusion c1 ⊕ c2 bba 0 1 0 0

Bel 0 1 0 0
Pl 0 1 0 0

BetP 0 1 0 0
DSmP 0 1 0 0

Fusion rule: Smets rule
Result of fusion c1 ⊕ c2 bba 0.91 0.09 0 0

Bel 0.91 1 0 0
Pl 0.91 0.09 0 0

BetP 0.91 1 0 0
DSmP 0 0.09 0 0

Fusion rule: PCR6 rule
Result of fusion c1 ⊕ c2 bba 0.486 0.095 0.014 0.4050

Bel 0.486 0.5810 0.5 1
Pl 0.486 0.5 0.419 0.514

BetP 0.486 0.7835 0.7025 1
DSmP 0 0.448 0.066 0.5140

Table 23.3: ER-MCDA framework - Reliability and importance discounting
of two criteria c1 and c2 - DST framework.

manage to provide a result that can be interpreted for a decision. The analysis of the
results when using the importance discounting factor at the second step of the fusion
process allow to make the following conclusions (see right side of Fig. 23.41):

• the input bba issued from sources c1 (or expert 1) and c2 (or expert 2) are
transferred on the empty set and on Θ accordingly to their relative reliability
and importance;

• the bba resulting from fusion are distributed on the empty set, Θ and the
focal elements. The repartition of bba on those elements provides information
about information used in the fusion process. They must be interpreted in a
relative way. The respectively very high value assigned to the empty set and
Θ correspond to the fact that the two sources have respectively ”conflicting”
or ”very different” importance, while the bba assigned to Θ can be classically
interpreted as a comparative level of ignorance. Some limits values can probably
be identified. Distance between those limits values and the calculated bba
would represent the differential importance or reliability of sources;

• in that case of two highly different sources (full reliable but not important versus
poor reliable but important source), the fusion process proposes to choose the
most important source which is consistent in a decision context. The absolute
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Θ = {HD1, HD2}
Discounted bba

Discounting steps Source discounting fac-
tor

∅ H
D

1

H
D

1
∩

H
D

2

H
D

2

Θ

initialization:
None

c1 none 0 0 0 0.1 0.9

c2 none 0.9 0.1 0 0 0
Step 1: Reliability c1 αRel,1 = 0.1 0 0 0 0.1 0.9

c2 αRel,2 = 1 0 1 0 0 0

Step 2: Impor-

tance

c1 αImp,1 = 1 0 0 0 0.1 0.9

c2 αImp,2 = 0.1 0.9 0.1 0 0 0

Fusion rule: DSm rule
Result of fusion c1 ⊕ c2 bba 0 0.9 0.1 0 0

Bel 0 1 0.1 0 0
Pl 0 1 1 0 0
BetP 0 1 0.55 0 0
DSmP 0 1 0.999 0 0

Fusion rule: Smets rule
Result of fusion c1 ⊕ c2 bba 0.9 0.09 0.01 0 0

Bel 0.9 1 0.91 0 0
Pl 0.9 0.1 0.1 0 0
BetP 0.9 1 0.955 0 0
DSmP 0 1 0.099 0 0

Fusion rule: PCR6 rule
Result of fusion c1 ⊕ c2 bba 0.486 0.09 0.01 0.009 0.4050

Bel 0.486 0.586 0.496 0.505 1
Pl 0.486 0.514 0.514 0.514 0.514
BetP 0.486 0.8605 0.6805 0.82 1
DSmP 0 0.5136 0.5131 0.5135 0.514

Table 23.4: ER-MCDA framework - Reliability and importance discounting
of two criteria c1 and c2 - DSmT framework.

value of the bba (here a very low value) and the relative bba assigned to the
empty set and Θ provides additional information to interpret this result: the
decision is clearly not the result from a complete consensus between sources.

This proposition must obviously be discussed and analyzed in a further way from
a practical and theoretical way.

23.3.6 Decision-making

This final step corresponds to the ultimate goal of the whole process. All the more
or less uncertain evaluations, provided by more or less reliable sources are fused in
a unique decision criteria that has to be analyzed to make a decision. In our frame-
work, the decision is analyzed according to the fusion parameters such as basic belief
assignments, credibility, plausibility, pignistic probability assigned to the different
hypotheses of the frame of discernment.



618 Chapter 23: Information fusion for natural hazards in mountains

Figure 23.41: Comparison of discounting method: reliability–reliability and
reliability–importance (DST and DSmT frameworks).

Making a decision on the basis of these values is a well-known problem for fusion
applications [Martin and Quidu 2008, Bloch et al. 2001]. The existing applications
mixing evidential reasoning and multi-criteria decision analysis also use these func-
tions to choose a solution once the fusion is done: [Beynon et al. 2000] interprets
the results according to the interval between credibility and plausibility: the smaller
interval, the more certain is the alternative. There is still some place for proposition
of some methods allowing to interpret the results of fusion in a more operational way
with one essential objective: the decision must remain understable by the decision-
makers themselves !
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23.4 Applications: Sensitivity index in a multi-experts
environment

We present here two applications cases:

• the first one is a simplified model corresponding to an evaluation of a sensitivity
index for snow avalanches in a multi-expert framework. This case is illustrated
through numerical examples applied to examples of (quantitative and qualita-
tive) basic level criteria. The process from the evaluations to the mapped bba
is illustrated through partial results.

• the second case deals with a geographic application of risk zoning maps, intro-
ducing the problem and the specificity for spatial extent of the method without
any numerical results.

23.4.1 Sensitivity index in a multi-experts environment

23.4.1.1 Implementation

The DSmT framework allows coping with uncertain and imprecise information. Its
main drawback is the complexity in calculations due to the huge number of elements
in DΘ (e.g. with |Θ| = 3 we already get |DΘ| = 19 elements, with |Θ| = 3 we get
|DΘ| = 167, etc). However, not all the elements of the hyper-power set DΘ have to
be filled in and some automated routines and programs have been proposed either to
encode the -power set or to implement the DSmH rule of combination [Djiknavorian
and Grenier 2006].

In our application, we use a new and powerful calculation framework that al-
lows to consider in an easy and versatile way the different models free DSm Model
denoted (Mf (Θ), the hybrid DSm Model M(Θ) or Shafer’s Model M0(Θ) [Martin
2009]. These different models correspond to an increasing level of constraints be-
tween the different hypotheses of the frame of discernment. Fusion routines have
been encapsulated in a global framework that evaluates the multi-criteria decision
model and then operates fusion of the basic level criteria. Although it was developed
in MATLABTM, this tool has been designed according to object-oriented develop-
ment principles. An UML conceptual model has been designed to describe the global
process. All data are saved in hierarchical structures allowing an easy access to all
steps of calculation. The data structures and internal functions can be modified to
deal with other hierarchical model. Some graphical functions have been developed to
help the user to interpret results.
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23.4.1.2 Description of the hierarchic model

In mountainous areas and in France in particular, snow-avalanches are known to
be important risks. Face to numerous avalanches prone areas, decision-makers try
to determine an exposure level for any site and secondly to propose a classification
based on this sensitivity level: this ranking, based on the evaluation of the hazard and
vulnerability levels (Fig. 23.42) can then be used to prioritize prevention strategies
implementation.

Figure 23.42: Decision context: ranking avalanche prone areas according haz-
ard and vulnerability related criteria.

We present here a simplified version of the real existing decision support sys-
tem which consists of a 6-level hierarchy [Rapin 2007] called SSA for Sites Sensible
Avalanches (sensitive avalanche paths). In comparison with the original and existing
framework, this application aims at merge several expert evaluations to determine
the sensibility index of a snow-avalanche prone-area including imprecise and uncer-
tain evaluations of both qualitative and quantitative criteria. The root of this 3-level
hierarchical model (Fig. 23.43) corresponds to the sensitivity level of the avalanche-
prone area (C[1]). Its principles is based on the classical risk equation as presented in
Fig. 23.2. This sensitivity is evaluated according to two sub-criteria corresponding
to vulnerability (C[11]) and hazard (C[12]). The vulnerability criterion is broken down
into two basic-level criteria corresponding to a permanent winter occupants (C[111])
and living places/infrastructures (C[112]). The hazard criterion is broken down into
three basic-level criteria corresponding to morphology (C[121]), history (C[122]) and
Snow-climatology (C[123]). In the original model, each basic level criterion is evalu-
ated according to a criterion-estimator-solution model (Fig. 23.10).
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Figure 23.43: Sample simplified model of the Avalanche sensitivity framework.
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Note that numerical values used in this sample model are fictive and do not
correspond to real numerical intervals used in the original model. The evaluation of
five basic-level criteria is done accordingly to the following hypothesis:

• Winter occupants (C[111]): this quantitative criterion is evaluated according to
the number of winter occupants with 3 evaluation grades in the initial version;

• Living places (C[112]): this qualitative criterion is evaluated according to seven
evaluation grades corresponding to existing facilities or infrastructures in the
studied area;

• Morphology (C[121]): this quantitative criterion is evaluated according the slope
angle;

• History (C[122]): this quantitative criterion is evaluated to an empirical fre-
quency;

• Snow-Climatology (C[123]): this quantitative criterion is evaluated according
snow-height.

The initial evaluation classes are used as a basis to build the mapping model used
in the ER-MCDA model. In that model, classes do not exist anymore for quanti-
tative criteria: the expert provide an evaluation on real numerical values which are
then mapped into the elements of the common frame of discernment. For qualita-
tive criteria, a specific method is proposed to consider the level of confidence of the
evaluation. In a classical hierarchical AHP approach, weights are calculated for each
criterion according to pairwise comparisons from the root criterion to the basic level
criterion level. This principle requires having an equal number of evaluation grades
for each criterion: increasing the number of evaluation grades for a given basic level
criterion induces an higher weight of the basic level criterion with a classical normal-
ization method based on sum. The initial model from which is derived our sample
model had not been designed according to this principle. It was not described as
a hierarchical structure and un-normalized weights had been defined directly by the
experts for each evaluation grade of the basic-level criteria (e.g. 20 for the evalua-
tion grade C[1111] corresponding to a class of winter occupants ranging from 1 to 4
persons). To transform these values into normalized weights and propagate them to
the different levels of the hierarchy, different normalization principles can be used. In
our application, based on a criterion-estimator-solution framework, we use a so-called
SumMax method which is based on the following principle: un-normalized weights
(at the evaluation grade) are normalized using the sum. The absolute weight of basic
level criteria corresponds to the maximum of un-normalized weights of the evaluation
grades. Normalization is then done on a sum basis for the other criteria levels up to
the root level. The normalized weights are then calculated from the root to the basic
level criteria: they are then used to calculate the importance discounting criteria
(Fig. 23.44).
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Figure 23.44: From hierarchical model to importance discounting factor.

In our context, we need to build a link between the criteria and the common frame
of discernment. The first step of the process consists of mapping the evaluation of
basic level criteria by the sources. For each criterion, the mapped bba of those
evaluations are then fused together to get a mapped bba for each basic level criterion
(Fig. 23.36). Examples of results are described in detail for an example of quantitative
criterion (C[111]) and for an example of a qualitative criterion (C[112]) in the following
sections. Only evaluation interval data and a summary table is given for the others
criteria.

23.4.1.3 Example of results for the quantitative criterion C[111]

The criterion C[111] is a quantitative basic level criterion which corresponds to the
vulnerability due to permanent winter occupants in the area. The evaluation provided
by the sources consists of numerical intervals corresponding to the number of occu-
pants. First, each source defines numerical intervals with necessity levels (Fig. 23.45).
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Figure 23.45: From evaluation intervals to mapped bba of intervals.

These necessity levels, interpreted as confidence levels are transformed into bba
(Fig. 23.17). The bba corresponding to each evaluation interval are then transferred
to each element of the frame of discernment corresponding to the chosen mapping
model (DST or DSmT mapping model) according to their areas. The mapped bba
for the first evaluation (including 3 intervals) of the source no. 1 is compiled in the
Table 23.5 and described in a graphical way in Fig. 23.46. The principle of this
calculation as it can be checked in the implemented software application is presented
on (Fig. 23.47). For a given source and its evaluations intervals, different mapping
processes can be applied. We only present here partial results for a DST mapping
model.

source s coded by (C[111], Src1, Eval1)

Frame of discernment - DST - Θ = {NoS, LS, MS, HS}
NoS LS MS HS

Int. Code ms,I(s,Int)
(HD1) ms,I(s,Int)

(HD2) ms,I(s,Int)
(HD3) ms,I(s,Int)

(HD4)

1 I(s, 1) 0 0.375 0.125 0
2 I(s, 2) 0 0.1429 0.1071 0
3 I(s, 3) 0 0.1071 0.1429 0

Table 23.5: Mapped Basic belief assignment (bba)- Criterion C[111] - Source 1
- Evaluation 1 - Fusion process no. 1 - DST framework.
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Figure 23.46: From mapped bba of evaluation to mapped bba of criterion
C[111].

Figure 23.47: Results of mapping process of criterion C[111].
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Fusion of mapped bba for C[111]

A comparison of different combination rules (DST-normalized, Smets and PCR6
rules) in a DST mapping framework can be done using the same input data taking into
account un-discounted or discounted evaluation sources (see the Table 23.6) according
to the user choice.

23.4.1.4 Example of results for the qualitative criterion C[112]

The evaluation of a qualitative criterion uses both a scaling model to produce a belief
(credibility) interval and a mapping model to transform this credibility interval into
the common frame of discernment. The criterion C[112] is a qualitative criterion which
corresponds to the vulnerability due to the infrastructures, facilities and collective
equipments such as schools in the area. Three main categories corresponding to
industrial equipment, collective or community equipments and rescue equipments.
Two different scaling models (DST scaling model or DSmT scaling model) can be
used to transform the evaluation provided by the source into a belief interval that
will be further used in the qualitative mapping process (see Fig. 23.48).

Figure 23.48: Two models for quantitative criterion ”Living places” C[112].
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We only present here partial results for a DSmT scaling model and a DST mapping
model. The choice of the scaling model depends on the nature of the infrastructures
that exist on the site. Some infrastructures may belong to the same time to sev-
eral categories. To take this into account, we can imagine a DSmT scaling model
which will be presented here. Each qualitative category is analyzed according to its
importance (contribution) to the vulnerability using a pairwise comparison approach.

The weights are directly interpreted as bba’s. For each combination of types of
infrastructures, credibility values are calculated as shown in Fig. 23.49.

Figure 23.49: Qualitative criterion C[112] - DSmT scaling - Importance of the
evaluation grade for mapping model.
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The qualitative mapping model is built to establish a correspondence between an
interval evaluation (with a lower and an higher value of credibility) and the common
frame of discernment according to the chosen mapping model (for a DST mapping
model and a DSmT scaling model, see Fig. 23.50).

Figure 23.50: Qualitative criterion C[112] - DST mapping - DSmT scaling -
Evaluation intervals for sources 1 and 2.

To provide an evaluation, the user chooses an input value that indicates if the
chosen category exists in the zone and then a rating of its confidence level about
its evaluation (Fig. 23.51). Results are a weighted belief interval and a discounting
factor about this belief interval. These values are then used in the qualitative mapping
process using the same principle than described for quantitative criterion.
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Figure 23.51: Qualitative criterion C[112] - DST and DSmT mapping - confi-
dence levels - source 1.
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Belief interval: from scaling to mapping

A belief interval resulting from the scaling process is used as data in the mapping
process of the qualitative criterion. An example of user inputs for confidence levels is
given for the criterion C[112] in a context of so-called DSmT scaling where the evalu-
ation grades can have non empty intersections (see the Table 23.7) and in a context
of so-called DST scaling where the evaluation grades are considered as exclusive from
one to each other (see Table ??). In our application case, for a DST scaling, we get
BelInt(C[112],s1) = [0.466, 0.628] and α(C[112],s1) = 0.842. For a DSmT scaling, we get

BelInt(C[112],s1) = [0.314, 0.419] and α(C[112],s1) = 0.875.

23.4.1.5 Partial results for quantitative criteria: C[121], C[122] &
C[123]

The following figures describe the evaluation data interval provided by two sources
for each of the basic level criteria related to the hazard evaluation in a DST mapping
model for the morphology criterion C[121] (Fig. 23.52), the history criterion C[122]

(Fig. 23.53) and the snoow-meteorology criterion C[123] (Fig. 23.54). The resulting
mapped bba for each criterion and each source are then discounted and injected in a
fusion process that produces a mapped bba for each criterion.

Figure 23.52: Quantitative criterion C[121] - DST mapping - Evaluation inter-
vals for sources 1 and 2.
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Figure 23.53: Quantitative criterion C[122] - DST mapping - Evaluation inter-
vals for sources 1 and 2.

Figure 23.54: Quantitative criterion C[123] - DST mapping - Evaluation inter-
vals for sources 1 and 2.
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23.4.1.6 Decision level-criterion C[1]

Fusion processes are described in an extensive way according to all the parameters
chosen for fusion. On the basis on the same input data set, different simulations can
be done to compare fusion rules, mapping models, . . . (see Fig. 23.55). This section
presents results at the decision level for different examples corresponding to a DST
mapping model (fusion processes no. 1 and 3) and a DSmT mapping model (fusion
processes no. 7 and 9). These results compare two different mapping models with
the same fusion rule (e.g processes 1 and 7 or 3 and 9), the same mapping model with
different fusion rules (e.g. processes 1 and 3 or 7 and 9).

Decision level - Fusion process - DST framework

The following tables present the results of fusion of discounted basic-level criteria:

- For the fusion process no. 1, see Table 23.8;

- For the fusion process no. 3, see Table 23.9.

The bba’s in the following tables correspond to un-discounted values. The re-
sult of fusion comes from discounted bba ’s. For each basic level criterion (e.g.
C[111]), the basic belief assignments correspond to the result of fusion of the dis-
counted evaluations of the different sources (for C[111]), this corresponds to the fusion
of m1 = m(C[111],Src1,Eval1) and described in the table of Fig. 23.6. The importance
discounting factors are deduced from the hierarchical decision model depending on
the normalization and evaluation data input. In that example, we use the SumMax
model (Fig. 23.43).

Decision level - Fusion process - DSmT framework

The following tables present the equivalent results to fusion process no. 1 and 3
with only changes in the mapping model (from DST model to DSmT model):

- For the fusion process no. 7, see Table 23.10;

- For the fusion process no. 9, see Table 23.11.

Note that in a DSmT model, results are the same for DST rule (to be understood
as DSm rule) and PCR6 rules since the conflict does not exist.
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Figure 23.55: Description of the fusion processes no. 1, 3, 7 and 9.
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23.4.1.7 Examples of implementation

An integrated framework has been developed using MATLABTM and the calculation
routines developed by [Martin 2009]. All data are saved in structures corresponding to
the UML conceptual modeling principles (the application is not an object application
but only an object-oriented framework - see Fig. 23.56).

Figure 23.56: Quantitative criterion C[111] - Fusion process no. 7 - Data struc-
tures from global identification to evaluation level.

In addition to the calculation framework, some graphical functions have been
added to facilitate the use and interpretation of results (see Fig. 23.57 and Fig. 23.58).
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Figure 23.57: Comparison of results for the fusion processes no. 1, 3, 7 and 9.
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Figure 23.58: Root decision criterion C[1] - Fusion process no. 7 - Data struc-
tures for results plot.
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23.5 Discussion

23.5.1 Mixing uncertainty, imprecision, importance and
traceability

Considering both uncertainty, imprecision, importance and traceability of the exper-
tise process is the ultimate goal of a mixed ER-MCDA framework based on decision-
aid methods and formal theories for uncertainty management. The purpose is both to
aid decision and to describe how far the different sources and evaluations contribute
to the final result: is the decision based on certain evaluations of non important cri-
teria and/or based on uncertain evaluations of important criteria?

Through the literature review, two main approaches can be identified. From one
hand, decision-aid science and specially the multi-criteria decision analysis community
introduces uncertainty management in its traditional framework. This mainly con-
sists of considering uncertain assessment of decision criteria through interval-based,
fuzzy or evidence theory based approaches. On the other hand, ”new” uncertainty
theories (possibilities, evidence theory) develop applications with obvious decision
purposes. Criterion decision based on fused information are proposed in those differ-
ent frameworks.

In our approach, the Analytic Hierarchy Process (AHP) is used as a conceptual
tool to model the problem, to elicit preferences and subjective basic belief assignments
(bba) to be used in the fusion process. Using information fusion in a multi-criteria
decision analysis framework requires that the model analyst should be able to assess
each criterion according to common scale and/or evaluation grades. In the proposed
model, these evaluation grades are considered as elements of the frame of discern-
ment. Under this assumption of a common frame of discernment, the information
fusion and specially its new developments such as DSmT and fusion rules for conflict
situations offer interesting abilities to help to make a decision in the natural hazard
context. Uncertain evaluations of quantitative criteria are fused either at the design
model stage or at the evaluation stage (fusing the different experts sources). As de-
cision depends on fusion process, choosing ad-hoc combination rules is essential: the
combination rules must remain efficient when the conflict level is very high, e.g. when
the classical combination rules of DST fails to propose acceptable results.

Our approach has explored some developments of these ideas while trying to
consider limits and drawbacks of each of methods and theories. Indeed, if the principle
of a joined application of evidential reasoning and Multi-Criteria Decision Analysis
(MCDA) is an interesting perspective, some questions remain, as described in the
following section.
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23.5.2 Advantages and lacks of the ER-MCDA framework

In comparison with existing approaches, we consider that this framework offer the
following advantages:

• First, it allows to trace uncertainty and imprecision for both quantitative and
qualitative criteria. In comparison with existing approaches mixing multi-
criteria decision analysis and evidential reasoning, the information sources,
mainly resulting from expert assessment, are fully described. The expert judge-
ments are identified both for modeling and evaluation steps. Links between cri-
teria evaluation and the fusion process an specially the choice of the frame of
discernment are elicitated through so-called quantitative and qualitative map-
ping processes;

• A formal description and conceptual modeling are proposed. They describe
both the decision model design and the belief function theory framework. A
comparison is proposed to model the same problem using the classical Dempster-
Shafer framework (DST) based on exhaustive and exclusive hypothesis, and the
more recent Dezert-Smarandache framework (DSmT)which relaxes those con-
straints;

• In our application, using advanced and recent fusion rules (such as PCR6 rule)
allow more realistic decisions. ”Ad-hocity” of fusion rules depending on the
class problem is still a research question;

• Importance (related to the preference concept) and reliability should be consid-
ered as two different concepts in any model. A method of a specific discounting
method is proposed but has to be studied in a theoretical way.

The lacks or remaining questions related to the proposed framework are described
as following:

• The difference between fusion and aggregation of preferences remains an im-
portant subject of debate. Fusion and multi-criteria decision analysis cannot
be used in the same conditions. In that sense, some hypothesis of pre-existing
models mixing MCDA and evidential reasoning such as DS-AHP Beynon2000
and other variants can immediatly be critized according to the way in which
they mix weights (corresponding to preferences) and fusion process. The fu-
sion process should be compliant with the nature of combined information: it
is recognized that aggregating preferences and fusing pieces of uncertain evi-
dence should involve different fusion methods Bloch2001 but no definitive and
practical classification is available;

• Basic belief assignment elicitation is an essential part of process. The subjective
evaluation of bba for qualitative criteria using the AHP process can be critized.
At least, it allows to trace the hypothesis and choices of the evaluating experts;
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• At the present stage of development, reliability of sources are chosen in a very
arbitrary and subjective way. Multi-criteria approaches can be imagined up-
stream from the fusion process to characterize this expert reliability according
to experience, backgrounds . . . Tacnet2006b;

• The fact that we consider a unique frame of discernment is also questionable:
with such a principle, we force the sources to provide an evaluation that will
be compliant with the common frame of discernment through a so-called map-
ping process. It may also be argued that the decision is too strongly influenced
by the chosen hierarchical model. This framework requires to define mapping
processes to evaluate all the criteria in the chosen frame of discernment. Sen-
sitivity analysis should be done to analyze whether the choice of this mapping
models influences the final result for fusion;

• In this present version, the framework provide information for decision but
not a real decision. Different alternatives or choices are described in a finer
way than with usual MCDA methods with regards to their uncertainty level.
The final result has still to be analyzed to produce a decision as in any fusion
problem. The further development will probably involve decision-aid method
(total aggregation or outranking methods) using result of fusion to make a
decision;

23.5.3 The question of the validation

As it involves a fusion process, the proposed ER-MCDA framework does not avoid the
difficult question of validation. How can a fusion system be validated and evaluated
(what does it mean) ? Bloch2001 analyse the way to propose such a validation as
following. The validation should concern the problem modeling, the data input, the
fusion in itself and the outputs of the system. In most applications, the proposed
decision-aid systems propose solutions but do not check with a real and pre-existing
choice. This situation also includes applications dealing with simplified testing cases
without any real need for decision (choosing a car, a master course, a candidate).
Nevertheless, this remains an important question and we humbly recognize that no
satisfying answer exists in our application domain of natural hazards at the moment.
We only describe here some principles to implement such a validation.
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Testing the sources is the first necessary step to evaluate the experts reliability
according to, as an example, their tendency toward overconfidence. Finally, in order
to judge the value of the outputs, the easiest situation corresponds to cases where it
is possible to make a comparison between a collection of input examples for which
expected answers of the fusion process are known by experience or expertise. When
validation results arrive after the fusion was done, it is much more difficult to make
a conclusion and decide whether the process is inappropriate or the information pro-
vided is not sufficient. Finally, the last but not the least way to validate the global
decision and/or fusion results is to check that its principles are understood and useful
for the end-users who are supposed to use it as a decision tool . . ..

From a thematic point of view related to natural hazards management, validation
in a decision context (normative vs. empirical approach) also remains a problem. In
industrial contexts, experimental data are more easily available to validate models and
decision-aid tools. When dealing with expert approaches, it remains quite difficult to
validate the result of the proposed methodology since the solution is never unique and
fully certain. Should we consider the existing result as the target for the decision-aid
system, given that all the hypotheses are not always fully argued and justified in an
explicit way ? For risk zoning maps, we cannot consider one result as a reference that
should be obtained by the compared method. The intrinsic value of such a map is in
fact difficult to establish. A satisfactory zoning map would correspond to a situation
where no unexpected damage occur. A zoning map can be considered as right as
long as no event has occurred in a way that had not been planned during its design.
Therefore, a way to validate the process can consist of making a list of required
quality criteria for expertise processes and to analyze if the proposed methodology is
able to improve the existing implementation framework. We are able to measure the
validity of the result only when the reference event (considered as rare most of time)
occurs. A priori validation is therefore quite difficult. In our case, we consider than
a formal elicitation of the reasoning process and the uncertainty level linked to these
information in a recognized theoretical framework is already a valuable result. Being
able to explicit how the decision was taken (with or without conflicts between experts)
and on which initial basis (scientific hypothesis, field data, historical data . . .) it was
founded are already two important step towards the validation of an expertise result.
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23.5.4 Towards an improved ER-MCDA framework

Neither the framework based on multi-criteria decision analysis or fusion seem able
to propose alone an ideal framework to make a decision when several more or less
reliable sources provide uncertain and imprecise evaluations on heterogeneous and
conflicting criteria. Reaching a compromise respecting the preferences of decision-
makers seems as necessary than evaluating and considering the truth associated to
their evaluations. At the end, despite of some known difficulties, mixing evidential
reasoning and multi-criteria decision-aid methods remains a promising perspective.
For further developments, we think at the end that an improved decision framework
should use fusion results as inputs data for a multi-criteria partial aggregation method
(or outranking method) such as ELECTRE Roy1985 and its more recent variants
(Fig. 23.59).

Figure 23.59: The ideal ER-MCDA framework: fusion at the evaluation level,
multi-criteria decision analysis for problem modeling and decision making.
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23.6 Conclusion

Searching for the best of MCDA and evidential reasoning

The natural hazards risk management process is indeed a real complex decision
framework where uncertainty and imprecision come both from the different steps of
the risk analysis, its actors and the information sources. Mixing multi-criteria deci-
sion analysis (MCDA) and evidential reasoning (ER), using some recent developments
such as new fusion rules and theoretical framework such as Dezert-Smarandache The-
ory (DSmT) is a very attractive objective. This first link between the belief function
theory, multi-criteria decision making for natural risks management in mountains ar-
eas appears as an encouraging research development direction. From one side, multi-
criteria methods consider (more or less depending on their hypothesis) the complexity
of the real world, the non-rational behaviour of decision maker, the un-comparability
of choices to help the decision-maker. On the other side, belief function (or Evidence)
theory is a powerful and versatile framework for human reasoning under uncertainty.
Departing from a real, therefore complex, decision problem, this work proposes an
operational methodology to integrate those two approaches at different steps of the
reasoning process. Improving the elicitation of these levels of imprecision and un-
certainty obviously induce more complexity in the risk management framework. As
against, it is a possible way to increase the risk awareness in the population and
decision makers: experts judgements are not the absolute truth.

Implementation is possible: a first practical framework to improve

A dilemma when trying to imagine a framework that deals with decision and
uncertainty is to propose an application whose principles, input and results can be
understood by the decision makers. On this basis, introducing an uncertainty level in
existing decision-aid methods could be roughly and immediately considered as use-
less according to the previous objective since fusion calculation can quickly induce
high complexity. Though its recognized abilities to represent human theory under
uncertainty, the belief function theory (or Evidence Theory) still remains difficult to
implement. This applies to the classical Dempster-Shafer Theory (DST) but also to
the recent DSmT. Last developments on fusion calculation moderate these traditional
drawbacks. From a software programming implementation point of view, this frame-
work implies to handle a great amount of data which needs to be structured. Mixing
multi-criteria decision analysis and fusion applications produce more informational
results than the classical individual approaches. Data models and conceptual mod-
eling of this kind of problem have been proposed as a basis for further development.
The formal description of both hierarchical model and uncertain evaluation also al-
lows to make some links with information systems. Such methodologies issued from
software engineering appear as valuable tools to describe the problematic, its com-
ponents but also to prepare a further integration in a database management system
(DBMS). The global methodology contributes therefore to help decision but also to
improve the traceability of reasoning process which is an important requirement and



Chapter 23: Information fusion for natural hazards in mountains 649

domain of progress in the natural hazards risk management context. The principles
of the method remain quite simple and we consider that it can be easily understood
by the decision-makers and experts. Graphical synthetic results are proposed as ex-
amples to help the decision. All this remain a prototype and for decision purposes,
there are still work to be done to design and realize a full friendly-user application.
To our point of view, one of the advantage of this framework is first to elicit the
reasoning hypothesis chosen by the experts along their decision process with respect
to the conflict and ignorance levels associated to their evaluations. This concern as
much the alternatives evaluations than the models used to make transformation from
one framework to another (e.g. the so-called ”scaling” and ”mapping” models used
to transform qualitative and quantitative evaluations into a common frame of dis-
cernment.

Remaining issues and further developments

Main issues to use DST and DSmT in the natural hazards expertise context
remain:

• the use of the results for decision purpose with optimistic, pessimistic or com-
promise point of views;

• fusion order according to (or not) the hierarchical framework of the multi-
criteria approach;

• choice of fusion rules according to their ability to take conflict into account;

• choice and evaluation of discounting factors related to the different information
sources. A multi-criteria approach can be useful to determine these discounting
factors;

• results validation.

Main difficulties come from the choice of the frame of discernment, the conflict
management and aggregation techniques. This approach extends some existing mixed
application of evidential reasoning and multi-criteria decision models. We show that
DSmT provides a versatile tool able to consider imprecise and uncertain information
with some advantages such as conflict management and paradoxical information. In
our framework, deterministic models such as snow-avalanches modeling tools would
be considered as common sources. Assessing the reliability of such model corresponds
to an important research issue: it comes as much from the modeling hypotheses than
from data uncertainty. To handle this uncertainty, some new approaches mixing
probabilistic and possibilistic frameworks and called ”hybrid methods” have been
proposed by Baudrit et al. recently. In the natural hazards context, data are of-
ten lacking or incomplete. Those approaches should be developed to characterize
the uncertainty coming from modeling in the global expertise process. Other multi-
criteria decision frameworks could be tested in order to compare this framework with
partial aggregation techniques such as Electre-based method. Outranking methods



650 Chapter 23: Information fusion for natural hazards in mountains

should be used to produce a decision. This could include comparison between differ-
ences of credibility, plausibility, pignistic probability, etc. An improved ER-MCDA
framework, and a further way for development, could include fusion process at the
evaluation level and multi-criteria decision analysis at the initial stage of problem
modeling and at the ultimate stage for decision making.

Guidelines for further developments

From a theoretical point of view, the question of ad-hocity of fusion or aggregation
methods according to the problem still requires additional research. Efficient fusion
techniques are necessary to have a global assessment of situation and to help to take
the right decision, and an efficient decision-making support system will help in the
risk prevention against natural hazards. The model proposed in this work is a first
attempt to introduce the global problematic of information fusion for natural hazards
risk assessment. Of course, some developments for improving these frameworks in
relationship with the fusion and decision-aid methods community are under progress
in several directions. For example, a deep parametric analysis must be carried out to
precisely estimate the importance discounting and reliability factors of all the sources
before extending this ER-MCDA approach to the full-criteria real case application.
From a thematic point of view, the global methodology is not strictly limited to
the snow-avalanche domain: it can be used in others contexts of natural hazards
where expertise is required such as torrential floods, rockfalls, etc, as well. Many
ways are possible to improve this approach, say by a better choice and comparative
analysis of decision rules and on the model choices specially for geographical aspects.
To be used in a practical way, numeric tools will be also required. The model has
to be plugged with DBMS systems that use information. New developments about
qualitative combination rules proposed in DSmT have not yet been tested and could
also be used.
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gestion, HATIER, Paris, 2004.

[Von Neumann and Morgenstern 1967] J. Von Neumann, O. Morgenstern, Theory of
games and economic behavior, Princeton University Press, Third Edition, 1967.

[Vrijling et al. 1998] J. K. Vrijling, W. Van Hengel and R. J. Houben, Acceptable risk
as a basis for design, Reliability Engineering & System Safety, 59(1):141–150,
1998.

[Wadsworth and Hall 2007] R. Wadsworth, J. Hall, Setting site specific critical loads:
An approach using endorsement theory and Dempster-Shafer, Water, Air, and
Soil Pollution: Focus, 7(1-3):399–405, 2007.

[Wang et al. 1996] J. Wang, J. B. Yang and P. Sen, Multi-person and multi-attribute
design evaluations using evidential reasoning based on subjective safety and cost
analyzes, Reliability Engineering and System Safety, 52(2):113–128, 1996.

[Wang and Elhag 2006] Y.-M. Wang, T. M. S. Elhag, An approach to avoiding rank
reversal in AHP, Decision Support Systems, 42(3):1474–1480, 2006.

[Wang et al. 2006] Y.-M. Wang, J. B. Yang and D. L. Xu, Environmental impact
assessment using the evidential reasoning approach, European Journal of Oper-
ational Research, 174(3):1885–1913, 2006.



Chapter 23: Information fusion for natural hazards in mountains 659

[Weichselgartner and Bertens 2000] J. Weichselgartner, J. Bertens, Natural disas-
ters: Acts of god, nature or society? on the social relation to natural hazards,
In Congrès Risk analysis II - International conference on computer simulation
in risk analysis and hazard mitigation No; 2, pp. 3–12, Bologna, Italy, October,
2000.

[Wong and Lingras 1994] S. Wong, P. Lingras, Representation of qualitative user
preference by quantitative belief functions, IEEE Transactions on Knowledge and
Data Engineering, 6(1):72–78, 1994.

[Yang 2001] J. B. Yang, Rule and utility based evidential reasoning approach for mul-
tiattribute decision analysis under uncertainties, European Journal of Opera-
tional Research, 131(1):31–61, 2001.

[Yang et al. 2006] J. B. Yang, Y. M. Wang, D. L. Xu and K. S. Chin, The evidential
reasoning approach for mada under both probabilistic and fuzzy uncertainties,
European Journal of Operational Research, 171(1):309–343, 2006.

[Yang and Xu 2002] J. B. Yang, D. L. Xu, On the evidential reasoning algorithm
for multiple attribute decision analysis under uncertainty, IEEE Transactions on
Systems, Man, and Cybernetics Part A: Systems and Humans, 32(3):289–304,
2002.

[Zadeh 1965] L. A. Zadeh, Fuzzy sets, Information and Control, 8:338–353, 1965.

[Zadeh 1978] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets
and Systems, 1:3–28, 1978.





Chapter 24

Improvement of multiple ground
targets tracking with fusion of
identification attributes

Benjamin Pannetier, Jean Dezert
The French Aerospace Lab.,

ONERA/DTIM/SIF,
29 Avenue de la Division Leclerc,

92320 Châtillon, France.
benjamin.pannetier@onera.fr, jean.dezert@onera.fr

Abstract: Multiple ground targets (MGT) tracking is a challeng-
ing problem in real environment. Advanced algorithms include exoge-
neous information like road network and terrain topography. In this
chapter, we develop a new improved VS-IMM (Variable Structure In-
teracting Multiple Model) algorithm for GMTI (Ground Moving Tar-
get Indicator) and IMINT (IMagery INTelligence) tracking which in-
cludes the stop-move target maneuvering model, contextual informa-
tion (on-off road model, road network constraints), and ID (IDenti-
fication) information arising from classifiers coupled with the GMTI
sensor. The identification information is integrated to the likelihood
of each hypothesis of our SB-MHT (Structured Branching - Multiple
Hypotheses Tracking). We maintain aside each target track a set of
ID hypotheses with their committed beliefs which are updated on real
time with classifier decisions through target type tracker based on a
proportional conflict redistribution fusion rule developed in DSmT.
The advantage of such a new approach is to deal precisely and ef-
ficiently with the identification attribute information available as it
comes by taking into account its inherent uncertainty/non-specificity
and possible high auto-conflict.
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24.1 Introduction

Data fusion for ground battlefield surveillance is more and more strategic in order
to create the situational assessment or improve the precision of fire control system.
The challenge of data fusion for the theatre surveillance operation is to know where
are the targets, how they evolve (maneuvers, group formations,. . . ) and what are
their identities. For the first two questions, we develop new ground target tracking
algorithms adapted to GMTI (Ground Moving Target Indicator) sensors. In fact,
GMTI sensors are able to cover a large surveillance area during few hours or more if
several sensors exist. However, ground target tracking algorithms are used in a com-
plex environment due to the high traffic density and the false alarms that generate a
significant data quantity, the terrain topography which can provocate non-detection
areas for the sensor and the high maneuverability of the ground targets which yields
to the data association problem. Several references exist for the MGT (Multiple
Ground Targets) tracking with GMTI sensors [6, 9] which fuse contextual informa-
tions with MTI reports. The main results are the improvement of the track precision
and track continuity. Our algorithm [13] is built with several reflexions inspired with
this literature. Based on road segment positions, dynamic motion models under road
constraint are built and an optimized projection of the estimated target states is
proposed to keep the track on the road. A VS-IMM (Variable Structure Interacting
Multiple Models) filter is created with a set of constrained models to deal with the
target maneuvers on the road. The set of models used in the variable structure is
adjusted sequentially according to target positions and to the road network topology.

Now, we extended the MGT with several sensors. In this chapter, we first consider
the centralized fusion between GMTI and IMINT (IMagery INTelligence) sensors re-
ports. The first problem of the data fusion with several sensors is the data registration
in order to work in the same geographic and time referentials. This point is not pre-
sented in this chapter. However, in a multisensor system, measurements can arrive out
of sequence. Following Bar-Shalom and Chen’s works [3], the VS-IMMC (VS-IMM
Constrained) algorithm is adapted to the OOSM (Out Of Sequence Measurement)
problem, in order to avoid the reprocessing of entire sequence of measurements. The
VS-IMMC is also extended in a multiple target context and integrated in a SB-MHT
(Structured Branching - Multiple Hypotheses Tracking). Despite of the resulting
track continuity improvement for the VS-IMMC SB-MHT algorithm, unavoidable
association ambiguities arise in a multi-target context when several targets move in
close formation (crossing and passing). The associations between all constrained pre-
dicted states are compromised if we use only the observed locations as measurements.
The weakness of this algorithm is due to the lack of good target state discrimination.

One way to enhance data associations is to use the reports classification attribute.
In our previous work [14], the classification information of the MTI segments has been
introduced in the target tracking process. The idea was to maintain aside each target
track a set of ID hypotheses. Their committed beliefs are revised in real time with the
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classifier decision through a very recent and efficient fusion rule called proportional
conflict redistribution (PCR). In this chapter, in addition to the measurement location
fusion, a study is carried out to fuse MTI classification type with image classification
type associated to each report. The attribute type of the image sensors belongs to a
different and better classification than the MTI sensors. The counterpart is the short
coverage of image sensors that brings about a low data quantity. In section 24.2, the
motion and measurement models are presented with a new ontologic model in order
to place the different classification frames in the same frame of discernment. After the
VS-IMMC description given in section 24.4, the PCR fusion rule originally developed
in DSmT (Dezert-Smarandache Theory) framework is presented in section 24.5 to
fuse the target type information available and to include the resulting fused target
ID into the tracking process. The last part of this chapter is devoted to simulation
results for a multiple target tracking scenario within a real environment.

24.2 Motion model

24.2.1 Introduction

Usual target tracking algorithms are based on the Kalman filter. Since several years,
in ground target tracking domain, the Kalman filter has been improved to take into
account the contextual information in the tracking process. For instance, Kirubarajan
et al. proposed to use the road segment location in order to modelize the dynamic
of a target moving on the road [9]. The road network is considered here as a priori
information to be integrated in the tracking system. The map information comes from
a GIS (Geographic Information System) which contains information about the road
network location and the DTED (Digital Terrain Elevation Data). In the following,
the GIS description, the stochastic target constrained and the measurement models
are presented.

24.2.2 GIS description

The GIS used in this work contains the following information: the segmented road
network and DTED. Each road segment is expressed in the WGS84 system. The road
network is connected and each road segment is indexed by the road section it belongs
to. A road section Ro(p) is defined by a connected road segments set delimited by a
road end or a junction in the manner that Ro(p) = {s0, s1, · · · }.

At the beginning of a surveillance battlefield operation, a Topographic Coordinate
Frame (TCF) and its origin O are chosen in the manner that the axes X, Y and Z are
respectively oriented in the East, North and Up local directions. The target tracking
process is carried out in the TCF.
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24.2.3 Target state under constraint

24.2.3.1 Constrained motion model

The target state at the current time k is defined in the local coordinate frame by1:

x(k) = [x(k) ẋ(k) y(k) ẏ(k)]′ (24.1)

where the couples (x(k), y(k)) and (ẋ(k), ẏ(k)) define respectively the target location
and velocity. The dynamics of the targets evolving on the road network are modelized
by a first-order system.

The target state under the road segment s is defined by

xs(k) = [xs(k) ẋs(k) ys(k) ẏs(k)]′ (24.2)

where the target position (xs(k), ys(k)) belongs to the road segment and the corre-
sponding velocity vector (ẋs(k), ẏs(k)) is in the road segment s direction. Therefore,
the target constraint state xs(k) is defined by the following constraint:

(

a · xs(k) + b · ys(k) + c = 0

〈[ẋ(k) ẏ(k)]′ |�ns〉 = 0
(24.3)

where a, b and c are the coefficients of the line associated to the road segment s and
�ns is the normal vector to the road segment s. The constraint can be expressed as
follows:

D̃ · xs(k) = L (24.4)

with D̃ =

»

a 0 b 0
0 a 0 b

–

and L = [−c 0]′.

The event that the target is on the road segment s is noted es(k) = {(x(k), y(k)) ∈
s}. Knowing the event es(k) and according to a motion model Mi the dynamics of
the target can be improved by considering the road segment s. Due to the precision of
the GMTI sensor and the long time scan period, the chosen motion models are quite
simple. They consist in r constant velocity motion models having different process
noise statistics (standard deviations). However the proposed approach is valid for
much more complicated motion models like the constant acceleration or coordinated
turn ones. It follows that:

xs(k) = Fs,i(Δk) · xs(k − 1) + Γ(Δk) · νs,i(k) (24.5)

where Δk is the time of sampling; the matrix Fs,i(k) � Fs,i(Δk) is the state transition
matrix associated to the road segment s (described in [12]) and is adapted to a motion
model Mi; The matrix Γ(Δk) is defined in [1] and the variable νs,i(k) is a white noise
Gaussian process. Its associated covariance Qs,i(k) is built in the manner that the

1
x
′ denotes the transposition of the vector (or the matrix) x.



Chapter 24: Improvement of multiple ground targets tracking . . . 665

standard deviation σn along the road segment is higher than the standard deviation
σd in the orthogonal direction. Consequently the covariance matrix Qs,i is defined
by:

Qs,i(k) = Rϑs ·
»

σ2
d 0
0 σ2

n

–

·R′
ϑs

(24.6)

where the matrix Rϑs is the rotation matrix associate to the s road segment direction
ϑs defined in the plane (O, X, Y ). The predicted target state and covariance are
defined respectively by:

x̂s,i(k|k − 1) = Fs,i(k) · x̂s,i(k − 1|k − 1) (24.7)

Ps,i (k |k − 1 ) = Fs,i (k) ·Ps,i(k − 1|k − 1) · F′
s,i(k) + Qs,i(k) (24.8)

24.2.3.2 Adjustment of the process noise at the road extremities

Since the previous constraint on the motion model is specific only to a given segment
s, it does not take into account the whole road network2 and thus it omits the
possibility for the target to switch onto another road segment when reaching the
extremity of the segment it is moving on. Such modeling is too simplistic and the
ground-target tracking based on it provides in general poor performances. To improve
modeling for targets moving on a road network, we propose to adapt the level of the
dynamic model’s noise depending on the length of the road segment s and on the
location of the target on this segment with respect to its extremities. This allows
to relax gradually the on-segment constraint as soon as the target approaches the
extremity of the road segment and/or a junction. If we omit the road segment length
in the motion model, the tracking algorithm may not associate the predicted track
with a measurement when the predicted state is near the road segment extremity.
In fact, if a measurement is originated from a target moving on the road segment
s + 1, the measurement won’t be in the validation gate (defined in [5]), because of
the road segment s constraint that generates a directive predicted covariance with a
small standard deviation in the road segment s orthogonal direction. That is why, we
propose to increase the standard deviation σd when the target approaches the road
extremity, in the manner that the standard deviation in the orthognal road segment
direction becomes equal to the standard deviation in the road segment direction. For
this, we use the prior probability P{es(k)|Zk−1,n} in order to relax the constraint
when the target approaches the road segment s extremity. The white noise Gaussian
process νs,i(k) in (24.5) is modified in the manner that the covariance Qs,i is replaced
by Q̃s,i:

Q̃s,i(k) = Rϑs ·
»

σ2
d 0
0 q22

–

·R′
ϑs

(24.9)

2i.e. the possibility of several other road segments connected at extremity of each road
segment of the network.
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where q22 = σ2
n · P{es(k)|Zk−1}+ σ2

d · (1− P{es(k)|Zk−1} and Zk−1 is the sequence
of measurements up to time k − 1.

The probability that the target belongs to the road segment s is based on the
derivations proposed by Ulmke and Koch [19] and Herrero et al. [8], but we do not
consider the road width and our modelization is done in the 2D space only. So the
predicted road segment s belonging probability is expressed as:

P{es(k)|Zk−1,n} =

(

0, if Πs(x(k)) ≤ 0 or Πs(x(k)) ≥ ls,

P{Πs(x(k)) ≤ ls | Zk−1,n}, otherwise.
(24.10)

where Πs(x(k)) is the projection operator on the road segment s modulo the road
segment length ls. According to the Gaussian assumption, the probability can be
rewritten as follows:

P{es(k)|Zk−1,n} =

Z ls

0

N
`

u, Πs (x(k)) , σ2
s

´

du

= f

„

ls −
Q

s(x(k))

σs

«

− f

„−Qs (x(k))

σs

«

(24.11)

The variance σ2
s is the variance obtained after the projection Πs on the road

segment s and is given in [19]. The function f(.) is the integral of the Gaussian
distribution with zero mean and variance of 1/2:

f(t) =
1√
2π

·
Z t

−∞
e−

t2

2 dt (24.12)

Finally, we obtain a constrained motion model which takes into account the un-
certainty that the target belongs to the road segment. This uncertainty is modelized
by an additive noise process.

24.2.3.3 Constrained state estimation

We define M i
s(k) =

˘

M i(k) ∩ es(k)} the event that the target is following a dynamic
according to the motion model M i and moves on the road segment s. So, the state
probability density function (i.e. pdf) given the measurements set Zk and the event
M i

s(k) is denoted :

p(x(k)|Zk, θk,l, M i
s(k)) (24.13)

The state xi(k) is a Gaussian random vector defined by its estimated mean x̂i(k|k)
and its estimated covariance Pi(k|k) (both obtained using a model based filter).
Under the road constraint, the estimated state x̂s,i(k|k) is therefore obtained by
the maximization of pdf (24.3) given the event M i

s. Finally, under the Gaussian
assumption of the Kalman filter, the analytic expression of the constrained estimate
state associate with the motion model M i is obtained by calculating the Lagrangian
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of (24.3) under the constraint (24.4). The expressions of the constrained estimated
state and its covariance are given in [13]:

x̂i,s(k|k) = x̂i(k|k) −Pi(k|k) · D̃ · (D̃Pi(k|k)D̃′)−1 · (D̃x̂i(k|k) − L) (24.14)

Pi,s(k|k) = (Id −W(k)) ·Pi(k|k) · (Id−W(k))′ (24.15)

where the matrix Id is the identity matrix and W(k) is defined by:

W(k) = Pi(k|k) · D̃′ · (D̃ ·Pi(k|k) · D̃′) · D̃ (24.16)

Since the road network is composed of several road segments and a ground target
has several motion models, we consider an IMM (Interacting Multiple Model) with a
variable structure [1] to adapt the constraint motion models set to the road network
configuration. This VS-IMMC is presented in the section 24.4.

24.3 Measurement model

24.3.1 GMTI model

24.3.1.1 MTI report model

According to the NATO GMTI formats, the MTI reports are expressed in WGS84
coordinates system [11]. All MTI reports are converted for each tracking station into
the TCF. A (noise-free) MTI measurement vector zmti(k) at the current time k is
given in the TCF by:

zmti(k) = [x(k) y(k) ρ̇(k)]′ (24.17)

where (x(k), y(k)) are the x and y MTI coordinates in the local frame (0, X, Y ) and
ρ̇m is the associated range-rate expressed in the TCF as:

ρ̇(k) =
(x(k)− xc(k)) · ẋ(k) + (y(k)− yc(k)) · ẏ(k)

p

(x(k)− xc(k))2 + (y(k)− yc(k))2
(24.18)

where (xc(k), yc(k)) is the sensor location at the current time in the TCF. The range
radial velocity is correlated to the MTI location components, so the use of an extended
Kalman filter (EKF) is not adapted. In literature, there exist several techniques to
uncorrelate the range-rate from the location components like for example, the SEKF
from Wang et al. [21] based on Cholesky’s decomposition. Nevertheless, we prefer to
use the AEKF (Alternative Extended Kalman Filter) presented by Bizup and Brown
[4]. This last one is very simple to compute because the authors propose only to use
an alternative linearization of the EKF (Extended Kalman Filter). Moreover, AEKF
working in the sensor referential/frame remains invariant by translation. Then, the
measurement equation is given according to the AEKF, by:

zmti(k) = Hmti(k) · x(k) + νmti(k) (24.19)
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where νmti(k) is a zero-mean white Gaussian noise vector and H(k) is given by:

Hmti(k) =

2

4

1 0 0 0
0 0 1 0

0 ∂ρ̇(k)
∂ẋ

0 ∂ρ̇(k)
∂ẏ

3

5 (24.20)

The explicit expression of (24.20) is given in [4].

24.3.1.2 MTI Classification segment

An issue to improve the multiple target tracking algorithm is to combine the kinematic
data association with the attribute data association. In the STANAG 4607 [11], each
MTI report is associated to the location and velocity information (described in the
previous part) in addition to the attribute information with its probability that it is
correct. We denote CMTI = {c0, c1, . . . , cu}, the frame of discernement of our target
classification problem. CMTI is assumed to be constant over time (i.e. target ID
does not change with time) and consists of a finite set of u exhaustive and exclusive
elements representing the possible states of the world for target classification. In the
STANAG 4607 the set CMTI is defined by :

CMTI =
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(24.21)

In addition to the classification or attribute information, the STANAG allows
to use the probability P{c(k)}, (∀c(k) ∈ CMTI), but it does not specify the way
these probabilities are obtained because P{c(k)} are actually totally dependent on
the algorithm chosen for target classification. In this chapter, we do not focus on the
classification algorithm itself, but rather on how to improve multiple ground targets
tracking with attribute information and target classification. Hence, we consider the
probabilities P{c(k)} as input parameters of our tracking system characterizing the
global performances of the classifier. In other words, P{c(k)}, (∀c(k) ∈ CMTI), repre-
sent the diagonal terms of the confusion matrix CMTI of the classification algorithm
assumed to be used. The modified/extended measurement z


mti(k) including both
kinematic part and (classification) attribute part is defined as:

z

mti(k) = {zmti(k), c(k), P{c(k)}} (24.22)
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24.3.2 IMINT model

For the imagery intelligence (IMINT), we consider two sensor types : a video EO/IR
sensor carried by a Unmanned Aerial Vehicle (UAV) and a EO sensor fixed on a
Unattended Ground Sensor (UGS).

24.3.2.1 EO/IR report model

We assume that the video information given by both sensor types are processed by
their own ground stations and that the system provides the video reports of target
detections with their classification attributes. Moreover, a human operator selects
targets on a movie frame and is able to choose its attribute with a HMI (Human
Machine Interface). In addition, the operator is able with the UAV to select several
targets on a frame. On the contrary, the operator selects only one target with the
frames given by the UGS. There is no false alarm and a target cannot be detected
by the operator (due to terrain mask for example). The video report on the movie
frame is converted in the TCF. The measurement equation is given by:

zvideo(k) = Hvideo(k) · x(k) + wvideo(k) (24.23)

where Hvideo is the observation matrix of the video sensor

Hvideo =

»

1 0 0 0
0 0 1 0

–

(24.24)

The white noise Gaussian process wvideo(k) is centered and has a known covariance
Rvideo(k) given by the ground station.

24.3.2.2 EO/IR classification segment

Each video report is associated to the attribute information c(k) with its probability
P{c(k)} that it is correct. We denote Cvideo the frame of discernment for an EO/IR
source. As CMTI , Cvideo is assumed to be constant over the time and consists of a
finite set of exhaustive and exclusive elements representing the possible states of the
target classification. In this chapter, we consider only eight elements in Cvideo as
follows:

Cvideo =

8
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(24.25)

Let z

video(k) be the extended video measurements including both kinematic part

and attribute part expressed by the following formula among m(k) measurements
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(∀c(k) ∈ Cvideo):

z

video(k) � {zvideo(k), c(k), P{c(k)}} (24.26)

24.3.3 Ontologic model

In our work, the symbology APP-6A [18] is used to describe the links between the
different classification sets (24.21) and (24.25). The figure 24.1 represents a short part
of the APP-6 A used in this chapter. Each element of both sets can be placed in 24.1.
For example, the wheeled vehicle of the set CMTI is placed at the level 1.X.3.1.1.2.2
and the military armoured truck of the set video is placed at the level 1.X.3.1.1.2.1.
Finally, all attribute elements are committed to a level in the APP-6A.
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Figure 24.1: APP-6A (light version).

24.4 VS-IMM with road constraints (VS-IMMC)

24.4.1 Track definitions and notations

Let’s denote T (k) the set of all tracks present at the current time. In the following
of the article, the event θk,l is associated to the lth sequential measurements Zk,l

and represents the set of measurements generated by the target. In addition, it
exists a subsequence n and a measurement j (∀j ∈ {1, . . . , mk}) in the manner that
Zk,l =

˘

Zk−1,n, ..., zj(k)} is the measurements sequence associates to the track Tk,l.
We recall that a track is an estimated states sequence expressed by the following
expression: ∀l ∈ {1, · · · , |T (k)|}, ∃!s ∈ {1, · · · , |T (k − 1)|}, such that

Tk,l = {(x̂l(k|k), Pl(k|k)), Tk−1,s} (24.27)
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A track family τn(k) at the current time k represents a data collection of tracks
Tk,l (∃l ∈ {1, · · · , |T (k)|}) generated by the same measurement zj(k0) at time tk0 .
A track family must be associated to only one target and represents the differents
association hypotheses. ∀i ∈ {1, · · · , mk}, one has

τn(k) = {Tk,l,Zk,l = {zj(k0), · · · , zi(k)} (24.28)

24.4.2 IMM with only one road segment constraint

The IMM is an algorithm for combining states hypotheses from multiple filter models
to get a better state estimate when the target is maneuvering. IMM is near optimal
with a reasonable complexity. In section 24.2.3, a constrained motion model i to
segment s, noted M i

s(k), is defined. Here we extend the segment constraint to the
different dynamic models (among a set of r + 1 motion models) that a target can
follow. The model indexed by r = 0 is the stop model. The transition between the
models is a Markovian process. It is evident that when the target moves from one
segment to the next, the set of dynamic models changes. In a conventionnal IMM
estimator [1], the likelihood function of a model i is given, for a track Tk,l, associated
with the j-th measurement, j ∈ {0, 1, . . . , mk} by:

Λl
i(k) = p{zj(k)|M i

s(k),Zk−1,n}, i = 0, 1, . . . , r (24.29)

where Zk−1,n is the subsequence of measurements associated with the track Tk,l.

Using the IMM estimator with a stop motion model, we get the likelihood function
of the moving target mode for i = 1, . . . , r and for j ∈ {0, 1, . . . , mk} by:

Λl
i(k) = PD · p{zj(k)|M i

s(k),Zk−1,n} · (1− δmj ,0) + (1− PD) · δmj ,0 (24.30)

while the likelihood of the stopped target mode (i.e. r = 0) is:

Λl
0(k) = p{zj(k)|M i

0(k),Zk−1,n} = δmj ,0 (24.31)

where δmj ,0 is the Kronecker function defined by δmj ,0 = 1 if mj = 0 and δmj ,0 = 0
whenever mj �= 0.

The combined/global likelihood function Λ(k) of a track including a stop-model
is then given by:

Λl(k) =
r
X

i=0

Λl
i(k) · μi(k|k − 1) (24.32)

where μi(k|k − 1) is the predicted model probabilities [2].

The steps of the IMM under road segment s constraint are the same as for the
classical IMM :
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1. Step 1. Under the assumption of several possible models for segment s as
defined previously, the mixing probabilities are given for i and j in {0, 1, . . . , r}
by:

μi|j(k − 1|k − 1) =
pij · μi(k − 1)

c̄j
(24.33)

where c̄j is a normalizing factor. The probability of model switch depends
on the Markov chain according to the transition probability pij . It is impor-
tant to note that the transition probability does not depend on the constraint s.

2. Step 2. The mixing probabilities above are used to weight the initial state
estimates in order to present to the model filters the mixed estimates. The
mixed estimate of the target state under the road segment s constraint is defined
for i = 0, 1, . . . , r by:

x̂0,l
i,s(k − 1|k − 1) =

r
X

j=0

x̂l
j,s(k − 1|k − 1) · μi|j(k − 1|k − 1) (24.34)

The covariance corresponding to the estimation error is:

P0,l
i,s(k − 1|k − 1) =

r
X

j=0

μi|j(k − 1|k − 1) · [P0,l
j,s(k − 1|k − 1)+

(x̂j,s(k − 1|k − 1) − x̂0,l
i,s(k − 1|k − 1))·

(x̂j,s(k − 1|k − 1) − x̂0,l
i,s(k − 1|k − 1))

′
] (24.35)

Despite of the constraint on local estimated states, the mixed estimated states
do not belong to the road section s. Nevertheless, the state transition (24.5)
matrix projects the mixed estimate on the road section.

3. Step 3. The motion models are constrained to the associated road segment.
Each constrained mixed estimate (24.34) is predicted and associated to one
new segment or several (in crossroad case) new ones, therefore the dynamics
are modified according to the new segments. The mixed estimates (24.34) and
(24.35) are used as inputs to the filter matched to M i

s, which uses the MTI
report associated to the track Tk,l to yield x̂l

i,s(k|k), Pl
i,s(k|k) and the corre-

sponding likelihood (24.32).

4. Step 4. The model probability update is done for i = 0, 1, . . . , r as follows:

μi(k) =
1

c
· Λl

i(k) · c̄i (24.36)

where c is a normalization coefficient and c̄i is given in (24.33).
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5. Step 5. The combined state estimate, called global state estimate, is the sum
of each constrained local state estimate weighted by the model probability, i.e.

x̂l(k|k) =
r
X

i=0

μi(k)x̂l
i,s(k|k) (24.37)

Here, one has presented briefly the principle of the IMM algorithm constrained
to only one road segment s. However, a road section is composed with several road
segments. When the target is making a transition from one segment to another, the
problem is to choose the segments with the corresponding motion models that can
better fit the target dynamics. The choice of a segment implies the construction of
the directional process noise. That is why the IMM motions model set varies with the
road network configuration and VS-IMM offers a better solution for ground target
tracking on road networks as explained in next sections.

24.4.3 Variation of the set of constrained motion models

In the previous subsection, we have proposed an IMM with a given/fixed motion
model set. We have noted that the predicted state could give a local estimate on
another road segment than the segment associated to the motion model (a road turn
for example). The change to another road segment causes the generation of a new
constrained motion models. In literature, several approaches are proposed to deal
with the constrained motion models [9, 15]. In [13], we have proposed an approach
to activate the most probable road segments sets. Based on the work of Li [1], we
consider r + 1 oriented graphs which depend on the road network topology. For each
graph i, i = 0, 1, . . . , r, each node is a constrained motion model M i

s. The nodes are
connected to each other according to the road network configuration. For instance,
if we consider a road section composed by three road segments s1, s2, s3, the ith

associated graph is composed by three nodes (M i
s1

, M i
s2

and M i
s3

) where the nodes
M i

s1
and M i

s3
are connected with the node M i

s2
. In [13], the activation of the motion

model at the current time depends on the local predicted states x̂l
i,s(k|k − 1) loca-

tion of the track Tk,l. Consequently, we obtain a finite set of r + 1 motion models
constrained to a road section Rop (we recall that a road section is a set of connected
road segments).

However, an ambiguity arises when there are several road sections (i.e. when the
target approaches a crossroad). In fact, the number of constrained motion models
grows up with the number of road sections present in the crossroad/junction. If we
consider the r + 1 graphs, the activation of the constrained motion model is done ac-
cording to the predicted states location. Consequently the number of motion models
increases with the number of road sections. We obtain several constrained motion
model sets. Each set is composed of r+1 models constrained to road segments which
belong to the road section. In order to select the most probable motion model set
(i.e. in order to know on which road section the target is moving on), a sequential
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probability ratio test named RSS-SPRT is proposed in [13] in order to select the road
section taken by the target.

We consider that a hypothesis corresponds to one road section involved in the
crossroad. At the current time k, if there are Nk road sections Rop at the intersection,
we consider all Nk hypotheses. So for each hypothesis h, associated to a given road
section, there is one IMM with an appropriate constrained motion models set. The
IMM outputs are sequentially evaluated. However, one measurement iteration is not
sufficient to choose the right hypothesis. The probability μh(k) of h is derived based
on the likelihood function and the transition matrix between the road segments.
The combined likelihood (24.32) of a constrained models set and for a hypothesis h,
h = 1, . . . , Nk is denoted Λh. Mathematically, μh(k) is defined according to the road
section probability [13] for h = 1, . . . , Nk by:

μh(k) =
1

c
· Λh(k) ·

X

h̄∈{1,...,Nk−1}
Ωh̄,h(k − 1) · μh̄(k − 1) (24.38)

The matrix component Ωh̄,h represents the probability transition between the roads
associated respectively to the hypotheses h and h̄. In fact, if the road is a highway
and the road section is also a highway, the transition probability is high. On the
contrary, if the road is a highway and the road section is a byway the transistion
probability is small. The probability μh̄(k − 1) is the probability of hypothesis h̄ at
the time k − 1 (i.e. the probability of the previous road section where the target
was moving on). Wald’s sequential probability ratio test [20] (SPRT) for choosing
the adequate road segment and activate the correct constrained motion model set at
current time k is the following:

• Accept hypothesis h if for all h′ �= h, h′ ∈ {1, . . . , Nk}:

μh(k)

μh′(k)
≥ B (24.39)

• Reject hypothesis h if for all h′ �= h, h′ ∈ {1, . . . , Nk}:

μh(k)

μh′(k)
≤ A (24.40)

• Go to the next cycle and wait for one more measurement and continue the test
until one hypothesis is accepted by the SPRT. The thresholds A and B are
given in [5, 20]. For a faster test see the MSP-SPRT [1] based on probabilities
classification.

24.4.4 VS-IMMC within the SB-MHT

We briefly describe the main steps of the VS-IMMC SB-MHT. More details can be
found in chapter 16 of [5].
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Figure 24.2: Track-oriented MHT logic flowchart with GIS.

1. The first functional block of the SB-MHT shown in figure 24.2 is the track con-
firmation and the track maintenance. When the new set Z(k) of measurements
is received, a standard gating procedure [2] is applied in order to determine
the viable MTI reports to track pairings. The existing tracks are updated with
VS-IMMC and extrapolated confirmed tracks are formed. When the track is
not updated with MTI reports, the stop motion model is activated.

2. In order to palliate the association problem, we need a probabilistic expression
for the evaluation of the track formation hypotheses that includes all aspects
of the data association problem. It is convenient to use the log-likelihood ratio
(LLR) or track score of a track Tk,l which can be expressed at current time k
in the following recursive form [5]:

Ll(k) = Ls(k − 1) + ΔLl(k) (24.41)

with

Δ(k) = ln(
Λl(k)

λfa
) (24.42)

and

L(0) = ln(
λfa

λfa + λnt
) (24.43)
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where λfa and λnt are respectively the false alarm rate and the new target rate
per unit of surveillance volume. After the track score calculation of the track
Tk,l, the SPRT is used to set up the track status either as deleted, tentative
or confirmed track. The tracks that fail the test are deleted and the surviving
tracks are kept for the next stage.

3. The process of clustering is the collection of all tracks that are linked by a
common measurement. The clustering technique is used to limit the number
of hypotheses to generate and therefore to reduce the complexity. The result
of clustering is a list of tracks that are interacting. The next step is to form
hypotheses of compatible tracks.

4. For each cluster, in the fourth level, multiple coherent hypotheses are formed
to represent the different compatible tracks scenarios. Each hypothesis is eval-
uated according to the track score function associated to the differents tracks.
Then, a technique is required in order to find the hypotheses set that repre-
sents the most likely tracks collection. The unlikely hypotheses and associated
tracks are deleted by a pruning process and only the NHypo best hypotheses
are conserved.

5. For each track, the a posteriori probability is computed and a well known N-
Scan pruning approach [5] is used to select and delete the confirmed tracks.
With this approach the most likely track is selected to reduce the number of
tracks. But the N-Scan technique combined with the constraint implies that
other tracks hypotheses (i.e. constrained on other road segments) are arbitrary
deleted. That is why, we must modify the N-Scan pruning approach in order
to select the Nk best tracks on each Nk road sections.

6. Wald’s SPRT proposed in section 24.4.3 is used to delete the unlikely hypothe-
ses among the Nk hypotheses. The tracks are then updated and projected
on the road network. In order to reduce the number of track to keep in the
memory of the computer, a merging technique (selection of the most probable
tracks which have common measurements) is also implemented.

24.4.5 OOSM algorithm

The data fusion that operates in a centralized architecture suffers of delayed measure-
ment due to communication data links, time algorithms execution, data quantity,. . . In
order to avoid reordering and reprocessing an entire sequence of measurements for
real-time application, the delayed measurements are processed as out-of-sequence
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measurements (OOSM). The algorithm used in this work is described in [3]. In ad-
dition, according to the road network constraint, the state retrodiction step is done
on the road.

24.5 Target type tracking

In [6], Blasch and Kahler fused identification attribute given by EO/IR sensors with
position measurement. The fusion was used in the validation gate process to select
only the measurement according to the usual kinematic criterion and the belief on
the identification attribute. Our approach is different since one uses the belief on
the identification attribute to revise the LLR (24.42) with the posterior pignistic
probability on the target type. We recall briefly the Target Type Tracking (TTT)
principle and explain how to improve VS-IMMC SB-MHT with target ID information.
TTT is based on the sequential combination (fusion) of the predicted belief of the
type of the track with the current ”belief measurement” obtained from the target
classifier decision. Results depends on the quality of the classifier characterized by its
confusion matrix (assumed to be known at least partially as specified by STANAG).
The adopted combination rule is the so-called Proportional Conflict Redistribution
rule no 5 (PCR5) developed in the DSmT (Dezert Smarandache Theory) framework
since it deals efficiently with (potentially high) conflicting information. A detailed
presentation with examples can be found in [7, 16]. This choice is motivated in this
typical application because in dense traffic scenarios, the VS-IMMC SB-MHT only
based on kinematic information can be deficient during maneuvers and crossroads.
Let’s recall first what the PCR5 fusion rule is and then briefly the principle of the
(single-sensor based) Target Type Tracker.

24.5.1 PCR5 combination rule

Let CTot = {θ1, . . . , θn} be a discrete finite set of n exhaustive elements and two dis-
tinct bodies of evidence providing basic belief assignments (bba’s) m1(.) and m2(.)
defined on the power set3 of CTot. The idea behind the Proportional Conflict Re-
distribution (PCR) rules [16] is to transfer (total or partial) conflicting masses of
belief to non-empty sets involved in the conflicts proportionally with respect to the
masses assigned to them by sources. The way the conflicting mass is redistributed
yields actually several versions of PCR rules, but PCR5 (i.e. PCR rule # 5) does the
most exact redistribution of conflicting mass to non-empty sets following the logic
of the conjunctive rule and is well adapted for a sequential fusion. It does a better
redistribution of the conflicting mass than other rules since it goes backwards on the
tracks of the conjunctive rule and redistributes the conflicting mass only to the sets
involved in the conflict and proportionally to their masses put in the conflict. The
PCR5 formula for s ≥ 2 sources is given in [16]. For the combination of only two

3In our MTT applications, we will assume Shafer’s model for the frame CTot of target
ID which means that elements of Θ are assumed truly exclusive.
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sources (useful for sequential fusion in our application) when working with Shafer’s
model, it is given by mPCR5(∅) = 0 and ∀X ∈ 2CT ot \ {∅}

mPCR5(X) = m12(X)+

X

Y ∈2CT ot\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (24.44)

where m12(X) corresponds to the conjunctive consensus on X between the two sources
(i.e. our a prior bba on target ID available at time k − 1 and our current observed
bba on target ID at time k) and where all denominators are different from zero. If a
denominator is zero, that fraction is discarded.

24.5.2 Principle of the target type tracker

To estimate the true target type, denoted type(k), at time k from the sequence of
declarations c(1), c(2), . . . c(k) done by the unreliable classifier4 up to time k. To
build an estimator dtype(k) of type(k), we use the general principle of the Target
Type Tracker (TTT) developed in [7] which consists in the following steps:

• a) Initialization step (i.e. k = 0). Select the target type frame CTot =
{θ1, . . . , θn} and set the prior bba m−(.) as vacuous belief assignment, i.e
m−(θ1 ∪ . . . ∪ θn) = 1 since one has no information about the first observed
target type.

• b) Generation of the current bba mobs(.) from the current classifier declaration
c(k) based on attribute measurement. At this step, one takes mobs(c(k)) =
P{c(k)} = Cc(k)c(k) and all the unassigned mass 1 − mobs(c(k)) is then com-
mitted to total ignorance θ1 ∪ . . . ∪ θn. Cc(k)c(k) is the element of the known
confusion matrix C of the classifier indexed by c(k)c(k).

• c) Combination of current bba mobs(.) with prior bba m−(.) to get the estima-
tion of the current bba m(.). Symbolically we write the generic fusion operator
as ⊕, so that m(.) = [mobs ⊕ m−](.) = [m− ⊕ mobs](.). The combination ⊕ is
done according to the PCR5 rule, i.e. m(.) = mPCR5(.).

• d) Estimation of True Target Type is obtained from m(.) by taking the singleton
of CTot, i.e. a Target Type, having the maximum of belief (or eventually the
maximum Pignistic Probability5).

dtype(k) = argmax
A∈CTot

(BetP{A}) (24.45)

4Here we consider only one source of information/classifier, say based either on the EO/IR
sensor, or on a video sensor by example. The multi-source case is discussed in section 24.5.3.

5The maximum of the pignistic probability has been used in this preliminary work, but
the maximum of DSmP (.) presented in the Chapter [?] in this volume will be tested in
further developments.
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The Pignistic Probability is used to estimate the probability to obtain the type
θi ∈ CTot given the previous target type estimate dtype(k − 1).

BetP{θi} = P{dtype(k) = θi|dtype(k − 1)} (24.46)

• e) set m−(.) = m(.); do k = k + 1 and go back to step b).

Naturally, in order to revise the LLR (24.42) in our MTT systems for taking into
account the estimation of belief of target ID coming from the Target Type Trackers,
we transform the resulting bba m(.) = [m− ⊕ mobs](.) available at each time k into
a probability measure. In this work, we use the classical pignistic transformation
defined by [17]:

BetP{A} =
X

X∈2Θ

|X ∩A|
|X| m(X) (24.47)

24.5.3 Working with multiple sensors

Since in our application, we work with different sensors (i.e. MTI and Video EO/IR
sensors), one has to deal with the frames of discernment CMTI and Cvideo defined
in section 24.4. Therefore we need to adapt the (single-sensor based) TTT to the
multi-sensor case. We first adapt the frame CMTI to Cvideo and then, we extend the
principle of TTT to combine multiple bba’s (typically here mMTI

obs (.) and mV ideo
obs (.))

with prior target ID bba m−(.) to get finally the updated global bba m(.) at each
time k. The proposed approach can be theoretically extended to any number of
sensors. When no information is available from a given sensor, we take as related
bba the vacuous mass of belief which represents the total ignorant source because
this doesn’t change the result of the fusion rule [16] (which is a good property to
satisfy). For mapping CMTI to Cvideo, we use a (human refinement) process such
that each element of CMTI can be associated at least to one element of Cvideo. In
this work, the delay on the type information provided by the video sensor is not
taking into account to update the global bba m(.). All type information (delayed or
not provided by MTI and video sensors) are considered as bba mobs(.) available for
the current update. The explicit introduction of delay of the out of sequence video
information is under investigations.

24.5.4 Data attributes in the VS IMMC

To improve the target tracking process, the introduction of the target type proba-
bility is done in the likelihood calculation. For this, we consider the measurement
z


j (k)(∀j ∈ {1, . . . , mk}) described in (24.22) and (24.26). With the assumption that
the kinematic and classification observations are independant, it is easy to proove
that the new combined likelihood Λl

N associated with a track Tk,l is the product
of the kinematic likelihood (24.32) with the classification probability in the manner
that:

Λl
N (k) = Λl(k) · P{dtype(k)|dtype(k − 1)} (24.48)
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where the probability P{dtype(k)|dtype(k − 1)} is chosen as the pignistic probability
value on the declared target type dtype(k) derived from the updated mass of belief
m(.) according to our target type tracker.

24.6 Simulations and results

24.6.1 Scenario description

To evaluate the performances of the VS-IMMC SB-MHT with the attribute type
information, we consider 10 maneuvering (acceleration, deceleration, stop) targets on
a real road network (see figure 24.3). The 10 target types are given by (24.25).
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Figure 24.3: Targets trajectories.
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The target 1 is passing the military vehicles 2, 3, 4 and 7. Targets 2, 3, 4 and 7
start from the same starting point.The target 2 is passing the vehicles 3 and 7 in the
manner that it places in front of the convoy. The targets 5, 6, 9 and 10 are civilian
vehicles and are crossing the targets 1, 2, 3 and 7 at several junctions. The goal of
this simulation is to reduce the association complexity by taking into account the
road network topology and the attribute types given by heterogeneous sensors. In
this scenario, we consider one GMTI sensor located at (−50km,−60km) at 4000m
in elevation (figure 24.4) and one UAV located at (−100m,−100m) (figure 24.5) at
1200m in elevation and 5 UGS distributed on the ground (figure 24.6).
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Figure 24.4: GMTI sensor trajectory and cumulated MTI reports.
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Figure 24.5: UAV trajectory with video sensor ground coverage.
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Figure 24.6: UGS positions with field of view.
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The GMTI sensor tracks the 10 targets at every 10 seconds with 20 m, 0.0008 rad
and 1m · s−1 range, cross-range and range-rate measurements standard deviation
respectively. The detection probability PD is equal to 0.9 and the MDV (Minimal
Detectable Velocity) fixed at 1 m/s. The false alarms density is fixed (λfa = 10−8).
The confusion matrix described in part 24.5.2 is given by:

CMTI = diag([0.8 0.7 0.9]) (24.49)

This confusion matrix is only used to simulate the target type probability of the
GMTI sensor. The data obtained by UAV are given at 10 seconds with 10 m standard
deviation in X an Y direction from the TCF. The time delay of the video data is
constant and equal to 11 seconds. The detection probability PD is equal to 0.9. The
human operator only selects for each video report a type defined by (24.25). In our
simulations, the target type probability depends on the sensor resolution. For this,
we consider the volume Vvideo of the sensor area surveillance on the ground. The
diagonal terms of the confusion matrix Cvideo are equal to P{c(k)} where P{c(k)}
is defined by:

P{c(k)} =

8

>

<

>

:

0.90 if Vvideo ≤ 106m2

0.75 if 106m2 < Vvideo ≤ 108m2

0.50 if Vvideo > 108m2

(24.50)

For the UGS, the target detection is done if only the target is located under the
minimal range detection (MRD). The MRD is fixed for the 5 UGS at 1000 m and each
sensor gives delayed measurement every seconds. The time delay is also equal to 11
seconds. The UGS specificity is to give only one target detection during 4 seconds in
order to detect another target. We recall that there is no false alarm for this sensor.
Based on [6], the target type probability depends on α (i.e. the target orientation
towards the UGS). The more the target orientation is orthogonal to the sensor line
of sight, the more the target type probability increases. The diagonal terms of the
confusion matrix CUGS are equal to P{c(k)} where P{c(k)} is defined by:

P{c(k)} =

(

0.90 if 5π
6
≤ α ≤ π

6

0.50 otherwise
(24.51)

For each detected target, a uniform random number u ∼ U([0, 1]) is drawn. If
u is greater than the true target type probability of the confusion matrix, a wrong
target type is declared for the ID report and used with its associated target type
probability. The targets are scanned at different times by the sensors (figure 24.7).

24.6.2 Filter parameters

We consider three motion models M i, i = 0, 1, 2 which are respectively a stop model
M0 when the target is assumed to have a zero velocity, a constant velocity model M1

with a low uncertainty, and a constant velocity model M2 with a high uncertainty
(modeled by a strong noise). The parameters of the IMM are the following: for the
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Figure 24.7: Target’s sensor illumination.

motion model M1, standard deviations (along and orthogonal to the road segment)
are equals to 0.05 m · s−2), the constrained constant velocity model M2 has a high
standard deviation to adapt the dynamics to the target maneuver (the standard
deviation along and orthogonal to the road segment are respectively equal to 0.8
m · s−2 and 0.4 m · s−2) and the stop motion model M0 has a standard deviation
equals to zero. These constrained motion models are however adapted to follow the
road network topology. The transition matrix and the SB-MHT parameters are those
taken in [14].

24.6.3 Results

For each confirmed track given by the VS-IMMC SB-MHT, a test is used to associate
a track to the most probable target. The target tracking goal is to track as long as
possible the target with one track. To evaluate the track maintenance, we use the
track length ratio criterion, the averaged root mean square error (noted ARMSE)
for each target and the track purity and the type purity (only for the tracks ob-
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tained with PCR5) [14]. We obtain for each target the averaged track length ratio
(∀n ∈ {1, ..., 10}}):

Rn =

Nmc
X

k=1

ln
Nmc · Ln

(24.52)

where Nmc is the number of Monte-Carlo runs, ln is the mean track length associated
the target n and Ln is the length of the true target trajectory.

In addition to the track length ratio criterion, we calculte the ARMSE for each
target, the track purity and the type purity (only for the tracks obtained with PCR5).
The ARMSE is the root mean square error averaged on the time. The track purity is
the ratio between the sum of correct association number on the track length and the
type purity is the ratio between the sum of true type decision number on the track
length. These measures of performances are averaged on the number Monte-Carlo
runs. In this simulation we have used Nmc = 50 Monte-Carlo runs.
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Figure 24.8: Track length ratio.

On the figure 24.8, one sees that the track length ratio becomes better with the
PCR5 than without as expected for the target 6. When the targets 1 and 2 are
passing the targets 3, 4 and 7, an association ambiguity arises to associate the tracks
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with the correct measurements. This is due to the close formation between targets
with the GMTI sensor resolution and the road network configureation with junctions.
Sometimes tracks are lost with the VS IMMC SB-MHT without the PCR5. Then
new tracks for each targets are built. That is why, the track purity of the VS IMMC
SB-MHT without PCR5 (see Table 24.1) is smaller than the track purity with PCR5
(see Table 24.2). So, the track precision, given by the ARMSE criterion, is better
with the PCR5. For the target 6 results, this target is only scanned by the GMTI
sensor and its associated performances are equivalent for both algorithms. Then, if
there is no IMINT information and no interaction between targets, the performances
of the algorithm with PCR5 are the same as without PCR5.

Despite of the PCR5 improvement on the target tracking, the difference of perfor-
mances between the algorithms is not significant. If there is an interaction between
IMINT and GMTI information, we can see a gain on the track length ratio or track
purity of 10% with PCR5. This small difference is due to the good constrained state
estimation. The estimated target states have a good precision because the target
tracking is done by taking into account the road segments location and the good
performances of the OOSM approach. So, it implies a substantial improvement of
the target-to-track association. In addition, on Table 24.2, the type purity based
on PCR5 is derived from the maximum of BetP criterion. But BetP is computed
according the set Cvideo (24.25) and if the track receives only MTI reports the choice
on the target type is arbitrary for the tracked vehicles of CMTI (24.21). In fact,
a tracked vehicle can be 6 elements of (24.25). So the probability BetP on the 6
tracked vehicles of (24.25) is the same. The selection of the maximum of BetP has
no meaning because in such case the maximum becomes arbitrary. This explains the
bad track purity of targets 6 and 9.

Target ARMSE Track purity Type purity
1 14.82 0.70 none
2 16.62 0.62 none
3 15.61 0.61 none
4 22.54 0.77 none
5 16.25 0.85 none
6 18.68 0.64 none
7 14.45 0.72 none
8 17.51 0.84 none
9 19.23 0.85 none
10 17.40 0.75 none

Table 24.1: Tracking results (VSIMMC without PCR5).
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Target ARMSE Track purity Type purity
1 14.37 0.78 0.64
2 15.77 0.66 0.62
3 15.60 0.61 0.59
4 21.10 0.81 0.81
5 15.88 0.94 0.55
6 18.68 0.64 0.02
7 14.22 0.76 0.76
8 17.38 0.87 0.87
9 19.20 0.85 0.05
10 17.17 0.83 0.46

Table 24.2: Tracking results (VSIMMC and PCR5).

24.7 Conclusion

In this chapter, we have presented a new approach to improve VS IMMC SB-MHT
by introducing the data fusion with several heterogeneous sensors. Starting from a
centralized architecture, the MTI and IMINT reports are fused by taking into account
the road network information and the OOSM algorithm for delayed measurements.
The VS IMMC SB-MHT is enlarged by introducing in the data association process
the type information defined in the STANAG 4607 and an IMINT attribute set. The
estimation of the Target ID probability is done from the updated/current attribute
mass of belief using the Proportional Conflict Redistribution rule no. 5 developed in
DSmT framework and according to the Target Type Tracker (TTT) recently devel-
oped by the authors. The Target ID probability once obtained is then introduced in
the track score computation in order to improve the likelihoods of each data associa-
tion hypothesis of the SB-MHT. Our preliminary results show an improvement of the
performances of the VS-IMMC SB-MHT when the type information is processed by
our PCR5-based Target Type Tracker. In this work, we did not distinguish undelayed
from delayed sensor reports in the TTT update. This problem is under investigations
and offers new perspectives to find a solution for dealing efficiently with the time
delay of the identification data attributes and to improve the performances. One
simple solution would be to use a forgetting factor of the delayed type information
but other solutions seem also possible to explore and need to be evaluated. Some
works need also to be done to use the operational ontologic APP-6A for the heteroge-
neous type information. Actually, the frame of the IMINT type information is bigger
than the one used in this chapter and the IMINT type information can be given at
different granularity levels. As a third perspective, we envisage to use both the type
and contextual information in order to recognize the tracks losts in the terrain masks
which represent the possible target occultations due to the terrain topography in real
environments.
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Abstract: This chapter presents comparative results of a model for
multiple cameras fusion, which is based on Dezert-Smarandache the-
ory of evidence. Our architecture works at the decision level to track
objects on a ground plane using predefined zones, producing useful
information for surveillance tasks such as behavior recognition. De-
cisions from cameras are generated by applying a perspective-based
basic belief assignment function, which represent uncertainty derived
from cameras perspective while tracking objects on ground plane.
Results obtained from applying our tracking model to computer-
generated-imagery (CGI) animated simulations and real sequences
are compared to the ones obtained by Bayesian fusion, and show
how DSm theory of evidence overcomes Bayesian fusion for this ap-
plication.

This chapter has been published as a paper in the Proceedings of Fusion 2008 Int. Conf.,
Cologne, Germany in July 2008.
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25.1 Introduction

Computer vision uses information from more than one camera to develop several
tasks, such as 3D reconstruction or complementing fields of view to increase surveil-
lance areas, among others. Using more than one camera has some advantages, even
if information is not fused. A simple instance might be having a multi-camera sys-
tem where it is possible to cover wider area, and at the same time is more robust to
failures where cameras overlap.

There exists a tendency, in computer vision, to work on high level tasks [5, 9,
10, 13], where moving objects position is not useful when it is given in image plane
coordinates, instead of it, it is preferred when position is described according to
predefined regions on ground plane. This sort of information can be used for behavior
recognition where people behavior is described by mean of predefined zones of interest
on scene.

In [13] a tracking system using predefined regions is used to analyze behavioral
patterns. In the same work, only one camera is used and no considerations are taken
on distortions due to camera perspective. In [10] a Hierarchical Hidden Markov Model
is used to identify activities, based on tracking people on a cell divided room. Two
static cameras cover scene, but information coming from them is used separately,
their purpose is to focus on different zones, but not to refine information.

As cameras work by transforming information from 3D space into 2D space, there
is always uncertainty involved. In order to estimate object position related to ground
plane, it is necessary to find out its position in image plane and then estimate that
position on ground plane. For surveillance tasks where objects position has to be
given according to ground plane, it is possible to apply projective transform in order
to estimate objects position on ground plane, however, this process might carry errors
from perspective.

In [4] we presented a decision level architecture to fuse information from cameras,
reducing uncertainty derived from perspective on cameras. The stage of the process-
ing at which data integration takes place allows an interpretation of information which
describes better the position of objects being observed and at the same time is useful
for high level surveillance systems. In our proposal, individual decisions are taken by
means of an axis-projection-based generalized basic belief assignment (gbba) function
and finally fused using Dezert-Smarandache (DSm) hybrid rule. In this work, we
present a theoretical and practical comparison between DSm and a Bayesian module
applied to computer-generated-imagery (CGI) and real multicamera sequences.

This chapter is organized as follows: in section 25.2, Dezert-Smarandache theory is
briefly described as mathematical framework. In section , our architecture is described
altogether with the gbba function we used. A comparison between Bayesian and
DSm hybrid combination rule is presented in section 25.4. Finally in section 25.5
conclusions are presented.
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25.2 DSm hybrid model

The DSmT defines two mathematical models used to represent and combine infor-
mation [3]: free and hybrid.

The Free DSm model, denoted as Mf (Θ), defines Θ = {θ1, . . . , θn} as a set
or frame of n non exclusive elements and an hyper-power set DΘ as the set of all
composite possibilities obtained from Θ in the following way:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪B) ∈ DΘ, (A ∩B) ∈ DΘ

3. DΘ is formed only by elements obtained by rules 1 or 2

Function m(A) is called general basic belief assignment or mass for A, defined as
m() : DΘ → [0, 1], and is associated to a source of evidence.
A DSm hybrid model introduces some integrity constraints on elements A ∈ DΘ when
there are known facts related to those elements in the problem under consideration.
In our work, exclusivity constraints are used to represent those regions on ground
plane which are not adjacent. The restricted elements are forced to be empty in
the hybrid model M(Θ) �= Mf (Θ) and the mass is transferred to the non restricted
elements. When DSm hybrid model is used, combination rule for two or more sources
is defined for A ∈ DΘ with these functions:

mM(Θ)(A) = φ(A) [S1(A) + S2(A) + S3(A)] (25.1)

S1(A) =
X

X1,X2,...,Xk∈DΘ

X1∩X2∩...∩Xk=A

k
Y

i=1

mi(Xi) (25.2)

S2(A) =
X

X1,X2,...,Xk∈∅

[U=A]∨[[U∈∅]∧[A=It]]

k
Y

i=1

mi(Xi) (25.3)

S3(A) =
X

X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xk=A
X1∩X2∩...∩Xk∈emptyset

k
Y

i=1

mi(Xi) (25.4)

where φ(A) is called the characteristic emptiness function of a set A (φ(A) = 1 if
A �∈ ∅ and φ(A) = 0 otherwise). ∅ = {∅M, ∅} where ∅M is the set of of all elements
of DΘ forced to be empty. U is defined as U = u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk), where
u(X) is the union of all singletons θi ∈ X, while It = θ1 ∪ θ2 ∪ . . . ∪ θn.
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25.3 Multiple cameras fusion

In order to have a common space reference system, spatial alignment is required.
Homography is used to relate information from cameras. It is possible to recover
homography from a set of static points on ground plane [12] or dynamic information
in scene [2]. Correspondence between objects detected in cameras might be achieved
by features matching techniques [8] or geometric ones [1, 7].

Once the homography matrix has been calculated, it is possible to relate infor-
mation from one camera to others. While object is being tracked by a camera, its
vertical axis is obtained and its length is estimated as λ = lcos(α), where l is the
maximum length for axis when projected on ground plane and α is the angle of the
camera respect to the ground plane.

Figure 25.1: Example of vertical axis obtained by two cameras, projected on
ground plane.

Let Γ = {γ1, . . . , γn} denote ground plane partition, where each γx is a predefined
region on ground plane, which might be an special interest zone, such as corridor or
parking area.

For each moving object i, it is created a frame Θi = {θ1, . . . , θk}. Each element
θx represents a zone γy where the object i might be located, according to information
from cameras. Θi is built dynamically considering only the zones for which there
exist some belief provided by at least one camera.

Multiple cameras fusion, in the way it is used in this work, is a tool for high
level surveillance systems. Behavior recognition models might use information in the
form of beliefs, such as fuzzy logic classifiers or probabilistic models do. Therefore,
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it is allowed for the camera to assign mass to elements in DΘ in the form of θi ∩ θj ,
because this might represent an object in the border of two regions on ground plane.
For couples of hypotheses which represent non-adjacent regions of the ground plane,
it does not make sense consider such belief assignments, therefore elements in DΘ

representing non-adjacent regions of ground plane, are included to ∅M.
Each camera behaves as an expert, assigning mass to each one of the uncon-

strained elements of DΘ. The assignment function is simple, and has as its main
purpose to consider perspective influence on uncertainty. It is achieved by means of
measuring intersection area between γx and object’s vertical axis projected on ground
plane, centered on the object’s feet. The length of the axis projected on ground plane
is determined by the angle of the camera respect to the ground plane, taking object’s
ground point as the vertex to measure the angle. So if the camera were just above
the object, its axis projection would be just one pixel long, meaning no uncertainty
at all. We consider three cases to cover mass assignation showed in figure 25.2.

When projected axis is within a region of the ground plane, camera assigns full
belief to that hypothesis. When axis crosses two regions it is possible to assign to
composed hypotheses of the kind θi ∪ θj and θi ∩ θj , depending on the angle of the
camera.

Let ωc denotes the vertical axis obtained by camera c, projected on ground plane,
and |ωc| its area. Following functions are used as gbba model.

υ = |ωc|cos(αc) (25.5)

mc(θi) =
|ωc ∩ γx|
υ + |ωc|

(25.6)

mc(θi ∪ θj) =
|ωc|cos2(αc)

υ + |ωc|
(25.7)

mc(θi ∩ θj) =
υ(1− cos(αc))

υ + |ωc|
(25.8)

When axis intersects more than two regions on ground plane, functions become:

υ = |ωc|cos(αc) (25.9)

mc(θi) =
|ωc ∩ γx|
υ + |ωc|

(25.10)

mc(θi ∪ θj ∪ . . . ∪ θk) =
υ

υ + |ωc|
(25.11)

υ+ |ωc| is used as a normalizer in order to satisfy mc(.) → [0, 1] and Each camera can
provide belief to elements θx∩θy ∈ DΘ, by considering couples γi and γj (represented
by θx and θy respectively) crossed by axis projection. Elements θx ∪ . . .∪ θx can have
an associated gbba value, which represents local or global ignorance. We also restrict
elements in θx ∩ . . . ∩ θy ∈ DΘ for which there is not a direct basic assignation made
by one of the cameras, thus they are included in ∅M, and calculations are simplified.
That is possible because of the hybrid DSm model definition. Decision fusion is used
to combine the outcomes from cameras, making a final decision. We apply hybrid
DSm rule of combination over DΘ in order to achieve a final decision.
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(a) Belief is assigned to θi

(b) Belief is assigned to θi, θj , θi ∪ θj and θi ∩ θj

(c) Belief is assigned to θi, . . . , θk and θi ∪ . . . ∪ θk

Figure 25.2: Cases considered for belief assignment.
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25.4 Results and discussion

To test the proposed architecture for fusion, we used computer-generated-imagery se-
quences (figure 25.3) and real sequences from the Performance Evaluation of Tracking
and Surveillance dataset [6].

(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 25.3: Example of CGI sequences.

In CGI sequences, three cameras were simulated. We considered a squared sce-
nario with a grid of sixteen regular predefined zones. 3D modeling was done using
Blender with Yafray as rendering machine. All generated images for sequence are in
a resolution of 800x600 pixels. Examples of images generated by rendering are shown
in figure 25.3, where division lines were outlined on ground plane to have a visual
reference of zones, but they are not required for any other task.

As real sequences, PETS repository was used (figure 25.4). In this data set, two
cameras information is provided, in a resolution of 768x576 pixels in JPEG format.
Our architecture and gbba function was applied to track people, cars and bicycles.

(a) Camera 1 (b) Camera 2 (c) Ground plane

Figure 25.4: Example of real sequences from PETS.
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As part of the results, it is interesting to show the differences between DSm
and a probabilistic model to fuse decisions. For this application, hypotheses have a
geometric meaning, and we found that this has to be taken in consideration during
fusion.

25.4.1 Probabilistic fusion module

For comparison purposes, a Bayesian classifier was developed for each of the regions
on ground plane, as showed in figure 25.5. A priori probability is assumed the same
for each of the regions, while conditional probability is taken from masses generated
by cameras, being normalized.

p(γi|S1, . . . , Sn) =
p(γi)p(S1, . . . , Sn|γi)

p(S1, . . . , Sn)

p(γi|S1, . . . , Sn) ∝ p(γi)p(S1|γi)p(S2|γi)p(S3|γi) . . .

= p(γi)

n
Y

i=1

p(Si|γi)

Figure 25.5: Bayesian classifiers as fusion module.

Ignorance from cameras means that a camera does not have a good point of
view to generate its information. If a probabilistic model is applied ignorance is
not considered and that might derive wrong results. Let’s consider the following
numerical example: suppose two cameras assign following beliefs:

m1(A) = 0.35 m1(B) = 0.6 m1(A ∪B) = 0.05
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m2(A) = 0.3 m2(B) = 0.1 m2(A ∪B) = 0.6

Probabilistic model generates following decisions:

p(A) ∝ 0.5 · 0.35

0.35 + 0.6
· 0.3

0.3 + 0.1
= 0.13

p(B) ∝ 0.5 · 0.6

0.35 + 0.6
· 0.1

0.3 + 0.1
= 0.07

DSm model results:

mDSm(A) = 0.35 · 0.3 + 0.35 · 0.6 + 0.05 · 0.3 = 0.33

mDSm(B) = 0.6 · 0.1 + 0.6 · 0.6 + 0.05 · 0.1 = 0.42

In decisions generated by cameras, first sensor assign higher mass to the hypoth-
esis B, while second sensor assigns higher belief to hypothesis A. If ignorance is
considered, it is clear that as result from fusion one must have a higher value for
hypothesis B, because second sensor is in a better position. However, in probabilistic
fusion decision hypothesis A is higher. This shows how considering ignorance may
improve results from fusion applied to multi-cameras tracking.

Positions obtained by fusion of the decisions of the cameras are showed in figures
25.6 and 25.7. Graphics show how DSm gets higher decision values than Bayesian
fusion.

In tables 25.4.1 and 25.4.1 metrics TRDR (Tracker Detection Rate) and FAR
(False Alarm Rate) are showed from data collected from 2 CGI sequences and 5 real
sequences. We also propose Similarity to Truth measure, to evaluate how close in
values is the result of fusion to truth data.

TRDR and FAR are evaluated with following equations:

TRDR =
TP

TG
(25.12)

FAR =
FP

TP + FP
(25.13)

where TG is the total number of regions by each image where there are objects in
motion according to ground truth. According to this metrics, it is desirable to have
the highest value in TRDR while the lowest in FAR.

Similarity to Truth (ST) is a measure to quantify the differences between posi-
tions obtained by fusion modules compared to ground truth. When there exists belief
assigned to certain position, and also there exists an object on that position in ground
truth, the amount of belief is summed, but when there is not object in ground truth,
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Source TRDR FAR Similarity to Truth
Camera 1 99.5% 52.9% 65.2%
Camera 2 93.9% 43.0% 69.7%
Camera 3 84.4% 45.3% 23.0%
DSm 93.9% 5.6% 84.1%
Probabilistic 93.3% 5.2% 24.9%

Table 25.1: Results on CGI animations.

Source TRDR FAR Similarity to Truth
Camera 1 68.1% 21.7% 31.6%
Camera 2 71.0% 2.7% 67.5%
DSm 82.8% 10.2% 75.9%
Probabilistic 82.8% 10.2% 67.9%

Table 25.2: Results on real sequences.

this amount of belief is subtracted, and finally, the amount obtained is normalized to
be showed as percentage.

Results from tables show how DSm reduces uncertainty from perspective and
complements information where cameras lost object or fields of view do not overlap.
Bayesian fusion behaves similar to DSm, however, hybrid combination rule takes in
consideration information assigned to ignorance, which may refine information such
as in example from section 25.4.1. ST quantifies how close is belief assigned to regions
to ground truth. From ST values, one sees that DSm has higher values, closer to
ground truth.
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(a) True position.

(b) Decisions by DSm.

(c) Decisions by Bayesian fusion.

Figure 25.6: Example of positions obtained in 3D animations. Belief value is
plotted from blue to red, blue meaning low belief and red meaning 1.
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(a) True position.

(b) Decisions by DSm.

(c) Decisions by Bayesian fusion.

Figure 25.7: Example of positions obtained in real sequences. Belief value is
plotted from blue to red, blue meaning low belief and red meaning 1.
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25.5 Conclusions

Using cameras as experts at high level for processing objects position, allows to
apply Dezert-Smarandache Theory to combine beliefs. Beliefs correspond to objects
locations on ground plane, given in relation to predefined regions.

Test showed how DSm Theory of evidence generates higher values as results and a
better approximation to ground truth. In addition to this, DSmT allows belief to be
assigned to intersection of hypotheses, which might be interpreted as an object in the
border of two regions, and might be useful information for behavior recognition based
on fuzzy logic, while probabilistic approaches does not allow this kind of information
because of exclusivity constraints. For the fusion of objects position, DSmT showed
better results than Bayesian fusion.

Even good results were obtained using DSmH, it is known that when conflicting
sources are combined the masses committed to partial ignorances are increased and
after a while this ends up to get the vacuous belief assignment. It is expected that
DSm-PCR5 fusion rule yields better results.
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Francis Celeste received the French diploma of engineering at the ENSIETA (Ecole
Nationale Supérieure des Ingénieurs des Etudes et Techniques d’Armement) - spe-
cialized in embedded and autonomous systems - and the M.Sc. degree in signal
processing and telecommunication from the University of Brest, France in 2002. In
2002, he joined the technical expertise directorate of the Délégation Générale pour
l’Armement, France where he works in the field of image processing, data fusion,
robotics and sensor management. He is currently prepared a Ph.D. in the field of op-
timization and robotics. His main interests are in optimal planning, computer vision
and data & sensor fusion.

Address: Délégation Générale pour l’Armement, DGA/CEP/EORD/FAS, 16 Bis,
Avenue Prieur de la Côte d’Or, Arcueil, F 94114, France.

E -mail: francis.celeste@etca.fr

Matteo Ceriotti was born near Milan, Italy, on June 15, 1980. He received the
M.Sc. summa cum laude from Politecnico di Milano in 2006 with a thesis on “Non
Deterministic Planning and Data Fusion with the Evidence Theory”. The thesis was
part of a study for planetary rover autonomy in collaboration with the European
Space Agency. At present, he is a Ph.D. candidate at the Department of Aerospace
Engineering of the University of Glasgow, United Kingdom. His study is focused on
global optimisation for multi-gravity assist interplanetary trajectories. His research
interests are space mission analysis, global optimisation, spacecraft autonomy and
artificial intelligence.

Address: Department of Aerospace Engineering, University of Glasgow, James Watt
South Building, G12 8QQ, Glasgow, UK.

E -mail: m.ceriotti@aero.gla.ac.uk

Béatrice Cochener is Professor and Head of the University Eye Clinic in Brest,
France. Together with Joseph Colin, she developed a very active anterior segment
surgery practice. She is currently involved in imaging research, clinical evaluation,
and anterior segment surgery teaching. Vice president of the SAFIR, the French
implant and refractive surgery society, and president of the SFO (Société Française
d’Ophtalmologie), editorial board member of the Journal Français d’Ophtalmologie,
she is a specialist of refractive technics in vision correction. She participated in three
books on surgical techniques, and has published 32 peer reviewed journal articles.

Address: CHU de Brest Service d’Ophtalmologie, 5 avenue Foch 29609 Brest Cedex,
France.

E -mail: Beatrice.Cochener-Lamard@chu-brest.fr

Frédéric Dambreville studied mathematics, logic, signal and image processing. He
received the Ph.D. degree in signal processing and optimization, from the Univ. of
Rennes, France, in 2001. He enjoyed a stay in California, U.S.A., and worked as
a postdoctorate in the Naval Postgraduate School at Monterey in 2001/2002. In
2002, he joined the dept. image, perception and robotic of the CTA Lab, (Délégation
Générale pour l’Armement), France. His main interests are in optimization, optimal
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planning, game theory, simulation methods, data & sensor fusion, Markov models
& Bayesian networks, logic & conditional logic. His recent works are about rare
event simulation (e.g. cross-entropy optimization), optimal decision with partial ob-
servation, hierachical system optimization, scheduling, modal & Bayesian logic, and
evidence theories.

Address: Délégation Générale pour l’Armement, DGA/CEP/EORD/FAS, 16 Bis,
Avenue Prieur de la Côte d’Or, Arcueil, F 94114, France.

W eb page: http://www.FredericDambreville.com

E -mail: http://email.FredericDambreville.com

Milan Daniel was born in Prague in 1962. He graduated in the Faculty of Math-
ematics and Physics of Charles University Prague in 1985. He defended his Ph.D.
thesis in the Institute of Computer Science of the Academy of Sciences of the Czech
Republic in 1993. His research activities have been always related to the Institute, the
department of Theoretical Computer Science, formerly the department of Knowledge
Based Systems. Author’s current main scientific interests are belief functions, namely
combination of belief functions, probabilistic transformations and conflicts of belief
functions. The other interests are uncertainty processing, fuzzy logic and knowledge
based systems.

Address: Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod vodárenskou věž́ı 2, CZ - 182 07 Prague 8, Czech Republic.

W eb page: http://www.cs.cas.cz, E -mail: milan.daniel@cs.cas.cz

Jean Dezert was born in l’Hay les Roses, France, on August 25, 1962. He received
the electrical engineering degree from the Ecole Française de Radioélectricité Elec-
tronique and Informatique (EFREI), Paris, in 1985, the D.E.A. degree in 1986 from
the University Paris VII (Jussieu), and his Ph.D. from the University Paris XI, Or-
say, in 1990, all in Automatic Control and Signal Processing. During 1986-1990 he
was with the Systems Department at the Office National d’Études et de Recherches
Aérospatiales (ONERA), Châtillon, France, and did research in tracking. During
1991-1992, he visited the Dept. of Elec. and Syst. Eng., Univ. of Connecticut,
Storrs, U.S.A. as an European Space Agency (ESA) Postdoctoral Research Fellow.
During 1992-1993 he was teaching assistant in Elec. Eng. at the Univ. of Orléans,
France. Since 1993, he is senior research scientist the Information, Modeling and
Processing Department (DTIM) at ONERA. His current research interests include
autonomous navigation, estimation and stochastic systems theory and its applica-
tions to multisensor-multitarget tracking (MS-MTT), information fusion, plausible
reasoning and non-standard Logics. Dr. Jean Dezert is developing since 2001 with
Prof. Smarandache a new theory of plausible and paradoxical reasoning for informa-
tion fusion (DSmT) and has edited two textbooks (collected works) devoted to this
new emerging research field published by American Research Press, Rehoboth in 2004
and 2006. He owns an international patent in the autonomous missile navigation and
has published several papers in international conferences and journals. He serves as
reviewer several International Journals and collaborates for the development of the
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International Society of Information Fusion (ISIF - http://www.isif.org) since 1998.
He has served as Local Arrangements Organizer for FUSION 2000 Int. Conf. in Paris
and has been involved in the Technical Program Committees of several FUSION In-
ternational Conferences. Since 2001, he is a member of the board of the ISIF and
served also as executive vice-president of ISIF in 2004.

Address: Office National d’Études et de Recherches Aérospatiales (ONERA), Dépt.
du Traitement de l’Information et Modélisation, BP-72, 29 Avenue de la Division
Leclerc, 92322 Châtillon Cedex, France.

W eb page: http://www.gallup.unm.edu/~smarandache/DSmT.htm

E -mail: jean.dezert@onera.fr, jdezert@gmail.com

Pascal Djiknavorian obtained a B.Eng. in Computer Engineering and a certificate
in Business Administration in 2005 from Laval University. He also completed in
2008 an M.Sc. in Electrical Engineering on information fusion within the DSmT
framework applied on ESM reports under STANAG 1241. He was also admitted in
2007, at the same university, for a Ph.D. also in information fusion. His research in
information fusion is supervised by Prof. Dominic Grenier and Prof. Pierre Valin.
Pascal Djiknavorian has 3 publications on his master’s research. His research interests
include evidential theory, DSmT, approximations algorithms, optimization methods,
information fusion and information theory.

Address: Département de Génie Électrique et de Génie Informatique, Université
Laval, Québec, QC, Canada, G1V 0A6.

E -mail: pascal@djiknavorian.com

Li Duan was born in Jiangxi, China, on October, 1976. He received the B.E. degree
from Naval Electronic and Eng. College, Nanjing, China, in 1998, the M.E. degree in
pattern recognition and intelligence system from Naval Univ. of Eng., Wuhan, China,
in 2001. After graduation, he became a lecturer in the Dept. of command and control,
Naval Univ. of Eng. Currently he is pursuing his Ph.D. degree in Dept. of Control
Science and Eng., Huazhong Univ. of Science and Technology. He has worked in
the areas of target tracking, neural networks and automatic target recognition. His
current research interests include distributed data fusion, situation awareness and
cooperative engagement.

Address: Department of Control, Sciences and Engineering, Huazhong University of
Sciences and Technology, Wuhan, 430074, Hubei, China.

E -mail: duanlidragon@126.com

Samuel Foucher was born in Nantes, France, in 1969. He received the B.S. degree
in physics from the University of Nantes in 1989, the telecommunication engineering
degree from the Ecole Nationale des Télécommunications de Bretagne, France, and
the M.S. degree in image processing from the University of Rennes, Rennes, France,
in December 1996. In 2001, he received his Ph.D. degree from both Sherbrooke and
Rennes Universities in Remote Sensing and Signal Processing. He is now researcher
in the computer vision team of the Computer Research Institute of Montréal.
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Address: Maison des hautes technologies, 550 rue Sherbrooke Ouest, Bureau 100,
Montréal (Québec) H3A 1B9, Canada.

E -mail: samuel.foucher@crim.ca

Richard Fournier received in 1986 an undergraduate degree (BSc) in Physics spe-
cialized in Atmospheric physics at the Université du Québec, Montréal, Canada. He
completed a Master (MSc) at York University (Canada) in Physics of Remote Sensing
in 1989 and then worked for five years at the Canada Centre for Remote Sensing in
Ottawa before completing his Ph.D. in Geomatics at Laval University (Canada) in
1997. He worked five years as a research scientist at the Canadian Forest Service and
started in 2001 as a Professor at Department of Applied Geomatics of the Université
de Sherbrooke (Canada) where he currently works.

Address: Département de géomatique appliquée, Faculté des lettres et sciences hu-
maines, Université de Sherbrooke, 2500, boul. de l’Université, Sherbrooke J1K2R1,
Québec, Canada.

E -mail: richard.fournier@usherbrooke.ca

Dominic Grenier received the M.Sc. and Ph.D. degrees in electrical engineering in
1985 and 1989, respectively, from the Université Laval, Quebec City, Canada. From
1989 to 1990, he was a Postdoctoral Fellow in the radar division of the Defense Re-
search Establishment in Ottawa (DREO), Canada. In 1990, he joined the Department
of Electrical Engineering at Université Laval where he is currently a Full Professor
since 2000. He was also co-editor for the Canadian Journal on Elec. and Comp. Eng.
during six years. Recognized by the undergraduate students in Elec. and Comp.
Eng. at Univ. Laval as the electromagnetism and RF specialist, and in recognition
for his excellence in teaching, he got the “Best Teacher Award” many times. His
research interests include inverse synthetic aperture radar imaging, antenna array
processing for high resolution direction of arrivals and data fusion for identification.
Prof. Grenier has 24 publications in refereed journals and 59 more in conf. proceed-
ings. In addition, to the 35 graduate students who have completed their thesis under
his direction since 1992, he supervised three post-doc fellows during more than two
years each. Currently Prof. Grenier supervises eight graduate students. among them,
three students work directly on data fusion.

Address: Département de Génie Électrique et de Génie Informatique, Université
Laval, Québec, QC, Canada, G1V 0A6.

E -mail: dominic.grenier@gel.ulaval.ca

Esteban Garcia received the BS degree in computer science from Autonomous Uni-
versity of Puebla in 2005, the MS degree in Computer Sciences from National Institute
for Astrophysics, Optics and Electronics in Puebla, Mexico in 2007. His research in-
terests include computer vision, computer graphics, and robotics. He is a researcher
in the Computer Vision Laboratory at the National Institute for Astrophysics, Optics
and Electronics in Mexico.
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Address: National Institute for Astrophysics, Optics and Electronics (INAOE), Com-
puter Sciences Department, Luis Enrique Erro No. 1, Sta Ma. Tonantzintla, Pue.,
CP 72760, Puebla, Pue, Mexico.

W eb page: http://ccc.inaoep.mx/en/

E -mail: eomargr@inaoep.mx

Xinhan Huang was born in Hubei province, China, on August 21, 1946. He gradu-
ated from Huazhong University of Science and Technology (HUST), Wuhan, China in
1969. He is Faculty member of the Department of Control Science and Engineering of
HUST. He joined the Robotics Institute of Carnegie-Mellon University at Pittsburgh,
U.S.A. as a visiting scholar from 1985 to 1986 and the Systems Engineering Division
of Wales University at Cardiff, UK as a senior visiting scholar in 1996. He is currently
a Professor and Head of the Intelligent Control and Robotics Laboratory of HUST.
The Chinese National Natural Science Foundation and the National High Technique
Research Developing Plan award Professor Huang for his research projects from 1988
to 2008. His research interests are the areas of robotics, sensing techniques, infor-
mation fusion and intelligent control. He has more than 300 research publications
to his credit. Professor Huang is a senior member of Chinese Association for Arti-
ficial Intelligence (CAAI) and Chairman of the Speciality Committee of Intelligent
Robotics.

Address: Department of Control, Sciences and Engineering, Huazhong University of
Sciences and Technology, Wuhan, 430074, Hubei, China.

E -mail: xhhuang@mail.hust.edu.cn

Catholijn M. Jonker obtained her MSc in Computer Science from the University
Utrecht in 1990 after which she obtained her PhD in Artificial Intelligence from the
same university in 1994. After positions at various universities, she currently is full
Professor Man-Machine Interaction with the faculty of Electrical Engineering, Math-
ematics and Computer Science at the Delft University of Technology. In 2005 and
2006 Prof. Catholijn Jonker was chair of the Young Academy (De Jonge Acedemie)
of the Royal Netherlands Academy for Sciences (KNAW) in the Netherlands. In 2008
Catholijn Jonker was granted a prestigious national VICI innovation grant for her
project called The Pocket Negotiator.

Address: Delft University of Technology, Faculty of Electrical Engineering, Mathe-
matics and Computer Science, Man-Machine Interaction Group, 2628 CD Delft, the
Netherlands.

W eb page: www.mmi.tudelft.nl

E -mail: c.m.jonker@tudelft.nl

Adam Kawalec was born in Poland in 1949. He received his M.Sc. degree in solid
state electronics and his Ph.D degree from the Dept. of Technical Physics, and his
D.Sc. degree in electronics, acoustoelectronics from the Dept. of Electronics, Mili-
tary Univ. of Tech., Warsaw, Poland in 1974, 1980, 2002, respectively. In 1974, he
joined the Military Univ. of Tech., Dept. of Technical Physics, Warsaw, Poland,
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where he was involved in surface acoustics waves convolvers research. Since 1979,
he has tested SAW dispersive delay lines applied in radar pulse compression systems
and SAW sensors. He is currently an Associate Professor of the Department of Elec-
tronics, Military University of Technology, Warsaw, Poland, where he teaches courses
in acoustoelectronics and the basic of telecommunications. Professor Kawalec is a
Head of the Institute of Radioelectronics, Department of Electronics, Military Uni-
versity of Technology, Warsaw, Poland. He is the author and co-author of more then
120 scientific papers published in international and national journals and conference
proceedings and co-inventor of five patents.

Address: The Institute of Radioelectronics, WAT Military University of Technology,
Warsaw, Poland.

E -mail: Adam.Kawalec@wat.edu.pl

Pavlina Dimitrova Konstantinova received her M.Sc. and Ph.D. degrees in Com-
puters and Computer-Aided Transient and Steady State Analysis of Nonlinear Elec-
tronic Circuits from Technical University of Sofia in 1967 and 1987, respectively. From
1971 to 1989 she was research assistant at the Radio Electronics Research Institute.
Since 1989 she is assistant research Professor at the Dept. of Math. Methods for Sen-
sor Information Processing, Institute for Parallel Processing, BAS. She is a member of
the Bulgarian Union of Automation and Information, member of Image Recognition
Society, BAS. Her research interests include sensor data processing, data association,
mathematical modeling, parallel algorithms and object-oriented programming.

Address: Institute for Parallel Processing, Bulgarian Academy of Sciences (BAS),
“Acad. G. Bonchev” Str.,bl.25-A, 1113 Sofia, Bulgaria.

E -mail: pavlina@bas.bg

Ksawery Krenc was born in Poland in 1975. He received his M.Sc. in Automatics
and Robotics, Faculty of Electronics Telecommunication and Informatics from The
Technical University of Gdansk in 2001. In 2002, he joined RD Marine Technology
Centre, as a program writer. In 2004, he got promoted to the analyst position.
He elaborated the specification of data collecting and data fusion applications for
Leba-3 (Polish Marine C&C system). Since 2006, he has been publishing solutions
related to data (and information) fusion for C&C systems’ purposes. In 2007, he got
promoted to the senior analyst position. Since 2007 up to now, he has been the Sensor
Networks research team manager in Polish NEC consortium. He is currently working
towards Ph.D. degree. His current research interests focus on information fusion for
the purpose of C&C systems with a particular emphasis on DST and DSmT.

Address: RS-SD, R&D Marine Technology Centre, Gdynia, Poland.

E -mail: ksawery.krenc@ctm.gdynia.pl

Mathieu Lamard was born on may 18, 1968, in Bordeaux, France. He received the
Master degree in applied mathematics from the University of Bordeaux, France (1995)
and the Ph.D. Degree in Signal Processing and Telecommunication (1999) from the
University of Rennes, France after 3 years of research on the opthalmology field. In
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2000 he joined the laboratory LaTIM INSERM U650 (Laboratoire de Traitement de
l’Information médicale). His research interests are related to image processing, 3D
reconstruction, content-based image retrieval and data fusion for medical applications.

Address: CHU de Brest LaTIM Bat. 2 Bis, 5 avenue Foch 29609 Brest Cedex, France.
E -mail: Mathieu.Lamard@univ-brest.fr

Xinde Li was born in Shandong province, China, on September 30, 1975. He gradu-
ated from Shenyang institute of chemistry technology, Shenyang, China in 1997 and
he received his Master degree from Shandong University, Jinan,China in 2003 and his
Ph.D. degree from Huazhong University of Science and Technology, Wuhan,China,
in 2007. Currently, he works as a Lecturer in the School of Automation, Southeast
University, China. His main research interests include information fusion, robot per-
ception, computer vision, pattern recognition, robot’s map building and localization
and multi-robot system.

Address: Institute of Intelligent Robot and Intelligent Control, School of Automation,
Southeast University, Si Pai Lou 2#, Nanjing 210096, China.

E -mail: xindeli@seu.edu.cn

Arnaud Martin was born in Bastia, France in 1974. He received the Ph.D. degree
in Signal Processing (2001), and the Master degree in Probability (1998) from the
University of Rennes, France. Dr. Arnaud Martin worked on speech recognition
during three years (1998-2001) at France Telecom R&D, Lannion, France. He worked
in the department of statistic and data mining (STID) of the IUT of Vannes, France,
as temporary Assistant Professor (ATER) during two years (2001-2003). In 2003, he
joined the laboratory E3I2: EA3876 at the ENSIETA, Brest, France, as a teacher
and researcher. Dr. Arnaud Martin teaches mathematics, data fusion, data mining,
signal processing and computer sciences. His research interests are mainly related to
the belief functions for the classification of real data and include data fusion, data
mining, signal processing especially for sonar and radar data.

Address: ENSIETA E3I2 Laboratory, 2, rue François Verny, 29806 Brest Cedex 9,
France.

W eb page: http://www.ensieta.fr/e3i2/Martin

E -mail: Arnaud.Martin@ensieta.fr

Grégoire Mercier was born in France in 1971. He received the Engineer Degree
from the Institut National des Télécommunications, Evry, France in 1993, his Ph.D.
degree from the University of Rennes I, Rennes, France in 1999 and his Habilitation
à Diriger des Recherches from the University of Rennes I in 2007. Since 1999, he
has been with the Ecole Nationale Supérieure des Télécommunications de Bretagne,
where he is currently an Associate Professor in the Image and Information Processing
department. His research interests are in remote sensing image compression and
segmentation, especially in hyperspectral and Synthetic Aperture Radar. Actually,
his research is dedicated to change detection and combating pollution. He was a
visiting researcher at DIBE (University of Genoa, Italy) from March to May 2006
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where he developed change detection technique for heterogeneous data. He was also
a visiting researcher at CNES (France) from April to June 2007 to take part of the
Orfeo Toolbox development. He is an Associate Editor for the IEEE Geoscience and
Remote Sensing Letters.

Address: Telecom Bretagne, CNRS UMR 3192 Lab-STICC/CID, Technopole Brest-
Iroise CS 83818, 29238 Brest Cedex3, France.

W eb page: http://www.gregoire-mercier.fr

E -mail: Gregoire.Mercier@telecom-bretagne.eu

Brice Mora was born in France in 1979. He studied Biology and Earth Sciences
in Pau (Bsc) and Toulouse III (Msc). He received a Master in GIS in 2004 at the
University of Rennes 2. He worked as a photo interpreter for the French National
Interbranch Office for Cereals and as an engineer in some French research laborato-
ries (CNRS). He started a Ph.D. in 2005 at the Cartel Lab. in the Université de
Sherbrooke, Québec, Canada.

Address: Département de géomatique appliquée, Faculté des lettres et sciences hu-
maines, Université de Sherbrooke, 2500, boul. de l’Université, Sherbrooke J1K2R1,
Québec, Canada.

E -mail: brice.mora@usherbrooke.ca

Afzel Noore received the Ph.D. degree in electrical engineering from West Virginia
University, Morgantown. He was a Digital Design Engineer with Philips, India. From
1996 to 2003, he was the Associate Dean for Academic Affairs and Special Assistant
to the Dean with the College of Engineering and Mineral Resources, West Virginia
University, where he is currently a Professor with the Lane Department of Com-
puter Science and Electrical Engineering. His research has been funded by NASA,
the National Science Foundation, Westinghouse, General Electric, Electric Power
Research Institute, the U.S. Department of Energy, and the U.S. Department of Jus-
tice. He serves on the editorial boards of Recent Patents on Engineering and the Open
Nanoscience Journal. He has over 95 publications in refereed journals, book chapters,
and conferences. His research interests include computational intelligence, biomet-
rics, software reliability modeling, machine learning, hardware description languages,
and quantum computing. Dr. Noore is a member of the Phi Kappa Phi, Sigma Xi,
Eta Kappa Nu, and Tau Beta Pi honor societies. He was the recipient of four best
paper awards.

Address: Lane Department of CSEE, West Virginia University, Morgantown, WV
26506, U.S.A.

W ebpage: www.csee.wvu.edu/~noore

E -mail: noore@csee.wvu.edu

Christophe Osswald was born in Orléans, France, in 1975. He received the Ph.D.
degree in Mathematics and Computer Science (2003) from the EHESS – École des
Hautes Études en Sciences Sociales – after three years of research on classification,
similarity analysis and hypergraphs at the laboratory IASC of the TELECOM Bre-
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tagne. He is an engineer graduated from the École Polytechnique (1997) and the
TELECOM Bretagne (1999), and he received the Master degree in Mathematics and
Computer Science applied to Social Sciences. He is a teacher and researcher at the
ENSIETA in the laboratory E3I2: EA3876, Brest, France. His research interests
are related to data fusion, mostly through belief functions, and also to classification,
graphs and hypergraphs theory, algorithmic complexity and decision support.

Address: ENSIETA E3I2 Laboratory, 2, rue François Verny, 29806 Brest Cedex 9,
France.

W eb page: http://www.ensieta.fr/e3i2/

E -mail: Christophe.Osswald@ensieta.fr

Benjamin Pannetier was born in Paris on November 30th, 1979. He received his
B.Sc. in math from the University of Marne la Vallée, and his Ph.D. in Automatic
Control and Signal Processing from the University of Grenoble in 2006. Since 2005, he
is a research engineer at the French Aerospace Lab (ONERA). His research interests
include target tracking, detection/estimation theory and data fusion for battlefield
surveillance systems for the French army. He is working on a new approach for the
abnormal behaviour detection.

Address: Office National d’Études et de Recherches Aérospatiales (ONERA), Infor-
mation Processing and Modeling Dept., BP-72, 29 Avenue de la Division Leclerc,
92322 Châtillon Cedex, France.

W eb page: http://www.onera.fr

E -mail: benjamin.pannetier@onera.fr

Gwénolé Quellec was born in Saint-Renan, France, on Nov. 29, 1982. He received
the engineering degree in computer science and applied mathematics from the In-
stitut Supérieur d’Informatique de Modélisation et de leurs Applications (ISIMA),
Clermont-Ferrand, France, and the Master degree in image processing from the Uni-
versity Clermont-Ferrand II, in 2005. He received his Ph.D. in signal processing from
TELECOM Bretagne, a graduate engineering school and international research cen-
ter in the field of information technologies, in Brest, France, in 2008. His research
interests include image processing, content-based image retrieval and data fusion for
medical applications.

Address: CHU de Brest LaTIM Bat. 2 Bis, 5 Avenue Foch 29609 Brest Cedex,
France.

E -mail: gwenole.quellec@telecom-bretagne.eu

Christian Roux received the Agregation degree in physics from the Ecole Normale
Supérieure, Cachan, France, in 1978, and the Ph.D. degree from the Institut National
Polytechnique, Grenoble, France, in 1980. He joined the Institut TELECOM, TELE-
COM Bretagne, Brest, France, in 1982, became an Associate Professor in 1987, and
then a Professor from 1987 onwards. He has been a Visiting Professor with the Med-
ical Image Processing Group, Department of Radiology, University of Pennsylvania
during 1992–1993, and a Distinguished International Research Fellow with the Dept.
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of Electrical Engineering, University of Calgary, Calgary, AB, Canada, in 1996 and
2003. He is currently the Head of the Laboratoire de Traitement de l’Information
Médicale (LaTIM), INSERM U650, Brest. He is the author or coauthor of more than
100 papers, the author of four book chapters, and has edited three books. He is
the holder of two patents. His current research interests include advanced medical
information processing, and spatial and functional information modeling and analysis
in medical images, with applications in various medical domains including orthope-
dics, gastroenterology, ophthalmology, and cardiology. Prof. Roux was an Associate
Editor for the IEEE Transactions on Medical Imaging during 1993–2000, and is a
member of the Editorial board of the IEEE Trans. on Information Technology and
of the Proceedings of the IEEE.

Address: ITI Dpt, TELECOM Bretagne, CS 83818 29238 Brest Cedex, France.

W eb page: http://international.telecom-bretagne.eu/welcome/

E -mail: Christian.Roux@telecom-bretagne.eu

Richa Singh received the M.S. and PhD degree in computer science in 2005 and
2008 respectively from the West Virginia University, Morgantown. She had been ac-
tively involved in the development of a multimodal biometric system which includes
face, fingerprint, signature, and iris recognition at the Indian Institute of Technology
Kanpur, India, from July 2002 to July 2004. Her current areas of interest are pat-
tern recognition, image processing, machine learning, granular computing, biometric
authentication, and data fusion. She has more than 75 publications in refereed jour-
nals, book chapters, and conferences. Dr. Singh is a member of the IEEE Computer
Society and the Association for Computing Machinery. She is also a member of the
Golden Key International, Phi Kappa Phi, Tau Beta Pi, Upsilon Pi Epsilon, and Eta
Kappa Nu honor societies. She was the recipient of four best paper awards.

Address: Lane Department of CSEE, West Virginia University, Morgantown, WV
26506, U.S.A.

W ebpage: www.csee.wvu.edu/~richas

E -mail: richas@csee.wvu.edu

Florentin Smarandache was born in Balcesti, Romania, in 1954. He got a M. Sc.
Degree in both Mathematics and Computer Science from the University of Craiova in
1979, received a Ph.D. in Mathematics from the State University of Kishinev in 1997,
and continued postdoctoral studies at various American Universities (New Mexico
State Univ. in Las Cruces, Los Alamos National Lab.) after emigration. In 1988 he
escaped from his country, pasted two years in a political refugee camp in Turkey, and
in 1990 emigrated to U.S.A. In 1996 he became an American citizen. Dr. Smaran-
dache worked as a Professor of mathematics for many years in Romania, Morocco,
and United States, and between 1990-1995 as a software engineer for Honeywell, Inc.,
in Phoenix, Arizona. In present, he teaches mathematics at the University of New
Mexico, Gallup Campus, U.S.A.. Very prolific, he is the author, co-author, and editor
of 75 books, over 100 scientific notes and articles, and contributed to about 50 sci-
entific and 100 literary journals from around the world (in mathematics, informatics,
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physics, philosophy, rebus, literature, and arts). He wrote in Romanian, French, and
English. Some of his work was translated into Spanish, German, Portuguese, Italian,
Dutch, Arabic, Esperanto, Swedish, Farsi, Chinese. He was so attracted by contradic-
tions that, in 1980s, he set up the ”Paradoxism” avant-garde movement in literature,
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