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Abstract

Graph theoretic techniques are used in variety of important computational problems in the areas of computational
physics, mechanics, and fluid flow. We present a new, parallel algorithm for detecting cycles in partitioned,
directed graphs that is both scalable in the graph and machine size, and performs well in practice. As an example,
on ap= 64 processor cluster, we have solved an extremely large and difficult input problem withn= 228 vertices
in less than five minutes. Our parallel algorithm uses a new graph representation, called Packed-Intervals, has a

theoretical running time for this input ofτ logp+O
�

n
p

�
σ+O

�
n
p

�
for n� p4, and achieves good speedup for

anyn� p in practice. Our study includes both an efficient parallel algorithm and an experimental study.

Please seehttp://www.eece.unm.edu/˜dbader for additional information.
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1 Introduction

Graph theoretic techniques are used in variety of important computational problems in the areas of computational
physics, mechanics, and fluid flow. Efficient sequential algorithms for many of these graph-based techniques
are well-known, for instance, searching, decomposing, and finding network flows. However, when either very
large graphs require the memory space of parallel computers or faster solutions aim more processing power at
the problem, efficient implementations of some of these same techniques for high-performance computers at
this point are not known. One graph problem of significant interest is detecting cycles in directed graphs. This
problem arises in the numerical stability of large-scale calculations that use finite-element meshes. Up to now, no
efficient parallel implementations were known. In this paper, we present a new, parallel algorithm for detecting
cycles in partitioned, directed graphs that is both scalable in the graph and machine size, and performs well in
practice. Our study includes both an efficient parallel algorithm and an experimental study.

In a directed, planar graph (for example, a finite-element grid), with each arc directed from a source to
destination vertex,detecting cyclestakes linear sequential time in the size of the graph. On a parallel machine,
we will assume that a tool such as MeTiS [9] has partitioned the input grapha priori to the processors in a manner
that maximizes the locality of each processor’s subgraph.

Our novel approach contains three phases. During the first phase, each node’s subgraph is locally examined
for cycles. Arcs spanning node boundaries are discovered in the second phase. Finally, in the third phase, pairwise
merging between subgraphs reduces the problem to a single processing node, all-the-while examining the graph
for cycles and aggressively pruning vertices and incident arcs that do not contribute to cycles. The merging
phase may be prohibitively expensive using a standard graph representation (herein referred to as the “Express”
approach) that reduces each subgraph to boundary vertices, subgraph-arcs directly connecting the boundaries,
and arcs spanning node boundaries. We have discovered a novel approach that uses what we call the compact
“Packed-Intervals” graph representation. Instead of recording each subgraph-arc, our algorithm records only the
endpoint labels for each interval of reachable boundary vertices. Our parallel implementation using the Packed-
Intervals graph representation now outperforms the sequential approach with nearly linear speedup in the number

of processors and problem size (for example, see Figure 4) and has a complexity cost ofτ logp+O
�

n
p

�
σ+O

�
n
p

�
for instances of large meshes typically seen in practice. Our parallel implementation proves the capability of
solving extremely large inputs that, to our knowledge, have never been attempted before. For instance, on a 64-
processor cluster, our implementation solves an input graph with 16M (M� 220) vertices in 12:2 seconds, with
64M vertices in 48:0 seconds, and with 256M vertices in 288 seconds. Thus, our new algorithm solves problem
instances once thought impossible and scales almost linearly with problem size on a large cluster.

The main contributions of this paper are

� an efficient parallel algorithm for detecting cycles in well-partitioned planar graphs,

� a new graph representation for well-partitioned planar graphs, and

� an experimental parallel algorithmic framework for performance-engineering of graph theoretic problems.

The organization of our paper is as follows. Section 2 describes our realistic model for parallel computation.
Both sequential and parallel cycle detection algorithms are presented in Section 3. Section 4 contains the theo-
retical and practical analyses for these algorithms. Finally, Section 5 discusses our results and future directions.

2 The Parallel Computation Model

We use a simple model to analyze the performance of our parallel algorithms. Our model is based on the fact that
current hardware platforms can be viewed as a collection of powerful processors connected by a communication
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network that can be modeled as a complete graph on which communication is subject to the restrictions imposed
by the latency and the bandwidth properties of the network. We view a parallel algorithm as a sequence of local
computations interleaved with communication steps, where we allow computation and communication to overlap.
We account for communication costs as follows.

Assuming no congestion, the transfer of a block consisting ofm contiguous words between two processors
takes(τ+σm) time, whereτ is the latency of the network andσ is the time per word at which a processor can
inject or receive data from the network. Note that the bandwidth per processor is inversely proportional toσ.
We assume that the bisection bandwidth is sufficiently high to support block permutation routing amongst the
p processors at the rate of1

σ . In particular, for any subset ofq processors, a block permutation amongst theq
processors takes(τ+σm) time, wherem is the size of the largest block. Such cost (which is an overestimate) can
be justified by using our earlier work [2, 8].

Using this cost model, we can evaluate the communication timeTcomm(n; p) of an algorithm as a function of
the input sizen, the number of processorsp, and the parametersτ andσ. The coefficient ofτ gives the total
number of times collective communication primitives are used, and the coefficient ofσ gives the maximum total
amount of data exchanged between a processor and the remaining processors.

This communication model is close to a number of similar models (e.g. [5, 13, 1]) that have recently ap-
peared in the literature and seems to be well-suited for designing parallel algorithms on current high performance
platforms.

We define the computation timeTcomp(n; p) as the maximum time it takes a processor to perform all the
local computation steps. In general, the overall performanceTcomp(n; p)+Tcomm(n; p) involves a tradeoff between

Tcomm(n; p) andTcomp(n; p) . Our aim is to develop parallel algorithms that achieveTcomp(n; p) = O

�
Tseq

p

�
such

thatTcomm(n; p) is minimum, whereTseq is the complexity of the best sequential algorithm. Such optimization has
worked very well for the problems we have looked at, but other optimization criteria are possible. The important
point to notice is that, in addition to scalability, our optimization criterion requires that the parallel algorithm be
an efficient sequential algorithm (i.e., the total number of operations of the parallel algorithm is of the same order
asTseq).

3 Cycle Detection

Given adirected graph(or digraph) G= (V;E), the cycle detection algorithm determines whether asimple cycle
can be found in this graph. Anarc e= (vi ;vt) 2 E is a directed edge that connects theinitial vertex vi at the tail
to the terminal vertex vt at the head (vi ;vt 2 V). A directed path(or dipath) in G is an ordered set of vertices
fv0;v1;v2; : : : ;vl�1g such that8i 2 [0; l�2], (vi ;vi+1)2E. A simple dipathdoes not re-visit any of the vertices. A
simple cycle is a dipath with an additional arc(vl�1;v0) 2 E that returns to the starting vertexv0. Let the number
of verticesn= jVj and the number of arcsm= jEj.

On a sequential machine, cycles can be detected in an arbitrary digraph by applying a well-known search
technique as follows. An arbitrary vertex is selected and used as the starting point for a depth-first search. If
no cycles are detected, but unvisited vertices still exist in the graph, the process is repeated from any one of
the unvisited vertices. This search technique traverses the entire graph in O(n+m) time, classifying edges as
tree, forward, cross, andback, whereby a tree edge is the first discovered edge leaving a vertex, a forward edge
connects a vertex to an already discovered descendent vertex, a cross edge connects siblings in a tree or two trees
together, and a back edge connects a vertex to its ancestor. A digraph is acyclic if and only if no back edges are
discovered. [4]

2
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3.1 Parallel Algorithm

On a parallel machine, we will assume the input graph has been partitioneda priori and evenly to the processors.
The partition functionf maps each vertexv2V to a processorpz, for some(0� z� p�1), namely f (v) = pz,
and minimizes the number of arcs spanning across processor boundaries. Thus, the partition also maximizes the
locality of each processor’s subgraph. For example, MeTiS [9] is a software package that uses multi-level graph
techniques to quickly partition an unstructured graph consistent with this criteria.

One simple method for parallelizing this detection algorithm could use the depth-first search technique as
before, except when a terminal vertex of an arc in the search path is assigned to a different processor, the ap-
propriate inter-processor messages are sent to continue the search on the new processor. However, this would
perform very poorly for two reasons. First, in the worst case, a search path could traverse processor boundaries
on every step of the path, generating O(n) messages in sequential succession. Second, as the search progresses,
only one processor at a time is busy working, while the others sit idle. Thus, there would be no parallel speedup.
In fact, no efficient parallel implementations are known at this point for depth-first graph traversal methods [7].

3.2 A Possible Approach

Our novel approach attempts to minimize the communication while improving the load balancing by keeping as
many processors as possible busy with useful work. There are three major phases in the algorithm. During the
first phase, each processor examines its local subgraph and detects local cycles. The second phase constructs a
reduced graph by aggressively collapsing and pruning the input graph. And the third stage merges this distributed
graph until a cycle is detected or no cycles are found. Without loss of generality, we will assume that the indegree
and outdegree of each vertex is bounded by a small constant (say, 6).

We present two new parallel algorithms that are similar, but use different graph representations for the second
and third phases. Our first approach in Section 3.3 uses a graph representation that we call theExpressap-
proach. We describe the Express algorithm first because of its straightforward design, but note that this approach
lacks parallel speedup. In Section 3.4, we present a major improvement using a novel graph representation that
we call thePacked-Intervalsapproach. The Packed-Intervals algorithm uses a novel graph representation that
significantly improves the algorithmic cost and scales efficiently with machine and problem size.

Next we define several terms that will be used and further explained in our algorithm.

Definitions

As mentioned earlier, the input digraph is spread amongst the processors using a partition of the vertices. Letf (v)
be the function that maps each vertexv2V to a processor, and letVzbe the set of vertices mapped to processorpz.
Each arc(vi ;vt) 2 E is assigned to the processor that holds its initial vertex,f (vi), and letEz be the set of all arcs
incident from vertices assigned to processorpz. In this manner, two types of arcs can be identified. Alocal-arc
has both the initial and terminal vertices assigned to the same processor( f (vi)� f (vt)), while atrans-arcspans
across two different processors,( f (vi) 6= f (vt )). An initial trans-arc w.r.t. processorpz has f (vi) � pz, and a
terminal trans-arcw.r.t. processorpz has f (vt ) � pz. Note that the input vertices are distributed evenly across
the processors, and only information about the local vertices, and arcs incident from these vertices (including the
processor id of each initial trans-arc’s terminal vertex), are held on each processor.

The second phase of this algorithm builds a new digraph, called anexpress graph. Each processorpz will
create two types of vertices, anentrance vertex(one for each terminal trans-arc) and anexit vertex(one for each
initial trans-arc), w.r.t. processorpz. There will also be two types of arcs in the express graph, trans-arcs from the
original digraph, andexpress arcswith initial and terminal vertices corresponding to entrance and exit vertices,
respectively. The Express algorithm in Section 3.3 uses a graph representation that explicitly contains these
express arcs, while the Packed-Interval approach in Section 3.4 uses a new graph representation that implicitly
holds this information in a compact data structure.

3
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We are now ready to describe the three major phases of the parallel cycle detection algorithms.

� Phase (1): (Discovery) Because of the distributed graph layout, each processor needs to find the set of trans-
arcs that have a terminal vertex assigned to it. During this discovery process, the algorithm aggressively
prunes local-arcs and vertices that are determined to be acyclic. If a cycle is found embedded in the
subgraph induced by the set of local-arcs, the algorithm halts.

� Phase (2): (Express) The express graph is constructed in parallel. For each initial (terminal) vertex of each
trans-arc, an exit (entrance) vertex is created in the express graph and assigned to the same processor. Each
trans-arc from the original graph is transferred to the corresponding exit and entrance vertices of the express
graph. For each entrance vertex, an express arc is added to the graph (using the appropriate representation,
as we will discuss in the following sections), whenever a dipath exists between the corresponding vertices
in the original local subgraph.

Notice that each express subgraph induced by a processor’s express arcs is adirected bipartite graph, with
each arc directed from the initial set of entrance vertices to the terminal set of exit vertices.

� Phase (3): (Merge) The goal of this merging step is to iteratively combine pairs of express subgraphs
until only a single graph remains on one processor. During the merging of these subgraphs, vertices and
arcs that do not contribute to cycles are aggressively pruned, and the merged subgraphs are tested for the
presence of cycles. The optimal merging scheme would pair together express subgraphs that contain the
most connectedness between them (that is, the greatest number of trans-arcs incident to both subgraphs).
We could examine all remaining express subgraphs, count the number of trans-arcs spanning between each
pair, and then find the maximum weight perfect matching of these graphs. Forκ express graphs, the running
time is O

�
κ3
�

[10, 11]. Greedy approaches (on the subset of graphs that obey the triangle-inequality) that
repeatedly match the two best unmatched points have O

�
κ2 logκ

�
running time, and are not guaranteed

to perform well [12]. While this matching can be implemented in polynomial time, our solution uses a
simple heuristic that pairs express subgraphs by proximity to each other, with the partitioning assumption
that most trans-arcs span neighboring express subgraphs. We expect this to perform well in practice and
simply the task of tracking vertex-to-processor assignments during the merge phase.

1 merge (Gz)
2 for h � 0 to logp�1 do
3 if last (z , h) � 0 then
4 if test (z , h) � 0 then
5 Recv(Gset (z;h)) from processorpset (z;h) ;
6 Gz � MergeGraph ( Gz;Gset (z;h);h ) ;

else
7 Send(Gz) to processorpclear (z;h) ;

Algorithm 1: Merge phase algorithm for processorpz. Note that theMergeGraph routine calls the appro-
priate subgraph merging procedure for either Express or Packed-Interval graphs.

Algorithm (1) performs the iterative merging of thep express subgraphs. In this algorithm, we use four
bit-oriented functions:last (α, b) which returns theb least-significant bits ofα, test (α, b) which returns
thebth least-significant bit ofα, set (α, b) which returnsα with thebth least-significant bit ofα set to 1,
andclear (α, b) which returnsα with thebth least-significant bit ofα cleared to 0.

3.3 Express Graph Representation

The Express algorithm uses a straightforward data structure for representing the express graph in the second and
third phases. This data structure explicitly holds the initial and terminal vertices, express arcs, and trans-arcs.

4
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1 discovery (Gz)
2 Qz � /0 ;
3 foreach local vertex v2Vz do
4 color[v] � white ;

5 foreach local vertex v2Vz do
6 if color[v]� white then visit (v) ;

7 sort Qz with the terminal vertex’s processor number as the sorting key ;
8 communicate: exchange arc information with any processor having trans-arcs incident from or topz;

9 visit (v)
10 Rv � /0 ;
11 color[v] � red ;
12 foreach local-arc incident from v to wdo
13 switch color[w] do
14 casewhite
15 Rw � visit (w) ;
16 Rv � Rv[Rw ;

17 caseblack
18 Rv � Rv[Rw ;

19 casered
20 HALT: A cycle has been detected;

21 foreach trans-arc incident from v to wdo
22 Qv �Qv[ (v;w) ;
23 Rv � Rv[fvg ;

24 if Rv� /0 then
25 color[v] � green;

else
26 color[v] � black ;
27 return Rv

Algorithm 2: Discovery phase algorithm for Express graphs run independently on each processorpz.

Algorithm (2) performs the discovery phase on each processorpz, (0� z� p�1), and exchanges trans-arc
information with each processor that shares an incoming or outgoing trans-arc. Prior to the depth-first search,
local vertices are initially colored white. The first time a vertexv 2 Vz is visited, its color is updated to red.
After visiting all of vertexv’s children, if a trans-arc is incident fromv or any of its children,v is colored green,
otherwisev is colored black.

During the second phase, the express graph (ExG) is constructed in parallel. For each initial (terminal) vertex
of each trans-arc, an exit (entrance) vertex is created in the express graph and assigned to the same processor. Each
trans-arc from the original graph is transferred to the corresponding exit and entrance vertices of the express graph.
For each entrance vertex, an express arc is explicitly added to each local exit vertex, whenever a dipath exists
between the corresponding vertices in the original local subgraph. This reachability information is contained in
the setRv for each black-colored vertexv2V, collected during the discovery phase. All green-colored vertices
and incident arcs can effectively be removed at this time, since each dipath starting from a green vertex has been
explored and determined to be acyclic in the discovery phase. Each exit vertex in the express graph will also hold
a list of its predecessor entrance vertices. This predecessor list will be used in the merging phase.

5
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vi

vt

ExG1

ExG2

Before merge After merge (ExG0)
Figure 1: On the left, we show two express subgraphs,ExG1 andExG2, before the merge phase. Note that we
have selected one trans-arc in particular that connects exit vertexvi from ExG0 to entrance vertexvt in ExG1, but
other trans-arcs may exist. On the right, we show the merged express graph,ExG0. The shaded (white) vertices
are entrance (exit) vertices.

The heart of the merge routine in the third phase, described in Algorithm (3), reduces two express subgraphs
in the Express graph representation into a single express subgraph. The merging checks the union of the two
subgraphs for each trans-arc that has both initial and terminal vertices co-located in the union. If and when such

1 MergeGraph-Express (ExG1, ExG2, step)
f Merge together express subgraphsExG1andExG2g ;

f The vertex set of the result is the union of the input graphs’ verticesg ;
2 V[ExG0] �V[ExG1][V[ExG2] ;
3 transfer each express arc fromExG1andExG2to the corresponding vertices inExG0;
4 foreach initial trans-arc in ExG1 and ExG2do

f The terminal vertexvt , originally assigned to processorpα, afterstepmerging steps,(0� step�
logp�1), is now located on processorpbα=2step+1c g ;

5 if the terminal vertexvt =2V[ExG0] then
6 transfer this trans-arc to the corresponding exit vertex inExG0;

else
f assume w.l.o.g. the trans-arc(vi ;vt) exitsExG1and entersExG2g ;

7 if (vt ;vi) is an express arc inExG0then
8 HALT: A cycle has been detected;

f Note thatvt may have no predecessors or successorsg ;
9 foreachpredecessor(vp) of vi do

10 foreachsuccessor (vs) of vt do
11 add a new express arc(vp;vs) to ExG0;

12 removeverticesvi andvt and all incident edges fromExG0;

13 return ExG0;

Algorithm 3: Express subgraph merge algorithm.

6
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trans-arcs are found, the terminal vertices that precede the initial vertex of the trans-arc are connected by express
arcs to the successors of the terminal vertex of the trans-arc. Next, the trans-arc, its corresponding vertices, and
their incident express arcs are all removed from the express graph. Figure 1 shows an example of one step of
this merging. During each merge step, cycles from the original graph are detected whenever one of the trans-arcs
found above has a terminal vertex with an express arc to its initial vertex. If a cycle is found, the algorithm
terminates and reports the trans-arc that is, in fact, an arc from the original graph.

3.4 Packed-Intervals Graph Representation

The previous approach using the express graph representation during the merging stage does not scale as the prob-

lem size increases. In the first merging step with O
�q

n
p

�
entrance and exit vertices, it is quite possible to have

each entrance vertex reach many of the exit vertices. This results in O
�

n
p

�
express arcs, which is asymptotically

equivalent to the size of the original graph. We can significantly improve this by noticing that in a partitioned
planar digraph, the resulting local subgraph is both bipartite and convex. That is, the entrance and exit vertex sets
partition the vertices into two sets such that each express arc in the subgraph has a tail in the entrance vertex set
and a head in the exit vertex set. Aconvex bipartite graph, as defined by Glover [6], holds the property that the
set of exit vertices that are adjacent to each entrance vertex are labeled consecutively. Thus, the convex bipartite
graph can be represented by an interval[vα;vβ] for each entrance vertexve, meaning that vertexve has an express
arc to each of the consecutively labeled exit vertices[vα;vα+1;vα+2; : : : ;vβ].

tv

A

C

D

E

F

G

H

J

B

I

vi

pigG1

pigG2

{[A]}

{}

{[D,E]}

{[E]}

{[F]}

{[G,H]}

{[I,J]}

{[J]}

{[J]}

{[A,B],[D]}

Before merge

A

C

E

B

F

G

H

J

I

{[A]}

{}

{[E],[G,H]}

{[E]}

{[F]}

{[I,J]}

{[J]}

{[J]}

{[A,B],[G,H]}

After merge (pigG0)
Figure 2: On the left, we show two Packed-Interval subgraphs,pigG1 andpigG2, before the merge phase. Note
that we have selected one trans-arc in particular that connects exit vertexvi from pigG0 to entrance vertexvt

in pigG1, but other trans-arcs may exist. On the right, we show the merged express graph,pigG0. The shaded
(white) vertices are entrance (exit) vertices.

After each merging step, the resulting subgraph again is bipartite, but now each entrance vertex may have a
list of intervals. In fact, each entrance vertex after merging stepi, (1� i � logp), could hold up to 2i intervals,
hence the name Packed-Intervals. Figure 2 shows an example of a merging step using the Packed-Interval graph
representation. Unlike the Express graph approach, express arcs are not explicit objects in the data structure.
Instead, each entrance vertex holds a compact list of exit vertex interval pairs.

If there are gaps in the labeling of the original intervals, then the exit vertices can be simply relabeled to use
the compact convex graph representation. In a planar digraph, this relabeling will always be possible. The proof
by contradiction is as follows. Suppose there is no way to relabel the exit vertices to satisfy the convex graph

7
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1 visit (v)
2 vα � /0 ; vβ � /0 ;
3 color[v] � red ;
4 foreach local-arc incident from v to wdo
5 switch color[w] do
6 casewhite
7 (wα;wβ) � visit (w) ;
8 vα �min(vα;wα) ; vβ �max(vβ;wβ) ;

9 caseblack
10 vα �min(vα;wα) ; vβ �max(vβ;wβ) ;

11 casered
12 HALT: A cycle has been detected;

13 foreach trans-arc incident from v to wdo
14 Qv �Qv[ (v;w) ;
15 if v< vα or vα � /0 then
16 vα � v ;
17 if v> vβ or vβ � /0 then
18 vβ � v ;

19 color[v] � black ;
20 return (vα;vβ)

Algorithm 4: Discovery phase algorithm for Packed-Interval graphs run independently on each processorpz.
For simplicity, assume that the min(x;y) and max(x;y) functions become an assignment toy whenx� /0.

representation. Then, we have entrance vertexv0 that reaches exit verticesvα throughvβ, except for at least one
exit vertexvx with label betweenvα andvβ. vx must be reachable by at least one other entrance vertex, sayv1, or
elsevx could have been trivially relabeled outside of this range. By planarity,v0 has a path tovα and a path tovβ,
but no path tovx. v1 has a path tovx that does not cross either of the two paths fromv0. This is a contradiction,
though, since the path fromv1 to vx must cross one of the two paths fromv0. Thus, the subgraph is representable
using convex notation. In fact, we will assume that the graph partitioning performeda priori to the cycle detection
provides this labeling, as it is commonly used in the partitioning heuristics.

4 Parallel Cycle Detection Complexity Analysis

In Section 4.1 we first describe the class of input graphs that will be used to analyze both the theoretical and em-
pirical performance of our cycle detection algorithms. Section 4.2 and 4.3 present the theoretical analyses of the
parallel algorithms for the Express and Packed-Interval graph representations, respectively. Finally, Section 4.4
reports on the experimental results for both approaches.

4.1 Experimental Input Graph

The analysis and running times for the parallel cycle detection algorithms are strongly dependent on the input. To
illicit a worst-case analysis and performance for a typical and difficult class of input graphs, we use the following
family of graphs. Letp be the number of processors andn= 22d be the number of vertices in the directed, planar
graph, ford � log2

p
p. The vertices are arranged in a regular, two-dimensional square mesh with

p
n vertices

8
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1 MergeGraph-PIG (PIG G1, PIG G2, step)
f Merge together Packed-Interval subgraphsPIG G1andPIG G2g ;

f The vertex set of the result is the union of the input graphs’ verticesg ;
2 V[PIG G0] �V[PIG G1][V[PIG G2] ;
3 transfer the Packed-Intervals fromPIG G1 andPIG G2 to the corresponding vertices inPIG G0 ;
4 foreach initial trans-arc in PIG G1 and PIGG2do

f The terminal vertexvt , originally assigned to processorpα, afterstepmerging steps,(0� step�
logp�1), is now located on processorpbα=2step+1c g ;

5 if the terminal vertexvt =2V[PIG G0] then
6 transfer this trans-arc to the corresponding exit vertex inPIG G0 ;

else
f assume w.l.o.g. the trans-arc(vi ;vt) exitsPIG G1and entersPIG G2g ;

7 if i is contained in any ofvt ’s intervalsthen
8 HALT: A cycle has been detected;

f Note thatvt may have no predecessors or Packed-Intervalsg ;
9 foreachpredecessor(vp) of vi do

10 combine the intervals fromvi into those ofvp;
11 removeverticesvi andvt . ;
12 if a Packed-Interval inPIG G0 is lower- (upper-) bounded byα (β) then
13 the interval endpoint should be incremented (decremented) ;
14 removeany interval where endpointα > β ;

15 return PIG G0 ;

Algorithm 5: Packed-Interval subgraph merge algorithm.

on each side. The blocks of
q

n
p�

q
n
p vertices are partitioned one to a processor, using row-major assignment

of the blocks to processors. Each vertex has arcs to the vertices to its east and south, if the vertices exists. An
additional arc is added from the southeast-most vertex to the northwest-most vertices, creating cycles of length
at least

p
2n. The vertices in blockj on processorj, (0� j � p�1), are labeled fromj n

p to ( j +1) n
p�1, by

12 13 4 27 28 2029

14 15 5 26 30 31 2110

8 7 6 25 24 23 22

32 34 35 48 49 50 51

9

33

43 44 45 36 59 60 61 52

42 46 47 37 58 62 63 53

1 3 16 17 182 190

40 39 38 57 56 55 5441

11

P1

P3P2

P0

Figure 3: Example of a Lattice Input Graph withn= 64 andp= 4.

9



UNM Technical Report: EECE-TR-99-004

first consecutively labeling the border vertices, then the internal vertices. Figure 3 shows an example of this input
graph forn= 64 vertices andp= 4 processors. Both the partitioning and the labeling are determineda priori by
the graph partitioning tool such as MeTiS.

4.2 Express Graph Representation Analysis

The running time of the Express algorithm is strongly dependent on the input graph, and we consider the family
of typical graphs described in the previous section. In this case, each processor holds a sub-lattice ofn

p vertices

with O
�q

n
p

�
boundary vertices.

Each processor independently runs the discovery phase with time complexity as follow. The initial coloring

of vertices takes O
�

n
p

�
time. The visiting of each vertex takes O

�
n2

p2

�
to construct the reachability sets. This

worst case time is tight when we consider an input of a chain of vertices, each with a constant number of initial

trans-arcski � 6. In this case, the reachability sets will have total size of∑
n
p
i=1 ∑

n
p
r=i kr � 6∑

n
p
i=1 i =O

�
n2

p2

�
. Sorting

the initial trans-arcs (at most a constant numberk per vertex) by terminal vertex processor number takes O
�

n
p

�
using radix sort. Finally, exchanging trans-arc information takesτ+ n

pσ communication cost. Thus, the total time

for the discovery phase isτ+O
�

n
p

�
σ+O

�
n2

p2

�
.

The express graph construction in the second phase takes O
�

n2

p2

�
time, since there are at mostn

p entrance and
n
p exit vertices, and no more express arcs than the product of these two.

To bound the cost of the third phase, we assume that in the worst case, during each merging step, subgraphs
that have no trans-arcs in common may be sent between processors. Thus, during each successive merge step, the
size of each subgraph would double. There are a total of logp merging steps, with stepi, (1� i � logp), taking
τ+Sexp(i)σ communication and O(Sexp(i)) computation time, whereSexp(i) is the size of the largest subgraph

during stepi. During stepi, there are O
�

2
i
2

q
n
p

�
entrance and exit vertices, and O

�
2i n

p

�
express arcs. Therefore,

the total merging complexity isτ logp+O
�

np
p

�
σ+O

�
np
p

�
.

Thus, the total complexity for cycle detection using the express graph representation isτ logp+O
�

np
p

�
σ+

O
�

n2

p2

�
for n� p

3
2 .

4.3 Packed-Interval Graph Complexity Analysis

The modifiedvisit procedure for Packed-Interval graphs is described in Algorithm (4). Algorithm (5) presents
the new method for merging two Packed-Interval subgraphs.

The Packed-Intervals algorithm costs O
�

n
p

�
+ τ+O

�
n
p

�
σ in the discovery phase, and O

�
n
p

�
to construct the

Packed-Intervals graph in the second phase. The merging during stepi, (1� i � logp), assuming the worst case
as in the analysis of the express graph approach, has communication costτ+Spig(i)σ and, because the merging
cost of two Packed-Interval subgraphs is linear in the size of the two subgraphs, O(Spig(i)) computation, where

Spig(i) is the size of the largest subgraph during stepi. During stepi, there are O
�

2
i
2

q
n
p

�
entrance and exit

vertices, and in a significant reduction from the express graph approach, the arc information can be encoded in

Packed-Intervals using O
��

2
i
2

q
n
p

�
2i
�

space. Thus, the total merging cost isτ logp+O(p
p

n)σ+O(p
p

n).

Therefore, the total complexity for cycle detection using our novel Packed-Intervals graph representation is

τ logp+O
�

n
p

�
σ+O

�
n
p

�
for n� p4. As we will demonstrate experimentally in the next section, because this is

10
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a worst-case derived bound, anyn� p achieves good speedup in practice.

4.4 Experimental Results

In this section, we compare and evaluate the empirical performance of our Express and Packed-Interval graph
representation algorithms for cycle detection with the theoretical analyses. Our implementations use the stan-
dard message passing interface (MPI), and ran on the National Computational Science Alliance / University of
New Mexico “Roadrunner” Linux SuperCluster [3]. Roadrunner contains 64 SMP nodes (128 processors) in-
terconnected by Myrinet, a high-performance gigabit switched network. Each node in the cluster contains dual
450 MHz Intel Pentium II processors with 512MB RAM and 6.4GB hard disk. Our MPI implementation uses
the Portland Group C compiler, MPICH-GM version 1.1.2.4 (the Myricom extension of MPICH for Myrinet),
Myrinet GM drivers 1.0.4, Redhat Linux 5.2, and the Linux SMP kernel 2.2.10. In our experiments, we are using
a single processor per node.

Execution Times for Cycle Detection Algorithms
on 4 Linux Supercluster Nodes

Problem Size (log 2 n)

12 14 16 18 20 22 24

T
Im

e 
(s

)

0.001

0.01

0.1

1

10

100

Parallel Express Graph Representation
Parallel Packed-Intervals Graph Representation
Sequential Algorithm (on P=1 node)

Figure 4: Comparison of the Sequential and Parallel Cycle Detection Algorithms.

In Figure 4 we compare the total running time for our parallel cycle detection algorithms on four processors
with that of the best-known sequential algorithm. We use a log-log plot to capture the large range (several
magnitudes) of input sizes and running times. Notice that in all cases, the best-known sequential approach is faster
than the parallel Express algorithm. In addition, the largest problem that can be run for Express (n= 218 vertices)
is 16 times smaller than the largest sequential problem that can be run on a single node (n = 222 vertices). On
the other hand, the Packed-Intervals algorithm on four processors can process an input four times larger (n= 224

vertices) than the sequential approach, and Packed-Intervals exhibits an almost linear speedup in comparison with
the sequential approach.

Next, we present performance graphs that are normalized to the running time per vertex. This normalization
allows a comparison that spans a large range of graph sizes (from 1024 to more than 256 million vertices). For
each algorithm, machine size, and problem size, the running time is split into the corresponding four steps: 1)
computation required to find cycles on each local subgraph, 2) sorting and communication of the trans-arcs during
the discovery phase, 3) construction of express graph in either the Express or Packed-Interval graph representa-
tion, and 4) the merging of the subgraphs.

Figure 5 shows the performance of our cycle detection of the lattice input, for (A) 4 processors, (B) 16

11
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Performance Analysis of Cycle Detection using 
Express Graph Representation
on 64 Linux Supercluster Nodes
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Performance Analysis of Cycle Detection using 
Express Graph Representation
on 16 Linux Supercluster Nodes
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Performance Analysis of Cycle Detection using 
Express Graph Representation
on 4 Linux Supercluster Nodes
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Figure 5: Performance of cycle detection using the Express graph representation

processors, and (C) 64 processors, and increasing problem sizes from 1024 vertices, to the largest problem that
fits in memory, with each input four times larger than the last. Since we found a theoretical total complexity of

τ logp+O
�

np
p

�
σ+O

�
n2

p2

�
, the normalized (1=n) running time isτ logp

n +O
�

1p
p

�
σ+O

�
n
p2

�
. Thus, for fixed

machine sizep, and as our experimental results confirm, the normalized running time per vertex increases at a
rate linear in the problem sizen.

Figure 6 shows the corresponding performance for the Packed-Intervals graph representation, for (A) 1 pro-
cessor, (B) 4 processors, (C) 16 processors, and (D) 64 processors, and increasing problem sizes from 2048
vertices, to the largest problem that fits in memory, with each input four times larger than the last. Plot 6(A) cor-
responds to the best sequential implementation for cycle detection and does not run any parallel steps. Since

we found a theoretical total complexity ofτ logp+ O
�

n
p

�
σ + O

�
n
p

�
, the normalized (1=n) running time is

τ logp
n +O

�
1
p

�
σ+O

�
1
p

�
. Thus, for fixedp, and validated by the empirical performance, the normalized run-

ning time becomes constant asn increases. For small machine sizes, the discovery phase dominates the running
time per vertex, but for large machine sizes, merging dominates. In addition, notice that in all cases, the running
time per vertex is on the order of at most a few microseconds for Packed-Intervals, versus milliseconds for the

12
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Performance Analysis of Cycle Detection using 
Packed-Intervals Graph Representation

on 1 Linux Supercluster Node
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Packed-Intervals Graph Representation

on 4 Linux Supercluster Nodes
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Performance Analysis of Cycle Detection using 
Packed-Intervals Graph Representation

on 16 Linux Supercluster Nodes
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Figure 6: Performance of cycle detection using the Packed-Intervals graph representation

Express approach.

5 Discussion

We have discovered a new algorithm for efficiently detecting cycles in planar digraphs, using a compact data
structure called the Packed-Intervals graph representation. We have demonstrated both through theoretical and
practical analyses an algorithm that scales optimally with both machine and problem size, and in fact, is faster
than the sequential algorithm for a problem of at least a thousand vertices. In addition, our new approach can
solve large instances of graphs that previously could not be solved on current high-performance machines.

This technique can be applied to three-dimensional simulations that commonly detect cycles in planar cuts
at various displacements and orientations. We also feel that the planar approach here may generalize to three-
dimensional geometric graphs and will investigate further. We are also investigating other graph theoretic algo-
rithms that may be significantly improved using the Packed-Intervals data structure.
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