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Abstract

In this technical report we outline a control framework for a utility-maintained central power plant in a fu-
ture smart-grid integrated with renewable distributed generators at customer premises having independent time-
dependent household load demands. In traditional electric grid planning, the uncertainty that the utility has to
deal with arises mainly due to the random consumption behavior of households. However, in future smart-grids
there is to be a second source of uncertainty due to the inherent intermittent nature of integrated renewable dis-
tributed generations such as solar, wind and tidal resources at customer premises that would also be integrated
to the electric grid. Different demand response and demand side management schemes have been proposed to
affect customer load demands, but not much work has been focused on mitigating the uncertainty due to this
ever-increasing penetration of renewable generation. Difficulty comes from the fact that renewable generation
can be heavily affected by weather\climate conditions. One approach to address this is to develop sophisticated
prediction models of the natural environment which, however, could proven to be be even harder than general
weather forecast since renewable generation can be a function of many weather condition factors, not to mention
other factors related to renewable generation facilities. Thus it is important for the utility to be able to adjust its
power output in real time, taking in to account all the uncertainties mentioned above. Towards this end, we first
propose a finite state non-stationary Markov chain model to represent household load demands. The proposed
model is tested against real measured data to justify its validity. Next, we propose a quadratic stochastic reference
tracking scheme for the utility generation control. Based on the state space representation of an assumed syn-
chronous generator, we propose control rules corresponding to different assumptions on reference signals. These
assumptions corresponds to different levels of knowledge available to the utility, which are known deterministic
reference signal, stochastic reference signal with known moments and stochastic reference signal with known
reference system dynamics. Simulation results are presented for tracking performance analysis and comparison.

Keywords
Smart grid control, load demand modeling, stochastic reference tracking, renewable distributed generation.
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1 Introduction

The Smart-grid is supposed to be intelligent, efficient, resilient and green [2], enhancing every facet of the electric
system, including generation, transmission, distribution and consumption that will transform the current grid to
one that functions more cooperatively, responsively and organically. As renewable generation, which is mostly
based on solar, wind and tidal resources, grows at a rapid pace, renewable distributed generation (RDG) becomes
a necessary and desirable component of a cleaner energy future. However, there are many technical challenges
to increased penetration of RDG, such as voltage rise effects, power quality and power grid protection when
they are to be integrated in to the traditional power grid (to form a smart-grid). The most challenging aspect of
integrating renewable distributed generators (renewables) is dealing with their inherent intermittent generation
profile. Historically, in the equation of supply and demand, operators have primarily had to deal with the demand
variable. With more integrated renewable distributed generators coming online, however, operators need more
efficient and effective control schemes to balance variables on both sides of the equation [13].

Different approaches have been proposed to overcome the intermittent nature of renewable generation. In
[16], the proposed robust unit commitment solution methodology helps the power system operators in optimal
day-ahead planning with indeterminate information about the wind generation. A particle swarm optimization
based scenario generation and reduction algorithm is used in [16] for modeling the uncertainties. The stochastic
unit commitment problem is solved by using a parameter-free self-adaptive particle swarm optimization algo-
rithm. An alternative approach for dealing with the intermittent nature of renewables, pursued in, for example
[6] and [11], is to develop sophisticated wind and cloud prediction models so that operators can be more accurate
in predicting renewable production in advance. However, currently even a single day ahead wind forecast can
be dramatically erroneous. A third approach is to build renewable resources in geographically diverse locations.
Geographic diversity allows for the generation imbalance of different renewable resources to ”net” against each
other over the system. Other approaches include building more balancing reserves from quick ramping thermal
units.

We believe that in future smart-grid technology one of the main responsibilities of the utility companies
will be to maintain the grid stability and ensure grid reliability in the face of integrated RDG’s which will be
driven by the diverse individual self-objectives of the customers. Allowing for distributed RDG’s to flexibly
interact with the power-grid, as opposed to being passive energy consumers as today, will be the key to achieving
expected efficiencies of the smart-grid technology. However, this interaction as customers reverse their roles from
consumers to energy generators and vice versa in real-time coupled with the inherent intermittent nature of their
RDG’s would pose a significant challenge to the utility companies in maintaining grid stability and reliability. The
purpose of this technical report is to formulate the problem of grid control to ensure its stability and reliability in
the face of integrated RDG’s that are driven by their own self-objectives.

An important difference between conventional and renewable generators is that the former is fully control-
lable although the latter is at the mercy of the nature’s randomness. Thus, in this technical report we propose a
stochastic control scheme for conventional central power generator with suitable modeling of RDG’s and power
consumption behavior of individual households. We first present and compare different models for renewable
generation and power consumption modeling of individual households. Then we propose a linear quadratic
stochastic reference tracking control problem to make the conventional generation output to track the reference
signal while keeping the designated quadratic cost as small as possible. We discuss the optimal control law
for three scenarios according to different assumptions about the reference signal: 1) deterministic reference; 2)
stochastic reference with known second order moments; 3) stochastic reference as the output of a known dynamic
system driven by white noise.

The rest of this report is organized as follows: In Section 2 we formulate the control problem for a smart-grid
that integrates a single conventional central plant with multiple distributed customers equipped with renewable
generators. Next, models for renewable distributed generation, power consumption of individual households
(customers) and conventional plant are proposed in Section 3. To arrive at a tractable control problem, for
the conventional plant in Section 3 we assume a synchronous generator that can be modeled by a third order
system. Following a linearization approach we next obtain a linear model which is then used to formulate and
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solve a stochastic linear quadratic tracking control problem for the conventional generation to follow a desired
reference signal in the face of integrated renewable distributed generators in Section 4. We specifically discuss
three different scenarios in Section 4 with different assumptions on the form of the reference signal to be tracked,
and derive the optimal control laws for each of these scenarios. In section 4, we also present simulation results of
the control performance and finally conclude this report in Section 5.

2 A Smart-grid Control Model with Integrated Multiple Renewable Dis-
tributed Generators

We assume that there is a single utility-maintained, central conventional generator which support load demands
from all customers in the assumed electricity market. The smart-grid is then formed by integrating this central
generator with multiple renewable distributed generators (such as solar panels) at distributed customer premises
to form a single networked-system as shown in Fig. 1. The conventional generator is assumed to be controllable
and has a stable power output. The purpose of integrating renewable generation to the utilitys own electric
grid is that each household can at least partly support their load demands by consuming the renewable power
generated locally generated renewable power, thus reducing the total load that needs to be supported by the central
conventional generator. Compared to conventional electricity generation, the distributed renewable generation is
clean and free of long distance power transmission requirements. However, as mentioned earlier, renewable
generation is highly environment-dependent (such as insolation or cloud movement), thus is intermittent and
difficult to predict. In practice, it may be the case that the customers would also be equipped with storage
devices, such as PHEVs, to maintain at least short-term stable power supply from the renewables in the face of
uncertainty related to their electricity generation. This is an important issue that our current work is focused on
and thus we do not discuss customers equipped with storage units in this technical report. Instead, we assume
that the renewable generation is to be the quantity of interest.

Figure 1: A smart-grid made of a single utility-maintained central conventional plant integrated with multiple
renewable distributed generators at distributed customer premises.

As far as the interaction between the grid and a particular customer is concerned, the final demand of interest
is then the difference between the customer’s renewable generation and its consumption needs. This difference
between its own renewable generation and power load demand is termed the net power demand: A positive net
power demand means that the customer is in the buying-mode (buying electrical power from the grid), while a
negative net power demand indicates that it is in the selling-mode in which the customer sells excess electrical
power to the grid.

Clearly, both renewable generation and power load demand of a customer are better modeled as time-varying
and possibly random, rendering the net power demand to be also time-varying and possibly random. In addition,
of course the net power demands from different customers are to be also varying. Hence, the conventional
generator maintained by the utility is to play an important role in keeping balance between the generation and
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demand in the whole electricity market by filling the gap between the total load demand and total renewable
generation, which is also the sum of all net power demands.

In the following, we adopt an abstract framework to model the objective of the utility-maintained central
plant concerning the grid: i.e. we will assume that its objective is to ensure that the overall power output to
follow a given reference signal in the presence of integrated RDG’s and their net power demands. Note that, this
framework is rich enough to model many different grid stability and reliability objectives without having to worry
about physical processes involved.

3 Mathematical Models for Renewable Distributed Generation, Power
Consumption of Individual Households and Conventional Generators

To define a tractable control problem for the smart-grid maintenance we need to mathematically model the RDG,
the household/customer load demand and the central plant dynamics. Of course, to obtain realistic predictions
and performance these models have to be realistic and conform to the measured data. In the following, we provide
overviews of existing models for these as well as the models adopted in our work.

3.1 Renewable Distributed Generation Modeling

The intermittence of renewable generation mainly comes from the uncertainty of environment, such as variations
of wind speed, solar irradiation and cloud movement. Modeling these weather factors by themselves are very
difficult and are out of the scope of this paper although there are previous work that has suggested dynamic
system models for renewable generation [3, 14]. Note that, in our framework what we are mainly interested in
is the renewable generation output, rather than the system model of renewable generators. This RDG output can
reasonably be modeled as a random process. What type of random distribution is appropriate model the RDG
output would obviously depend on what type of renewable generation we are interested in. In this report, we
mainly confine ourselves to discussing wind generation. The wind speed distributions are often characterized
by Weibull distributions [6, 11]. Historical hourly data for the wind farm site collected over a significant time
period, however, are normally required to obtain the shaping parameters of the suitable Weibull distribution. In
general, depending on these shaping parameters the distribution can have various shapes. Interestingly, the wind
speed probability distributions obtained for three diverse geographic locations in Canada, were shown to be close
to a normal distribution in [11]. Following this, in this report, we will assume that the RDG output is Gaussian
distributed.

3.2 Load Demand Modeling

Two approaches are widely adopted in literature for load demand modeling. The first approach is component-
based load modeling approach, which reconstructing the expected daily electrical loads of a household based on
appliance sets, occupancy patterns, and statistical data. For example, in [19, 7, 20, 4], the authors constructed such
electric load profiles from individual appliance profiles. By considering availability and proclivity functions, they
predict whether someone is available (at home and awake) and their tendency to use an appliance at any given
time. These functions were applied to predict individual appliance events, which were then aggregated into a
load profile. The second approach is termed the measurement-based load modeling approach. In [15], the authors
used this approach to create electrical profiles to examine demand side management strategies for Finland. They
used a different bottom-up approach based on statistical consumption data, and not detailed occupant behavior.
Electrical data from hundreds of apartments in Finland formed the basis for the statistics used to fabricate these
hourly demand profiles. In [18], a methodology of measurement-based load modeling for transient stability
analysis is proposed and Genetic Algorithms (GA) is used to estimate load model parameters.

3
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Note that, in practice it can be expected that a customer load demand will be highly correlated in time. In many
cases, there may also be spatial correlations among distributed load demands. However, both above approaches
fail to sufficiently emphasize and capture such correlation properties of a customer load demand profile. Hence,
in this work we propose a disturbed finite state Markov chain model for the household load demand. The model
is tested against real data measured by the Electric Reliability Council of Texas in order to verify its applicability
in practice.

According to the real data measured from the power market [1], load demand profile shows high correlation
over consecutive time instants. The difficulty in modeling the load demand is due to the time dependent ran-
domness of power consumption activities. Thus the stochastic process that needs to describe the load demand
profile is not stationary. Hence, in the following we propose a non-stationary, finite states Markov chain to model
a household load demand. We will assume that the load demands take values among a certain number of discrete
levels (states in Markov chain). At each time step, the probability of the occurrence of certain amount of load
demand is only determined by the state and transition matrix in the previous time step.

Based on the data pool of the Electric Reliability Council of Texas [1], in which both forecasted and actual
power load were recorded every 15 minutes for nearly 200 different locations, we consider a Markov chain of
96 time steps corresponding to all 15 minutes intervals in a day. The entire range from minimum to maximum
load demand are uniformly divided into consecutive intervals, and the mean and variance of the data samples in
each interval are calculated. The model is then conducted as follows: First, we uniformly divide the range of load
demand into certain number of intervals, the mean value of each interval is adopted as the state of the Markov
chain. All data samples in a interval is represented by the state value of that interval. Second, we calculate the
transition matrix for each step based on the statistics of transition behavior between states of consecutive intervals.
In our work, we derive a Maximum-likelihood estimator (MLE) for the transition matrix at each time step from
the real data.
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Figure 2: Mean of real household load and load demand profile generated by a 6-state Markov chain model.

Figures 2 and 3 show the mean and standard deviations over time of actual household demand data and
the Markov model generated profile, respectively. In these figures we have assumed that the household load
demand can be represented by a 6-states Markov chain. Note that, the most suitable model parameters can also
be determined by using real data to estimate them, though we do not discuss them in this report. Indeed, Figure
4 shows the variations of average errors in mean and standard deviation as a function of the number of states
assumed in the Markov chain model. It can be seen that both errors decrease as number of states increase. In
general, we may expect this to be true since larger number of states allows for smaller quantization steps in
demand so that the quantization error is reduced. However, the trade-off would be the resulting computational
complexity.
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Figure 3: Standard deviation of real household load and load demand profile generated by a 6-state Markov chain
model.
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Figure 4: Dependance of average mean and standard deviation of household load demand on the number of the
states assumed in the Markov chain model.

3.3 Synchronous Generator Modeling and a State-space Representation for the Con-
ventional Power Plant

In this sub-section, we derive a state-space representation for a synchronous generator based conventional central
plant. Based on the system model developed, we will design a stochastic control framework to make the central
plant track the load demands from households in the next section .

There are different types of generators that are used in conventional power plant facilities including squirrel-
cage induction generator, doubly-fed induction generator, self-excited induction generator and synchronous gen-
erator. Much work has been done on dynamic system modeling of these generators [8, 17, 10, 5]. In the following,
we assume the widely adopted synchronous generator as the conventional power plant model and derive a state
space representation of the corresponding dynamical system.

Depending on required model precision and affordable complexity, synchronous generator dynamics are mod-
eled by first-order, third-order or fifth-order systems [21]. In this paper, we adopt the commonly used third-order
nonlinear model. Let us introduce the following variables where all parameters above defined in per unit values:
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zd , zq and z
′
d are the augmented reactance of the line and transformer reactances are added with them, δ is the

rotor angle with respect to the machine terminals, ω is the relative speed of the rotor in rad/s, v
′
q is the transient

internal voltage of armature, EFD is the equivalent electromotive force (EMF) in the excitation coil, id , iq are the
direct and quadrature axis stator currents, J and D are the rotor inertia and the damping factor, P is the terminal
active power per phase, T

′
do is the direct-axis transient time constant, Te is the output electric torque, Tm is the

input mechanical torque, vt is the generator terminal voltage, V is the infinite bus voltage, zd is the direct axis
reactance, z

′
d is the direct axis transient reactance and zq is the quadrature axis reactance.

With above definitions, a third order nonlinear model for a synchronous generator can be described by the fol-

lowing equations [9]: δ̇ = ω, ω̇ = 1
J (Tm−Te−TD), and v̇

′
q = 1

T ′do

(
EFD− v

′
q−

(
zd − z

′
d

)
id

)
, where id =

v
′
q−vt cosδ

z′d
,

iq = vt sinδ
zq

and v̇
′
q = 1

T ′do

(
EFD− v

′
q−

(
zd − z

′
d

)
id

)
. For a single synchronous generator, it is assumed that the field

voltage, rotor angle and the electrical power can be measured. Thus, by defining the system state xc and input uc
as

xc =




x1
x2
x3


 =




δ
ω
v
′
q


 and uc =

[
u1
u2

]
=

[
EFD
Tm

]
,

a nonlinear state space model of a synchronous generator is can be written as ẋc = A
′
cxc +B

′
cuc + f (xc), where

A
′
c =




0 1 0
0 −D

J 0

0 0 − 1
T ′do

(
zd
z′d

)


 , B

′
c =




0 0
0 1

J
1

T ′do
0




and

f (xc) =




0

− 1
J

(
vt
z′d

x3 sinx1 + v2
t
2

(
1
zq
− 1

z′d

)
sin(2x1)

)

1
T ′do

(
zd−z

′
d

z′d

)
vt cosx1




To simplify the control problem to follow, we may linearize the above non-linear dynamics in the vicinity
of an operating point ‘o’. Following the procedure in [9], indeed it can be shown that the corresponding linear
dynamic equation is ẋc = Acxc +Bcuc, with




ẋ1
ẋ2
ẋ3


 = Acxc +Bcuc =




0 1 0
−K1

J −D
J −K2

J
− K4

T ′do
0 − 1

K3T ′do







x1
x2
x3


+




0 0
0 1

J
1

T ′do
0




[
u1
u2

]
(1)

where K1 = vt
z′d

x3o cosx1o + v2
t
2

(
1
zq
− 1

z′d

)
sin(2x1o), K2 = vt

z′d
sinx1o, K3 = 1

1+
zd−z

′
d

z
′
d

= z
′
d

zd
and K4 =

(
zd − z

′
d

)
vt sinx1o

z′d
.

Since the active power generated by the synchronous generator is the most important quantity for our control
framework, we take it to be the output of the system. Thus, the system output equation is

yc =
[

K1 0 K2
]



x1
x2
x3
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where K1 = vt
z′d

x3o cosx1o + v2
t
2

(
1
zq
− 1

z′d

)
sin(2x1o) and K2 = vt

z′d
sinx1o as above.

Next, we may discretize the above original continuous system (1) to obtain the following discrete-time system
representation for the synchronous generator central plant:

x[k +1] = Ax[i]+Bu[i]
y[i] = Cx[i] (2)

where x[i] = xc (kh), u[i] = uc (kh), y[i] = yc (kh), A = eAch, B =
∫ h

0 eAcτBcdτ and C = Cc.

It is worth mentioning that for a central power plant which consists of multiple synchronous generators, the
same dynamic equations as above still hold for the augmented system, if we were to assume that these generators
are decoupled.

4 Stochastic Tracking Control of a Conventional Generator in an RDG-
integrated Smart-grid

As mentioned in the previous section, the goal of the control design for the central generator is for its active power
to fill up the difference between the total load demand and total renewable generation from all households. This
difference acts as a reference which the conventional output need to track. Denote by yr[i] the total power that
households buy from the grid which then is the amount of power the conventional generator need to provide. The
tracking control problem diagram is shown in Fig. 5.

+
central conven-

tional generation 

plant

Kalman-Bucy filter

_

reference power
generated 

powerController
control 

signal

estimated 

state

tracking 

error

Figure 5: Tracking control of a utility-maintained central plant in an RDG-integrated smart-grid.

From the point of view of controller design for the central plant, then, the relevant quantity is the reference
signal yr. From its definition, the assumed models for the load demand and the RDG’s directly determine the
assumptions to be made on yr. In the following, to derive optimal control policies we start with a simple scenario
with relatively strong assumptions on this reference signal yr, and then proceed to more general and complex
situations. Note that stronger assumptions on the reference signal means that more information about household
load demands and renewable generators is required to implement the control policy for the central plant.

4.1 Optimal Tracking of a Deterministically Known Net Load

In the first scenario, we assume that the reference signal is deterministic and known by the central plant: i.e. the
difference between the total load demand and total renewable generation from all households is a deterministic
quantity known to the central plant. Though this is not true in practice as it is, this model is still of importance
because it can be applied to a situation in which the central plant uses deterministic estimations of renewable
generation and household load demands for planning its electricity generation. Moreover, the solution to this
scenario is the basis of control policies in more complicated scenarios.

For the time invariant linear system (2), we may consider a time variant quadratic objective function U to
measure the tracking control performance over control interval [i0, i1], as below:

7
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U = ∑i1
i=i0

1
i1−i0

[(y[i]− yr[i])
T R1[i] (y[i]− yr[i])+uT [i]R2[i]u[i]] (3)

= ∑i1
i=i0

1
i1−i0

[(Cx[i]− yr[i])
T R1[i] (Cx[i]− yr[i])+uT [i]R2[i]u[i]] (4)

where R1[i] is a positive semi-definite matrix and R2[i] is a positive definite matrix. The term (y− yr)
T R1 (y− yr)

in the above cost function is a measure of the control accuracy, and the term uT R2u is a measure of the control
effort. The initial condition is given by x[i0] and the final condition x[i1] is free with i1 fixed. In other words,
we require that the squared error, where error e[i] is defined as e[i] = y[i]− yr[i], to be as small as possible with
minimum control effort.

From standard linear quadratic control theory [12], the optimal control law for the above problem is then
given by u[i] = −F [i]x[i], i = i0, i0 + 1, . . . , i1−1, where F [i] =

{
R2[i]+BT

[
CT R1[i+1]C +P[i+1]

]
B
}−1 BT ...[

CT R1[i+1]C +P[i+1]
]

A. Here the inverse always exists and the sequence of matrices P[i], i = i0, i0 +1, . . . , i1
satisfies the matrix difference equation P[i] = AT

[
CT R1[i+1]C +P[i+1]

]
[A−BF [i]], i = i0, i0 + 1, . . . , i1 − 1,

with the terminal condition P[i1] = CT R1[i1]C. However, since in practice the state is usually not directly avail-
able for feedback control, we need to reconstruct the state based on the output observation. Thus, the optimal
feedback control law is given by u[i] = −F [i]x̂[i], where the observer is of the form x̂[i + 1] = Ax̂[i] + Bû[i] +
K[i] (y[i]−Cx̂[i]). It should be noted that since there are no system disturbance and observation noise, a certain
arbitrariness remains in the choice of the gain matrix K[i].

4.2 Optimal Tracking of a Stochastic Net Load Reference Signal with Known Moments

In general, both load demands and renewable generation are stochastic in nature due to random behavior of
household energy consumption and the intermittence of renewable distributed generation. However, as mentioned
in section 3, these random quantities can be well modeled by different distributions (e.g. Weibull distribution for
wind velocity and Markov chain model for household load demand modeling). As a result, the moments of the
reference signal that need to be tracked by the central plant can be calculated. Thus, in this section, we assume
that the reference signal is a stochastic signal with its first and second order moments known to the central plant.
In practice these can be estimated and adapted as necessary.

Denote by ȳr and My the mean process and second order moment matrix (slightly different from covariance
matrix) of yr. In the case of a stochastic reference tracking control, the objective function needs to be modified
so that the performance index is optimized in the sense of expectation over all realizations:

U =
1

i1− i0
E

{
∑

[
(y− yr)

T R1 (y− yr)+uT R2u
]}

(5)

=
1

i1− i0
∑


tr(R1My)− (ȳr)

T R1ȳr︸ ︷︷ ︸
deterministic terms

independent of control input

+(y− ȳr)
T R1 (y− ȳr)︸ ︷︷ ︸

control accuracy measure

+ uT R2u︸ ︷︷ ︸
control effort measure


 (6)

It can be observed then that the optimal control law for this mean-square optimization problem is the same
as that of a standard deterministic tracking problem as in the previous section in which the known deterministic
reference signal is the mean process of the stochastic reference signal. The corresponding deterministic tracking
objective can be written as U

′
= 1

i1−i0 ∑[(y− ȳr)
T R1 (y− ȳr) + uT R2u], and we indeed have that argmin

u
U =

argmin
u

U
′
.

8
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4.3 Optimal Tracking of a Stochastic Net Load Reference Signal with Known Reference
System Dynamics

Since one may generate a stochastic process by a linear differential equation driven by white noise so that its
power spectral density approximates arbitrarily closely the power spectral density of the original stochastic pro-
cess, more generally we can model the random reference signal process assumed above as the output of a dynamic
system driven by white noise [12]. Moreover, in the following we may further take into account effects of system
and observation noise in our control design, by considering the following system model with disturbance:

x[i+1] = Ax[i]+Bu[i]+w1[i],
z[i] = C[i]x[i],
y[i] = z[i]+w2[i],

where z[i] is the system output and y[i] is the noisy output measurement. The process noise w1 and measurement
noise w2 are assumed to be zero mean white noise processes with auto-covariance matrices Cw1 (i, i+ τ)δ(τ) and
Cw2 (i, i+ τ)δ(τ), respectively. The cross covariance matrix of w1 and w2 is Cw12 (i, i+ τ)δ(τ). Let the initial
state x[0] be a random vector with mean x̄0 and variance matrix Q0. The control interval is i ∈ [i0, i1]. Next, we
assume that the reference signal is generated by the following dynamical system:

xr[i+1] = Arxr[i]+wr1[i]
zr[i] = Cr[i]xr1[i]
yr[i] = zr[i]+wr2[i]

where zr and yr are defined similar to the original system above, xr[0] is a random vector with mean x̄r0 and
covariance matrix Q̄r0, and wr1 and wr2 are white noises with covariance matrices Cr1[i], Cr2[i] and Cr12[i].
With this reference dynamical system model, the original problem can then be formulated as an optimal linear
output tracking problem with incomplete and noisy observation, in which the objective is to minimize U =
∑i1

i=i0
1

i1−i0
[(z[i]− zr[i])

T R1[i] (z[i]− zr[i])+uT [i]R2[i]u[i]].

By considering an augmented system with the augmented state x̃[i] = [x[i],xr[i]]
T , where

[
x[i+1]
xr[i+1]

]

︸ ︷︷ ︸
x̃r [i+1]

=
[

A 0
0 Ar

]

︸ ︷︷ ︸
Ã

[
x[i]
xr[i]

]

︸ ︷︷ ︸
x̃[i]

+
[

B
0

]

︸ ︷︷ ︸
B̃

u[i]+
[

w1[i]
wr1[i]

]

︸ ︷︷ ︸
w̃1[i]

(7)

z̃[i] = z[i]− zr[i] = [C,Cr]︸ ︷︷ ︸
D

[
x[i]
xr[i]

]
(8)

[
z[i]
zr[i]

]

︸ ︷︷ ︸
ỹr [i]

=
[

C 0
0 Cr

]

︸ ︷︷ ︸
C̃

[
x[i]
xr[i]

]

︸ ︷︷ ︸
x̃[i]

+
[

w2[i]
wr2[i]

]

︸ ︷︷ ︸
w̃2[i]

(9)

the control objective can equivalently be written as Ũ = E
{

z̃T R1z̃+uT R2u
}

, where the system state is incom-
plete, noisy and need to be reconstructed based on the measurements. Note that, we have converted the original
tracking problem to an output regulator problem with the augmented system

x̃[i+1] = Ãx̃[i]+ B̃u[i]+ w̃1[i]
z̃[i] = Dx̃[i]
ỹ[i] = C̃x̃[i]+ w̃2[i],

9
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in which z̃[i] is the controlled variable and ỹ[i] is the noisy observation. The initial state and covariance matrix are
given by x̃[i0] = x̃0 = [x0,xr0]

T and Q̃0. We assume that the initial state is uncorrelated with both process noise
and measurement noise. Thus, [w̃1[i], w̃2[i]] is a joint white noise vector process, and

Q̃0 = E
{
(x̃0− ¯̃x0)(x̃0− ¯̃x0)T }

=
[

Q0 0
0 Qr0

]
(10)

C̃1[i] =
[

Cw1 [i] 0
0 Cr1[i],

]
C̃2[i] =

[
Cw2 [i] 0

0 Cr2[i]

]
, C̃12[i] =

[
Cw12 [i] 0

0 Cr12[i]

]
(11)

Since the system state is not directly available for feedback control, we need to reconstruct the state based on
the noisy measurement. To solve this problem, we need to find a functional u[i] = f (ỹ[i0], ỹ[i0 +1], . . . , ỹ[i1−1], i)
such that the performance index Ũ = E

{
z̃T R1z̃+uT R2u

}
is minimized. According to the separation principal

[12], the solution of the stochastic linear optimal output feedback control problem is given by u[i] = −F [i] ˆ̃x[i],
i = i0, i0 + 1, . . . , i1− 1, where feedback gain is given by F [i] =

{
R2 + B̃T

[
DT R1[i+1]DT +P[i+1]

]
B̃
}−1 B̃T×[

DT R1[i+1]DT +P[i+1]
]

Ã. The sequence of matrices P[i] satisfies the matrix difference equation P[i] =
ÃT× [

DT R1[i+1]DT +P[i+1]
][

Ã− B̃F[i]
]
, with terminal condition P[i1] = R1. Furthermore, ˆ̃x[i] is the min-

imum mean squared linear estimator of x̃[i] given ỹ[i], i = i0, i0 + 1, . . . , i1 − 1. By assuming the nonsingular
case (Cw2 [i] > 0), ˆ̃x[i] can be obtained as the output of the optimal observer [12]: ˜̂x[i + 1] = Ã ˜̂x[i] + B̃u[i] +
K[i]

[
ỹ[i]−C̃ ˜̂x[i]

]
.

Denote by e[i] the reconstruction error e[i] = x̃− ˆ̃x, so that the optimal observer minimize the mean squared
reconstruction error E{eT [i]W [i]e[i]}= tr[Q[i]W [i]] for any predefined positive definite matrices W [i]. The optimal
gain matrices Ki can be obtained from the following recurrence relations:

K[i] =
[
ÃQ[i]C̃T +Ṽ12[i]

][
Ṽ2[i]+C̃Q[i]C̃T

]−1 (12)

Q[i+1] =
[
Ã−K[i]C̃

]
Q[i]ÃT +Ṽ1[i]−K[i]Ṽ T

12[i] (13)

where Q = E
{
(x̃− ˆ̃x)(x̃− ˆ̃x)T

}
is the covariance matrix of the reconstruction error with the initial value Q[i0] =

Q̃0. The initial condition for the observer state is ˆ̃x = ¯̃x0. Based on the optimal analytical controller designed
above, the minimal value of the objective function Ũ can be shown to be

¯̃xT
0 P[i] ¯̃x0 +

i1−1

∑
i=i0

tr
{

DT R1[i+1]DQ[i+1]+
[
P[i+1]+DT R1[i+1]D

]
K[i]

[
C̃Q[i]C̃T + C̃2[i]

]
KT [i]

}
+ tr[R1Q[i1]] (14)

As an example scenario, we may consider a synchronous generator having the following continues time
system parameters:

Ac =




0 1 0
−1 −1 −1
−1 0 −1


 , Bc =




0 0
0 1
1 0


 , Cc =

[
1 0 1.5

]
(15)

The assumed parameters for the quadratic cost function are as follows: K = 10, Q = 1, F = 1, R is identity
matrix. The deterministic and known output reference signal is taken to be yr[i] = sin0.2πi. The initial state is
set as x = [π

2 , π
3 ,1]T . In this simulation, the model for the reference wind power plant is assumed to be the same

as the above conventional central plant. In practice, for real synchronous generators, these matrix parameters can
be calculated accordingly.

Figure 6 shows the simulated tracking performance. As expected, it can be observed that the tracking error
converges to zero very fast. It should be noted that the optimal controller designed above considers wind power as
the only source of renewable generation. When we incorporate other types of renewable generators, the system
model could be different since not all renewable generations can be modeled as dynamical systems (such as
photovoltaics).
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Figure 6: Tracking performance of a utility-maintained central plant in an RDG-integrated smart-grid based on
reference dynamics: The reference signal is one realization of the stochastic output of reference dynamical system
driven by white noise. a) system output and the reference signal. b) tracking error e[i]

5 Conclusion

In this report we developed a model and a stochastic control framework for a utility-maintained central power
plant in an RDG-integrated future smart-grid. We first presented different models for renewable generation and
household load demand. A finite state non-stationary Markov chain model was constructed for load demand
modeling of individual customer premisses based on measured data. A model parameter estimation method has
been incorporated so that the model can be tuned based on the available real data. Then we formulated and solved
a linear quadratic stochastic reference signal tracking control problem to make the conventional generation output
to track a reference signal determined by the difference between the total load demands and the total RDG while
keeping a defined quadratic cost as small as possible. We discussed the optimal control law for three scenarios
according to different assumptions on the reference signal to be tracked by the central plant: 1) deterministically
known reference net load, 2) stochastic net load reference with known mean process and second order moments,
and 3) stochastic net load reference modeled as the output of a known dynamical system driven by white noise.
Since the system states are usually not directly available for feedback control, we also presented the full state
linear optimal estimator to reconstruct the state from noise corrupted measurement. We showed that for the
output feedback control problem, the separation principle guarantees that the optimal observer and controller can
be designed separately, still preserving the optimality of the original problem. To the best of our knowledge this
provides the first attempt at looking at the control problem faced by a utility in maintaining the grid performance
in the face of customer-owned renewable distributed generators directly integrated into the grid and independent
customer household load demands.
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