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Figure 2. Time series of cold season P (top), E (middle), and ! ! !  (bottom) for 
SWNAN are shown in mm/month for each of the 18 CMIP5 models (colored lines) 
plus the ensemble mean (black lines) to demonstrate the spread of the model 
output. The Historical (1861-2005) and RCP8.5 (2006-2100) simulations are 
concatenated to form continuous time series from 1861-2100.  
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Figure 3. Time series of cold season Tropical Pacific (TPac) Ocean surface air 
temperatures (T) associated with the El Niño Southern Oscillation (ENSO) are 
shown in degrees Celsius for each of the 18 CMIP5 models (colored lines) plus 
the ensemble mean (black line) to demonstrate the spread of the model output. 
The Historical (1861-2005) and RCP8.5 (2006-2100) simulations are 
concatenated to form continuous time series from 1861-2100. TPac T increases 
in the 21st century once the anthropogenic radiative forcing starts to follow the 
RCP8.5 pathway beginning in the year 2006. 
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Figure 4. The 18-model ensemble mean anomalies of P (blue), E, (red), and 
P− E (green) (mm/month) are shown for the northern (SWNAN) and southern 
(SWNAS) subregions of SWNA during the cold (December-May) and warm (June-
November) half-yearly seasons (denoted with superscripts C

 and W). P, E, and 
P− E are shown relative to their 1861-1960 simulated historical means (y=0). 
The 25th to 75th percentile range of P− E over the entire 18-model ensemble is 
shown as a smoothed envelope using a 21-year centered moving average (gray 
shading). Historical (1861-2005) and RCP8.5 (2006-2100) simulations are 
concatenated to form continuous time series from 1861-2100. The fraction of 
total variance in P− E that is accounted for by P is shown for each subregion and 
season. 
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Figure 5. Ensemble mean projected P− E (red line, mm/month) is shown for the 
SWNAN and SWNAS subregions during the cold (December-May) and warm 
(June-November) half-yearly seasons (denoted with superscripts C

 and W). 
Projected P− E is shown relative to the 1861-1960 simulated historical mean 
(y=0). Detrended time series (blue line) are calculated by removing the 2006-
2100 linear trend (black line) from the projected P− E time series. The range of 
interannual variability (blue shading) includes all values between the minimum 
and maximum values of the detrended time series. The fraction of the variance in 
the projected P− E that is accounted for by the projected trend in P− E is shown 
for each subregion and season.  
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Appendix B 

Tables 

 
Table 1. The CMIP5 models used in this analysis are listed along with their 
spatial resolutions. A single iteration from the Historical and RCP8.5 simulations 
are analyzed for each of the 18 models in the ensemble.  
 

Model Modeling Center Model 
Resolution 

ACCESS1.0 Commonwealth Scientific and Industrial Research 
Organization; Bureau of Meteorology 1.25°×1.875° 

ACCESS1.3 Commonwealth Scientific and Industrial Research 
Organization; Bureau of Meteorology 1.25°×1.875° 

BNU-ESM College of Global Change and Earth System 
Science, Beijing Normal University 2.81°×2.81° 

CCSM4 National Center for Atmospheric Research 0.94°×1.25° 
CESM1-BGC National Center for Atmospheric Research 0.94°×1.25° 

CESM1-CAM5 National Center for Atmospheric Research 0.94°×1.25° 

CSIRO-Mk3.6 
Commonwealth Scientific and Industrial Research 
Organization in collaboration with Queensland 
Climate Change Center of Excellence 

1.875°×1.875° 

FGOALS-G2.0 Institute of Atmospheric Physics, Chinese 
Academy of Sciences, Tsinghua University 3°×2.81° 

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory 2°×2.5° 
GISS-E2-H NASA Goddard Institute for Space Studies 2°×2.5° 
GISS-E2-R NASA Goddard Institute for Space Studies 2°×2.5° 

HadGEM2-ES Met Office Hadley Center 1.25°×1.875° 
INM-CM4 Institute for Numerical Mathematics 1.5°×2° 

IPSL-CM5A-
MR Institut Pierre-Simon Laplace 1.26°×2.5° 

MIROC5 
Atmosphere and Ocean Research Institute, 
National Institute for Environmental Studies; Japan 
Agency for Marine-Earth Science and Technology 

1.4°×1.4° 

MPI-ESM-LR Max Plank Institute for Meteorology 1.875°×1.875° 
MRI-CGCM3 Meteorological Research Institute 1.125°×1.125° 
NorESM1-M Norwegian Climate Centre 1.875°×2.5° 
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Table 2. Regression coefficients for the 1861-2100 linear trends in the 18-model 
ensemble mean precipitation (P), evaporation (E), and surface moisture balance 
(P− E). Model biases were removed by subtracting the 1861-1960 mean from 
each time series before calculating P, E, and P− E. Linear trends are calculated 
for the northern (SWNAN), southern (SWNAS), and combined northern and 
southern regions (SWNA), separately for cold (December-May) and warm (June-
November) half yearly seasons (denoted with superscripts C and W). The annually 
averaged linear trend across the entire SWNA (ASWNA) is shown. All trends are 
statistically significant (α = 0.05) except for CSWNAN P (in parentheses). 
 

Linear Trends (mm·month⁻¹·century-1) 
 𝐏 𝐄  𝐏− 𝐄 

C
ol

d 

CSWNAN (-0.2) 1.0 -1.2 
CSWNAS -4.7 -2.7 -2.1 
CSWNA -2.2 -0.7 -1.6 

 

W
ar

m
 WSWNAN -1.8 -1.3 -0.5 

WSWNAS -3.0 -2.1 -0.9 
WSWNA -2.3 -1.7 -0.7 

 

A
nn

ua
l 

ASWNA -2.3 -1.2 -1.1 
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Table 3. The percentage of the 18 CMIP5 simulations that yield significant 
correlations (α = 0.05) between SWNA precipitation (P) in the northern or 
southern subregions (denoted SWNAN and SWNAS) and ocean surface air 
temperature anomalies (T) over the North Atlantic (NAtl), North Pacific (NPac), 
and Tropical Pacific (TPac) oceans. Correlations are calculated over the 
Historical (1861-2005) and RCP8.5 (2006-2100) periods. The percentages of 
significant correlations are arranged by season, with cold season (December-
May) correlations on the left (a and c; denoted with superscript C) and warm 
season (June-November) correlations on the right (b and d; denoted with 
superscript W). Significant correlations are counted only if r>0 for r(SWNA P, 
TPac T) or if r<0 for r(SWNA P, NPac T) and r(SWNA P, NAtl T). Cells in which 
the percentage of significant correlations is >33% are highlighted in blue where 
r>0 and in orange where r<0.  
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