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Summary. Some simple stochastic models of optimal
foraging are considered. Firstly, mathematical re-
newal theory is used to make a general model of the
combined processes of search, encounter, capture
and handling. In the case where patches or prey
items are encountered according to a Poisson pro-
cess the limiting probability distribution of energy
gain is found. This distribution is found to be nor-
mal and its mean and variance are specified. This
result supports the use of Holling’s disc equation to
specify the rate of energy intake in foraging models.
Secondly, a model based on minimization of the
probability of death due to an energetic shortfall is
presented. The model gives a graphical solution to
the problem of optimal choices when mean and
variance are related. Thirdly, a worked example
using these results is presented. This example sug-
gests that there may be natural relationships be-
tween mean and variance which make solutions to
the problems of ‘energy maximization’ and ‘minimi-
zation of the probability of starvation’ similar. Fi-
nally, current trends in stochastic modeling of forag-
ing behavior are critically discussed.

Introduction

Foraging animals search for, encounter, and handle
their prey according to rules which are most ac-
curately described by statements of probability. That
is, we expect stochastic models of foraging behavior
to resemble nature more closely than deterministic
models. However, many models of optimal foraging
behavior are deterministic. There are two reasons for
this. Deterministic models are nearly always simpler
than their stochastic counterparts, and it is often
easy to convert deterministic into stochastic models

* Present address: Smithsonian Institution, Chesapeake Bay Cen-
ter for Environmental Studies, P.O. Box 28, Edgewater, Mary-
land 21037, USA

by representing distributions of random variables by
their expectations (or mean values).

However, stochastic models have an important
place in optimal foraging theory for three reasons.

1. Many biologically important phenomena are
fundamentally stochastic, so that deterministic mod-
els do not make sense (e.g. sampling).

2. Stochastic models can be compared to deter-
ministic models to tell us how good, as approxi-
mations, these simpler models are. This comparison
is useful both for models of inherently stochastic
problems as well as for models that can reasonably
be modeled deterministically.

3. Conversion of deterministic to stochastic mod-
els by replacing deterministic variables with expec-
tations of random variables may be inappropriate
because characteristics of the random distribution
other than the expectation may be critical; for ex-
ample, both expectation and variance of food intake
may be important.

The most valuable stochastic models may be use-
ful in all three (or other) ways. To make this clear
we give examples of these uses of stochastic models
below.

Inherently Stochastic Problems

Some foraging problems are essentially stochastic
and cannot be modeled deterministically. For exam-
ple, deterministic models usually assume that the
forager ‘knows,” in some sense, the relevant charac-
teristics of its environment. This might be reason-
able in a relatively static environment, such as those
usually provided in experimental tests of foraging
theory (cf. Krebs et al. 1977). However, in a stochas-
tic world, parameters such as encounter rate may
change unpredictably. Some time and energy will
have to be invested in sampling the environment
because real environments will often have unpredict-
able and hence stochastic characteristics. The trade-
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off between the information gain and the energy
gain due to a foraging decision can only be analyzed
stochastically.

Comparison and Analysis

Simple deterministic models may be reasonable ap-
proximations to more realistic stochastic models.
One use of stochastic models, and perhaps the most
valuable one, is to explore the extent to which de-
terministic approximations are reasonable. Excellent
examples of this are the re-analyses of Oaten’s (1977)
‘information by patch exploitation’ model by Green
(1980) and McNamara (1982). Green and Mc-
Namara demonstrated not only that the optimal
patch residence for Oaten’s naive (stochastic) forager
may differ from Charnov’s (1976a) knowledgeable
(deterministic) forager, but they have also shown
which factors influence the degree of this difference,
for example, variance in the distribution of patch
quality.

In this paper we present a stochastic argument
which allows us to compare conventional determin-
istic models with a stochastic case. We use ideas
from the mathematical theory of renewal (Cox 1962)
to make a generalized model of the combined pro-
cesses of search, encounter, capture and handling.
We use these results to derive expressions for the
mean and variance of energy gain due to foraging
for a fixed time. We find the limiting distribution of
energy gain due to foraging.

Stochasticizing by Expectations

Recent empirical (Caraco et al. 1980; Real 1981;
Caraco 1981; Waddington et al. 1981) and theoreti-
cal work (Caraco 1980; McNamara and Houston, in
press; Real 1980a, b; Stephens 1981) suggests that
conversion of deterministic models by simply con-
sidering deterministic variables to be the means of
probability distributions may be inappropriate: for-
agers are, and should be, sensitive to both the mean
and variance of the distribution of food reward. This
has been called risk-sensitive foraging by Caraco et
al. (1980). Following the terminology of economics
(e.g., Keeney and Raiffa 1976) Caraco et al. called
preference for variance in food reward risk-prone-
ness and preference for certainty risk-aversion.

Both risk-prone (Leventhal et al. 1959; Pubols
1962; Herrnstein 1964) and risk-averse (Real 1981;
Waddington et al. 1981) preferences have been dem-
onstrated in foraging animals. It may surprise bio-
logists that both risk-prone and risk-averse prefer-
ences occur. Real (1981a, b), for example, suggests
that risk-aversion ought to be universal. The key

evidence is provided by Caraco et al. (1980) and
Caraco (1981). Caraco et al. were able to manipulate
the energy budgets of yellow-eyed juncos (Junco
phaenotus), and offered them a constant and a vari-
able food reward, where the expected value of the
variable reward was equal to the value of the con-
stant reward. The juncos preferred the constant
choice when their expected energy budgets were pos-
itive, but preferred the variable choice when their
expected energy budgets were negative. Caraco et al.

demonstrated the following simple empirical rule:

Be risk-averse if your expected daily energy budget
is positive; be risk-prone if your expected daily en-
ergy budget is negative.

Caraco (1980) suggested that risk-sensitive forag-
ing behavior would be predicted by a model min-
imizing the probability of starvation. Stephens
(1981) has shown analytically that a simple model
minimizing the probability of falling short of some
threshold food requirement predicts the expected en-
ergy budget rule. In these cases there are compelling
reasons to abandon simple conversion by expec-
tations and, develop full scale stochastic models
which allow foragers to choose between variances as
well as means.

We present a graphical generalization of the Ste-
phens (1981) model of risk-sensitive foraging pre-
ferences. We consider how a forager minimizing its
probability of starvation might best choose from a
relatively complex set of mean-variance pairs.

Results

Our results consist of three models. Firstly, we at-
tempt to establish a fairly general framework for
comparing conventional deterministic models to a
stochastic case. To do this we use results from re-
newal theory to find the limiting (i.e., time large)
distribution of energy gain. Secondly, we consider a
simple case in which elements of this distribution of
energy gain, other than its mean, may be important;
that is, when natural selection minimizes the proba-
bility of death due a short-fall. Finally, we sketch an
example which applies both of these results to a
conventional foraging problem, the choice of an op-
timal patch residence time. To aid continuity brief
discussion and summary paragraphs follow each
model.

The Limiting Distribution of Energy Gain

Earlier papers (Charnov 19764, b) used deterministic
arguments to derive equations for the rate of energy
intake by a predator attacking individual prey items
or traveling between patches or clumps of prey. In



this section we formulate the problem as a stochastic
process through time (Charnov 1973; McNair 1979).
The random variable of interest is the net energy
intake in some time interval, 0 to 7. As general
results, the mean and variance of this variable, may
be obtained, at least for large 7. Since the basic
argument is similar for patches or prey types, we
shall develop it only for prey types.

The Model. Our basic technique is to consider the
time from leaving one prey item until leaving the
next as a random event. Suppose that the predator
began hunting at time zero and has just finished
handling a prey item. Let this be the r—1" item
handled. Let T, be the time elapsed between leaving
the r—1" item and leaving the r item. T, is the
sum of the search time for the r'" item and its
handling time. The beginning of the search for the
next item can be called a renewal point or event.
Renewal theory (Cox 1962) is the study of the pro-
perties of this type of process. The T, are drawn
from the same probability distribution and are as-
sumed to be independent of one another. This is a
repeating environment assumption (MacArthur
1972).

To make this more precise, we shall use the
following definitions: h, =handling time for the r*
prey item. T, =the search time between leaving the
r—1" and encountering the r™ prey items (thus
T,=h,+1,). E(X)=expectation of an arbitrary ran-
dom variable X. V(X)=variance of an arbitrary ran-
dom variable X. N, =number of prey items encoun-
tered and handled in a time interval of length t.
¢,=the net energy gain associated with prey item r.
The ¢, are identically distributed and independent
with finite mean and variance. In general, the ¢, are
not independent of the T,

NT
G.= ) ¢&,, the sum of the ¢, for N,

r=1

prey encountered and handled during t. We shall
not count in G, any prey the predator has encoun-
tered, but has not yet finished handling as this prey
is not counted in N,. G_ is the net energy intake
during .

Because they will be used in several final results
we define the following simplified notation:

E(G)=up, E(T)=pn  Eh)=p,

V(h)=0o}

E(,)=p,.

V(G)=62 V(T)=0? V(&)=a,

Cou(T, &) =0,
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G, can be considered as a cumulative renewal
process and Smith’s theorems (Smith 1955) may be
used to obtain the asymptotic (t goes to infinity)
mean and variance. The basic results may be found
in Cox (1962, p. 100). We simply quote them here:

T
n=E(G,),. ~ e (L.1)
U
2 2,2
af=V(Gr)r_,oozr[ai+0 f—z%] (1.2)
poop u

Paloheimo (1967, 1971) was the first to use these
results to model predator behavior, although he did
not consider the accumulated catch [E(G,)] in terms
of energy intake. Even though these are derived
under the assumption that t is large, the approxi-
mations may be good for ‘small’ intervals, depend-
ing on how fast the stochastic process converges. G,
can also be shown to follow a normal distribution as
a result of the central limit theorem. To see how
these results may be used to generate energy intake
equations, consider the case where prey items are
encountered ‘at random.’

Let there be k prey types, with type i having
associated with it two random variables. The first is
the handling time (h;), the second is the energy value
(e;) associated with the handling time events. These
have been previously discussed (Charnov 1973,
1976b). Their means are h¥ and e}. Each type forms
an encounter process with the predator. The en-
counter processes are assumed to be independent
Poisson processes through time with encounter rates
J; (i=1,2,...,k). During the handling of a prey item,
no new item may be encountered. It is important to
notice that it is the encounter process which is Pois-
son, that is we expect the number of encounters in
a fixed search time to fit a Poisson distribution not
the number of prey captured in a fixed time forag-
ing.

If we look at the encounter process formed by
pooling the k processes (i.e., look at an encounter
regardless of type), the resulting pooled process

is still Poisson and the new rate parameter is
k

A*='3%" A,. The probability that an encounter is with a
i=1
prey type j is 4;/4* and is independent of search
time (7;,) (Cox 1962).
With the above in mind, the search time between
encounters (7T;,) has a negative exponential distribu-
tion with mean and variance:

E(T,)=1/i*  V(T,)=1/i*2 (1.3)

We have for the r'* renewal
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E(h)=p, =03 A:h¥1/2* (1.4)
E(¢)=p. =0} Aer1/2* (1.5)
V(&) =02 =[ A E(e))]/A* - u (1.6)
Vih)=0i=[ . LEMh)]/2*—pu; (1.7)
Cou(T,¢,)=0,,=Cov(h+T,,¢,)

Now: =Couv(h,¢). (1.8)
L=T,+h, so p=E[T,]+p,

or

p=1/A%+1> A,h]/2*. (1.9)
Since

Cou(T,,, £,)=0,

o2=1/A*?+ o}

o*=V[T,]+o;
(1.10)

If we substitute (1.5) and (1.9) into (1.1) the fol-
lowing results as T— 0.
He ~ le e;‘<

TR A (L.11)

substituting (1.5) and (1.10) into (1.2) gives the vari-
ance for G, as t—oo0.

o2t [0_3+u3(1+afz*2>a*_2ueo,e]
D D3 D?

where D=1+) Ah¥. (1.12)

Expressions (1.11) and (1.12) completely specify
the limiting distribution of energy gain, G,, because
Smith’s theorems (Smith 1955) show that the limit-
ing distribution of a cumulative renewal process ap-
proaches normality according to the central limit
theorem.

Implications of the Model. The chief importance of
this result is to specify the distribution of energy
gain. However, this result is also important as fur-
ther stochastic justification of expression (1.11). Ex-
pression (1.11) is the form of Holling’s disc equation
(Holling 1959) most commonly used in models of
optimal foraging. Many authors have used ex-
pression (1.11) as a currency of maximization in
deterministic models of optimal diet choice (Char-
nov 1976b; Maynard Smith 1974; McNair 1979;
Pearson 1974; Pulliam 1974; Schoener 1969, Werner
and Hall 1975) and models of optimal patch use
(Charnov 1976a; Orians and Pearson 1979; Pyke et
al. 1977 for a review of this and other currencies),

when encounters are assumed to be at random. Pre-
viously expression (1.11) has been justified for sto-
chastic situations because it is equal to the expected
gain per prey encounter, E(£,), over the expected
time spent per encounter (including interprey time),
E(T). The average amount of energy gained per
time unit approaches E(&,)/E(T,) as the number of
encounters becomes infinite, according to the law of
large numbers (Gilliam et al. 1982; Turelli et al
1982; McNair, personal communication). The re-
sult presented here adds the weight of the central-
limit theorem to the use of this formulation for
foraging models. Usually, the central-limit theorem
implies faster convergence to the limiting state than
the law of large numbers. However, the comparison
is not perfect because the renewal justification is
asymptotic in time, while the law of large numbers
justification is asymptotic in the number of prey
encountered. [mportant unanswered questions are:
How fast is the asymptotic distribution reached (but
see Turelli et al. 1982) and what affects the speed of
approach?

Conclusions. In this section we find the limiting
probability distribution of energy gain for a foraging
animal when encounters with prey items (or patches)
occur at random. This distribution is normal and we
give its mean and variance. The results also support
the use of Holling’s disc equation to represent the
rate of energy intake in foraging models.

The Risk of Starvation and Optimal Preferences

Many species have nonbreeding seasons in their life
histories; during these periods survival until the next
breeding season may be the most important at-
tribute of fitness. Stephens (1981) has shown that
when death due to starvation is defined as falling
short of some threshold food requirement, both the
mean and variance of the food reward distribution
are important in determining optimal behavior.
However, Stephens’s formulation only considers the
case where the mean is fixed and the forager is
allowed to choose from a set of different variances.
In this section we present a graphical model which
extends this formulation by specifying sets of mean-
variance pairs which provide equal probabilities of
starvation.

The Model. To illustrate the model we consider a
small bird foraging in winter. Many small birds suf-
fer significant overnight mortality in winter (e.g.,
Prys-Jones 1979) and most must stop feeding at
nightfall. Assume that the bird’s main problem is



surviving from day to day, by acquiring sufficient
energy reserves to survive the night.

Let R be the amount of food required to survive
the night, and let S, be the random variable which
describes the bird’s energy supply when it must stop
foraging for the night. The probability of starvation
is P(S,<R). Assume that the forager makes de-
cisions about how to forage at intervals. Let k be the
number of decision intervals left in the day. Let S,
be the bird’s reserves when there are k foraging
decisions left in the day. Let X, be the net amount
of food gained in the i™ interval, where X, is a
random variable with distribution

folw,0?) w=E(X;) and o}=V(X).

Assume that the X, are independently distributed.
Then

k
S0=Sk+.ZXi 2.1)

i=1

therefore

P(S,<R)=P (Sk+ﬁ:1X,.<R) =P (

k
i= i=

Xi<Rnet)
1

where R, is the net food requirement, (R,,=R
—S,). Now if k is large we can use the central limit
theorem for independent random variables to find
the distribution of the sum of random variables
k k
2. X;. For convenience, we define: u =Y u, the
i=1 i=1
total expected gain due to the decisions made in the
k

1/2
remaining time, t o—t=[Zai2] , the standard de-
i=1
viation of the distribution of the remaining food

reward. The central-limit theorem states that

k
Xi_l'tt
Z=i=1
ag

T

22)

has an approximately standard normal distribution,
with mean zero and variance one. We use Z alge-
braically to show that u,+0¢,Z is probabilistically

k
equivalent to ) X,, that is
i=1

k
= P(Starvation)= P ( Y X, < Rnet)

i=1
=P(u,+0.Z<R,,)
=P[Z<R,,,—u)/o]
= ¢ [(Rnet - /'tr)/at]' (2'3)
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:“opf --------------------

Rnet]

Mean Energy Gain

Topt
Standard Deviation of Energy Gain: oy

Fig.1. The general graphical solution for optimal preferences
from complex sets of mean and variance. The hatched shape,
marked F, represents an arbitrary feasible set of mean-standard
deviation pairs. The pair which minimizes the probability of
death due to an energetic short-fall is found by constructing the
line originating at R, (the net energy requirement) on the mean
axis and which passes through, or touches, the feasible set with
the greatest slope possible

Where &( ) is the cumulative distribution function
(cdf) of a standard normal. This means that the
probability of starvation strictly increases with the
term (R, — u)/o..

Let Z'=(R,,,—u,)/o,.. Any fixed value of Z' de-
fines a set of pairs (u,,0,); all members of such a set
give the same probability of starvation. A forager
minimizing its risk of death due to starvation should
be indifferent to a choice between any two points
lying on the line

u=R, 0,7 (2.4)

When Z’ is fixed, (2.4) is the familiar slope-intercept
equation of a straight line in u —o, space. This
suggests the simple graphical method of solution
illustrated in Fig. 1. In general, the forager will be
able to choose from a limited feasible set of mean-
variance pairs, which is illustrated by the hatched
blob in the figure. Consider the family of lines, each
of which intersects the u, axis at R .. The line of
greatest slope which can be drawn through the fea-
sible set gives the smallest possible probability of
starvation, and the point, or points, (u,0,) of the
feasible set through which this line passes is (are) the
optimal mean-standard deviation pair (or pairs). The
line of greatest slope gives the solution, since when
the slope, —Z, is largest, the value Z (which we want
to minimize) is smallest. In a particular optimality
problem we would have calculated the feasible set
by considering the effects of varying some be-
havioral parameter of interest, e.g., patch residence
time, or the probability of pursuit upon encounter.
These calculations would allow us to work back-
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Rnet '<

Mean Energy Gain
8

Omin Omax
Standard Deviation of Energy Gain: o

Fig. 2A, B. Linear Feasible Sets. A Two horizontal feasible sets,
i.e., sets in which the forager chooses from a range of variances
(standard deviations in the graph) at a constant mean. This illus-
trates that the extreme variance rule, discussed in the text, is a
special case of this graphical model. Crosses indicate the optimal
choices. B Example of the general rules for linear feasible sets, i.e.,
when u . =mo +b,6,,,<0,<0,,. . The optimal preference depends

only on the position of the intercept b relative to the net require-
ment, R, .. Note that in the lowest feasible set the extreme
variance rule does not hold because all possible means are less
than the net requirement, R, but the optimal policy is still to
minimize variance (and consequently to maximize the mean)

ward from the optimal (x,,0,) pair to find the op-
timal behavioral (or choice) parameter. This pro-
cedure is illustrated by a worked example in the
next section.

The simple behavioral rule for minimizing the
probability of starvation proved by Stephens (1981)
can be derived as a special case of this model. Ste-
phens showed that at a given mean a forager would
minimize its probability of starvation due to a short
fall by: (A) Always minimizing variance if its expect-
ed gain is greater that its requirement; (B) always
maximizing variance if its requirement is greater
that its expected gain. We call this the extreme vari-
ance rule. It follows from the general graphical so-
lution because the feasible set is a horizontal line
(ie, u, is constant). Figure2A shows that when
u. >R, the line of greatest slope passes through the
smallest possible ¢, in the feasible set (condition A
above). But when p, <R, the line of greatest slope
passes through the largest possible o, in the feasible
set.

If the feasible set is linear, but not in general,
horizontal, there is a simple extension of this rule.

Assume that the feasible set is defined by the linear
equation pu,=mg +b, where ¢,,S0,.Z0,,,. It is
easy to show that the probability of starvation due
to a short fall is minimized by: choosing o, if
R,. >b, and choosing o, if R, <b. The direction
of preference for variance is independent of the slope
of the feasible set. Consequently, the optimal mean
value may be either the maximum possible mean or
the minimum possible mean in the two cases above
(the case where R, <b is illustrated in Fig. 2B). We
have shown that the assumption of a fixed expected
reward is critical to the extreme variance rule. In the
lower feasible set in Fig. 2B, all possible means are
less than the minimum requirement R, but the
optimal choice is maximum mean and minimum vari-
ance.

Linearity is only the simplest kind of nontrivial
relationship which might exist between p, and o..
This general linear solution is an advance over the
special case of fixed expected gain, because it makes
the point that the nature and degree of a forager’s
preferences over variance are changed when the for-
ager has a restricted choice of mean-variance com-
binations.

Implications of the Model. Caraco (1980) suggested
that a forager should be risk-prone if it has ‘no
available allocation strategy’ which produces an ex-
pected net reward greater than expected require-
ments. However, Caraco used the term ‘risk-prone-
ness’ to mean that a forager would prefer to draw a
realization from a probability distribution than to
be given the mean value of the same distribution
with certainty. This usage is in line with economics
and mathematics (cf. Keeney and Raiffa 1976). That
is, the definitions of risk-proneness and risk-aversion
have built into them the assumption that a forager is
offered a choice between variances at the same
mean. As we have argued above, and as the results
of the first section suggest, foragers are unlikely to
be offered such choices in nature. A useful theory of
risk-sensitivity will need to go beyond these strict
definitions of risk-proneness and risk-aversion to
consider which distribution should be preferred from
an arbitrary set of distributions. The model we have
presented does this for an animal minimizing its
probability of death due to a short fall.

In this model we begin by relating energy intake
to survival. The assumption that there is some fixed
threshold requirement is only the simplest possible
relationship. There may, for example, be unpredict-
able elements in the threshold (e.g., if the overnight
temperature is unpredictable, in our small bird ex-
ample); or the probability of survival may be an
increasing sigmoid function of daily food reward



(McNamara and Houston, in press). The results will
be more complicated if the distribution of daily food
reward is not normal. Departures from normality
may be relatively common, especially in the tails of
the approximated distribution. Perhaps most du-
biously, we assume that all amounts of energy gai-
ned greater than the requirment are equivalent in
terms of fitness; that is, we tacitly assume that there
is no advantage to a large energetic ‘carry-over.’
McNamara and Houston (in press) present an in-
teresting discussion of this problem.

These assumptions may not always make sense.
The model may fit the case of an over-wintering
bird, foraging on an especially cold day; but it will
not fit the same bird in the breeding season. Real
(1980a, b) and Caraco (1980) have presented more
general models of risk-sensitivity. However, the re-
lationship between the natural history of foragers
and these general models is not always clear. De-
spite the limitations of our model, it is useful as a
simple and analytical alternative to mean maximi-
zation models.

Conclusions. In this section we present a simple mod-
el of risk-sensitive foraging preferences. The model
is based on minimization of the probability of en-
ergetic short-fall. Our model suggests that prefer-
ences between distributions of food reward ought to
be sensitive to relationships between mean and vari-
ance. Our graphical model provides a technique for
finding optimal preferences from complex mean-
variance sets.

Patch Use and the Risk of Starvation -
A Worked Example

An important question raised in the last section is
what mean-variance relationships are most common
and most general? In this section we apply the re-
sults of the two previous sections to finding the
optimal patch residence time for an animal min-
imizing its risk of starvation. This illustrates how
the relationship between mean and variance may be
found in a foraging problem.

The Model. Consider an animal foraging in discrete
patches in a manner which minimizes its probability
of starvation. Assume that time spent in a patch
completely specifies the net amount of food acquired
from the patch. Patches are identical, and numerous
enough that environmental depletion due the
forager’s behavior is not significant, i.e., the forager
is always entering undepleted patches. The only
stochasticity is due to random variation in the time
required to find a new patch.
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Our problem is to find a patch residence time, t,
which minimizes the probability of starvation, as
discussed above. Let T, be the random variable
which represents the time between leaving one patch
and entering another. Assume that T, is exponentially
distributed with parameter g, that is patches are
encountered at random. Let ¢ be the residence time,
which is the parameter over which we wish to
optimize, and let g(f) be the negatively accelerated
gain function (a deterministic function) which relates
the net amount of energy gained from a patch to the
residence time. We use Eq.(1.1) and (1.2) to give
specific expressions for the asymptotic mean and
standard deviation of energy gain. This example
is simple, because for a fixed residence time, the
variance in energy gain within a patch is zero, as
is the covariance of the interrenewal interval and
the energy gain per patch. The required terms are:

H.=8(1)
u=E(T)+t=1/g+t
o?=V(T)=1/g*

20

By substitution we find the required mean and vari-
ance terms:

gt

E(tht)=#t(t)=(1/q)+t (3.1)
o t(1/g) g% (0]
V(G |t)=062(t) TG (3.2)

It is a standard result of patch-use theory that yu_ is
maximized where '

P U]
g (t)————(1 FYs (3.3)

This result is a special case of Charnov’s (1976a)
marginal value theorem. Consider the derivative of
the standard deviation, ¢, with residence time,

g0 [(1/g)+1%*—(3/2) g(t) [(1/g) + 11" 2}‘

aot/0t=(‘c”2){ PTEEE

Since the term in the denominator is always positive
the sign of the derivative is determined by the differ-
ence in the numerator. The standard deviation in-
creases with ¢ as long as
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Fig. 3A, B. Patch residence time and the risk of starvation. The
curve shown in A shows the shape of the feasible set for an
animal foraging in discrete patches, and choosing an optimal
patch residence time as discussed in the text. The patch residence
times (t;s) marked on the curve indicate how increasing residence
time affects the mean and standard deviation, that is
t,>t*>ty>t,>t,. B Application of the graphical model of the
previous section to finding optimal patch residence times. R, is
the net requirement at which mean maximization is preserved.
But, as with R, ,,, if the requirement is less than R¥,, it is best to
stay longer (i.e., t,>t*); and as with R, if the requirement is
greater than RY, it is best to leave sooner (i.e., t*>t;)

net

g (>80 (3.4)

(L/g)+t

the standard deviation decreases with t where this
inequality is reversed, and is therefore at a maxi-
mum when ¢t is such that,

RCEC) 6s)
(1/q)+1
Notice the similarity between (3.3) and (3.5). We can
conclude, because g(t) is negatively accelerated, that
the residence time at which the maximum standard
deviation occurs is always less than the residence
time at which the mean intake is maximized. We
summarize the results of this analysis: (i) y, and o,
are both unimodal functions of patch residence time,
and (ii) that the maximum standard deviation will
always occur at a smaller residence time than the
maximum possible mean, and (iii) both y, and o, are
zero when t=0. These points are enough to allow us
to plot the feasible set in u,—o, space and use our
earlier graphical treatment (Sect.2) to make pre-

dictions about the qualitative differences between a
forager choosing its patch residence time to maxi-
mize its intake rate, and a forager minimizing its
probability of a shortfall.

Figure 3A shows the general shape of the fea-
sible set. Figure 3B illustrates the qualitative deduc-
tions which can be made considering the general
shape of the feasible set, and the graphical method
of solution presented in Sect. 2. The optimal resi-
dence time for a forager minimizing its probability of
starvation will have the following properties: (1) It
will usually be near the residence time predicted by
mean-maximization (the marginal value theorem)
because of the feasible set’s oblong shape. (2) There
will be a critical level of requirement R, at which
the optimal residence time is exactly the same as in
the mean-maximization case. (3) If the actual re-
quirement is less than R¥, then the optimal be-
havior is to stay longer than predicted by mean-
maximization. (4) If the actual requirement is greater
than R} , the optimal residence time is shorter than
predicted by mean-maximization. (5) As the require-
ment becomes larger the optimal residence time be-
comes shorter and approaches the time at which the
maximum standard deviation is attained, but will
never become smaller than this.

As a general rule we may say that if the require-
ment is low compared to expectations, then the for-
ager should stay longer than expected by mean-
maximization; if the requirement is high, the forager
should stay for a shorter period than expected by
mean-maximization, but never shorter than the time
producing maximal variance. These predictions are
only qualitative. There are indications from numeri-
cal examples that in many cases departure from the
mean-maximization hypothesis may be small. The
extreme variance rule does not hold in this example
because neither the highest nor the lowest possible
variance should be chosen, except in the limiting
case. It does give us insight into why this result
occurs. The forager chooses increasingly higher vari-
ance as requirements become large relative to ex-
pected gains. However, since the feasible set is not
linear, the forager should never choose extremes of
variance because it would have to accept a dispro-
portionate loss in mean to do so.

Several authors have presented modifications
of the marginal value theorem. Oaten (1977) and
McNamara (1982) consider the case in which
the forager also gains information while foraging.
McNair (in press) considers a modification where
the forager is allowed to encounter new patches while
searching a patch. In both of these cases the optimal
residence time is longer than predicted by the mar-
ginal value theorem (although the comparison with



Oaten’s model requires a redefinition of the
Charnov’s marginal capture rate, cf. McNamara, in
press). McNair (in press) also analyzes an optimal
residence time model which minimizes the probabili-
ty of starvation over an infinite time period. His
model differs from ours in that he envisions no
critical reckoning time (nightfall in our example).
McNair’s ‘starvation’ is simply running out of fuel
during the foraging process. McNair finds that the
probability of starvation is minimized by staying
longer than the marginal value theorem would pre-
dict. McNair’s infinite time model is similar to ours
when net requirements are very small relative to
expected gains. Our model suggests that over-staying
may be the most common case; because require-
ments will normally be much less that expected
gains. However, in the case of severe energetic stress
relatively short stays may be optimal.

Conclusions. We consider the optimal patch resi-
dence time for a forager minimizing its risk of star-
vation. This requires that we specify the relationship
between residence time, mean energy gain, and the
standard deviation of energy gain. The surprising
shape of the feasible set we find in this section
suggests that it may be misleading to try to find
general relationships between mean and variance.
This is because we need to know how mean and
variance are specified by a choice of foraging
strategy (e.g., patch residence time). Our result sug-
gests that this relationship may depend critically on
the nature of the foraging problem at hand.

Discussion

The problem of stochasticity in optimal foraging is
actually two problems. Firstly, in a stochastic en-
vironment a forager’s behavior will not yield, for
example, ten calories with certainty; instead a for-
ager will at best be able to choose a probability
distribution of calories. Choosing from a known set
of probability distributions and choosing certain al-
ternatives are clearly different problems. The first
stochastic problem is how should foragers change
their preferences when they are faced with known
types of stochastic variability. Economists call this
the problem of pure risk (Hey 1979).

The second stochastic problem is more compli-
cated and less direct. Imagine that the state of na-
ture is represented by one of two possible over-
lapping probability distributions, A and B. Assume
that the forager knows what the alternatives are, but
cannot distinguish between them before deciding
what tactic to use. Further, imagine that if the for-
ager knew it was faced with distribution A it should
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use a different tactic than if faced with B. The tactic
actually chosen should then reflect information
(about the relative likelihoods of A vs B) gained
while foraging. That is, the forager has a sampling
problem, or in the terminology of economics a prob-
lem in pure uncertainty (Hey 1979), although it
would probably be less confusing to call this a prob-
lem of information.

The separation of the stochastic problem into
these two elements is logically important, not be-
cause animals face pure information or pure risk
problems in nature, but because it suggests a sen-
sible way for our study of stochasticity to proceed.
In this paper we have discussed problems of pure
risk. In more conventional terms we have made
perfect information models. In this discussion we
discuss risk and information and the controversies
surrounding them, in turn. Finally, we consider the
problem of rates in a stochastic environment.

Risk and Utility

The most general solution to the problem of risk is
given by utility theory. In outline the procedure is
simple. We have a utility function (exactly how we
come to have it is an issue we discuss later), defined
over all possible outcomes. The utility function
specifies which outcomes are preferred and how
much a given outcome is preferred over another.
The fundamental result of utility theory is that a
utility function can be defined so that distributions
can be placed in order of preference by their expect-
ed utilities. The idea that such a function exists is
called the expected utility hypothesis (cf. Raiffa
1968).

To help make the distinctions clear consider the
form of a deterministic foraging problem. The steps
in a deterministic analysis are: (1) choose a currency
and (2) specify cost-benefit functions, (Schoener
1971). Expected utility is the same as Schoener’s
currency because it is the quantity we maximize. But
in a risk problem cost-benefit functions do not relate
behavior to expected utility. They relate behavior to
the distribution of some intermediate reward (e.g.,
amount of food). The expectation of the utility func-
tion, given this distribution, provides the final link
to the currency.

A utility analysis of foraging behavior would
take the following form. (1) Choose a utility, for
example, the probability of survival. All the con-
siderations which apply to the choice of a determin-
istic currency apply to this decision, e.g., when is the
probability of survival the most important fitness
attribute? (2) Specify the relationship between the
proposed utility and food. (3) Specify the relation-



260

ship between behavior (e.g., patch residence time)
and the distribution of food reward. Here, the effect
of stochasticity is to require that we postulate (or
measure) a second type of function; that is, we need
not only relate behavior to food gains (Schoener’s
cost-benefit functions), but we must relate food gains
to preference (utility functions).

Currency vs Expected Utility

There are two approaches to the problem of finding
a forager’s utility function. The conventional ap-
proach of utility theorists (cf. Raiffa 1968) is to allow
the subject to specify its own utility function by
giving it a series of preference tests. This approach
has been adopted by Caraco etal. (1980) to make
the important point that foraging animals have pre-
ferences over variance. The approach of determinis-
tic foraging theory (cf. Pyke etal. 1977) has been to
guess a reasonable currency based on our knowledge
of the forager’s natural hystory. These a priori cur-
rencies, with their connection to natural history, are
one of the strengths of optimality analysis. Both
approaches can be useful in the study of foraging
behavior. But allowing the forager to specify its own
utility function is, in a sense, the least satisfactory of
the two alternatives because we want to know not
only what a forager’s preferences are, but why it has
these preferences. We do not mean that these ques-
tions cannot be asked separately, but the second
question is the biological one; utility theory, per se,
sheds no light on the answer, only on the form the
answer should take, i.e., a utility function.

Fitness and expected utility are both tautologi-
cally defined maximization criteria. To call them
tautological is not a complete condemnation be-
cause they can both be interesting and helpful
tautologies (see Maynard Smith 1969). Neither idea
tells us much about the adaptive nature of foraging
behavior. To say that selection has favored maximi-
zation of fitness or utility is simply too glib. We
must go a step further and postulate how food and
feeding are related to ultimate fitness. In the models
we have presented, we postulated a simple connec-
tion between the forager’s natural history and its
risk-sensitivity: minimization of the probability of a
short-fall. If our model fits natural foraging be-
havior, we can take satisfaction in having under-
stood natural history well enough to have made an
a priori guess about the appropriate utility, more so
than if we had simply measured utility functions.

Description and Utility

The expected-utility hypothesis may fail; that is, no
utility function may exist which describes the be-

havior. In economics there are famous examples of
where humans show preferences which are incon-
sistent with the expected-utility hypothesis (e.g., Al-
lais 1953). The reply of utility theorists is that their
theory is prescriptive, not descriptive, of human be-
havior (Raiffa 1968). Utility theory tells us how ra-
tional human decisions should be made, not how
human decisions are made. In foraging theory we do
not want to prescribe animal preferences; we want
to describe them. We do not want to instruct ani-
mals in how to make better decisions. We want to
describe the decisions they do make. Perhaps we
should consider whether animal decisions are more
likely to satisfy the criteria of the expected-utility
hypothesis than human decisions. When we adopt
techniques from other disciplines, we should look
hard at their internal difficulties. In the case of util-
ity theory there is a large body of literature on the
pros and cons of its application (e.g., Raiffa 1968;
Keeney and Raiffa 1978, who provide discussions).

Variance Discounting

The formal machinery of utility theory may not be
necessary in practice, especially if food reward is
normally distributed. While normality cannot be
guaranteed, it is likely to be the most general food
reward distribution; this is suggested by the results
in section one and less restrictively by the central
limit theorem itself. When normality does occur, the
intuitive idea of a trade-off between a measure of
central tendency (mean) and a measure of variability
(variance) can be justified by rigorous mathematics
because the mean and variance provide a complete
specification of a normal distribution. If we take
normality to be general, we then have the problem
of trying to find some general way to combine mean
and variance to provide a measure of quality. Sec-
tion two proposed that the Z-score of the standard
normal distribution is a sensible currency for the
case of acquiring a threshold food requirement.

Many authors have proposed that a straightfor-
ward linear combination of mean and standard de-
viation may be a generally useful currency (Oster
and Wilson 1978; Caraco 1980; Real 19804, b). This
currency has the form:

max (u—ko)

where u is the mean and ¢ is the standard deviation
of the reward distribution, and k is a constant
measuring the forager’s risk-sensitivity. We maxi-
mize the mean, discounted by a certain amount for
‘undesirable’ variability, because k is usually posi-
tive. While this formulation is recommended by its
simplicity, its claim to generality may be strong as



well. Using arguments from utility theory, it has
been shown that this formula is approximately cor-
rect under very general conditions using a series
expansion argument (Oster and Wilson 1978; Real
19804, b). It is exactly correct if the underlying dis-
tribution is normal and the utility function is a
simple exponential function (Oster and Wilson 1978;
Caraco 1980).

Uncertainty and Information in Patches

The marginal-value theorem (Charnov 1976a), a de-
terministic model finding optimal patch residence
times, has been severely criticized because, according
to Oaten (1977), sensible optimal leaving procedures
‘must be based on a stochastic model’. Green (1980),
Iwasa etal. (1981) and McNamara (in press) have all
added mathematical weight to Oaten’s criticism. It is
unfortunate and misleading that Oaten and his col-
leagues have been so insistent in their campaign for
stochasticity because the differences between Oaten’s
stochastic model and Charnov’s deterministic model
are not due to stochasticity per se.

Consider the following simple example. Imagine
that a scientist is given two opaque urns, each con-
taining different proportions of red to green balls,
and is asked to obtain as many red balls as possible
in some fixed number of draws, without replace-
ment. If the scientist is told that the urn labelled 4
has initial proportion p, of reds and the urnlabelled
B has reds in initial proportion p,, the problem is
closely analogous to Charnov’s patch-use model
where the urns are patches and the scientist is a
forager. However, if the scientist is not told what the
labels mean, he has Oaten’s problem; because he
cannot recognize patches he will do well to use
knowledge gained while ‘foraging’ to improve his
decisions. The difference here is not stochasticity.
Both problems are stochastic. The difference is the
amount of information the forager (scientist) is sup-
posed to have. To call Oaten’s model the stochastic
case is to confuse the problems of risk and infor-
mation.

Stochastic Rates

Pyke etal. (1977) have argued that maximization of
the net rate of energy intake is the most sensible
general currency of optimality in foraging because it
subsumes both of the reasonable currencies pro-
posed by Schoener (1971), energy maximization over
a fixed time and time minimization to a fixed energy
gain. Templeton and Lawlor (1981) have recently
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pointed out that in a stochastic world, maximization
of the expected rate of energy intake is not nec-
essarily equivalent to either of these strategies. In
this case, what Templeton and Lawlor called the
‘fallacy of averages’ stems from the fact that the
expectation of a quotient is not equal to the quo-
tient of the expectations.

Let G be the random variable which specifies the
net food gain over a random time 7. Then each of
following currencies of optimality is possible and
generally distinct from the others.

1. Maximize E(G/T).

2. Maximize E(G)/E(T).

3. Maximize E(G|T =t), where ¢ is a fixed value.

4. Minimize E(T|G=g), where g is a fixed value.

Currencies three and four are stochastic versions
of Schoener’s (1971) energy maximizer and time min-
imizer. However, a good deal of controversy sur-
rounds the interpretation of currencies one and two
(Templeton and Lawlor 1981; Gilliam et al. 1982;
Turelli et al. 1982). Templeton and Lawlor claim
that currency one is the average of energy intake
and that models of optimal foraging which have
claimed that currency two is the average rate of
intake (specifically Charnov 1976b and Pulliam
1974) are wrong. Templeton and Lawlor are in-
correct because both currencies are average rates of
intake. The important question is which average is
appropriate, not which is the average.

The precise meanings of these currencies depend
on the definitions of G and T. If G is the amount of
energy gained in time T, where T is the time from
entering one patch until entering the next (Tem-
pleton and Lawlor’s case), then as the number of
patches visited becomes large, the average rate of
energy intake per patch approaches E(G/T) by the
law of large numbers. By a similar argument, as the
number of patches visited becomes large the average
amount of energy gained per unit of time approaches
E(G)/E(T). These are both average rates. An animal
using the E(G/T) currency should choose foraging
strategies where each patch yields the highest possi-
ble rate that particular patch can attain, regardless
of the absolute amount of time spent in that patch.
While the E(G)/E(T) currency allows for the possi-
bility that the rate attained within a particular patch
might be less than the maximum possible if a higher
overall rate can be had by moving on to better
patches. There may be cases where E(G/T) is a
sensible currency: for example, if the forager is
somehow limited to visiting only one patch per day
(or whatever ‘critical” period is applicable). However,
we agree with Gilliam et al. (1982) that E(G)/E(T)
is a much better currency for nearly any forager.
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Analysis and Simplicity

Our approach is to build simple models. Simple
models are most useful because they allow us to see
how the elements of the problem interact and to
readily compare different conditions and assump-
tions. In a word, simpler models allow better analy-
sis. The growing body of literature on stochasticity
in foraging strongly argues that the additional com-
plexities of stochastic models are worth it. But mod-
elers should not lose sight of analysis. We have
taken the time to discuss the controversies about
stochastic rates and ‘stochasticity’ in patch use be-
cause we believe that these are cases where analysis
has been lost in the shuffle. The cause of analysis is
not well served by Templeton and Lawlor’s (1981)
surprising and self-contradictory statement that ecol-
ogists should be suspicious of ‘conclusions that de-
pend critically upon the precise form of the optimi-
zation criterion.” Not only are criteria critical by
definition, if they are not they should have been
removed from the model on the ground of par-
simony inherent in the concept of analysis.

Modeling is just figuring out the implications of
a set of assumptions. Templeton and Lawlor (1981)
and Oaten (1977) seem to have elevated assumptions
to the realm of metaphysics by insisting on right
and wrong assumptions. Maximizing E(G)/E(T) has
different implications than maximizing E(G/T), and
a discussion of the these differences has proved help-
ful, despite Templeton and Lawlor’s error (Gilliam
et al. 1982; Turelli et al. 1982). Similarly, Oaten’s
important work has shown that foragers which can-
not recognize patches should act differently from
those which can. But this does not show that ‘pub-
lished strategies are not optimal,’ as Oaten claims.
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