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abstract: The Smith-Fretwell model for optimal offspring size as-
sumes the existence of an inverse proportional relationship (i.e.,
trade-off) between the number of offspring and the amount of re-
sources invested in an individual offspring; virtually all of the many
models derived from theirs make the same trade-off assumption.
Over the last 30 years it has become apparent that the predicted
proportionality is often not observed when evaluated across species.
We develop a general allometric approach to correct for size-related
differences in the resources available for reproduction. Using data
on mammals, we demonstrate that the predicted inverse proportional
relationship between number of offspring and offspring size is closely
approached after correcting for allocation, though there is a slight
curvature in the relationship. We discuss applications for this ap-
proach to other organisms, possible causes for the curvature, and
the usefulness of allometries for estimating life-history variables that
are difficult to measure.
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The trade-off between the number of offspring produced
and the investment per offspring is important to many
theoretical models of life history (e.g., Smith and Fretwell
1974; Stearns 1992; Roff 2003). The classic Smith-Fretwell
(1974) model argues that for a reproductive individual
with R resources to divide among its offspring, the number
of offspring (C) that individual can produce will be in-
versely proportional to the investment per offspring (I ):

. Because the investment per offspring can be ap-C ∝ R/I
proximated by offspring size (Smith and Fretwell 1974;
Charnov 1993), this trade-off is typically assessed by eval-
uating relationships between clutch size and individual
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offspring mass, effectively assuming that R is constant.
Several cross-species data sets (see examples in Stearns
1992; Charnov 1993; Molles 2001; Roff 2003) show neg-
ative relationships between C and I but do not show the
proposed proportionality. This deviation from the ex-
pected trade-off is expected if R varies greatly among spe-
cies and particularly if R and I covary (e.g., species with
greater R also have larger offspring, as is commonly ob-
served within many taxa; Charnov 1993).

Some life-history models (Charnov 1993, 2001; Charnov
et al. 2001) predict that reproductive allocation per unit
time scales across species as female body mass (m) raised
to the 0.75 power. This relationship has received strong
empirical support in a variety of taxa (Charnov et al. 2001),
including mammals (e.g., Brody 1945; Charnov 1993; Char-
nov 2001; Ernest et al. 2003). Furthermore, for mammals,
it is known that I is almost proportional to m, resulting in
positive covariation between I and R (Charnov 1993).
Therefore, a more general version of the size/number trade-
off across species should be ; that is, clutch size�1C/R ∝ I
(C) per unit allocation (R) varies as I �1. If R is indeed
proportional to m0.75, as theory and data suggest, then yearly
clutch size divided by m0.75 ought to be inversely propor-
tional to the mass of an individual offspring:

C
�1∝ I . (1)

0.75m

Here, we demonstrate this offspring-size/clutch-size trade-
off using a data set containing life-history information for
14 orders of eutherian mammals, resulting in a strong,
general test of the effects of size-dependent reproductive
allocation on the trade-off between number of offspring
and individual offspring mass.

Methods

While offspring size at independence is a more complete
measure of parental investment, we also present here re-
sults utilizing neonate size. Even though weaning size is
proportional to offspring size at birth (see Ernest 2003),
we opted to conduct analyses for both measures of parental
investment for a variety of reasons. First, data for neonate
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size are more numerous. Second, while birth is effectively
an instantaneous process, weaning is a gradual process,
and deciding at what point during this process to measure
the size of the offspring is highly subjective. The ambiguity
concerning when weaning occurs introduces considerable
error into weaning mass estimates. Finally, our estimates
of clutch size are based on neonate litter sizes and not on
the actual number of individuals weaned, potentially re-
sulting in increased error in our calculations. Because nei-
ther measurement of I is perfect, we present here results
for both.

Data on neonate mass, weaning mass, maternal mass,
litter size, and litters per year were obtained from a recently
published data set on mammalian life history (Ernest
2003). While the data set contains life-history information
for 1,447 species of eutherian mammals, only 532 species
had information for neonate mass, maternal mass, litter
size, and litters per year; substituting weaning mass for
neonate mass yielded life-history information for 303 spe-
cies. While only a subset of the 1,447 species in the data-
base contained the data necessary for this study, it still
provided us with data for species from 14 orders of mam-
mals: Artiodactyla, Carnivora, Cetacea, Insectivora, Lag-
omorpha, Macroscelidea, Perissodactyla, Pholidota, Pri-
mates, Proboscedia, Rodentia, Sirenia, Tubulidentata, and
Xenarthra. Reproductive allocation per unit time (R) was
estimated from maternal mass (m) using the equation

. Annual litter size (C) was calculated by mul-0.75R ∝ m
tiplying litter size by litters per year.

Results and Discussion

Correcting the number of offspring by the resources avail-
able for reproduction results in a relationship between the
number of offspring and offspring size that is extremely
close to the predicted slope of �1 (fig. 1). This similarity
to the theoretically predicted value is especially striking
when compared to the relationship for the same data un-
corrected for reproductive allocation (fig. 2). Our data, when
uncorrected for reproductive allocation (i.e., not divided by
m0.75), show not only higher variability around the rela-
tionship but also a slope substantially shallower than �1
(fig. 2; see also Stearns 1992; Molles 2001). Indeed, because
offspring size at birth is almost proportional to the mother’s
size, figure 2A shows the expected ≈�1/4 scaling relation-
ship between yearly litter size and mother mass reported
for mammals (Charnov 1993). Overall, given our use of an
allometric equation to approximate R and various issues
with our measures of I, the closeness to proportionality in
figure 1 is noteworthy since we have clearly ignored the
details in the parental-resource transfer and the offspring-
growth processes, both before and after birth.

One interesting result that emerges from our analysis is

a mild deviation from the predicted power-law relationship
between C/R and I. Careful inspection of figure 1 reveals
what could be a curve or break in the relationship that is
most apparent at a neonate size of approximately 1,000 g
(or 7 natural-log units). This curvature can also be seen
in the weaning data at around 8 natural-log units (fig. 1B).
Refitting the log-transformed data with a second-order
polynomial showed that there is indeed statistically sig-
nificant curvature in the relationship ( for bothP ! .001
weaning and neonate data). However, the addition of the
quadratic term improved the fit of the regression by only
0.3% (neonate: vs. 0.946; weaning:2 2r p 0.943 r p

vs. 0.949). Though the increase in r 2 is slight, it is0.946
possible that the process generating this secondary pattern
explains the discrepancy between our empirical results and
the theoretically predicted slope of �1. Potential reasons
for this slight deviation from the model include first, an
interaction between seasonality and body size that differ-
entially constrains large animals to one litter per year,
potentially altering the relationship for large versus small
mammals; second, an interaction between phylogeny and
body size, resulting in a slightly different relationship for
large animals than small animals because of evolutionary
constraints; third, a slight curvature in the relationship
between production and body size, as suggested by Koz-
lowski and Weiner (1997); and finally, some other com-
plexity in how R varies with body size, possibly caused by
the parent-offspring resource transfer, ontogenetic growth
of the offspring, and other R-related issues mentioned
above. It is also interesting to note that the slope from the
plot utilizing weaning data is actually further from the
predicted relationship than that from the plot utilizing
neonate data. While this may reflect the additional error
in the weaning data or the mismatch between neonate
clutch size and weaning mass, another possibility is that
it reflects some added biological complexity introduced
during the transfer of resources from mother to offspring
through lactation. While in-depth investigation of the re-
sidual variation is beyond the scope of this study, further
quantification of the pattern, study of its causes, and eval-
uation of similar patterns in other taxa should prove in-
sightful. However, despite the pattern in the residuals, the
fact that our slope deviates from the predicted Smith-
Fretwell slope by only ∼3%–9%, depending on how I is
calculated, is noteworthy and represents a substantial im-
provement in our understanding of resource/offspring
trade-offs in mammals.

Correcting for differences in reproductive allocation can
also explain another life-history pattern that has been re-
ported for mammals. Blueweiss et al. (1978) first noted
that there was a tight relationship between log-transformed
total litter mass and log-transformed maternal body mass
(m). However, Blueweiss et al. (1978) had no theoretical
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Figure 1: Correction for species-level differences in R changes the slope of the relationship between offspring size and offspring number to more
closely reflect the predicted slope of �1. A, Relationship using neonate mass for I. Slope for the corrected relationship is �1.03 (95% confidence
interval [CI]: �1.01 to �1.05). While the CI for the corrected plot does not statistically include the predicted value of �1, it approaches the
predicted value to within 1%. Because R was estimated from m0.75, small differences between the theoretically predicted and empirical exponents
could cause a slight deviation from �1; an exponent !0.75 would reduce the fitted slope. The exact �1 slope would result from an exponent of
0.72. It is also worth noting that because of the lack of phylogenetic independence in our data, our CIs may be overly narrow. B, Relationship using
weaning mass for I. (95% CI: �1.12 to �1.06).Slope p �1.09
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Figure 2: Relationships between C and I (i.e., C not corrected by m0.75) are negative but not close to the predicted slope of �1. A, Relationship
using neonate mass for I. (95% confidence interval [CI]: �0.28 to �0.31). B, Relationship using weaning mass for I.Slope p �0.30

(95% CI: �0.29–�0.35).Slope p �0.32
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explanation for this pattern. Because litter mass is simply
, we can explain the relationship documented byI # C

Blueweiss et al. (1978) using a simple rearrangement of
our equation (1): . Blueweiss et al. (1978) ob-0.75IC ∝ m
served an exponent of 0.82 in their empirical data, which
is very close to the theoretically predicted value.

While we demonstrate only for mammals how cor-
recting for mass-related variation in R results in the pre-
dicted inverse proportionality between C and I, our
method for getting at R to normalize the number of off-
spring among species can probably be applied to many
other taxa. However, because rates of resource acquisition
and allocation for ectotherms are highly dependent on
temperature, m0.75 should be multiplied further by an ex-
ponential temperature correction (Gillooly et al. 2002;
Charnov and Gillooly 2004). This temperature correction
was unnecessary for homeothermic mammals because
their body temperatures are all very similar.

In conclusion, these results show that by correcting—
even if only coarsely—for species-level differences in R
caused by differences in body size, we can closely approach
the theoretically predicted relationship between C and I.
Furthermore, the use of the function to correct0.75R ∝ m
for differences in resource allocation demonstrates the
strengths of applying well-known allometric relationships
to life-history problems (Charnov 1993), especially to es-
timate difficult-to-obtain variables (like R). This approach
is especially useful because, for most organisms, body mass
is relatively easy to measure in the field, and the relation-
ship between body mass and production is known for a
large variety of taxa. Interestingly, there are slight devia-
tions from the predicted form of the relationship in our
results, and investigating these deviations should prove to
be an additional and interesting avenue for research, even-
tually helping in our understanding of the trade-offs be-
tween C and I, given constraints on R. Despite our use of
a coarse approximation of R, our results very closely ap-
proach �1 and point to the usefulness of correcting for
species-level differences in R, although they suggest that
future models for growing offspring should perhaps ex-
plore why the cost to the parent is not exactly proportional
to offspring mass. However, in general, our simple ap-
proach demonstrates that across widely varying species of

mammals, there is strong evidence for the predicted trade-
off between offspring size and number of offspring.
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