University of New Mexico UNM Digital Repository

Regulatorily Completed

Sandia National Labs/NM Technical Reports

7-1-2004

Justification for Class III Permit Modification July 2004 DSS Site 1008 Operable Unit 1295 Building 6750 Septic System

Sandia National Laboratories/NM

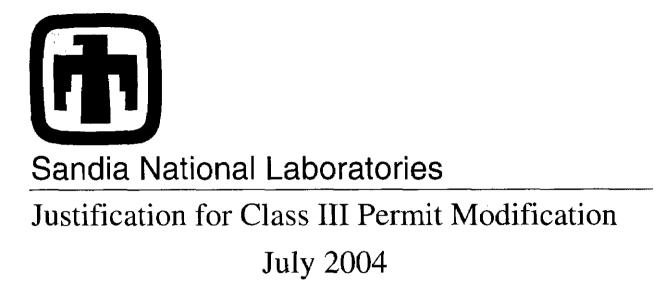
Follow this and additional works at: https://digitalrepository.unm.edu/snl_complete

Recommended Citation

Sandia National Laboratories/NM. "Justification for Class III Permit Modification July 2004 DSS Site 1008 Operable Unit 1295 Building 6750 Septic System." (2004). https://digitalrepository.unm.edu/snl_complete/34

This Technical Report is brought to you for free and open access by the Sandia National Labs/NM Technical Reports at UNM Digital Repository. It has been accepted for inclusion in Regulatorily Completed by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Sandia National Laboratories Justification for Class III Permit Modification July 2004


DSS Site 1008 Operable Unit 1295 Building 6750 Septic System

NFA (SWMU Assessment Report) Submitted June 2003

Environmental Restoration Project

United States Department of Energy Albuquerque Operations Office

DSS Site 1008 Operable Unit 1295 Building 6750 Septic System

NFA (SWMU Assessment Report) Submitted June 2003

Environmental Restoration Project

United States Department of Energy Albuquerque Operations Office

Department of Energy National Nuclear Security Administration Sandia Site Office P.O. Box 5400 Albuquergue, New Mexico 87185-5400

JUL 1 0 2003

CERTIFIED MAIL- RETURN RECEIPT REQUESTED

Mr. John E. Kieling, Manager Permits Management Program Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Rd., Building E Santa Fe, NM 87505

Dear Mr. Kieling:

On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting the enclosed SWMU Assessment Reports and Proposals for No Further Action (NFA) for Drain and Septic Systems (DSS) Sites 1003, 1008, 1072, 1082, and 1091, at Sandia National Laboratories, New Mexico, EPA ID No. NM5890110518.

This submittal includes descriptions of the site characterization work, soil characterization data, and risk assessments for DSS Sites 1003, 1008, 1072, and 1082. The risk assessments conclude that for these four sites (1) there is no significant risk to human health under both the industrial and residential land-use scenarios, and (2) that there are no ecological risks associated with these sites. A petition for an administrative NFA proposal is also made for DSS Site 1091 because this site was shown not to exist.

DOE and Sandia are requesting a determination that these DSS sites are acceptable for No Further Action.

If you have any questions, please contact John Gould at (505) 845-6089.

Sincerely,

Patty Wagner Ser

Karen L. Boardman Manager

J. Kieling

(2)

cc w/enclosure: W. Moats, NMED-HWB (via Certified Mail) M. Gardipe, ERD R. Kennett, NMED-OB L. King, EPA, Region 6 (2 copies, via Certified Mail)


cc w/o enclosure: J. Bearzi, NMED-HWB J. Parker, NMED-OB K. Thomas, EPA, Region 6 J. Estrada, SSO-AIP F. Nimick, SNL, MS 1087 D. Stockham, SNL, MS 1087 SSO Legal File

Sandia National Laboratories/New Mexico Environmental Restoration Project

SWMU ASSESSMENT REPORT AND PROPOSAL FOR NO FURTHER ACTION BUILDING 6750 SEPTIC SYSTEM, DRAIN AND SEPTIC SYSTEMS SITE 1008

June 2003

United States Department of Energy Sandia Site Office

TABLE OF CONTENTS

LIST C	OF TAB	LES EXES	BREVIATIONS	v vii
1.0	PROJI	ECT BAC	CKGROUND	1-1
2.0	BUILD	ING 675	0 SEPTIC SYSTEM	2-1
	2.1 2.2		ry scription and Operational History	
		2.2.1 2.2.2	Site Description Operational History	
	2.3	Land Us	se	2-7
		2.3.1 2.3.2	Current Land Use Future/Proposed Land Use	
3.0	INVES	STIGATO	RY ACTIVITIES	3-1
	3.1 3.2 3.3 3.4	Investig Investig	ation 1—Septic Tank Sampling ation 2—Backhoe Excavation ation 3—Soil Sampling	3-1 3-1
		3.4.1 3.4.2 3.4.3 3.4.4	Soil Sampling Methodology Soil Sampling Results and Conclusions Soil Sampling Data Quality Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results	3-5 3-19
	3.5	Investig	ation 4—Passive Soil-Vapor Sampling	3-19
		3.5.1 3.5.2	Passive Soil-Vapor Sampling Methodology Soil-Vapor Survey Results and Conclusions	
	3.6	Site Sar	mpling Data Gaps	3-21
4.0	CONC	EPTUAL	SITE MODEL	4-1
	4.1 4.2 4.3	Environ	and Extent of Contamination mental Fate	4-1

TABLE OF CONTENTS (Continued)

		4.3.1	Summary Risk Assessments	4-6
		4.3.2	Risk Assessments	4-6
	4.4	Baselin	e Risk Assessments	4-8
		4.4.1	Human Health	
		4.4.2	Ecological	4-8
5.0	NO F	URTHER	ACTION PROPOSAL	5-1
	5.1	Rationa	ale	5-1
	5.2	Criterio	n	5-1
6.0	REFE		5	6-1

.

.

LIST OF FIGURES

Figure

2.2.1-1	Location Map of the Building 6750 Septic System, TA-III, Drain and Septic Systems Site 1008	.2-3
2.2.1-2	Site Map of the Building 6750 Septic System, TA-III, Drain and Septic Systems Site 1008	.2-5
3.4-1	Collecting Soil Samples with the Geoprobe™ from the Building 6750 Septic System Drainfield, DSS Site 1008, August 17, 1999	.3-3
4.2-1	Conceptual Site Model Flow Diagram for Building 6750 Septic System, DSS Site 1008	.4-3

2

,

This page intentionally left blank.

1 1

÷

LIST OF TABLES

Table

-

3.4-1	Summary of Soil Samples Collected at Building 6750 Septic System (DSS Site 1008)3-5
3.4.2-1	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, VOC Analytical Results, June 1998 (On-Site Laboratory)3-6
3.4.2-2	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, VOC Analytical Method Detection Limits, June 1998 (On- Site Laboratory)
3.4.2-3	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, SVOC Analytical Results, June 1998 (Off-Site Laboratory)3-9
3.4.2-4	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, SVOC Analytical Method Detection Limits, June 1998 (Off- Site Laboratory)
3.4.2-5	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, PCB Analytical Results, August 1999 (Off-Site Laboratory)3-12
3.4.2-6	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, PCB Analytical Method Detection Limits, August 1999 (Off-Site Laboratory)
3.4.2-7	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, HE Compounds Analytical Results, June 1998 (On-Site Laboratory)
3.4.2-8	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, HE Compounds Analytical Method Detection Limits, June 1998 (On-Site Laboratory)
3.4.2-9	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Metals Analytical Results, June 1998 and August 1999 (On-Site and Off-Site Laboratories)
3.4.2-10	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Metals Analytical Method Detection Limits, June 1998 and August 1999 (On-Site and Off-Site Laboratories)3-16
3.4.2-11	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Total Cyanide Analytical Results, August 1999 (Off-Site Laboratory)

.

.

LIST OF TABLES (Concluded)

Table

1

3.4.2-12	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Total Cyanide Analytical Method Detection Limits, August 1999 (Off-Site Laboratory)	3-17
3.4.2-13	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results, June 1998 (On- Site Laboratory)	3-18
3.4.2-14	Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Gross Alpha/Beta Activity Analytical Results, June 1998 (Off-Site Laboratory)	3-20
4.2-1	Summary of Potential COCs for Building 6750 Septic System (DSS Site 1008)	4-5

.

LIST OF ANNEXES

Annex

- A Septic Tank Sampling Results
- B Soil Sampling Data Validation Reports
- C Gore-Sorber™ Passive Soil-Vapor Analytical Results
- D Risk Assessment

This page intentionally left blank.

•

.

ACRONYMS AND ABBREVIATIONS

AOC BA bgs COC DOE DSS EB EPA ER ERCL FIP GEL GS HE HI HWB KAFB kg MDA MDL µg mg NFA NMED OU PCB ACRA RPSD SAP SNL/NM SVOC	area of concern butyl acetate below ground surface constituent of concern U.S. Department of Energy Drain and Septic Systems equipment blank U.S. Environmental Protection Agency Environmental Restoration ER Chemistry Laboratory Field Implementation Plan General Engineering Laboratories, Inc. Gore-Sorber™ high explosive(s) hazard index Hazardous Waste Bureau Kirtland Air Force Base kilogram(s) minimum detectable activity method detection limit microgram(s) milligram(s) no further action New Mexico Environment Department Operable Unit polychlorinated biphenyl Resource Conservation and Recovery Act Radiation Protection Sample Diagnostics Sampling and Analysis Plan Sandia National Laboratories/New Mexico semivolatile organic compound Salid Waste Monagement Unit
	Sandia National Laboratories/New Mexico
SWMU TA	Solid Waste Management Unit Technical Area
тв	trip blank
VOC	volatile organic compound

-

.

-

This page intentionally left blank.

-

1.0 PROJECT BACKGROUND

Environmental characterization of Sandia National Laboratories/New Mexico (SNL/NM) drain and septic systems (DSS) started in the early 1990s. These units consist of either septic systems (one or more septic tanks plumbed to either drainfields or seepage pits), or other types of miscellaneous drain units without septic tanks (including drywells or french drains, seepage pits, and surface outfails). Initially, 23 of these sites were designated as Solid Waste Management Units (SWMUs) under Operable Unit (OU) 1295, Septic Tanks and Drainfields. Characterization work at 22 of these 23 SWMUs has taken place since 1994 as part of the SNL/NM Environmental Restoration (ER) Project activities. The 23rd site did not require any characterization, and an administrative proposal for no further action (NFA) was granted in July 1995.

It was also known that numerous other miscellaneous DSS sites that were not designated as SWMUs were present throughout SNL/NM. An initial list of these non-SWMU sites was compiled and summarized in an SNL/NM document dated July 8, 1996, and included a total of 101 sites, facilities, or systems (Bleakly July 1996). For tracking purposes, each of these 101 individual DSS sites was designated with a unique four-digit site identification number starting with 1001. This numbering scheme was devised to clearly differentiate these non-SWMU sites from existing SNL/NM SWMUs, which have been designated by one to three-digit numbers. As work progressed on the DSS site evaluation project, it became apparent that the original 1996 list was in need of field-verification and updating. This process included researching SNL/NM's extensive library of facilities engineering drawings, and conducting field verification inspections jointly with SNL/NM ER personnel and New Mexico Environment Department (NMED)/Hazardous Waste Bureau (HWB) regulatory staff from July 1999 through January 2000. The goals of this additional work included:

- Determine to the degree possible whether each of the 101 systems included on the 1996 list was still in existence, or had ever actually existed.
- For systems confirmed or believed to exist, determine the exact or apparent locations and components of those systems (septic tanks, drainfields, seepage pits, etc.).
- Identify which systems would, and would not, need initial shallow investigation work as required by NMED.
- For systems requiring characterization, determine the specific types of shallow characterization work (including passive soil-vapor sampling and/or shallow soil borings) that would be required by NMED.

A number of additional drain systems were identified from the engineering drawing and field inspection work. It was also determined that some of the sites on the 1996 list actually contained more than one individual drain or septic system, that had been combined under one four-digit site number. In order to reduce confusion, a decision was made to assign each individual system its own unique four-digit number. A new site list containing a total of 121 individual drain and septic systems was generated in 2000. Of these 121 sites, NMED required environmental assessment work at a total of 61; no evaluation of the remaining 60 systems was necessary. Subsequent backhoe excavation at DSS Site 1091 confirmed that the

system did not in fact exist, which decreased the number of DSS sites requiring characterization to 60.

Concurrent with the field inspection and site identification work, NMED/HWB and SNL/NM ER Project technical personnel worked closely together to reach consensus on a staged approach and specific procedures that would be used to characterize the DSS sites, as well as the remaining OU 1295 Septic Tanks and Drainfield SWMUs that had not been approved for no further action. These procedures are described in detail in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (SNL/NM October 1999), which was approved by NMED/HWB on January 28, 2000 (Bearzi January 2000). A follow-on document, the "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (SNL/NM November 2001) was then written to formally document the updated DSS site list and the specific site characterization work required by NMED for each of the 60 DSS sites. The FIP was approved by NMED in February 2002 (Moats February 2002).

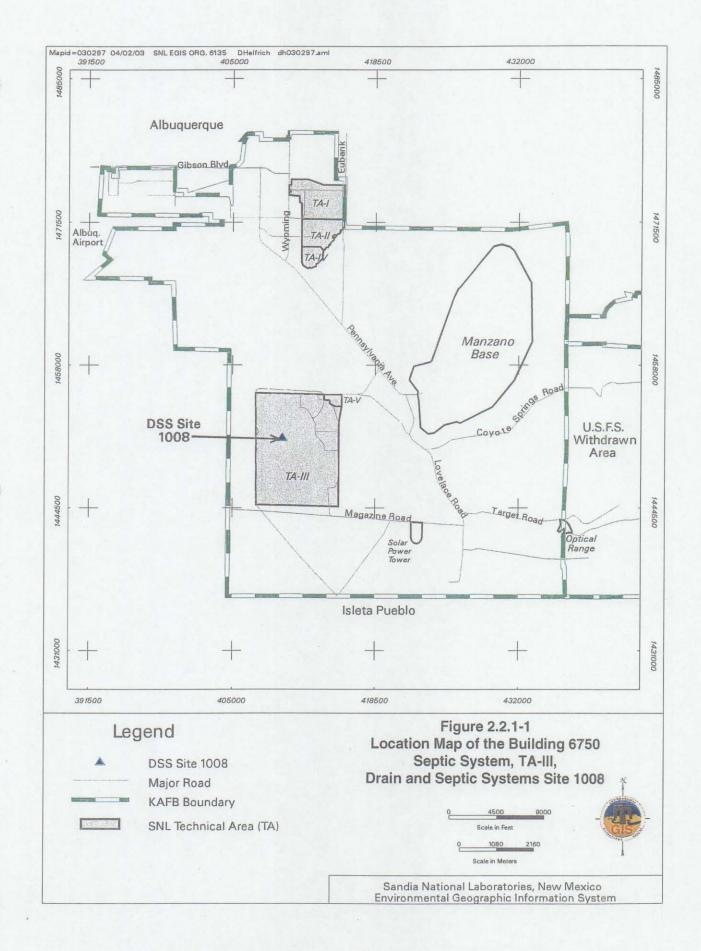
2.0 BUILDING 6750 SEPTIC SYSTEM

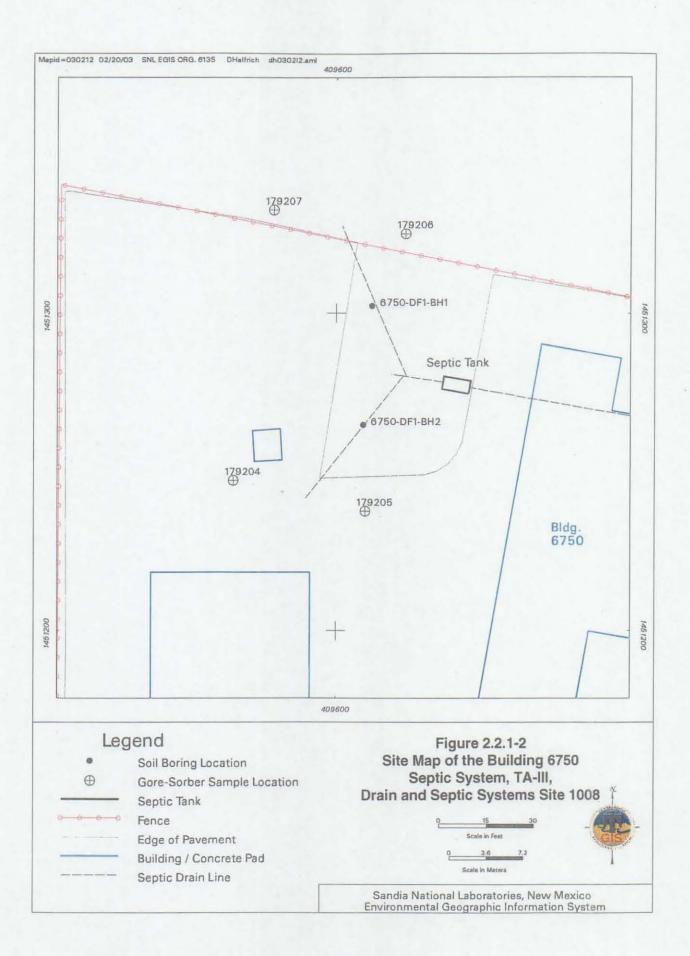
2.1 Summary

The SNL/NM ER Project has conducted an assessment of DSS Site 1008, the Building 6750 septic system. There are no known or specific environmental concerns at this DSS site. It is one of many SNL/NM DSS sites at which environmental characterization is being required by NMED/HWB. An assessment was conducted to determine whether environmental contamination was released to the environment via the septic system present at the site. This report presents the results of the assessment and, based upon the findings, recommends a risk-based proposal for NFA for the Building 6750 septic system site. This NFA proposal provides documentation that the site was sufficiently characterized and that no significant releases of contaminants to the environment occurred via the Building 6750 septic system, and that it does not pose a threat to human health or the environment under industrial or residential scenarios. Current operations at the site are conducted in accordance with applicable laws and regulations that are protective of the environment, and septic system discharges are now directed to the City of Albuquerque sewer system.

Review and analysis of all relevant data for the Building 6750 septic system site indicate that concentrations of constituents of concern (COCs) at this site were found to be below applicable risk assessment action levels. Thus, DSS Site 1008, the Building 6750 septic system is proposed for an NFA decision based upon sampling data demonstrating that COCs released from the site into the environment pose an acceptable level of risk under current and projected future land uses as set forth by Criterion 5. Criterion 5 states: "The SWMU/AOC [Area of Concern] has been characterized or remediated in accordance with current applicable state or federal regulations, and the available data indicate that contaminants pose an acceptable level of risk under current and projected future land use" (NMED March 1998).

2.2 Site Description and Operational History


2.2.1 Site Description


The Building 6750 septic system is located in SNL/NM Technical Area (TA)-III on federally owned land, which is controlled by Kirtland Air Force Base (KAFB) and permitted to the U.S. Department of Energy (DOE) (Figure 2.2.1-1). DSS Site 1008 is located approximately 1.3 miles southwest of the northeast entrance into TA-III, on the northwest side of Building 6750 (Figure 2.2.1-2). As shown on Figure 2.2.1-2, this septic system consists of a 1,000-gallon septic tank with the output flowing to a junction that feeds two drainfield lines. The drainfield lines are approximately 50 feet long and flow away from each other in a "Y" configuration. Construction details of this system are based upon information presented on an SNL/NM engineering drawing (SNL/NM September 1971), site inspections, and backhoe excavations of the system.

The surface geology at DSS Site 1008 is characterized by a veneer of aeolian sediments that are underlain by Upper Santa Fe Group alluvial fan deposits that interfinger with sediments of the ancestral Rio Grande west of the site. These deposits extend to, and probably far below, the water table at this site. The alluvial fan materials originated in the Manzanita Mountains east of the site

This page intentionally left blank.

-

and typically consist of a mixture of silts, sands, and gravels that are poorly sorted, and exhibit moderately connected lenticular bedding. Individual beds range from 1 to 5 feet in thickness with a preferred east-west orientation, and have moderate to low hydraulic conductivities (SNL/NM March 1996). Vegetation primarily consists of desert grasses, shrubs, and cacti.

The ground surface in the vicinity of the site is flat to very slightly inclined to the west. The closest major drainage lies south of the site and terminates in a playa just west of KAFB. No perennial surface-water bodies are present in the vicinity of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport is 8.1 inches (NOAA 1990). Infiltration of precipitation is almost nonexistent as virtually all of the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration rates for the KAFB area range from 95 to 99 percent of the annual rainfall (Thompson and Smith 1985, SNL/NM March 1996).

The site lies at an average elevation of approximately 5,353 feet above mean sea level. Depth to groundwater is approximately 460 feet below ground surface (bgs) at the site. Groundwater flow direction is thought to be generally to the west in this area (SNL/NM March 2002). The nearest production wells are north of the site and include KAFB-4 and KAFB-7, which are 3.25 and 3.8 miles away, respectively. The nearest groundwater monitoring wells, MWL-MW5 and MWL-BW-1, are located approximately 2,000 to 2,250 feet northwest of the site (SNL/NM August 2002).

2.2.2 Operational History

Available information indicates that Building 6750 was constructed in 1965 (SNL/NM March 2003), and it is assumed that the septic system was also constructed at this time. The building served as a test facility used for studying impact phenomena. Building 6750 houses a small machine shop, office space, a control area, and an indoor firing range.

A firm date for the installation of the septic tank and drainfield system at Building 6750 is not known. Available information indicates that by the early 1990s, the septic tank system had been disconnected from the building, and septic system discharges were routed to the City of Albuquerque sanitary sewer system (Jones July 1993). Because operational records were not available, the investigation was planned to be consistent with other DSS site investigations and to sample for the most commonly anticipated COCs found at similar test facilities.

2.3 Land Use

2.3.1 Current Land Use

The current land use for DSS Site 1008 is industrial.

2.3.2 Future/Proposed Land Use

The projected land use for DSS Site 1008 is industrial (DOE et al. September 1995).

This page intentionally left blank.

.

3.0 INVESTIGATORY ACTIVITIES

Four investigations have been conducted at the Building 6750 septic system. Three of these investigations were required by NMED/HWB to adequately characterize this site, and were conducted in accordance with procedures presented in the 1999 SAP and 2001 FIP, described in Chapter 1.0. These investigations are discussed in the following sections.

3.1 Summary

Four assessments have been conducted at the site. In June 1992 and July 1995, waste characterization samples (Investigation 1) were collected from the Building 6750 septic system. In June 1997, a backhoe was used to physically locate the buried drainfield lines at the site (Investigation 2). Shallow subsurface soil samples were collected from borings in the drainfield in June 1998 and again in August 1999 (Investigation 3). In May 2002, a passive soil-vapor screening survey was conducted to determine whether areas of significant volatile organic compound (VOC) contamination were present in the soils around the drainfield (Investigation 4). These investigations are discussed in the following sections.

3.2 Investigation 1—Septic Tank Sampling

Investigation 1 consisted of sampling efforts to characterize the waste contents of all SNL/NM septic tanks for chemical and radiological contamination. The primary goal of the sampling effort was to identify types and concentrations of potential contaminants in the waste within the tanks so that the appropriate waste disposal and remedial activities could be planned.

On July 7, 1992 and July 12, 1995, as part of the SNL/NM Septic System Monitoring Program, aqueous and sludge samples were collected from the septic tank at this site (SNL/NM June 1993, SNL/NM December 1995). Aqueous samples were analyzed for VOCs, semivolatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), total metals, phenolic compounds, nitrates/nitrites, formaldehyde, fluoride, cyanide, oil and grease, and radiological constituents. Sludge samples were analyzed for metals and radiological constituents. Sludge samples were analyzed for chemical and radiological analysis. A fraction of each sample was also submitted to the SNL/NM Radiation Protection Sample Diagnostics (RPSD) Laboratory for gamma spectroscopy analysis. The analytical results are presented in Annex A.

During March 25 and 26, 1996, the residual contents, approximately 958 gallons of waste and added water, were pumped out and disposed of properly (Shain August 1996).

3.3 Investigation 2—Backhoe Excavation

A backhoe was used on June 9, 1997 to determine the location, dimensions, and average depth of the DSS Site 1008 drainfield system. The drainfield was arranged as shown on Figure 2.2.1-2, with a drainline length of 50 feet and an average drainline depth of 3 feet bgs. No visible evidence of stained or discolored soil or odors indicating residual contamination was

observed during the excavation. No samples were collected during the backhoe excavation at the site.

3.4 Investigation 3—Soil Sampling

Once the system drainlines were located, soil sampling was conducted in accordance with the rationale and procedures described in the NMED-approved 1999 SAP (SNL/NM October 1999). An initial round of soil samples was collected from two drainfield borehole locations on June 22, 1998. On September 17, 1999, the two boreholes were sampled again for additional analyses. Soil boring locations at this site are shown on Figure 2.2.1-2. Figure 3.4-1 shows soil samples being collected at DSS Site 1008. A summary of the boreholes, sample depths, sample analyses, and sample collection dates is presented in Table 3.4-1.

3.4.1 Soil Sampling Methodology

An auger drill rig was used to sample all boreholes at two depth intervals. In the drainfield locations, the top of the shallow interval started at the bottom of the drainline trenches, as determined by the backhoe excavation. The lower (deep) interval started at 5 feet below the top sample interval. Once the auger rig had reached the top of the sampling interval, a 1.5-inch inside diameter by 3-foot long Geoprobe[™] sampling tube lined with a butyl acetate (BA) sampling sleeve was inserted into the borehole and hydraulically driven 3 feet down to fill the tube with soil.

Once the sample tube was retrieved from the borehole, the sample for VOC analysis was immediately collected by slicing off a 3- to 4-inch section from the lower end of the BA sleeve, capping the section ends first with Teflon film and then a rubber end cap, and finally sealing the tube with tape.

For the non-VOC analyses, the remaining soil in the BA liner was emptied into a decontaminated mixing bowl, and aliquots of soil were transferred into appropriate sample containers for analysis. On occasion, the amount of soil recovered in the first sampling run was insufficient for sample volume requirements. In this case, additional sampling runs were completed until an adequate soil volume was recovered. Soil recovered from these additional runs was emptied into the mixing bowl and blended with the soil already collected. Aliquots of the blended soil were then transferred into sample containers and submitted for analysis.

Drainfield soil samples were submitted to the SNL/NM ER Chemistry Laboratory (ERCL) for VOCs, high explosives (HE), and Resource Conservation and Recovery Act (RCRA) metals analyses, and to the SNL/NM RPSD Laboratory for gamma spectroscopy analyses. Samples for SVOC, PCB, cyanide, gross alpha/beta activity, and hexavalent chromium analyses were sent to General Engineering Laboratories (GEL), Inc. in Charleston, South Carolina. All samples were documented and handled in accordance with applicable SNL/NM operating procedures and transported to on- and off-site laboratories for analysis.

VOCs were analyzed by U.S. Environmental Protection Agency (EPA) Method 8260; SVOCs by EPA Method 8270; HE by EPA Method 8330 (EPA 8095 equivalent at the on-site ERCL); PCBs by EPA Method 8082; RCRA metals and hexavalent chromium by EPA Methods 6020 and

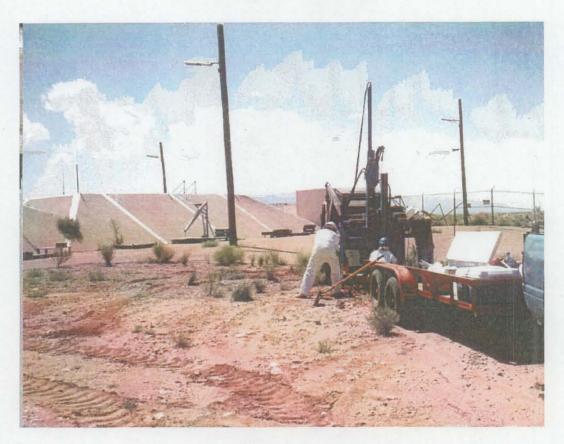


Figure 3.4-1 Collecting Soil Samples with the Geoprobe™ from the Building 6750 Septic System Drainfield, DSS Site 1008, August 17, 1999

Table 3.4-1 Summary of Soil Samples Collected at Building 6750 Septic System (DSS Site 1008)

			Top of	······································		
		f.	Sampling	Total	Total	
ſ		Number of	Intervals in	Number of	Number of	Date(s)
Sampling		Borehole	Each Borehole	Soil	Duplicate	Samples
Area	Analytical Parameters	Locations	(ft bgs)	Samples	Samples	Collected
Drainfield	VOCs	2	5, 10	4	0	06-22-98
	SVOCs	2	5, 10	4	0	06-22-98
	PCBs	2	5, 10	4	0	08-17-99
	HE	2	5, 10	4	0	06-22-98
	RCRA metals	2	5, 10	4	0	06-22-98
	Hexavalent Chromium	2	5, 10	4	0	08-17-99
	Total Cyanide	2	5, 10	4	0	08-17-99
	Gamma Spectroscopy	2	5, 10	4	0	06-22-98
	Gross Alpha/Beta Activity	2	5, 10	4	0	06-22-98

bgs = Below ground surface.

- DSS = Drain and Septic Systems.
- ft = Foot (feet).
- HE = High explosive(s).
- PCB = Polychlorinated biphenyl.
- RCRA = Resource Conservation and Recovery Act.
- SVOC = Semivolatile organic compound.
- VOC = Volatile organic compound.

7196A; total cyanide by EPA Method 9012A; gamma spectroscopy by EPA Method 901.1 (or equivalent at the on-site RPSD Laboratory); and gross alpha/beta activity by EPA Method 900.0, or equivalent (EPA November 1986).

3.4.2 Soil Sampling Results and Conclusions

Analytical results for the soil samples collected at DSS Site 1008 are presented and discussed below. Sample locations are shown on Figure 2.2.1-2.

<u>VOCs</u>

Analytical results for the four soil samples collected from the two drainfield boreholes are presented in Table 3.4.2-1. Method detection limits (MDLs) for the VOC analyses are presented in Table 3.4.2-2. No VOCs were detected in any of the soil samples.

Table 3.4.2-1 Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, VOC Analytical Results June 1998 (On-Site Laboratory)

	VOCs		
Record Number ⁵	ER Sample ID	Sample Depth (ft)	(Method 8260ª) (μg/kg)
600395	6750-DF1-BH1-5-S	5	ND
600395	6750-DF1-BH1-10-S	10	ND
600395	6750-DF1-BH2-5-S	5	ND
600395	6750-DF1-BH2-10-S	10	ND
Quality Assura	nce/Quality Control Samples	(µg/L)	
600395	6750-EB	NA	ND
600395	6750-TB	NA	ND

^aEPA November 1986.

^bAnalysis Request/Chain-of-Custody Record.

BH = Borehole.

 $DF \approx Drainfield.$

DSS \approx Drain and Septic Systems.

EB = Equipment blank.

EPA \approx U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

ID = Identification.

 $\mu g/kg = Microgram(s) per kilogram.$

 $\mu g/L \approx Microgram(s)$ per liter.

NA = Not applicable.

ND = Not detected above the method detection limit.

- S = Soil sample.
- TB ≈ Trip blank
- VOC = Volatile organic compound.

Table 3.4.2-2

Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, VOC Analytical Method Detection Limits June 1998 (On-Site Laboratory)

AnalyteDetection Limit (µg/kg)Acetone5.1–5.8Benzene1–1.2Bromodichloromethane1–1.2Bromodichloromethane1–1.2Bromodichloromethane1–1.2Bromomethane1–1.2Bromomethane1–1.2Carbon disulfide1–1.2Carbon disulfide1–1.2Carbon tetrachloride1–1.2Chlorobenzene1–1.2Chlorobenzene1–1.2Chloroethane1–1.2Chloroform1–1.2Chloromethane1–1.21,1-Dichloroethane1–1.21,2-Dichloroethane1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloropropane0.51–0.58trans-1,3-Dichloropropene0.51–0.58trans-1,3-Dichloropropene2–2.32-Hexanone5.1–5.8	
Acetone 5.1–5.8 Benzene 1–1.2 Bromodichloromethane 1–1.2 Bromoform 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Carbon disulfide 1–1.2 Carbon tetrachloride 1–1.2 Chlorobenzene 1–1.2 Chlorobenzene 1–1.2 Chloroform 1–1.2 Chloroform 1–1.2 Chloroform 1–1.2 Dibromochloromethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethane 1–1.2 1,2-Dichloroethene 1–1.2 1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 1,2-Dichloropropane 1–1.2 1,2-Dichloropropene 0.51–0.58 trans-1,3-Dichloropropene 1–1.2 Ethyl benzene 2–2.3 2-Hexanone 5.1–5.8	
Benzene 1–1.2 Bromodichloromethane 1–1.2 Bromoform 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Station disulfide 1–1.2 Carbon disulfide 1–1.2 Carbon tetrachloride 1–1.2 Chlorobenzene 1–1.2 Chlorobenzene 1–1.2 Chloroethane 1–1.2 Chloroform 1–1.2 Chloromethane 1–1.2 Dibromochloromethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethane 1–1.2 1,1-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 1,2-Dichloroethene 1–1.2 1,2-Dichloropropane 1–1.2 1,2-Dichloropropane 1–1.2 trans-1,3-Dichloropropene 0.51–0.58 trans-1,3-Dichloropropene 1–1.2	
Bromodichloromethane 1–1.2 Bromoform 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 2-Butanone 5.1–5.8 Carbon disulfide 1–1.2 Carbon disulfide 1–1.2 Carbon tetrachloride 1–1.2 Chlorobenzene 1–1.2 Chlorobenzene 1–1.2 Chloroethane 1–1.2 Chloroethane 1–1.2 Chloromethane 1–1.2 Dibromochloromethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethene 1–1.2 is-1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 1,2-Dichloropropane 1–1.2 is-1,3-Dichloropropene 0.51–0.58 trans-1,3-Dichloropropene 1–1.2 Ethyl benzene 2–2.3 2-Hexanone 5.1–5.8 <td></td>	
Bromoform 1–1.2 Bromomethane 1–1.2 Bromomethane 1–1.2 2-Butanone 5.1–5.8 Carbon disulfide 1–1.2 Carbon tetrachloride 1–1.2 Carbon tetrachloride 1–1.2 Chlorobenzene 1–1.2 Chlorobenzene 1–1.2 Chloroethane 1–1.2 Chloroform 1–1.2 Chloromethane 1–1.2 Chloromethane 1–1.2 Dibromochloromethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethane 1–1.2 1,2-Dichloroethene 1–1.2 1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 trans-1,2-Dichloropropane 1–1.2 cis-1,3-Dichloropropane 1–1.2 trans-1,3-Dichloropropene 0.51–0.58 trans-1,3-Dichloropropene 2–2.3 2-Hexanone 5.1–5.8	
Bromomethane 1-1.2 2-Butanone 5.1-5.8 Carbon disulfide 1-1.2 Carbon tetrachloride 1-1.2 Carbon tetrachloride 1-1.2 Chlorobenzene 1-1.2 Dibromochloromethane 1-1.2 1,1-Dichloroethane 1-1.2 1,2-Dichloroethane 1-1.2 1,2-Dichloroethene 1-1.2 trans-1,2-Dichloroethene 1-1.2 trans-1,2-Dichloroethene 1-1.2 1,2-Dichloropropane 1-1.2 trans-1,3-Dichloropropene 0.51-0.58 trans-1,3-Dichloropropene 1-1.2 Ethyl benzene 2-2.3 2-Hexanone 5.1-5.8	
2-Butanone 5.1–5.8 Carbon disulfide 1–1.2 Carbon tetrachloride 1–1.2 Chlorobenzene 1–1.2 Dibromochloromethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 trans-1,2-Dichloropropane 1–1.2 trans-1,3-Dichloropropene 0.51–0.58 trans-1,3-Dichloropropene 1–1.2 Ethyl benzene 2–2.3 2-Hexanone 5.1–5.8	
Carbon disulfide11.2Carbon tetrachloride11.2Chlorobenzene11.2Chloroethane11.2Chloroform11.2Chloromethane11.2Dibromochloromethane11.21,1-Dichloroethane11.21,2-Dichloroethane11.21,1-Dichloroethane11.21,1-Dichloroethane11.21,2-Dichloroethene11.21,1-Dichloroethene11.21,2-Dichloroethene11.21,2-Dichloroethene11.21,2-Dichloropropane11.21,2-Dichloropropane11.21,3-Dichloropropene0.510.58trans-1,3-Dichloropropene11.2Ethyl benzene2-2.32-Hexanone5.15.8	
Carbon tetrachloride1–1.2Chlorobenzene1–1.2Chloroethane1–1.2Chloroform1–1.2Chloromethane1–1.2Dibromochloromethane1–1.21,1-Dichloroethane1–1.21,2-Dichloroethane1–1.21,1-Dichloroethane1–1.21,1-Dichloroethane1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.21,2-Dichloroethene1–1.2trans-1,2-Dichloroethene1–1.21,2-Dichloropropane1–1.2trans-1,3-Dichloropropene0.51–0.58trans-1,3-Dichloropropene1–1.2Ethyl benzene2–2.32-Hexanone5.1–5.8	
Chlorobenzene 1–1.2 Chloroethane 1–1.2 Chloroform 1–1.2 Chloromethane 1–1.2 Dibromochloromethane 1–1.2 1,1-Dichloroethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethene 1–1.2 1,1-Dichloroethene 1–1.2 1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 trans-1,2-Dichloropropane 1–1.2 trans-1,3-Dichloropropene 0.51–0.58 trans-1,3-Dichloropropene 1–1.2 Ethyl benzene 2–2.3 2-Hexanone 5.1–5.8	
Chloroethane 1–1.2 Chloroform 1–1.2 Chloromethane 1–1.2 Dibromochloromethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethane 1–1.2 1,2-Dichloroethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethene 1–1.2 1,1-Dichloroethene 1–1.2 1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 trans-1,2-Dichloropropane 1–1.2 cis-1,3-Dichloropropane 1–1.2 trans-1,3-Dichloropropene 0.51–0.58 trans-1,3-Dichloropropene 2–2.3 2-Hexanone 5.1–5.8	
Chloroform 1-1.2 Chloromethane 1-1.2 Dibromochloromethane 1-1.2 1,1-Dichloroethane 1-1.2 1,2-Dichloroethane 1-1.2 1,1-Dichloroethane 1-1.2 1,1-Dichloroethene 1-1.2 1,1-Dichloroethene 1-1.2 1,1-Dichloroethene 1-1.2 1,1-Dichloroethene 1-1.2 trans-1,2-Dichloroethene 1-1.2 trans-1,2-Dichloropropane 1-1.2 cis-1,3-Dichloropropane 1-1.2 trans-1,3-Dichloropropene 0.51-0.58 trans-1,3-Dichloropropene 2-2.3 2-Hexanone 5.1-5.8	
Chloromethane1–1.2Dibromochloromethane1–1.21,1-Dichloroethane1–1.21,2-Dichloroethane1–1.21,1-Dichloroethene1–1.21,1-Dichloroethene1–1.2cis-1,2-Dichloroethene1–1.2trans-1,2-Dichloroethene1–1.21,2-Dichloroethene1–1.2trans-1,2-Dichloroethene1–1.2trans-1,3-Dichloropropane1–1.2trans-1,3-Dichloropropene0.51–0.58trans-1,3-Dichloropropene1–1.2Ethyl benzene2–2.32-Hexanone5.1–5.8	
Dibromochloromethane 1–1.2 1,1-Dichloroethane 1–1.2 1,2-Dichloroethane 1–1.2 1,1-Dichloroethane 1–1.2 1,1-Dichloroethene 1–1.2 cis-1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 cis-1,3-Dichloropropane 1–1.2 trans-1,3-Dichloropropene 0.51–0.58 trans-1,3-Dichloropropene 1–1.2 Ethyl benzene 2–2.3 2-Hexanone 5.1–5.8	
1,1-Dichloroethane 1-1.2 1,2-Dichloroethane 11.2 1,1-Dichloroethene 11.2 cis-1,2-Dichloroethene 11.2 trans-1,2-Dichloroethene 11.2 1,2-Dichloroethene 11.2 trans-1,2-Dichloroethene 11.2 cis-1,3-Dichloropropane 11.2 cis-1,3-Dichloropropene 0.510.58 trans-1,3-Dichloropropene 11.2 Ethyl benzene 22.3 2-Hexanone 5.15.8	
1,2-Dichloroethane 11.2 1,1-Dichloroethene 11.2 cis-1,2-Dichloroethene 11.2 trans-1,2-Dichloroethene 11.2 1,2-Dichloroptopene 11.2 cis-1,3-Dichloropropene 11.2 trans-1,3-Dichloropropene 0.51-0.58 trans-1,3-Dichloropropene 11.2 Ethyl benzene 22.3 2-Hexanone 5.1-5.8	
1,1-Dichloroethene 1–1.2 cis-1,2-Dichloroethene 1–1.2 trans-1,2-Dichloroethene 1–1.2 1,2-Dichloropropane 1–1.2 cis-1,3-Dichloropropene 0.51–0.58 trans-1,3-Dichloropropene 1–1.2 Ethyl benzene 2–2.3 2-Hexanone 5.1–5.8	
cis-1,2-Dichloroethene 1–1,2 trans-1,2-Dichloroethene 1–1.2 1,2-Dichloropropane 1–1.2 cis-1,3-Dichloropropene 0.51–0.58 trans-1,3-Dichloropropene 1–1.2 Ethyl benzene 2–2.3 2-Hexanone 5.1–5.8	
trans-1,2-Dichloroethene1-1.21,2-Dichloropropane1-1.2cis-1,3-Dichloropropene0.51-0.58trans-1,3-Dichloropropene1-1.2Ethyl benzene2-2.32-Hexanone5.1-5.8	
1,2-Dichloropropane1–1.2cis-1,3-Dichloropropene0.51–0.58trans-1,3-Dichloropropene1–1.2Ethyl benzene2–2.32-Hexanone5.1–5.8	
cis-1,3-Dichloropropene0.51-0.58trans-1,3-Dichloropropene1-1.2Ethyl benzene2-2.32-Hexanone5.1-5.8	
trans-1,3-Dichloropropene1–1.2Ethyl benzene2–2.32-Hexanone5.1–5.8	
Ethyl benzene 2-2.3 2-Hexanone 5.1-5.8	
2-Hexanone 5.1–5.8	
4-methyl-, 2-Pentanone 5.1–5.8	
Methylene chloride 1–1.2	
Styrene 1–1.2	
1,1,2,2-Tetrachloroethane 1–1.2	
Tetrachloroethene 2–2.3	
Toluene 1-1.2	
1,1,1-Trichloroethane 1–1.2	
1,1,2-Trichloroethane 1–1.2	
Trichloroethene 1–1.2	
Vinyl chloride 1–1.2	
o-Xylene 2–2.3	
p-Xylene, m-Xylene 3.1-3.5	

*EPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

µg/kg = Microgram(s) per kilogram.

VOC = Volatile organic compound.

SVOCs

Analytical results for the four soil samples collected from the two drainfield boreholes are presented in Table 3.4.2-3. MDLs for the SVOC analyses are presented in Table 3.4.2-4. No SVOCs were detected in any of the soil samples.

PCBs

Analytical results for the four soil samples collected from the two drainfield boreholes are presented in Table 3.4.2-5. MDLs for the PCB analyses are presented in Table 3.4.2-6. No PCBs were detected in any of the soil samples.

<u>HE</u>

Analytical results for the four soil samples collected from the two drainfield boreholes are presented in Table 3.4.2-7. MDLs for the HE analyses are presented in Table 3.4.2-8. No HE compounds were detected in any of the soil samples.

RCRA Metals and Hexavalent Chromium

Analytical results for the four soil samples collected from the two drainfield boreholes are presented in Table 3.4.2-9. MDLs for the metals analyses are presented in Table 3.4.2-10. Arsenic (4.6 milligrams [mg]/kilogram [kg]) and barium (240 J mg/kg) exceed their NMED-approved backgrounds of 4.4 and 214 mg/kg, respectively, in the 5-foot sample from borehole 6750-DF-BH2-5-5. All other metal detections were below their NMED-approved background concentrations.

Total Cyanide

Analytical results for the four soil samples collected from the two drainfield boreholes are presented in Table 3.4.2-11. MDLs for the cyanide analyses are presented in Table 3.4.2-12. No cyanide was detected in any of the soil samples.

Radionuclides

Analytical results for the gamma spectroscopy analysis of the four soil samples collected from the two drainfield boreholes are presented in Table 3.4.2-13. No readings above NMED-approved background were detected in any sample analyzed. However, although they were not detected, minimum detectable activities (MDAs) for uranium-235 and uranium-238 exceeded the background activities for those two radionuclides due to an insufficient gamma spectroscopy count time.

Table 3.4.2-3 Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, SVOC Analytical Results June 1998 (Off-Site Laboratory)

	Sample Attributes		SVOCs
Record		Sample	(Method 8270ª)
Number ^b	ER Sample ID	Depth (ft)	(µg/kg)
600396	6750-DF1-BH1-5-S	5	ND
600396	6750-DF1-BH1-10-S	10	ND
600396	6750-DF1-BH2-5-S	5	ND
600396	6750-DF1-BH2-10-S	10	ND

^aEPA November 1986.

^bAnalysis Request/Chain-of-Custody Record.

BH = Borehole.

DF = Drainfield.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

D = Identification.

μg/kg = Microgram(s) per kilogram.

ND = Not detected above the method detection limit.

S = Soil sample.

SVOC = Semivolatile organic compound.

Table 3.4.2-4 Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, SVOC Analytical Method Detection Limits June 1998 (Off-Site Laboratory)

	Method 8270 ^a
	Detection Limit
Analyte	(µg/kg)
Acenaphthene	170
Acenaphthylene	170
Anthracene	170
Benzo(a)anthracene	170
Benzo(a)pyrene	170
Benzo(b)fluoranthene	170
Benzo(ghi)perylene	170
Benzo(k)fluoranthene	170
Benzoic acid	330
Benzyl alcohol	170
4-Bromophenyl phenyl ether	170
Butylbenzyl phthalate	170
4-Chlorobenzenamine	330
bis(2-Chloroethoxy)methane	170
bis(2-Chloroethyl)ether	170
4-Chloro-3-methylphenol	170
bis-Chloroisopropyl ether	170
2-Chloronaphthalene	170
2-Chlorophenol	170
4-Chlorophenyl phenyl ether	170
Chrysene	170
m,p-Cresol	170
o-Cresol	170
Dibenz[a,h]anthracene	170
Dibenzofuran	170
Di-n-butyl phthalate	170
1,2-Dichlorobenzene	170
1,3-Dichlorobenzene	170
1,4-Dichlorobenzene	170
3,3'-Dichlorobenzidine	830
2,4-Dichlorophenol	170
Diethylphthalate	170
2,4-Dimethylphenol	170
Dimethylphthalate	170
2,4-Dinitrophenol	330
Dinitro-o-cresol	170
2,4-Dinitrotoluene	170
2,6-Dinitrotoluene	170
Di-n-octyl phthalate	170
1,2-Diphenylhydrazine	170
bis(2-Ethylhexyl)phthalate	170
Fluoranthene	170

Refer to footnotes at end of table.

.

Table 3.4.2-4 (Concluded) Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, SVOC Analytical Method Detection Limits June 1998 (Off-Site Laboratory)

	Method 8270 ^a Detection Limit
Anobite	r
Analyte	(µg/kg)
Fluorene	170
Hexachlorobenzene	170
Hexachlorobutadiene	170
Hexachlorocyclopentadiene	170
Hexachloroethane	170
Indeno(1,2,3-c,d)pyrene	170
Isophorone	170
2-Methylnaphthalene	170
Naphthalene	170
2-Nitroaniline	170
3-Nitroaniline	170
4-Nitroaniline	170
Nitro-benzene	170
2-Nitrophenol	170
4-Nitrophenol	330
n-Nitrosodiphenylamine	170
n-Nitrosodipropylamine	170
Pentachlorophenol	170
Phenanthrene	170
Phenol	170
Pyrene	170
1,2,4-Trichlorobenzene	170
2,4,5-Trichlorophenol	170
2,4,6-Trichlorophenol	170

^aEPA November 1986.

DSS = Drain and Septic Systems.

= U.S. Environmental Protection Agency. EPA

μg/kg = Microgram(s) per kilogram. SVOC = Semivolatile organic compound.

Table 3.4.2-5 Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, PCB Analytical Results August 1999 (Off-Site Laboratory)

Sample Attributes			
Record Number ^b	ER Sample ID	Sample Depth (ft)	PCB (Method 8082 ^a) (µg/kg)
602762	6750-DF1-BH1-5-S	5	ND
602762	6750-DF1-BH1-10-S	10	ND
602762	6750-DF1-BH2-5-S	5	ND
602762	6750-DF1-BH2-10-S	10	ND

^aEPA November 1986.

^bAnalysis Request/Chain-of-Custody Record.

= Borehole. BH

DF = Drainfield.

DSS = Drain and Septic Systems. EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

⇒ Foot (feet). ft

ID = Identification.

μg/kg ⇒ Microgram(s) per kilogram.

ND () = Not detected above the method detection limit.

PCB = Polychlorinated biphenyls.

S = Soil sample.

Table 3.4.2-6

Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, PCB Analytical Method Detection Limits August 1999 (Off-Site Laboratory)

Analyte	Method 8082ª Detection Limit (μg/kg)	
Aroclor-1016	1.21	
Aroclor-1221	2.8	
Aroclor-1232	1.62	
Aroclor-1242	1.66	
Aroclor-1248	0.901	
Aroclor-1254	1.16	
Aroclor-1260	0.937	

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

 μ g/kg = Microgram(s) per kilogram.

PCB = Polychlorinated biphenyls.

Table 3.4.2-7

Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, HE Compounds Analytical Results June 1998 (On-Site Laboratory)

Sample Attributes HE Record (Method 8330^a) Sample Numberb ER Sample ID (mg/kg) Depth (ft) 600395 6750-DF1-BH1-5-S ND 5 600395 6750-DF1-BH1-10-S 10 ND 6750-DF1-BH2-5-S 600395 5 ND 600395 6750-DF1-BH2-10-S 10 ND Quality Assurance/Quality Control Samples (µg/L) 600395 6750-EB ND

^aEPA November 1986.

^bAnalysis Request/Chain-of-Custody Record.

BH = Borehole.

DF = Drainfield.

DSS = Drain and Septic Systems.

EB = Equipment blank.

EPA = U.S. Environmental Protection Agency.

ER = Environmental Restoration.

ft = Foot (feet).

HE = High explosive(s).

ID = Identification.

 $\mu g/L$ = Microgram(s) per liter.

mg/kg = Milligram(s) per kilogram.

- ND = Not detected above the method detection limit.
- S = Soil sample.

•

Table 3.4.2-8 Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, HE Compounds Analytical Method Detection Limits June 1998 (On-Site Laboratory)

	Method 8330 ^a
l l	Detection Limit
Analyte	(mg/kg)
2-Amino-4,6-dinitrotoluene	0.12-0.13
4-Amino-2,6-dinitrotoluene	0.097–0.1
1,3-Dinitrobenzene	0.068-0.074
2,4-Dinitrotoluene	0.22-0.24
2,6-Dinitrotoluene	0.26-0.28
HMX	0.12-0.13
Nitro-benzene	0.15-0.17
2-Nitrotoluene	0.14-0.15
3-Nitrotoluene	0.14-0.15
4-Nitrotoluene	0.12-0.13
Pentaerythritol tetranitrate	0.31-0.34
RDX	0.16-0.18
1,3,5-Trinitrobenzene	0.097-0.1
2,4,6-Trinitrotoluene	0.26-0.28

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

HE \Rightarrow High Explosive(s).

HMX = 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane.

mg/kg = Milligram(s) per kilogram.

RDX = 1,3,5-trinitro-1,3,5-triazacyclohexane.

AL/6-03/WP/SNL03:r5348.doc

1

Table 3.4.2-9 Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Metals Analytical Results June 1998 and August 1999 (On- and Off-Site Laboratories)

S	ample Attributes		Metals (Method 6020/7196 ^a) (mg/kg)								
Record		Sample									
Number ^b	ER Sample ID	Depth (ft)	Arsenic	Barium	Cadmium	Chromium	Chromium (VI)	Lead	Mercury	Selenium	Silver
600395, 602762	6750-DF1-BH1-5-S	5	4.2	100 J	0.22	12	0.116 J (0.2)	7.8	ND (0.044)	0.69 J (1.3)	ND (0.044)
600395, 602762	6750-DF1-BH1-10-S	10	2 J (2.6)	65 J	ND (0.043)	6.6	ND (0.0338)	4.6	ND (0.043)	ND (0.32)	ND (0.043)
600395, 602762	6750-DF1-BH2-5-S	5	4.6	240 J	ND (0.045)	14	ND (0.0337)	9.3	ND (0.045)	0.74 J (1.4)	ND (0.045)
600395, 602762	6750-DF1-BH2-10-S	10	2.6 J (2.7)	70 J	ND (0.044)	6.8	ND (0.0338)	4.6	ND (0.044)	ND (0.33)	ND (0.044)
Background conce	entration (Southwest Ar	'ea	4.4	214	0.9	15.9	1 1	11.8	<0.1	<1	<1
Supergroup) ^c		l	ļ	Į			1				
	Quality Control Sampl	les (µg/L)									
600395	6750-EB	NA	ND (3.4)	4.8 J (16)	ND (0.23)	ND (8.5)	NS	ND (1.7)	ND (0.23)	ND (1.7)	ND (0.23)

Note: Values in **bold** represent analytes detected above their respective background concentration.

^aEPA November 1986.

^bAnalysis Request/Chain-of-Custody Record.

^cDinwiddie September 1997.

BH = Borehole.

φ-15

- DF = Drainfield.
- DSS = Drain and Septic Systems.
- EB = Equipment blank.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- J() = The reported value is greater than or equal to the method detection limit but is less than the practical quantitation limit, shown in parentheses.
- J = Analytical result was qualified as an estimated value during data validation, see data validation report.
- μg/L = Microgram(s) per liter.
- NA = Not applicable.
- mg/kg = Milligram(s) per kilogram.
- ND () = Not detected above the method detection limit, shown in parentheses.
- NS = Not sampled.
- S = Soil sample.

Table 3.4.2-10 Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Metals Analytical Method Detection Limits June 1998 and August 1999 (On-Site and Off-Site Laboratories)

Analyte	Method 6020/7196A ^a Detection Limit
Arsenic	(mg/kg) 0.64–0.68
Barium	0.53-0.57
Cadmium	0.043-0.045
Chromium	0.75-0.8
Chromium (VI)	0.0337-0.0339
Lead	0.32-0.34
Mercury	0.043-0.045
Selenium	0.32-0.34
Silver	0.043-0.045

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency

mg/kg = Milligram(s) per kilogram.

Table 3.4.2-11 Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Total Cyanide Analytical Results August 1999 (Off-Site Laboratory)

	Sample Attributes	······	
Record Number ^b	ER Sampla ID	Sample Depth (ft)	Total Cyanide (Method 9012A ^a) (mg/kg)
602762	ER Sample ID 6750-DF1-BH1-5-S		9012A-) (IIIg/kg)
602762	6750-DF1-BH1-10-S	10	ND ND
602762	6750-DF1-BH2-5-S	5	ND ND
602762	6750-DF1-BH2-10-S	10	ND

^aEPA November 1986.

^bAnalysis Request/Chain-of-Custody Record.

- BH = Borehole.
- DF = Drainfield.
- DSS = Drain and Septic Systems.
- EPA = U.S. Environmental Protection Agency.
- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- mg/kg = Milligram(s) per kilogram.
- ND = Not detected above the method detection limit.
 - = Soil sample.

S

Table 3.4.2-12 Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Total Cyanide Analytical Method Detection Limits August 1999 (Off-Site Laboratory)

Analyte	Method 9012Aª
	Detection Limit
	(mg/kg)
Total Cyanide	0.133-0.137

^aEPA November 1986.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

mg/kg = Milligram(s) per kilogram.

Table 3.4.2-13 Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Gamma Spectroscopy Analytical Results June 1998 (On-Site Laboratory)

Sample Attributes				Activity (pCi/g)								
Record		Sample	Cesium	n-137	Thoriu	m-232	Uranium	-235	Uranium	1-238		
Number ^a	ER Sample ID	Depth (ft)	Result	Error ^b	Result	Errorb	Result	Error ^b	Result	Error ^b		
600398	6750-DF1-BH1-5-S	5	ND (0.0355)		0.688	0.348	ND (0.247)		ND (1.64)			
600398	6750-DF1-BH1-10-S	10	ND (0.0350)		0.640	0.359	ND (0.237)		ND (3.34)			
600398	6750-DF1-BH2-5-S	5	ND (0.0350)		0.726	0.368	ND (0.248)		ND (3.59)			
600398	6750-DF1-BH2-10-S	10	ND (0.0330)		0.690	0.370	ND (0.236)		ND (3.17)			
Background	d Concentration-Southw	est Area	0.079	NA	1.01	NA	0.16	NA	1.4	NA		
Supergroup	2 ^C	<u> </u>					ļ			<u></u>		

Note: Values in bold exceed background activities or had MDAs which exceeded background activities.

^aAnalysis Request/Chain-of-Custody Record.

^bTwo standard deviations about the mean detected activity.

^cDinwiddie September 1997.

DF = Drainfield.

DSS = Drain and Septic Systems.

- ER = Environmental Restoration.
- ft = Foot (feet).
- ID = Identification.
- MDA = Minimum detectable activity.
- NA = Not applicable.
- ND () = Not detected above the MDA, shown in parentheses.
- pCi/g = Picocurie(s) per gram.
- S = Soil sample.
- -- = Error not calculated for nondetectable results.

Gross Alpha/Beta Activity

Analytical results for the four soil samples collected from the two drainfield boreholes are presented in Table 3.4.2-14. No elevated readings of gross alpha or beta were detected in any of the samples: These results indicate no significant levels of residual radioactive material in soil at the site.

3.4.3 Soil Sampling Data Quality

No duplicate soil samples were collected at this site.

3.4.4 Soil Sampling Quality Assurance/Quality Control Samples and Data Validation Results

Quality assurance (QA)/quality control (QC) samples were collected at an approximate frequency of 1 per 20 field samples. These included sample duplicates, and matrix spike/matrix spike duplicates. Typically, samples were shipped to the laboratory in batches of 20, so that any one shipment might contain samples from several sites. Aqueous equipment blanks (EBs) were collected at an approximate frequency of 1 per 20 samples and sent to the laboratory. The EBs were analyzed for the same analytical suite as the soil samples in that shipment. Aqueous trip blanks (TBs) were used for VOC analysis only, and were included in every sample cooler containing VOC soil samples. The analytical results for the EB and TB samples appear only on the data tables for the last site sampled in any one shipment, although the results were used in the data validation process for all the samples in that batch.

An aqueous TB was included in the sample coolers containing the VOC soil samples collected from the Building 6750 septic system and other DSS sites in June 1998. An aqueous EB sample for VOCs, HE, and metals was also collected following completion of soil sampling in the Building 6750 drainfield in June 1998. As shown in Tables 3.4.2-7 and 3.4.2-9, no VOCs, HE or metals were detected in the TB or EB samples.

All laboratory data were reviewed and verified/validated according to Data Verification/Validation Level 3 (SNL/NM July 1994) or "Data Validation Procedure for Chemical and Radiochemical Data," in SNL/NM Environmental Restoration Project Administrative Operating Procedure 00-03, Rev 0 (SNL/NM December 1999). In addition, the SNL/NM RPSD Laboratory (Department 7713) reviewed all gamma spectroscopy results according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 2 (SNL/NM July 1996). Annex B contains the data validation reports for the samples collected at DSS Site 1008. The data are acceptable for use in the DSS Site 1008 NFA proposal.

3.5 Investigation 4—Passive Soil-Vapor Sampling

In May 2001, a passive soil-vapor screening survey conducted in the Building 6750 drainfield area. This survey was required at this site by NMED/HWB regulators, and was conducted to determine if any areas of significant VOC contamination were present in soil at the site.

Table 3.4.2-14 Summary of Building 6750 Septic System (DSS Site 1008) Confirmatory Soil Sampling, Gross Alpha/Beta Activity Analytical Results June 1998 (Off-Site Laboratory)

Sample Attributes			Activity (pCi/g)				
Record	rd Sample Gross Alpha		Sample		Alpha	Gross	Beta
Numbera	ER Sample ID	Depth (ft)	Result	Errorb	Result	Errorb	
600396	6750-DF1-BH1-5-S	5	14	3.84	17.6	3.59	
600396	6750-DF1-BH1-10-S	10	5.24	2.35	15.7	3.44	
600396	6750-DF1-BH2-5-S	5	11.5	3.94	18	3.68	
600396	6750-DF1-BH2-10-S	10	8.53	2.95	14.8	3.48	

^aAnalysis Request/Chain-of-Custody Record.

^bTwo standard deviations about the mean detected activity.

BH = Borehole.

DF = Drainfield.

DSS = Drain and Septic Systems.

- ER = Environmental Restoration.
- 11 = Foot (1eet).

ID = Identification.

pCi/g = Picocurie(s) per gram.

S = Soil sample.

3.5.1 Passive Soil-Vapor Sampling Methodology

A Gore-Sorber[™](GS) passive soil-vapor survey is a semi-quantitative screening procedure that can be used to identify many VOCs present in the vapor phase in soil. This technique is highly sensitive to organic vapors, and the result produces a qualitative measure of organic soil-vapor chemistry over a two- to three-week period, rather than at one point in time.

Each GS passive soil-vapor sampler consisted of a 1-foot-long by approximately ¼-inchdiameter tube of waterproof, vapor-permeable fabric containing 40 milligrams of absorbent material. At each sampling location, a 1½-inch by 3-foot deep borehole was drilled with the Geoprobe™ drilling rig. A sample identification tag and location string were attached to the GS sampler, and it was lowered into the open borehole to a depth of 1 to 2 feet bgs. The location string was attached to a numbered pin flag at the surface. A cork was placed in the borehole above the sampler as a seal, and the upper 1 foot of the borehole from the cork to the ground surface was then backfilled with site soil.

The vapor samplers were left in the ground for approximately two weeks before retrieval. After retrieval, each sampler was individually placed into a pre-cleaned jar, sealed, and sent to W.L. Gore and Associates for analysis by thermal desorption and gas chromatography using a modified EPA Method 8260. Analytical results for the VOCs of interest are reported as the quantity or mass (expressed in micrograms) of the individual VOCs that were absorbed by the sampler while it was in the ground (Gore June 2002). All samples were documented and handled in accordance with applicable SNL/NM operating procedures.

3.5.2 Soil-Vapor Survey Results and Conclusions

A total of four GS passive soil-vapor samplers were placed in the site drainfield (Figure 2.2.1-2). Samplers were installed at the site on May 1, 2002, and were retrieved on May 16, 2002. Sample locations are designated by the same six-digit sample number on Figure 2.2.1-2 and in the analytical result tables presented in Annex C.

As shown in the GS analytical results tables in Annex C, the GS samplers were analyzed for a total of 19 individual or groups of VOCs, including trichloroethene, tetrachloroethene, cis- and trans-dichloroethene, and benzene/toluene/ethylbenzene/xylene. Low to trace-level (but quantifiable) amounts of 15 VOCs were detected in the GS samplers installed at this site. However, the analytical results did not indicate any significant areas of VOC contamination at the site which would require additional characterization.

3.6 Site Sampling Data Gaps

Analytical data from the site assessment were sufficient for characterizing the nature and extent of possible COC releases. There are no further data gaps regarding characterization of DSS Site 1008, the Building 6750 septic system.

This page intentionally left blank.

.

4.0 CONCEPTUAL SITE MODEL

The conceptual site model for the Building 6750 septic system, DSS Site 1008, is based upon the COCs identified in the soil samples collected from beneath the drainfield. This section summarizes the nature and extent of contamination and the environmental fate of COCs.

4.1 Nature and Extent of Contamination

Potential COCs at DSS Site 1008 are VOCs, SVOCs, PCBs, HE compounds, cyanide, RCRA metals, hexavalent chromium, radionuclides detected by gamma spectroscopy, and gross alpha/beta activity. No VOCs, SVOCs, PCBs, HE, or cyanide were detected in any of the soil samples collected at the site. Arsenic and barium were detected above the concentrations for the Southwest Area Supergroup soils in Sample 6750-DF1-BH2-5-S, which was collected at 5 feet bgs. If metal concentrations exceeded the maximum background screening value or the nonquantifiable background value, that COC was carried forward in the risk assessment process. No radionuclides were detected above the concentrations for the Southwest Area Supergroup soils. However, the MDAs for U-235 and U-238 analyses did exceed these corresponding background activities. Finally, gross alpha/beta activity did not indicate any radioactive contamination at the site.

4.2 Environmental Fate

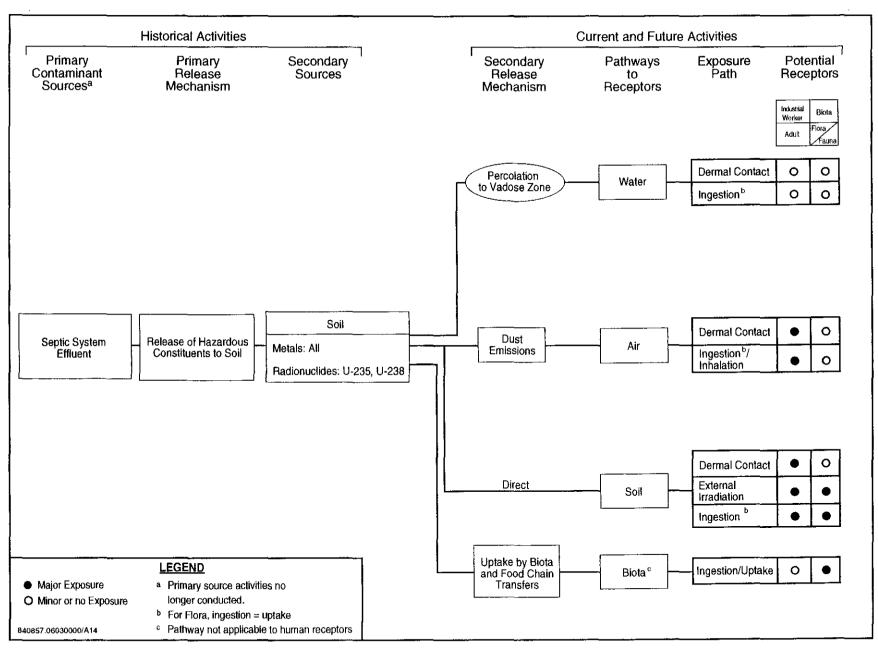

Potential COCs may have been released into the vadose zone via aqueous effluent discharged from the septic system drainfield. Possible secondary release mechanisms include uptake of COCs that may have been released to the soil beneath the drainfield lines (Figure 4.2-1). The depth to groundwater at the site (approximately 460 feet bgs) most likely precludes migration of residual COCs into the groundwater system. The potential pathways to receptors include soil ingestion, inhalation, or dermal contact, which could occur as a result of excavation of potentially contaminated soil that may take place at the site. Plant uptake was also considered a pathway as COCs can enter the food chain through uptake by plant roots. Plants can be consumed by herbivores, which can in turn be eaten by predators. Annex D provides additional discussion on the fate and transport of COCs at DSS Site 1008.

Table 4.2-1 summarizes residual COCs for DSS Site 1008. Only minor evidence of metal contamination was found in soil samples collected at the site. All potential COCs were retained in the conceptual model and were evaluated in the human health and ecological risk assessments. The current and future land use for DSS Site 1008 is industrial (DOE et al. September 1995).

The potential human receptors at the site are considered to be an industrial worker and resident. The exposure route for the receptors are dermal contact, ingestion and/or inhalation for all

This page intentionally left blank.

.....

Conceptual Site Model Flow Diagram for Building 6750 Septic System, DSS Site 1008

4-3

16-03/W	
/6-03/WP/SNL03:r5348.dcc	ſ
03:r534	
8.dcc	

₽

			Maximum Background Limit/Southwest	Maximum	Average	Number of Samples Where Background
	Number of	COCs Greater	Area Supergroup	Concentration ^e	Concentration	Concentration
<u>COC</u> Type	Samples ^a	than Background	(mg/kg)	(mg/kg)	(mg/kg)	Exceeded
VOCs	4	None	NA	NA	NA	None
SVOCs	4	None	NA	NA	NA	None
PCB	4	None	NA	NA	NA	None
HE	4	None	NA	NA	NA	None
RCRA Metals	4	Arsenic	4.4	4.6 J	3.35	1
	4	Barium	214	240 J	118.75	1
Hexavalent chromium	4	None	NA	NA	NA	None
Cyanide	4	None	NA	NA	NA	None
Radionuclides (pCi/g)	4	U-235	0.16	ND (0.248)	Not calculated	4

Table 4.2-1 Summary of Potential COCs for Building 6750 Septic System (DSS Site 1008)

^aNumber of samples. 4 0

^bFrom Dinwiddie September 1997

⁶Maximum concentration is the maximum amount detected, or the maximum MDL or MDA if nothing was detected.

U-238

^dAverage concentration includes all samples except blanks. The average is calculated as the sum of detected amounts and one-half the MDLs for nondetect results, divided by the number of samples.

1.4

ND (3.59)

Not calculated^t

4

*See appropriate data table for sample locations.

An average MDA is not calculated because of the variability in instrument counting error and the number of reported nondetect activities.

- COC = Constituent of concern.
- DSS = Drain and Septic Systems.
- = High explosive(s). HE
- J = Estimated concentration.
- MDA = Minimum detectable activity.
- MDL = Method detection limit.
- mg/kg = Milligram(s) per kilogram.
- ND () = Not detected above the MDA, shown in parentheses.

4

- PCB = Polychlorinated biphenyls.
- pCi/g = Picocurie(s) per gram.
- RCRA = Resource Conservation and Recovery Act.
- SVOC = Semivolatile organic compound.
- VOC = Volatile organic compound.

applicable pathways; however, this is a realistic possibility only if contaminated soil is excavated at the site. The major exposure route modeled in the human health risk assessment was soil ingestion for the nonradiological COCs and direct gamma exposure for radiological COCs. The inhalation pathway is also included because of the potential to inhale dust. The dermal pathway is included because of the potential for exposure of the receptor to the contaminated soil.

No pathways to groundwater are considered, and no intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land use scenarios. Annex D provides additional discussion of the exposure routes and receptors at DSS Site 1008.

4.3 Site Assessments

Site assessment at DSS Site 1008 included risk assessments for both human health and ecological risk. This section briefly summarizes the site assessment results, and Annex D presents the risk assessment performed for this site in more detail.

4.3.1 Summary

The site assessment concluded that DSS Site 1008 poses no significant threat to human health under either the industrial or residential land use scenarios. After considering the uncertainties associated with the available data and modeling assumptions, ecological risks associated with DSS Site 1008 are expected to be low.

4.3.2 Risk Assessments

Risk assessments were performed for both human health and ecological risks at DSS Site 1008. This section summarizes the results.

4.3.2.1 Human Health

DSS Site 1008 has been recommended for a future industrial land use scenario (DOE et al. September 1995). Because metals and radionuclides are present, it was necessary to perform a human health risk assessment analysis for the site, which included all COCs detected. Annex D provides a complete discussion of the risk assessment process, results, and uncertainties. The risk assessment process provides a quantitative evaluation of the potential adverse human health effects from constituents in the site's soil by calculating the hazard index (HI) and excess cancer risk for both industrial and residential land use scenarios.

In summary, the HI calculated for the nonradiological COCs is 0.02 at DSS Site 1008 under the industrial land use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The excess cancer risk for DSS Site 1008 COCs is 3E-6 for an industrial land use setting. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001). Thus, the excess cancer risk for this site is below the suggested acceptable risk value. The incremental HI risk, determined by subtracting

risk associated with background from potential nonradiological COC risk (without rounding), is 0.00, and there is no incremental excess cancer risk for the industrial land use scenario. The summation of the radiological and nonradiological risk from site carcinogens for the industrial land use is 3.6E-6.

In summary, the HI calculated for the nonradiological COCs is 0.3 at DSS Site 1008 under the residential land use scenario, which is less than the numerical standard of 1.0 suggested by risk assessment guidance (EPA 1989). The excess cancer risk for DSS Site 1008 nonradiological COCs is 1E-5 for a residential land use setting. NMED guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001). Thus, the excess cancer risk for this site was slightly above the suggested acceptable risk value. The incremental HI risk. determined by subtracting risk associated with background from potential nonradiological COC risk (without rounding), is 0.02, and there is no incremental excess cancer risk for the residential land use scenario. Although the estimated excess cancer risk is at the NMED guideline for the residential land use scenario, a comparison of the maximum arsenic concentrations (4.6 mg/kilogram [kg]) to both the background screening value (4.4 mg/kg) and the range of arsenic background concentrations (0.033 to 17 mg/kg) indicates that the maximum concentration is most likely part of the background population. In addition, the calculated incremental excess cancer risk is zero. Therefore, considering the background screening value, the range of background concentrations, and the incremental estimated excess cancer risk, the maximum arsenic concentration does not indicate contamination. The summation of the radiological and nonradiological risk from site carcinogens for the residential land use is 1.2E-5.

Uncertainties associated with the calculations are considered small relative to the conservativeness of risk assessment analysis. It is therefore concluded that this site poses insignificant risk to human health under either the industrial or residential land use scenarios.

4.3.2.2 Ecological

An ecological assessment that corresponds with the screening procedures in the EPA's Ecological Risk Assessment Guidance for Superfund (EPA 1997) also was performed as set forth by the NMED Risk-Based Decision Tree described in the "RPMP Document Requirement Guide" (NMED March 1998). An early step in the evaluation compared COC concentrations and identified potentially bioaccumulative constituents (see Annex D, Sections III, VI, VII.2, and VII.3). This methodology also required developing a site conceptual model and a food web model, as well as selecting ecological receptors, as presented in the "Predictive Ecological Risk Assessment Methodology for SNL/NM ER Program, Sandia National Laboratories/New Mexico" (IT July 1998). The screening also includes the estimation of exposure and ecological risk.

Table 15 of Annex D presents the results of the ecological risk assessment. Ecological risk associated with DSS Site 1008 was estimated through an assessment that incorporated site-specific information when available.

Hazard quotient values greater than 1 were originally predicted. However, closer examination of the exposure assumptions revealed an overestimation of risk primarily attributed to conservative toxicity benchmarks, the use of maximum concentrations, and the contribution of background risk. Based upon final analysis of the exposure assumptions, the potential for ecological risks associated with DSS Site 1008 is expected to be low.

4.4 Baseline Risk Assessments

This section discusses the baseline risk assessments for human health and ecological risk.

4.4.1 Human Health

Because the results of the human health assessment summarized in Section 4.3.2.1 indicate that DSS Site 1008 poses insignificant risk to human health under both industrial and residential land use scenarios, a baseline human health risk assessment is not required for the DSS Site 1008.

4.4.2 Ecological

Because the results of the ecological assessment summarized in Section 4.3.2.2 indicate that ecological risks at DSS Site 1008 are expected to be low, a baseline ecological risk assessment is not required for the site.

5.0 NO FURTHER ACTION PROPOSAL

5.1 Rationale

Based upon field investigation data and the human health risk assessment analysis, an NFA decision is recommended for DSS Site 1008 for the following reasons:

• The soil has been sampled for all potential COCs.

)

- No COCs are present in soil at levels considered hazardous to human health for an industrial and residential land use scenario.
- None of the COCs warrant ecological concern after conservative exposure assumptions are analyzed.

5.2 Criterion

Based upon the evidence provided above, DSS Site 1008 is proposed for an NFA decision according to Criterion 5, which states, "the SWMU/AOC has been characterized or remediated in accordance with current applicable state or federal regulations, and the available data indicate that contaminants pose an acceptable level of risk under current and projected future land use" (NMED March 1998).

This page intentionally left blank.

N

.

6.0 REFERENCES

Bearzi, J. (New Mexico Environment Department/Hazardous Waste Bureau), January 2000. Letter to M.J. Zamorski (U.S. Department of Energy) and L. Shepard (Sandia National Laboratories/New Mexico) approving the "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico." January 28, 2000.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001.

Bleakly, D. (Sandia National Laboratories/New Mexico), July 1996. Memorandum, "List of Non-ER Septic/Drain Systems for the Sites Identified Through the Septic System Inventory Program." July 8, 1996.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), Request for Supplemental Information: Background Concentrations Report, SNL/KAFB, September 24, 1997.

Gore, see Gore, W.L. and Associates.

Gore, W.L. and Associates (Gore), June 2002. "Final Report, Gore-Sorber Screening Survey Results, Non-ER Drain and Septic, Kirtland Air Force Base, New Mexico," Gore Production Order No. 10960025, Sandia National Laboratories/New Mexico. June 6, 2002.

IT Corporation (IT), July 1998. "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico," IT Corporation, Albuquerque, New Mexico.

Jones, J. (Sandia National Laboratories/New Mexico), July 1993. Internal Memorandum to B. Galloway listing the septic tanks that were removed from service with the Construction of the Area III sanitary sewer system. July 26, 1993.

Moats, W. (New Mexico Environment Department/Hazardous Waste Bureau), February 2002. Letter to M.J. Zamorski (U.S. Department of Energy) and P. Davies (Sandia National Laboratories/New Mexico) approving the "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems." February 21, 2001.

National Oceanographic and Atmospheric Administration (NOAA), 1990. Local Climatological Data, Annual Summary with Comparative Data, National Oceanographic and Atmospheric Administration, Albuquerque, New Mexico.

New Mexico Environment Department (NMED), March 1998. "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanographic and Atmospheric Administration.

Sandia National Laboratories (SNL/NM), September 1971. SNL/NM Facilities Engineering Drawing #88213 showing the Building 6750 Septic System, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 1993. "Sandia National Laboratories/New Mexico Septic Tank Monitoring Report, 1992 Report," Sandia National Laboratories, Albuquergue, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1994. "Verification and Validation of Chemical and Radiological Data," Technical Operating Procedure (TOP) 94-03, Rev. 0, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), December 1995. "Sandia National Laboratories Septic Tank Characterization," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Sandia National Laboratories Environmental Restoration Project, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), July 1996. "Laboratory Data Review Guidelines," Radiation Protection Sample Diagnostics Procedure No. RPSD-02-11, Issue No. 02, Sandia National Laboratories/New Mexico, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "Site-Wide Hydrogeologic Characterization Project, 1995 Annual Report," Rev., Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico," Sandia National Laboratories, Albuquerque, New Mexico, October 19, 1999.

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data (AOP 00-003)," Rev. 0, Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2000–2001," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), August 2002. "Well Locations, SNL SWMU Sites, Select USAF IRP Sites at Kirtland Air Force Base," SNL/NM Geographic Information Systems (GIS) Map Number 020562, Sandia National Laboratories, Albuquerque, New Mexico. August 28, 2002. Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the years that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

Shain, M. (IT Corporation), August 1996. Memorandum and spreadsheet to J. Jones (Sandia National Laboratories/New Mexico) summarizing dates, locations, and volume of effluent pumped from numerous septic tanks at Sandia National Laboratories/New Mexico, Albuquerque, New Mexico. August 23, 1996.

Thompson, B. M. and G. J. Smith, 1985. "Investigation of Groundwater Contamination Potential at Sandia National Laboratories, Albuquerque, New Mexico" *in* Proceedings of the Fifth DOE Environmental Protection Information Meeting, Albuquerque, New Mexico, November 6-8, 1984 CONF-841187, pp. 531-540.

U.S. Department of Energy (DOE), U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update III, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1989. "Risk assessment Guidance for Superfund, Vol. 1: Human Health Evaluation Manual," EPA/540-1089/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C.

This page intentionally left blank.

-

.

ANNEX A Septic Tank Sample Results

.

ţ

Building 6750 Area 3 Sample ID No. SNLA008422 Tank ID No. AD89024R

On July 4, 1992, aqueous and sludge samples were collected from the septic tank serving Building 6750. At the time of collection, it was noted that the sample had a strong odor of solvents. Analytical results of concern (which confirmed the field observation) are noted below.

- Trichloroethene (TCE) was detected in the aqueous sample at a level of 490 mg/L, which exceeds the New Mexico Water Quality Control Commission Regulations discharge limit (NMDL) of 0.1 mg/L, the City of Albuquerque (COA) discharge limit of 5.0 mg/L, and the Resource Conservation and Recovery Act (RCRA) toxicity characteristic (TC) limit of 0.5 mg/L.
- Phenol was detected in the aqueous sample at a level of 0.26 mg/L, and total phenolic compounds were detected in the aqueous sample at a level of 0.62 mg/L. These values exceed the NMDL of 0.005 mg/L for each.

No other parameters were detected in the aqueous fractions above NMDLs, COA discharge limits, or RCRA TC limits that identify hazardous waste.

During review of the radiological data, no parameters were detected that exceed U.S. Department of Energy (DOE) derived concentration guideline (DCG) limits or the investigation levels (IL) established during this investigation.

		Sebuc 18		levlew Form
 .			(LIQUID SAM	HF2)
Building No/Area:	6750 A-3			
ank ID No.:	AD89024R		·	
Date Sampled:	7/7/92		···	
Sample ID No.:	SNLA-008422			
		Stata	COA	· · ·
	Maa surad	Discharge	Discharge	
Ansivtical Parameter		Limit	Limit	
ويتبار والمتحجب والمتقار والمتقاد والمتحجب والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد	Concentration			Comments
Volatile Organics (EPA 624)	(mo/l]	(mg/ī)	(moʻl)	
1.2-Dichloroethens (total)	4.4	NR	NR	
Trichloroethene	490	0,1	(110=5.0)	Exceeds State and COA Limits; Exceeds RCRA TC limit of 0.5 mg/L
		<u> </u>		· · · · · · · · · · · · · · · · · · ·
Semivolatile Organics (EPA 625)		(mg/ī)	(mg/l)	
bis (2-Elhyihexyi)phthlate	4.4	NR		Presence of laboratory contamination confirmed
Phenol	0.26	0.005	(110=5.0)	Exceeds State Limit
	ļ	<u> </u>		
Pesticides (EPA 608)	<u>(mg/ī)</u>	(mg/l)	(mg/l)	
None detected above laboratory	ļ	NR	(1T0=5.0)	
reporting limits	ļ	ļ	<u> </u>	
		<u> </u>	ļ	· · · · · · · · · · · · · · · · · · ·
PCBs (EPA 508)	(mg/l)	(m ç/l)	(ng/l)	
None detected above laboratory	ļ	0.001	(TTO=5.0)	
reporting limits			L	
		ļ	 +	
Metala	(mg/l)	(mg/l)	(mg/l)	
Arsenic	ND (0.019)	0.1	2.0	
Barium	0.15	1.0	20.0	
Cadmium	0.0030	0.01	2.8	·
Chromium	ND (0.010)	0.05	20.0	
Copper	0.053	1.0	16.5	
Lead	ND (0.050)	0.05	3.2	
Manganese	0.18	0.20	20.0	
Mercury	ND (0,00040)	0.002	0.1	
Nickel	1 _	NR	12.0	
Selenium	ND (0.020)	0.05	2.0	
Silver	ND (0.010)	0.05	5.0	
Thailium	ND (0.050)	NR	NR	· · · · · · · · · · · · · · · · · · ·
Zinc	0.50	10.0	28.0	· · · · · · · · · · · · · · · · · · ·
Uranium	<u> </u>	1	NR	/
Oranadum	0.003	5.0	<u> </u>	
Miscellaneous Analytes	(m=0)	(mg/ī)	(m = 1)	<u></u>
Phenolic Compounds	(mg/l)		(mg/l)	Currenda Olate I lask
	0.62	0.005	4.0	Exceeds State Limit
Narates/Narites	ND (1.0)	10.0	NR	
Formaldehyde	ND (1.0)	NR	260.0	
Fluorida	0.57	1.6	180.0	
Cyanide	ND (0.010)	0.2	8.0	
Oil and Grease	72.1	NR	150.0	
Classification	<u> </u>	+		
Radiological Analyses	(pCVI)	(pCVI)	(pCVI)	<u></u>
Radium 228	0.3 +/- 0.1	30.0	NR	
Radium 226	0 +/- 30	30.0	NR	
Gross Alpha	50 +/- 30	NR	NR	
Gross Betz	90 +/- 60	NR	NR	· · · · · · · · · · · · · · · · · · ·
Tritium	269 +/- 280	NR	NR	1

Ballow the surface of the ground. References - City of Aburgardue MM Sever Use and Westernier Convol Ordinance (1990), Section 9-D-3, and New Maxica Water Quality Convol Commission Regulations (1988), Section 3-100.

BL6750,XLS

ţ

	Results of Septic Tank Analyses (Sludge Sample)						
Building No/Area:	6750 A-3						
Tank ID No.:	AD89024R		· · · · · · · · · · · · · · · · · · ·				
Date Sampled:	7/792	······································					
Sample ID No.:	SNLA008422						
Analytical Parameter	Measured Concentration	<u>+</u> 2 Sigma Uncertainty	Units				
Water Content	92.4	NA	%				
Arsenic	ND(1.0)	NA	mg/kg				
Barium	8.9	NA	mg/kg				
Cadmium	1.5	NA	mg/kg				
Chromium	1.5	NA	mg/kg				
Copper	14.1	NA	mg/kg				
Lead	12.1	NA	mg/kg				
Manganese	3.3	NA	mg/kg				
Mercury	ND(0.10)	NA	mg/kg				
Nickel		NA	mg/kg				
Selenium	ND(0.50)	NA	mg/kg				
Silver	ND(1.0)	NA	mg/kg				
Thallium	ND(0.50)	NA	mg/kg				
Zinc	151	NA	mg/kg				
Gross Alpha	4	10	pCi/g				
Gross Beta	33	23	pCi/g				
Gross Alpha	17	13	pCi/g				
Gross Beta	8	22	pCi/g				
Gross Aipha	16	13	pCi/g				
Gross Beta	21	22	pCi/g				
Gross Alpha	14	13	pCi/g				
Gross Beta	21	24	pCi/g				
Tritium	269	280	pCi/L				
Bismuth-214	0.0316	0.00751	pCi/mL				
Cesium-137	<0.0110	NA	pCi/mL				
Potassium-40	0.304	0.0645	pCi/mL				
Lead-212	0.0236	0.00558	pCi/mL				
Lead-214	0.00341	0.00687	pCi/mL				
Radium-226	0.305	0.00668	pCi/mL				
Thorium-234	0.324	0.00590	pCi/mL				
Thallium-208	0.00887	0.00277	pCi/mL				

.

.....

ND = Not Detected

NA = Not Applicable

.

AL/WP/6-93/SNL:R2792-7D/15

Attachment 2

Sandia National Laboratories Septic Tank Characterization Summary Tables of Analytical Reports

December 1995

Building 6750

SANDIA NATIONAL LABORATORIES SEPTIC TANK CHARACTERIZATION SUMMARY TABLES OF ANALYTICAL REPORTS

-

December 1995

)

Prepared for:

Sandia National Laboratories Waste Management and Regulatory Projects Department 7583 Albuquerque, New Mexico 87185-1303

Prepared by:

IT Corporation 5301 Central Avenue NE, Suite 700 Albuquerque, New Mexico 87108

December 14, 1995

RESULTS OF SEPTIC TANK SAMPLING

CHEMICAL ANALYSES OF SLUDGE SAMPLE

Building ID:		Bidg 6 0244			
Sample ID Number: Date Sampled:		7-12			·····
Percent Moisture:		Not Re			
					······································
Paramatar (Method)	Result	Detection Limit (DL)	NM Discharge Limit ⁴	COA Discharge Linsit ^b	Comments
Volatile Organics (8260)	(µg/kg)	(V9/kg)	(mg/L)	(mg4_)	
Methylene chloride	2,400,000J	18,000,000	0.1	TTO = 5.0	
Trichlomethene	110,000,000	18,000,000	NR	TTO = 5.0	
Tetrachloroethene	2,300,000J	18,000,000	NA	TTO ≍ 5.0	
Semivolatile Organics (8270)	(µg/kg)	(vg/kg)	(mg/L)	(mg/L)	
di-N-Octyiphthalate	640J	4700	NR	TTO = 5.0	
Naphthalene	2100J	4700	NR	TTO = 5.0	
n-Nitrosodiphenylamina	35000	4700	NR	TTO = 5.0	
Phenanthrana	1000J	4700	NA	TTO ± 5.0	
Di-N-Butyiphthalate	710	4700	NR	TTO = 5.0	
Pyrene	950J	4700	NR	TTO = 5.0	
ButylBenzylPhthalate	- 760J	4700	NA	TTO ≈ 5.0	
4-Mathylphenol (reanalyses)	230,000D	47,000	NR	NR	
bis(2-Ethylhexyl)Phihalale (reanalyzes)	210,000D	47,000	NR	TTO ≈ 5,0	
Pesticides/PCBs (8080)	(µg/kg)	(µg/kg)	(mg/L)	(mg/L)	
Araclar-1260	18,000	12,000	0.001	TTO = 5.0	
Metals (6010/7 - 2)	(mg/kg)	(mg/kg)	(mgA.)	(mg/L)	
Arsenic	6 .5J	15.0	D.1	2.0	
Barium	150J	299	1.0	20.0	
Cadmium	18.0	7.5	0.01	2.8	
Chromium	35.8	29.9	0.05	20.0	
Copper	212	37.4	1.0	16.5	
Lead	152	4.5	0.05	3.2	
Manganese	47.0	22.4	0.2	20.0	
Nickel	28.7J	59.8	0.2	12.0	

Refer to footnotes at end of table.

AL/9-95/WP/SNL:T3816-78/1

301455.221.07.000 12-12-95 9:07am

RESULTS OF SEPTIC TANK SAMPLING CHEMICAL ANALYSES OF SLUDGE SAMPLE

Building ID:	Bidg 6750
Semple ID Number:	024409
Date Sampled:	7-12-85
Percent Molsture:	Not Reported

Paramatar (Method)	Result	Detection Limit (DL)	NM Discharge Limit ^a	COA Discharge Limit ^b	Comments
Metais (5010/7470)	(mg/kg)	(mg/kg)	(mg/L)	(<i>mg/</i> L)	
Selectum	5.6J	7.5	0.05	2.0	
Silver	9.3J	15.5	0.05	5.0	
Thattlem	ND	15.0	NR	NR	
Zinc	2560	29.9	10.0	28.0	
Mercury	9.1	1.5	0.002	0.1	

λ

Notes: * New Mexico Water Quality Control Commission Regulations (1990), Saction 3-103. ^b City of Albuquerque Sewer Use and Wastewater Control Ordinance (1993), Section 8-9-3 M – maximum allowable concentration for grab sample. D = Gample was diluted. - DL = Detection limit indicated on laboratory report.

IDL = Instrument detection limit.

J = Estimated concentration of analyte, between DL and IDL.

ND = Not detected above DL indicated.

NR = Not regulated.

AL/9-95/WP/SNL:T3916-78/2

301455.221.07.000 12-12-95 9:07am

N

.

RESULTS OF SEPTIC TANK SAMPLING RADIOLOGICAL ANALYSES OF SLUDGE SAMPLE

Building ID:		Bidg 6750					
Sample ID Number:							
Date Sampled:	7-12-95						
Percent Moisture:		Not Reporte	<u>d</u>				
Parameter (Mathod)	Result	NDA	Critical Lavel	NV Discharge Limit*	Commente		
Isotopic Analyses	(pCUg = 2-c)	(pCVg)	(pCVg)	(pCi/g)			
Plutonium-239/240	-0.004 ± 0.004	0.023	0.014	NA			
Plutonium-238	-0.005 ± 0.002	0.021	0.013	NR	<u> </u>		
Strontium-90	-0.05 ± 0.00	0.28	0.13	NR			
Thomas 232	0.088 ± 0.031	0.035	0.022	NR	<u>}</u>		
Thorium-230	0.12 ± 0.05	0.038	0.023	NR			
Thorium-228	0.055 ± 0,031	D.040	0.024	NR			
Uranium-238	6.68 ± 2.52	1.25	0.821	NA	L		
Uranium-235/236	0.74 ± 0.90	1.61	1.05	NR	 		
Uranium-234	12.3 ± 3.9	1.38	0.685	NR	<u> </u>		
			1		<u> </u>		
Dry Gamma Spectroscopy	(pCiig ± 2-3)	(pCVg)	(pCVp)	(pCi/g)			
Casium-137	ND	0.023	0.011	NR			
Cesium-134	ND	0.017	0.005	NR			
Potassium-40	4.90 ± 0.58	0.17	0.080	NA			
Chromaum-61	NO	0.21	0,10	NR			
Iron-59	ND	0.053	0.025	NR	<u> </u>		
Coball-69	ND	0.021	0.070	NR			
Zirconium-95	ND	0.039	0.019	NR			
Ruthenium-103	ND	0.028	0.013	NR	<u> </u>		
Ruthenium-108	ND	D.15	0.078	NR	<u> </u>		
Cenium-144	ND	0.084	0.041	NR	Ì		
Thailiun 208	0.092 ± 0.024	0.020	NL	NR			
Lead-210	0.60 ± 0.32	0.34	NL	NR			
Lead-212	0.29 ± 0.04	0.02	0.012	NR			
Lead-214	0.23 ± 0.04	0.03	0.017	NR			
Bismuth-214	0.27 ± 0.05	0.04	NL	NR			
Radium-224	0.75 ± 0.32	0.29	NL	NA			

Refer to footnotes at end of table.

. - -----

ALIS-95/WP/SNL:T3816-79/1

301455.221.07.000 10-12-95 12:21pm

.

.

.

RESULTS OF SEPTIC TANK SAMPLING RADIOLOGICAL ANALYSES OF SLUDGE SAMPLE

Building ID:		Bidg 6750	·		<u></u>		
Sample ID Number:	[24439						
Date Sempled: 7-12-95							
Percent Molsture:		Not Reporte	<u>d</u>		<u> </u>		
Paremeter (Method)	Result	MDA	Critical Level	NM Discharge Limit	Comments		
Dry Gemine Spectroscopy	(pCUg ± 2-0)	(pCVg)	(pCi/g)	(pCVg)			
Aadium-226	0.25 ± 0.03	0.04	0.020	30.0*	<u> </u>		
Racium-228	0.27 ± 0.05	0.07	0.635	30.0ª			
Actinium-228	0.27 ± 0.06	0.07	0.035	MR	<u> </u>		
Thorium-231	NO	0.50	0.24	NIR	1		
Thorium-232	0.27 ± 0.08	0.07	0.035	NR	<u> </u>		
Thorlum-234	3.74 ± 0.47	0.25	0,12	NR			
Uranium-235	0.19 ± 0.03	0.10	D.048	NR			
Uranium-238	3.74 ± 0.47	0.25	0,12	NR			
Americium-241	ND	0.030	0.015	NR	1		

Notes:

New Mexico Water Quality Control Commission Regulations (1950), Section 3-103.

bisolopic uranium analyzed by NAS-NS-305C; plutonium by SL13023/SL13033; stronitum by 7503-SR; thorium by NAS-NS-3004,

* Analyzed by method HASL 300 at Quanterra, St. Louis. * NMWQCCR standard for Ra-226 + Ra-228 combined in pCI/L.

MOA = Minimum detectable activity.

ND = Not detected above MDA indicated.

NR = Not regulated.

NL = Not listed.

AL/9-95/WP/SNL:T3816-79/2

301455.221.07.030 10-12-95 12:21pm

RESULTS OF SEPTIC TANK SAMPLING

CHEMICAL ANALYSES OF AQUEOUS SAMPLE

Building ID: Building 6750 - Duplicate Sample ID Number: 024423									
Date Sampled:07-12-95									
Parameter (Method)	Result	Detection Limit (DL)	NM Discharga Limit ^a	COA Discharge Limit ^o	Comments				
Volatile Organics (8260)	(mg/L)	(mg/L)	(mg/L)	(mg/L)					
Vinyl Chioride	0.039	0.010	0.0001	TTO = 3.0	Exceeds NM Discharge Limit.				
Chloroethane	0.014	0.010	NR	TTO = 5.0					
1,1-Dichloroethane	0.014	0.010	0.005	TTD = 5.0	Exceeds NM Discharge Limit				
1,1-Dichloroethane	0.003J	0.010	0.025	TTO = 5.0	<u> </u>				
1,2-Dichloroethane	0.0083	0.010	0.01	TTO = 5.0					
Trichlorosthene	L800.0	0.010	NR	TTO = 5.0	<u> </u>				
Taluena	0.002J	0.010	0.75	TTO = 5.0	ļ				
			·····		<u> </u>				
Semivolatile Organics (8270)	(mg/L)	(mg/L)	(mg/L)	(mg/L)					
4-Meihylphenol	0.038	D.010	NR	NR					
bis(2-Ethylhexyl)Phthalate	0.003J	0.010	NR	TTO = 5.0					
	- <u></u>								
Pasticidas/PCBs (8080)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	ļ				
gamma-BHC (Lindane)	0.00006	0.00005	NFI	TTO = 5.0					
				ļ	·				
Meizis (6010/7470)	(mg/L)	(mg/L)	(mg/L)	(mg/L)					
Arsenic	0.0028J	0.010	0.1	2.0					
Barium	0.0839J	0.200	1.0	20.0	<u> </u>				
Cacimium	NO	0.005	0.01	2.8	·				
Chromium	ND	0.020	0.05	20.0					
Copper	0.0131J	0.025	1.0	16.5	·				
Lead	ND	0.003	0.05	3.2	ļ				
Manganese	0.0704	D.015	0.2	20.0					
Nickel	ND	0.040	0.2	12.0	ļ				
Selenium	0.0034J	0.005	0.05	2.0					
Silver	NĎ	0.010	0.05	5.0					
Thaliaum	ND	0.010	NR	NB					

-

Refer to footnotes at end of table.

AL/9-95/WP/SNL:T3816-80/1

301455.221.07.000 12-12-95 9:08am

-•

RESULTS OF SEPTIC TANK SAMPLING CHEMICAL ANALYSES OF AQUEOUS SAMPLE

Building ID:	Building 6750 - Duplicate	- u
Sample ID Number:	024423	
Date Sampled:	07-12-95	

Parameter (Method)	Result	Detection Limit (DL)	NM Discharge Limit ^a	COA Discharge Limit ^b	Commente
Metais (6010/7470)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
Zinc	0.0544	0.020	10.0	28.0	
Mercury	ND	0.0002	0.002	0.1	
			· · · · · · · · · · · · · · · · · · ·		·
Miscellaneous Anulyses	(mg/L)	(mg/L)	(mg/L)	(mg/L)	· · ·
Field pH	7.8 pH units	0 - 14 pH units	6 – 9 pH units	5 – 11 pH units	
Formaldehyde (NIOSH 3500)	ND	0.25	NR	260.0	
Fluoride (300.0)	0,57	0.20	1.6	180.0	
Nitrate + Nizhte (353.1)	סא	0.050	10.0	NR	
Oli + Grease (9070)	1,45	0.97	NR	150,0	
Total Phenol (9065)	0.0688	0.050	0.005	4.0	Exceeds NM Olscharge Limit,

Notes:

New Maxico Water Quality Control Commission Regulations (1990), Section 3-103.

^b City of Albuquerque Sewer Use and Wastewater Control Ordinance (1993), Section 8-9-3 M – maximum allowable concentration for grab sample. DL = Detection limit indicated on laboratory report.

IDL = Instrument detection limit.

J = Estimated concentration of analyte, between DL and IDL.

ND = Not detected above DL indicated.

NR = Not regulated.

TTO = Total toxic organics.

Refer to footnotes at end of table.

AL/9-95/WP/SNL:T3816-80/2

301455.221.07.000 12-12-95 9:08am

RESULTS OF SEPTIC TANK SAMPLING

RADIOLOGICAL ANALYSES OF AQUEOUS SAMPLE

Building ID:	Building 6750 - Dupficate						
Sample ID Number:		02442	3		<u> </u>		
Date Sampied:07-12-95							
Parameter (Method)	Result	MDA	Critical Level	NM Discharge Limit*	Comments		
Radiological Analyses	(pCi/L ± 2-0)	(DCI/L)	(pCi/L)	(pCi/L)			
Gross Alpha (9310)	4.08 ± 2.26	3.88	1.69	NR			
Gross Beta (9310)	26.3 ± 3.7	3.8	1.84	NR			
isotopic Analyses	(pCi/L ± 2-5)	(pCirl)	(pCi/L)	(pCi/L)			
Tritium (906.0)	-32.2 ± 48.7	83.5	41.3	NR			
Gamma Spectroscopy	(pCl/mL ± 2-0)	(pCl/mL)	(pCi/L)	(рСИ_)			
None detected above	ND	various	NL	NR			

Notes:

New Mexico Water Quality Control Commission Regulations (1990), Section 3-103.
 Analyzed in-house by SNL/NM Department 7715.
 MDA = Minimum detectable activity.

ND = Not detected above MDA indicated.

NL = Not listed.

NR = Not regulated.

AL/9-95/WP/SNL-T3818-81/1

301455.221.07.000 10-12-95 12:21pm

RESULTS OF SEPTIC TANK SAMPLING CHEMICAL ANALYSES OF SLUDGE SAMPLE

Building ID:	Building 6750 - Duplicate	
Sample ID Number:	024423	
Date Sampled:	07-12-95	_
Percent Molsture:	Not Reported	

Parameter (Method)	Result	Detection Limit (DL)	NM Discharge Limit ^a	COA Discharge Limit ^b	Commenta
Volatile Organics (8260)	(µg/kg)	(µg/kg)	(mg/L)	(mg/L)	
Acetone	2,700,000BJ	2,800,000	NR	NR	
Trichleroethene	49,000,000	2,800,000	NR	TTO = 5.0	
Tetrachloroethene	790,000.	2,800,000	NR	TTO = 5.0	
Semivolatile Organics (8270)	(µg/kg)	(µg/kg)	(mg/L)	(mg/L)	
4-Methylphenol	130,000D	37,000	NR	NR	
Banzidine	1,700DJ	180,000	NR	TTD = 5.0	
bis(2-Ethylhexyl)Phthalate	94,000D	37,000	NR	TTO = 5.0	
1,2-Dichlorobenzene	560J	3700	NR	TTO = 5.0	
Naphthalene	1300J	3700	NR	TTO = 5.0	
n-Nitrosodiphenylamine	2 900J	3700	NB	TTO = 5.0	
Phenanthrene	660J	3700	NR	TTO = 5.0	
Di-N-Butylphthalate	880J	3700	NR	TTO = 5.0	
Pyrena	450J	3700	NR	TTO = 5.0	
Pesticides/PCBs (8080)	(µg/kg)	(µg/kg)	(mg/L)	(mg/L)	
Aroclor-1260	12,000	9,600	0.001	TTO = 5.0	
Metais (601 - 1470)	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	
Arsenic	8.5J	11.6	0.1	2.0	1
Barium	184J	231	1.0	20.0	1
Cadmium	19.4	5.8	0.01	2.8	
Chromium	28.5	23.1	0.05	20.0	
Copper	268	28.9	1.0	16.5	
Lead	178	3.5	0.05	3.2	

Refer to footnotes at end of table.

AL/9-95/WP/SNL:T3815-82/1

301455.221.07.000 12-12-95 9:08am

RESULTS OF SEPTIC TANK SAMPLING

CHEMICAL ANALYSES OF SLUDGE SAMPLE

Building ID:	Building 6750 - Duplicate	· ``
Sample (D Number:	024423	
Dete Sampled:	07-12-95	
Percent Moisture:	Not Reported	

Parameter (Method)	Result	Detection Limit (DL)	NM Discharge Limit ^a	CDA Discharge Limit ^b	Comments
Metais (6010/7470)	(mg/kg)	(mg/kg)	(mg/L)	(mg/L)	
Manganese	44.8	17.3	0.2	20.0	
Nickei	32.5J	46.3	0.2	12.0	
Selenium	5.5J	5.8	0.05	2.0	
Silvar	5.0J	11.6	0.05	5.0	
Thallium	ND	11.6	NA	NR	
Zine	3210	23.1	10.0	28.0	
Mercury	8,4	1.2	0.002	0.1	

Notes:

⁴ New Mexico Water Quality Control Commission Regulations (1990), Section 3-103,

^b City of Albuquerque Sewer Use and Wastewater Control Ordinance (1993), Section 8-9-3 M - maximum allowable concentration for grab sample.

B = Analyte detected in method blank.

D = Sample diluted because of high values.

DL = Detection limit indicated on laboratory report.

IDL = Instrument detection limit.

J = Estimated concentration of analyte, between DL and IDL.

ND = Not detected above DL indicated.

NR = Not regulated.

TTO = Total toxic organics.

AU9-85/NP/SML:T3818-82/2

15

301455.221.07.003 12-12-95 9:03am

ANNEX B Data Validation Report

;

Project Name	101 1	Von-ER	Septim	e Frelds		-	Page 1 of 5
Case Number Sample Numbers	7273. 41		(see	onaly freat	report	for specific	sample #1)
AR/COC No. <u>60</u> AR/COC No AR/COC No AR/COC No		Analytical I Analytical I Analytical I Analytical I	aborator aborator	у		SDG No SDG No SDG No SDG No	<i>NA</i>

1.0 EVALUATION

	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
1)	Sample volume, container, and preservation correct?			
2)	Holding times met for all samples?			
3)	 Reporting units appropriate for the matrix and meet project-specific requirements? 			
4)	4) Quantitation limit met for all samples?			
5)	Accuracy a) Laboratory control sample accuracy reported and met for all samples?	/		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chroma- tography technique?			

Reviewed by: <u>Auffry 1. Ral</u> Date: <u>10/19/98</u>

AL/2-94/SNL:SOP3044B.R1

Page 2 of 5

ltem	Yes	No	If no. Sample ID No./Fraction(s) and Analysis				
c) Matrix spike recovery data reported and met for all samples for which it was requested?		_	5198-15 => Ba no results O 5198-16 => Ba (brated low)				
 6) Precision a) Laboratory control sample precision reported and met for all samples? 	NA		Not applicable : LCS duplicate not analyzed with submitted Sampler (Var, HE, Metals)				
 b) Matrix spike duplicate RPD data reported and met for all samples for which it was requested? 			S198-15 -> Ba (No results)				
7) Blank data a) Method or reagent blank data reported and met for all samples? -*			5198-15 = Hg and Pb 5198-16 = As 3				
 b) Sampling blank (e.g., field, trip, and equipment) data reported and met? 		/	ER-1295-6750-EB.=7 Ba 3				
8) Narrative included, correct, and complete?	~						

2.0 COMMENTS: All items marked "No" above must be explained in this section. For each item, give SNL/NM ID No. and the analysis, if appropriate, of all samples affected by the finding.

Percen 0 He relative percent recoverines difference and for Ba MS(MSD Sam in He were not reported 65 Perce 5198-15 recoveries braked Ba low for were Ka Reviewed by: 10/19/28 Date:

AL/2-94/SNL:SOP3044B.P1

Page 3 of 5

m	He	MSla	LOL MIO	sample.	. for	Ba	(5198-16	5
3	יידי	values	were	réporter	d in	the	metals	LMB
	amp			•				
			=7 Hq a	rd Pb		<u> </u>		
. <u> </u>	5198	-16 =	As				<u> </u>	=
<u>م</u> ر ب	- <u></u>						/	£
		latue	reported	10/ 13	<u>a</u> ,	<u>~ r</u>	he equipa	ren {
10 (Qr	<u> </u>	••••••••••••••••••••••••••••••••••••••	<u></u>			<u></u>		
					<u></u>			7
				<u></u>	<u> </u>			
	- <u></u>		<u>, , , , , , , , , , , , , , , , , , , </u>				/	
3 '' 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		·····		108			<u></u>	
			· · · · · · · · · · · · · · · · · · ·	10/19/28		<u> </u>		
				/				
, 					_			
	.			·				
\square	\leq					·		
, 				<u></u>				
iewed	by:	All	+ Ral	e				
Da	ite:	101	12 (28					
			<u> </u>					

AL/2-94/SNL:SOP3044B.Rt

.....

Page 4 of 5

3.0 SUMMARY: Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted. Use the qualifiers given at the end of the table if possible. Explain any other qualifiers in the comments column.

Sample/ Fraction No.	Analysis	Qualifiers	Comments
			д
			10 19 74
			10/m
		CoFS	·
	- page		
			*-"

QUALIFIERS:

- J = Estimated quantity (provide reason)
- B Contamination in blank (indicate which blank)
- P = Laboratory precision does not meet criteria
- R = Reporting units inappropriate
- N = There is presumptive evidence of the presence of the material
- UJ = The material was analyzed for but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

101:19/28 Reviewed by:

Q = Quantitation limit does not meet criteria

A - Laboratory accuracy does not meet criteria.

- U = Analyte is undetected (indicate which analyte and reason for qualification)
- NJ = There is presumptive evidence of the presence of the material at an estimated quantity.

AL/2-94/SNL:SOP30448.R1

Date:

DOCUMENTATION COMPLETENESS CHECKLIST (DATA VERIFICATION/VALIDATION LEVEL 1 - DV1)

}

30094.01

Austinet A November 1995 Mund 11- 9-95

1

Project Leader Tony Roybal	Project Name 101 Non-ER Septre Frelds	Case No. 7223.230
AR/COC No. 600 345	Analylical Lab ERCL	SDG No. NA

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record

Line		Complete?			Reso	lved?
No.	ltem	Yes	No	If no, explain	Yes	No
1.1	All items on COC complete - data entry clerk initialed and dated	NA		Not-applicable		
1.2	Container type(s) correct for analyses requested					}
1.3	Sample volume adequate for # and types of analyses requested		[
1.4	Preservative correct for analyses requested]
1.5	Custody records continuous and complete	1-				\
1.6	Lab sample number(s) provided		1			
1.7	Condition upon receipt Information provided		1			}
1.8	Tritium Screen data provided (Rad labs)	NA		Not applicable non-RMNIA location		

2.0 Analytical Laboratory Report

Line		Complete?			Reso	lved?
No.	llem	Yes	No	lí no, explain	Yes	No
2.1	Dala reviewed, signature					
2.2	Date samples received					
2.3	Method reference number(s) complete and correct		· ·			
2.4	Quality control data provided (MB, LCS, LCD, Detection Limit)	1	-	LED not analyzed (VOC, HE, and Metals)		
2.5	Malrix spike/malrix spike duplicate data provided(if requested)		1	Note: not requested		
2.6	Narrative provided					
2.7	TAT met	NA		Not applicable		
2.8	Hold times met	1-				
2.9	All requested result data provided					·

Based on the review, this data package is complete

TYes No

Reviewed by:	Affry J. Role	Dale: 10/19/98	Closed by:	Dale:			

Qualifier	List of Data Qualifiers used in Data Validation and Associated Comment Responses Comment
A	Laboratory accuracy and/or bias measurements for the associated Laboratory Control Sample (LCS) do not meet acceptance criteria.
Al	Laboratory accuracy and/or bias measurements for the associated Surrogate Spike do not meet acceptance criteria.
A2	Laboratory accuracy and/or bias measurements for the associated Matrix Spike (MS) do not meet acceptance criteria.
В	Analyte present in laboratory method blank
B1	Analyte present in trip blank.
B2	Analyte present in equipment blank.
B3	Analyte present in continuing calibration blank.
ì	The associated value is an estimated quantity. (Note: this qualifier may be used in conjunction with other qualifiers (i.e., A,J)
J 1	The method requirements for sample preservation/temperature were not met for the sample analysis. The associated value is an estimated quantity.
J2	The holding time was exceeded for the associated sample analysis. The associated value is an estimated quantity.
P	Laboratory precision measurements for the Laboratory Control Sample and duplicate (LCS/LCSD) do not meet acceptance criteria.
P1	Laboratory precision measurements for the Matrix Spike Sample and associated duplicate (MS/MSD) do not meet acceptance criteria.
P2	Insufficient quality control data to determine laboratory precision.
Q	Quantitation limit reported does not meet Data Quality Objective (DQO) requirements.
R	The data are unusable for their intended purpose (Note: Analyte may or may not be present.)
U	The analyte is a common laboratory contaminant. The associated result is less than ten times the concentration in any blank.
U1	The analyte was also detected in a blank. The associated result is less than five times the concentration in any blank.
IJ	The analyte was analyzed for but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

.

•-

.

ĥ

...

· .

* This is not a definitive list. Other qualifiers are potentially available, see TOP 94-03. Notify Tina Sanchez to revise list.

	sire: 101 Non-ER Septre Fields							
	AR COC: 6003	395	Data Classifi	fication: DV-Z				
	Sample Fraction No.	Analysis	DV Qualifiers	Comments				
ļ	ER-1295-6750 -DF1	7440-39-3	J, AZ					
	-BH1-5-5 -BH1-10-5 V	ζ.	2					
	-BHZ-5-5 -BHZ-10-5	\$	2					
	ER-1295-6730 -DF1	7440-38-2	01					
	-BH1-4.5-5 V -BH1-9.5-5 V	7	7					
	-BHZ-4.5-5 V -BHZ-9.5-5 V	$\langle \rangle$						
	-BH3-4.5-5	\langle						
	-BH4-4.5-5+ -BH4-9.5-5 V	7						
/	ER-1295-6730 -DF1	7440-39-3	JAZ					
	-BH1-4.5-5 V -BH1-9.5-5 V	3	2					
ĺ	-BHZ-4.5-5 V -BHZ-9.5-5	{	2					

Sample No. Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions_CE, EPA6010, ÉPA6020, EPA⁺470 1, EPA8015B, EPA8081, EPA8260, EPA8260-M3, EPA8270, HACH_ALK, HACH_NO2, HACH_NO3, MEKC_HE, PCBRISC

Reviewed by:	Juffy J. Rahe Date:	10/19/98
	/ · · · · · · · · · · · · · · · · · · ·	

,

۹,

0.30,00

Yages or sn

site: 10 1 Non -El	sile: 101 Non-ER Septie Fields							
AR COC: 600 3	AR COC: 600 395			1-2				
Sample Fraction No.	Analysis	DV Qualifiers		Comments				
DER-1295-6620 - DEI	7439-97-6	B						
-BH1-5-5 -BH1-10-5	2	2						
-BHZ-5-5	ζ	$\left \right\rangle$			-			
H-BH3-5-5	4	2						
VER-1295-6620 -DF1	7440-39-3	J A2,P2						
V-BH1-5-5 N H-BH1-10-5	2	2						
-BHZ-5-5 V	ζ	$\left \right\rangle$						
-BH3-5-5V -BH3-10-5 /	$\langle \cdot \rangle$	Ì						
ER-1295-6750 -DF1	7440-38-Z	υι						
A contraction of the	ζ	5	Dave	R				
	4	2		70.30	1.8-0			

Sample No. Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions_CE, EPA6010, EPA6020, EPA7470 1, EPA8015B, EPA8081, EPA8260, EPA8260-M3, EPA8270, HACH_ALK, HACH_NO2, HACH_NO3, MEKC_HE, PCBRISC

10/19/98 Reviewed by Date:

Site 101 Non-ER Septire Fields

	AR COC: 600	395	Data Classifi	cation: DV-2
	Sample Fraction No.	Analysis	DV Qualifiers	Comments
;	ER-1295-6730 -DF1	7440-39-3	J, AZ	
	- BH3-4.5-5 -BH3-9.5-5	7.	2	
	-BH4-45-51 -BH4-95-51	2	2-	
. [.	EPA 6020	7440-39-3	BZ	
10(25(00 J. Rabe	ER-1295-6750-	EB		
۰ ۲				
		10/19/98		
		58		

Sample No. Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers, not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions_CE, EPA6010, EPA6020, EPA⁺47011, EPA8015B, EPA8081, EPA8260, EPA8260-M3, EPA8270, HACH_ALK, HACH_NO2, HACH_NO3, MEKC_HE, PCBRISC

Jeffy J. Rate Date: 10/19/98 Reviewed by:

Site: 57 \$	DF		
AR'COC: 6003	376	Data Classifi	cation: <u>Radiametrics</u>
Sample Fraction No.	Analysis	DV Qualifiers	Comments
Na	Data i	= Q	unlified
\mathcal{O}	ata is	Acce	stable
			- ·
QC	measure	a	e adequate

Sample No./Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method. use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions CE, EPA6010. EPA6020. EPA7470'1, EPA8015B. EPA8081. EPA8260. EPA8260-M3. EPA8270, HACH_ALK, HACH_NO2, HACH_NO3, MERC_HE, PCBRISC

Kivin A Lambert Date: 8/4/98 Reviewed by:

ver fied Riz

.....

ANALYTICAL RADIOCHEMISTRY DATA VALIDATION CHECKLIST

Project Name ST+DF				Site Name Case # 7223.2300
Laboratory Name/Job No/Batch No. GEL	Chain of Custody No. 600396			
Analysis Method EPA 900.0, HASL	Parameter Liat: GROSS Alpha/Beta, GAMMA Spec			
REVIEW ITEM	YES	NO	NA	COMMENTS
A. HOLDING TIMES				, IR
1. Preparation and analysis holding times met?				SEECON
2. Short-half life parameters analyzed for and checked?				- AE
B. CALIBRATION VERIFICATION				Met cutena
1. Detectors numbered and documented?				
 Frequency: Daily weekly, or monthly? 	V -			
3. Acceptance criteria: Met?				
C. LABORATORY CONTROL SAMPLES				Met acceptance criteria .
1. Standard: Independent, certified reference material?	1			/
2. Frequency: Each batch?				
3. % Recovery 80-120% or?				
HETHOD BLANK				No target analities were abave
1. Frequency: Each batch?	∇			acceptance limits
2. Matrix: Matrix specific?	17		r	
3. Preparation: Entire procedure?				
4. Blanks show contamination?	1	$\overline{}$	1	V
E. MATRIX SPIKE		re-over-e		
1. Frequency: Each batch?	T ·	17		No MS/MSD for GAMPIA Spec. Dup Analysis
2. Matrix: Matrix specific?	17			from another ARCOC group in batch met
3. Preparation: Entire procedure?	17	[interia. No data qualified. MS/MSD
4. % Recovery: 75-125% or?			1	for Gross A/B met acceptance cinter
F. ANALYTICAL YIELDS/OTHER				Not Applicable
1. Tracer: Correct type, recovery met?			12	,
 Ingrowth and/or decay: Correct factors applied? 			1	
3. Solids density: Planchette loading <5 mg/cm ² ?			//	
G. DUPLICATE				RPDs for Gross A/B did not met cuteria
1. Type: Lab of field?	∇		ļ	however, The DER which is the appropria
2. Frequency: Each batch?		Γ		measure of hab siecision met criterie
3. Matrix: Matrix specific?		Γ		No date is enablied. The duplicate
А.L.09-95/WPALITCO:73359			В-	analysis for 6. Spec is from another ARCOC group in the batel and met criter No data is genalified 1201297 12:17pm

ر د. د ده و از از مساحد و از د سیم

.

-----.

SAMPLE PENDENUS SUMMART

Site: 57+DA			•
AR'COC: 6003	<u>.</u>	Data Classific	cation: Organic
Sample' Fraction No.	Analysis	DV Qualifiers	
· ·			. 8
N	o data	wer	e qualified
-			
L	ata is a	acces	table
	×		
QC	measure	s a	e alequate

Sample No./Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualiflers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions_CE, EPA6010, EPA6020, EPA7470/1, EPA8015B, EPA8081, EPA8260, EPA8260-M3, EPA8270, HACH_ALK, HACH_NO2, HACH_NO3, MEKC_HE, PCBRISC

Reviewed by: Kein A Sambert Date: 8/6/98

TOP 94-03⁴ Rev. 0 Attachment 0 Page 95 of 115 July 1994

ORGANIC DATA ASSESSMENT SUMMARY FORM-(Data Verification/Validation Level 3 DV-3)

Page 1 of 18

SITE OR PROJECT <u>ST4D</u> ANALYTICAL LABORATORY <u>6</u> LABORATORY REPORT # <u>980</u> CASE NO. <u>7223.2300</u>	٢	<u>ER-1</u> ;	295-6620-)	: 2450il, 2009 (XX, ER-1295-6) , ER-1295-66	730-XXX,
ADJOCH LADZEL	TA ASSESSME				_ ,
Describe problems/qualifications below (Ad	ction Item's and	Areas of Co	ncern)	HE	
	VOC	SVOC	PEST/PCB	HE LIL	3/4/98
			114		

	IOLDING			NA	<u> </u>
Т	IMES/FRESERVATION	/		}	,
2. G	CIMS INST. PERFORM.	<u> </u>			
з. C	ALIERATIONS WINDOWS	· /	<u> </u>		
4. B	LANKS				
5. S	URROGATES		· /		
6. W	ATRIX SPIKE/DUP		<u> </u>		
	ABORATORY CONTROL			· · · · · · · · ·	· · ·
8. II	NTERNAL STANDARDS				<u> </u>
	OMPOUND DENTIFICATION				· · · ·
10. S	YSTEM PERFORMANCE		<u></u>		
11. C	VERALL ASSESSMENT			<u> </u>	

✓ (check mark) — Acceptable: Data had no problems or qualified due to minor problems

N - Data qualified due to major problems X - Problems, but do not affect data Qualifiers: J - Estimate

NA-Not Applicable

UJ - Undetected, estimated KAL 8/4/98 ACTION ITEMS 198 KFC 4/6, 2

Reviewed By: Date: 8 AL2-94 WPISNLISCP3044C.R1

TOP 54-03 ^d Fev. 0 Attachment C Page 101 of 115 July 1994

Page 3 of 18

ORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3 DV-3)

1.0 HOLDING TIMES AND PRESERVATION

Indicate the holding time criteria below that was used to evaluate the samples.

SW-846, 3rd. ed. Other:

List below samples that were over holding time criteria.

Sample ID	VTSR	Date Analyzed	Action
	·	T //	
		T	
	<u>-</u>		
		1 Grand	
		<i>\$</i> /	
		$\overline{\Lambda}$	

NOTE: VTSR = Validated time of sample receipt

Were the correct preservatives used? Yes No 🗌

List below samples that were incorrectly preserved.

Sample No.	Type of Sample	Deficiency	Action
/	1	•	
	1		
\mathbb{Z}			

Reviewed By: Kevin A Lambert 9/4/98 Datar

TCP 94-03 Fev 0 Attachment C Page 104 of 115 July 1994

ORGANIC DATA ASSESSMENT SUMMARY FORM

(Data Verification/Validation Level 3 DV-3)

Page 6 of 18

3.3 DDT and Endrin Degradation

Not Applicable

List below the standards that have a DDT or Endrin breakdown of >20% (or a combined breakdown of >20%).

Date/Time	Standard ID	DDTÌEndrin	% Breakdown	Action	Affected Samples
	- <u></u>				
			/	/	
			/		

3.4 DBC Retention Time Check

Is the %D between EVAL A and each analysis (quantitation and confirmation) DEC retention time within QC limits (2% for packed column, 0.3% capillary ID <0.32 mm, and 1% for megabore)?

Yes 🗋 🛛 No 🗖

Date	Sampie ID	DEC %D	Action	}
			<u>1997 </u>	

For the above criteria optlined in Sections 8.1-8.4, check for transcription/calculation errors.

If errors are found, list below with necessary corrections: ____

Reviewed By Date:

TOP 94-03 Rev 0 Attachment C Page 105 of 115 July 1994

ORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3 DV-3)

Page 7 of 18

4.0 INITIAL CALIBRATION

Has initial calibration been performed as required in the EFA method? Yes 🗹 No 🗌

Were the correct number of standards used to calibrate the instrument? Yes IV No

For GC analyses of PCBs and Pesticides, did the laboratory follow the correct 72-hour sequence of analysis? Yes No No Not Applicable

List below compounds which did not meet initial calibration criteria outlined by the EPA method.

Instrument ID	Date	Compound	RF/%RSD	Action	Samples Alfected
VOC: :	Lever	al compour	la are	butside accep	tance limits
<u> </u>	see ad	Summary day	ta) Majori	to are not on	TCL. Those
	n TCL	are vov-de	tecta in ;	site sample.	No data is
	unlif				
					<u>-</u>
SVOC:	Met	criteri	4	[
HE:	Met	criteria			
				1	

Check for transcription/calculation errors. If errors are present, summarize necessary corrections below:

THIS **Feviewed By:** Date: STAR SAL SOBARTO

TOP 94-03 Rev. 0 Attachment C Page 107 of 115 July 1994

ORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3 DV-3)

Page 9 of 18

6.0 BLANK ANALYSES

6.1 Method/Reagent and Instrument Blanks

Has a methodireagent blank been analyzed for each set of samples or for every 20 samples of similar matrix, whichever is more frequent? Yes 🗹 No 🗍

Has an instrument blank been analyzed at least once every twelve hours for each GC/MS system used? No 🗌 Yes 🗹

6.2 Field/Rinse/Equipment Blanks

Are there field in						d≘y or	at free	quency	specified	in the
sampling plan.	Yes 🗹	No 🗖	SVOCS	: Only	/	• -	-	•	• •	

List below compounds for which analyses were requested that were detected in any of the blanks analyzed:

Batch	Date	Elank ID	Compound	Conc. ()	PQL ()	Action Level	Samples Affected (Action)
Batch 25500	7/7/98 1401	<i>EK-1293-</i> 6631-7B-≤D	ch logide	2.9 mg/R	1.0,mg/2	Not delided No data	in site sample is qualified
24879		UC SITE OI		120 mg/kg	80 mg/kg	Not detected No data	in sete sample is qualified
*	SVOC:	KHC 8/4/98				· · ·	
		•					

PQL = Practical Quantitation Limit from EPA Method.

Note: VOCs - Methylene Chloride was observed at estimated values ("J" coled) in MBs. No detectable concentration was observed in site sample, No data is qualified.

Reviewed By: Date:

TOP 94-03 Rev. 0 Attachment C Page 109 of 115 July 1994

ORGANIC DATA ASSESSMENT SUMMARY FORM

(Data Verification/Validation Level 3 DV-3)

Page 11 of 13

If surrogate recovery was outside of control limits, were the samples or method blank reanalyzed?

Not Applicable No 🗍 Yes 🗌 Not Applicable Note Are method blank surrogate recoveries outside of limits upon reanalysis? Yes 🗔 NO Are transcription/calculation errors present? Yes If yes, note necessary corrections.

Date:

Reviewed By: Kin A Lambert

8/4/98

TCP 94-03 Rev 0 Attacmment C Page 112 of 115 July 1994

ORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3 DV-3)

Page 14 of 18

÷

10.0 INTERNAL STANDARDS EVALUATION

List below the internal standard areas of samples or blanks which did not meet criteria.

Date	Sample ID	Internal Out	Acceptable Eange	Action
		1		
		Me	,	
		Cuter		· ·
			·	

Are retention times of the internal standards within 30 seconds of the associated calibration standard? Yes \square No \square

11.0 TARGET COMPOUND LIST ANALYTES 11.1 GC/MS Analyses

Are the reconstructed ion chromatograms, the mass spectra for the identified compounds, and the data system printouts included? Yes I No

Is chromatographic performance acceptable with respect to:

Easeline stability? Yes 🗹 🛛 No 🗌
Resolution? Yes Y No
Peak shape? Yes 🗹 🛛 No 🗔
Full-scale graph (attenuation)? Yes 🗹 🛛 No 🗌

2. best Reviewed By Date: 412-34 WPISNE 50730440.8

· · ·

TOP 54-03 Rev 0 Attachment C Page 113 of 115 July 1994

ORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3 DV-3)

Page 15 of 18

Other:
Is the RRT of each reported compound within the limits given in the method of the standard RRT in the continuing calibration? Yes I No I
Are all the ions present in the standard mass spectrum at a relative intensity greater than 10% also present in the mass spectrum? Yes Y No
Do sample and standard relative intensities agree within 20%? Yes 🗹 No 🗍
If no for any of the above, indicate below problems and qualifications made to data:
11.2 GC Analyses Not Applicable.
Are there any transcription calculation errors between the raw data and the reporting forms?
If yes, review errors and necessary corrections below; if errors are large, resubmittal of laboratory package may be necessary.
Are retention times of sample compounds within the calculated retention time windows for both quantitation and confirmation analysis? Yes No
Was GC/MS confirmation performed when required by the EPA method? Yes D No D
If no for any of the above, reject positive results except for retention time windows if associated standard compounds are similarly shifted.
Reviewed By: Kivin A Lambert

Date:

8/4/98

TOP 94-03 Fev. 0 Attachment C Page 115 of 115 July 1994

ORGANIC DATA ASSESSMENT SUMMARY FORM
(Data Verification/Validation Level 3 DV-3) Page 17 of 13
13.1 Chromatogram Quality
Were baselines stable? Yes No
/
Were any negative peaks or unusual peaks present? Yes 🔲 No 🕑
Were early eluting peaks resolved to baseline? Yes 🗹 No 🗔
If incorrect quantitations are evident, note corrections necessary below:
Are the required quantitation limits (detection limits) adjusted to reflect sample cilutions and for soils, sample moisture? Yes I No I
If no, make necessary corrections and note below.
14.0 TENTATIVELY IDENTIFIED COMPOUNDS Not Applicable
Are Tentatively Identified Compounds (TIC) properly identified with scan number or retention time, estimated
concentration, and J qualifier? Yes No
Are the mass spectra for TICs and associated "best match" spectra included? Yes 🗌 No 🔲
Are any TCL compounds listed as TIC compounds? Yes No
Are each of the ions present in the reference mass spectra with a relative intensity greater than 10% also present in the sample mass spectrum? Yes No
Reviewed By: Kerm A Sambert

- :

.

.

Late: 8/4/98 AU2:64 WP.SNL SOP3044C.51

. .

.

.

SAMPLE FINDINGS SUMMARY

Site: ST&D	IF		
AR'COC: 6003	76	Data Classifi	cation: Inonganic
Sample Fraction No.	Analysis	DV Qualifiers	Comments
			ь.
No	data is	En	-lified
		F	
$\mathcal{Q}_{\mathbf{a}}$	ta is a	ecce	stable
QC	messures	are	adequate

Sample No./Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions_CE, EPA6010, EPA6020, EPA747011, EPA8015B, EPA8081, EPA8260, EPA8260-M3, EPA8270, HACH_ALK, HACH_NO2, HACH_NO3, MEKC_HE, PCBRISC

Reviewed by: Kim A Kambert Date: 8/4/98

TOP 94-03 Rev 0 Attachment C Page 35 of 115 July 1994

INORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3-DV3)

· . . · · · ·

. .

÷

				·	Page	1 of ⁻
SITE	OR PROJECT ST4DF		CASE N	0. <u>7223</u>	.2300	
ANAI	TICAL LABORATORY GEL		SAMPLE	IDS		
	DRATORY REPORT # 9806				- BH/-6-11-	
				275 0031	011 6 11	<u></u>
	CLEADER ARCOC # 600	370				
NO. (OF SAMPLES _/ Seil			<u> </u>	<u> </u>	
	DA	TA ASSESSMEN	IT SUMMA	RY		
		ICP	AA	MERCURY	CYANIDE	
1.	HOLDING TIMES		NA		NA	
2.	CALIBRATIONS	<u> </u>				
З.	BLANKS				<u> </u>	
4.	ICS		l l			
5.	LCS					
6 .	DUPLICATE ANALYSIS					
7.	MATRIX SPIKE					
8.	MSA	/			}	
9.	SERIAL DILUTION			/		
10.	SAMPLE VERIFICATION					
11.	OTHER QC					
12.	OVERALL ASSESSMENT		<u> </u>		¥	
r (che	ick mark) — Acceptable					
)ther-	- Qualified: J - Estim		. N	A- Not App	licable	
	P. Hour	tected, estimated able (analyte ma		ot be present)		
	84170		<i>y</i> or may m			0
	IN ITEMS: () All sample	o were p	repare	Sand a	malinet	w
a	ccepted provedures	pand 30	inf.	ed meth	also Al	<u>K</u> <u>c</u>
181	14/98	7 any	i and the second	No major	I muno p	100
	S OF CONCERN	entitied	Lun	in dat	a packa	se-
AHEA	COL A Real		_	· · · ·		

DATE REVIEWED:

8/4/18

anteriore e la co

ç

TOP 94-03 Fev 0 Attachment C Page 37 of 115 July 1994

INORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3---DV3)

ŕ

Page 3 of 16

.

1.0 HOLDING TIMES

List holding time criteria used to evaluate samples, indicating which samples exceed the holding time. Holding time begins with validated time of sample collection.

	Holding		Days Holding	Action
	Time		Time was	
Parameter	Criteria	Sample ID	Exceeded	
	1			
r 1		<u> </u>	<u> </u>	
	<u> </u>	1		
{	<u> </u>			
 	<u> </u>		\	·
<u></u>	<u> </u>			M
	<u> </u>			A
	1		5/ 1	
	1			- · -
	<u>}</u>	1	<u> </u>	i
		4		·
Were the correct p	preservatives	s used? Yes	No 🗌	
List below sample	s that were i	incorrectly preserved.		
,			<u></u>	
Sample N	ło.	Type of Samples	Defic	iency Action
	$\underline{\Lambda}$			
	!·			
ļ,				
	~			
		· · · · · · · · · · · · · · · · · · ·		
<u> </u>			1	

1 Lambert Date: 8/4/98 Reviewed By:

AL2-94 WP/SNL:SOP3044C.B1

5 TOP 94-03 Rev. 0 Attachment C Page 40 of 115 July 1994 INORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3-DV3) Page 6 of 16 3.2 Method Blank Was one method blank analyzed for: Each of 20 samples? Yes I No 🗌 Each digestion batch? Yes 🗹 No 🗆 Each matrix type? Yes 🗹 No 🗌 Not Applicable Both AA and ICP when both are used for the same analyte? Yes No 🗌 · or At the frequency indicated in the EPA method or QAPjP? Yes 2 No

· · · · · · · · · · ·

NOTE: Method blank is the same as the calibration blank for mercury and for wet chemistry analysis.

List analytes detected in method blank samples below. NOTE: For soil samples, be sure to calculate blank values using digestion weights and volumes.

Preparation Date	Analyte	Conc.	Required Detection Limits	Action Level	Semples Affected
				1 lytes	
			l,	Ante	
		<u> </u>	1 Joseph	ter	
	<u> </u>	l	10 0	<u> </u>	
 			went		1
		[ļ		
	<u> </u>				
	•				
Is concentration	in the method blan	k below th	e detection limit?	Yes I No 🗆	<u> </u>
Affected samples					

Lambert Date: 8/4/98 Reviewed By:

ALZ-94/WP/SNL:SOF3044C.R1

TOP 94-03 Flev, O Attachment C Page 41 of 115 July 1994

INORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3-DV3)

Page 7 of 16

.

÷.

3.3 Field/Rinse/Equipment Blanks

Was a field/equipment blank analyzed as required by the EPA method or QAPjP? Yes 🗌 No 🗹

List below analytes detected in the field blanks. NOTE: For soil samples, calculate blank values using digestion weights and volumes.

Collection Date	Blank ID	Analyte	Conc.	Required Detection Limits	Action Level	Samples Affected
				Up.d	1	
1			subm	C		
		Not	AR	<u> </u>	i i	
		01				
			1		l:	
					;	

4.0 ICP INTERFERENCE CHECK SAMPLE ANALYSIS

Was an ICP interference check sample (ICS) analyzed at the beginning and end of a run or at least twice every 8 hours? (Not required for Ca, Mg, K, and Na) Yes P No

Samples affected:

No 🗌 Are the values of the ICS for solution AB within 80-120%R? Yes M

It no, is the concentration of Al, Ca, Fe, or Mg lower than in ICS? Yes

No D Not Applicable Lambert Reviewed By: Kern, A Lamber Date: AL2-54.WP.SNL:SOP3044C.R1

TOP 94-03 Rev. 0 Attachment C Page 43 of 115 July 1954

.

INORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3—DV3)

Page 9 of 16

• •

.

.

÷

•

List below any LCS recoveries not within limits.

-

Preparation	A	ar 5	Antion	
Date	Analyte	%R	Action	Samples Affected
	,	<u></u>		
		<u> </u>	11	ł
		$\frac{1}{1}$	Moria	1
		İ	Culture	
(1		
		 	1	1
5.0 LABORATO	RY DUPLICATE AN	NALYSIS		
Nere laboratory o	iunlinates analyzed	at required :	frequency? Yes 🗹 No 🕻	
Samples affected	·		· · · · · · · · · · · · · · · · · · ·	*
Nas laboratory di	infinata analysis ne	formed on f	lield or equipment blanks? Y	es 🔲 No 🗹
Samples affected				
· · · · · · · · · · · · · · · · · · ·				<u></u>
	1			
s any value for s	ample duplicate pai	r <pql and<="" td=""><td>the other value >10xPQL? `</td><td>Yes 🗔 No 🗹</td></pql>	the other value >10xPQL? `	Yes 🗔 No 🗹
Samples affected	•			
		<u> </u>		······································
	· · · · · · · · · · · · · · · · · · ·			
	1.1	21		
Reviewed By: _	Kern A L	amber	- Date: 8/4/9	8

ALZ-94-WPISNLISOP3044C.R1

TOP 94-03 Rev 0 Attachment C Page 45 of 115 July 1994

INORGANIC DATA ASSESSMENT SUMMARY FORM (Data Verification/Validation Level 3-DV3)

Page 11 of 16

Samples affected:

List below the analytes that do not meet RPD or PQL criteria. Use the same criteria as those used for laboratory duplicate analysis or criteria specified in EPA method or sampling plan.

Sample ID	Matrix	Collection Date	RPD	Control Limit	Action	Samples
	}		 		molled	
	}		N		COL	
	 			on Ar	; 1 *	
				-		- [

Check for transcription/calculation errors. Briefly summarize errors and associated actions when data quality might have been affects.

8.0 MATRIX SPIKE ANALYSIS

NOTE: This matrix spike is a predigestion/predistallation spike.

1

Was a matrix spike prepared and analyzed at the required frequency? Yes D No D Not non	~
ARCOC group, however MS/MSD from another ARCOC group me	ŧ
ARCOC group, however MS/MSD from another ARCOC group me acceptance cuteria	
Reviewed By: Kurin A Lambert Date: 8/4/98	

ALZ-94 WP.SNL:SOP3044C,B1

			'	े <u>ह</u>
				TCP 54-03
				Pev 0 Allactoria
				Altachment C Page 47 of 115
				July 1994
				1.
			ENT SUMMARY FO	RM
	(Data V	erification/Validati	ion Level 3—DV3)	
				Page 13 of
NOTE: If preparat	ion blank spikes are a	nalvzed, evaluate r	ecoveries. These reco	veries can indicate wheth
excursions in matri	x spike recovery are c	aused by sample n	- natrix effects or poor di	igestion efficiencies and/o
problems with mate	rix spike solution. For	example, if matrix	spike recovery for sele	nium is 0% and preparati
blank spike recove	ry for selenium is 92%	, this may indicate	sample matrix effects.	
		ANALVER	Not Applic	Able /
9.0 FURNACE A	COMIC ABSORPTION	ANALTSIS	NOT MY	
Were duplicate inje	ections present for eac	h sample, including	required OC analyses	(not required if MSA is
done)? Yes 🗍	No 🗌			
Samples affected:	····		_ · · · _ · · · · · · · · · · · · · · ·	
			/	
Were postdigestion	n spikes analyzed at th	ne required concent	ration? Yes 🗌 No	
Samples affected:				
······································				
	· · · · · · · · · · · · · · · · · · ·		·······	
Man o di dian	transition of the			
was a dilution ana	iyzed for samples with	postalgestion spik	e recovery <40%? Yes	s 🗋 No 🗌
Samples affected:				
			<u> </u>	
		· · <u> </u>		
	/		······································	
MSA Analysis (Me	thed of Standard Addit	lions)—MSA is real	ured when serial dilutio	ons are not with \pm 10%.
	any sample but not per			
	ing sample burnot be			
Are MSA valculation	ons outside the linear r	anda of the collibra	tion curve? Vec	No 🗍
		ange of the CallOla		
		•		
		·		
	Vil	- 1+	.te: 8/4/9	-1

e de la construction

. . .

1

and the second second

ŀ

:

.

. •

.

.

.

AL2-54 WE SNL:SOF30440 R1

.

***-4

ı	and a second
	TOP 94-03
	Rev. 0 Attachment C
	Page 49 of 115 July 1994
	INORGANIC DATA ASSESSMENT SUMMARY FORM
	(Data Verification/Validation Level 3-DV3)
	Page 15 of 16
	11.0 SAMPLE RESULT VERIFICATION
	11.1 Verification of Instrumental Parameters
	Are instrument detection limits present and verified on a quarterly basis? Yes D No D Not Applicat
	Are IDLs present for each analyte and each instrument used? Yes 🗹 No 🗌
	Is the IDL greater than the required detection fimits for any analyte? Yes D No D
	(If IDL > required detection limits, flag values less than 5×IDL.)
	Samples affected:
:	
	Are ICP Interelement Correction Factors established and verified annually? Yes \Box No \Box No $+$ Applic A
	Are ICP Linear Ranges established and verified quarterly? Yes 🗌 No 🗌 No + ApplicAble
	It no for any of the above, review problems and resolutions in narrative report.
	11.2 Reporting Requirements
	Were sample results reported down to the POL? Yes M No
	If no, indicate necessary corrections.
	· · · · · · · · · · · · · · · · · · ·
	Were sample results that were analyzed by ICP for Se, TI, As, or Pb at least 5xIDL? Yes I No
	Were sample weights, volumes, and dilutions taken into account when reporting sample results and detection
	limits? Yes 🗹 No 🗋
	Reviewed By: Kin A Tambert Date: 8/4/98
	neviewed by: Comment Date: _ 8/4/98

ALZ-S4WP.SNL:SOP2044C.B1

SAMPLE FINDINGS SUMMARY

Site: Non-ERS	ate Sutem	2	
AR/COC: 6027			ration: Organic
Sample/		DV	5
Fraction No.	Analysis	Qualifiers	Comments
1	o qual	hear	ins galied
	7		

Sample No./Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions_CE, EPA6010, EPA6020, EPA7470/1, EPA8015B, EPA8081, EPA8260, EPA8260-M3, EPA8270, HACH_ALK, HACH_NO2, HACH_NO3, MEKC_HE, PCBRISC

12/99 Reviewed b

SAMPLE FINDINGS SUMMARY

site: Non-ERS	potre System	s	
AR/COC: 602 76	52	Data Classific	ation: General Chemistry
Sampie/		DV	
Fraction No. B6620-SP1-	Analysis hexovalenta	Qualifiers	Comments Exceeded hold
EB-Cr6	Aronium 18540-29-9	UJB	time
· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	
		<u> </u>	
		<u> </u>	

Sample No./Fraction No. - This value is located on the Chain of Custody in the ER Sample Id field.

Analysis - Use valid test methods provided below or if the result applies to an individual analyte within a test method, use the CAS number from the analytical data sheet.

DV Qualifiers - The entry will be taken from the list of valid qualifiers and associated comments. If other qualifiers not on the list are needed, contact Tina Sanchez to coordinate adding them to the list.

Comments - This is only to be used if a comment associated with the qualifier is not appropriate, needs modification because of an unusual circumstance, or additional clarification is warranted.

Test Methods - Anions_CE, EPA6010, EPA6020, EPA7470/1, EPA8015B, EPA8081, EPA8260, EPA8260-M3, EPA8270, HACH_ALK, HACH_NO2, HACH_NO3, MEKC_HE, PCBRISC

Date: 11/2/99

Reviewed by:

AX	EPROJECT: Mar E (1 COC N: <u>G C 2 2 6 6</u> BORATORY: CARE	Spine	CASE # <u>72</u>	23.230	<u>) </u>	LAB SAMP	1LES: <u>28</u> 1.E.D.: 108768-0			/	
LAE	ORATORY REPORT	9908	768					2 Cha	1-75	35	
	ANALYSIS.	NOE	syer	PESTIA	HPLC	ICHAES	GEAL.	Cras	GN	1201	Cr 67
1.	OC ELEMENT	~		<u> </u>	A TIDI		<u>~74 - 5</u>	ં (દુવા) ા	/		-
2.	CALIBRATIONS	r		1					~		1
3.	METHOD BLANKS	~		~					1		1
4.	MS/MSD	1		1					~		1
S.	LABORATORY CONTROL SAMPLES			1					/		
6.	REPLICATES								1		1
7.	SI/RROGATES			~							-
<u> </u>	INTERNAL STDS										-
9.	TCL COMPOUND IDENTIFICATION							a Sterior		and the second second	-
10.	ICP INTERFERENCE CHECK SAMPLE										
	ICP SERIAL DELUTION										-
12.	CARRIER/CHEM TRACER RECOVERIES			i ji ji ku	ineriae Artista	del tradi Tradicio					-
L	OTHER QC	-		1					, ,	 	
3-1	ECK MARK (V) – ACCEP ESTEMATED NOT DETECTED	TABLE	ບມ	ADED CELLS - NOT DETEC - UNUSABLE							

DATA VALIDATION SUMMARY:

£

2

REVIEWED BY:

DATE _____ B-2

11/2/22

				LIDA (10)	N SUMMAI	R¥:				
SITE/PROJECT: Non. E	1 Spice	case #: <u>7</u> ,	223.230	2	OF SAME	LES: 5	MATR	x <u>aq</u> ı	iais_	
LABORATORY _C.E.L					LAB SAMP	9408	768 1	2-18,	-19 -2	0,-21
LABORATORY REPORT #:	90	28768	••• <u> </u> ••							C- 6+
ANALYSIS OC ELEMENT	VOC	SYOC .	PESI/ PCB	HIPLC .	ICEMES	GERAN	CYAA Tite)	ĊŅ	liab	OTHER
1. HOLDING TIMES/ PRESERVATION	~		1					1		UJZ
2. CALERATIONS						L		1		~
3. METHOD BLANKS	1							1		
4. MS/MSD	-		1							~
5. LABORATORY CONTROL SAMPLES		}	~					7		-
6. REPLICATES								~		~
7. SURROGATES	/	1	1							-
8. INTERNAL STDS	/		a surger and							
9. TCL COMPOUND DENTIFICATION										-
10. KCP INTERFERENCE CHECK SAMPLE			a sector in the		1					-
11. ICP SERIAL DELUTION				e de de la Secola de				and and a		-
12. CARRIER/CHEM TRACER RECOVERIES		a aller inte		an an Pi	nin seite Sin seite			n a het ti Suit an M		•
13. OTHER QC	[<u> </u>		-4					1		
CHECK MARK (V) - ACCEL J - ENTIMATED U - NOT DETECTED	PTABLE	ĘJ,	ADED CELLS - NOT DETEC - UNUSAB: I					<u>.</u>	<u> </u>	
REVIEWED BY:					_ DATE:	11/2/	99			

B∙2

HOLDING . . ME/PRESERVATION:

SITE/PROJECT: Non-ER Septic ARCOC #: 602762 LABORATORY: 6EL LABORATORY REPORT #: 9908763

Sample (D	Analysis	Holding Time Criteria	Days Holding Time was Exceeded	Preservation Criteria	Preservation Deficiency	Comments
36620-591-68- Cr6	Cr 6+	24hs	Iday			UB2 .
		:				
					· ·	
				1		

Comments:

REVIEWED BY: DATE: 11/2/99 ____

Memorandum

Date: 11/02/99

To: File

From: Marcia Hilchey

Subject: Organic Data Review and Validation Site: Non-ER Septic Systems AR/COC: 602762 Case: 7223.230 Laboratory: GEL SDG: 9908768

See attached Data Assessment Summary Forms for supporting documentation on the data review and validation.

Summary

All samples were prepared and analyzed with accepted procedures and with specified methods (VOC EPA8270, PCB EPA8082). All compounds were successfully analyzed.

No qualifications were applied to VOC sample data.

No qualifications were applied to PCB sample data.

Holding Times

The samples were analyzed within the prescribed holding times, with the exception of the analysis of the re-extracted PCB equipment blank. Since the original sample results were reported, no holding-time qualifications were applied.

Calibration

Initial calibration met acceptance criteria for both methods.

Several VOC analytes failed to meet CCV acceptance criteria. All exhibited less than 40%D, therefore no sample results were qualified.

According to the laboratory case narrative, several PCB analytes failed to meet CCV acceptance criteria. The method states that only Arochors 1016 and 1260 must be present in the CCV standard. Arochors 1016 and 1260 met CCV acceptance criteria, therefore no sample results were qualified.

<u>Blanks</u>

No target analytes were detected above the reporting limit in the method blanks, equipment blanks, or VOC trip blank.

Surrogates

All VOC surrogate recoveries met acceptance criteria.

Surrogate recovery for the PCB equipment blank (sample B6620-SP1-EB-PCB) was unacceptable. The sample was reextracted and reanalyzed with acceptable surrogate recovery and identical target analyte results (all non-detect). The re-extracted sample analysis exceeded the prescribed holding time. Since all sample results were non-detect, the original results were reported, and no qualifications were applied.

Note: The laboratory stated that the original results were reported for B6620-SP1-EB-PCB (see previous paragraph), however, the reported analysis date and surrogate recovery were incorrect. The reported analysis date and surrogate recovery actually correspond to the reanalysis. Data quality is unaffected

Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Matrix spike sample analysis for soil VOC and PCB samples met acceptance criteria.

No aqueous MS/MSD samples were submitted with this SDG. No sample results were qualified.

Internal Standards

The VOC internal standards met QC acceptance criteria.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

LCS/LCSD samples met all acceptance criteria.

Other OC

No field duplicate samples were submitted for VOC analysis.

The PCB field duplicate sample analysis met RPD acceptance criteria.

No other specific issues were identified which affect data quality.

Please contact me if you have any questions or comments regarding the review of this package.

PCBs: SW846 - Method 8082

SITE/PROJECT: 16 CR Spotic ARCOC #: 60276 2 LABORATORY: CEL LABORATORY REPORT #: 9908768

Name	CAS #	Intercept	Calib RSD/R ¹	CCV RPD	Method Biks	LCS	LCSD	LCS RPD	MS	MSD	MS RPD	Field Dup RPD	Eq. Blks	Field Biks			ļ
		1	<20% / 0.99	<20 %		Γ		20%			20%					1	Γ
PCBs													•			<u> </u>	Г
Aroclor-1016	12674-11-2			~													T
Aroclor-1221	11104-28-2	1	1	1		-						T	\Box				Т
Aroclor-1232	1114-16-5	1-1				1			<u> </u>	Γ			11			Î	T
Aroclor-1242	53469-21-9					1		T								1	Т
Aroclor-1248	12672-29-6			—			1	[1				TF			1	T
Aroclor-1254	11097-69-1					~	1 ×		1	-						1	T
Aroclor-1260	11096-82-5	Þ		7		1		1			-						T
						Γ		T									Τ
				T		1	<u> </u>		T			<u> </u>	T			T	Т

Sample	SMC 4 REC	SMC RT	Sample	SMC % REC	SMC RT
		en			

Confirmation

Sample	CAS #	RPD > 25%	Sample	CAS#	RPD > 25%
	<u></u> /a				

Comments:

DATE: 1/2/99 REVIEWED BY:

VOLATILE ORGANICS: Page 1 of 2 SW-846 - Method 8260

ł

	eproject: <u>Non-ER</u> boratory: <u></u>			COC #: BORAT				8/			87			•					~/A					el»	' سهد
s	GC/MS		Min RP	Lotercept	Califi		alih D/R ¹		ÿΠ	Melh Blk		.cs	LCSD	LCS RPD	MS	M		MS RPD	Field Du RPD	P Eq. Biku		rip Uka	TAL.	μŶ	10
-ł	Name	CAS#	- R.F		>.05	_	6/0.99	20		Date	4			KIU.		+-	-+			Dit	╬			<u> </u>	+
÷	Chloromethane		0.10		<u> </u>		14.77	fř		7	-+-	-				/ 	ᡔᡰ		{	1-	+	7		┢ᠵ	4-
_	Bromomethane		0.10		1-1-		÷	<u> -</u>	-+-	-	+	-		۲Ľ		+	-+	1	<u> </u>	$+ \hat{\tau}$	+-•	+		h	+
			0.10			1000			es la		80 5		nes ne				58E 🖸	2 A X	ROB HOD		ster		Singe s		a se
	Chloroethane	75-00-3	0.01		T T	22.000		ŤŤ			22.42 22.42								(ŤΤ	1	F	())))))))))	ff	79
1	methylene chloride (10xbil.)	75-09-2	0.01			-		+ ±			+	+				11	-1			+++	+-	t-t			t
	Acclosed Bables	SYSCERE	0.01.4	2.52 St.		s cas	() () ()	127			36 S					sist		8 4		a 2.3	siar			8.6	38
	carbon disulfide	75-15-0	0.10		TT			Ť.	71			1			ΓΓ			-	-		1	T		2	T
×.		District Mark	15.121		323 53				THE .	12		2002	39.39	13.00		00 64	19.53	88		802	们感	瘛		FF	5
		54 S. (12 10	OIII S	23.3	2003 (**	0.133	0 (M)			÷.	122		100		Sector	813	56	ä¥	10005	123			(ALCORE)	84	9 E
	CNOCOLOTHE CALL COLOTHE	24.12.448	020		540 S	ð eð s	0.33				e e s					3	\$ 8 J x	11.3	1.4.21		412			14.	12
3		and the second se	0.00	125 35				şeeş		33 S	3 新 &	103	188 S			1.33		Di Li	s dia ang		8 18		Fields 2		
	Colonalizati (21) (b.)	<u>1.5.25 SE S</u>	0.062				8		調道]	88			50 H		105			1 2					通知法	r_{i}	183
	1, 1, 1-trichloromhane		0.10			_		141	4			1						_			1			1-	
	tarbon istrachin stale		0:10		820 <u>0.</u>			<u>188</u>		<u> </u>	<u> </u>	2.0		8623		818					雌怒		atal	444	20
	Bromodichloromethane	75-27-4	0.20						<u> </u>			-			10.00 M				a and a state				110-54.07	1	
	L. dictioner base	7 -17 -5	0.0t				<u>i) 438</u>	420		800 B	<u>1340</u>	6 (i)	312X 28				3 G (4	3 8		鲫	<u> </u>
	cia-1.J-dichloropropene Spichlerocthane	10061-01-5						-						10000	3.000			0.00		1				deale	
	Dibromochloromethane		0,10		1505,07		90 QU	4PG	97 (S	<u> Viti</u> B	<u>8.80</u> 8	6 16 8	1198 333	0.44		67155	6-1969 P		0.01000000	<u></u>	163	1	- 20 (R	狎狎	28
	1.1.2-richlorothane	79-00-5	0.10	 	╉┟	~			-+		+	+-	┢┈┢	++-	╉━╆	-1-1			+	_	┼┼─		<u> </u>	┿╉	+
		21-43-2	D HON		5 5 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	a esse				w	200	8					81.388 B				1908	1000		de la characha	्रिक
	trans-1,3-dichloropropene	10061-02-6				25. S.		+ +	<u></u>		(20.04 B)	N 8/70"	000000000000	1			77990 C		19990	10000	ffff	4622	<u></u>	7-F	4
	Bromoform	75-25-2	D. 10		1 1-	-		┥╉					<u> </u>	++-	t-f-	-+-	l t	1			╈	+++		╆╋	+
	4-methyl-2-pentanone	104-10-1	0.10		╇┼			╈	+	-+-	-+			+-	╋╌╄╴						╈	+		╞	+
	2-hexanonr	591-78-6	0.01					121	i Ch	-+	-			++						-1	11 -	+-+	·	ΤŶ.	才
8	Tetrachieroethmas	12741844	0.20	5000 5920		1000	(A) (S)		7	1	300 C						13.97	878 B			材密			19	驫
	1,1,2,2-tetrachi oromhane	79-34-5	0.30					1								-					T	1	1	Π.	T
	toluene(10xbik)	106-88-3	0.46							F											11-			Π	T
		105-36-7	10.30 g		233 X	8	10.000			1		8 J.S				×.		20 C			12	1.4			× 8
_	Ethylbrizene	100-41-4	0.10									1								-	П	T-1		TT	T
	Styrene	100-42-5	0.30									T		11							T	\square		\mathbf{T}	T
	zylenes(totai)	1330-20-7	0.30								T			11					L				İ	$\perp \Gamma$	
	13.dichlerecffylege(inth)	\$46-59-6	0.01				<u></u>	1	<u> </u>			2								888	18-				ð,
-	2-chloro-thyl vinyl star	110 71 8	<u> </u>	1	┼┶		_	+		_	_+	+-	╞╴┝╸	╅┼┰╸	┾┟╴	- -	├	_		-	╨			. 1	毕
-	Vicy aletare	<u> </u>	<u> </u>		↓ *		L.	+-	- 1	+	-	Т	*	1	+-	_	<u> </u>		+	_	4	L	└──	≁∠	4
-	·····	<u> </u>		<u> </u>	+						 		┣		+				+	1	-[┿-	ᅪ
1	nments:	L	<u> </u>	L	. <u></u>						L		L		_				_1				ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u>_</u> L

1

"/2/99 REVIEWED BY 12m DATE: ___

B-8

VOLATIL. ORGANICS: Page 2 of 2 SW-846 - Method 8260

. .

SITE/PROJECT:	ARCOC #:	602162
LABORATORY:	LABORATORY	' REPORT #:

gate Recovery a Sample	SMC 1	SMC 2	SMC 3	1S I-a	area	IS	1-RT	IS 2-area	15 2-RT	IS J- area	IS 3- RT		ļ	
<u> </u>		[Ĺ			í				ļ	
									l:_				1	
									[
	- L			1										
						—				1			1	
				1		—		·						1
		}		· · ·									1	+
			r			╞┯							1	
		{- ·····			\leq	⊢			┣	f			<u> </u>	-{
		}		C/L			-	F	┝──-	<u> </u>				+
		<u>↓</u> -		ļ	~	K			├ ────	↓		<u> </u>	·}	-
		<u> </u>	· · · · •			-			1	ļ	l		∔	
		ļ]		<u> </u>			<u> </u>	ļ				
			r	ļ		_		_	L					<u> </u>
		K_	1					L				<u> </u>		
			i							l				
		L								1				· · · ·
								1		1				

į

SMC 1: 4-Bromofluorobenzene SMC 2: 1,2-Dichloroethane-d4 SMC 3: Toluene-d8

IS 1: Bromochloromethane IS 2: 1,4-Diffuorobenzene IS 3: Chlorobenzene-d5

Comments;

1

B-1

Memorandum

Date: 11/02/99

To: File

From: Marcia Hilchey

Subject: General Chemistry Data Review and Validation Site: Non-ER Septic Systems AR/COC: 602762 Case: 7223.230 Laboratory: GEL SDG: 9908768

See attached Data Assessment Summary Forms for supporting documentation on the data review and validation.

Summary

All samples were prepared and analyzed with accepted procedures and with specified methods (total cyanide EPA9012, hexavalent Cr EPA7196). All components were successfully analyzed.

No qualifications were applied to CN sample results.

Qualification was applied to a Cr6+ sample result due to exceeded holding time.

Holding Times

The CN samples were analyzed within the prescribed holding time.

The Cr6+ equipment blank sample was received and analyzed 1 day after the prescribed 24hr. holding time. Sample results were UJ2 qualified.

Calibration

Initial and continuing calibrations met QC acceptance criteria.

<u>Bianks</u>

The method blanks and equipment blanks were free of target analytes above reporting limits.

Matrix Spike Analysis

The matrix spike sample analyses met QC acceptance criteria.

Laboratory Control/Laboratory Control Duplicate Samples

The LCS/LCSD samples met QC acceptance criteria.

Laboratory Replicate Analysis

The replicate sample analyses met QC acceptance criteria.

Tenare a sing against and a set of a

Other QC

Field duplicate soil sample analyses met RPD acceptance criteria.

No other specific issues were identified which affect data quality.

Please contact me if you have any questions or comments regarding the review of this package.

;

SITE/PROJECT: Non-ER Sept arcoc #: 60276 2 LABORATORY: CE LABORATORY REPORT #: 990876.8 METHODS: CN CE 6+

QC/ Analyte	CASI	ICV	œν	ICB	ссв	Method Blacks	LCS	LCSD	LCSD RPD	МВ	MSD	MSD RPD	REP RPD	Serial Dilution	Field Dup RPD	Equip. Biks	Fickó Bilta			
CYHOUS		~	~	"/"	1/9	1	-	/	1	١	1/4	14	/	16			1/9			
1.6+	185 40-29		~	\$	•-	/	3	-	/	١	••	••		nr			47			
									[1			\square
								Γ				ł								\square
							[<u> </u>				
							i —		1	[<u> </u>				
								1	1]	<u> </u>				
											_	[1			[
													ſ			<u> </u>	1			
									1	1		[[1	1	1			
									1				[1			
									<u> </u>				1					[·
									1			<u> </u>	1							
												{				T				
								ļ	ļ	1							1	1	r	
									f	[<u> </u>	t			1	\square	1	<u> </u>	

.

Comments:

i L

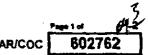
1

Analysis Request And Chain Of Custody (Continuation)

AR/COC 602762

			_	-					_				00210
Ľ	Projeci Name:	Han-ER Sopt is Systems	voject/Tasi	Manger:	Mike Sanders		_	Case No	_	_			,
1	Location	Tech Area		ļ		Refere	nce L	OV (a	vailabi	e at SM(⊃}		Lab use
Ę	Suiding	Room								Sample	_		Lab
ſ	Sample No-	ER Sample ID or	Depih	ER	Date/Time	Semple	Coni	_		Collection		Parameter & Method	Sample
Ł	Fraction	Sample Location data		Sine No.	Collected	_	Type	Volume			Туре	Requested	10
k	041373-001	1364-30-SPI-6114	<u>-5 149</u>	INIA	05/591 0126	5		0926	146	GR	54-	Voc.	
k	041314 1002	Blog 20 -5F1-BHU-15	15 14 19	NA	01117 0155	5	AG	250 ml	4C	GR	5Anz	PCB. CN. Cr6+	
Į	048375-001	1360-311-1311	MS AM	NA	011244 1023	5	AC.	125	46	GP	SAIS	VOC	
	048316-002	B6620 SPI BAL 19	SMP	NA	1029	5	AG	bon	4C	GR	SAN	PCB. CN. Cr6t	
Į	049.51 -002	B4620-51-8H	D AP	NA	OUS49 MEL	5	AG	250 m	HC.	G-R	586	PUB CN C.C6+	
л				NA	021899 0951	5	AG	250	4C	GB	us∕lsib	PCB CN Cr6+	
	0416379-00		N NM	MA	01191 1045	DIW	P	4111	Nobl	GR	E 8 ¹⁾	total CN	
	048380-005	3420-SPI-EE-C	6 NX	MA	09 1809 10 ib	DW	P	1.500	40	CR	EB	Cr6+	
	048391-005	B4620-38-CE-80	BNA	No	011895 1047	DIW	16	AIL.	40	6-819	ER	les	
	1415-12-005	R1420-5A-EL		alo	081849 104	DIW	G	1140	HCL	GR	EB	VOC	
	003-513-646	BUD SH -TB	u a	MA	681699 MA	NA	G	81400	H HCL	GR	τß	NOC	
١	041319-061	BATHL-DEL-DH 1 -	-5 7F	MA	081999 199	5	AC	125 m	40	GRU	54	VOC	
	041314 -062	18-71 - DH -BH	1-5 7H	MA	081199 152	5	AC	<u>hsa _)</u>	40	GRy	SA	PCNB CN Cr6+	
	041355-00	BLINI-OPL-BHI	45 12 F	HNLA	081111 14/15	S S	AC.	125m	40	I GRU	5A	USC	
	048385-007	PL791-DR-0H 5-1	2-5 12 P	Mr	08189 1405			soml	4C	GR	ISA_	PCB. CN. Cr6+	
1	042366-00	84791 DPI-642-1	J 7H	NA	081199 1450			lasal	40	6.94	SA	Voc	
	041576-207	186741-081-BH2-	75 7 24	NA	59 199 1450	5	AG-	<u>b)</u>	140	GPL	SA	ICB CN Crit	
		86711-077-6Hz-1			091999 1517	5	28	25	4C	GR.	SA	voe	
		B-74-DFI-042-12			091517 1517			25000	40	CRA	SA	PCB CN Cr67	
	041111-001	104191-061-0H1-	15 79	HNA	1081197 IKK	15	AC	25_1	40	GR	SA.	Voc	

5 KM 362


į

i....

68 50mplos 041353 045389 >

ORIGINAL

ANALYSIS REQUEST AND CHAIN OF CUSTODY

E	laich No.	SARM	R No.		5M0 Um_	1.	}						AR/COC BO2	2762
	ept. No Mail Stop:	8135/1147						Contract	No.:	AJ-2400A				
		NON-ER Septe: Sys/M Sanders					•	Case No	D.:	7223.230	11			
₹	hoject Name:	Non-ER Septic Systems	Las Contac		E Kent NO3 5	58 8171		SHO A	.chori2.gdb	2 hand	dani			
	acord Center Code	ER/1295/DAT	Lab Destine	tion:	GEL			BR To: I	Sandie fü	el gla	oretories			
ų	ogbook Raf. No :		SMO Conte	ctiPhone:	D Salmi 844-	3118		Suppler	Services	Dept.:		[) R I G I N A I	
k	Service Order No.	CF 0588	Send Repo	te SMO:	S Jensen 44	4-3184		P.O. 80	# 5800 N	S 0154		- -		-
- 1	Location	Tech Area											apapara a	7
1	Building	Room			Raferer	nce LO	V(availa		the second second second second second second second second second second second second second second second s				1011681	- Lab Use
-		ER Sample ID or	Beginning	ER Sile	Dain/II		Semple		tainer	Preser-	Collection	Sample	Parameter & Nethod	Lab Sample
Í	Sample NoFraction	Semple Location Datai	Depitvit.	No.	Collect	ed	Matrix	Туре	Voluma	velve	Wethod	Type	Requested	
-	048363-002	06750 -DEL-DHI-5-5	5 FF	NA	PP180	1/05	5	Ģ	600ml	4C	GR 1	51	PCACH Cr6t	
• [041364 -002	136750-011-BH-10-5	i lo A	witt	20199	101	S_	G	to al	Lic I	GB2	SA_	ALB CN CobL	
•	041365 - 002	8130 -0F1-BH2-5-5	3 64	NA	011791	H 20	5	G	koo al	ЧC	GR 3	54	AB CN Cr6+	
1		136750-09-BHZ-10-5	LOFF	WA	011797	PCIL	5	G	520-	40	GRY	54	PCR CN Cr6+	
•	04 8367 - 002	BUTSO-DE1-184-5-5	SF4	JA	011299	1310	5	AG	LSO A	40	GR 5	34	PCB, CN Cr6+	
	048-69 - 002	B6620-DFL-BHL 10-	5 10 Pt	NIA	081799	1327	5	AG	252	<u>4</u> C	CEL	SA_	DCB CN Celt	
e	X18.367 - 002	B6620-11-112-5	5 5 FF	NIA	081799	1338	5	AG	200-1	4C	GK7	5A	ACB CN Cr6t	
¢	048 310-018	B6620-07-1342-10	SIDF	NIA	01179	1430	5	AG	201	40	GR 8	SA	PCB CN Cit	·
9	148 STI . 000	Rider DEL-BA3-5	5 3H	N/A	0817.99	1503	5	AG	250	40-	GRG	SA	ACB CN Cret	
	118 372 -003	136620-DF1-1343-10	5 10 84	NIA	08 1799	1520	15	AG	250	AC.	GRh	SA	IRB CN C16+	-
•	IRMMA		el. No.	1/2 1/1-		10 40		17.÷		Bracial	instructions ¹ Q			
	Jampie Disposal		Discovel by lab								SYm ONe			
	Tumeround Time	and the second second second second second second second second second second second second second second second		Rush							e Pockage	Z Yes	C) He	
			ed Report Oat	•						Send infe	o to Mike Sand	m4. (2	WA TO FA	
		Name /	Signature	hull	Ca	Management	Digenizatio	nPhene	H		LEPA 2			
	Sampia	Margaret Sanchez	A lunkor	100	Weekov611	M645-32	87				CEPA 901	- 40 - H	GEL ARANO	
	Team	Gilbert Quintane 45	124 2	1 AL	17/61 16/238	-9417					(EPA 800 (EPA 8270		with suss	
	Members									Phone	ini na saparadi	report	TINHES	
	1.Reinquished by	and bucha !	Org. Gel	C Dete	Silentin	nn ()	700	4.Redn	calished t			Org.	Date Thr	
	I. Received by	M K Lat St		Z Dele			700	_	awed by			Org.	Date Tin	H O
	2.Relaquished by		01 15	_			<u> </u>	_	calified t	Ψ		Drg.	Oute Tirr	
	2. Received by	four y	019.46				<u>.</u>		eived by			Org.	Date Ter	
	3,Reinquished by		Org	Date					quehed (<u>IY</u>		Org.	Date Tin	
	3. Received by		Org	Dete	Ti			5 Rec	erved by			Olg	Date Tin	<u>*</u>

1-11 048.563 120

.

Internal Lab

ſ

ORIGINAT

Analysis Request And Chain Of Custody (Continua

i.

ł

ł

Project Name:

Building

J

,

Location

Savaple No-

Frection

Tech Area

ER Sample ID or

Sample Location detail

0493 88-00 B6741-DR-8417-57 F. NA

04 1385-06) R6141-0FL-84+125 12 Ft

Depth ER In Ft Site No

NA

Room

) al Page AR/COC-602762 Nen-ER Best & Systems Project/Task Manges: Mike Senders Case No. 784.8 Reference LOV (available at SMO) Lab use Sam 1.00 Date/Time Collected Sample Contribut Matrix Type Volume Sample ID Prese Collector Methoda Туре Remained VETVE GR SA Cr6F 081191 1551 5 AG 200-. 4C. KB CN. GR SA A1799 1502 5 VOC AC 125-1 4C PCB CN Cr6+ 948389-002 36741 09-84 25 12 A ULA 081799 1552 4C 5 M -5 AC booml

-		 	 	 		
					• •	
_						
_						
_						

ORIGINAL

NO 3

3

Contract Verification Review (CVR)

Project Leader A. Roybal Project Name Non-ER Septic Systems Case No. 7223.230

AR/COC No. 502762

Analytical Lab _____

SDG No. 9908768

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-in Information

Line			plete?		Resolved?	
No.	tem.	Yes	No	Mino, explain	Yes	No
1.1	All items on COC complete - data entry clerk initialed and deted	X				
1.2	Container type(s) correct for analyses requested	X				
1.3	Sample volume adequate for # and types of analyses requested	_ X			T	
1.4	Preservative correct for analyses requested	X				
1.5	Custedy records continuous and complete	X				
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X				
1.7	Date samples received	X	1		1	
1.8	Condition upon receipt information provided	X	<u> </u>			

2.0 Analytical Laboratory Report

Une			Hete?		Resolved?	
No.	item	Yes	No	If no, explain	Yes	Na
2.1	Data reviewed; signature	X				
2.2	Method reference number(s) complete and correct	X				
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X				
2.4	Matrix spike/matrix spike dupicate data provided (if requested)	X				
2.5	Detection limits provided; PQL and MOL(or IDL), MDA and L	X				
2.6	QC batch numbers provided	X				
2.7	Olution factors provided and all dilution levels reported	X				
2.8	Data reported in appropriate units and using correct significant figures	X	F			
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	NA				[
2.10	Narrative provided	X				1
2.11	TAT met		X	Due to huricane Floyd, GEL was granted several additional days to the TAT.	- 1	
2.12	Hold times met	X	[T	1
2.13	Contractual qualifiers provided	X			T	
2.14	All requested result and TIC (if requested) data provided	X	F		T	

Contract Verification Review (Continued)

nem	Yes	No	If no, Sample IQ No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Increasics and metals reported as pon (mg/Bar or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	x		
3.2 Quantitation limit met for all samples	×		
3.3 Accuracy a) Laboratory control samples accuracy reported and met for all samples	×		
 b) Surrogate data reported and met for all organic samples analyzed by a gas chrometography bechnique 	×		
c) Matrix spike recovery data reported and met	×		
3.4 Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	×		
b) Metrix spike duplicate RPD data reported and met for all organic samples	×	1	
3.5 Blank data a) Method or reagent blank data reported and met for all samples	×		
b) Sempling blank (e.g., field, trip, and equipment) data reported and met	×		
3.8 Contractual qualifiers provided; "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic or above the PQL for inorganic; "U"- analyte undetacted (results are below the MDL, IDL, or MDA (radiochemical)); "H"-analyte is done beyond the holding time	×		
3.7 Narrative addresses planchet flaming for gross sipha/beta	NA		
3.8 Narrative included, correct, and complete	×		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and pesticides/PCBs	×		, , , , , , , , , , , , , , , , , , ,

Contract Verification Review (Continued)

4.0 Calibration and Validation Document	Yes	No	Comments
4.1 GCAUS (8280, 8270, etc.)	······		└ <u>────────────────────────────────────</u>
a) 12-hour tune check provided	x		
b) Initial calibration provided	x		
c) Continuing calibration provided	×		
d) Internet standard performance data provideci	×		
e) instrument run logs provided	x	<u> </u>	
		·	
4.2 GC/HPLC (8330 and 8010)	NA		/
 Initial calibration provided 	NA	1	
b) Continuing calibration provided	NA	}	
c) Instrument run logs provided	NA	<u>↓</u>	<u></u>
C) Interventer (an infla higher)			
4.3 Inorganica (metals)		<u>∤</u>	<u> </u>
a) Initial calibration provided	×		
		ļ.,_)
b) Continuing celibration provided			
			↓ ↓ ···································
c) ICP interference check sample data provided	X		
d) ICP serial dilution provided	X	┟┈╼╴╴╸	<u> </u>
· · · · · · · · · · · · · · · · · · ·]	
e) Instrument run logs provided	×	<u> </u>	
4.4 Redicchemistry		1	
 Instrument run logs provided 	NA		

4.0 Calibration and Validation Documentation

ł

Contract Verification Review (Concluded)

5.0 Problem Resolution

Ŧ

......

ŧ

1.

Summarize the findings in the table below. List only samples/tractions for which deficiencies have been noted.

Т

Sample/Fraction No.	Analysia	Problems/Comments/Resolutions
······	~	
·	<u>`~</u>	·/
······································		
······		
······································		
		┲┶┶╾┉ ┉┉┉┉┉ ╼╼╼╼╼╼╼╼╼╼╼╼╼╼╼╼╼╼╼╼╼╼╼╼╼
	·····	
	••••	·
deficiencies unresolved? 🛛 🔾 Yes	• 🖉 No	
d on the review, this data package is c	complete. 🖉 Yes	D No
provide: honcyntormange regent pr ci	Periodics restant substant	and date a second on your cost over a date it.
The and Tel-11	مريمي معرية المريحية br>المريحية المريحية الم	and data correction request was submitted:
mpboy h Med Solott	Cate: 10-6-	Data:
i.		

April 25, 2000

PAGE DELIBERATELY

NOT SCANNED

Must be viewed at the

Ξ

Integrated Safety & Security (IS&S) Records Center

For Assistance Call

844-4688

**

Contract Verification Review (CVR)

Project Leader A. Roybal

Project Name Non-ER Septic Systems

Case No. 7223.230

AR/COC No. 602762

Analytical Lab GEL

SDG No. 9908768

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-in Information

Line	le l		Complete?			Resolved?		
No.	Item	Yes	No	lf no, explain	Yes	No		
1.1	Al items on COC complete - data entry clerk initialed and dated	X						
1.2	Container type(s) corract for analyses requested	X			Т			
1.3	Sample volume adequate for # and types of analyses requested) X						
1.4	Preservative correct for analyses requested	X						
1.5	Custody records continuous and complete	ΓX						
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X						
1.7	Date samples received	X						
1.8	Condition upon receipt information provided	X						

2.0 Analytical Laboratory Report

Line		Com	slete?		Res	olved?
No.	Item	Yes	No	i if no, explain	Yes	No
2.1	Data reviewed, signature	X	[
2.2	Method reference number(s) complete and correct	X	1			[
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X		l		r
2,4	Matrix spike/matrix spike duplicate data provided(if requested)	X				r
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and L.		<u> </u>			[
2.6	QC batch numbers provided	X				
2.7	Dilution factors provided and all dilution levels reported	X				r
2.8	Data reported in appropriate units and using correct significant figures	X	1			h
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	NA				
2.10	Narrative provided		1			t
2.11	TAT met		X	Due to huricane Floyd, GEL was granted several additional days to the TAT.	1	t –
2.12	Hold times met	X				<u> </u>
2.13	Contractual qualifiers provided	X	1			<u> </u>
2.14	All requested result and TIC (if requested) data provided	X				t

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

÷......

· · · · · · · · · · · ·

item	Yes	No	If no, Sample ID No/Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/kg)? Tritum reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	x		
3.2 Quantitation limit met for all samples	×		
3.3 Accuracy a) Laboratory control samples accuracy reported and met for all samples	×		
 b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique. 	×		
c) Matrix spike recovery data reported and mat	×		
3.4 Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	×		
 b) Matrix spike duplicate RPD data reported and met for all organic samples 	×		
3.5 Blank data a) Method or reegent blank data reported and met for all samples	×		
b) Sampling blank (e.g., field, trip, and equipment) data reported and mat	×		
3.8 Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic or above the PQL for inorganic; "U"- analyte undetected (results are below the MDL, 10L, or MDA (radiochemical)); "H"-enalysis done beyond the holding time	X		
3.7 Narrative addresses planchet flaming for gross alpha/beta	NA	}	
3.5 Narrative included, correct, and complete	×		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and pesticides/PCBs	×		

.

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

4.0 Calibration and Valuation Documentat	Yee	No	Comments
4.1 GC/MS (8260, 8270, etc.)			
a) 12-hour tune check provided	x		
· · · · · · · · · · · · · · · · · · ·		l	
b) Initial calibration provided	X		
c) Continuing calibration provided	x		
		1	
d) Internal standard performance data provided	x		<u></u>
e) Instrument run logs provided	X	(•
4.2 GC/HPLC (8330 and 8010)		<u></u>	· · · · · · · · · · · · · · · · · · ·
a) Initial calibration provided	NA NA	1	
b) Continuing calibration provided	NA		
c) Instrument run logs provided	NA		
4.3 Inorganics (metals)		{	l
a) Initial calibration provided	· x		
b) Continuing calibration provided	x		
c) ICP interference check sample date provided		<u> </u>	
•	. (^.	((
d) ICP seriel dilution provided	×		
		<u> </u>	
e) Instrument run logs provided	×		
4.4 Radiochemistry		÷	
a) Instrument run loga provided	NA NA	1	

.

ł

í

......

ŧ

Contract Verification Review (Concluded)

5.0 Problem Resolution

i ..

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Semple/Fraction No.	Analysis	Probleme/Commente/Resolutione
· · · · · · · · · · · · · · · · · · ·		
<u>_</u>		
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
	·	
	······································	
	4	
Were deficiencies unresolved? Q Yes	A No	
Based on the review, this data package is comp	plete. 🔏 Yes	
If no, provide: noncynformangy region pr corre	ction request number	and date correction request was submitted:
Reviewed by h All Stall	Date: 10-6-9	
L.		

ANNEX C Gore-Sorber™ Passive Soil Vapor Analytical Results

W. L. GORE & ASSOCIATES, INC.

100 CHESAPEAKE BLVD., P.O. BOX 10 • ELKTON, MARYLAND 21922-0010 • PHONE; 410/392-7600 FAX: 410/506-4780

> GORE-SORBER® EXPLORATION SURVEY GORE-SORBER® SCREENING SURVEY

June 6, 2002

Mike Sanders Sandia National Laboratories Mail Stop 0719 1515 Eubank, SE Building 9925, Room 108 Albuquerque, NM 87123

Site Reference: Non-ER Drain & Septic, Kirtland AFB, NM Gore Production Order Number: 10960025

Dear Mr. Sanders:

Thank you for choosing a GORE-SORBER[®] Screening Survey.

The attached package consists of the following information (in duplicate):

- Final report
- Chain of custody and analytical data table (included in Appendix A)
- Stacked total ion chromatograms (included in Appendix A)

Please contact our office if you have any questions or comments concerning this report. We appreciate this opportunity to be of service to Sandia National Laboratories, and look forward to working with you again in the future.

Sincerely, W.L. Gore & Associates, Inc.

ay W. Hoday

Jay W. Hodny, Ph.D. Associate

Attachments cc: Andre Brown (W.L. Gore & Associates, Inc.)

E\MAPPING\PROJECTS\10960025\020606R.DOC

W. L. GORE & ASSOCIATES, INC.

100 CHESAPEAKE BLVD., P.O. BOX 10 • ELKTON, MARYLAND 21922-0010 • PHONE: 410/392-7600 FAX: 410/506-4780

> GORE-SORBER® EXPLORATION SURVEY GORE-SORBER® SCREENING SURVEY

1 of 6

GORE-SORBER[®] Screening Survey Final Report

Non-ER Drain & Septic Kirtland AFB, NM

June 6, 2002

Prepared For: Sandia National Laboratories Mail Stop 0719, 1515 Eubank, SE Albuquerque, NM 87123

W.L. Gore & Associates, Inc.

Written/Submitted by: Jay W. Hodny, Ph.D., Project Manager

Reviewed/Approved by: Jim E. Whetzel, Project Manager

Analytical Data Reviewed by: Jim E. Whetzel, Chemist

L'MAPPING/PROJECTS/10960025/020606R.DOC

This document shall not be reproduced, except in full, without written approval of W.L. Gore & Associates

ASIA · AUSTRALIA · EUROPE · NORTH AMERICA

GORE-SCREER and PETREX are registered service marks of W. L. Gore & Associates, Inc.

GORE-SORBER[®] Screening Survey Final Report

REPORT DATE: June 6, 2002

AUTHOR: JWH

SITE INFORMATION

Site Reference:Non-ER Drain & Septic, Kirtland AFB, NMCustomer Purchase Order Number:28518Gore Production Order Number:10960025Gore Site Code:CCT, CCX

FIELD PROCEDURES

Modules shipped: 142
Installation Date(s): 4/23,24,25,26,29,30/2002; 5/1,6/2002
Modules Installed: 135
Field work performed by: Sandia National Laboratories

Retrieval date(s): 5/8,9,10,14,15,16,21/2002 # Modules Retrieved: 131 # Modules Lost in Field: 4 # Modules Not Returned: 1 Exposure Time: ~15 [days] # Trip Blanks Returned: 3 # Unused Modules Returned: 3

Date/Time Received by Gore: 5/17/2002 @ 2:00 PM; 5/24/2002@1:30PM By: MM Chain of Custody Form attached: \checkmark Chain of Custody discrepancies: None Comments: Modules #179227, -228, and -229 were identified as trip blanks. Modules #179137, -138, -140, and -141 were not retrieved and considered lost from the field. Module #179231 was not returned. Modules #179230, 232, and -233 were returned unused.

GORE-SORBER[®] Screening Survey Final Report

ANALYTICAL PROCEDURES

W.L. Gore & Associates' Screening Module Laboratory operates under the guidelines of its Quality Assurance Manual, Operating Procedures and Methods. The quality assurance program is consistent with Good Laboratory Practices (GLP) and ISO Guide 25, "General Requirements for the Competence of Calibration and Testing Laboratories", third edition, 1990.

Instrumentation consists of state of the art gas chromatographs equipped with mass selective detectors, coupled with automated thermal desorption units. Sample preparation simply involves cutting the tip off the bottom of the sample module and transferring one or more exposed sorbent containers (sorbers, each containing 40mg of a suitable granular adsorbent) to a thermal desorption tube for analysis. Sorbers remain clean and protected from dirt, soil, and ground water by the insertion/retrieval cord, and require no further sample preparation.

Analytical Method Quality Assurance:

The analytical method employed is a modified EPA method 8260/8270. Before each run sequence, two instrument blanks, a sorber containing $5\mu g$ BFB (Bromofluorobenzene), and a method blank are analyzed. The BFB mass spectra must meet the criteria set forth in the method before samples can be analyzed. A method blank and a sorber containing BFB is also analyzed after every 30 samples and/or trip blanks. Standards containing the selected target compounds at three calibration levels of 5, 20, and 50µg are analyzed at the beginning of each run. The criterion for each target compound is less than 35% RSD (relative standard deviation). If this criterion is not met for any target compound, the analyst has the option of generating second- or third-order standard curves, as appropriate. A second-source reference standard, at a level of 10µg per target compound, is analyzed after every ten samples and/or trip blanks, and at the end of the run sequence. Positive identification of target compounds is determined by 1) the presence of the target ion and at least two secondary ions; 2) retention time versus reference standard; and, 3) the analyst's judgment.

NOTE: All data have been archived. Any replicate sorbers not used in the initial analysis will be discarded fifteen (15) days from the date of analysis.

Laboratory analysis: thermal desorption, gas chromatography, mass selective detection Instrument ID: #2 Chemist: JW

Compounds/mixtures requested: Gore Standard VOC/SVOC Target Compounds (A1) Deviations from Standard Method: None

Comments: Soil vapor analytes and abbreviations are tabulated in the Data Table Key (page 6). Module #179091 was returned and noted as damaged, no carbonaceous sorbers; therefore, target compound masses reported in data table cannot be compared to the mass data from the other modules directly.

Module #179101, no identification tag was returned with this module.

GORE-SORBER[®] Screening Survey Final Report

DATA TABULATION

CONTOUR MAPS ENCLOSED: No contour maps were generated.

NOTE: All data values presented in Appendix A represent masses of compound(s) desorbed from the GORE-SORBER Screening Modules received and analyzed by W.L. Gore & Associates, Inc., as identified in the Chain of Custody (Appendix A). The measurement traceability and instrument performance are reproducible and accurate for the measurement process documented. Semi-quantitation of the compound mass is based on either a single-level (QA Levet 1) or three-level (QA Level 2) standard calibration.

General Comments:

- This survey reports soil gas mass levels present in the vapor phase. Vapors are subject to a variety of attenuation factors during migration away from the source concentration to the module. Thus, mass levels reported from the module will often be less than concentrations reported in soil and groundwater matrix data. In most instances, the soil gas masses reported on the modules compare favorably with concentrations reported in the soil or groundwater (e.g., where soil gas levels are reported at greater levels relative to other sampled locations on the site, matrix data should reveal the same pattern, and vice versa). However, due to a variety of factors, a perfect comparison between matrix data and soil gas levels can rarely be achieved.
- Soil gas signals reported by this method cannot be identified specifically to soil adsorbed, groundwater, and/or free-product contamination. The soil gas signal reported from each module can evolve from all of these sources. Differentiation between soil and groundwater contamination can only be achieved with prior knowledge of the site history (i.e., the site is known to have groundwater contamination only).
- QA/QC trip blank modules were provided to document potential exposures that were not part of the soil gas signal of interest (i.e., impact during module shipment, installation and retrieval, and storage). The trip blanks are identically manufactured and packaged soil gas modules to those modules placed in the subsurface. However, the trip blanks remain unopened during all phases of the soil gas survey. Levels reported on the trip blanks may indicate potential impact to modules other than the contaminant source of interest.

GORE-SORBER[®] Screening Survey Final Report

• Unresolved peak envelopes (UPEs) are represented as a series of compound peaks clustered together around a central gas chromatograph elution time in the total ion chromatogram. Typically, UPEs are indicative of complex fluid mixtures that are present in the subsurface. UPEs observed early in the chromatogram are considered to indicate the presence of more volatile fluids, while UPEs observed later in the chromatogram may indicate the presence of less volatile fluids. Multiple UPEs may indicate the presence of multiple complex fluids.

Project Specific Comments:

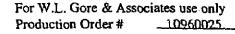
- Stacked total ion chromatograms (TICs) are included in Appendix A. The six-digit serial number of each module is incorporated into the TIC identification (e.g.: <u>123456</u>S.D represents module #<u>123456</u>).
- No target compounds were detected on the trip blanks and/or the method blanks. Thus, target analyte levels reported for the field-installed modules that exceed trip and method blank levels, and the analyte method detection limit, have a high probability of originating from on-site sources.
- A small subset of modules was placed at each of several site locations; therefore no contour mapping was performed. Larger and more comprehensive soil gas surveys may be warranted at the individual sites where elevated soil gas levels were observed.

GORE-SORBER[®] Screening Survey **Final Report**

KEY TO DATA TABLE Non-ER Drain & Septic, Kirtland AFB, NM

UNITS	· · · ·
μg	micrograms (per sorber), reported for compounds
MDL	method detection limit
Ъdł	below detection limit
nd	non-detect
ANALYTES	
BTEX	combined masses of benzene, toluene, ethylbenzene and total xylenes
	(Gasoline Range Aromatics)
BENZ	benzene
TOL	toluene
EtBENZ	ethylbenzene
mpXYL	m-, p-xylene
oXYL	o-xylene
C11,C13&C15	combined masses of undecane, tridecane, and pentadecane (C11+C13+C15)
	(Diesel Range Alkanes)
UNDEC	undecane
TRIDEC	tridecane
PENTADEC	· pentadecane
TMBs	combined masses of 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene
135TMB	1,3,5-trimethylbenzene
124TMB	1,2,4-trimethylbenzene
ct12DCE	cis- & trans-1,2-dichloroethene
t12DCE	trans-1,2-dichloroethene
c12DCE	cis-1,2-dichloroethene
NAPH&2-MN	combined masses of naphthalene and 2-methyl naphthalene
NAPH	naphthalene
2MeNAPH	2-methyl naphthalene
MTBE	methyl t-butyl ether
11DCA	1,1-dichloroethane
CHC13	chloroform
111TCA	1,1,1-trichloroethane
12DCA	1,2-dichloroethane
CC14	carbon tetrachloride
TCE	trichloroethene
OCT	octane
PCE	tetrachloroethene
CIBENZ	chlorobenzene
14DCB	1,4-dichlorobenzene
BLANKS	

TBn method blank unexposed trip blanks, travels with the exposed modules QA/QC module, documents analytical conditions during analysis


GORE-SORBER is a registered trademark and service mark of W. L. Gore & Associates

APPENDIX A:

CHAIN OF CUSTODY DATA TABLE STACKED TOTAL ION CHROMATOGRAMS COLOR CONTOUR MAPS

GORE-SORBER is a registered trademark and service mark of W. L. Gore & Associates

GORE-SORBER[®] Screening Survey Chain of Custody

W. L. Gore & Associates, Inc., Survey Products Group

100 Chesapeake Boulevard • Elkion, Maryland 21921 • Tel: (410) 392-7600 • Fax (410) 506-4780

Instructions: Customer must complete <u>ALL</u> shaded cells NON-ER DUAIN+ SEPTIC Customer Name: SANDIA NATIONAL LABS Site Name: KIVL 2ND AFB, NM ACCOUNTS PAYABLE MS0154 Site Address: Address: KIRTLAND P.O.BOX 5130 Project Manager: MIKE SANDERS ALBUQUERQUE NM 87185 U.S.A. 505-284-3303 Customer Project No.: Phone: 505-289-2616 Quote #: 211946 Customer P.O. #: 28518 FAX: # of Modules for Installation 135 # of Trip Blanks Serial # of Modules Shipped Total Modules Shipped: 142 Pieces # 179087 # 179144 #171087 - <u>#177(34</u> 142 Total Modules Received: - #179233 Pieces # 179150 #171135 #171136 35 Total Modules Installed Pieces # # # Serial # of Trip Blanks (Client Decides) # # 139142 #117/44 # # - # # 171020 # # 179150 + # 17115) # # # # -# # - # # # # # # , - # # # # # # # # # # # # # # - # Curane 17 # # # Prepared By: Mary ane # Verified By: # # Installation Performed By: Installation Method(s) (circle those that apply): Name (please print): GIUSOUT QUINTANA Slide Hammer Hammer Drill Auger Other: GESPRUBE Company/Affiliation: _SNC/WM Installation Start Date and Time: 4/23/02 AM PM 108/57 Installation Complete Date and Time: 5/6/02 109401 AM PM **Retrieval Performed By:** Total Modules Retrieved:_ Pieces Name (please print): GUBERT QUNTANA Total Modules Lost in Field: Pieces SNL/NM Company/Affiliation:1_ Total Unused Modules Returned: ____ Pieces Retrieval Start Date and Time: 1 AM PM 8/02 Retrieval Complete Date and Time. 1 1 AM PM Relinquished By _____ Date Received By:--Mike Sander Time Date Time 3-4-07 17:00 Sandia LER Affiliation: W.L. Gore & Associates, Inc, Affiliation:-3-6-02 linguished By _____ Received By: Date Time Date Time Affiliation: ____6135 -14-07 Affiliation:-1258 inquished By _ Received By Date Time Date Time Affiliation: W.L. Gore & Associates, Inc. Affiliation-4:00 51722

GORE-SORBER @ Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

FORM 8R.8 1/08/01

GORE-SORBER[®] Screening Survey Chain of Custody

For W.L. Gore & Associates use only Production Order # _10960025

W. L. Gore & Associates, Inc., Survey Products Group

100 Chesapeake Boulevard • Elkton, Maryland 21921 • Tel: (410) 392-7600 • Fax (410) 506-4780

Customer Name: SANDIA NATIONAL LABS	Site Name: NON-ER DUAIN+ SEPTIC							
Address: ACCOUNTS PAYABLE MS0154	Site Address: KIVL 2ND AFB, NM							
P.O.BOX 5130	KIRTLAND							
ALBUQUERQUE NM 87185 U.S.A.	Project Manager: MIKE SANDERS							
Phone: 505-284-3303	Customer Project No.:							
FAX: 505-284-2616	Customer P.O. #: 28518 Quote #: 211946							
Serial # of Modules Shipped	# of Modules for Installation 135 # of Trip Blanks 7							
# 179087 - # 179144 #109152 + # 174187	Total Modules Shipped: 142 Pieces							
# 179150 - # 179233 #179158 #119226	Total Modules Received: 142 Pieces							
# - # # - #	Total Modules Installed: 135 Pieces							
# - # # - #	Serial # of Trip Blanks (Client Decides) #							
- # # - #	# # #							
- # # - #	# 14229 # #							
- # # - #	# #							
# - # # - #	# # #							
# - #	# # #							
# - # # + +	# # #							
Prepared By: Quron 17th	# # #							
Verified By: Mary and Marshi	# #							
Installation Performed By:	Installation Method(s) (circle those that apply):							
Name (please print): GILISEET QUINTANA	Slide Hammer Hammer Drill Auger							
Company/Affiliation: SNC/NM	Other GESPICIBIE							
Installation Start Date and Time: 4/23/02 108	ST : AM PM							
Installation Complete Date and Time: 5/6/02 1099								
Retrieval Performed By:	Total Modules Retrieved: 79 Pieces							
Name (please print): GUNTANA	Total Modules Lost in Field: Pieces							
Company/Affiliation:1_SNL/NM	Total Unused Modules Returned: Pieces							
Retrieval Start Date and Time: 5/8/02 /	/ : AM PM							
Retrieval Complete Date and Time: /	/ : AM PM							
Relinquished By Date Time	Received By: Millo, Sanders Date Time							
Affiliation: W.L. Gore & Associates, Inc. 3-4-07 12:00	Affiliation: Sandia; 6133 3-7-02							
-linquished By - Widdenan 17 Jule Date Time	Received By: Date Time							
filiation: Sandia NL. 0 61350 5-21-02 0935	Affiliation:							
Vinguished By Date Time	Received By: Margane Margher Date Time							
filiation	Affiliation: W.L. Gove & Associates, Inc. 5-24-02 13:30							

Instructions: Customer must complete ALL shaded cells

GORE-SORBER @ Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

GOR	E-SORBER		_	urvey			SITE	NAME	& LOC/	TION				
1			-		· •						··			
ىلىلى 🔸	of							`					·	_
LINE #	1		INSTALLATION DATE/TIME		RETRIEVAL DATE/TIME		EVIDENCE OF LIQUID HYDROCARBONS (LPH) or HYDROCARBON ODOR (Check as appropriate)			MODULE IN WATER (check one)		COMMENTS		
		ł					LPH ODOR		NONE	YES	NO	1		
1.	179087	4/23	102 0815	15-08-	02,08	00						1001/	1898-65	5-5
2.	179088	1 1	0822	Ì	· 1									-3
3.	179089		0830							<u> </u>			52	- Z
4.	179090		0840		·								<u> </u>	5-1
5.	179091	$1 \cdot 1$	0852		- l	~					1×	<u> </u>		<u>s -4</u>
6.	179092		0952	Y	ON 3	20			ļ		Y	1052	1803 - GS	5-1
7.	179093		1000		T		ļ	<u> </u>	<u> </u>	<u> </u>	L.L	<u> </u>	L	-4
8.	179094		1010				<u> </u>		<u> </u>					-3
9.	179095		1018	¥	-Ve			<u> </u>	ļ	<u> </u>	1 re		4	-2
10.	179096	╉╼╌┞		<u> </u>	090	0		{	<u> </u>	<u> </u>		1030	16587-	<u>}</u> 5
11.	179097	┝╌┤	1151				ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>			-6
12.	179098	·	/238				┿───	<u></u>	<u> </u>	. 		·		-4
13.	179099	┿╾┼	1247	_				┨────	<u> </u>	<u></u>			↓	-3
14.	179100	╶┧═╍┼	/254				<u> </u>	┥─────	<u></u>					-2
15.	179101 179102		<u>(3</u> 24		<u></u>			┟╍╍┶╾	┼		·		1/1-	<u> - i</u>
	179102	┦╼╍┽	1347	╞╌┼──	09.2	2	┼───	╆╍╌╌╴╼	╈┉┈──━	<u> </u>		1/082	16420-	-4
r · <u>18,</u>	179104	╉╼╍╀	<u>1355</u> 1404		{-		{	-{	-{	-{	+ <u></u>			<u></u>
<u></u> 9.	179105	╶╁╺╾┿	/40-	└──┤───			┟───	╪╍╌┈╼	+	┼━━─		┥╸┥		<u>1</u>
1 20.	179106	$+ \downarrow$	1440	17	<u> </u>	_	+				 	┼╍╍┥		
21.	179107	4/24	402 0848	5-9-1	12 192	6	1	+	·}	<u> </u>		1100/	16531-	-9
22.	179108		0653		1	¥	+			- <u> </u>	+	1		-6
23.	179109		(1900		1	-					1			-4
24.	179110		0907		1									- 2
25.	179111		0916		1						1			-3
26.	179112	. 1	0936		\overline{V}			T		1				
27.	179113	4/2	5/02 07.46	5-10-0	2.081	2						1027	14530-	-5
28.	179114		0754											
29.	179115		0800						1					-2
30.	179116		0810				1							<u>-4</u>
31.	179117	<u> </u>	0813		1 091	7	<u> </u>	1					<u> </u>	-1
32.	179118				2,092	5	<u> </u>	4	<u></u>			1010	16536-	5
33.	179119	4	0922						·					16
34.	179120		0931				<u> </u>	<u> </u>	<u> </u>					6
35.	179121	┹┛	0942				<u> </u>			<u></u>		<u> </u>		2
36.	179122	┼━┦	0947				_			1		- <u> </u>		1 1
37.	179123		0954		100	_	<u> </u>		+	<u></u>			<u>¥</u>	3
38.	179124			15-12-	02 10 [3_		·			+	VOZE	16560-	
<u>, 10</u>	179125	╺┥╴┤	1043	ļ	· ·			┥──			<u> </u>			4
40.	179126		1052	{	1 1 2 2 2	17	-{	- 		<u>+</u>	┿╌		4	13
41.			1103		<u>/ 104</u>			+		<u> </u>	<u> </u>		¥	
92.	179128		1420	12-10-	-01-104	5	1.	4	1	1		102	616501-	Ψ2

GORE-SORBER @ Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

.

.

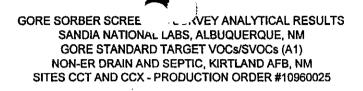
	. * ·				· .		· · · · · · · · · · · · · · · · · · ·		<u> </u>	
GOR	E-SORBEI	R [®] Screening S	Survey	SITE	NAME	& LOCA	ATION			ļ
		Retrieval Log	-						· · ·	1
1	Judon Liid	Iten term 208			·····	-			· · · · · · · · · · · · · · · · · · ·	
	of A							<u>`</u>		
	of	· · · · · · · · · · · · · · · · · · ·								
					ENCE OF		MODI	JLE IN		
LINE	MODULE #	INSTALLATION	RETRIEVAL		OCARDUI QI			TER		
#		DATE/TIME	DATE/TIME		OCARBO			k one)	COMMEN	TS
		}			ck as appro				-	
				LPH	ODOR	NONE	YES	NO		
43.	179129		5-10-02, 1047	ļ	ļ		∤	<u> </u>	1026/654-6	<u>5-3</u>
44.	179130		5-10-02, 10 51	<u>↓</u>	<u> </u>	ļ	┢────	ļ	<u> </u>	<u> </u>
45.	179131	- tea - tea	5-10-02 1053	·	 		<u> </u>		1025/654-	
46.	179132	1446			↓	· .	┟───	 -		2 3
47.	179133		5-10-02, 11:06		<u></u>	 	┢╸───	<u> </u>	¥	<u>3</u>
48.	179134		5-10-02 12.47		} _	}	<u>}</u>		1093/6584-	
49.	179135	1 0914			<u> </u>	<u> </u>		<u> </u>		4
50.	179136		5-10-02 1305	+	 			+	~ 	<u> </u>
51.	179137 179138	093		+	<u> </u>		+ -	 _	+	4 2 3 5 N N M H
53.	179138	and the second second second second second second second second second second second second second second second	5-10-02, 1322		┨────	┨───	+	<u>+</u>	1031/6600-	+=
54.	179140	/074		┽~───	 -	<u> </u>	┼───	+	1031/6600-	+\$
55.	179140	/024		┼───	<u> </u>	<u> </u>		┨╌╌╍╍╼	+	+- <u>a</u>
.56.	179142		5-10-02,13 43	<u> </u>	+			+		
57.	179143		5-10-02, 11:36	-	- <u> </u>	╉─────	┫╴╴╴	<u>∱</u>	276/829X-	
	179144	1142				<u> </u>		┼┈╼╸	61010CM-	2
-ر آ	179150	1150		+	+		·	+	+	4
<u></u>	179151		5-10-02 11354				1	<u>†</u>		
	179152		15-14-02,09:42					1	1084/6505-	. 1 7
62.	179153	082						1	1 1	
63.	179154	082	9							<u>5</u> 3
64.	179155	090								2
65.	179156	084	5-14-02 10:21	<u> </u>	<u> </u>				<u> </u>	4
66.	179157		0 05-14-02 098	7				<u> </u>	1083/6570	- 4
67.	179158	073				┉┝╌╌╌╼╍╍		<u> </u>		$- \dot{L}$
68.	179159	- A		_			-{	<u> </u>		Z
69.	179160	674				·		·		3
70.	179161		05-14-02 1025	4	┿────	╺╇╍───		<u>-</u>	1032/6610	—)
71.	179162	110	and the second second second second second second second second second second second second second second secon						- <u> </u>	<u></u>
72.	179163			╺┦──╼	-{	-{			╺╇───╆───╸	-+4
73.	179164			╶╄╍╍╌┅				┼╼┈		3
74.	179165	1/2							_ 	2434
75	179166		605-14-17 11:03	-		╺-┼────		┥╾┈╼	<u> </u>	-16
76.	179167		205-14-02,11:04	<u></u>		- <u>-</u>			1120/6643-	- 23
77.	179168			_ 				┼	╺╍┦╌╌╌╸身╌╌╌╼	3
78.	179169 179170	/2				╺┼╾┈╺	╺╸┤╌╌╌╴	<u> </u>		4
19.	179170		205-14-02 11:32	<u> </u>						-+-',
	179172		205-14-52-0844						1034/6710	- 4
82.	179172		2 0951			- 	-} -		- 	$\frac{3}{2}$
83.	179174		z <u>0851</u> 10 V 0855				- 			-+
34.	179175	V 142	3 5-19-02,0814	-+			-+	+	1035/6715	- 1- 2
		/ <u>**/**4</u>	-11 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					_!	1035/6/18	تلات

GORE-SORBER & Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

. 1

. •

		R [®] Screening Retrieval Log		SITE N.	AME (& LOCA	TION			1	
щыа	nation and	Relifeval 1.0	5								
<u>۶۰ 3.</u>	014						<u> </u>				
LINE #	MODULE #	INSTALLATION DATE/TIME	RETRIEVAL DATE/TIME	HYDRO	or	is (lph) Nodor	MODU WA (chec)	TER	COMMENTS		
	Į				ODOR	NONE	YES	NO	4		
85.	179176	4/29/02 1431							1035/6715-6	<u>.</u> 	
86.	179177	1440									
87.	179178	V (444	5-14-02 0937							11	
\$ 8.	179179	4/30/02 091					<u> </u>		1003/915-	3	
89.	179180	11 091	21							2	
90	179181	092					∔	ļ	<u></u>	+	
91.	179182	093					ļ	└──	<u></u>		
92.	179183	099		_		· · ·	ļ	ļ	<u> </u>		
93.	179184		75-15-02, 4912				<u> </u>	ļ	↓¥	14	
94.	179185		3 5-15-02, 1146	_ _				<u> </u>	1007/6730-	4	
95.	179186						┠┈╼╍╼╴			3	
96.	179187	1119		┿			╉────			7	
97.	179188	113		╾┼╌━╾┼╴		! 	<u> </u>				
98.	179189		0 5-15-02 1213	_╆┼			<u>}</u> _	}	¥	. 	
99.	179190		85-15-02 10:09	╺┿╴┈┿		<u> </u>	╉╌╴╼	╉━	1029/65842	/	
100.	179191	125		┈╁╌═╾╴┞		<u> </u>	<u> </u>	<u> </u>			
<u></u>	179192	/30		┉╂──┉┤			<u> </u>	╪╾╌╌╸	╈╼╾╌┝╼╾╌╸		
~ <u>2</u> . 3.	179193	(3/		┈┾╍╌╴┢		 -	┫━───	<u> </u>		===	
<u>3.</u> 104.	179194	and the second second second second second second second second second second second second second second second		╶┼───┼					V		
104.	179195	144				<u>├</u> ───	- <u>†</u>	- -	1006/6741-	4	
105.	179190	149				<u> </u>	 -	+	<u>+</u>	$\pm \frac{1}{2}$	
107.	179198	150		╶╂╼╍╤╌┼		<u> </u>		<u>∤</u>	+		
108.	179199		8 5-15-02,1143			<u>+</u>	+	+	+	+	
109.	179200		5 5-5-02, 10 39			<u> </u>	+	 	1087/6743-	┥╶	
110.	179201	153				<u>†</u>	1		1	2	
111.	179202	153		~ 		1	<u> </u>	+	╉╸		
112.	179203		05-15-02, 1059	╶╼╆╼╌╌╌╴╁		†	<u> </u>		1-1/	┼╤	
113.	179204		25-16-02,0801			1	1	1	1008/6750		
114.	179205	083	5			†	-	· -	1		
115.	179206		73			1	-	† -			
116.	179207		15-16-02,0832				1				
117.	179208		4 5-16-02 0941			1		<u>†</u>	1004/6569-		
118.	179209	09				1	1	<u> </u>	1 1		
119.	179210	100				<u> </u>	1	- <u> </u> -	- <u></u>		
120.	179211	100						1	1-1		
121.	179212		6 5-16-02,0907		,		-	+	1		
122.	179213	111	0 5-16-02 11 05					†	1095/9938-		
23.	179214		16 5				<u> </u>	1	1		
24.	179215	1/2	2 5-16-02,11:21				1	1			
125	179216		05 5-16-02-0931						VOAN/LER-	17	
126.	179217		18 5-16-02 - 0935]	· · · · · ·		-		V ·	


- --

- ----

GORE-SORBER @ Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

	E-SORBEI lation and				7	SITE	NAME	& LOCA	TION				'
<u>.4 ر</u>	of4						. •				۰.		
LINE #	MODULE#		TALLATION ATE/TIME		rieval. Tettime	HYDR HYDR (Che	ENCE OF I OCARBON or OCARBOI	NODOR	(chec	TER k one)	COMMENT		S
						LPH	ODOR	NONE	YES	NO]		
127.	179218	5/1	02 /225	5-16-0	2,0942						1094	LAR-G	5-3
128.	179219				0 150						{		-4
129.	179220	516	loz 0850								1081	6650	-7
130.	179221		0857		/ }								/ -3
131.	179222		0909		1		· · ·						-2
132.	179223		0918	1	T		·						2 4
133.	179224		0926	1		1			·				-6
134.	179225		0933		$\overline{\mathbf{v}}$	1							5
135.	179226	+ 7			01,0851				1			V_ V	-
136.	179227	-		<u> </u>	-]	1	1			1	1		
137.	179228			1			[1	1		· · · · · · · · · · · · · · · · · · ·	
138.	179229	- <u>(</u>		1		1				T T			
139.	179230			1		1		1	1	T	1		
140.	179231			1		1	T	T	1	1			_
141.	179232			1		1	}	1	1	1	1	- 	
142.	179233			1			1		1.		1		
3.	-			1			T	1	1	1	1 -		
144.				1			1						
45.	1			1	<u> </u>		[1	1	1			
146.				1		1		<u> </u>		Ī			
147.				T									
148.													
149.			······										
150.													
151.				l	· · · · · · · · · · · · · · · · · · ·								
152.							(·						
153.													
154.			·										
155.													
156.													
157.													
158.													
159.									1				
160.				Ţ		1	— ——	1	1				
161.				-									
162.										- 			
163.				-						-		· .	
164.				1				1			<u> </u>		
65.					······						-		
<u>⊤166.</u>					·		1						
167.		\neg		1	· · · · · · · · · · · · · · · · · · ·			-					
168.			······································		· · · · · · · · · · · · · · · · · · ·			- 					

GORE-SORBER @ Screening Survey is a registered service mark of W.L. Gore & Associates, Inc.

DATE	SAMPLE										[]	
ANALYZED	NAME	BTEX, ug	BENZ, ug	TOL, ug	EtBENZ, ug	mpXYL, ug	oXYL, ug	C11, C13, &C15, ug	UNDEC, ug	TRIDEC, ug	PENTADEC, ug	TMBs, ug
	MDL=		0.03	0.02	0.01	0.01	0.01		0.02	0.01	0.02	
5/28/2002	179172	nd	лd	nd	nd	nd	nd	0.05	0.03	0.02	bdl	nd
5/29/2002	179173	0.39	0.09	0.18	nd	· 0.09	0.03	0.19	0.10	0.04	0.05	0.09
5/29/2002	179174	0.03	пd	nd	nd	0.03	nd	0.00	bdl	bdl	bdl	0.00
5/29/2002	179175	nd	nd	nd	nd	nd	nd	0.05	0.05	bdl	[nd
5/29/2002	179176	0.19	0.08	0.10	nd	0.02	nd	1.20	1.12	0.06		0.04
5/29/2002	179177	0.34	0.14	0.11	nd	0.07	0.03	0.10	0.08	0.02	bdi	0.14
5/29/2002	179178	0.08	nd	0.05	0.01	0.02	nd	0.14	0.06	0.03		0.00
5/29/2002	179179	0.03	nd	0.03	nd	nd	nd	0.07	0.03	0.02	0.02	0.04
5/29/2002	179180	nd	nd	nd	nd	nd	nd	0.04	0.02	0.01	bdi	0.00
5/29/2002	179181	0.00	nd	nd	nd	bdl	nd	0.10	0.03	0.02		0.00
5/29/2002	179182	0.09	nd	0.08	nd	0.01	nd	0.08	0.03	0.02	0.03	0.00
5/29/2002	<u> </u>	nd	nd	nd	nd	nd	nd	0.08	0.04	bdi		0.00
5/29/2002	179184	nd	nd	nd	nd	nd	nd	0.09	0.03	0.02	0.04	0.00
5/29/2002	179185	nd	nd	 nd 	nd	nd	nd	0.05	bdl		0.04	nd
5/29/2002	179186	nd	nd	nd	nd	nd	nd	· 0.05	0.03			0.04
5/29/2002	179187	0.60	0.18	0.30	0.03	0.06	0.03	0.15	0.05			0.11
5/29/2002	179188	0.02	nd	nd	nd	0.02	nd	0.10	bdl			0.00
5/29/2002	179189	0.02	nd	nd	nd	0.02	nd	0.07	0.04	0.03		0.00
5/29/2002	179190	0.06	nd	0.03	nd	0.03	nd	0.11	0.05			0.00
5/29/2002	179191	0.10	nd	0.04	nd	0.05	nd	0.08	0.02			0.00
5/29/2002	179192	0.01	nd	nd	กd	0.01	nd	0.11	0.04			0.00
5/29/2002	179193	nd	nd	nd	nd	nd	nd	0.07	0.03		0.02	0.00
5/29/2002	179194	0.04	nd	nd	nd	0.04	nd	0.08	0.04	ž		0.00
5/29/2002	179195	0.04	nd	nd	nd	0.04	nd	0.08	0.04		.	0.00
5/29/2002	179196	0.02	nd	nd	nd	0.02	nd	0.09	0.04			0.00
5/29/2002	17 9 197	0.03	nd	nd	nd	0.03	nd	0.15	0.05			0.04
5/29/2002	179198	0.07	nd	0.04	nd	0.03	nd	0.09	0.04	0.03		nd
5/29/2002	179199	nd	nd	nd	nđ	nď	nd	0.05	0.03		bdi	0.00
5/29/2002	179200	0.00	nd	nd	nď	lbd	nd	0.08	0.03			0.00
5/29/2002	179201	0.02	nd	nd	nd	0.02	nd	0.04	0.04			0.00
5/29/2002	179202	0.02	лd	nd	nd	0.02	nd	0.04	0.03	1	bdl	0.00
5/29/2002	179203	0.04	nd	0.04	лd	nd	nd	0.06	0.04			0.03
5/29/2002	179204	0.27	nd	0.22	nd	0.03	0.02	0.29	0.06			0.00
5/29/2002	179205	0.12	nd	0.09	nd	0.03	bđi	1.28	1.13			0.03
5/29/2002	179206	nd	nd	nd	nd	nd	nd	0.02	0.02			nd
5/29/2002	179207	0.03	nd	nd	nd	0.03	nd	0.04	0.04			0.00
5/29/2002	179208	0.06	nd	0.04	nd	0.02	nd	0.09	0.04			0.00
5/29/2002	17920 9	0.07	nd	0.04	nd	0.03	ាថ	0.01	bd	0.01	bdl	0.00

No mdl is available for summed combinations of analytes. In summed

columns (eg., BTEX), the reported values should be considered

5/30/2002 Page: 3 of 12

15 12. 1008

ESTIMATED if any of the individual compounds were reported as bdl,

CCT_CCXmt

GORE SORBER SCREEL SULVEY ANALYTICAL RESULTS SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCS/SVOCs (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES GCT AND CCX - PRODUCTION ORDER #10960025

5	SAMPLE	, <u> </u>		[
	NAME	124TMB, ug	135TMB, ug	ct12DCE, ug	t12DCE, ug	c12DCE, ug	NAPH&2-MN, ug	NAPH, ug	2MeNAPH, ug	MTBE, ug	11DCA, ug	111TCA, ug	12DCA, ug
	MDL=	0.03	0.02		0.14	0.03		0.01	0.02	0.04	0.04	0.02	0.02
	179172	nd	nd	nd	ņđ.	лd	0.00	nd	bdi	nd	nd	nd	nd
	179173	0.06	0.03	nd	nd	nd	0.09	0.03	0.06	nd	nd	nd	nd
	179174	bdl	bdl	nd	nd	nd	0.00	nd	bdl	ndi	nd	nd	nd
	179175	nd	nd	nd	nd	nd	0.00	nd	bdl	nd	nd	nd	nd
	179176	0.04	bdl	nd	nđ	nd	0.05	0.02	0.02	nd	nd	nd	nd
	179177	0,10	0.04	nd	nd	nd	0.10	0.06	0.04	nd	nd	nd	nd
	179178	bdi	bdi		nd.	nd	0.06	0.02	0.03	nd	nd	nd	nd
	179179	0.04	bdl	nd	ndi	bn	0.06	0.02	0.04	nd	· · · · · · · · · · · · · · · · · · ·	nd	nd
	179180	bdl	bdi		nd	nd	0.07	0.02	0.05	nď	nd	nd	nd
1	179181	bdi	bd	nd	<u>hd</u>		0.00	лd	bdi	nd	nd	nd	nd
1	179182	bdl	nd	nd	nd		0.00				*~	nd	nd
	179183	bdl	nd	nd	nd	nď	0.00	nd	bdi	nd	nd	nd nd	nd
	179184	bdi	nd	bn	nd	nd			bdi	nd	nd	nd	nd
	179165	nd	nd	nd	nd nd	nd		nd	the state of the second second second second second second second second second second second second second se	nd	nd	nd	nd
	179186	0.04	nd	nd	nd		the second	nd		nd	nd		nd
	179187	0.09	0.02		nd	nd	0.05	0.02	0.03	nd	<u>nd</u>		nd
	179188	bdl	nd	nd	nd	nd	<u>↓───</u> ─────────────────────────────────	nd	bdl	nd	nd	nd	nd
	179189	bdl	bdi	nd	nd	nd		nd	bdl	nd	nd	nd	nd
	179190	bdi		nd		nd		0.02	0.04	nd nd	<u>nd</u>		nd
1	179191	bdl	bdl	nd		nd		<u>nd</u>		<u> </u>	÷		nd
	179192	bdl	nd	ndi	nd.	nd	D.05	0.02	0.03		nd	nd	nd
	179193	bdi	nd	nd	nd		the second second second second second second second second second second second second second second second s	nd	bdl		nd		nd
	179194	bdl	bdi	nd	nd	nd		0.02	bdi		[nd	nd i	nd
1	179195	, bdl	bdi	nd.	nd	nd		0.03	0.07	nd		nd	nd
	179196	bd	bn	nd		nd			0.02	nd	<u>nd</u>	frame	nd
	179197	0.04	bdi	nd	nd	the second second second second second second second second second second second second second second second s		0.04	0_07	nd	nd	<u></u>	nd
	179198	nd	nd	nd	nd		nd	<u>nd</u>	nd			[nd]	nd
L	179199	bdl	nd	nd	nd	nd nd		nd			+	nd	nd
	179200	bdl	nd	nd	nd	nd	the second second second second second second second second second second second second second second second s	nd	0.02			nd	nd
	179201	<u>bd</u> l	nd	nd	nd	nd	0.00	nd	والمستري والمراجع والمراجع والمساحية		<u>nd</u>	nợ	nd
L	179202	bdi	nd	nd	ba		the second second second second second second second second second second second second second second second s	nd	bdi		nd	nd	nď
	179203	0.03	bdi	nd	nd	nd		0.03	bd	bn	nd	bn	nd
	179204	bdi	nd	nd	nd	រាជ	0,11	0.04	0.07	nd	nd nd	bd)	<u>nd</u>
	179205	0.03	bdl	nd	nd	nd	0.13	0.05	0.07	nd) nd	0.05	nd
	179206		nd	nd	nd	nd	0.03	nd	0.03		nd		nd
	179207	bdl	bal	nd	nd	nd	0.00	nd	bdl		nd	0.03	nd
L	179208	bdl	bdl	nd	nd	nd	0.00	nd	bd		the second second second second second second second second second second second second second second second s	nd	nd
[]	179209	bdl	bdi	nd	nd	nď	0.05	0.02	0.03	nd	nd	nd	nd

No moli is available for summed combinations of analytes. In summed

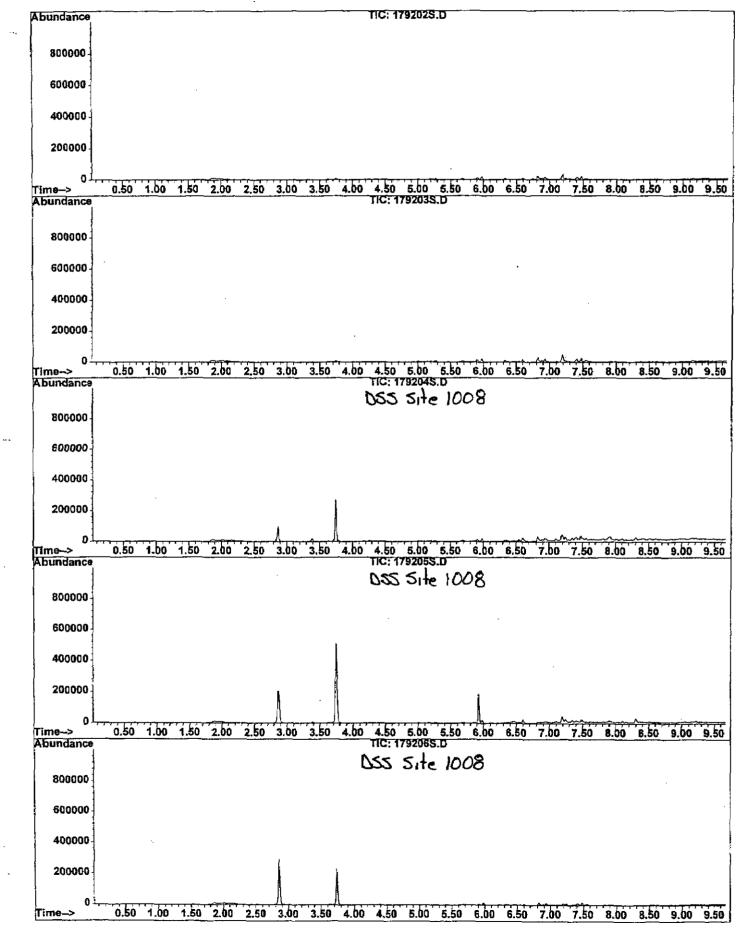
columns (eg., BTEX), the reported values should be considered

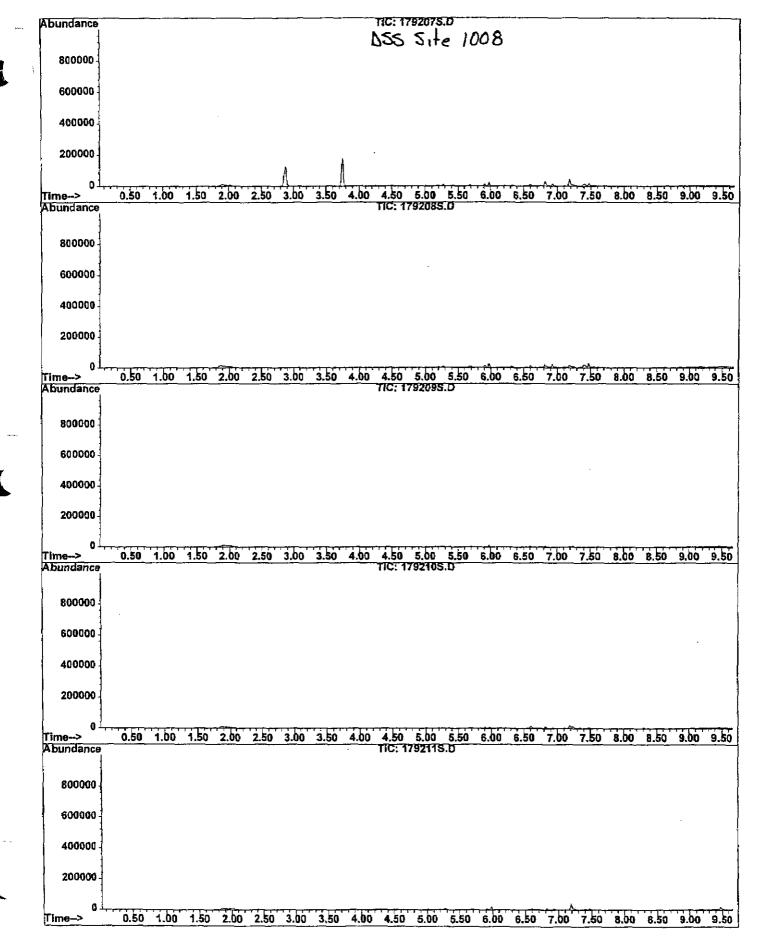
ESTIMATED if any of the individual compounds were reported as bdl.

CCT_CCXrpt

5/30/2002 Page: 7 of 12

5 5ite 08 GORE SORBER SCREE SANDIA NATIONAL LABS, ALBUQUERQUE, NM GORE STANDARD TARGET VOCs/SVOCs (A1) NON-ER DRAIN AND SEPTIC, KIRTLAND AFB, NM SITES CCT AND CCX - PRODUCTION ORDER #10960025


SAMPLE	TOP	COT III		14000		0014	
NAME MDL=	0.02	OCT, ug 0.02	PCE, 09	0.01	0.03	0.03	CIBENZ, ug 0.01
179172	nd	nd	nd	nd	nd	nd	no
179173	nd	0.14	0.02	nd	nd	nd	NC
179174	nd	nd	nd 0.04	nd	nd	nd	n
179175	nd		0.04	nd	nd	nd	nc nc
179176	nd	nd 0.09	0.03	nd	nd	nd	nc
179177	nd	0.09 nd	0.02	nd	nď	nd	no
179178		nd	0.01	nd	0.05	nd	nc
179180	0.13	nd nd	0.07	nd	0.09 ndi	nd	NC
179180	0.08		0.02	nd nd	nd		nc
179182	0.11	nd nd	0.03	nd nd	nd nd	nd	no
179182	0.15	nd	0.04	nd nd	· · · · · ·	nd	nc
				nd	nd nd	nd	n
179184	nd	nd	nd	nd		nd	<u> </u>
179185	0.06	nd	nd	nd	nd	nd	na
179186	<u>nd</u>	nd	nd	nd	nd	nd	na
179187	0.13	nd	0.08	nd	nđ	nd	n
179188		nd	0.11	nd	nđ	nd	
179189	0.06	nd	0.02	nd	nở	nd	NC
179190	nd	nd	bdl	nd	nd	bdl	nc
179191	nd	nd	0.03	nd	nd	0.03	ne ne
179192	nd	nd	0.03	nd	nd	nd	no
179193	nd	nd	0.08	nd	nđ	nd	n
<u>179194</u>	nd	nd	0.04	nd	nd	nd	n
179195	nd	nd	nd	nd	nđ	nd	no
179196	nd	nd	nd	nd	nd	0.03	N(
179197	nd	nd	nd	nd	nd	bdl	n
179198	nd	0.09	nd	nd	nđ	nd	ח
179199	nd	nd	nd	nd	nở	bdl	n
179200	nd	nd	0.09	nd	nd	nd	
179201	nd	nd	0.12	nd	bn	nd	n
179202	nd	nd	0.12	nd	nð	nd	n
179203	nd	nd	0.09	nd	nď	nd	រា
179204	1.49	nd	3.01	nd	nd	nd	ា
179205	4.14	nd	6,74	nd	nd	nd	n
179206	4.72	nd	2.69	nd	nd	nd	n
179207	2.89	nd	2.57	nd	nd	nd	n
179208	nd	nd	nd	nd	0.05	nd	n
179209	nd	nd	nd	nd	nd	nd	n


5 site

5/30/2002 Page: 11 of 12 No mdl is available for summed combinations of analytes. In summed columns (eg., BTEX), the reported values should be considered ESTIMATED if any of the individual compounds were reported as bdl.

CCT_CCXrpt

TIC - SITE CCX - PRODUCTION ORDER #10960025 In Numerical Order

ANNEX D Risk Assessment

7

. .

,

TABLE OF CONTENTS

1.	Site De	scription	and History	D- 1
II.	Data Q	uality Obj	ectives	D-1
.	Determ	ination of	Nature, Rate, and Extent of Contamination	D-4
	18.1	Introduc	tion	D-4
	III.2	Nature of	of Contamination	D-5
	111.3	Rate of I	Contaminant Migration	D- 5
	111.4		f Contamination	
IV.	Compa	rison of C	COCs to Background Screening Levels	D-5
۷.			ort	
VI.	Human	Health R	lisk Assessment	D-9
	VI.1	Introduc	tion	D-9
	VI.2	Step 1.	Site Data	D-9
	VI.3	Step 2.	Pathway Identification	D-10
	VI.4	Step 3.	Background Screening Procedure	D-10
			Methodology	D-10
		VI.4.2	Results	D-13
	VI.5		Identification of Toxicological Parameters	
	VI.6	Step 5.	Exposure Assessment and Risk Characterization	D-13
		VI.6.1	Exposure Assessment	D-15
		VI.6.2	Risk Characterization	D-15
	VI.7	Step 6.	Comparison of Risk Values to Numerical Guidelines	D-17
	VI.8	Step 7.	Uncertainty Discussion	D-18
	VI.9	Summai	ry	D-19
VII.	Ecologi	cal Risk /	Assessment	D-20
	VII.1	Introduc	tion	D-20
	VII.2	Scoping	Assessment	D-21
		VII.2.1	Data Assessment	D-21
		VII.2.2	Bioaccumulation	D-21
		VII.2.3	Fate and Transport Potential	D-22
		VII.2.4	Scoping Risk-Management Decision	D-22
	VII.3	Risk Ass	sessment	D-22
		VII.3.1	Problem Formulation	D-23
		VII.3.2	Exposure Estimation	D-24
		VII.3.3	Ecological Effects Evaluation	D-26
			Risk Characterization	
		VII.3.5	Uncertainty Assessment	D-30
		VII.3.6	Risk Interpretation	D-33
		VII.3.7	Risk Assessment Scientific/Management Decision Point	D-33
VIII.	Referer	nces	-	D-33
۰				—
Арре	ר אומרא	•••••••		D-39

.

This page intentionally left blank.

-

. ۱

1.

RISK ASSESSMENT FOR DSS SITE 1008

LIST OF TABLES

~

Table	Page
1	Summary of Sampling Performed to Meet DQOsD-2
2	Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1008D-3
3	Summary of Data Quality RequirementsD-4
4	Nonradiological COCs for Human Health and Ecological Risk Assessment at DSS Site 1008 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log K _{ow} D-7
5	Radiological COCs for Human Health and Ecological Risk Assessment at DSS Site 1008 with Comparison to the Associated SNL/NM Background Screening Value and BCFD-8
6	Summary of Fate and Transport at DSS Site 1008D-9
7	Toxicological Parameter Values for DSS Site 1008 Nonradiological COCs D-14
8	Toxicological Parameter Values for DSS Site 1008 Radiological COCs Obtained from RESRAD Risk CoefficientsD-15
9	Risk Assessment Values for DSS Site 1008 Nonradiological COCs D-16
10	Risk Assessment Values for DSS Site 1008 Nonradiological Background ConstituentsD-16
11	Summation of Radiological and Nonradiological Risks from Site Carcinogens
12	Exposure Factors for Ecological Receptors at DSS Site 1008D-25
13	Transfer Factors Used in Exposure Models for COPECs at DSS Site 1008D-27
14	Media Concentrations for COPECs at DSS Site 1008 D-27
15	Toxicity Benchmarks for Ecological Receptors at DSS Site 1008 D-28
16	HQs for Ecological Receptors at DSS Site 1008D-29
17	Total Dose Rates for Deer Mice Exposed to Radionuclides at DSS Site 1008D-31
18	Total Dose Rates for Burrowing Owls Exposed to Radionuclides at DSS Site 1008D-31

LIST OF TABLES (Concluded)

Table		Page
19	HQs for Ecological Receptors Exposed to Background Concentrations at DSS Site 1008	D-32

LIST OF FIGURES

Figure		Page
1	Conceptual Site Model Flow Diagram for Building 6750 Septic System, DSS Site 1008	D-11

DSS SITE 1008: RISK ASSESSMENT REPORT

I. Site Description and History

Drain and Septic Systems (DSS) Site 1008, Building 6750 Septic System, Operable Unit (OU) 1295, at Sandia National Laboratories/New Mexico (SNL/NM), consists of a 1,000-gallon septic tank flowing to a junction that feeds two drainfield lines approximately 50 feet long. The site is located in the northwestern portion of SNL/NM Technical Area (TA)-III on land that is owned by Kirtland Air Force Base (KAFB) and leased to the U.S. Department of Energy (DOE). Available information indicates that Building 6750 was constructed in 1965 (SNL/NM March 2003); it is assumed that the septic system was also constructed at that time. In January 1994 the septic tank system was disconnected from the building and connected to an extension of the City of Albuquerque (COA) sanitary sewer system.

Environmental concern about DSS Site 1008 is based upon the potential for the release of constituents of concern (COCs) in effluent discharged to the environment via the septic system at this site. Because operational records were not available, the investigation was planned to be consistent with other DSS site investigations and to sample for the most commonly anticipated COCs found at similar test facilities.

No springs or perennial surface water bodies are located within 2 miles of the site. Average annual rainfall in the SNL/NM and KAFB area, as measured at Albuquerque International Sunport is 8.1 inches (NOAA 1990). Surface-water runoff in the vicinity of the site is minor because the surface slope is flat to a gentle incline to the west. During most rainfall events, precipitation quickly infiltrates the soil at DSS Site 1008. However, virtually all the moisture subsequently undergoes evapotranspiration. The estimates of evapotranspiration for the KAFB area range from 95 to 99 percent of the annual rainfall (SNL/NM March 1996). Most of the area immediately surrounding DSS Site 1008 is unpaved with some native vegetation, and no storm sewers are used to direct surface water away from the site.

DSS Site 1008 lies at an average elevation of approximately 5,353 feet above mean sea level. The depth to groundwater is approximately 460 feet below ground surface (bgs). Groundwater flow is believed to be predominantly north-northwest (SNL/NM March 2002). The nearest groundwater monitoring wells are those installed around the Mixed Waste Landfill in the north-northeastern part of TA-III. These wells are located approximately 2,000 feet and 2,285 feet northeast of the site. The nearest production wells are north and northeast of the site and include KAFB-0904 and KAFB-10, which are approximately 2.6 and 1.1 miles away, respectively.

II. Data Quality Objectives

The Data Quality Objectives (DQOs) presented in the "Sampling and Analysis Plan [SAP] for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico" (OU 1295 [SAP]) (SNL/NM October 1999) and "Field Implementation Plan [FIP], Characterization of Non-Environmental Restoration Drain and Septic Systems" (OU 1295 FIP) (SNL/NM November 2001) identified the site-specific sample locations, sample depths, sampling procedures, and analytical requirements for this and many other DSS sites. The DQOs outlined the Quality Assurance (QA)/Quality Control (QC) requirements necessary for producing defensible analytical data suitable for risk-assessment purposes. The baseline sampling conducted at DSS Site 1008 was designed to:

- Determine to the degree possible whether each of the 101 systems included on the 1996 list was still in existence, or had ever actually existed.
- For systems confirmed or believed to exist, determine the exact or apparent locations and components of those systems (septic tanks, drainfields, seepage pits, etc.).
- Identify which systems would, and would not, need initial shallow investigation work as required by NMED.
- For systems requiring characterization, determine the specific types of shallow characterization work (including passive soil-vapor sampling and/or shallow soil borings) that would be required by NMED.

Table 1 summarizes the rationale for determining the sampling locations at this site.

DSS Site 1008 Sampling Areas	Potential COC Source	Number of Sampling Locations	Sample Density (samples/acre)	Sampling Location Rationale
Soil beneath the septic system drainfield	Effluent discharged to the environment from the drainfield	2	NA	Evaluate potential COC releases to the environment from effluent discharged from the drainfield

 Table 1

 Summary of Sampling Performed to Meet DQOs

COC = Constituent of concern.

DQO = Data quality objective.

DSS = Drain and Septic Systems.

NA = Not applicable.

Soil samples were collected from two depth intervals in each of the two borehole drilled beneath the drainfield at DSS Site 1008. These samples were identified as 6750-DF1-BH-1-5 and -10 and 6750-DF1-BH-2-5 and -10. The samples were collected with a Geoprobe™ drilling rig from two 3-foot-long sampling intervals at each boring location. Drainfield sampling intervals started at 5 and 10 feet bgs in each of the drainfield borings. The soil samples were collected using the same procedures utilized at numerous other OU 1295 sites, and in accordance with procedures described in the OU 1295 SAP and FIP.

Table 2 summarizes the types of confirmatory and QA/QC samples collected at the site, and the laboratories that performed the analyses.

Sample Type	VOCs	SVOCs	PCBs	HE	RCRA Metals	Hexavalent Chromium	Cyanide	Gamma Spectro- scopy Radio- nuclides	Gross Alpha/ Beta Activity
Confirmatory	4	4	4	4	4	4	4	4	4
Duplicates	0	0	0	0	0	0	0	0	0
EBs and TBs (VOCs only)	2	0	0	1	1	0	0	0	0
Total Samples	6	4	4	5	5	4	4	4	4
Analytical Laboratory	ERCL	GEL	GEL	ERCL	ERCL	GEL	GEL	RPSD	GEL

Table 2 Number of Confirmatory Soil and QA/QC Samples Collected from DSS Site 1008

DSS = Drain and Septic Systems.

= Equipment blank. EΒ

EB = Equipment brank. ERCL = Environmental Restoration Chemistry Laboratory.

GEL = General Engineering Laboratories, Inc.

= High explosive(s), HE

PCB = Polychlorinated biphenyl.

RCRA = Resource Conservation and Recovery Act.

RPSD = Radiation Protection Sample Diagnostics Laboratory.

QA = Quality assurance.

QC = Quality control.

SVOC = Semivolatile organic compound.

TB = Trip blank.

VOC = Volatile organic compound.

The DSS Site 1008 baseline soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), high explosive (HE) compounds, polychlorinated biphenyls (PCBs), Resource Conservation and Recovery Act (RCRA) metals, hexavalent chromium, cyanide, radionuclides, and gross alpha/beta activities. The samples were analyzed by an off-site laboratory (General Engineering Laboratories, Inc. [GEL]), the on-site SNL/NM Environmental Restoration (ER) Chemistry Laboratory, and the SNL/NM Radiation Protection Sample Diagnostics (RPSD) Laboratory. Table 3 summarizes the analytical methods and some of the data quality requirements from the OU 1295 SAP and FIP.

QA/QC samples were collected during the baseline sampling effort according to the ER Project Quality Assurance Project Plan. The QA/QC samples consisted of one trip blank (for VOCs only) and one set of equipment blanks. No significant QA/QC problems were identified in the QA/QC samples.

All of the baseline soil sample results were verified/validated by SNL/NM. The off-site laboratory results from GEL were reviewed according to "Data Validation Procedure for Chemical and Radiochemical Data" SNL/NM ER Project Analytical Operating Procedure 00-03, Rev. 0 (SNL/NM December 1999). The data validation reports are presented in the associated DSS Site 1008 no further action (NFA) proposal. The gamma spectroscopy data from the RPSD Laboratory were reviewed according to "Laboratory Data Review Guidelines," Procedure No. RPSD-02-11, Issue No. 02 (SNL/NM July 1996). The gamma spectroscopy results are presented in the NFA proposal. The reviews confirmed that the analytical data are defensible and acceptable for use in the NFA proposal; therefore, the DQOs have been fulfilled.

Analytical	Data Quality		500L	
Requirement ^a	Level	GEL	ERCL	RPSD
VOCs	Defensible	None	4 samples	None
EPA Method 8260				
SVOCs	Defensible	4 samples	None	None
EPA Method 8270		•		
PCBs	Defensible	4 samples	None	None
EPA Method 8082	}		}	
HE Compounds	Defensible	None	4 samples	None
EPA Method 8330				
RCRA metals	Defensible	None	4 samples	None
EPA Method 6020/7000				
Hexavalent Chromium	Defensible	4 samples	None	None
EPA Method 7196A		•		
Total Cyanide	Defensible	4 samples	None	None
EPA Method 9012A		•		
Gamma Spectroscopy	Defensible	None	None	4 samples
Radionuclides	1 1			·
Gross Alpha/Beta	Defensible	4 samples	None	None
Activity		, ,		

 Table 3

 Summary of Data Quality Requirements

Note: The number of samples does not include QA/QC samples such as duplicates, trip blanks, and equipment blanks

^aEPA November 1986.

- EPA = U.S. Environmental Protection Agency.
- ERCL = Environmental Restoration Chemistry Laboratory.
- GEL = General Engineering Laboratories, Inc.
- HE = High explosive(s).
- PCB = Polychlorinated biphenyl.
- QA = Quality assurance.
- QC = Quality control.
- RCRA = Resource Conversation and Recovery Act.
- RPSD = Radiation Protection Sample Diagnostics Laboratory.
- SVOC = Semivolatile organic compound.
- VOC = Volatile organic compound.

III. Determination of Nature, Rate, and Extent of Contamination

III.1 Introduction

The determination of the nature, migration rate, and extent of contamination at DSS Site 1008 was based upon an initial conceptual model validated with confirmatory sampling at the site. The initial conceptual model was developed from archival site research, site inspections, soil sampling, and passive soil-vapor sampling. The DQOs contained in the OU 1295 SAP and FIP identified the sample locations, sample density, sample depth, and analytical requirements. The sample data were subsequently used to develop the final conceptual model for DSS Site 1008, which is presented in Section 2.5 of the associated NFA proposal. The quality of the data specifically used to determine the nature, migration rate, and extent of contamination are described below.

RISK ASSESSMENT FOR DSS SITE 1008

III.2 Nature of Contamination

Both the nature of contamination and the potential for the degradation of COCs at DSS Site 1008 were evaluated using laboratory analyses of the soil samples. The analytical requirements included analyses for VOCs, SVOCs, HE compounds, PCBs, RCRA metals, hexavalent chromium, cyanide, radionuclides by gamma spectroscopy, and gross alpha/beta activities. The analytes and methods listed in Tables 2 and 3 are appropriate to characterize the COCs and any potential degradation products at DSS Site 1008.

III.3 Rate of Contaminant Migration

The septic system at DSS Site 1008 was deactivated in January 1994, when Building 6750 was connected to an extension of the COA sanitary sewer system. Therefore, the migration rate of COCs that may have been introduced into the subsurface via the septic system at this site was dependent on the volume of aqueous effluent discharged to the environment from this system when it was operational. Any migration of COCs from this site after use of the septic system was discontinued has been dependent predominantly on precipitation, although it is highly unlikely that sufficient precipitation has fallen on the site to reach the depth at which COCs may have been discharged to the subsurface from this system. Analytical data generated from the soil sampling conducted at the site are adequate to characterize the rate of COC migration at DSS Site 1008.

III.4 Extent of Contamination

Subsurface baseline soil samples were collected from boreholes drilled at two locations beneath the effluent release area (drainfield) at the site to assess whether releases of effluent from the septic system caused any environmental contamination.

The baseline soil samples were collected at sampling depths starting at 5 and 10 feet beneath the drainfield area. Sampling intervals started at the depths at which effluent discharged from the drainfield drain lines would have entered the subsurface environment at the site. This sampling procedure was required by New Mexico Environmental Department (NMED) regulators, and has been used at numerous drain and septic system type of sites at SNL/NM. The baseline soil samples are considered to be representative of the soil potentially contaminated with the COCs at this site, and are sufficient to determine the vertical extent, if any, of COCs.

IV. Comparison of COCs to Background Screening Levels

Site history and characterization activities are used to identify potential COCs. The DSS Site 1008 NFA proposal describes the identification of COCs and the sampling that was conducted in order to determine the concentration levels of those COCs across the site. Generally, COCs that were evaluated in this risk assessment included all detected organic compounds, and all inorganic and radiological COCs for which samples were analyzed. If the detection limit of an organic compound was too high (i.e., could possibly cause an adverse effect to human health or the environment), the compound was retained. Nondetected organic compounds not included in this assessment were determined to have sufficiently low detection limits to ensure protection of human health and the environment. In order to provide conservatism in this risk assessment, the calculation used only the maximum concentration value of each COC found for the entire site. The SNL/NM maximum background concentration (Dinwiddle September 1997) was selected to provide the background screen listed in Tables 4 and 5.

Nonradiological inorganic constituents that are essential nutrients, such as iron, magnesium, calcium, potassium, and sodium, were not included in this risk assessment (EPA 1989). Both radiological and nonradiological COCs were evaluated. The nonradiological COCs evaluated for inclusion in the risk assessment consisted of inorganic and organic compounds. However, only inorganic compounds were included in the risk assessment as all organic compounds were nondetections.

Table 4 lists the nonradiological COCs for the human health and the ecological risk assessments at DSS Site 1008. Table 5 lists radiological COCs for the human health and ecological risk assessments. All tables show the associated SNL/NM maximum background concentration values (Dinwiddle September 1997). Sections VI.4, VII.2 and VII.3 provides discussion of Tables 4 and 5.

V. Fate and Transport

The primary releases of COCs at DSS Site 1008 were to the subsurface soil, resulting from the discharge of waste water from the Building 6750 septic system to the drainfield. Wind, water, and biota are natural mechanisms of COC transport from the primary release point. Because the discharge of waste water was to the subsurface, wind and surface water are considered to be of low significance as transport mechanisms at this site.

Water at DSS Site 1008 is currently received as precipitation (approximately 8.1 inches annually [NOAA 1990]). Precipitation will either evaporate at or near the point of contact, infiltrate into the soil, or form runoff. Infiltration at the site is enhanced by the sandy texture of the soil. However, because it is estimated that 95 to 99 percent of the annual precipitation in this area is lost through evapotranspiration, the depth of percolation of this water into the soil is limited, and the potential for further downward movement of COCs through leaching is low. Because groundwater at this site is approximately 460 feet bgs, the potential for COCs to reach groundwater through the unsaturated zone above the water table is extremely small.

COCs can enter the food chain through uptake by plant roots. COCs taken up by plant roots can be transported to aboveground tissues where they can be consumed by herbivores, which can in turn be eaten by predators. Once in the food web, COCs can be transported from the site by the movements of the organisms that contain them or other surficial transport mechanisms. However, because DSS Site 1008 occupies only a very small area (less than 1 acre) with limited vegetation cover, food chain transport is expected to be of low significance at this site.

All COCs at DSS Site 1008 are inorganic, including both radiological and nonradiological analytes. With the exception of cyanide, the nonradiological COCs are elemental in form, and are not considered to be degradable. Transformations of these inorganic COCs could include

Nonradiological COCs for Human Health and Ecological Risk Assessment at DSS Site 1008 with Comparison to the Associated SNL/NM Background Screening Value, BCF, and Log Kow

сос	Maximum Concentration (mg/kg)	SNL/NM Background Concentration (mg/kg) ^a	Is Maximum COC Concentration Less Than or Equal to the Applicable SNL/NM Background Screening Value?	BCF (maximum aquatic)	Log K _{ow} (for organic COCs)	Bioaccumulator? ^b (BCF>40, Log K _{cw} >4)
Arsenic	4.6	4.4	No	44 ^c	-	Yes
Barium	240 J	214	No	170d		Yes
Cadmium	0.22	0.9	Yes	64°	-	Yes
Chromium, total	14	15.9	Yes	16 ^c		No
Chromium VI	0.116 J	1	Yes	16°		No
Cyanide	0.0685°	NC	Unknown	NC		Unknown
Lead	9.3	11.8	Yes	49°		Yes
Mercury	0.0225°	<0.1	Unknown	5,500°		Yes
Selenium	0.74 J	<1	Unknown	800'		Yes
Silver	0.0225*	<1	Unknown	0.5°		No

AL/8-03/WP/SNL03:rs5348.doc

Note: Bold indicates COCs that failed the background screening procedure and/or are bioaccumulators.

^aDinwiddie September 1997, Southwest Supergroup.

^bNMED March 1998.

^cParameter was not detected. Concentration is 0.5 detection limit.

dYanicak March 1997.

*Neumann 1976.

^fCallahan et al. 1979.

- BCF = Bioconcentration factor.
- COC = Constituent of concern.
- DSS = Drain and Septic Systems.
 - = Estimated concentration.
 - = Octanol-water partition coefficient.
- K_{cw} = Logarithm (base 10). Log
- = Milligram(s) per kilogram. ma/ka

= Not calculated. NC

- NMED = New Mexico Environment Department.
- SNL/NM = Sandia National Laboratories/New Mexico.
 - = Information not available.

J

Table 5Radiological COCs for Human Health andEcological Risk Assessment at DSS Site 1008 with Comparison to theAssociated SNL/NM Background Screening Value and BCF

000	Maximum Activity (pCi/g)	SNL/NM Background Activity (pCi/g)ª	Is Maximum COC Concentration Less Than or Equal to the Applicable SNL/NM Background Screening Value?	BCF (maximum aquatic)	Is COC a Bioaccumulator? ^b (BCF >40)
Cs-137	ND (0.036)	0.079	Yes	3,000°	Yes
Th-232	0.726	1.01	Yes	3,000°	No
U-235	ND (0.248)	0.16	No	900°	Yes
U-238	ND (3.59)	1.4	No	900°	Yes

Note: **Bold** indicates COCs that exceed background screening values and/or are bioaccumulators. ^aDinwiddle September 1997, Southwest Supergroup.

^bNMED March 1998.

Baker and Soldat 1992.

- BCF = Bioconcentration factor.
- COC = Constituent of concern.
- DSS = Drain and Septic Systems.
- MDA = Minimum detectable activity.
- ND () = Not detected above the MDA, shown in parentheses.
- NMED = New Mexico Environment Department.
- pCi/g = Picocurie(s) per gram.

SNL/NM = Sandia National Laboratories/New Mexico.

changes in valence (oxidation/reduction reactions) or incorporation into organic forms (e.g., the conversion of selenite or selenate from soil to seleno-amino acids in plants). Cyanide was not detected in the soil, but if it is present, it is likely to occur as cyanide salts (i.e., sodium cyanide or potassium cyanide). Free cyanide or hydrogen cyanide are likely to be quickly metabolized by soil biota. Radiological COCs will undergo decay to stable isotopes or radioactive daughter elements. However, because of the long half-lives of the radionuclides, the aridity of the environment at this site, and the lack of potential contact with biota, none of these mechanisms is expected to result in significant losses or transformations of the inorganic COCs.

Table 6 summarizes the fate and transport processes that can occur at DSS Site 1008. COCs at this site include radiological and nonradiological inorganic analytes. For the reasons detailed above, wind, surface water, and biota are considered to be of low significance as potential transport mechanisms at this site. The potential for transformation of nonradiological inorganics is low and loss through decay of radiological COCs is insignificant because of their long-half-lives.

Transport and Fate Mechanism	Existence at Site	Significance
Wind	Yes	Low
Surface runoff	Yes	Low
Migration to groundwater	No	None
Food chain uptake	Yes	Low
Transformation/degradation	Yes	Low

 Table 6

 Summary of Fate and Transport at DSS Site 1008

DSS = Drain and Septic Systems.

VI. Human Health Risk Assessment

VI.1 Introduction

Human health risk assessment of this site includes a number of steps that culminate in a quantitative evaluation of the potential adverse human health effects caused by constituents located at the site. The steps to be discussed include the following:

Step 1.	Site data are described that provide information on the potential COCs, as well as the
	relevant physical characteristics and properties of the site.
Step 2.	Potential pathways are identified by which a representative population might be exposed to the COCs.
Step 3.	The potential intake of these COCs by the representative population is calculated using a tiered approach. The first component of the tiered approach is a screening procedure. The screening procedure compares the maximum concentration of the COC to an SNL/NM maximum background screening value. COCs that are not eliminated during the first screening procedure are carried forward in the risk assessment process.
Step 4.	Toxicological parameters are identified and referenced for COCs that were not eliminated during the screening procedure.
Step 5.	Potential toxicity effects (specified as a hazard index [HI]) and estimated excess cancer risks are calculated for nonradiological COCs and background. For radiological COCs, the incremental total effective dose equivalent (TEDE) and incremental estimated cancer risk are calculated by subtracting applicable background concentrations directly from maximum on-site contaminant values. This background subtraction only occurs when a radiological COC occurs as contamination and exists as a natural background radionuclide.
Step 6.	These values are compared with guidelines established by the U.S. Environmental Protection Agency (EPA), NMED and the DOE to determine whether further evaluation and potential site cleanup, are required. Nonradiological COC risk values also are compared to background risk so that an incremental risk can be calculated.
Step 7.	Uncertainties of the above steps are addressed.

VI.2 Step 1. Site Data

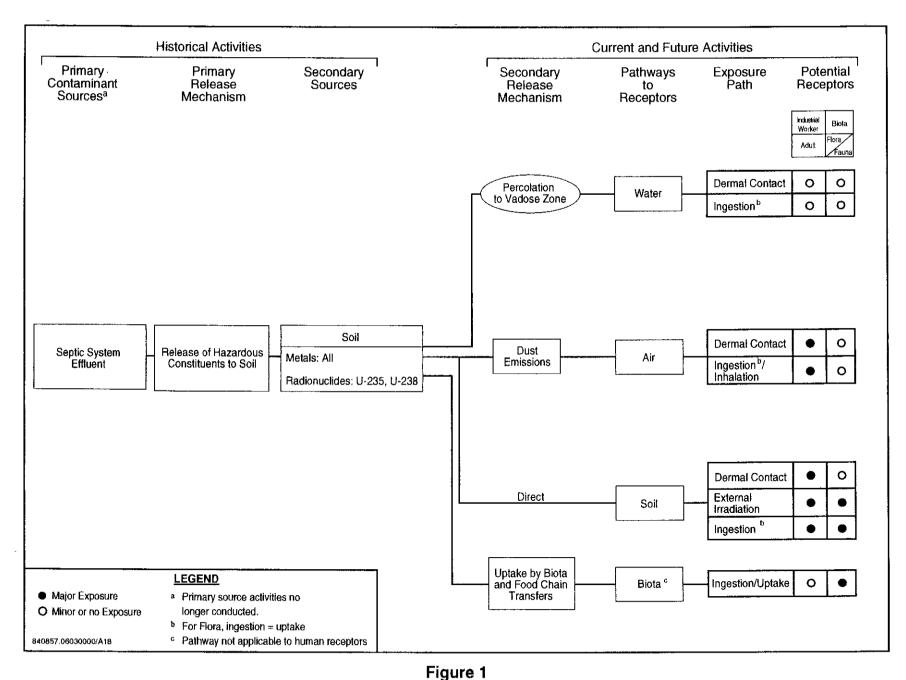
Section I provides the description and history for DSS Site 1008. Section II presents a comparison of results to DQOs. Section III discusses the nature, rate, and extent of contamination.

VI.3 Step 2. Pathway Identification

DSS Site 1008 has been designated a future land use scenario of industrial (DOE et al. September 1995) (see Appendix 1 for default exposure pathways and parameters). However, the residential land use scenario is also considered within the pathway analysis. Because of the location and the characteristics of the potential contaminants, the primary pathway for human exposure is considered to be soil ingestion for the nonradiological COCs and direct gamma exposure for the radiological COCs. The inhalation pathway for both nonradiological and radiological COCs is included because the potential exists to inhale dust. Soil ingestion is included for the radiological COCs as well. The dermal pathway is included for the nonradiological COCs because of the potential exposure of the receptor to contaminated soil. No water pathways to groundwater are considered. Depth to groundwater at DSS Site 1008 is approximately 460 feet bgs. No intake routes through plant, meat, or milk ingestion are considered appropriate for either the industrial or residential land use scenarios. Figure 1 shows the conceptual model flow diagram for DSS Site 1008.

Nonradiological Constituents	Radiological Constituents
Soil ingestion	Soil ingestion
Inhalation (dust)	Inhalation (dust)
Dermal contact	Direct gamma

Pathway Identification


VI.4 Step 3. Background Screening Procedure

Step 3, the background screening procedure, is discussed in this section. The procedure compares the maximum COC concentration to the background screening level. The method and results are described below.

VI.4.1 Methodology

Maximum concentrations of nonradiological COCs were compared to the approved SNL/NM maximum screening level for this area. The SNL/NM maximum background concentration was selected to provide the background screen in Table 4 and was used to calculate risk attributable to background (Table 10). Only the COCs that were detected above their respective SNL/NM maximum background screening levels or did not have either a quantifiable or a calculated background screening level were considered in further risk assessment analyses.

For radiological COCs that exceeded the SNL/NM background screening levels, background values were subtracted from the individual maximum radionuclide concentrations. Those that did not exceed these background levels were not carried any further in the risk assessment. This approach is consistent with DOE Order 5400.5, "Radiation Protection of the Public and the Environment" (DOE 1993). Radiological COCs that did not have a background value and were detected above the analytical minimum detectable activity were carried through the risk assessment at their maximum levels. The resultant radiological COCs remaining after this step are referred to as background-adjusted radiological COCs.

Conceptual Site Model Flow Diagram for Building 6750 Septic System, DSS Site 1008

RISK ASSESSMENT FOR DSS SITE 1008

VI.4.2 Results

Tables 4 and 5 show DSS Site 1008 maximum COC concentrations, which were compared to the SNL/NM maximum background values (Dinwiddie September 1997) for the human health risk assessment. For the nonradiological COCs, two constituents were measured at concentrations greater than their respective background screening values. Four constituents did not have quantified background screening concentrations, therefore it is unknown if these COCs exceeded background.

For the radiological COCs, two constituents had minimum detectable activity values greater than their respective backgrounds (U-235 and U-238). These values were conservatively used in the risk assessment.

VI.5 Step 4. Identification of Toxicological Parameters

Tables 7 and 8 list the COCs retained in the risk assessment and the values for the available toxicological information. The toxicological values used for nonradiological COCs in Table 7 were from the Integrated Risk Information System (IRIS) (EPA 2003), the Health Effects Assessment Summary Tables (HEAST) (EPA 1997a), and the Technical Background Document for Development of Soil Screening Levels (NMED December 2000). Dose conversion factors (DCFs) used in determining the excess TEDE values for radiological COCs for the individual pathways were the default values provided in the RESRAD computer code (Yu et al. 1993a) as developed in the following documents:

- DCFs for ingestion and inhalation were taken from "Federal Guidance Report No. 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion" (EPA 1988).
- DCFs for surface contamination were taken from DOE/EH-0070, "External Dose-Rate Conversion Factors for Calculation of Dose to the Public" (DOE 1988).
- DCFs for volume contamination (exposure to contamination deeper than the immediate surface of the site) were calculated using the methods discussed in "Dose-Rate Conversion Factors for External Exposure to Photon Emitters in Soil" (Kocher 1983) and in ANL/EAIS-8, "Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil" (Yu et al. 1993b).

VI.6 Step 5. Exposure Assessment and Risk Characterization

Section VI.6.1 describes the exposure assessment for this risk assessment. Section VI.6.2 provides the risk characterization, including the HI and the excess cancer risk for both the potential nonradiological COCs and associated background for industrial and residential land uses. The incremental TEDE and incremental estimated cancer risk are provided for the background-adjusted radiological COCs for both industrial and residential land uses.

RISK ASSESSMENT FOR DSS SITE 1008

Table 7	Table 7
Toxicological Parameter Values for DSS Site 1008 Nonradiological COCs	logical Parameter Values for DSS Site 1008 Nonradiological COCs

COC	RfD _o (mg/kg-d)	Confidencea	RfD _{inh} (mg/kg-d)	Confidence ^a	SF _o (mg/kg- day) ⁻¹	SF _{inh} (mg/kg- day) ⁻¹	Cancer Class ²	ABS
Arsenic	3E-4°	M	-	_	1.5E+0°	1.5E+1°	A	0.03d
Barium	7E-2°	M	1.4E-4e				D	0.010
Cyanide	2E-2°	M		-	-	-	D	0.1 ^d
Mercury	3E-4 ^e	-	8.6E-5°	M			D	0.01 ^d
Selenium	5E-3°	Н		-	-	-	D	0.010
Silver	5E-3°	L		_	-		D	0.010

^aConfidence associated with (RIS (EPA 2003) database values. Confidence: L = low, M = medium, H = high.

^bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989) taken from IRIS (EPA 2003): A = Human carcinogen

D = Not classifiable as to human carcinogenicity.

^oToxicological parameter values from IRIS electronic database (EPA 2003).

^dToxicological parameter values from NMED December 2000.

⁸ Tovioalogiaal	paramoter	values from	AUEACT	(EDA 1007a)
^e Toxicological	parameter	values from	I HEAST	(EPA 1997a).

· · · ·	· · · · · · · · · · · · · · · · · · ·
ABS	= Gastrointestinal adsorption coefficient.
COC	= Constituent of concern.
DSS	= Drain and Septic Systems.
EPA	= U.S. Environmental Protection Agency.
HEAST	= Health Effects Assessment Summary Tables.
IRIS	= integrated Risk Information System.
mg/kg-đ	= Milligram(s) per kilogram day.
(mg/kg-day)-1	= Per milligram per kilogram day.
NMED	= New Mexico Environmental Department.
B1D _{inb}	= Inhalation chronic reference dose.
RID	= Oral chronic reference dose.
SFinh	= Inhalation slope factor.
SF	= Oral slope factor.
<u> </u>	= Information not available.

¢.

Table 8
Toxicological Parameter Values for DSS Site 1008
Radiological COCs Obtained from RESRAD Risk Coefficients ^a

COC	SF _o (1/pCi)	SF _{inh} (1/pCi)	SF _{ev} (q/pCi-vr)	Cancer Class ^b
U-235	4.70E-11	1.30E-08	2.70E-07	A
U-238	6.20E-11	1.20E-08	6.60E-08	A

^aFrom Yu et al. 1993a.

÷

^bEPA weight-of-evidence classification system for carcinogenicity (EPA 1989): A = Human carcinogen for high dose and high dose rate (i.e., greater than 50 rem per year). For low-level environmental exposures, the carcinogenic effect has not been observed and documented.

1/pCi = One per picocurie.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

- EPA = U.S. Environmental Protection Agency.
- g/pCi-yr = Gram(s) per picocurie-year.

SF_{ev} = External volume exposure slope factor.

- SF_{inb} = Inhalation slope factor.
- SF_o = Oral (ingestion) slope factor.

VI.6.1 Exposure Assessment

Appendix 1 shows the equations and parameter input values used in calculating intake values and subsequent HI and excess cancer risk values for the individual exposure pathways, as well as parameters for both industrial and residential land use scenarios. The equations for nonradiological COCs are based upon the Risk Assessment Guidance for Superfund (RAGS) (EPA 1989). Parameters are based upon information from the RAGS (EPA 1989), the Technical Background Document for Development of Soil Screening Levels (NMED December 2000) and other EPA and NMED guidance documents, and reflect the reasonable maximum exposure (RME) approach advocated by the RAGS (EPA 1989). For radiological COCs, the coded equations provided in RESRAD computer code are used to estimate the incremental TEDE and cancer risk for individual exposure pathways. Further discussion of this process is provided in the "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD" (Yu et al. 1993a).

Although the designated land use scenario is industrial for this site, risk and TEDE values for a residential land use scenario are also presented.

VI.6.2 Risk Characterization

Table 9 shows an HI of 0.02 for the DSS Site 1008 nonradiological COCs and an estimated excess cancer risk of 3E-6 for the designated industrial land use scenario. The numbers presented include exposure from soil ingestion, dermal contact, and dust inhalation for nonradiological COCs. Table 10 shows an HI of 0.02 and an estimated excess cancer risk of 3E-6 for the designated industrial land use scenario.

COC	Maximum Concentration (mg/kg)	Industrial Land Use Scenario ^a		Residential Land Use Scenario ^a	
		Hazard Index	Cancer Risk	Hazard Index	Cancer Risk
Arsenic	4.6	0.02	3E-6	0.21	1E-5
Barium	240 J	0.00		0.05	_
Cyanide	0.0685 ^b	0.00	-	0.00	
Mercury	0.0225 ^b	0.00	-	0.00	
Selenium	0.74 J	0.00	-	0.00	· · · · · · · · · · · · · · · · · · ·
Silver	0.0225	0.00	-	0.00	-
Total		0.02	3E-6	0.3	1E-5

Table 9 **Risk Assessment Values for DSS Site 1008 Nonradiological COCs**

^aEPA 1989.

^bMaximum concentration was 0.5 detection limit.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

= Estimated concentration. J

mg/kg = Milligram(s) per kilogram.

= information not available. ----

Table 10 **Risk Assessment Values for DSS Site 1008 Nonradiological Background Constituents**

coc	Background Concentration ^a (mg/kg)	Industrial Land Use Scenario ^b		Residential Land Use Scenario ^b	
		Hazard Index	Cancer Rísk	Hazard Index	Cancer Risk
Arsenic	4.4	0.02	3E-6	0.20	1E-5
Barium	214	0.00		0.04	-
Cyanide	NC				
Mercury	<0.1			_	_
Selenium	<1				
Silver	<1	-			
			······································		
Total		0.02	3E-6	0.2	1E-5

^aDinwiddie September 1997, Southwest Supergroup. ^bEPA 1989.

COC = Constituent of concern.

DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

mg/kg = Milligram(s) per kilogram.

NČ = Not calculated.

= Information not available. _

RISK ASSESSMENT FOR DSS SITE 1008

For the radiological COCs, contribution from the direct gamma exposure pathway is included. For the industrial land use scenario, a TEDE was calculated for an individual on the site, which resulted in an incremental TEDE of 6.7E-2 millirem (mrem) per year (yr). In accordance with EPA guidance found in Office of Solid Waste and Emergency Response Directive No. 9200.4-18 (EPA 1997b), an incremental TEDE of 15 mrem/yr is used for the probable land use scenario (industrial in this case); the calculated dose value for DSS Site 1008 for the industrial land use is well below this guideline. The estimated excess cancer risk is 6.3E-7.

For the residential land use scenario nonradioactive COCs, the HI is 0.3 and the estimated excess cancer risk is 1E-5 (Table 9). The numbers in the table included exposure from soil ingestion, dermal contact, and dust inhalation. Although the EPA (1991) generally recommends that inhalation not be included in a residential land use scenario, this pathway is included because of the potential for soil in Albuquerque, New Mexico, to be eroded and for dust to be subsequently present in predominantly residential areas. Because of the nature of the local soil, other exposure pathways are not considered (see Appendix 1). Table 10 shows that for the DSS Site 1008 associated background constituents, there was an HI of 0.2 and an estimated excess cancer risk of 1E-5.

For the radiological COCs, the incremental TEDE for the residential land use scenario is 1.7E-1 mrem/yr. The guideline being used is an excess TEDE of 75 mrem/yr (SNL/NM February 1998) for a complete loss of institutional controls (residential land use in this case); the calculated dose value for DSS Site 1008 for the residential land use scenario is well below this guideline. Consequently, DSS Site 1008 is eligible for unrestricted radiological release as the residential land use scenario resulted in an incremental TEDE of less than 75 mrem/yr to the on-site receptor. The estimated excess cancer risk is 1.8E-6. The excess cancer risk from the nonradiological COCs and the radiological COCs should be summed to provide risk estimates for persons exposed to both types of carcinogenic contaminants, as noted in OSWER Directive No. 9200.4-18, "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination" (EPA 1997b). This summation is tabulated in Section VI.9, "Summary."

VI.7 Step 6. Comparison of Risk Values to Numerical Guidelines

The human health risk assessment analysis evaluated the potential for adverse health effects for both the industrial land use scenario (the designated land use scenario for this site) and the residential land use scenario.

For the industrial land use scenario nonradiological COCs, the HI is 0.02, which is less than the numerical guideline of 1 suggested in the RAGS (EPA 1989). The excess cancer risk was 3E-6. NMED Guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001), thus the excess cancer risk for this site is below the suggested acceptable risk value. This assessment also determined risks considering background concentrations of the potential nonradiological COCs for both the industrial and residential land use scenarios. Assuming the industrial land use scenario, for nonradiological COCs the HI is 0.02 and the estimated excess cancer risk is 3E-6. Incremental risk is determined by subtracting risk associated with background from potential COC risk. These numbers are not rounded before the difference is determined and therefore may appear to be inconsistent with numbers presented in tables and within the text. For conservatism, the background constituents that do not have quantifiable background screening values are assumed to have a

hazard quotient (HQ) of 0.00. The incremental HI is 0.00, and there is no incremental estimated excess cancer risk for the industrial land use scenario. These incremental risk calculations indicate insignificant risk to human health from nonradiological COCs considering an industrial land use scenario.

For radiological COCs in the industrial land use scenario, incremental TEDE is 6.7E-2 mrem/yr, which is significantly less than the EPA's numerical guideline of 15 mrem/yr. Incremental estimated excess cancer risk is 6.3E-7.

The calculated HI for the residential land use scenario nonradiological COCs is 0.3, which is below numerical guidance. The excess cancer risk was 1E-5. NMED Guidance states that cumulative excess lifetime cancer risk must be less than 1E-5 (Bearzi January 2001), thus the excess cancer risk for this site was slightly above the suggested acceptable risk value. For background concentrations of the nonradiological COCs the HI is 0.2 and the estimated excess cancer risk is 1E-5. The incremental HI is 0.02, and the there is no estimated incremental cancer risk for the residential land use scenario. These incremental risk calculations indicate insignificant risk to human health from nonradiological COCs considering a residential land use scenario.

The incremental TEDE for a residential land use scenario from the radiological components is 1.7E-1 mrem/yr, which is significantly less than the numerical guideline of 75 mrem/yr suggested in the SNL/NM "RESRAD Input Parameter Assumptions and Justification" (SNL/NM February 1998). The estimated excess cancer risk is 1.8E-6.

VI.8 Step 7. Uncertainty Discussion

The determination of the nature, rate, and extent of contamination at DSS Site 1008 was based upon an initial conceptual model that was validated with baseline sampling conducted at the site. The baseline sampling was implemented in accordance with the OU 1295 SAP (SNL/NM October 1999) and FIP (SNL/NM November 2001); the DQOs contained in these two documents are appropriate for use in risk-screening assessments. The data from soil samples collected at effluent release points are representative of potential COC releases to the site. The analytical requirements and results satisfy the DQOs, and data quality was verified/ validated in accordance with SNL/NM procedures. Therefore, there is no uncertainty associated with the data quality used to perform the risk assessment at DSS Site 1008.

Because of the location, history of the site, and future land use (DOE et al. September 1995), there is low uncertainty in the land use scenario and the potentially affected populations that were considered in performing the risk assessment analysis. Because the COCs are found in near-surface soils and because of the location and physical characteristics of the site, there is little uncertainty in the exposure pathways relevant to the analysis.

An RME approach was used to calculate the risk assessment values. This means that the parameter values in the calculations are conservative and that calculated intakes are probably overestimates. Maximum measured values of COC concentrations are used to provide conservative results.

Table 9 shows the uncertainties (confidence) in nonradiological toxicological parameter values. There is a mixture of estimated values and values from the IRIS (EPA 2003), HEAST (EPA

RISK ASSESSMENT FOR DSS SITE 1008

1997a), and Technical Background Document for Development of Soil Screening Levels (NMED December 2000). Where values are not provided, information is not available from the HEAST (EPA 1997a), IRIS (EPA 2003), Technical Background Document for Development of Soil Screening Levels (NMED December 2000), Risk Assessment Information System (ORNL 2003) or EPA regions (EPA 2002a, EPA 2002b, EPA 2002c). Because of the conservative nature of the RME approach, uncertainties in toxicological values are not expected to change the conclusion from the risk assessment analysis.

Risk assessment values for nonradiological COCs are within the human health acceptable range for the industrial land use scenario in established numerical guidance.

The HI for the nonradiological COCs is within the human health acceptable range for the residential land use scenario in established numerical guidance. Though the estimated excess cancer risk was slightly above the NMED guideline for the residential land use scenario, a comparison of the maximum arsenic COC concentration (4.6 milligrams [mg]/kilogram [kg]) to the background screening value (4.4 mg/kg) and the range of arsenic background concentrations (0.033 to 17 mg/kg), indicates that the maximum concentration is most likely part of the background population. In addition, the calculated incremental excess cancer risk is zero. Thus, considering the background screening value, the range of background concentrations, and the incremental estimated excess cancer risk, the maximum arsenic concentration is not indicative of contamination.

For radiological COCs, the conclusion of the risk assessment is that potential effects on human health for both industrial and residential land use scenarios are within guidelines and are a small fraction of the estimated 360 mrem/yr received by the average U.S. population (NCRP 1987).

The overall uncertainty in all of the steps in the risk assessment process is considered not significant with respect to the conclusion reached.

VI.9 Summary

DSS Site 1008 has identified COCs consisting of some inorganic and radiological compounds. Because of the location of the site, the designated industrial land use scenario, and the nature of contamination, potential exposure pathways identified for this site included soil ingestion, dermal contact, and dust inhalation for chemical COCs and soil ingestion, dust inhalation, and direct gamma exposure for radionuclides. The same exposure pathways were applied to the residential land use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for nonradiological COCs show that the HI for the industrial land use scenario (0.02) is significantly less than the accepted numerical guidance from the EPA. The estimated excess cancer risk was 3E-6; thus, excess cancer risk is also below the acceptable risk value provided by the NMED for an industrial land use scenario (Bearzi January 2001). The incremental HI was 0.00, and there was no incremental excess cancer risk for the industrial land use scenario. Incremental risk calculations indicate insignificant risk to human health for the industrial land use scenario.

Using conservative assumptions and an RME approach to risk assessment, calculations for nonradiological COCs show that the HI for the residential land use scenario (0.3) is also below the accepted numerical guidance from the EPA. The estimated excess cancer risk was 1E-5; thus, excess cancer risk was slightly above the acceptable risk value provided by the NMED for a residential land use scenario (Bearzi January 2001). The incremental HI is 0.02, and there was no incremental excess cancer risk for the residential land use scenario. Incremental risk calculations indicate insignificant risk to human health for the residential land use scenario.

Though the total estimated excess cancer risk was slightly above the NMED guideline for the residential land use scenario, a comparison of the maximum arsenic COC concentration (4.6 mg/kg) to the background screening value (4.4 mg/kg) and the range of arsenic background concentrations (0.033 to 17 mg/kg) indicates that the maximum concentration is most likely part of the background population. In addition, the calculated incremental excess cancer risk is zero. Thus, considering the background screening value, the range of background concentrations and the incremental estimated excess cancer risk, the maximum arsenic concentration is not indicative of contamination.

Incremental TEDE and corresponding estimated cancer risk from radiological COCs are much lower than EPA guidance values; the estimated TEDE is 6.7E-2 mrem/yr for the industrial land use scenario. This value is much lower than the EPA's numerical guidance of 15 mrem/yr in EPA guidance (EPA 1997b). The corresponding incremental estimated cancer risk value is 6.3E-7 for the industrial land use scenario. Furthermore, the incremental TEDE for the residential land use scenario that results from a complete loss of institutional control is 1.7E-1 mrem/yr with an associated risk of 1.8E-6. The guideline for this scenario is 75 mrem/yr (SNL/NM February 1998). Therefore, DSS Site 1008 is eligible for unrestricted radiological release.

The summation of the nonradiological and radiological carcinogenic risks are tabulated in Table 11 below:

Table 11

Summation of Radiological and Nonradiological Risks from Site Carcinogens

Scenario	Nonradiological Risk	Radiological Risk	Total Risk
Industrial	3E-6	6.3E-7	3.6E-6
Residential	1E-5	1.8E-6	1.2E-5

Uncertainties associated with the calculations are considered small relative to the conservativeness of risk assessment analysis. It is therefore concluded that this site poses insignificant risk to human health under either the industrial or residential land use scenarios.

VII. Ecological Risk Assessment

VII.1 Introduction

This section addresses the ecological risks associated with exposure to constituents of potential ecological concern (COPECs) in soils at DSS Site 1008. A component of the NMED Risk-

Based Decision Tree is an ecological assessment that corresponds with that presented in the EPA's "Ecological Risk Assessment Guidance for Superfund" (EPA 1997c). The current methodology is tiered and contains an initial scoping assessment followed by a more detailed risk assessment. Initial components of the NMED's decision tree (a discussion of DQOs, a data assessment, and evaluations of bioaccumulation and fate-and-transport potential) are addressed in previous sections of this report. Following the completion of the scoping assessment, a determination is made as to whether a more detailed examination of potential ecological risk is necessary. If deemed necessary, the scoping assessment proceeds to a risk assessment incorporates conservatisms in the estimation of ecological risks, ecological relevance and professional judgment are also used as recommended by the EPA (1998b) to ensure that predicted exposures of selected ecological receptors reflect those reasonably expected to occur at the site.

VII.2 Scoping Assessment

The scoping assessment focuses primarily on the likelihood of exposure of biota at/or adjacent to the site to constituents associated with site activities. Included in this section are an evaluation of existing data, a comparison of maximum detected concentrations to background concentrations, and an examination of bioaccumulation, and fate and transport potential. A scoping risk management decision (Section VII.2.4) involves summarizing the scoping results and determining whether further examination of potential ecological impacts is necessary.

VII.2.1 Data Assessment

As indicated in Section IV (Tables 4 and 5), constituents in soil within the 0- to 5-foot depth interval that were identified as COCs for this site were as follows:

- Arsenic
- Barium
- Cyanide
- Mercury
- Selenium
- Silver
- U-235
- U-238

VII.2.2 Bioaccumulation

Among the COPECs listed in Section VII.2.1, the following were considered to have bioaccumulation potential in aquatic environments (Section IV, Tables 4 and 5):

- Arsenic
- Barium
- Mercury
- Selenium

- U-235
- U-238

It should be noted, however, that as directed by the NMED (NMED March 1998), bioaccumulation for inorganics is assessed exclusively based upon maximum reported bioconcentration factors (BCFs) for aquatic species. Because only aquatic BCFs are used to evaluate the bioaccumulation potential for metals, bioaccumulation in terrestrial species is likely to be overpredicted.

VII.2.3 Fate and Transport Potential

The potential for COPECs to move from the source of contamination to other media or biota is discussed in Section V. As noted in Table 6 (Section V), wind, surface water, and biota (food chain uptake) are expected to be of low significance as transport mechanisms for COPECs at this site. Degradation, transformation, and radiological decay of the COPECs are also expected to be of low significance.

VII.2.4 Scoping Risk-Management Decision

Based upon information gathered through the scoping assessment, it was concluded that complete ecological pathways may be associated with this site, and that COPECs also exist at the site. As a consequence, a detailed ecological risk assessment was deemed necessary to predict the potential level of ecological risk associated with the site.

VII.3 Risk Assessment

As concluded in Section VII.2.4, complete ecological pathways and COPECs are associated with this site. The ecological risk assessment performed for the site involves a quantitative estimate of current ecological risks using exposure models in association with exposure parameters and toxicity information obtained from the literature. The estimation of potential ecological risks is conservative to ensure that ecological risks are not underpredicted.

Components within the risk assessment include the following:

- Problem formulation sets the stage for the evaluation of potential exposure and risk.
- Exposure estimation provides a quantitative estimate of potential exposure.
- Ecological effects evaluation presents benchmarks used to gauge the toxicity of COPECs to specific receptors.
- Risk characterization characterizes the ecological risk associated with exposure of the receptors to environmental media at the site.

- Uncertainty assessment discusses uncertainties associated with the estimation of exposure and risk.
- Risk interpretation evaluates ecological risk in terms of HQs and ecological significance.
- Risk assessment scientific/management decision point presents the decision to risk managers based upon the results of the risk assessment.

VII.3.1 Problem Formulation

Problem formulation is the initial stage of the risk assessment that provides the introduction to the risk evaluation process. Components that are addressed in this section include a discussion of ecological pathways and the ecological setting, identification of COPECs, and selection of ecological receptors. The conceptual model, ecological food webs, and ecological endpoints (other components commonly addressed in an ecological risk assessment) are presented in the "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico" (IT July 1998) and are not duplicated here.

VII.3.1.1 Ecological Pathways and Setting

DSS Site 1008 is less than 1 acre in size. The site is located in an area dominated by grassland habitat. The site is unpaved, and is open to use by wildlife. No threatened or endangered species are known to occur at this site (IT February 1995) and no surface water bodies, seeps, or springs are associated with the site.

Complete ecological pathways may exist at this site through the exposure of plants and wildlife to COPECs in surface soil at this site. It was assumed that direct uptake of COPECs from soil is the major route of exposure for plants, and that exposure of plants to wind-blown soil is minor. Exposure modeling for the wildlife receptors was limited to the food and soil ingestion pathways and external radiation. Because of the lack of surface water at this site, exposure to COPECs through the ingestion of surface water was considered insignificant. Inhalation and dermal contact were also considered insignificant pathways with respect to ingestion (Sample and Suter 1994). Groundwater is not expected to be affected by COCs at this site.

VII.3.1.2 COPECs

Discharges of waste water from the septic system of Building 6750 is the primary source of COPECs at DSS Site 1008. COPECs identified for this site are listed in Section VII.2.1 and are all inorganic, including both radiological and nonradiological analytes. The analytes were screened against background concentrations and those that exceeded the approved SNL/NM background screening levels (Dinwiddle September 1997) for the area were considered to be COPECs. Nonradiological inorganics that are essential nutrients, such as iron, magnesium, calcium, potassium, and sodium, were not included in this risk assessment as set forth by the EPA (1989). In order to provide conservatism, this ecological risk assessment was based upon

the maximum soil concentrations of the COPECs measured in the upper 5 feet of soil at this site. Tables 4 and 5 present maximum concentrations for the COPECs.

VII.3.1.3 Ecological Receptors

A nonspecific perennial plant was selected as the receptor to represent plant species at the site (IT July 1998). Vascular plants are the principal primary producers at the site and are key to the diversity and productivity of the wildlife community associated with the site. The deer mouse (*Peromyscus maniculatus*) and the burrowing owl (*Speotyto cunicularia*) were used to represent wildlife use. Because of its opportunistic food habits, the deer mouse was used to represent a mammalian herbivore, omnivore, and insectivore; the burrowing owl was selected to represent a top predator. The burrowing owl is present at SNL/NM and is designated a species of management concern by the U.S. Fish and Wildlife Service in Region 2, which includes the state of New Mexico (USFWS September 1995).

VII.3.2 Exposure Estimation

For nonradiological COPECs, direct uptake from the soil was considered the only significant route of exposure for terrestrial plants. Exposure modeling for the wildlife receptors was limited to food and soil ingestion pathways. Inhalation and dermal contact were considered insignificant pathways with respect to ingestion (Sample and Suter 1994). Drinking water was also considered an insignificant pathway because of the lack of surface water at this site. The deer mouse was modeled under three dietary regimes: as an herbivore (100 percent of its diet as plant material), as an omnivore (50 percent of its diet as plants and 50 percent as soil invertebrates), and as an insectivore (100 percent of its diet as soil invertebrates). The burrowing owl was modeled as a strict predator on small mammals (100 percent of its diet as deer mice). Because the exposure of the burrowing owl from a diet consisting of equal parts of herbivorous, omnivorous, and insectivorous mice would be equivalent to the exposure consisting of only omnivorous mice, the diet of the burrowing owl was modeled with intake of omnivorous mice only. Both species were modeled with soil ingestion comprising 2 percent of the total dietary intake. Table 12 presents the species-specific factors used in modeling exposures in the wildlife receptors. Justification for use of the factors presented in this table is described in the ecological risk assessment methodology document (IT July 1998).

Although home range is also included in this table, exposures for this risk assessment were modeled using an area use factor of 1, implying that all food items and soil ingested are from the site being investigated. The maximum measured COPEC concentrations from surface soil samples were used to conservatively estimate potential exposures and risks to plants and wildlife at this site.

For the radiological dose rate calculations, the deer mouse was modeled as an herbivore (100 percent of its diet as plants), and the burrowing owl was modeled as a strict predator on small mammals (100 percent of its diet as deer mice). Both were modeled with soil ingestion comprising 2 percent of the total dietary intake. Receptors are exposed to radiation both internally and externally from U-235 and U-238. Internal and external dose rates to the deer mouse and the burrowing owl are approximated using modified dose rate models from the DOE (1995) as presented in the ecological risk assessment methodology document for the SNL/NM ER Project (IT July 1998). Radionuclide-dependent data for the dose rate calculations were

Table 12
Exposure Factors for Ecological Receptors at DSS Site 1008

Receptor Species	Class/Order	Trophic Level	Body Weight (kg)ª	Food Intake Rate (kg/day) ⁵	Dietary Composition	Home Range (acres)
Deer Mouse (<i>Peromyscus</i> maniculatus)	Mammalia/ Rodentia	Herbivore	2.39E-2 ^d	3.72E-3	Plants: 100% (+ Soil at 2% of intake)	2.7E-1*
Deer Mouse (<i>Peromyscus</i> <i>maniculatus</i>)	Mammalia/ Rodentia	Omnivore	2.39E-2ª	3.72E-3	Plants: 50% Invertebrates: 50% (+ Soil at 2% of intake)	2.7E-1 ^e
Deer Mouse (Peromyscus maniculatus)	Mammalia/ Rodentia	Insectivore	2.39E-2 ^d	3.72E-3	Invertebrates: 100% (+ Soil at 2% of intake)	2.7E-1ª
Burrowing owl (Spectyto cunicularia)	Aves/ Strigiformes	Carnivore	1 .55E-1 †	1.73E-2	Rodents: 100% (+ Soil at 2% of intake)	3.5E+19

D-25

^aBody weights are in kg wet weight.

^bFood intake rates are estimated from the allometric equations presented in Nagy (1987). Units are kg dry weight per day. ^cDietary compositions are generalized for modeling purposes. Default soil intake value of 2% of food intake. ^dSilva and Downing 1995.

*EPA 1993, based upon the average home range measured in semiarid shrubland in Idaho.

[†]Dunning 1993.

9Haug et al. 1993.

DSS = Drain and Septic Systems. EPA = U.S. Environmental Protection Agency.

= Kilogram(s). kg

AL/6-03/WP/SNL03:rs5348.doc

obtained from Baker and Soldat (1992). The external-dose-rate model examines the total-body dose-rate to a receptor residing in soil exposed to radionuclides. The soil surrounding the receptor is assumed to be an infinite medium uniformly contaminated soil with gamma-emitting radionuclides. The external-dose-rate model is the same for both the deer mouse and the burrowing owl. The internal total-body dose-rate model assumes that a fraction of the radionuclide concentration ingested by a receptor is absorbed by the body and concentrated at the center of a spherical body shape. This provides for a conservative estimate for the absorbed dose. This concentrated radiation source at the center of the body of the receptor is assumed to be a "point" source. Radiation emitted from this point source is absorbed by the body tissues to contribute to the absorbed dose. Alpha and beta emitters are assumed to transfer 100 percent of their energy to the receptor as they pass through tissues. Gamma-emitting radionuclides only transfer a fraction of their energy to the tissues because gamma rays interact less with matter than do beta or alpha emitters. The external and internal dose rate results are summed to calculate a total dose rate from exposure to U-235 and U-238 in soil.

Table 13 presents the transfer factors used in modeling the concentrations of COPECs through the food chain. Table 14 presents maximum concentrations in soil and derived concentrations in tissues of the various food chain elements that are used to model dietary exposures for each of the wildlife receptors.

VII.3.3 Ecological Effects Evaluation

Table 15 shows benchmark toxicity values for the plant and wildlife receptors. For plants, the benchmark soil concentrations are based upon the lowest-observed-adverse-effect level (LOAEL). For wildlife, the toxicity benchmarks are based upon the no-observed-adverse-effect level (NOAEL) for chronic oral exposure in a taxonomically similar test species. Insufficient toxicity information was found to estimate the LOAELs or NOAELs for some COPECs.

The benchmark used for exposure of terrestrial receptors to radiation was 0.1 rad/day. This value has been recommended by the International Atomic Energy Agency (IAEA 1992) for the protection of terrestrial populations. Because plants and insects are less sensitive to radiation than vertebrates (Whicker and Schultz 1982), the dose of 0.1 rad/day should also offer sufficient protection to other components within the terrestrial habitat of DSS Site 1008.

VII.3.4 Risk Characterization

Maximum concentrations in soil and estimated dietary exposures were compared to plant and wildlife benchmark values, respectively. Table 16 presents results of these comparisons. HQs are used to quantify the comparison with benchmarks for plants and wildlife exposure.

HQs for the omnivorous and insectivorous deer mice exceeded unity for both arsenic and barium. Because of a lack of sufficient toxicity information, an HQ for plants could not be determined for cyanide and HQs for the burrowing owl could not be determined for cyanide and silver. As directed by the NMED, His were calculated for each of the receptors (the HI is the sum of chemical-specific HQs for all pathways for a given receptor). All HIs except that for the burrowing owl exceeded unity; the maximum HI was 9.4 for the insectivorous deer mouse.

Table 13 Transfer Factors Used in Exposure Models for COPECs at DSS Site 1008

COPEC	Soil-to-Plant Transfer Factor	Soil-to-Invertebrate Transfer Factor	Food-to-Muscle Transfer Factor
Arsenic	4.0E-2ª	1.0E+0 ^b	2.0E-3ª
Barium	1.5E-1ª	1.0E+0 ⁵	2.0E-4°
Cyanide	0.0E+0 ^d	0.0E+0 ^d	0.0E+0d
Mercury	1.0E+0°	1.0E+0 ^b	2.5E-1ª
Seleníum	5.0E-1°	1.0E+0 ⁶	1.0E-1°
Silver	1.0E+0°	2.5E-1°	5.0E-3°

^aBaes et al. 1984.

^bDefault value.

°NCRP January 1989.

^dNo data found for food chain transfers of cyanide; however, because of its high metabolic activity, cyanide is assumed not to transfer in the food chain.

eStafford et al. 1991.

COPEC = Constituent of potential ecological concern.

DSS = Drain and Septic Systems.

NCRP = National Council on Radiation Protection and Measurements.

Table 14Media Concentrations^a forCOPECs at DSS Site 1008

COPEC	Soil (maximum) ^a	Plant Foliage ^b	Soil Invertebrate ^b	Deer Mouse Tissues°
Arsenic	4.6E+0	1.8E-1	4.6E+0	1.6E-2
Barium	2.4E+2d	3.6E+1	2.4E+2	8.9E-2
Cyanide	6.9E-2 ^e	0.0E+0	0.0E+0	0.0E+0
Mercury	2.3E-2e	2.3E-2	2.3E-2	1.8E-2
Selenium	7.4E-1 ^d	3.7E-1	7.4E-1	1.8E-1
Silver	2.3E-2*	2.3E-2	5.6E-3	2.3E-4

aln milligrams per kilogram. All biotic media are based upon dry weight of the media. Soil concentration measurements are assumed to have been based upon dry weight. Values have been rounded to two significant digits after calculation.

Product of the soil concentration and the corresponding transfer factor.

^cBased upon the deer mouse with an omnivorous diet. Product of the average concentration ingested in food and soil times the food-to-muscle transfer factor times a wet weight-dry weight conversion factor of 3.125 (EPA 1993).

dEstimated value.

*Analyte not detected. Maximum concentration is 0.5 of the detection limit.

- COPÉC = Constituent of potential ecological concern.
- DSS = Drain and Septic Systems.

EPA = U.S. Environmental Protection Agency.

········		Mammallan NOAELs			Avian NOAELs		
COPEC	Plant Benchmark ^{a,b}		Test Species NOAEL ^{d,e}	Deer Mouse NOAEL ^{e,f}	Avian Test Species ^d	Test Species NOAEL ^{d,e}	Burrowing Owi NOAEL ^{e,g}
Arsenic	10	mouse	0.126	0.133	mallard	5.14	5.14
Barium	500	rath	5.1	10.5	chicken	20.8	20.8
Cyanide	_	rat ⁱ	68.7	126	_	_	_
Mercury (organic)	0.3	rat	0.03	0.06	mallard	0.0064	0.0064
Mercury (inorganic)	0.3	mouse	13.2	14.0	Japanese quail	0.45	0.45
Selenium	1	rat	0.2	; 0.391	screech owl	0.44	0.44
Silver	2	rat	17.8 ^j	34.8		_	

Table 15 Toxicity Benchmarks for Ecological Receptors at DSS Site 1008

^aIn mg/kg soil dry weight.

^bEfroymson et al. 1997.

Body weights (in kg) for the NOAEL conversion are as follows: lab mouse, 0.030; lab rat, 0.350, (except where noted).

dSample et al. 1996, except where noted.

eln mg/kg body weight per day.

Based upon NOAEL conversion methodology presented in Sample et al. (1996), using a deer mouse body weight of 0.0239 kg and a mammalian scaling factor of 0.25.

PBased upon NOAEL conversion methodology presented in Sample et al. (1996). The avian scaling factor of 0.0 was used, making the NOAEL independent of body weight.

^hBody weight: 0.435 kg.

Body weight: 0.273 kg.

Based upon a rat lowest-observed-adverse-effect level of 89 mg/kg/d (EPA 2003) and an uncertainty factor of 0.2.

COPEC = Constituent of potential ecological concern.

10.000

DSS = Drain and Septic Systems.

kg = Kilogram(s)

mg/kg = Milligram(s) per kilogram.

mg/kg/d = Milligram(s) per kilogram per day.

NOAEL = No observed adverse effect level.

= Insufficient toxicity data.

AL/6-03/WP/:rs5348.doc

RISK ASSESSMENT FOR DSS SITE 1008

	Table 16			
HQs for Ecological	Receptors a	t DSS	Site 1008	

COPEC	Plant HQª	Deer Mouse HQ (Herbivoraus)ª	Deer Mouse HQ (Omnivorous)ª	Deer Mouse HQ (Insectivorous) ^a	Burrowing Owl HQª
Arsenic	4.6E-1	3.2E-1	2.9E+0	5.5E+0	2.3E-3
Barium	4.8E-1	6.0E-1	2.1E+0	3.6E+0	2.6E-2
Cyanide		1.7E-6	1.7E-6	1.7E-6	
Mercury (organic)	7.5E-2	5.7E-2	5.7E-2	5.7E-2	3.2E-1
Mercury (inorganic)	7.5E-2	2.6E-4	2.6E-4	2.6E-4	4.6E-3
Selenium	7.4E-1	1.5E-1	2.3E-1	3.0E-1	4.9E-2
Silver	1.1E-2	1.0E-4	6.5E-5	2.7E-5	
Hlp	1.8E+0	1.1E+0	5.3E+0	9.4E+0	4.0E-1

^aBold text indicates HQ or HI exceeds unity.

^bThe HI is the sum of individual HQs.
 ^cOPEC = Constituent of potential ecological concern.
 DSS = Drain and Septic Systems.
 HI = Hazard index.

ΗQ ~

Hazard quotient.
 Insufficient toxicity data available for risk estimation purposes.

D-29

.

AL/6-03/WP/SNL03:rs5348.doc

Tables 17 and 18 summarize the internal and external dose rate model results for U-235 and U-238 for the deer mouse and burrowing owl, respectively. The total radiation dose rate to the deer mouse was predicted to be 5.9E-4 rad/day and that for the burrowing owl was 5.7E-4 rad/day; both are less than the benchmark of 0.1 rad/day.

VII.3.5 Uncertainty Assessment

Many uncertainties are associated with the characterization of ecological risks at DSS Site 1008. These uncertainties result from assumptions used in calculating risk that could overestimate or underestimate true risk presented at a site. For this risk assessment, assumptions are made that are more likely to overestimate exposures and risk rather than to underestimate them. These conservative assumptions are used to be more protective of the ecological resources potentially affected by the site. Conservatisms incorporated into this risk assessment include the use of maximum measured analyte concentrations in soil to evaluate risk, the use of wildlife toxicity benchmarks based upon NOAEL values, and the incorporation of strict herbivorous and strict insectivorous diets for predicting the extreme HQ values for the deer mouse. Each of these uncertainties, which are consistent among each of the site-specific ecological risk assessments, is discussed in greater detail in the uncertainty section of the ecological risk assessment methodology document for the SNL/NM ER Project (IT July 1998). It should further be noted that of the six COPECs, three (cyanide, mercury, and silver) were not detected; the exposure estimates were conservatively based upon one half of the detection limit. Two (barium and selenium) had estimated values representing the maximum concentration.

Uncertainties associated with the estimation of risk to ecological receptors following exposure to U-235 and U-238 are primarily related to those inherent in the radionuclide-specific data. Radionuclide-dependent data are measured values that have their associated errors. The dose rate models used for these calculations are based upon conservative estimates on receptor shape, radiation absorption by body tissues, and intake parameters. The goal is to provide a realistic but conservative estimate of a receptor's internal and external exposure to radionuclides in soil. It should be noted that these dose estimates are conservatively based upon detection limits of the two radionuclides, and that neither was detected at the site.

In the estimation of ecological risk, background concentrations are included as a component of maximum on-site concentrations. Conservatisms in the modeling of exposure and risk can result in the prediction of risk to ecological receptors when exposed at background concentrations. As shown in Table 19, the background concentrations of arsenic and barium resulted in HQs greater than 1 for both the omnivorous and insectivorous deer mice. In the case of arsenic, background may account for approximately 96 percent of the maximum HQ values shown in Table 16, while for barium, background may account for approximately 89 percent of the maximum HQ values. It is therefore likely that the actual risks to the omnivorous and insectivorous deer mice from exposure to arsenic and barium at DSS Site 1008 are overestimated by the HQs calculated in this risk assessment because of conservatisms incorporated into the exposure assessment and in the toxicity benchmarks for these COPECs (e.g., the use of NOAELs for wildlife receptors).

A further source of uncertainty associated with the prediction of ecological risks at this site is the use of the maximum measured concentrations to evaluate exposure and risk. This results

Radionuclide	Maximum Activity (pCi/g)	Total Dose (rad/day)
U-235	ND (0.25)	6.73E-6
U-238	ND (3.6)	5.81E-4
Total D	5.88E-4	

Table 17 **Total Dose Rates for Deer Mice Exposed** to Radionuclides at DSS Site 1008

DSS = Drain and Septic Systems.

MDA = Minimum detectable activity.

ND () = Not detected above the MDA, shown in parentheses. pCi/g = Picocurie(s) per gram.

Table 18 **Total Dose Rates for Burrowing Owls Exposed** to Radionuclides at DSS Site 1008

Radionuclide	Maximum Activity (pCi/g)	Total Dose (rad/day)
U-235	ND (0.25)	5.13E-6
U-238	ND (3.6)	5.60E-4
Total D	lose	5.65E-4

DSS = Drain and Septic Systems.

MDA = Minimum detectable activity.

ND () = Not detected above the MDA, shown in parentheses.

pCi/g = Picocurie(s) per gram.

COPEC	Plant HQ ^a	Deer Mouse HQ (Herbivorous) ^a	Deer Mouse HQ (Omnivorous)ª	Deer Mouse HQ (Insectivorous)*	Burrowing Owi HQª
Inorganic					
Arsenic	4.4E-1	3.1E-1	2.8E+0	5.2E+0	2.2E-3
Barium	4.0E-1	5.4E-1	1.9E+0	3.2E+0	2.3E-2
Cyanide	NC	NC	NC	NC	NC
Mercury (organic)	1.7E-1	1.3E-1	1.3E-1	1.3E-1	7.1E-1
Selenium	5.0E-1	1.0E-1	1.5E-1	2.0E-1	3.3E-2
Silver	2.5E-1	2.3E-3	1.4E-3	6.0E-4	
	1.8E+1	1.1E+0	4.9E+0	8.8E+0	7.7E-1

Table 19 HQs for Ecological Receptors Exposed to Background Concentrations at DSS Site 1008

*Bold text indicates HQ or HI exceeds unity.

^bThe HI is the sum of individual HQs.

COPEC = Constituent of potential ecological concern. DSS = Drain and Septic Systems.

- = Hazard index. HL
- ⇒ Hazard quotient. HQ
- NC
- ⇒ Background value not calculated.
 ⇒ Insufficient toxicity data available for risk estimation purposes.

.

_

RISK ASSESSMENT FOR DSS SITE 1008

in a conservative exposure scenario that does not necessarily reflect actual site conditions. For example, the 95% upper confidence limit of the mean soil concentration for barium is 216 mg/kg, which is only slightly higher than the background screening value for this element (214 mg/kg). Therefore, it is likely that the actual exposures to this element at DSS Site 1008 is very close to, if not within, background levels, and risks from exposures to this COPEC at DSS Site 1008 is likely to be within the background levels as shown in Table 17.

Based upon this uncertainty analysis, the potential for ecological risks at DSS Site 1008 is expected to be low. Some HQs greater than unity were predicted; however, closer examination of the exposure assumptions revealed an overestimation of risk primarily attributed to conservative toxicity benchmarks, the use of maximum concentrations, and the contribution of background risk.

VII.3.6 Risk Interpretation

Ecological risks associated with DSS Site 1008 were estimated through a risk assessment that incorporated site-specific information when available. Initial predictions of potential risk to omnivorous and insectivorous deer mice from exposures to arsenic and barium are attributable to conservative toxicity benchmarks, the use of maximum detected values to estimate exposure, and the contribution of background risk. Both of these COPECs showed HQs greater than 1 when exposure was based upon background values, with background accounting for 96 and 89 percent (respectively) of the maximum concentrations for these two metals. Based upon this final analysis, the potential for ecological risks associated with DSS Site 1008 is expected to be low.

VII.3.7 Risk Assessment Scientific/Management Decision Point

After potential ecological risks associated with the site have been assessed, a decision is made regarding whether the site should be recommended for NFA or whether additional data should be collected to assess actual ecological risk at the site more thoroughly. With respect to this site, ecological risks are predicted to be low. The scientific/management decision is to recommend this site for NFA.

VIII. References

Baes, III, C.F., R.D. Sharp, A.L. Sjoreen, and R.W. Shor, 1984. "A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture," ORNL-5786, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Baker, D.A., and J.K. Soldat, 1992. "Methods for Estimating Doses to Organisms from Radioactive Materials Released into the Aquatic Environment," PNL-8150, Pacific Northwest Laboratory, Richland, Washington.

Bearzi, J.P. (New Mexico Environment Department), January 2001. Memorandum to RCRA-Regulated Facilities, "Risk-Based Screening Levels for RCRA Corrective Action Sites in New Mexico," Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico. January 23, 2001. Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P. May, C.F. Fowler, J.R. Freed, P. Jennings, R.L. Durfee, F.C. Whitmore, B. Maestri, W.R. Mabey, B.R. Holt, and C. Gould, 1979. "Water-Related Environmental Fate of 129 Priority Pollutants," EPA-440/4-79-029, Office of Water and Waste Management, Office of Water Planning and Standards, U.S. Environmental Protection Agency, Washington, D.C.

Dinwiddie, R.S. (New Mexico Environment Department) September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB." September 24, 1997.

DOE, see U.S. Department of Energy.

Dunning, J.B., 1993. CRC Handbook of Avian Body Masses, CRC Press, Boca Raton, Florida.

Efroymson, R.A., M.E. Will, G.W. Suter II, and A.C. Wooten, 1997. "Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Terrestrial Plants: 1997 Revision," ES/ER/TM-85/R3, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

EPA, see U.S. Environmental Protection Agency.

Haug, E.A., B.A. Millsap, and M.S. Martell, 1993. "Spectyto cunicularia Burrowing Owl," in A. Poole and F. Gill (eds.), The Birds of North America, No. 61, The Academy of Natural Sciences of Philadelphia.

IAEA, see International Atomic Energy Agency.

International Atomic Energy Agency (IAEA), 1992. "Effects of Ionizing Radiation on Plants and Animals at Levels Implied by Current Radiation Protection Standards," *Technical Report Series* No. 332, International Atomic Energy Agency, Vienna, Austria.

IT, see IT Corporation.

IT Corporation (IT), February 1995. "Sensitive Species Survey Results, Environmental Restoration Project, Sandia National Laboratories/New Mexico," IT Corporation, Albuquerque, New Mexico.

IT Corporation (IT), July 1998. "Predictive Ecological Risk Assessment Methodology, Environmental Restoration Program, Sandia National Laboratories, New Mexico," IT Corporation, Albuquerque, New Mexico.

Kocher, D.C. 1983. "Dose-Rate Conversion Factors for External Exposure to Photon Emitters in Soil," *Health Physics*, Vol. 28, pp. 193–205.

Nagy, K.A., 1987. "Field Metabolic Rate and Food Requirement Scaling in Mammals and Birds," *Ecological Monographs*, Vol. 57, No. 2, pp. 111–128.

National Council on Radiation Protection and Measurements (NCRP), 1987. "Exposure of the Population in the United States and Canada from Natural Background Radiation," *NCRP Report* No. 94, National Council on Radiation Protection and Measurements, Bethesda, Maryland.

RISK ASSESSMENT FOR DSS SITE 1008

National Council on Radiation Protection and Measurements (NCRP), January 1989. "Screening Techniques for Determining Compliance with Environmental Standards: Releases of Radionuclides to the Atmosphere," *NCRP Commentary* No. 3, Rev., National Council on Radiation Protection and Measurements, Bethesda, Maryland.

National Oceanic and Atmospheric Administration (NOAA), 1990. Local Climatological Data, Annual Summary with Comparative Data, Albuquerque, New Mexico.

NCRP, see National Council on Radiation Protection and Measurements.

Neumann, G., 1976. "Concentration Factors for Stable Metals and Radionuclides in Fish, Mussels and Crustaceans—A Literature Survey," Report 85-04-24, National Swedish Environmental Protection Board.

New Mexico Environment Department (NMED), March 1998. "Risk-Based Decision Tree Description," *in* New Mexico Environment Department, "RPMP Document Requirement Guide," RCRA Permits Management Program, Hazardous and Radioactive Materials Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), December 2000. Technical Background Document for Development of Soil Screening Levels,", Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, New Mexico Environment Department, Santa Fe, New Mexico.

NMED, see New Mexico Environment Department.

NOAA, see National Oceanographic and Atmospheric Administration.

Oak Ridge National Laboratories (ORNL), 2003. "Risk Assessment Information System", electronic database maintained by Oak Ridge National Laboratory, Oak Ridge, Tennessee.

ORNL, see Oak Ridge National Laboratory.

Sample, B.E., and G.W. Suter II, 1994. "Estimating Exposure of Terrestrial Wildlife to Contaminants," ES/ER/TM-125, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Sample, B.E., D.M. Opresko, and G.W. Suter II, 1996. "Toxicological Benchmarks for Wildlife: 1996 Revision," ES/ER/TM-86/R3, Risk Assessment Program, Health Sciences Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Sandia National Laboratories/New Mexico (SNL/NM), March 1996. "Site-Wide Hydrogeologic Characterization Project, Calendar Year 1995 Annual Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico. Sandia National Laboratories/New Mexico (SNL/NM), October 1999. "Sampling and Analysis Plan for Characterizing and Assessing Potential Releases to the Environment From Septic and Other Miscellaneous Drain Systems at Sandia National Laboratories/New Mexico", Sandia National Laboratories, Albuquerque, New Mexico, October 19, 1999.

Sandia National Laboratories/New Mexico (SNL/NM), December 1999. "Data Validation Procedure for Chemical and Radiochemical Data (AOP 00-003)," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), November 2001. "Field Implementation Plan, Characterization of Non-Environmental Restoration Drain and Septic Systems," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2002. "Annual Groundwater Monitoring Report, Fiscal Year 2000--2001," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2003. Database printout provided by SNL/NM Facilities Engineering showing the years that numerous SNL/NM buildings were constructed, Sandia National Laboratories, Albuquerque, New Mexico.

Silva, M., and J.A. Downing, 1995. CRC Handbook of Mammalian Body Masses, CRC Press, Boca Raton, Florida.

SNL/NM, See Sandia National Laboratories, New Mexico.

Stafford, E.A., J.W. Simmers, R.G. Rhett, and C.P. Brown, 1991. "Interim Report: Collation and Interpretation of Data for Times Beach Confined Disposal Facility, Buffalo, New York," *Miscellaneous Paper* D-91-17, U.S. Army Corps of Engineers, Buffalo, New York.

U.S. Department of Energy (DOE), 1988. "External Dose-Rate Conversion Factors for Calculation of Dose to the Public," DOE/EH-0070, Assistant Secretary for Environment, Safety and Health, U.S. Department of Energy, Washington, D.C.

U.S. Department of Energy (DOE), 1993. "Radiation Protection of the Public and the Environment," DOE Order 5400.5, U.S. Department of Energy, Washington, D.C.

U.S. Department of Energy (DOE), 1995. "Hanford Site Risk Assessment Methodology," DOE/RL-91-45 (Rev. 3), U.S. Department of Energy, Richland, Washington.

U.S. Department of Energy (DOE), U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1988. "Federal Guidance Report No. 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion," Office of Radiation Programs, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Vol. I: Human Health Evaluation Manual," EPA/540-1089/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1993. "Wildlife Exposure Factors Handbook, Volume 1 of 11," EPA/600/R-93/187a, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997a. "Health Effects Assessment Summary Tables (HEAST), FY 1997 Update," EPA-540-R-97-036, Office of Research and Development and Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C..

U.S. Environmental Protection Agency (EPA), 1997b. "Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination," OSWER Directive No. 9200-4-18, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997c. "Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risks," Interim Final, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1998b. "Guidelines for Ecological Risk Assessment," EPA/630/R-95/002F, Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 2002a. "Region 6 Preliminary Remediation Goals (PRGs) 1996," electronic database maintained by Region 6, U.S. Environmental Protection Agency, Dallas, Texas.

U.S. Environmental Protection Agency (EPA), 2002b. "Region 9 Preliminary Remediation Goals (PRGs) 1996," electronic database maintained by Region 9, U.S. Environmental Protection Agency, San Francisco, California.

U.S. Environmental Protection Agency (EPA), 2002c. "Risk-Based Concentration Table," electronic database maintained by Region 3, U.S. Environmental Protection Agency, Philadelphia, Pennsylvania.

U.S. Environmental Protection Agency (EPA), 2003. Integrated Risk Information System (IRIS) electronic database, maintained by the U.S. Environmental Protection Agency, Washington D.C.

U.S. Fish and Wildlife Service (USFWS), September 1995. "Migratory Nongame Birds of Management Concern in the United States: The 1995 List," Office of Migratory Bird Management, U.S. Fish and Wildlife Service, Washington, D.C.

USFWS, see U.S. Fish and Wildlife Service.

Whicker, F.W., and V. Schultz, 1982. *Radioecology: Nuclear Energy and the Environment*, Vol. 2, CRC Press, Boca Raton, Florida.

Yanicak, S. (Oversight Bureau, Department of Energy, New Mexico Environment Department), March 1997. Letter to M. Johansen (DOE/AIP/POC Los Alamos National Laboratory), "(Tentative) list of constituents of potential ecological concern (COPECs) which are considered to be bioconcentrators and/or biomagnifiers." March 3, 1997.

Yu, C., A.J. Zielen, J.-J. Cheng, Y.C. Yuan, L.G. Jones, D.J. LePoire, Y.Y. Wang, C.O. Loureiro, E. Gnanapragasam, E. Faillace, A. Wallo III, W.A. Williams, and H. Peterson, 1993a. "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD," Version 5.0. Environmental Assessment Division, Argonne National Laboratory, Argonne, Illinois.

Yu, C., C. Loureiro, J.-J. Cheng, L.G. Jones, Y.Y. Wang, Y.P. Chia, and E. Faillace, 1993b. "Data Collection Handbook to Support Modeling the Impacts of Radioactive Material in Soil," ANL/EAIS-8, Argonne National Laboratory, Argonne, Illinois.

APPENDIX 1 EXPOSURE PATHWAY DISCUSSION FOR CHEMICAL AND RADIONUCLIDE CONTAMINATION

Introduction

Sandia National Laboratories/New Mexico (SNL/NM) uses a default set of exposure routes and associated default parameter values developed for each future land use designation being considered for SNL/NM Environmental Restoration (ER) Project sites. This default set of exposure scenarios and parameter values are invoked for risk assessments unless site-specific information suggests other parameter values. Because many SNL/NM solid waste management units (SWMUs) have similar types of contamination and physical settings, SNL/NM believes that the risk assessment analyses at these sites can be similar. A default set of exposure scenarios and parameter values facilitates the risk assessments and subsequent review.

The default exposure routes and parameter values used are those that SNL/NM views as resulting in a Reasonable Maximum Exposure (RME) value. Subject to comments and recommendations by the U.S. Environmental Protection Agency (EPA) Region VI and New Mexico Environment Department (NMED), SNL/NM will use these default exposure routes and parameter values in future risk assessments.

At SNL/NM, all SWMUs exist within the boundaries of the Kirtland Air Force Base. Approximately 240 potential waste and release sites have been identified where hazardous, radiological, or mixed materials may have been released to the environment. Evaluation and characterization activities have occurred at all of these sites to varying degrees. Among other documents, the SNL/NM ER draft Environmental Assessment (DOE 1996) presents a summary of the hydrogeology of the sites and the biological resources present. When evaluating potential human health risk the current or reasonably foreseeable land use negotiated and approved for the specific SWMU/AOC, aggregate, or watershed will be used. The following references generally document these land uses: <u>Workbook: Future Use Management Area 2</u> (September 1995); Workbook: Future Use Management Area 1 (October 1995); Workbook: Future Use Management Area 3, 4, 5, and 6 (January 1996); Workbook: Future Use Management Area 7 (March 1996). At this time, all SNL/NM SWMUs have been tentatively designated for either industrial or recreational future land use. The NMED has also requested that risk calculations be performed based upon a residential land use scenario. Therefore, all three land use scenarios will be addressed in this document.

The SNL/NM ER Project has screened the potential exposure routes and identified default parameter values to be used for calculating potential intake and subsequent hazard index (HI), excess cancer risk and dose values. The EPA (EPA 1989) provides a summary of exposure routes that could potentially be of significance at a specific waste site. These potential exposure routes consist of:

- Ingestion of contaminated drinking water
- Ingestion of contaminated soil

.

- Ingestion of contaminated fish and shellfish
- Ingestion of contaminated fruits and vegetables
- Ingestion of contaminated meat, eggs, and dairy products
- Ingestion of contaminated surface water while swimming
- Dermal contact with chemicals in water
- Dermal contact with chemicals in soil
- Inhalation of airborne compounds (vapor phase or particulate)
- External exposure to penetrating radiation (immersion in contaminated air; immersion in contaminated water; and exposure from ground surfaces with photon-emitting radionuclides)

Based upon the location of the SNL/NM SWMUs and the characteristics of the surface and subsurface at the sites, we have evaluated these potential exposure routes for different land use scenarios to determine which should be considered in risk assessment analyses (the last exposure route is pertinent to radionuclides only). At SNL/NM SWMUs, there is currently no consumption of fish, shellfish, fruits, vegetables, meat, eggs, or dairy products that originate on site. Additionally, no potential for swimming in surface water is present due to the high-desert environmental conditions. As documented in the RESRAD computer code manual (ANL 1993), risks resulting from immersion in contaminated air or water are not significant compared to risks from other radiation exposure routes.

For the industrial and recreational land use scenarios, SNL/NM ER has, therefore, excluded the following four potential exposure routes from further risk assessment evaluations at any SNL/NM SWMU:

- Ingestion of contaminated fish and shellfish
- Ingestion of contaminated fruits and vegetables
- Ingestion of contaminated meat, eggs, and dairy products
- Ingestion of contaminated surface water while swimming
- · Dermal contact with chemicals in water

That part of the exposure pathway for radionuclides related to immersion in contaminated air or water is also eliminated.

Based upon this evaluation, for future risk assessments the exposure routes that will be considered are shown in Table 1.

Industrial	Recreational	Residential
Ingestion of contaminated	Ingestion of contaminated	Ingestion of contaminated
drinking water	drinking water	drinking water
Ingestion of contaminated soil	Ingestion of contaminated soil	Ingestion of contaminated soil
Inhalation of airborne	Inhalation of airborne	Inhalation of airborne
compounds (vapor phase or	compounds (vapor phase or	compounds (vapor phase or
particulate)	particulate)	particulate)
Dermal contact (nonradiological	Dermal contact (nonradiological	Dermal contact (nonradiological
constituents only) soil only	constituents only) soil only	constituents only) soil only
External exposure to penetrating radiation from ground surfaces	External exposure to penetrating radiation from ground surfaces	External exposure to penetrating radiation from ground surfaces

 Table 1

 Exposure Pathways Considered for Various Land Use Scenarios

Equations and Default Parameter Values for Identified Exposure Routes

In general, SNL/NM expects that ingestion of compounds in drinking water and soil will be the more significant exposure routes for chemicals; external exposure to radiation may also be significant for radionuclides. All of the above routes will, however, be considered for their appropriate land use scenarios. The general equation for calculating potential intakes via these routes is shown below. The equations are taken from "Assessing Human Health Risks Posed by Chemicals: Screening-Level Risk Assessment" (NMED March 6, 2000) and "Technical Background Document for Development of Soil Screening Levels" (NMED December 18, 2000). Equations from both documents are based upon the "Risk Assessment Guidance for Superfund" (RAGS): Volume 1 (EPA 1989, 1991). These general equations also apply to calculating potential intakes for radionuclides. A more in-depth discussion of the equations used in performing radiological pathway analyses with the RESRAD code may be found in the RESRAD Manual (ANL 1993). RESRAD is the only code designated by the U.S. Department of Energy (DOE) in DOE Order 5400.5 for the evaluation of radioactively contaminated sites (DOE 1993). The Nuclear Regulatory Commission (NRC) has approved the use of RESRAD for dose evaluation by licensees involved in decommissioning, NRC staff evaluation of waste disposal requests, and dose evaluation of sites being reviewed by NRC staff. EPA Science Advisory Board reviewed the RESRAD model. EPA used RESRAD in their rulemaking on radiation site cleanup regulations. RESRAD code has been verified, undergone several benchmarking analyses, and been included in the International Atomic Energy Agency's VAMP and BIOMOVS II projects to compare environmental transport models.

Also shown are the default values SNL/NM ER will use in RME risk assessment calculations for industrial, recreational, and residential land use scenarios, based upon EPA and other governmental agency guidance. The pathways and values for chemical contaminants are discussed first, followed by those for radionuclide contaminants. RESRAD input parameters that are left as the default values provided with the code are not discussed. Further information relating to these parameters may be found in the RESRAD Manual (ANL 1993) or by directly accessing the RESRAD websites at: http://web.ead.anl.gov/resrad/home2/ or http://web.ead.anl.gov/resrad/documents/.

Generic Equation for Calculation of Risk Parameter Values

The equation used to calculate the risk parameter values (i.e., hazard quotients/HI, excess cancer risk, or radiation total effective dose equivalent [TEDE] [dose]) is similar for all exposure pathways and is given by:

Risk (or Dose) = Intake x Toxicity Effect (either carcinogenic, noncarcinogenic, or radiological)

$$= C \times (CR \times EFD/BW/AT) \times Toxicity Effect$$
(1)

where;

C = contaminant concentration (site specific)
 CR = contact rate for the exposure pathway
 EFD= exposure frequency and duration
 BW = body weight of average exposure individual
 AT = time over which exposure is averaged.

For nonradiological constituents of concern (COCs), the total risk/dose (either cancer risk or HI) is the sum of the risks/doses for all of the site-specific exposure pathways and contaminants. For radionuclides, the calculated radiation exposure, expressed as TEDE is compared directly to the exposure guidelines of 15 millirem per year (mrem/year) for industrial and recreational future use and 75 mrem/year for the unlikely event that institutional control of the site is lost and the site is used for residential purposes (EPA 1997).

The evaluation of the carcinogenic health hazard produces a quantitative estimate for excess cancer risk resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of the quantitative estimate with the potentially acceptable risk of 1E-5 for nonradiological carcinogens. The evaluation of the noncarcinogenic health hazard produces a quantitative estimate (i.e., the HI) for the toxicity resulting from the COCs present at the site. This estimate is evaluated for determination of further action by comparison of this quantitative estimate is evaluated for determination of further action by comparison of this quantitative estimate with the EPA standard HI of unity (1). The evaluation of the health hazard from radioactive compounds produces a quantitative estimate of doses resulting from the COCs present at the site. This estimate dose is used to calculate an assumed risk. However, this calculated risk is presented for illustration purposes only, not to determine compliance with regulations.

The specific equations used for the individual exposure pathways can be found in RAGS (EPA 1989) and are outlined below. The RESRAD Manual (ANL 1993) describes similar equations for the calculation of radiological exposures.

Soil Ingestion

A receptor can ingest soil or dust directly by working in the contaminated soil. Indirect ingestion can occur from sources such as unwashed hands introducing contaminated soil to food that is then eaten. An estimate of intake from ingesting soil will be calculated as follows:

$$I_s = \frac{C_s * IR * CF * EF * ED}{BW * AT}$$

where:

- ls = Intake of contaminant from soil ingestion (milligrams [mg]/kilogram [kg]-day)
- C_s = Chemical concentration in soil (mg/kg)
- IR = Ingestion rate (mg soil/day)
- CF = Conversion factor (1E-6 kg/mg)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged) (days)

It should be noted that it is conservatively assumed that the receptor only ingests soil from the contaminated source.

Soil Inhalation

A receptor can inhale soil or dust directly by working in the contaminated soil. An estimate of intake from inhaling soil will be calculated as follows (EPA August 1997):

$$I_{s} = \frac{C_{s} * IR * EF * ED * \left(\frac{1}{VF} \text{ or } \frac{1}{PEF}\right)}{BW * AT}$$

where:

- I_s = Intake of contaminant from soil inhalation (mg/kg-day)
- C_s = Chemical concentration in soil (mg/kg)
- IR = Inhalation rate (cubic meters [m³]/day)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- VF = soil-to-air volatilization factor (m³/kg)
- PEF = particulate emission factor (m³/kg)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged) (days)

Soil Dermal Contact

$$D_a = \frac{C_s * CF * SA * AF * ABS * EF * ED}{BW * AT}$$

where:

 $D_a = Absorbed dose (mg/kg-day)$

- C_s = Chemical concentration in soil (mg/kg)
- CF = Conversion factor (1E-6 kg/mg)
- SA = Skin surface area available for contact (cm²/event)
- AF = Soil to skin adherence factor (mg/cm²)
- ABS= Absorption factor (unitless)
- EF = Exposure frequency (events/year)

AT = Averaging time (period over which exposure is averaged) (days)

Groundwater Ingestion

A receptor can ingest water by drinking it or through using household water for cooking. An estimate of intake from ingesting water will be calculated as follows (EPA August 1997):

$$I_{w} = \frac{C_{w} * IR * EF * ED}{BW * AT}$$

where:

- I_w = Intake of contaminant from water ingestion (mg/kg/day)
- C_w = Chemical concentration in water (mg/liter [L])
- IR = Ingestion rate (L/day)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged) (days)

Groundwater Inhalation

The amount of a constituent taken into the body via exposure to volatilization from showering or other household water uses will be evaluated using the concentration of the constituent in the water source (EPA 1991 and 1992). An estimate of intake from volatile inhalation from groundwater will be calculated as follows (EPA 1991):

$$I_{w} = \frac{C_{w} * K * IR_{i} * EF * ED}{BW * AT}$$

where:

- l_w = Intake of volatile in water from inhalation (mg/kg/day)
- C_w = Chemical concentration in water (mg/L)
- K = volatilization factor (0.5 L/m³)
- IR; = Inhalation rate (m³/day)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged—days)

For volatile compounds, volatilization from groundwater can be an important exposure pathway from showering and other household uses of groundwater. This exposure pathway will only be evaluated for organic chemicals with a Henry's Law constant greater than 1 X 10⁻⁵ and with a molecular weight of 200 grams/mole or less (EPA 1991).

Tables 2 and 3 show the default parameter values suggested for use by SNL/NM at SWMUs, based upon the selected land use scenarios for nonradiological and radiological COCs, respectively. References are given at the end of the table indicating the source for the chosen parameter values. SNL/NM uses default values that are consistent with both regulatory guidance and the RME approach. Therefore, the values chosen will, in general, provide a conservative estimate of the actual risk parameter. These parameter values are suggested for use for the various exposure pathways, based upon the assumption that a particular site has no unusual characteristics that contradict the default assumptions. For sites for which the assumptions are not valid, the parameter values will be modified and documented.

Summary

SNL/NM will use the described default exposure routes and parameter values in risk assessments at sites that have an industrial, recreational, or residential future land use scenario. There are no current residential land use designations at SNL/NM ER sites, but NMED has requested this scenario to be considered to provide perspective of the risk under the more restrictive land use scenario. For sites designated as industrial or recreational land use, SNL/NM will provide risk parameter values based upon a residential land use scenario to indicate the effects of data uncertainty on risk value calculations or in order to potentially mitigate the need for institutional controls or restrictions on SNL/NM ER sites. The parameter values are based upon EPA guidance and supplemented by information from other government sources. If these exposure routes and parameters are acceptable, SNL/NM will use them in risk assessments for all sites where the assumptions are consistent with site-specific conditions. All deviations will be documented.

Parameter	Industrial	Recreational	Residential
General Exposure Parameters	• • • • • • • • • • • • • • • • • • •		
Exposure Frequency (day/yr)	250°. ^b	8.7 (4 hr/wk for 52 wk/yr) ^{a,b}	350 ^{a,b}
Exposure Duration (yr)	25 ^{a,b,c}	30 ^{a,b,c}	30a,b,c
Body Weight (kg)	70 ^{a,b,c}	70 Adult ^{a,b,c} 15 Child ^{a,b,c}	70 Adult ^{a,b,c} 15 Child ^{a,b,≎}
Averaging Time (days) for Carcinogenic Compounds (= 70 yr x 365 day/yr)	25,550 ^{a,b}	25,550 ^{a,b}	25,550 ^{a,b}
for Noncarcinogenic Compounds (= ED x 365 day/yr)	9,125 ^{a.b}	10,950 ^{a,b}	10,950 ^{a,b}
Soil Ingestion Pathway	<u> </u>		
Ingestion Rate (mg/day)	100 ^{a,b}	200 Child ^{a,b} 100 Adulta,b	200 Child ^{a,b} 100 Adult ^{a,b}
Inhalation Pathway			······································
Inhalation Rate (m ³ /day)	20 ^{a,b}	15 Chiid ^a 30 Adult ^a	10 Child ^a 20 Adult ^a
Volatilization Factor (m ³ /kg)	Chemical Specific	Chemical Specific	Chemical Specific
Particulate Emission Factor (m ³ /kg)	1.36E9 ^a	1.36E9ª	1.36E9ª
Water Ingestion Pathway			
Ingestion Rate (liter/day)	2.4ª	2.4ª	2.4ª
Dermal Pathway			
Skin Adherence Factor (mg/cm ²)	0.2ª	0.2 Child ^a 0.07 Adult ^a	0.2 Child ^a 0.07 Adult ^a
Exposed Surface Area for Soil/Dust (cm ² /day)	3,300ª	2,800 Child ^a 5,700 Adult ^a	2,800 Child ^a 5,700 Adulta
Skin Adsorption Factor	Chemical Specific	Chemical Specific	Chemical Specific

 Table 2

 Default Nonradiological Exposure Parameter Values for Various Land Use Scenarios

^aTechnical Background Document for Development of Soil Screening Levels (NMED 2000).

^bRisk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991).

^cExposure Factors Handbook (EPA August 1997).

- ED = Exposure duration.
- EPA = U.S. Environmental Protection Agency.
- kg = Kilogram(s).
- m = Meter(s).
- mg = Milligram(s).
- NA = Not available.
- wk = Week(s).
- yr \approx Year(s).

Table 3				
Default Radiological Exposure Parameter Values for Various Land Use Scenarios				

Parameter	Industrial	Recreational	Residential
General Exposure Parameters			,··,··,··,··
	8 hr/day for		
Exposure Frequency	250 day/yr	4 hr/wk for 52 wk/yr	365 day/yr
Exposure Duration (yr)	25 ^{a,b}	30 ^{a,b}	30 ^{a,b}
Body Weight (kg)	70 Adult ^{a,b}	70 Adult ^{a,b}	70 Adult ^{a,b}
Soil Ingestion Pathway	<u></u>		
Ingestion Rate	100 mg/day ^c	100 mg/day ^c	100 mg/day ^o
Averaging Time (days)			
(= 30 yr x 365 day/yr)	10,950 ^d	10,950 ^d	10,950 ^d
Inhalation Pathway		···· L	
Inhalation Rate (m ³ /yr)	7,300 ^{d,e}	10,950°	7,300 ^{d,e}
Mass Loading for Inhalation g/m ³	1.36 E-5 ^d	1.36 E-5 d	1.36 E-5 d
Food Ingestion Pathway			
Ingestion Rate, Leafy Vegetables			
(kg/yr)	NA	NA	16.5°
Ingestion Rate, Fruits, Non-Leafy			
Vegetables & Grain (kg/yr)	NA	NA	101.8 ^b
Fraction Ingested	NA	NA	0.25 ^{b,d}

^aRisk Assessment Guidance for Superfund, Vol. 1, Part B (EPA 1991).

^bExposure Factors Handbook (EPA August 1997).

EPA Region VI guidance (EPA 1996).

^dFor radionuclides, RESRAD (ANL 1993).

^eSNL/NM (February 1998).

EPA = U.S. Environmental Protection Agency.

g = Gram(s)

hr = Hour(s).

- kg = Kilogram(s).
- m = Meter(s).
- mg = Milligram(s).
- NA = Not applicable.
- wk = Week(s).
- yr = Year(s).

References

ANL, see Argonne National Laboratory.

Argonne National Laboratory (ANL), 1993. Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD, Version 5.0, ANL/EAD/LD-2, Argonne National Laboratory, Argonne, IL.

DOE, see U.S. Department of Energy.

EPA, see U.S. Environmental Protection Agency.

New Mexico Environment Department (NMED), March 2000. "Assessing Human Health Risks Posed by Chemical: Screening-level Risk Assessment", Hazardous and Radioactive Materials Bureau, NMED, March 6, 2000.

New Mexico Environment Department (NMED), December 2000. "Technical Background Document for Development of Soil Screening Levels", Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, December 18, 2000.

Sandia National Laboratories/New Mexico (SNL/NM), February 1998. "RESRAD Input Parameter Assumptions and Justification," Sandia National Laboratories/New Mexico Environmental Restoration Project, Albuquerque, New Mexico.

U.S. Department of Energy (DOE), 1993. DOE Order 5400.5, "Radiation Protection of the Public and the Environment," U.S. Department of Energy, Washington, D.C.

U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, October 1995. "Workbook: Future Use Management Area 1," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Department of Energy, U.S. Air Force, and U.S. Forest Service, September 1995. "Workbook: Future Use Management Area 2," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, the U.S. Air Force, and the U.S. Forest Service.

U.S. Department of Energy and U.S. Air Force (DOE and USAF), January 1996. "Workbook: Future Use Management Areas 3,4,5,and 6," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates, and the U.S. Air Force.

U.S. Department of Energy and U.S. Air Force (DOE and USAF), March 1996. "Workbook: Future Use Management Area 7," prepared by the Future Use Logistics and Support Working Group in cooperation with U.S. Department of Energy Affiliates and the U.S. Air Force.

U.S. Department of Energy (DOE), 1996. "Environmental Assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico," U.S. Department of Energy, Kirtland Area Office.

U.S. Environmental Protection Agency (EPA), 1989. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual," EPA/540-1089/002, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1991. "Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part B)," EPA/540/R-92/003, U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1992. "Dermal Exposure Assessment: Principles and Applications," EPA/600/8-91/011B, Office of Research and Development, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1996. "Soil Screening Guidance: Technical Background Document," EPA/540/1295/128, Office of Solid Waste and Emergency Response, Washington, D.C.

U.S. Environmental Protection Agency (EPA), August 1997. *Exposure Factors Handbook*, EPA/600/8-89/043, U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, D.C.

U.S. Environmental Protection Agency (EPA), 1997. (OSWER No. 9200.4-18) *Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination*, U.S. EPA Office of Radiation and Indoor Air, Washington D.C, August 1997.

D-49