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Abstract

There are numerous results regarding the cardinality of the set of star and semis-
tar operations on a domain R. However the cardinality of the set of such operations
has only just begun to be examined in the non-domain setting. Epstein [Ep2] has
shown a correspondence between the set of finite-type semistar operations of a ring
and the finite-type standard closures of a ring. I will classify the set of finite-type

standard closures on several rings of dimension one.
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Chapter 1

Introduction

1.1 Closure Operations

Let R be a commutative ring with unity. We denote the set of ideals of R by Z(R)
and the set of finitely generated ideals of R by Z;(R). Let @) be the total ring of
fractions of R. A fractional ideal of R is an R-submodule A of () satisfying the
property that there exists a regular element x € R such that zA C R. We denote
the R-submodules of Q by F(R), the fractional ideals of R by F(R) and the finitely
generated fractional ideals by Fy(R).

Definition 1.1.1. A closure operation on the set of ideals of R is a function

¢:Z(R) — Z(R) which for I,J € Z(R) satisfies:

o (Extension) I C I°.
e (Order Preservation) If I C J then 1° C JC.
e (Idempotence) (I¢)¢ = I°.

We say that c is of finte-type if [° = | J{J¢|J C I and J € Zy(R)}. Closure operations
c: F(R) = F(R) orc: F(R) — F(R) are defined similarly.
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Example 1.1.2. Suppose R has only three proper ideals, I, J and (0) and the ideal
lattice is as shown in figure 1.1.2. Let ¢ : I(R) — Z(R) be the map such that
(0)=1,J°=R and I = 1. Then c is a closure operation.

Figure 1.1: Example 1.1.2: Ideal lattice of R.

(Actually there are a total of 7 closure operations on the set of ideals of R.)

Example 1.1.3. Trivial closures

o The identity closure, 1° = I for all I € Z(R).
e The indiscrete closure, I° = R for all I € Z(R).
Example 1.1.4. Some non-trivial closures
e The radical of an ideal I C R, vad(I) =1 = {r € R|r™ € I for some n > 1}
or equivalently /I :== N{p € SpecR|I C p}.
e The integral closure, I :== {r € R|3n € N and q; € I' s.t. r"+iair"_i = 0}.

e Suppose R is a Noetherian ring of prime characteristicp > 0. If x € R then x
is in the tight closure of I = (x1,...,x,) if there ezists a ¢ not in any minimal

prime such that cx? € 1'9 for all large q, where I'4 = (29, ..., 29).
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e Fix an ideal a of R. Then the a-saturation, Upen(I : a”) = {r € R|3n €

N such that a™r C I}, is a closure operation.

e Let R be a ring of prime characteristic. The Frobenius closure F' is defined as
follows: for an ideal I and an element x € R, x € I¥ if there exists an n € N

such that xP" € 1",

1.2 Semistar and Standard Closure Operations

Several types of closure operations have been of considerable interest to mathemati-
cians including star and semistar operations. Star operations were introduced by
Krull in his 1935 book Idealtheorie [Kr]. Star operations were generalized to semis-
tar operations by Matsuda and Okabe [MO]. Research with regards to both star
and semistar operations has been conducted primarily in the domain setting. Huck-
aba defines the x-operation in [Huc]. This is a semistar operation over Marot rings.
Epstein gives a slightly different viewpoint on star operations in [Epl] and semistar
operations in [Ep2] over more general commutative rings. Epstein also introduced
standard closure operations and weakly prime operations in [Ep2]. He then proved
an important correspondence between the set of finite-type semistar operations of a

ring and the finite-type standard closures of a ring.

Definition 1.2.1. A set map  : F(R) — F(R) is a semistar operation provided
it is a closure operation and it satisfies the divisibility property: uA, = (uA), for all

A€ F(R) and all units u of Q.

Definition 1.2.2. A set map * : F(R) — F(R) is a star operation provided it has
the following properties:

e x is a closure operation
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o (Divisibility) uA, = (uA), for all A € F(R) and all units u of Q
e R, =R

A star operation x extends to a semistar operation by defining A, = @ for any

R-module A € F(R)/F(R).

There are semistar operations which are not obtained by extending star opera-

tions.

Example 1.2.3. Let R = k[[z3, 2%, 2%]]. Thus Q = k((x)). Consider the overring
N = k[[z* 23]]. Let M be an R-submodule of k((z)). Define M, := MN. This
is a semistar operation. However it is not the extension of a star operation since

R, = RN = N.

Definition 1.2.4. [Ep2] A closure ¢ : Z(R) — Z(R) is standard if for all ideals I,
(D) 2) = I°

for any reqular element x € R.

Definition 1.2.5. [Ep2] A closure ¢ : Z(R) — Z(R) is weakly prime if for all

ideals I and for any regular element x € R, x1° C (xI)°.

Remark 1.2.6. Any standard closure is also weakly prime. There are weakly prime

closures that are not standard.

Example 1.2.7. Let R = kE[))((i’Y)H

not standard. For instance, let w = x+y and [ = (2?,y®). We have (\/(wl) : w) = R
but I = (x,y).

. The radical closure is weakly prime. However, it is

Let S(R) denote the set of semistar operations on R and S’(R) denote the set of
star operations on R. In the domain case (for not necessarily finite-type operations)
there are numerous results regarding the cardinality of |S(R)| or |S’(R)|. I will

mention a few of them here:
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Theorem. [MO] For any integral domain D, we have |overrings of D| < |S(D)|.

Theorem. [MS] Let R be a conducive domain. Then

1. FEwvery star-operation on R has a unique extension to a semistar operation;
2. [S(R)| = 14 X perpp [S(T)] where [R, L[ is the set of overings of R properly

contained in L the total ring of fractions.

Theorem. [MS] Let R be an integral domain and T a proper overring of R. Then
|S'(R)| + |S(T)| < |S(R)|, and equality holds if and only if R is a conducive domain

which is local and each proper overring of R contains T'.

Theorem. [HMP] If R is a Noetherian domain, not a field, |S'(R)| < oo, then
dim R = 1.

Theorem. [HMP] If R is a Noetherian domain, then |S'(R)| = [ [nenvaxr 15" (Bm)|-
Theorem. [HMP] Let (R,m) be a one-dimensional local Noetherian domain such

that R/m is finite and the integral closure R of R is a finitely generated R-module.
Then |S'(R)| < oo.

Theorem. [Wh] Let R = k+a"k[[z]] be a conductive numerical semigroup ring with

finite base field k. Then R admits only finitely many star operations.

White also classifies all star operations on R in the case n = 4.

For more general rings (not necessarily domains) Epstein proved the following

previously mentioned result:

Theorem 1.2.8. [Ep2] There is a one to one order preserving correspondence be-
tween the set of finite-type standard closure operations on R and the finite-type semis-

tar operations on R.

Thus by classifying the set of finite-type standard closures of a ring we will have

classified the finite-type semistar operations of that ring.
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1.3 Dimension zero, one and two

Let S¢(R) denote the set of finite-type semistar operations on R. Under certain
assumpations we can show that for rings R with dimension zero |S;(R)| < co and

that for rings R with dimension 2 or greater |S;(R)| = oc.

Throughout, we use the term local ring to mean any ring with unique maximal

ideal.

Lemma 1.3.1. Suppose (R,m) is a local ring and dim R = 0. Then every closure

operation 1s a standard closure.

Proof. Note that if x is a unit of R then for all ideals I and closure operations ¢ we
have ((xI)¢: z) = (I¢: x) = I°. Thus if every regular element x € R is a unit every

closure operation is standard.

If m = (0) then R is a field and we are done. Suppose m # (0). Let m € m
such that m # 0. Since dim R = 0 by Thm 3.1 [Huc] there exists y € R such that
m?"y = m". This implies m™(m™y — 1) = 0. Suppose m"y —1 € m then 1 € m.
This is a contradiction so m™y — 1 is a unit. Hence m™ = 0. Thus every m € m is
nilpotent. Since the only regular elements are units every closure operation on R is

a standard closure. O

Example 1.3.2. There are zero dimensional local rings with infinitely many standard
closures. Let R = Clz,y|/(z,y)>. Let a € C*. Define x, : Z(R) — Z(R) by
(x + ay)* = (x,y) and I** = I, for all I # (x + ay). So x4 is a closure operation
and by Lemma 1.3.1 it is a standard closure. Since we have infinitely many a € C*,

R has infinitely many standard closures. See Figure 1.2.
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Figure 1.2: Example 1.3.2: Ideal lattice and closure operation.
A dash indicates inclusion and an arrow indicates the closure of the ideal.

Proposition 1.3.3. Suppose (R,m) is a local ring, dim R = 0 and m is principle.
Then R has 2°7' closure operations (where s is the number of ideals in R) and every

closure operation 1s standard.

Proof. By Lemma 1.3.1 every closure operation on R is a standard closure operation.

Let I # 0 be an ideal in R. Since m = (t) every a € [ is of the form a =
rt™ -+t m; € Nfor j € {1,...,n} with m; # m; for i # j. Without loss
of generality suppose m; < m; for all i # 1. So a = (r;4rgt™> =™ 4« oy gm0 )M
Since 71 4 rot™2 =™ .o 4t ¢ Myt is a unit. Thus I = (¢!) for some [. Since

every element of m is nilpotent, t* = 0 for some s. So the ideals of R form a chain,
ocEhc@EHcE?)c - C(t)=m

Thus R has finitely many closure operations. In fact by Proposition 2.1 [MV] it has

exactly 257! closure operations. O

Lemma 1.3.4. Let R be a ring and P a prime ideal of R containing only zero
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divisors. Define xp : Z(R) — Z(R) as I'® = [ + P. Then % is a standard closure

operation.

Proof. Let I,J C R be ideals. We will show directly that the extension, order

preservation and idempotence properties hold for p.

Extension: I C I+ P = [*F.
Order Preservation: /I C J=I1+PC J+ P = I*? C J*P,
Idempotence: (I*?)** = ([ +P)*» =1+ P+ P =1+ P =I*F.

Thus xp is a closure operation. It remains to show that xp is standard. Suppose
w € R is a regular element. Since ((wl)*? : w) = (wl + P : w) we need to show
(wl+P:w)=1+P. Let x € (wl + P : w). Sowz € wl + P. Thus wr = wi + p,
i € I and p € P. This gives w(z — i) = p. Since w is a regular element, w ¢ P
thusx —i € P. Sox —i=17p',p € P. Hence v = i+ p' € I + P. Therefore xp is
standard. O

Theorem 1.3.5. Suppose R is a Noetherian ring and there exists P € Ass R such
that ht P > 2. Then |S¢(R)| = oo.

Proof. Let {P;};cx be the set of prime ideals properly contained in P. By Lemma
1.3.4 %p, is a standard closure operation for all 7 € A and since R is Noetherian it is
also a finite-type standard closure operation. Then by Lemma 1.2.8 xp, corresponds
to a finte-type semistar operation on R. Suppose i,j € A, i # j. Thus (0)*% = P; #

P; = (0)*7. Hence %p, # xp,. If |{P;}icr| = 0o we are done.

Since ht P > 2 there exist distinct prime ideals Py and P; such that Py C P, C P.
Now let T" be the quotient of R by Fj localized at the image of P. Thus T is a
Noetherian local ring with dim 7" > 2. Any prime ideal of T" will correspond to prime
ideal of R contained in P. By the following claim 7" contains infinitely many height

1 or O prime ideals.
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Claim. If R is a Noetherian local ring with dim R > 2 then R contains infinitely
many prime ideals p such that htp < 1.

Proof. Let m be the maximal ideal of R. Suppose to the contrary that R contains
only finitely many prime ideals p such that htp < 1. Choose a; € m. By Krull’s
Prinicpal Ideal Theorem a; is contained in a prime ideal p; such that ht p; < 1. Now
choose as € m\p;. Again by Krull’s PIT ay is contained in a prime ideal p, such
that ht po < 1. By assumption we can only repeat this process finitely many times.

Thus m\ U? p; = () with each p; prime such that htp, < 1. This implies U'p;, = m.

By prime avoidance m C p; for some ¢ € {1,...,n}. This is a contradiction since
htm > 2. O
]

The explanation in the proof of Theorem 1.3.5 that [{P;}ica| = oo is from [Se]

and is included for completeness.

Example 1.3.6. Let R = k[[z,vy, 2, w]]/(zy2w, y*2w, yz*w). We have the chain of
prime ideals (y) C (z,y) C (z,y,2). The ideal Ann(yzw) = (x,y, 2) is an associated
prime and ht(z,y, z) = 2. Hence by Theorem 1.3.5 |S§(R)| = oc.

Okabe and Matsuda show for integral domains D that the number of semistar
operations on D is greater than or equal to the number of overrings of D [MO]. We

will use a similar method of proof for the next theorem.

Theorem 1.3.7. Suppose a ring R contains an integral domain E and
S = R[[u1, ..., uy]] with u; indeterminate for i € {1,...,v}. If v > 2 then
S¢(S)] = oo.

Proof. Let T'= El[uy,...,u,]]. Let P CT be a prime ideal. So Tp is an overring of
T. Let Sp be the ring (T'— P)~'S. Thus Sp is an overring of S. Now define *g,, :
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F(S) — F(S) as A, = ASp. We claim this is a finite-type semistar operation. Let
A, B € F(S), let u be a unit if the total ring of fractions of S. We will show directly
that the extension, order preservation, idempotence and divisibility properties hold

for xg,.

Extension: A C ASp = A*SP.

Order Preservation: If AC B = ASp C BSp = A*SP CB
Idempotence: (A, ).s, = (ASp)ss, = (ASp)Sp = ASp.
Divisibility: u(Ag,) = u(ASp) = (uA)Sp = (uA)sg,, -

*sp*

Thus g, is a semistar operation. It remains to show that xg, is of finite-type. Let
a € A*SP. Soa=> amr;,a; €A, r; € Sp. Let B= Sa; +---+ Sa,. So B € F¢(5)
i=1
and a € BSp = B*SP.
Since dimT" > 2, T has infinitely many prime ideals P. Let P; and P, be prime
ideals of T" such that P, # P,. Thus SSp, # SSp, = S*SP #+ S*SP . Hence
1 1

1S(9)] = oc. =

For rings R such that dim R = 1 it is not clear under what conditions |S¢(R)| <
0o. However, for the dimension one rings S, Ry and Rj3, which will be described
later, the set of finite-type standard closures is finite. In fact, we can count set of

finite-type standard closures on these rings.

10
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Counting Standard Closures on S

In this chapter we will exhibit all of the standard closures on the ring S described
below. In order to do this we will begin by classifying all of the ideals of S by their

generators.

2.1 The ring S

Let R = k[z]/(2?), k a field and let S = R[[t]].

Claim 2.1.1. All of the ideals of S can be expressed in one of the following forms.

(zt',t"), Ln €N, n>1

(z,t), 1 €N
s—1

J = (t5+ > s;t") with sg # 0, s; € R\k
i=0

NS S L~
"
=
m
2,

11
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s5—1
8. I=(+> sit"), s; € R\k, such that s; # 0 for some i
i=1
9. (zt',J),leN, I <s,s5=0
10. (xt', 1), 1 eN, 1 <s,5=0

Proof. Suppose A is a proper ideal of S and a € A. So a = >_ r;it', r; € R. Thus we

1=0
can write a = Y it + > sit?, ¢; € k, s; € R\k U {0}. Since A is a proper ideal a is
i=0 i=0
not invertible. Thus we have a = > ¢;t' + > s;t', where m = min{i|c; # 0}, m > 0.
i=m =0
Case: At least one ¢; # 0. So a = t™ (Z citi_m) + > sit". The element
i=m =0
c= > cit™™ € K[[t] is invertible. We have c™la = t™ + ¢! Y s;tt = ™ + > slt?,
i=m i=0 i=0

m—1
s; € R\k U{0}. Since z(c"ta) = xt™ € A we have t™ + > sit' € A.
i=0

Case: ¢; =0 for all i. Soa =Y s;t'.
i=0

oo oo
Subcase: sy #0. Soa=x ) 5t", §; € k. Thus s = )_ §;t* is an invertible element.
i=0 i=0

Hence s la=z € A
o0

Subcase: s; = 0 for all 7 such that 0 <i <[ and s; # 0. So a = xt! > 5715 €k,

i=l

o
Thus s = >_ 5"~ is an invertible element. So s™la = zt! € A
i=l

1

Therefore the only possible generators of A are of the form t™+ Z_ sit', s; € R\k,
i=0

x, and zt!.

1

e
Suppose A contains x and t"™ 4+ > s;t* such that some s; # 0. Then A contains
i=0
m—1

both x and t™. And these elements generate t™ + > s;t".
i=0

m—1

Suppose A contains t" and t™ + Y s;t' such that some s; # 0. Now let ¢ =
i=0

12
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m—1 m—1

min{i|s; # 0}. If n < m then Y s;t' = at® > 5;t°°¢ € A where 5, € k. Since
1=0 i=c

m—1 ) m—1 .

> 5t'¢ is invertible xt¢ € A. And t™ + > s;t' is generated by xt¢ and ¢". If

— i=0

e m—1 ) m—1 ) m—1 )

n > m then "7t 4 Y sit') — " =" Y gitt = xS §57¢ € Al Since
i=0 i=0 i=c

m—1 )
> §it'¢ € A is invertible ztt"™™ € A. And t" is generated by xt“™""™ € A and

i=c

"+ Z s;t". Now suppose s = t™ + Z sit" and r = t" + Z r;t" are contained
=0
in A Wlth sy # 0 for some wu such that 0 <u<<m-1 and r, # 0 for some

v such that 0 < v < n — 1. Letc:min{z’|si # 0orr; # 0} If m > n we

m—1 m

have s — t™ "r = > (s; — ")t = wt¢ Z (5; — tm )t e, If . # 0, then
i=0 i=c

m—1

S (8 — t™ ")t ¢ is invertible (7; € k). Thus xt¢ € A which implies t™ € A. And
these elements generate s. If §, = 0 then we can suppose u = min{i|s; # 0}. Now

suppose m —n < u — ¢ then

5 — My — ot n Zrltz ¢y Z _ gmeng (z c)f(mfn)) c A.

And — Z Pt + Z (5; — t™ 7)) t0=)=(m=1) i5 invertible. Thus zt™ " € A which
implies tm e A And these elements generate s. If m = n we get the same result. [

2.2 Standard Closure Operations on S

Lemma 2.2.1. Let R be a ring with proper ideal I. Suppose that I contains a reqular

element. If x is a standard closure on R then (0)* # 1.

Proof. Suppose on the contrary that (0)* = I. Suppose r € [ is a regular element.
We get the following equation

13
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Since * is standard this implies (0)* = R which is a contradiction. O
Lemma 2.2.2. Suppose * is a standard closure on S and (t")* = S for some m € N.

Then (t')* = S for alll € N.

Proof. So S = (t™)* C (t")* implies (t")* = S for all » € N such that » < m. Since x

is weakly prime

O™ S (OE™) = @) S ) = (") =) =S
Inductively we have (#/)* = S for all [ € N. O
Lemma 2.2.3. Suppose % is a standard closure on S, m,r € N and r < m. Then

(t™)* # (", A) for any proper ideal A.

Proof. Suppose on the contrary that (t™)* = (¢", A) for some proper ideal A, m,r € N
with » < m. The inclusion (", A) = (t™)* C (t")* C (", A) implies (t")* = (t", A)

for n € N such that » < n < m. The equation

(@) @) ) = () ) = (", A4) : ") = S
implies (¢)* = S. By Lemma 2.2.2 (t!)* = S for all [ € N which is a contradiction. [
Lemma 2.2.4. Suppose * is a standard closure on S and (t™)* = (t") for some

m,r € N. Then (t')* = () for all | € N,

Proof. By Lemma 2.2.3 (t™)* = (™). The inclusion (™*')* C (t™)* = (t™) im-
plies (t™T1)* = (t™) or (t™*1)* = (¢™'). However by Lemma 2.2.3 we must have
(tmT)* = (¢™+1). Inductively (#')* = (#!) for all [,m € N such that [ > m. Consider
the ideal () for some [ € N and

()" = 4m) = ()" ™) = (™) < t™) = (1),

This implies (#)* = (¢!) for all [ € N, O

14
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Lemma 2.2.5. Let J and I be as above. Suppose x is a standard closure on S then

1. (t™)* # J for any J or m € N.
2. (t™)* #£ 1 for any I or m € N.

Proof. (1) Suppose on the contrary that (¢™)* = J for some J and m € N. The
inclusion (¢J)* C J* = J implies (tJ)* = tJ or (tJ)* = J. Suppose the latter.
Consider ((¢J)* : t) = (J : t) = (#* 1, zt571, J). Since * is standard this implies
J* = (t*7 Y xt571 J). Since J is x closed this is a contradiction. Thus (tJ)* = tJ.

Inductively we get (t™J)* = t™J. Let j = t° + >_ s;t* the generator of J. Consider
=0

(™))"= g) = (") 2 g) = ("™ T = j) = (™).

This implies (t™)* = (¢™) which is a contradiction.

(2) Here we get a similar contradiction.

]

Lemma 2.2.6. Suppose * is a standard closure on S and (z,t)* = (x,t) then either

1. (z)* = (x), (t)* = (#"), (zt, t")* = (xt', t"), (2, t)* = (2, )VI,n €N or
2. ()" = (), O)* = (x,t), () = (!, #1), (xt' ") = (ath "), (2, t))* =
(z,t)VI,n €N

Proof. First we will show the following claim:

Claim. Suppose x is a standard closure on S, for some m € N, (x,t)* = (z,t!)
for all 1 € N such that | < m and (z,t™1)* = (2,t™) then (x,t')* = (z,t™) for all

[ >m.

Proof. Suppose (z,t™1)* = (x,t™). Further suppose there exists n € N such that

n > m+ 1 and (z,t")* = (z,t"), for some r € N such that m < r < n, and
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Chapter 2. Counting Standard Closures on S

(z,t9)* = (x,t™) for all j € N such that m < j < n. Since (zt,t")* C (z,t")* = (z,t")
either (xt,t")* = (zt,t") or (xt,t")* = (x,t") for some v € N such that r < v < n.
Consider

((xt,t¥)  t) = (x,t"1)

((z, %) : t) = (z,tv7 )

(&) (@, 1" )" 1 t) = ((at,2")" 1 1) =

This implies (z,t"')* = (z,t*"!). Since (z,t" 1)* = (z,t™) we have v — 1 = m =
v=m+1 Som < r < m+1 implies r = m + 1. However then we have
(x,t")* = (x,t™") which is a contradiction since (z,t™"!) is not x closed. Hence
for all I,m € N such that [ > m, (x,#!)* = (x,¢t™). This concludes the proof of the

claim. O
The inclusion (t)* C (z,t)* = (z,t) implies (£)* = (t) or (t)* = (x,t).

Case: (t)* = (t). By Lemma 2.2.4 (#!)* = (¢') for all [. Since (xt,t*)* C (¢)* = (¢)
either (zt,t?)* = (t) or (zt,t*)* = (xt,t?).
Subcase: (t,t?)* = (t). Consider

(&), 1) 1) = ((at, )" ) = ()" 1) = ((1) : ) = .

This implies (z,t)* = S which is a contradiction.

Subcase: (zt,t?)* = (xt,t?). With the subcase as our base case suppose

(xt”, t"T1)* = (2", ¢"T1) for some r € N. The inclusion (xt"! ¢"72)* C (xt", " 1)* =
(xt", ") implies either (xt™™1 ¢ T2)* = (zt™ ¢7F2) (wt™H T2)* = (at7, 72,

(2t = (¢ or (zt™ 72> = (w17, t"T). Consider the colon ideal
(@) (@t e ) o) = (et 772" 1 ).
If (zt™ 72 = (21", ¢"+?) then since x is standard

(xtr=L ¢t for r > 1
(xtr,trJrl)* —
(z,t?), forr =1
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Chapter 2. Counting Standard Closures on S

A contradiction. If (zt™1 ¢"t2)* = (¢"+1) then (xt",t"™1)* = (¢"). A contradiction.
If (ot 72 = (zt",t") then (xt",t"")* = (xt"~1,¢"). Another contradiction.
Thus we are left with (xt", t"1)* = (xt",¢"*1) for all r € N. Now suppose for some
m € N, (z,t™")* = (z,t™). Hence by the claim (x,#)* = (x,t!) for all I € N such
that [ < m and (z,t')* = (x,t™) for all | > m. Suppose now that n € N and n > m.

Since x is weakly prime
(tr)(.l’,tn)* g ((tr)(l',tn))* = (thr,tm—’—r) g (wtr7tn+7‘)* = (mtr,tn—&—r)* — (:L,tr7tm+r)*.

The inclusions (xt, ™ )* C (xt,t?)* = (xt,t?) and (zt, t™)* C (z,t™)* = (z,t™)
imply (zt, t™1)* = (xt,t™) or (zt,t™)* = (xt,t™). Suppose the latter and
consider
- i . (z,t™ Y ifm > 1
(@) (@, t™) 1) = ((@t, ") t) = ((wt,17) : 1) =
Sitm=1

This is a contradiction so (zt, t™T1)* = (zt,t™!). Inductively we see (xt", ™" )* =

(at”, t™*). Thus (xt", """ )* = (xt",t™*") for all » € N. Now consider
(™2 4 2t) (2, ") ™2 b)) = ((wt™ 247743 g™ ) 2 o)
— (($tm+2,t2m+3)* : 75m+2 + $t> — ((thm+2,t2m+2) . tm+2 4 xt) — (I,tm+1).

This implies (x,t™1)* = (x,#™*1) which is a contradiction. Thus (z,t')* = (x,t!)

for all { € N.

The inclusion (z)* C (x,t)* = (z,t') for all | € N implies (z)* C N2, (z, ) = (z).
Thus (z)* = (z).

The inclusions (zt!,t")* C (at!, 1) = (xt!, t*1) and (zt!,t")* C (z,t")* =
(z,t") imply (xt!,t")* = (xt!,t") for all I,n € N . This proves (1).

Case: (t)* = (z,t). Since * is weakly prime

)" S (D) = (2t,17) C ()" = ()" = (at,£7)" C (z,1)" = (2,1).
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Chapter 2. Counting Standard Closures on S

This implies (t2)* = (xt,t?) or (t*)* = (x,t). However (t*)* = (x,t) contradicts
Lemma 2.2.3. So (t?)* = (zt,t*). Now suppose (t™)* = (zt™!,t™) for some m € N
such that m > 2. We have

O™ S (OFE™) = (™ 17 C ()

(tm+1) ( tm meJrl) (xtmflatm)* — (Z‘tmil,tm).

This implies (t™1)* = (zt™, ™), (t™T)* = (xt™ L ™Y or (¢ = (™ ™).
However (t"™+1)* = (xt™~!,¢™) contradicts Lemma 2.2.3.

Suppose (t"T1)* = (xt™~1 ™1, Consider

(xt™2 t™) if m > 2
(@) E™) ) = (") ) = ((at™ 47" 1 1) =

(,t™) if m =2

Since * is standard both cases are contradictions. Thus we are left with (¢™*1)*

(xt™ ™). Hence (£11)* = (xt!, t*1) for all [ € N,

The inclusion (xt%,t%)* C (at?,13)* = (at?t3) implies (zt?, t*)* = (xt2,t3) or
(xt?, t4)* = (xt?,t4).
Subcase: (zt? t*)* = (zt?,3). Consider

() (2, 12))* 1) = ((xt?, th* : 12) = ((@t?, 7)) - %) = (=, ).

This implies (z,t?)* = (z,t). By the claim, (z,t)* = (z,t) for all [ € N. Also
(tn)(l',tl)* g ((tn>($,tl)>* = ($tn,tn+1) g ($tn,tn+l)* = (xtn’tn—i-l)* _ (l’tn,tn+1)* —
(xt™, ¢ for all ,n € N .

Now consider
(™2 4 wt) (2, ")) ™12 b)) = (™2, 473 ™2 42 4 gt

= ((@t™ 2 2mT3) ™2 gt) = (2™ 2 43 R o) = (2, 6™,
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Chapter 2. Counting Standard Closures on S

This implies (x, ™ ™1)* = (z,¢#™!) which is a contradiction.

Subcase: (xt? t1)* = (xt?,t*). Now suppose for some m € N, (x, t"1)* = (z,t™).
We obtain the same contradiction as we did in case (£)* = (t), subcase (zt,t*)* =
(zt,t?). Thus (z,t)* = (z,#) for all [. Just as in case (t)* = (t), subcase (zt,t?)* =
(zt,t?) we have (z)* = (z) and (zt',t")* = (xt!,#") for all I,n € N. This proves

(2). O
Lemma 2.2.7. Suppose * is a standard closure on S and (x,t)* = S, then (x,t')* =

(zt" )y = (") = T =T* = (at!, J)* = (xt!, [)* = S for alll,r € N and I and J.

Proof. With the assumption as the base case suppose (z,t")* = S for some n € N.

Since x is weakly prime (¢)(z,t)* C ((t)(x,t))* = (t) C (xt,t""')*. Since t €

ot " C (2, Y, (2, t"T)* = S. Thus (z,t))* = S for all [ € N.
(
Again since x is weakly prime
(") (@, 1) S (") (@, )" = (t7) S (at", t77)" = (at", £77)" = ()"

Since (t")* C (z,t")* = S and Lemma 2.2.5 (xt", #77)* = (xt/,¢"), for some j € N

such that j < 7 or (xt",t7")* = S. Suppose the former.
()t 7)) = ((at7,857)" : 0) = ((@th, ) ) = (8.

This implies (zt"~7, #+779)* = (z,¢"=9). This is a contradiction since (z, ") is not
x closed. Thus (zt",t47)* = (t")* = S for all [,r € N. Since S = (t*)* C J*, J* =S
for all r € N. Similarly I* = (zt!, J)* = («t!,[)* = S for all | € N, J and I, O

Theorem 2.2.8. There are exactly siz standard closures on S which are given below.

1. %1 : A" = SV ideals A.
2. %y 1 (0)2 = (xth)2 = ()2 = (2), (x,t)2 = (at", )2 = ()2 = J2 =
2= (zt, )2 = (xt, N =SVIineNand I and J.
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Chapter 2. Counting Standard Closures on S

3. x3:(0) = (0), A = SV ideals A such that A # 0.

4. x4 1 (0)* = (0), (ath)* = (x)* = (x) VI €N and A* = SV other ideals A.

5. x5 :(0)" = (0), (2) = (2), (1) = (1), (") = (at!, "), (at)" = (at)),
(zt 1) = (zt "), (z, ) = (z,t)), J* = (x5 J), I* = (xt571, 1),
(zt!, J)s = (zt', J), (xt', 1) = (xt', 1)V I,n € N and I and J.

6. xg : A = A Y ideals A.

Proof. By Lemma 2.2.1 (0)* =S, (0)* = (x) or (0)* = (0).

Suppose (0)* = S. Since for all ideals A, S = (0)* C A we have A* = S for all A.

This is *;.

Suppose (0)* = (z). The inclusion (z) = (0)* C (t™)* and Lemma 2.2.5, (t")* =
(z,t7) or (t™)* = 8S.

Case: (t™)* = (z,t)) for some j,m € N. By Lemma 2.2.3 (t™)* = (x,t™).
Suppose (z,t)* = S by Lemma 2.2.7 (z,t™)* = S which is a contradiction since
(z,t™) is % closed. Thus (z,t)* = (x,t) and by Lemma 2.2.6 (t\)* = (¢') for all | € N
or (t)* = (t) and (#'1)* = (at!,#!1) for all | € N which is a contradiction.

Case: (t™)* = S for some m € N. Since S = (™)* C (z,t)* we have (z,t)* = 5.
By Lemma 2.2.7 (z,t))* = (at" 17" = (t")* = J* = [* = («xt!, J)* = (at', [)* = S
for all /,r € N and I and J. Since (z) = (0)* C (zt')* C (z)* = (z), (xt))* = (z) for
all [ € N. This is %o.

Suppose (0)* = (0). Either (z,¢)* =S or (z,t)* = (x,t).

Case: (7,t)* = S. By Lemma 2.2.7 (x,t!)* = (zt", 4" = (") = J* = I* =
(xt!, J)* = (xt',I)* = S for all [,y € N and I and J. Since (z)* C (x,t!)* = S for all
[ € N either (z)* = S or (z)" = (z).

Subcase: (z)* = S. Since * is weakly prime (¢')(x)* C ((#!)(2))* = (#) C (at))* =
(zt')* = (t')* = S for all [ € N. This is *3.
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Chapter 2. Counting Standard Closures on S

Subcase: (z)* = (x). The inclusion (zt)* C (z)* = (x) implies (xt)* = (xt) or

(xt)* = (x). Suppose the former. Since * is weakly prime

(@) () S (@) ()" = (at) C (at)" = (at')" = (at)" = (at)

for all | € N. Consider (((t)(zt"=1))* : t) = ((xt')* : t) = ((xt) : t) = (z). This implies
(xt'=1)* = (z) which is a contradiction. Thus we must have (zt)* = (x). Then
t)(x)* C ((t)(2))* = (xt) C (2t?)* = (2t?)* = (xt)* = (z). Inductively (zt!)* = (x)
for all [ € N. This is 4.

Case: (z,t)* = (z,t). By Lemma 2.2.6 there are two possibilities.
Subcase: (z)* = (z), ()" = (z,t), (#1T)* = (at!, #11), (2t t7)* = (xt!,t") for all
I,n € N, (z,t)* = (z,t') for all | € N. The inclusion (xt)* C (z)* = (z) implies
(xt)* = (xt) or (xt)* = (x). Suppose the latter. We have (¢)(xzt)* C ((t)(zt))* =
(xt) C (xt?)* = (2t?)* = (xt)* = (x). However (z) = (2t?)* C (xt?,13)* = (at?,13)
is a contradiction. Thus (zt)* = (xt). The inclusion (zt?)* C (xt)* = (xt) implies

(zt?)* = (xt?) or (xt*)* = (xt). Suppose the latter and consider

(B (@) 1) = ()" : )((at) : 1) = ().

This implies (zt)* = (z) which is a contradiction. Thus (zt?)* = (2t?). Inductively
(xt')* = (xt') for all | € N. This leaves the ideals containing J and I. Consider

s—1
=) st )ttt — Zstz (G Zstz
=0

s—1

_ (( t25 1 t2$ . Zsth ts 1 J)

Thus J* = (xt*~', J). Similarly I* = (zt*~*, I). Consider

-1
—isiti)(aztl L1 — Zst‘ = ((at"™ %)t — Zstz
1=0
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Chapter 2. Counting Standard Closures on S

Thus (xt!, J)* = (xt!, J) for all [ € N. Similarly (zt!, I)* = (xt!,I) for all | € N. This
1S *5.
Subcase: (z)* = (z), (t')* = (¢) for all [ € N, (zt!,t")* = (xt',t") for all [,n € N,
(z,t")* = (x, ") for all | € N. The inclusion (zt')* C (¢)* = (#!) implies that for each
| € N either (zt))* = (') or (xt')* = (#!). Suppose the latter for some [ € N and
consider

() @) 1)) = ((@t)" ') = ((t) : ') = 5.

This implies (x)* = S which is a contradiction. Thus (xt!)* = (zt!) for all [.

This leaves the ideals containing J and I. Consider

—_

(0 = S st ) = Yt = () = Yt = () = Yt = .

i

I
=)
I
)
-~
I
=)
s
I
)

i

Thus J* = J. Similarly I* = 1.

(((t° — Z sit!) (xt!, J))* : tF — i sit!) = ((xt!T=,6%5)" 17 — Z sit?)

=0
s—1
= (@t ) o 87 =Y " sit’) = (at', )
=0

Thus (xt!, J)* = (xt!, J) for all [ € N. Similarly (zt!, I)* = («t!, I) for all | € N. This

is x¢, the identity closure. [

Corollary 2.2.9.
1S¢(5))] =6

Proof. By Theorem 2.2.8 and Lemma 1.2.8. [
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Chapter 3

Standard Closures on Ry

In this chapter we will develop many tools for classifying the standard closures on R;
(described below) for any ¢ > 2. We will then exhibit and count all of the standard
closures on Ry, and R3. As with the ring S we must begin by classifying all of the
ideals of R;.

3.1 The ring R;

Throughout k£ is a field and R, = K[[X4, ..., X¢]]/(XiX;|i < j). We use lower case

letters xq,...,z; to denote the images of Xi,..., X, in R;.

Lemma 3.1.1. FEvery proper ideal of R; is generated by polynomials of the form

xzi1+a2xzb+~~-+avxzf“’ with a; € k> for2 <l<wvand1 <11, <--- <1, <t

Proof. Suppose f is an element of a proper ideal J. Thus f is a nonunit with the
— o 1 ,.J1 o0 Vo JU n _ :
form f =37 ajxi 4+ >0, aj x;’ with each a} a non-zero power series

inx;,,...,%,,...,x, and mg > 1 for s = 1,...,v. However since z;_ “ iy =0 for
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Chapter 3. Standard Closures on R;

a # [} we can assume each aj € k. So

= pm ]1 mi " —My
B Z a]l i1 Z a]u zv .

Jji=mi

Soeach 3 *_ jnxf” " is an invertible element in the subring k[[z,]] with inverse

— n X
Un =D g AL, € k*. Now

oo
— 1, .ma 2 J2—me2 | 1 mu —my
wf=aft + el Y el + E : aj,
Ja=mz2
2 m1 1 mg 1.2 m3 Jjz—ms3 1.2 mv —My
usuy f = curyt + oy + ooy, E ajgscZ3 + - CHCo; E a; )
Jjz=ms Jo=my

_ 2 t, .m1 1.3 t . .mi1 1.2 t—1,.my
Uy .. urf =cy...quryt +¢Cy ot + o+ qCy - Co T

Multilplying the last equation by (c2...cf)™" we have the result. O
Lemma 3.1.2. Let I be a proper ideal of R;. Then I = (f1,...,fi) where f; =
Za” 2 with a;; € k and my; € N for 1 < j <1 where each f; is monic.

Proof. Since R; is Noetherian and Lemma 3.1.1. O]

The following algorithm gives an ordering for the generators of an ideal I C R;.

Algorithm 3.1.3. Let I be a proper ideal of Ry. By Lemma 3.1.2 1 = (f1,..., fi)
where f; = Za” 2 with a;; € k and m;; € N for 1 < j <[ (each f; is also

monic). Let W ={fi}\_;. Let 1 < n <t. Define

0, Zf aw = 0

Mnj, if Qn,j 7& 0

a, W = NUA{0} as a,(f;) =

Consider the generators f,. and fs, 1 <r <[, 1 <s <.
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Chapter 3. Standard Closures on R;

Letn =1

If an(fr)an(fs) =0 go to (3) otherwise go to (4).

If an(fy) # 0 then f. > fo. If a,(fs) # 0 then fs > f.. Otherwise go to (5).
If an(fr) > an(fs) then fr < fs. If an(fs) > an(fr) then fs < f.. Otherwise
go to (5).

Ifn<tletn:=n+1and go to (2). If n =1 go to (6).

6. If (a1, —a1g,... a1, —ars) = (0....,0) then f. = fs. Otherwise f, and fs are

e v o~

S

not comparable.

Note f,. and f are equal or not comparable if and only if a,,(f.) = a,(fs) for all

n.

Definition 3.1.4. Let I and W be as in Algorithm 3.1.3. If f. = fs or f. is not
comparable to f, then f. ~ f,.

Proposition 3.1.5. The relation ~ is an equivalence relation.

Proof. Let f.,fs and f, € W. Since f, = f, then under Algorithm 3.1.3 f. = f,.. So

fr ~ fr. Suppose f. ~ fs. Then a,(f,) = an(fs) for all n. So f; ~ f.. Suppose
fr ~ fsand fs ~ f,. Then a,(f.) = a,(fs) for all n and «,(fs) = a,(f.) for all n.
Thus a,(fr) = an(fy) for all n. So fs ~ f,. O

Definition 3.1.6. Let I and W be as in Algorithm 3.1.3. Let a,b € W/ ~. Suppose

fr is a representative of a and fs a representative of b. We say a > b if f. > fs.

Proposition 3.1.7. The relation given in 3.1.6 is well defined.

Proof. Suppose f,, and f,., are both representatives of a and fs is a representative
of b such that f., > f;. We need to show that f., > f;. Since f,, and f,, are
representative of a, a,(fr,) = a,(f,) for all n. Thus f,., > fs. O

We will denote the reduced row echelon form of a matrix A by rref(A).
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Chapter 3. Standard Closures on R;

Algorithm 3.1.8. Let I be an ideal of R;

1. Let I = (fr,...,fi) where f; = Zaw Y with a;; € k and m;; € N for
1 < j <1 where each f; is monic whzch we can do by Lemma 3.1.2.

2. Let J be the smallest monomial ideal generated by a subset of the generators of
the mazimal ideal of R that contains I. Thus J = (xj,,...,x;,) with
I<pn<--<just

3. Let W= {f.}'_,

4. Partition W with respect to ~ such that W = 11¢_,W,, and
Wi >Wy > > Wy

5. Reindex the fs with respect to their equivalence class W, so that for
u=1,....d, W, = {fuﬁ}g‘zl. So each f,, = éauﬂcxzuﬂc, yy, €K,
for1 < g <I,.

6. For each u such that 1 <u <d, let A, = (auﬁc) a l, X v matriz.

7. Compute rref(A,) for each u such that 1 < u < d. So rref(A,) = (bu,,),
bu,, € k.

8. Let f,, = z b,y

9. Arrange all the nonzero fu, by their indices in dictionary order and reindex

them in that order with the natural numbers in the usual order and let

W= {fs}gzl'

Since elementary row operations are reversible we can recover each A, from

rref(A,). Thus W is still a generating set for I.

Algorithm 3.1.9. Let I be an ideal of R;.

1. Run Algorithm 3.1.8 for I to obtain W = { f,}!
2. Leti:=1+1.

3. Let j :=min({1,...,I1}\{i}).
4. Letn :=n+ 1.

1:=0,n:=0.

s=1’
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Chapter 3. Standard Closures on R;

5. If there exists a € k and m € N such that az]' f; is a term of f; replace f; with
fi —axy' fi.

If n <t go to step 4.

Ifj<land j+1+#i thenlet j: =35+ 1, n:=0 and go to step 4.
Ifj<landj+1=ithenletj:=j5+2,n:=0. If j <l go to step 4.

AN NS

Ifi <1 go to step 2.

10. Let W = {f}_\{fslfs = 0}. So W now has r < I elements. Let | := r.
Arrange all of the f, in dictionary order and reindex them in that order with
the natural numbers in the usual order. Let W = {fs}._,.

11. Now for s € {1,...,1}, fs = Zt: Asn @M, Gspn € k. Let A = (as,). Compute
rref(A) = (bsn), bsn € k. T_LljzclA = rref(A) we are done. If not for each
se{l,... 1} let fs = zt: bsnp™.

12. Go to step 10. "~

Definition 3.1.10. Let I be an ideal of R;. We will call the set W that results from
applying Algorithm 3.1.9 to I a reduced generating set of I.

Lemma 3.1.11. Regardless of how the polynomials obtained in step (1) of Algorithm

3.1.8 are indexed Algorithm 3.1.9 produces a unique reduced generating set of I.

Proof. Let I be an ideal of R;. Step (1) of Algorithm 3.1.9 is to run Algorithm 3.1.8
for I. Suppose we index the generators of I obtained in step (1) of Algorithm 3.1.8 in
two different ways I = (f1,..., fi) and I = (f,,,..., f;,). We now continue algorithm
3.1.8 for I with the former indexing and then I with the later indexing. In each case
we obtain J = (zj,,...,2;,). In step (3) we have W := {f,}._; and W’ := {f,.}._,.
Since W and W’ contain the same polynomials after step (4) W, = W, for 1 < u < d.
So the matrices A, and A, obtained in step (6) are such that rref(A4,) = rref(A)).
Thus W and W’ obtained in step (9) are equal. O

Lemma 3.1.12. Let I be an ideal of Ry and W = {f,}._, be a reduced generating
set of I. The elements of the set W have order f; > fo > ---> f.
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Chapter 3. Standard Closures on R;

Proof. For each s € {1,...,l}, fs = i bsnn™, bsn € k where by step (11) of
Algorithm 3.1.9 the matix (b, ,,) is in red%:cled row echelon form. Let ¢ = min{n|b;,, #
0}. Thus bsi1. = 0. So ae(fs)ae(fst1) = 0 and a.(fs) # 0 . This implies f; >
fst1. u

Lemma 3.1.13. Let I be an ideal of Ry and W = {f,}._, be a reduced generating
set of I. Then

(1) no f; generates a term of f; for any j # i
(2) W is k-linearly independent set
(8) no proper subset of W generates I

Proof. (1) This is a result of steps (2) through (9) of Algorithm 3.1.9. (2) This is
a result of steps (10) through (12) of Algorithm 3.1.9. (3) Suppose not. Suppose
W/ f; generates I. By (2) W is k-linearly independent set. Thus f; is not a k-linear
combination of elements of W/ f;. Since f; € I, f; must be an R;-linear combination

of elements of W/ f; but this is impossible by (1). O

Proposition 3.1.14. Suppose I is an ideal of R;. Then I has a unique reduced

generating set.

Proof. Run algorithm 3.1.9 for I. In step (1) we apply Algorithm 3.1.8 to I. In step
(1) of Algorithm 3.1.8 we use Lemma 3.1.2 to get a polynomial generating set for I,
I=(f1,...,f;) where f; = i d; jr;" with d; ; € k and m; ; € Nfor 1 < j <[ where
each f; is monic. Upon comlglletion of the algorithm we have a reduced generating set
W = {h;};_, for I. Now suppose we run Algorithm 3.1.9 again for I except this time
in step (1) we obtain a different polynomial generating set for I, I = (g1,...,9m)
where g; = Zt:ei,jx;ni’j with €;; € k and m;; € N for 1 < j < m where each g,
is monic. Arﬁlupon completion of the algorithm we have a reduced generating set

W' = {h}3_, for I. We need to show W = W".
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Consider h; € W’'. By Lemma 3.1.12 W is totally ordered, thus hy > hy > -+ > h,.

There are two cases.

v .
Case 1: () ~ h, for exactly one n, 1 <n <r) Thus b} =} ajz.x;r;“, aj, € k*,
i=1

s jz_ji, bj, € k™. Suppose h}; # h,. Suppose for some 1 <m < r, hy,

and h, = > b,z
i=1

generates a term of . So for some 1 < ¢ <wv,a € k*, deN, a$§-lchm = a;.x;” =

Z#(ax? hpm) = bjcx;njc. This is a contradiction since by Lemma 3.1.13 h,, cannot
Je c c

generate a term of h,. Thus no h,, generates a term of h}. Since h’ # h, and both
h’; and h,, are monic h’; is not a multiple of h,,. So A’ is not generated by {A4, ..., h,}

which is a contradiction since b, € I. Thus k) = h,,.

Case 2: (h} = h, for any n such that 1 < n < r) Suppose A} is in the k-linear
vector space generated by W. So h;- = zrj a;h;, a; € kimplies hy = aflh;—afl ZT: a;h;
which implies hq is a k-linear combinaﬁén of elements of W. This is a contrazi:ii:tion
since by Lemma 3.1.13 W is k-linearly independent. So A} is not in the k-linear
vector space generated by W. Suppose A} has term Szi, 8 € k*, but no h, has
term o), r, < m,, o € k*. This is a contradiction since W generates I. Suppose
h;» has term fx'* and for some n, h, has term azl*, r, < m,. Since h;- e W', no
element of W’ has term pxf*, s, < m,, p € k*. This is a contradiction since h,, € I
and W’ generates I. Thus W/ C W. By similar argument we can show W C W".

Thus W/ = W.

Also since both W and W' are totally ordered by Lemma 3.1.12 we must have
hy =hy,hy =hy, ... h, =N

with r = s.
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3.2 Standard Closure Operations on R;

Lemma 3.2.1. Suppose 1 < i1 < --- < i, < t. If x is a standard closure on R,

and (x; ", ... 2" ) = (", ..., 2;,") for some m;; € N with each m;, > 1 then

i 71
Tiy Tiv \x __ Tiq T
(im0 ) = (2, 2yY) forallry; € N .
miy Miy \x miy m; ) .
Proof. Suppose (v, ",...,2; ") = (z;",...,2,") for some m;; € N with each

m;, > 1. Let (s4,...,5;,) € N” with each s;, <m;, for j =1,...,v. Let

— iy = Siy My —Siy
W=Ty+ -+ L1+ Ty, T Xiyp1 T T + T, + i1+ Ty

Consider
((w(xffl, o ,xfz”))* Lw) = ((lel7 . ,x?zi“)* L w)
= ((leil, LTpt) tw) = (:pfjl, ).

Since « is standard this implies (z;", ..., z;")* = (z;',...,2.") forall (s;,,...,s;,) €

v

N* with each s;; < m;,.

We need to show

( mip —1 Mijog=l Mg Mgyl mm—l)*
i e T T Ty,
= ( mip —1 Mgl me iyl mzv—l)
= (@, om0 Ty T T,
Without loss of generality we will show
mi miy—1 Miy—I\k 7 M4y Miy—1 M, —1
(il ) Vig ,...,Iiv ) _(il » Vg ’ ? iy )
Mg Mgl my, —1
Let [ = (x; ", 2,7 ...,z ). So
* milfl miv—l * milfl miv—l
I Co(x, oz ) = ().
. mi; —1  my,—1 m;, —1 . .
So either I* = I or I* = (x; ™" ", 2, *,...,2;" ). Suppose the latter. Since x is

weakly prime

(w144 a) [ C (14w D) = (@5 al) C (a2l )

11 1y 71 2 v
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mi;+1 my, Mip\x __ /Mg Miy\x __ /Mg m;
(2, " gy, 2wy ) = () = (g
Let u =1+ - 451 + &3 + 2500 + - + 24
Consider
mip—1  m,—1 My, —1\\x | - mip+1 my, iy \ %
((u( i1 1 L e Ly )" ru) = (( i1 1y Ly s 7xivv> u)
_ iy mi
- (( i1 ) 7xivv) U)
mi1*2 m¢271 mi, —1y .
B (g, Twy,? ) iy, > 2
mi2_1 m;, —1y\ o
(i, 25, . g, ) ifmy, =2
Since « is standard we have a contradiction unless m;, = 2. Thus
2 Mig Mgy \k __ 2 Mig m; _ 3 Mig Mgy \ %
(wi, 2,2, a0 ) = (g, 2,2y ) = (2,2 ™)
and
2 mizfl My, — 1\ % _ migfl M, —1
(2,25, oy, ) = (@, ).

Let r = oy 4+ 2j—1 + 27 + i1+ + Tig—1 + 5, + Tigpr + -+ + 24

Using again that * is weakly prime,

ra T C (el e

= (2l al ) C (T el )

= (ke e ey = (g8 gl gl ey
Since (27, :UZ”QH, Z“, ) C (2 xZiQ, A

(h ol ey = (el e el

= (22 e )

or
(af ot el ey = (o e e ey = (a2
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. 2 Mig Mz —1 Mi, —1\x 2 My —1 M4, —Lyx
Notice (z; 7,7, 2;,° ..., 2" ) C (27, 2;,” ...,z )" =
2 Miy Mig -1 My, —1\x o 2 Mig Mig 1 My, —1
(mip io ) Vig 3 ) xiv ) (xiﬁ o ) Vig ) ) xiv )
or
2 Mg Mig -1 My, 1\ % Mg 1 My, —1
(xila .CIZ'i2 » Vig ) ) xiv ) (xll ’ ’miz ) ’ xiv )

Now consider

(((xl 4+ .4 xt)(x?1,$gi2,$gi3_l, o 7l»miv_1>)* I S xt)

= (@3, 2= 2l e e+ 1)

117 Vig )3

is either

3 miy,+1  myg My \ . . 2 My Myg—1 mg, —1
((:1c'l-l,avi2 N ).x1+---+xt)f(xi1,xi2 )Ty s T )
or
3 Miy Mg My | . 2 mi,—1 mg, —1
((:Cil,xl-2 PN )-$1+--'+$t)—($i1,332-2 s Ty )

Since « is standard the latter is not possible. So we must have

4 mi2+1 Mg My \ %
(i17 i » i3 7"'7xiv )
o 3 mig+1  mgg My \k 3 mig+1  myg mi,
( 117 Vig » iz a"'7xiv ) _(xilv i9 7xz'3 ""7in )
and
2 Miy  mig—l My — 1% 2 My,  mig—l M, —1
('Ti17‘ri2 7'Ii3 ’ 7xiv ) ('ri17xi2 7I’i3 ’ 7'Iiv )
Now
2 Mig mi3—1 My —1\\% . o 4 mi2+1 Mg My \x .
((w(g, zs, 2, w0 ) rw) = (o, 2, 2y, ™) )
. 3 miytl myg My \ . . A Mig  Mig—1 My —1
(( 117 Vig » Mig ""7in )'u)_(m217$i2 ’x’ig 7“‘7xiv )

.. . . . m; Mo —1 m;. —1\ .
This is a contradiction since (22 ,x, 2,2, ® ..., z; " ) is % closed.
17 Vg i3 i
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Hence
( m;; —1 Mgyl T mij+1_1 Q;T.n“’_l)*
11 PR | 1]'—1 ) z]- ) z]-+1 AR Ty
= ( miy —1 R xmw—l)
21 MARERE lj*l ) Zj Y Zj+l AR v

We need to show

( mi, Mi;_q mz'j-i-r Mij o >*
il g e e ey ij—l 9 ZJ 9 ij+1 PRI ,$Z-U
= (¢ Mijy MG Mgy, 27
- (2RI Rt PR R Bl Lk VS T A R 2%
. . . m;, +7 m; m;
for all » € N. Without loss of generality we will show (xil” STy ,:z:iv”)* =
Mig+r iy My
(zg, " @y, %, ") forallr € N,
Suppose for some r € N,
mi; +r  my, My \* mg+r  my, mg,
(il 1 gy Ty ey Ty ) _<i1 1 Lig 5oy Ty )
Since
mi, +r+l my, My \ mi +r My, Miy\k mi +r My, o
(7, VT, 2wy ) C (g, ) = (g, )
either
mi +r+l my, Mig\x ¢ Mg T+l my, my,
(xil 1 Lig "o Ty, ) _(xil 7 Liy Ty ey Ly )
or
Miq +r+1 My Miy \x mil—l-’l‘ My mi,
(7, T,y ) = ().
Suppose the latter. Consider
r+1 mil mizfl my —1 *
(- Fwg o+ Fag e -a) ("t x,” . r," )
. r+1
I S R TN o A e 0.
. mi+r+l my, My \% | r+1
= ((zy, P FSA W T SRR S PRSI S Sl S PAFR R S )

_ mig T My Mg\ . r41
= ((z;," 2, xy) o T 2 T+ T)
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_ mil_l m’ivil
= (" @)
Which is a contradiction since
My My —1 Miy—I\k _  Mip  mip—1 M, —1
(il » Mg 7"'71:2‘,, ) _(il » Mg 7"'7xiv )
Thus
mi +r+l my, My \ % mi +r+l  my, mi,
(xil » Hig 7"'7xiv ) _(xil ’xiz ) ’xiv )
So
mi +r My, My \k My +r My, My,
(il » Mg 7"'7‘Tiv ) _(il » Mg 7"'7xiv )
for all r € N. Hence
( mg, Mi;_q mijJrT Mij g xmiv )*
1 0t ij71 9 ij I ijJrl )t Wiy
= ( miy Mij_q Mt Mgy, 2
- i1 0t ij71 ) ij ) ij+1 AR R P8
for all »r € N.
Suppose 1;; > m;, for 1 < j <,
Tip Tiy \% My My Tig M Mgy \ %
(@, C oyt 2ty Ly
(T My Tig My my,
= (2, 2wy ).
So
Tiy Tiy \* v (T i T'ij i Miy\ __ Tiq Tiy
(@it oemy) SNy Dy ) = (T,

Thus

(x:fl,...,xzzv)* = (z,", ..., z,")

for all i, > My for1 <j<w.

Now suppose 7, eNforl<j<w. Lets:x1+~-+xi1_1+le”+xil+1+~-

my .
Ti,—1 + 2" + Ti,41 + - + x4 Consider

((s(a}r, . 2l vs) = (@ gl ey g) = (a0, .. )™

11 v 11 v 11 v
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Hence (z;,... 2" )" = (x;*,... ;") forall r;; €N
]
Lemma 3.2.2. If x is a standard closure on Ry and (x1,...,x;)* = R, then
(", .o x)* = Ry for all (my,...,my) € N Moreover if I is an (x1,...,3)-
primary ideal then I* = R;.
Proof. Suppose (z1,...,x;)* = R;. Since  is weakly prime
(P + -+ al) (g, )" C ("™ ) (2, x))”
= (™) C (2T T = (P ey = (2 ™),
Note that
(21,23, -, 20)" 2 (@ + a5+ + )
(23,25, 25, ..., o2 D (2% + a9+ 25+ 27)
(23?, s ,ZL‘?_DI%)* 2 (ZB% oot x?—l + xt)

And Algorithm 3.1.9 implies (21 + 23+ -+ 2}, 22 + xo+ 23 -+ a7, ..., 234+ +

z? 4+ ;) = (21,..., 7). Thus we have the following inclusion,

(x1,...,2) = (1 + a5+ -+ o, ot t oy + a5+ ar, .. 2 T )
C (z], a5, o) + (23 22 2l ) (2, ) a2 C (2, o))
- (l’l, . ,l't)*.

This implies Ry = (x1,...,7,)* = (22,...,2?)*. Furthermore (22,...,2?) C (z; +

-+« 4 ;) this implies (21 + -+ + 2;)* = R;. Now we can show by induction that
(},...,2})* = Ry for all n € N (our hypothesis is our base case). So assume

(..., 2})* = Ry for some n € N. Since * is weakly prime,

(xl —|——|—5L’t>($?,,x?)* g ((1'1 ++th)(x1117ax?))*
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= (@) 4 Fay) C (a8 2t
= (a7 attY = (o + -+ 2) = Ry

So (z7,...,x})* = Ry for all n € N. Let N = maz{my,...,m}.

Ry = (af, ... 2Ny C (a7, ... al)*
C Ry = (™, ..., 2")" = R, for all (my,...,m;) € N°.
[
Lemma 3.2.3. If x is a standard closure on R; and (m?:”, @) = Ry for some
(myyy...,my,) € NV then (xZ“,...,xZi”)* = Ry for all (n,...,n;,) € N”. Moreover

if Jis an (x4, ..., x;,)-primary ideal then J* = Ry.

Proof. Suppose (xZL”, o ,I?Ziv>* = R, for some (m;,,...,m;,) € N’. The inclusion
R, = (m?:” s @) C (2, @)t implies (24, ..., @;,)* = R;. And the inclu-
sion Ry = (wi,,...,x,)" C (x1,...,2)" implies (z1,...,2;)* = R;. Thus by Lemma

3.2.2 (xq + -+ 4+ x4)* = Ry. Since % is weakly prime we have

(14 z) (@i, x,)  C (w14 + ) (g, -y w,))”

(1 4+ +m) C(27,.... 20"
This implies (27,...,27 )* = (x1 + - - + 2;)* = R;. Inductively we have
(zf,...,2})* = Ry for all n € N. Consider (z}',...,2{"), (n1,...,n,) € N". Let
N = max{ny,...,n,}. The inclusion R, = (z,...,a))* C («}',...,z]")* implies
(zit, ... 2")" = Ry for all (ny,...,n,) € N". O
Lemma 3.2.4. Let R} = k[[x1,...,Tn—1,Tn, Tnt1, - - -, 34|/ (wi;]i < j) and

¢ : R — Ry be defined ¢p(a) = a. Suppose xr is a standard closure operation on R
Define the following operation

xs : Z(R;) — Z(R;) where B*s = ¢(A*T) if B = ¢(A) for some proper ideal A in R
or B = Ry if B # ¢(A) for any proper ideal A in R}.

Then ¢ is an injective ring homomorphism and xs is a standard closure operation.
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Proof. 1f a is non-zero then a is non-zero. Thus ¢ is injective. Since elements of
R! do not contain any terms which are multiples of z,, their images under ¢ are
identical. Thus ¢ is a ring homomorphism. We will show xS is a closure operation.
Let B € I(R;).

(i) (extension) Case: B = ¢(A) for some proper A € Z(R?). Thus B = ¢(A) C
G(A*T) = B*S.

Case: B # ¢(A) for any proper ideal A C R?. Thus B C R, = B*.

(ii) (order preservation) Suppose B C C, C an ideal in R;. Case: B = ¢(A) for
some proper A € Z(R?). If C = ¢(I) for some proper I € Z(R?) then it contains
A. Thus B* = ¢(AT) C ¢(I'T) = C*5. If C # ¢(I) for any I € Z(R}) then
B*S = ¢(A*T) C R, = C*5. Case: B # ¢(A) for any proper ideal A C R?. Thus B
contains an element b such that b ¢ Im ¢. Since C also contains b, B* = R, = C*%.
(iii) (idempotence) Case: B = ¢(A) for some proper A € Z(R}).

(B*)S = (¢(A1) = ¢((AT)T) = (A7) = B*5. Case: B # ¢(A) for any
proper ideal A C R?. So (B**)* = (R;)*® = R, = B*S.

Now we will show xS is a standard closure operation, B*¥ = ((sB)*S : s) where
5 is a non-unit regular element of R;. Thus s = Zle a;x;", a; 0 fori=1,... ¢t
Let r = ZE;%, a;z]". So r is a regular element in the subring R?. Let f € B*S.
Case: B # ¢(A) for any proper ideal A C R". Thus B contains an element g =
h 4+ ux™ h € Im¢, and u € R). So sg = (Z%ﬁg a;x;")g + (apzl™)g = r(h +
uzl) + (@) (h + uzl) = rh + auz™. Thus sB # ¢(A) for any proper ideal
A C R So (sB)* = Ry = ((sB)* : s) = (R; : s) = Ry which contains f. Case:
B = ¢(A) for some proper A € Z(R}'). Thus B* = ¢(A*T). Now sB = s¢(A) =
ro(A) + an2md(A) = rd(A) = d(r)o(A) = ¢(rA) = (sB)* = ¢((rA)"). Since
f € B*S there exists g € A*T such that f = ¢(g). Hence rg € rA*T C (rA)*T (since
*T' is weakly prime). So ¢(rg) € ¢((rA)*") = (sB)*S. Thus

o(rg) = ¢(r)d(g) = ré(g) = s¢(g) = sf = sf € (sB)** = f € ((sB)*" : s).
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To show the other inclusion let f € ((sB)*® : s).

Case: B # ¢(A) for any proper ideal A C R?. Thus there exists b € B such that
b ¢ Tm ¢. Hence sb ¢ ITm ¢. So sB # ¢(A) for any proper ideal A C R which implies
(sB)*S = R;.

sBCB=R,=(sB)*CB*= B*“=R,= fec B,

Case: B = ¢(A) for some proper A € Z(R!). First we will show there exists
g € R? such that ¢(g) = f.

B =¢(A) = sB = s¢(A) = r¢(A) = ¢(r)o(A) = ¢(rA)

= (sB)* = ¢((rA)™") C ¢(A™).
Since f € ((sB)* : s), sf € ¢(A*T) C Im¢p. Now suppose f ¢ Im¢p. So f =
22:1 Ry ®, o € R or ¢, = 0 for k such that 1 <k <t and ¢, # 0. Thus

t
sf=rf+(azl)f=r Z eyt + agc, i ¢ Tm g,
Zn
This is a contradiction. So there exists g € R? such that ¢(g) = f. So sf €
d((rAT) = rf € ¢((rA)*T). Thus

o(rg) = ¢(r)plg) =rf € o((rA)") = rg € rA)" = g € ((rA)" 1) = A7

= [ =9¢lg) € H(AT) = B**.

O

Lemma 3.2.5. Let [ = (x?:”, e ,x:-:fi”), 1<, <o <4, <t. and x be a standard
closure operation on Ry. If I* contains a reqular element x4+ asxs? + - - -+ )t with
ao € k* for all a such that 2 < o < v and s;, < m;, for all uw such that 1 <u <wv

then I* = R;.
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Proof. Consider

mi; —Siy M, —

(27 + el + - @) (7w )) ] 0o 4+ )

=" 2] +ax? + -+ axyt) = Ry

. ) M. —s; My —s: ms, —S; M, —S;
Since  is standard (z; " ", .. 2 ) = Ry So Ry = (" .. a )T C

v 11 &) —

(x1,...,2¢)" implies (z1,...,24)* = R;. And by Lemma 3.2.2, [* = R;. ]

Lemma 3.2.6. Suppose % is a standard closure operation on R,. Then (0)* is a

monomial ideal.

Proof. Suppose (0)* is not a monomial ideal. Suppose W is a reduced generating set

for (0)*. Then W must contain ) a;,z;"", n > 2, a, # 0 for all 1 <v < n. There

i
v=1

are two cases.

Case: n =t. Consider
(O ana)(0)* > a,al™) = ((0): > azal™) = Ry
v=1 v=1 v=1

n

since (0)* contains ) a;,z;". Since x is standard this is a contradiction.
v=1

Case: n < t. Consider

(w1 + ) O cm1++2) = (0 s oa -+ 22).
Since * is standard this implies 2" € (0)* for 1 < v < n which is a contradiction. [

Lemma 3.2.7. Suppose % is a standard closure operation on R; and

0 = (z.", ..., 2™ for some (my,,...,m;) € N and v is such that 1 < v < t.
1 v

i1 » My

Then (0)* = (x4, ..., x;,). Additionally, if I C (x;y,...,x;,) then I* = (z;,,. .., x;,).

. My My, * mi;+1 Mg, +1\ My My s
Proof. Since (z;",...,x;"") = (0)* C (2" ... 2" )" C (2", ...,2,") it
mi1+1 My +1\ % o miq m; .
must be the case that (z;, " ..., z;"™" )" = (2;,",...,2;,"™). Consider

(((zy+-- ._}_q;t)(leil, .. J}mi”))* cxytet ) = ((z

) My

mi1+1 miv+1
il g e ey iv

) a4y
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= ((:Emil,...,xgi”):x1+---+xt).

11

If m;, > 1 for some j such that 1 < j < v then, since x is standard, 957:”_ € (0)

which is a contradiction.

Suppose I C (x4, ...,x;,). The inclusion (z;,,...,z;,) = (0)* C I*

C (@i, - .., ;,) implies I* = (25, ..., T;,). -

Lemma 3.2.8. Suppose % is a standard closure operation on R;. If

(2, Y = () for all (myy,...,my,) € N with v € {1,...,t}

i1 ) My i1 ) My

and each m;; > 1, j € {1,...,v} then (0)* = (0).

Proof. By Lemma 3.2.6 (0)* is monomial. Since (0)* C (22 ,..., 22 )* = (27 ,...,22),

i1 ) My 1) Vi

(0)* # R;. Suppose (0)* is a proper nonzero monomial ideal. Without loss of

generality we have (0)* = (z;",...,2}™) for some u < v with n;, > 2 for each
j € {1,...,u}. However we have a contradiction since by Lemma 3.2.7 (0)* =
('Iil7"'7xiu>' ]

Lemma 3.2.9. Let R =7/2Z[[X,Y, Z)|/(XY,YZ,XZ) and I be a proper monomial
ideal in R. Suppose x is a standard closure operation on R. If I* # R then I* is a

proper monomaial ideal.

Proof. Suppose * is a standard closure operation on R and I* # R. By Proposition
3.1.14 each ideal of R has a unique reduced generating set. Thus each proper ideal

of R expressed in terms of its reduced generating set will have one of the following

forms:
e (0), (@), (¥"), ("), (@™ +y"), (y" +27), (@™ + 2"), (" +y" +2")
o @y, () @), @ ), @, @y ),
(:Em + Zr’yn + 27")
hd (xm7yn7 ZT)
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m, n, r € N. Thus without loss of generality we need to consider the following cases

where [ = (™), or I = (2™,y"), or [ = (™, y"™, 2"):

L (@) = (2" + )

2. (z™)* = (2 + 97, )

3. (zm)* = (2 + ¢ + 2

4. (zm)* = (2t 97 + 24

5. (zm)* = (2 + 2y + 2

6. (2™, y")" = (2" +9)

T (gt = (g2

8. (z™,y") = (' + 4y + 2

9. (™, y")* = (2%, 97 + 2)
10. (2™ y™)* = (2 + 2497 + 2
1. (2™, g™, 2" = (28,97 + 21)
12. (2™, 9™, 2" = (28 + 3y + 2
13. (2™, 9", 2" = (28 + 24 y7 + 21)

Since I C I* cases (2), (3), (5), (7), (8), (10), (12) and (13) imply i < m, j < n and

[ <r. By Lemma 3.2.5 I* = R which is a contradiction.

Case (1): (2™)* = (2! +¢?). Thus (z° +9) = (z™)* C (2°)* C (2 +¢/)* C

(' + 1) = (2¥)* = (2" +¢) for all v such that i < v < m. Consider
(@ 7+ )2+ 2) = (@) 4y 2)

=((@"+y) 12"+ +2).

Since x is standard this implies (2%)* = (z,y) when m > i or (2°)* = (2% ™ y)

when m < 2i. Suppose (z°)* = (z,y). Since * is weakly prime we have

(z+y+2)@) C(@+y+2)(@) = @) CE) =@ +y)=>i=j=1
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So (z?)* = (z + ) and (z) = (x,y). Since (z*)* C (2?)* = (z + y) we have four
possibilities for (2%)*:(23)* = (2%), (2%)* = (23,y!) with [ > 1, (23)* = (2? + ¢') with
[>1,0r (23)* = (z +y). Consider (((z2+y+2)(x))* 2?2 +y+2) =

((3)* : 2> + y + z). Since * is standard (23)* = (2%) implies (z)* = (z) and
(23)* = (2% + ') implies (z)* = (z,y') with [ > 1. These are both contradictions.
Now consider (((z+y+2)(@?)* :x+y+2) = ((23)* :x+y+2). So (%) = (23,9
implies (z%)* = (22, ) or (22)* = (2%, y'™!) and (23)* = (z+y) implies (2?)* = (z,y).

Again contradictions.

Now suppose (z°)* = (z?~™+1 y). We have

(@+y+2)@) C(@+y+2)@) = @ y) @) =@"+y)=j=1

Thus (z71)* = (2’ +y). Since (z'72)* C (z'1)* = (2’ + y) we have four possibil-
ities for (zF2)*:(2'2)* = (2™2), (22)* = (22, 9') with | > 1, (2772)* = (2" +4})
with [ > 1, or (z7*?)* = (2 + y). Consider (((z*> +y+ 2)(z"))* : 2> +y + 2) =
(@2)* : 224 y+2). So (z712)* = (2+2) implies (¢%)* = (%) and (#2)* = (1 +4/))
implies (2)* = (z,y') or (2°)* = (27! + y'~!). These are contradictions so we are
left with (z72)* = (212, ') or (272)* = (2' + y). Now consider
(r4+y+2) (@) cz+y+2) = (@) 2 +y+2). So (212)* = (212, y!) implies
(x1)* = (2171 9 71) and (2772)* = (2° + ) implies (2*+1)* = (2%, y). These are also
contradictions.

Case (4): (2™)* = (2%,y7 + 2'). If i < m then Lemma 3.2.5 implies (z™)* = R

which is a contradiction. Thus (z™)* = (2™, 3’ + 2!). Since % is weakly prime

(@ +y+2)(@™)" C ((z+y+2)(@™)" = (@™ g 4 2 C @)
= (2" = (@ T S C (e g+ ),

By this and Lemma 3.2.5 (z™*1)* is one of the following (2™ yi 1 + 21+1)]

(2™ F g + 21, or (z™FL, it 211, For each of these if we compute
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(x+y+2) (@) :x+y+2)=((z™™)* : 2 +y+ 2) we arrive at contradiction
except in the case (z™T1)* = (2™ ¢+t + 240 Inductively we have (z™)* =

(zm+Y T 4 24 for all v > 0. Consider
(@ +y +2) @y 2+ 22" 2 by 4 2) = (77,77 + 219 2 4y 4+ 2)

— (merl, yj+2 + zl+2).

This implies (2™, y7+2 4 272)* = (2™ 4772 + 2142). However we have a contra-

diction since

(xm-l—l’yj—l—l + Zl—l—l) _ (xm—&-l)* C (xm—&-l’yj-i-? + Zl+2)* _ (xm+17yj+2 + Zl+2).

Case (6): (z™,y")* = (¢' + ¢’). Since x is weakly prime we have the following

implication:
(+y+2) @™ y") C((@+y+2)(@™y") = @+ ™) C @™y )
- (l,m—‘rl’yn—&-l)* _ (ZL‘H—l + yj—l—l)* C (ZL‘Z _|_yj).

Thus (2™, y"™1)* is one of the following (z™! + ¢/T1), (2™ 4/t or (2 + ¢7).
If we compute (((z +y + 2)(z™y")* : z+y + 2) = (™ Ty ™) . 24+ y + 2)
Yyt = (2" 4 ). Now

(2' 4+ 7)) = (2™, y")* C (™ 4 o/ T1)* = (27! 4 yIT1). This is a contradiction since

we arrive at a contradiction except in the case (x™*1,

(x7 + 97 71) does not contain (z¢ + y7).

Case (9): (z™,y")* = (2',y/ + 2'). Since j < n, if i < m by Lemma 3.2.5
(z™,y")* = R which is a contradiction. Thus (z™,y")* = (z™, %’ + z!). Since * is

weakly prime
(@ +y+2) (=™ ") C ((w+y+2) (@™ y") = @y + ) C (@™ )

= (2™ T = (g g 4 zl“)* C (2,9’ + zl).
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By this and Lemma 3.2.5 (2™ y"*1)* is one of the following (™1 41 4 2I+1),
(2™ g + 28, or (z™FL it 2. For each of these if we compute

((x+y+2)(™y")* : z+y+2) = (™ y"™)* . 2+ y+ 2) we arrive at
contradiction except in the case (x™*1 yth)* = (xm+1 it 4 241 Inductively we

have (z™+Y y"t0)* = (z™+Y It + 210) for all v > 0. Consider

(((x2+y2+z)(xm+1,yj+1+zl+2))* . x2—|—y2+z) — ((xm+37yj+3+zl+3)* . ZL’2+y2+Z>

_ (:L,m—i-l’ yj-i-l + Zl+2).

This implies (2™, 7+ 4 2172)* = (™1 71 + 2142) However we have a contra-

diction since
(@ Y g L) = (L C (g g Ry (el L 2
Case (11): (z™,y", 2")* = (2,47 + 2!). This case is nearly identical to case (9).

]

S ), 1 < v <t Suppose x is a standard

)

Lemma 3.2.10. Let [ = (x

ip 0

closure operation on Ry and |k| > 2. If I* # Ry then I* is a proper monomial ideal.

Proof. Suppose I* # R;. Now suppose without loss of generality that

= (@, ), v <4 1 = (@ el () w < o, L e L)
is a reduced generating set of I* and the f; are non-monomial polynomials in the
k-vector space (', ..., a0w) with each r; < m; for j such that u+1 < j < v.
Suppose by way of contradiction there exists f; # 0, say f;. Since x is weakly prime

we have

($1+"'+xt)l*g((931+"'+5Ut)[)*

t
= (0w QS m) i) C @)
k=1

t
= (@t = @ T O ) p) C I
k=1
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This implies (3, xx)f; € (7", ..., 2™+ )* for each . Again without loss of
generality suppose f; = Z;":uﬂ aj:r;;j with a,.1 = 1. Let 8 € k* and 8 # ay41-

Since « is standard we have
I" = (((x1+ -+ 2+ BTy +Tusat- @) )" @1+ 20+ BTy +Tugat -+ 20

= (@ el e A Ty BT + Ty T,

Since (Yf_, mx)fi € (&7 2t we get 5T+ 2l ajry € I*. This
implies (1 — )25 = fi — (%xl’ff Yy €T *). Which then implies

Tu+1

x4 € I which is a contradiction. O

Lemma 3.2.11. Suppose x is a standard closure operation on R;. Further suppose
|k| > 2 or that t = 3 and k = Z/2Z. If («, ... z")* = (7', ..., x") for some
(ma,...,my) € N and (nq,...,n;) € Nt then (x7',...,z;")* = (21',...,z;") for all
(r1,...,me) € N such that for some j € {1,...,t}, s;; = 3, for all r;; and for all

other j, si; = 1 for all r;;.

Proof. Let m = (z1,...,2¢). If m* = R, by Lemma 3.2.3 (21",...,2/")" = R,

*

which is a contradiction. Thus m* = m. Consider [ = (22,...,2?). Since I* C
m* = m, I* # R,. So by Lemma 3.2.5 [* does not contain a regular element
Pt a4+ - -+ agxyt with a, € £* for all a such that 2 < o <t and s; < 2 for all [
such that 1 <[ <t. Thus for some [ such that 1 <1 <, zt:l2 € I* and x; ¢ I*. So by
Lemma 3.2.9 or Lemma 3.2.10 [* is a proper monomial ideal. Thus I* is generated

by degree 1 and degree 2 monomials.

Suppose I* = I. By Lemma 3.2.1 (27",...,2/")* = (21", ..., 2") for all m;,

1<j<t.

Now we will consider the case when I* is generated by degree 2 monomials and

at least one degree 1 monomial. Without loss of generality let
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I* = (23, 22 Tyt ).
= (22, 29,..., 7)) = (w1,...,23) or (23, 29,...,2).
Suppose (22, s, ..., 2¢)* = (71,..., 7). Since x is weakly prime

(1 + - +xt)(xf,:v2, cey ) C (4 - F l’t)(ﬂﬁ,l'g, cey )"

2 2 3 2 2
= (21,...,2;) C (27, 25,...,27)"
3 .2 2 2 2 2 2
= (x1,25, ..., x7) = (af,...,x) = (2], ..., XL, Tps1, - - -, Tt)
and
2 2\* C 2 2\\*
(14 -+ x) (], x) C (g + -+ ) (27, ..., x7))
3 3 2 2 3 3
= (27, ..., 0, .-, xp) © (27, ..., 7))
3 3 3 3 2 2 3 2 2
= (o7, ..., 2) = (2], ..., 2, Tpyq, ..., 07)" C (2,25, ...,27)"
2 2
= (], T, Typa1y ey Xp)
= (2f, .. a))r = (i, 22, a2l ... ) with nj = 2 or 3 for j such that
1 < j < v with at least one n; = 3, or (a3,...,2})* = (a%,..., 22, Tpi1,...,T1).
By Lemma 3.2.5 that latter case implies (z%,...,23)* = R, which is a contradic-
tion. So suppose the former. Again without loss of generality let (z3,... z})* =
3 3 2 2\
(x9,... 2,20, q,...,2;7) with u <w.
Consider
2 2\( .2 . 2 2
((zy + a5+ +a) (@], e, .. ymy)) t g + a5+ -+ )
3 3 2 2
= ((xy,...,¢)) ey + a5+ -+ x7)
3 3,2 2y . 2 2\ _ (.2
:((.’El,...,$u,l’u+1,...,xt) xl“l_xz—i—-_'_xt)_(xl’xz”xt)
Since * is standard this implies (2%, @9, ...,2,)* = (22, 2,..., ;) which is a con-
tradiction of the assumption (2%, x9,...,7¢)* = (21,...,7;). So we are left with
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(l’%,l’g, s 7$t)* = (x%7$27 s 71'75)‘

Similarly for some u < v,
2
(1, ey Tty Ty Ty Ly e ey e ey Tagy v oy Tt)
_ 2
= (1 ey By 1y Ty Tt 1y e e ey ey Tpe ey Tg)-

With (2%,...,22)* = (22,..., 22, 2y,1,. .., 2;) as the base case suppose

2 2k kyk _ (.2 2
(@7, Ty Ty, - xy) = (2], .-, Xy, T, - -, ) for B <.

Thus

2 2 k k
m = (27, ..., %, Tog1, -5 Tt) F (X1, oo Ty Ty gy, TF)

= (x%,...,mi,mﬁﬂ,...,xf)*—f—(a:l,...,mv,xﬁﬂ,...,xf)
C (w1, Ty Ty, 2f)  Cm
k)*

k _
= (1, T, Ty, -, T) =m

Since * is weakly prime

(14 )21, T gy 2)) S (14 ) (X1, T, Ty, - -

= (x%, . ,xf)* C (:L‘%, o ,mi,xﬁﬂ,...,x?”)*

2 2

2 2 ntl P = (et w ) = (a1 T

= (x7, ..., 2,200, .., Ty
= (27, 20,2l g, ) = (2, 2, Ty, ..., 1) for all m.
Since
(23, .., a2l g, 2
C (a1, ..., 2,y .. xp) (forrj=1or2, forj=1,...,0)

2 *
C Xy ooy Ty 1y Ty Tg Ly e ey e ey Ly o v oy Tp)

2
e O3 P O B i TS DU NS )
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Chapter 3. Standard Closures on R;

for all v < v we have (27',... 2>, 20, , ..., 2})" = (2", ..., 2", Ty, ..., 2¢) With
rj = 1 or 2 for j such that 1 < j <wv for all n.

With (23,...,22, 20, ..., a})* = (2%, ..., 22, Zys1,. .., 2¢) for all n as the base case

vy

k k .n

— (o k k
suppose (T7,..., Ty, Toyy,---,20)" = (@, ..., 2y, Tog1, ..., 2¢) for all B < m, for all

n. Since x is weakly prime

(x1+--~+xt)(x§”,...,x?,xﬁ;i,...,x?‘l)*
C (w14 +a) @l 2l 2y, 2y ))
= (2Pl ) C (et e a2
= (2Pl e = (P T et
C (o, ala g, = (2 e, )
= (aﬁ”“, . ,:ETH,xZH,...,xf)* = (:Eil,...,mfﬁ,xf]ﬁf,...,xft)

with sj=morm+1forj=1,...,vands;=1or2forj=v+1,... ¢t

If all s; = m for j such that 1 < j < v then (:L’T—H,...,$Um+1,$g+1,...,x?)* =
(2, a, o xt). However (af, ... &l o), ..., af) is % closed only if

sj=1forallv4+1<j <tsince

m m _ m m 2 2\ %
(@, T, x) = (@) Ty Xy, )
m m Sv+1 St
C(af, ... oy ) )t).
m~+1 m+1 ,.n n\x __ m m
Thus (27", .., apt al o ap) = (.. 2], Tygr, -0, Ty).
By Lemma 3.2.5 (27", ... am+!, xy, 4, ...,x7)" = Ry which is a contradiction. So for

at least one j, 1 < j <w, s; = m+1. Now suppose s; = m for some [ # j,1 < j <w.

Consider
(w14 )@l 2y, Togr, - X)) @+ -+ 2y)

:((IT+17-..,$T+1,@2)+1,...,xf)*:x1_|_...+xt)
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_ S1 S Su+1 St .
= (21", .. 2y, 2 wt) w4 ).
. . S
Since * is standard ((z7", ..., &5, @07, ..., 2f") t 21+ -+ 1)
_ m m *
= (. Ty, )T
.. . -1 . . .. .
This implies ;""" € (21",..., 2", 441, ..., ;)" which is contradiction since
m m *x m m
(@ Ty ) = (2 X i1y e, T).
m+1 m+1 ,.n n\x __ m—+1 m+1 ,.Sv+1 St .
Thus (7", .. a) ™ an .o 2p) = (2, a2t .o xf). Without

loss of generality suppose

m—+1 m+1 n n\x __ m+1 m+1 2 2
(@ Ty, ) = (T a T X, Ty, Tt - -, T
Since x is weakly prime
m+1 m+l 2 2 x
(g 4 ) (@ T T, T Bl - - D)
m+1 m+1 2 2 *
C (w4 Fa) (@, ay Ty Ty, Tpg1 - -5 Ty))
m—+2 m+2 .3 3 2 2 m+2 m+2 .3 3\ x
= (20" )T X, T e xy) S (@ ) T, T
m—+2 m—+2 3 3\x __ m-+2 m—+2 3 3 2 2\ x
= (2" ),y = (T T, X, T -, T
Consider
2 2 m m .2 2\\*
(((xl+---+xv+xv+1+---+xt)(aﬁ1,...,azv,xvﬂ,...,xt))
2 2
cxy X T o Ty)
(o mH2 m+2 3 3yk . 2 2
= (7™, ey g, ) e a T e 1)
Since * is standard if (z]"*2,... , T2, x3+1, ..., T})* contains x’f““, for some j such
; m m .2 2\x __ m m
that 1 < j < v then (2", ... 20,2, ..., 27)" = (27, ..., %), Tyq1,..., %) COD-
tains #7"~! which is a contradiction. If (z"*? ... a2 23 ... 2})* contains z7
2 : ; m m .2 2\x __
but not xj for some j such that v +1 < j < w then (27",... 27, 25 ,,...,7)" =
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(..., 2" Typin, ..., 2¢) contains x? but does not contain z; which is a contradic-
tion. Thus
m-+2 m—+2 3 3\x m—+2 m—+2 2 2 Sw+1 St
(@5 ),y = (T Ly T T, T )

with s; = 1 or 2 for j such that w+1 < j <t.

Consider
2 2 m—+1 m+1 .2 2 *
(1 FwyF oy )@ x) X, Ty, Tl - - -5 Tt))
xy Tyt al g o +a)
- A1 w w—+1 t
_((mH2 m+2 3 3k . 2 2
= (@, ey g, T) T By F T e 1)
_ m+2 m—+2 2 2 Sw+1 St . 2 2
= (@, ), T x) e A X X e )
o m+1 m+1
= (" T Ty, e, Xy)
m+1 m+1 2 2 * m—+1 m+1
= (@ T X Ty Tty - ) = (T )T By, )
which is a contradiction since (x7"*', ... 2™ 22 Lo 22 Ty, ..., ) I8+ closed.
This implies
m—+1 m—+1 n n\x __ m+1 m+1 2 2\ %
(@ ) = (T e g, )
o m+1 m—+1
= (2w Ty, X))
Thus
m m n 7\ * m m
(2, . ay ay g, xy) = (2, ay Ty, .., 2) for all myn e N
Let N = maz{ny41,...,n} and n = min{n,11,...,n:}, n; € N. We have
m m _ m m N N\*
(@, T, ) = (2] Ty s, T )
m m Ny41 ne\* m m
C (a0 a) = (@ T, D).
m m Ny+1 ne\*x m m
= (o, ..y, a, o ayt) = (2T 2y, Tug, - -, 2y) for all ny € N for all m.
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Let M > max{my,...,my}, m; € N. Consider
((("Ei\/[_ml +oet :L,l])\i—mu T Typr + o+ xt)(m;r”? s 7xvmvax:f|jila s 7:L.;lt))* :

T T )

:((a:iw,...,x%,xﬁﬁlﬂ,...,x?tﬂ)*:xiw*ml+~~—|—xf)\4*m“+xv+1+...+xt>
:((.’L‘i\/[,...71‘1])%7.1;1}_’_17_._’%75)*:xiw—ffn+...+IvM—mv+xU+l+_”+It)
= (", A Ty e, T)
= (af™, o a an ap) = () T, -, D)
for all mj,n; € N. 0

Lemma 3.2.12. Suppose * is a standard closure operation on R;. Further sup-
pose |k| > 2 or that t = 3 and k = Z/27Z. For some (mq,...,m,) € NY let [ =
(2™, x™), 1 <o <t If I* # Ry then for all (ry,...,7,) € NV, (27}, ... 2")" =

iy 0 (A ? iy

S1 Sw

(z3!, ..., 2i), for some w such that v < w <t with s; = 1 for all v; or s; = r; for

o

all j such that 1 < j <wv and s; =1 for all j such that v+1 < j < w.

Proof. Notice (/™% ... 2™ *h* C I* # R,. So if any m,, = 1 we replace I with

i1 ? iy

(gt 2™+, Thus we can suppose for all n such that 1 < n < v that m,, > 1.

il g e e ey i’u

By Lemma 3.2.9 or Lemma 3.2.10 I* is a proper monomial ideal. So [* =

(z3!,...,2iv), with v <w <t and 1 < s; < mj for all j such that 1 < j <. So
without loss of generality suppose I = (z7",..., x"), for some v such that 1 <ov <t
and I* = («™, ... 2, xpt ... ase), for some w such that 0 < u < v <w < ¢

with s; < m; for all j such that u+1 < j <w.

Let J = (z",...,20%), m; > s; for all j such that v +1 < j < w. Since

I CJCI*wehave J* =I*. If s; > 1 forall u+1 < j < w, since ([*)* = I*,

by Lemma 3.2.1 (a',...,al»)* = (21, ..., 2lv) for all (ry,...,7r,) € N¥. Thus
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J* = (2", ..., x"). Since J* = I* either u = v = w and the lemma is proven or we

have a contradiction. So suppose s; = 1 for at least one j such that u+1 < j < w.

Now without loss of generality suppose

* mi m Su+1 s
JO= (g T Ty, T,

for some y such that u+1 <y < w and s; > 1 for all j such that u+1 < j <y. Let

s +1 Sy+1 .
H = (", .o a2k, as,). Since J C H C J*, H* = J*.

Y u )

— mi—1 -1 Su+1 Sy .
Let H y = (o, ..., o oo oy yqa, ..., Ty). Consider

((<x1+“'+xt)H71>*:«T1+"'+xt):(H*:xl‘i_"‘_"«xt):(J*:x1+"'+xt)

_ mi—1 my—1 _Sut1—1 sy—1
= (2" T Ty, T)-

Since * is standard this implies

* mi1—1 my—1 _Sut+1—1 Sy—1
(Hoq) = (20" Ty, )

Consider
((or 4 ot agy o gy -+ 2w) (Ha))

51‘1+"'+xu+1‘i+1+"'+$§+$y+l+"‘+$w)

:(H*:371“‘"'+13u+373+1+"'+~”Uf,+37y+1+"‘+96w)

o mi1—1 My —1 Yu+1 v,
= (2" T T Ty, T)

where ; = s; — 2 if 5; > 3 or 75 = 1 for all j such that v +1 < 5 < y. Since x is
standard (H_,)* = ((H_y)*)* = (a7, am ol o ) 2y, Ty). SO

u

if s; > 3 for any j such that u+1 < j <y we have a contradiction. So s; = 2 for all
7 such that u +1 < 57 <y. Thus

* mi m 2 2
Jr= (@ Ty Ty Tyt - T)

Y u )
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and
_ mi m 3 3 .2 2
H = (2" my™ T gy Ty Ty 5 Ty)
_ (,mitl my+1 .3 3 .2 2 ; * *
Let K = (z{"" ... oyt an ., %, 25 0,5 Ty,). Since K* C J* we have
* _ (1 Ny . Cutl ay Byt B ; ‘ . ‘ '
K* = (2, oy, oyt age) with my <y <my + 1 for all j

such that 1 < j <w,2<qa; <3forall jsuchthat u+1<j<yand1l<pB; <2
for all 5 such that y +1 < 5 < w. Consider
<<<x1+...+xt)J*)*:x1+.‘.+xt):(K*:x1+...+xt)

o n1—1 ne—1 _ouyr1—1 ay—1 - *\* Tk
= (2, T T Ty, ) = () = T

Since x is standard. This implies n; = m; + 1 for all j such that 1 < j < u and
a; = 3 for all j such that u+1 < j <w. Thus

* mi1+1 My +1 3 3 By+1 B
K= (a7 g, T, T X))
_ (,mit2 my+2 .4 4 .3 3 : * *
Let L = (""", ... oy 2 a0, Ty, Ty, -+, T,). Since L* © K* we have
Va1 v, Py+1 . .
Lr= (o, b e ahe) with my +1 < py <my + 2 for all

such that 1 < j <u,3 <v; <4forall jsuchthat u+1<j<yandB; <p; <B;+1
for all j such that y +1 < j < w. Consider

(1 4+ +a)K) cxy+ - +ay) = (L5 ray + -+ 1)

_ p1—1 pu—1  Vut1—1 vy—1 _ Py+1 dw\ __ *
= (z' ey  a) = K

since * is standard (with 1 < ¢; < 2 for all j such that y +1 < j < w). Thus
pj = m;+2 for all j such that 1 < j <wand v; =4 for all j such that u+1<j <wy.

* mi+2 my+2 .4 4 ,.Py+1 :
So L* = ("7, ot g,y L afe). Consider

(((x%+..'+x?+$u+1—|—...+xt)H>*:x%+,..+x§+xu+1+...+xt)

* . 2 2
= (L :xi+ - +x + T+ x)
mi My .3 3 My+1 Nw
= (2" Ty, Ty, )
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with 1 <n; <3 for all j such that y + 1 < j < w. Since % is standard this implies
H* = (™, apead o ad, ot o) with iy = 1 or 2 for all j such that

y+1<j <w. This is a contradiction since H* = J*. So it must be s; = 1 for all
u+1<5 < w.

* mi
Thus I* = (7™, .., & Tyi1, oy Ty
Now we must show (z1',... zl")* = (21", ..., 20 Tys1, ..., Ty) for all (ry,...,r,) €
NU

Since x is weakly prime we have

(331 + - +xt)(qunla"'7xvmﬂ)* - ((1’1 + e +xt>(‘x7lnl7"'7xmv>)*

mi+1 my+1 2 2 mi1+1 Mmey+1\*
= (2", ) C (T T
mi1+1 my+1\x mi1+1 my+1 2 2 \x
= (" T ) = (M T T, Ty,)
_ mi+1 w1l .2 2 : * *
Let Joy = (2", ... a2 ..., @y). Since J, C I*,
* (D Qu_-Cutl ¢ ; , . . ; ;
Jio= (2l a at abe) withmy < g <mj+1forall jsuchthat 1 < j <w

and 1 < ¢; <2 for all j such that v +1 < j < w. Now we have

((xy 4+ F2)D)* ray+ - = (@M 2™ ™) ce 4 dxy)

v

= ((x?l,...,xgu,xi’ff,...,a:f;“) cxy e tay) = (aﬁl*l,...,xZ“’l,qu...,xw) =1

since % is standard.

This implies g; = m; + 1 for all j such that 1 < j < w. Thus

o= (e ,x,ﬁ”““,xiﬁf, ...,x%). Now suppose ¢; = 2 for all j such that
u+1 < j < w. Then by Lemma 3.2.1 (z*,...,2l»)* = (z}',...,z}») for all
(r1,...,7y) € N¥. However J* contradicts this. So (; = 1 for some j such that

u+1 <7 <w. So without loss of generality suppose

1 . :
tyo= (@Mt aet a? e ey, 1), Now with J4y in the role of J

from the previous argument it must be the case that

mi+1 Myu—+1
u

o=  Tuil,- -, Ty). Inductively we have (x7"", ... gmetn)* =

? v
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(et gL xy,) for any no€ N
Consider (z7',...,zI") where (r1,...,7,) € N'. Let N = max{ry,...,r,}. Consider
((x71n1+N—r1 44 :anerme + Tpp1 oo F :Ct)(x?, o ’1.:)1)))*
. :U71n1+N—r1 et x71nU+N—rv + Ty + -+ xt)
= (@A Y T 2T g e )
= (@™ e N wg @) s YT g e )

o 1 r
= (X Ty, e T

Since * is standard this completes the proof.

3.3 Counting Standard Closures on R;

The author and J. Vassilev showed that the ring Ry = k[[x, y]]/(zy) has 24 standard
closure operations [MV]. T will include a slightly diiferent proof of this fact here
which utililzes several of the lemmas and propositions from the previous sections.

The following claim is applicable for both the Ry and Rj3 cases.

Claim 3.3.1. Suppose c is a closure on Ry or Rs with i; € {1,2} and i, # ig for
a# 3.

1If (xpt @y 2)e = (2 @y, for all (riy,mi,) € N? then (2" + az;2)° = (x4,
for all (ryy,ri,) € N* and a € k*.
2. If (2,7, 2,2)¢ = (4, 23,) for all (ry,,73,) € N? then (x;l + a:UZ?)C = (i, Ti,)

11 ) Vig

for all (ryy,ri,) € N* and a € k*.

Suppose ¢ is a closure on R3 with i; € {1,2,3} and i, # ig for o # [.
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80 (o) = ()

21’ 22

Tiy, Tig) for all (riy,ri,) € N2 then ( L+ a,[L‘rQ) =

i1 )

(2t @iy, T3) for all (ry,73,) € N* and a € k*.

Proof. (1) Without loss of generality let z;, = z, x;, =y, ;, = m and r;, = n. So

m

we assume (2, y")¢ = (2™, y). Let a € k*. We have the following inclusion.

(@™ y) = @™y C (@™ +ay”) C (™ y") = (2" y)
This implies (2™ 4+ ay™)® = (™, y).
The proofs of (2) and (3) are similar to (1). O

Theorem 3.3.2. There are 2/ standard closure operations on Rs.

1. %1:1"* = Ry V ideals 1

2. *11:(0)*11 = (2™)*11 = (z) Vm €N, [*'1 = Ry V other ideals 1

3. x12:(0) 12 = (y")12 = (y) Vn €N, I*'2 = Ry V other ideals 1

4. x13:(0)3 = (0), I*'3 = Ry V other ideals I

5. x1.4:(0)14 = (0), (y")*4 = (y) Vn €N, ["+ = Ry Y other ideals I

6. *15:(0)5 = (0), (y")*s = (y") Vn €N, I"'s = Ry YV other ideals I

7. x16:(0)*6 = (0), (2™)*¢ = (z) Vm €N, I*'6 = Ry ¥V other ideals I

8. *17:(0)7 = (0), (z™)*7 = (x), (y*)*7 = (y) Vm,n € N, I"'7 = Ry V other
vdeals T

9. *15:(0)*¢ = (0), (a™)*8 = (x), (y")** = (y") Vm,n € N, I"'8 = Ry V¥ other
ideals I

10. *1.9:(0)*10 = (0), (2™)**° = (2™) V m € N, I*'9 = Ry V other ideals I

11, %11070)110 = (0), (2™)110 = (a™), (7)1 = (y) ¥ mym € N, 110 = Ry ¥
other ideals

12, 5 0) = (0), (@) = (@), () = () ¥mn € N, I = By
other ideals
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15.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

2.

x(0)2 = (@™)? = (2), (W) = (@™ +ay")? = @"y")* = (z,9") V
m,n € N and a € k*

a0 = (O, ) = (@), (1) = (@ = @y =
(z,y") Vm,n €N and a € k*

w2027 = (0), (0722 = (@), ()2 = (), (2" a2 = (a7, )2 =
(z,y") ¥V m,n € N and a € k*

237020 = (0), (&™) = (a™), (y")=* = (&™ +ay")* = (a7, y")*° =
(z,y") ¥V m,n € N and a € k*

*2.4:(0)2% = (0), (2™)> = («™), (y")=>* = (y"), (@™ +ay")>* = (2™, y") 2
= (z,y") Vm,n € N and a € k*

*25:(0)20 = (y")2® = (y), (@™)=° = (& +ay")>® = (z™,y")*>° = (2™, y) ¥
m,n € N and a € k*

*26:(0)2¢ = (0), (z)2¢ = (2™ +ay")>0 = (@™, y")>0 = (2™, y), (") =
(y) Vm,n eN and a € k*

*o.7:(0)27 = (0), (2™)=7 = (27), (y")=7 = (y), (&7 + ay®)=7 = (a7, y")>T
= (2™, y) Vm,n € N and a € k*

*2.8:(0)2% = (0), (z™)2% = (2™ +ay")>s = (2™,y")>* = (2™, y), (") =
(y") ¥V m,n €N and a € k*

*2.9:(0)720 = (0), (z7)0 = (27), (y")=° = (y"), (& +ay")= = (¢, y")*=
= (2™, y) Vm,n € N and a € k*

*2.10:(0)10 = (0), (z™)0 = (a™), (y")=10 = (y"), (& + ay")=

= (2™, y")*210 = (2™, y") ¥V m,n € N and a € k*

*o.11: 1721 =1 V ideals 1.

In the proof of the theorem (and for the proof of Theorem 3.4.4) there are many

cases, subcases, sub-subcases and so forth. To keep track of all of these cases we use

the following convention: The number denotes the case, the first letter denotes the

subcase, the second letter denotes the sub-subcase etc. For example (1dabb) is the
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second sub-sub-sub-subcase of the second sub-sub-subcase of the first sub-subcase of

the fourth subcase of the first case.

Proof. Suppose x is a standard closure operation on Ry. By Proposition 3.1.14 each
ideal of Ry has a unique reduced generating set. Thus each proper ideal of Rs
expressed in terms of its reduced generating set will have one of the following forms:

(0), (™), (y™), (™ + ay™), and (™, y"), m, n € N and a € k*.

e
(z™) (2™ + ay™) (y")

(l,m—i-l 7 yn—i—l)

(l,erI) (merl + aynJrl) .<yn+1)

o

Figure 3.1: Ideal lattice of R,.
A dash indicates inclusion. Also a solid dash between an ideal I and J, with I below
J, indicates J/I = k.

Every non unit regular element in R has the form 2" 4+ay™, m,n € Nand a € k*.

By computing (((z" + ay™)I)* : 2" + ay™) for [ = (0),1 = (2"),] = (y"),I =
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(™ + ay™), and I = (2™, y") one can verify (((z" + ay™)I)* : 2™ 4+ ay™) = I* to

show each closure from the above list is in fact standard.

Now we will show that these are in fact all the standard closures on R. Since

(x,y) is the maximal ideal either (z,y)* = Ry or (z,y) is x closed.

(1) Suppose (x,y)* = Ry. By Lemma 3.2.3 (2™ + ay™)* = (2™, y")* = Rs. Since
(x™+ay™) and (2™, y™) are not x closed there are only four remaining possibilities for

(0)*:(0)* = Ry, (0)* = (2*) for some i € N, (0)* = (37) for some j € N or (0)* = (0).

(1a) Suppose (0)* = Ry. Since Ry = (0)* C [ for all ideals I we have [* = Ry for
all 1. This is *;.

(1b) Suppose (0)* = (2°) for some i € N. By Lemma 3.2.7 (0)* = (). Since
(x) = (0)* C (y™)* we have Ry = (z,y")* C (y")*. Thus (y")* = Ry for all n € N.
The inclusion (z) = (0)* C (™)* C (z) implies (z™)* = (z) for all m € N. This is

*1.1-
(1c) Suppose (0)* = (y7) for some j € N. Similar to case (1b) we get ;5.

(1d) Suppose (0)* = (0). If (2°)* contains a power of y for some i € N then by
Lemma 3.2.3 (2%)* = Ry. So there are only two possibilities for (z')*:(z')* = Ry for

some i € N or (z%)* = (z7) for some i,j € N.

(1da) Suppose (z')* = R, for some i € N then by Lemma 3.2.3 (z™)* = R, for
all m € N. If (y/)* contains a power of y for some j € N then by Lemma 3.2.3
(y7)* = Ry. So there are only two possibilities for (y7)*:(y/)* = Ry for some j € N or
(y7)* = (y') for some 4, j € N.

(1daa) Suppose (y?)* = Ry for some j € N then by Lemma 3.2.3 (y")* = Ry for
all n € N.This is % 3.

(1dab) Suppose (y7)* = (y") for some 7,7 € N. By Lemma 3.2.12 (y")* = (y) for
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all n € Nor (y")* = (y") for all n € N.
(1daba) Suppose (y")* = (y) for all n € N. This is *q 4.
(1dabb) Suppose (y™)* = (y™) for all n € N. This is x 5.

(1db) Suppose (x')* = (z7) for some 4, j € N. By Lemma 3.2.12 (2™)* = (z) for
all m € Nor (z)* = (2) for all m € N,

(1dba) Suppose (z™)* = (z) for all m € N. Similar to case (1da) (y/)* = Ry for

some j € N or (y/)* = (y*) for some 7,5 € N.

(1dbaa) Suppose (y?)* = Ry for some j € N then by Lemma 3.2.3 (y")* = R, for
all n € N. This is 6.

(1dbab) Suppose (y’)* = (y*) for some i, j € N. By Lemma 3.2.12 (y")* = (y) for
all n € Nor (y")* = (y") for all n € N.

(1dbaba) Suppose (y")* = (y) for all n € N. This is * 7.
(1dbabb) Suppose (y™)* = (y") for all n € N. This is % s.

(1dbb) Suppose (z™)* = (™) for all m € N. Similar to case (1da) (y?)* = R, for
some j € Nor (y/)* = (y*) for some 4,5 € N.

(1dbba) Suppose (y?)* = R, for some j € N then by Lemma 3.2.3 (y")* = R, for
all n € N. This is *1.9-

(1dbbb) Suppose (y/)* = (y') for some i,j € N. By Lemma 3.2.12 (y")* = (y)
for all n € Nor (y")* = (y") for all n € N.

(1dbbba) Suppose (y™)* = (y) for all n € N. This is xq 1.
(1dbbbb) Suppose (y")* = (y") for all n € N. This is xq.13.

(2) Suppose (z,y)* = (x,y). By Lemma 3.2.11 (2™, y")* = (x,y") for all m,n €
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N, (™, y™)* = (z™,y) for all m,n € N or (2™, y™)* = (z™,y") for all m,n € N.

(2a) Suppose (z™,y")* = (z,y") for all m,n € N. By Claim 3.3.1 (™ + ay")* =
(x,y™) forallm,n € Nand a € k*. Since (z™)* C N0, (2™, y™)* = N2, (x,y") = (x)
by Lemma 3.2.12 (2™)* = (x) for all m € N or (2™)* = (z™) for all m € N.

(2aa) Suppose (z™)* = (x) for all m € N. Since (y*)* C (z,9*)* = (z,y?) by
Lemma 3.2.12 (y")* = (z,y") for all n € N or (y")* = (y") for all n € N.

(2aaa) Suppose (y")* = (x,y") for all n € N. Since (0)* C (z), (0)* = (2°) for
some ¢ € N or (0)* = (0).

(2aaaa) Suppose (0)* = (2') for some i € N. By Lemma 3.2.7 (0)* = (z). This is
*9.

(2aaab) Suppose (0)* = (0). This is *21.

(2aab) Suppose (y")* = (y") for all n € N. By Lemma 3.2.8 (0)* = (0). This is
*2.2.

(2ab) Suppose (z™)* = (2™) for all m € N. By Lemma 3.2.8 (0)* = (0). Similar
to case (2aa) (y")* = (z,y") for all n € N or (y")* = (y") for all n € N,

(2aba) Suppose (y")* = (z,y") for all n € N. This is x93.

(2abb) Suppose (y™)* = (y") for all n € N. This is %9 4.

(2b) Suppose (z,y")* = (2™, y) for all m,n € N. This case is similar to case

(2b) with the roles of x and y reversed. We get x5 5 through 9.

(2¢) Suppose (z™,y")* = (z™,y") for all m,n € N. The inclusion (z™)* C
N (2™, y") =N (2™, y™) = («™) implies (z)* = (z™) for all m € N. Similarly
(y")* = (y") for all n € N. By Lemma 3.2.8 (0)* = (0). Since for each i,j € N and
be kX, (x8 +by)* C (af,97)* = (2%, y7), for each 4,7 € N and b € k*, (2° + by?)* =
(x',y7) or (2" + by )* = (2" + by?).
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ca) Suppose (z° + by’ )* = (2%, y’) for some i,j € Nand b € k*. Let a € kX an
2ca) S L by ) £ Nand b € k*. Let k* and
v € N. Since * is weakly prime
a . . a . . . . . .
(@ + 2y") (@ +by')" C (27 + 3y") (@ + b)) = (@7, y777) © (a7 + by ™)
= (xi—&-v + byj—i-v)* — (J}i+v,yj+v)* — (ZEH—U, yj—&-v).
Now let m,n € N and M = max{m,n}. Consider
(((l,i+M—m +yj+M—n)(xm + ayn))* : xi—l—M—m +yj+M—n)
— ((ZEH_M + ayj+M>* . ZEH_M_m + yj+M—n)

((xi-&—M’yj—l-M) Ii+M—m+

= : y ) = (

™ yt).
Since * is standard (2™ 4 ay™)* = (2™, y") for all m,n € N and a € k*. This is *g.10.

(2cb) Suppose (x' + by?)* = (x' + by’) for some i, € N and b € k*. Now
if for some r,s € N and ¢ € k%, (2" + cy®)* = (2",y®) then case (2ca) implies
(™ + ay™)* = (™, y") for all m,n € N and a € k* which is a contradiction. Thus

(™ + ay")* = (2™ + ay™) for all m,n € N and a € k*. This is x91; the identity.

Corollary 3.3.3.
|Sp(Re)| = 24

Proof. By Theorem 3.3.2 and Lemma 1.2.8. [

3.4 Counting Standard Closures on Rj

The ring R, is isomorphic to the rings k[[X,Y]]/(XY), k[[X, Z]]/(X Z) and
E[[Y,Z]]/(YZ). By Lemma 3.2.4 each of the standard closure operations on these
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rings induce a standard closure operation on R3. This results in 62 distinct standard
closure operations on R3. However, we will see that the total number of standard

closure operations on Rj is far higher than this.

In order to classify and count the standard closures on R3 we need to better
understand the closures of non-monomial ideals. The following lemma shows, similar
to the monomial case, that the closure of a single non-monomial ideal induces closures

on other non-monomial ideals.

Lemma 3.4.1. Suppose * is a standard closure operation on Rs with i; € {1,2,3}

and iy # i for o # .

1 If (2] + b2 ) = (x4 bxy,?) for some (mi,,m;,) € N? and b € k* then
(z;t + az;2)* = (z;' +az?) for all (ry,,ry,) € N? and a € k*.
2. If (x " + bay, )" = (mZ”,xm ) for some (m;,,mi,) € N2, (n;,,ni,) € N? and

b€ k* then (z," + ax,?)* = (x;*, ;%) for all (r;,7i,) € N* and a € k* such
that for each j € {1,2}, si; = 1 for all vy, or s;; = 1y, for allry,.

8. If (x; " + bxp?)* = (z] " + bay, 2,z ) for some (my,,miy, my) € N° and
b€ kX then (z;' +az, )" = (2" —l—axr“" xi;) for all (ryy,r:,) € N? and a € k.

12 )

4. If (2, Ty bx%) = (mzil,x;;”,:vn””) for some (m;,,m;,) € N?, (n;,,ni,,n,) €

N? and b € k* then (z;" + ax;?)* = (x;}, 2,2, 2;) for all (i, 73,) € N* and
a € k* such that for some j € {1,2}, s;;, = 1y, for all v;; and for all other j,
si; = 1 for all r;;.

5 If (v + cxy? + da; 13) = (z; " + ez, +d:£ %) for some (my,, m;y, m;,) €
N? and ¢,d € k* then (z;* + ax;? + bx;*)* = (x;* + ax,? + bx;*) for all
(i1, Tiyy Ti5) € N® and a,b € k.

6. If (x, " + bz, Zi3)* = (z; " + bxm”, %) for some (mil,mm,mig) e N?,

x;y) for all

(riysTiys1iy) € N2 and a € K or (z)* + az; 2, 2;° )" = (x;* + az 2, x;°) for all

12 713

ni, € N and b € kX then (z;' + ax; 93%)* = (z;," + ax;)?

12 ) Vig ig )

(T35 Tig, Tig) € N? and a € k*.
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2oty for some (g, My, my,) € N3,

Mg Mig Mig\x __ iy
T If (2" A cxy,® +doy, ) = (2, Fewy,”, xg,
Sig

T T3 Ti- T T3
ni, € N and ¢, d € k* then (x;' + ax;” + bx, )" = (x;" + ax,?,x;..°) for all
(T4, Tiy> Tis) € N2 and a,b € k™ such that s;; = 1 for all vy, or s;, = 14,.
8 If (wy," +cwy,” +dwy,®) = (v, 2,7, 2,°) for some (Mg, myy, my,) € N3,

3 X Tiy Tig Tig\k _ (.51 .52 .Si3
(M), iy, iy) € N° and ¢, d € k> then (x;" + ax;)” + br, ) = (2", 0,7, 1,.%)

for all (r;,, riy,mi,) € N* and a,b € k™ such that for some j € {1,2,3}, s;, =1y,

Jor all ri; and for all other j, s;; =1 for all r;;.

Proof. Without loss of generality let z;, =z, z;, =y and z;, = z.

(1) (™ 4 by™2)* = (2™ + by™2) for some my,my € N and b € k*. Let a € k*.
So (z™* 4 aym2th)* C (2™ + by™2)* = (2™ + by™2). Thus (2™ + ay™H1)* is

(zmH 4 qymeth) | (gmatl gymethy Cor (2™ 4 by™2). If we compute
a a a
((z+ 7Y+ 2)(a™ + by™?))* rx+ 7Y+ z) = (™ +ay™ )tz + vt z)

the latter two possibilities result in a contradiction since * is standard. Thus
(xm™H 4 qyme Ty = (™t 4 gyt Inductively we have (x™7 + qy™2tv)* =
(™t +ay™>*?) for all v € N. Consider (z™+ay"), m,n € N. Let M = maxz{m,n}.
We have

(((xmlJerm _i_yngern +Z>(3§'m +ayn))* : xm1+M7m _'_meJern —|—2)

= (2" + ay")
Since « is standard (z™ + ay™)* = (2™ + ay™). Hence (z™ + ay™)* = (™ + ay™) for

all m,n and a.

(2) Suppose (z™ + by™2)* = (z™,y") for some my, ma,ni,ny € N and b €

k*. The inclusion (z™,y"?) = (2™ + by™?)* C (z"™,y™2)* C (2™,y") implies
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(™, y™2)* = (2™,y™). By Lemma 3.2.12 (2™, y")* = (z,y) for all m,n € N,
(™ y")* = (z,y") for all m,n € N, (2™, y")* = (2™, y) for all m,n € N or
(™, y™)* = (=™, y") for all m,n € N.

Case: (2™,y")* = (z,y) for all m,n € N. This implies (™ + by™)* = (x,y).

Let a € k*. Since % is weakly prime

a * a mi1 mo *
(x + Ey + 2)(z™ 4+ by™)* C ((x + Ey + 2)(x™ 4 by™?))

= (xQ,yQ) g ({L‘mﬁ_l _|_ aymg—&-l)*

= (™ +ay™ ) = (2%, y7)" = (2,y).

By induction (™" 4+ ay™**?)* = (z,y) for all v € N. And as in (1) we obtain the

result for all exponents. Hence (2™ + ay™)* = (z,y) for all m,n and a.

The cases (2™, y")* = (z,y") forallm,n € N, (2™, y")* = (2™, y) forallm,n € N

or (™, y")* = («™,y") for all m,n € N are similar.

(3) Suppose (™ + by™2)* = (2™ + by™2,z™8) for some mq, my, mg € N and
b € k*. If (x,y)* = R3 then by Lemma 3.2.3 (2™ + by™2)* = Rz which is a
contradiction so (z,y)* # Rs. This implies (z,y")* # Rs3 for all m,n € N. By
Lemma 3.2.12 (2™, y™)* is either (2™, y") for all m,n € N, (™, y) for all m,n € N,
(x,y™) for all m,n € N, (x,y) for all m,n € N, (™, y", z) for all m,n € N, (2", y, z)
for all m,n € N, or (z,y", z) for all m,n € N. Suppose for all m,n € N (2™, y")*
does not contain z. This implies (2™, y™2)* does not contain z™3.
So (™ + by™2,2"3) = (2™ 4 by™2)* C (™, y™)* implies 23 € (2™, y"2)* a
contradiction. Hence (™, y™)* is either (z™,y", z) for all m,n € N, (2™, y, z) for all

m,n € N, or (z,y", z) for all m,n € N.

Case: (z™,y")* = (z™,y", z) for all m,n € N. The inclusion (z™ 1 ym2F1 2) =

(xm1+17ymz+1)* g (J}ml _|_ bymg)* g (xm17ym2>* — (xm17ym27z> = (Iml + bymz)* —
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(™ + by™2, z). Since * is weakly prime
a mi mo \ * a mi mo *
(x+gy+z)(:c + by™?) Q((x+gy+z)(x + by™?))

= ($m1+1 + aym2+1,z2) g ($m1+1 + aym2+1)*
= (CL’m1+1 + aym2+1)* — (ZEmH—l ‘I‘ aym2+1722)* g (:L‘ml + bme,Z).

This implies (q;"““ + aym2+1)* is either (xml'i‘l + aymz-i-l), (xm1+17 ym2+1)’

(2™ + by™2), (x™ L 4 aqym2 Tt 2 or (zmi L ymetl 2l with [ = 1 or [ = 2. Consider

(e + Ty +2) @™ +by"™) o+ Ty +2) = (@™ +ay™ ) o+ Ty +2).

Since % is standard the above yields a contradiction unless (z™* + ay™2t1)* =

(x4 qy™2 Tt 2. The inclusion

(.Tml+2,ym2+27z> — (xm1+27ym2+2>* g ($m1+1 + aymg—l-l)*

C (ZBm1+l, ymz-i-l)* — ($m1+1, ymz-i-l’ Z)

= (mml-I—l + aymg—i-l)* — ({L‘mﬁ_l + aym2+1,z).

Inductively we have (z™" + ay™>t)* = (2™ T 4 ay™2 ", z) for all v € N. And as
in (1) we obtain the result for all exponents. Hence (2™ + ay™)* = (2™ + ay", z) for

all m,n € N and a € k*.

Case: (z™,y")* = (2™, y,2) for all m,n € N. The inclusion (z™"' y,2) C
(xrmatl ymetlyx C (pmi 4 pym2)* C (2™ y™2)* = (2™, y, z) implies (x™ + by™2)* =

(™ y, z) which is a contradiction.

Case: (2™, y")* = (z,y", z) for all m,n € N. This gives a contradiction as in the

previous case.

(4) Suppose (™ + by™2)* = (™, y"*,2"3) for some my, ma, ny,n9,n3 € N and
b € k*. The inclusion (z"™,y"?, 2") = (2™ + by™)* C (z™,y™)* C (a™,y",2™)

implies (2™, y™2)* = (z™,y",2"). By Lemma 3.2.12 (2™, y")* = (z,y", 2) for all
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m,n € N, (™, y", z)* = (2", y,2) for all m,n € N or (™, y")* = (2™, y", z) for all

m,n € N.

Case: (2™, y")* = (z,y", z) for all m,n € N. The inclusion (z,y"*! z) =
(zmitt ymet s C (pmiby™2)* C (a™,y™2)* = (2,y™2", 2) implies (¢ +by™?)* =
(x,y™2,z). Let a € k*. Also the inclusion (z,y", z) = (2™, y")* = (2™, y", z")* C
(x,y™, z) implies (™, y", 2" )* = (z,y", z) for all m,n,r € N. Since * is weakly prime

a * a mi1 mo *
(x + Ey + 2)(z™ 4+ by™)* C ((x + Ey + 2)(2™ + by™?))

= (12 ym2+1 22) C ($m1+1 + aym2+1)*
) 9 =
= (2™ Fay™ ) = (0%, g™ 22) = (2™ 2).

By induction (™1 + ay™>t?)* = (x,y™" z) for all v € N. And as in (1) we
obtain the result for all exponents. Hence (2™ + ay™)* = (z,y", z) for all m,n € N

and a € k*.

The cases (z™,y™)* = (™, y,2) for all m,n € N, (™, y")* = (2™, y", z) for all

m,n € Nor (2™, y")* = (z™,y") for all m,n € N are similar.

(5) Suppose (2™ + cy™ + dz"3)* = (™ + cy™ + dz™3) for some my, My,
m3 € N and ¢,d € k*. For a,b € k* we have (z™*! 4 qym2tt 4 pzmstly* C
(2™ +cy™2 4+ dz™3)* = (2™ 4 cy™ +dz™*). This implies (™ + ay™m2 1 4 pzmatl)>
is either (™! ay™> T4 b2ma ) (T4 qyme T pmatl) (gt gmatly boymatly

(:Emﬂrl + azm3+17ym2+1 + ﬁzm3+1)7 or (;pm1+1,ym2+17 Zm3+1). If we compute

a b a b
- e mi mo ms3\\*x . _ _
(((x + Cy+ dz)(a: +cy™ +dz"™) rx+ Cy—i— dz)

b
= ((a™* + ay™ ™ + b2 a4 %y + Ez)

since « is standard we get a contradiction in each case except when
(zmtl 4 qymett 4 ppmatlys = (gmitl 4 gymetl 4 pems Tl Inductively we have

(™Y ay™2 TV 4 bV = (2" 4 ay™2 TV 4 b2™31Y) for all v > 0. And as in (1)

67



Chapter 3. Standard Closures on R;

we obtain the result for all exponents. Hence (2™ + ay™ + bz")* = (™ + ay™ + b2")

for all m,n,r € N and a,b € k*.

(6) Suppose (z™ + by™2, z2™3)* = (2™ + by™2, z"8) for some my, my, mz, n3 € N
and b € k*. If (z,y, 2)* = R3 then by Lemma 3.2.3 (™ +by™2, 23)* = Rj3, a contra-
diction. Thus (z,y,2)* = (z,y,2). By Lemma 3.2.11 (2™, y™, 2")* = (a7', y*2, 2°%)
for all (ry,ra,73) € N* with s; = r; for all r; € N for some j € {1,2,3} and s; =1
for all other j € {1,2,3}. Since

(l’m1+1,ym2+1, ng)* g (l’ml + bymz,ng)* — (l‘ml + bym2,2’n3)

we have either (z™,y", 2")* = (2™, y", 2) for all m,n,r € N or (2™, y", 2")" =
(™, y™, 2") for all m,n,r € N.

Case: (z™,y", 2")* = (2™, y", z) for all m,n,r € N. Since
($m1+1,ym2+1,2’) _ (xm1+1,ym2+1,zm3)* g (l‘ml + bymg’ an)

we must have ng = 1. The inclusion

mi1+2 m2+27 Z) — mi1+2 m2+27 Zm3+1)* g (.Tm1+1

(I Y m2+1 m3+1)*

(a™T=y + ay

g (.Tm1+1, ym2+1 mg—&—l)* — (Im1+1

, 2 m2+17 Z)

Y
implies either (x™1! 4 qym2tl pmstl)x = (gmitl 4 ggymatl )

or (zmitl gmatl pmstlys — (pmitl gmatl ) - Suppose the latter. Consider

a * a m1 m9 m *x\ . a
(e py+2) (@™ +by™, 2") s ot py+2) = (@™ ay™ ™, 270 ot y42)

= ((z™ T ym2t )+ %y +z) = (™, y"™, 2).

Since * is standard this is a contradiction. Thus (z™! 4 qym2tl zmst1)
= (2™t 4 ay™2t1 2). Inductively (z™TY 4 qy™2 Ty, M3 = (MU 4 qym2t 2)
for all v € N. And as in (1) we obtain the result for all exponents. Hence

(™ + ay™, 2")* = (2™ + ay™, z) for all m,n,r € N and a € k*.
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Case: (z,y", 2")* = (™, y", 2") for all m,n,r € N. Similar to the previous case

we get (2 + ay”, 2")* = (2™ + ay™, z") for all m,n,r € N and a € k*.

(7) Suppose (2™ +cy™2 +dz"3)* = (2™ +cy™2, 2™ for some (my, my, m3) € N3,
n3 € Nand ¢,d € k*. Since (™ + cy™2, 2") must be x closed by (6) we have either
(™ + ay™, ") = (™ + ay™, z) for all m,n,r € Nand a € k* or (2™ + ay™, z")* =

(™ + ay™, z") for all m,n,r € N and a € k*.
Case: (2" + ay", z")* = (2™ + ay", z) for all m,n,r € N and a € k*. Since * is
weakly prime for a,b € k* we have

b b
(24 2y 4+ =2)(a™ + ey +d2™)" C (@4 Sy + =) (@™ + oy + ™))"

= (xml—‘rl _|_ aym2+l7zn3+1> g (I,ml—l-l + aymg—l-l + bzmg—‘rl)*
= (l’ml—‘rl + aymg—i-l + bzm3+1)* _ (xml—‘,—l + aymg—i-l’ 2n3+1)* _ (lL‘m1+1 + aym2+1,z).

Inductively (2™ TV + ay™Tv + bz™F)* = (2™H 4 ay™2tv, 2) for all v € N. And as
in (1) we obtain the result for all exponents. Hence (z™ +ay" 4+ b2")* = (2™ 4+ ay", 2)

for all m,n,r € N and a,b € k*.

Case: (2™ +ay™, 2")* = (2™ +ay", z") for all m,n,r € N and a € k*. Similar to
the previous case we get (™ + ay™ + bz")* = (2™ + ay™, 2") for all m,n,r € N and

a,bek”.

(8) Suppose (2™ + cy™? + dz"3)* = (x™,y"2, 2"3) for some my, ma, M3, N1, No, N3
€ N and ¢,d € k*. The inclusion (x™,y"2,2"3) = (™ + cy™? + dz"™)*
C (xm y™m2 2ms)* C (2™, y"2, ") implies (2™, y™2, 2™3)* = (2™, y"2, 2"). So by
Lemma 3.2.11 for all 71,79, 75 € N (2", y"2, 2"3)* = (21, y*2, 2°%)for all (11,79, 73) € N?
with s; = r; for all 7; € N for some j € {1,2,3} and s; = 1 for all other j € {1,2,3}.

There are seven cases.

Case: (2™, y", 2")* = (z,y, 2") for all m,n € N. This implies
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(™ + cy™ 4+ d2"3)* = (x,y,2™3). Let a,b € k*. Since x is weakly prime

b b
(x+ %y + az)(:xml +cy™ +d2"™)* C (v + %y + az)(xml +cy™ + dz™))”

= (22,42, 2™+ C (pmHL  gymetl 4 pymatlyr
= (2™ 4 ay™ T 4 b)Y = (2%, 2T = (2, y, 2™,
By induction (2™ + ay™2 TV + b3 TV = (x,y, 2™1Y) for all v € N. And as in (1)
we obtain the result for all exponents. Hence (2™ + ay™ + b2")* = (x,y,2") for all

m,n,r € N and a,b € k*.
The other six cases are similar.

]

In the case of Ry the number of standard closures was not dependent on the field
k. However this is not so for the R3 case. The following two lemmas show that there

are more possible standard closures if k = Z/27Z or k = 7Z/37Z than if |k| > 4.

Lemma 3.4.2. Suppose % is a standard closure operation on Rs.

1. If k =7Z/27Z or |k| > 4 then (2™ + ay™ + bz™3)* # (2™ + 23,y + 323)
for all (my,my, m3) € N® and a,b,a, 3 € k*.

2. If k = Z/3Z and (x™ + ay™ + bz™3)* = (2™ + az™s,y™? 4 [2™3) for some
(my, mg,m3) € N3 and a,b,a, B € k* then (x™+y"+2")* = (2™ +22", y"+22"),
(@™ 4+ y" +22") = (@™ + 27, y" + 27), (@™ +2y" + 27)" = (@™ + 227,y + 27)
and (2 4 2y" + 22")" = (™ + 2", y" + 22") for all m,n,r € N.

Proof. First suppose (2™ + ay™? + bz"3)* = (2™ + az™3 y™2 + [52™3) for some
(my1,mg,m3) € N and a,b,, 5 € k*. Since (2™ + a2z, y™2 + $2™3) must contain
™ 4+ ay™? + b2™3 we have (™ + ay™2 + b2"3)* = (2™ + (b— af)2M3, y™* + [2M3).

This also implies b — af # 0. Since « is weakly prime we have

d d
(x+ gy + Bz)(xml +ay™ +b2")* C ((z + gy + gz)(:cm1 + ay™ + bz"))*
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d(b_ aﬂ) m3+1 Eymz-‘rl + @Zmzﬁ—l) C (:L,mﬁ-l + Cymz—I—l + dzm3+1)*

mi1+1
= (x + — 7 > >
- (xm1+1 + d(b _b 05) ng—i—l’ymz-‘rl + aglzmﬁ—l) - (:L,mﬁ-l + Cym2+1 + dzm3+1)*
C

Mzms-l-l’ m2+1+agﬁzm3+1)*

= (Im1+1 +Cym2+1 + dzm3+1)* — ($m1+1 _|_ b

C (@™ + (b af)2™ 4™ + f2m)
ad/B m3+1

‘ d(b—
(Slnce i+l + Cym2+1 + dzmstTl — pratl + (baﬂ)zma—l—l + C(ym2+1 4 WZ ))

This implies one of the following.

(xm1+1 +Cym2+1 +dzm3+1)* — (:L‘m1+1 + d(b—baﬁ)zm3+17ym2+1 + %ng-i-l) (31)

(z™H! 4 eyt 4 dpmetlyr = (gt 4 d(b_bmzm‘*“? y" g2 (3.2)

(@ ey A = (@7 (b= aB)e g SR (3

(2™ 4 ey T 4 d2 Y = (2™ + (b — aB)2™, Y™ + B2) (3.4)

Equation (4) implies ™ +ay™ 4+ bz™s € (z™ ! +cy™ T +dz™s1)* By Lemma
3.2.5 (z™ Ty cym2 4 dzmsT1)* = Rs which is a contradiction. Now suppose equation
(2). Consider

d X d
(((z+ gy +22) (@™ +ay™ £ 02") gy +52)
d
— ((xml'H + cym2+1 + dzm3+1)* x4 gy + ZZ)

db=aB) myt1 ey gomsy . g 4 “y+ %z)

_ mi+1
= ((x + 2
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M d(b - a/B) Zm3’ Eymz—l + %Zm;;—l
b a b

a(b - af)
b

d(b— ap)

d(b — ap)
\ b

)1fm2 > 1,mg3 >1
23y, 2™3) if mg = 1,mg > 1

23 y™s z) if mg > 1,mg =1

23y, z) if mg =mg =1

Since « is standard all of these are contradictions. Equation (3) gives a similar con-

tradiction. So we are left with equation (1). Inductively (V4 cy™?>++dz"3 V)" =

(xmtv d(b;amzmﬁ”, Yyt 4 %zmﬁ”). And as in Lemma 3.4.1 (1) we obtain
the result for all exponents. Hence (2™ +cy"+dz")* = (2™ + Mzr, y"+ @z’“)

b bc
for all m,n,r € N, ¢,d € k* for some fixed a,b, 5 € k*.
(1) If k = Z/27Z then there does not exist «, 5 € k* such that ™ +y™> + 2™ €
(z™ + az™s y™2 + 32™3) for any (my,mg,m3) € N®. Thus (2™ + y™2 4 2M3)* #£

(2™ + az™3 y™2 + [2™3) for all (my, mg, m3) € N® and «, 8 € k*.

So suppose |k| > 4 and to the contrary that we have (2 + ay™? + b2"3)* =

(2™ + az™ y™ + B2™3) for some (my,mo,m3) € N and a,b,a, 8 € k*. Thus,

db— d

as shown above, (2™ + cy™ + dz"3)* = (2™ + (bamz”,y”’ + ab—ﬁz’”?’) for all
C

(r1,72,73) € N* and ¢,d € k*. Consider (x + %y—i—dz). Since |k| > 4 we can choose

dsuch that d #0,d # 1, and d # ?. Thus (x—i-%y%—dz)* = (a:—i-d(b_baﬁ)z, y+dz).

b
Notice (z + %y +dz) C (v + (d — %)z,y + 2). Since (x + aZBy + b;i_—aaﬁﬁz)* =

— %)z, y+2), (z+(d— %)z, y—+2z) is * closed. The order preservation property

(x+(d ;
implies that (z+ %y—f—dz)* C(z+(d— %)z,y—i—z). Thus (x—l—d(b_bamz,y—kdz) -
(x4 (d— %)z,y—i—z). This implies y +dz € (z + (d — %)z,y—i—z). And since d # 1,

z € (x4 (d— %)z, y + z) which is a contradiction. Thus (2™ + ay™2 + b2™3)* #

(2™ + az™3 y™2 + B2™3) for all (my, mg, m3) € N® and a,b,a, 8 € k.

(2) Suppose k = Z/3Z and (™ + ay™> + bz"3)* = (2™ + az™3,y"2 + F2™3) for

some (mq,mo, m3) € N and a,b, o, 8 € k*. Thus, as shown above,
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(™ +cy™ +dz") = (2 + d(b_bamz”,y"2 + %z”) for all (ry,79,73) € N* and

c,d € k*. For a,b and (8 such that b — a8 # 0 we have the following possibilities:
b=1la=1,b=2;6=1,a=2,b=1;=2,a=1,b=1or =2,a=2,b=2.

For each of the above choices of a,b and 8 we compute the closures of

(™ +y"+2"), (2™ +y" +227), (2™ +2y" + 2") and (2™ + 2y" + 22"). In each case
we get (27" +yt 42" = (2" + 227, y" +227), (2" + Yyt + 22" = (2™ 427, y" + 27),
(™4 2y" + 2" = (2™ + 22", y" + 2") and (2™ + 2y" + 22")* = (™ + 2", y" + 227)

for all m,n,r € N.

]

Lemma 3.4.3. Suppose * is a standard closure operation on Rs with i; € {1,2,3}
and iy #ig for o # B. If (2 + ax} + ba})* = (a7, 2} + gxfs) and

2

(zi! +axy,, v}, +bxy, )" = (2] +axj,, v}, +bxy,) for allm,n,r € N and a,b € k* then

k] = 2.

Proof. Without loss of generality let z;, = z, z;, = y and z;, = z. Suppose to the
contrary that |k| > 3. Thus there exists § € k* such that 8 # 1. So we have the
inclusion (x+y+2) C (x+ (1 — B)z,y + z). However (z +y+ 2)* = (x,y+ 2) and
(x+(1=p)z,y+B2)" = (x+ (1 —p)z,y+ Bz). By order perservation we must have
(x+y+2)" C(x+(1—p)z,y+ Pz)* which implies (z,y+2) C (z+ (1 —0)z,y+ 5=2).
Thus z € (z + (1 — 8)z,y + Bz) which implies (z + (1 — )z,y + Bz) = (z,y,2) a

contradiction. O

Theorem 3.4.4. If |k| > 4 then there are 1522 standard closure operations on Rs.
If k = Z/3Z then there are 1523 standard closure operations on Rs. If k = 7Z/27

then there are 1525 standard closure operations on Rs.

The standard closure operations from Theorem 3.4.4 are listed in appendices A,

B and C.

73



Chapter 3. Standard Closures on R;

Proof. Suppose * is a standard closure operation on R3. By Proposition 3.1.14 each
ideal of R3 has a unique reduced generating set. Thus each proper ideal of Rj

expressed in terms of its reduced generating set will have one of the following forms:

e (0), (@™), (y"), (z"), (@™ +ay), (y* + az"), (2™ +az"), (™ + ay” + b2")

o (™ y"), (y*,2"), (2™, 2"), (2™ +ay”, 2"), (@™ 4+ az",y"), (", y" + a2'),
(™ + az", y" + b2")

o (2™, y",2")

m,n,r € Nand a,b € k*.

R - - ‘\-H'\-\._
l:..?.rrl_ _J.f":] (z™, .\'.‘"':I ':_.hl'“- :."} Ii.i"': + ay®, 2"‘:] (™ + bz", M,u” U"r”- Yyt + :'_:._ml \
.l/’/[-l""' +(b—ag)z" y" + 52")
(™ + ay™) ™+ b2") R T E:"‘. - T '.[__r’"' + ay™ + bz")
- (=) - (™) 3 (")

)

Figure 3.2: Ideal lattice of R3.
A dash indicates inclusion. Also a solid dash between an ideal I and J, with I below

J, indicates J/I = k.

For the first seven cases we will assume (z,y, 2)* = R3. By Lemma 3.2.3 we have

the following:
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($m + ayn + bzr)* — (l.m’yn)* — (xm’zr)* — ($m + ayn,zr)* — (l.m + azr,yn>* —
(l.m,yn + bz’/‘)* — (xm + azr’yn + bzr>* — (xm’yn’zr)* — Rg
for all m, n, r € Nand a,b € k*.

(1) Suppose (z)* = Rs, (y)* = Rs, and (2)* = R3. By Lemma 3.2.3 (z™)* =
(") = (") = (@™ +ay™)* = (y" + az")* = (2™ + az")* = (@™, y")* = (y",2")* =
(x™,2")* = R for all m,n,r € N and a € k*. By Lemma (0)* is monomial. If (0)*
is a proper nonzero monomial ideal then it contains a power of x , y or z. Thus by
Lemma 3.2.3 (0)* = Rj, a contradiction. Thus (0)* = R3 or (0)* = (0). Thus we

have x; and *q 1.

(2) Here we will consider all cases where the closure of two of the ideals, (), (y),

or (z), are R3 and the closure of the remaining ideal is not Rj.

(2a) Suppose (z)* = (y)* = R3 and (2)* # Rs;. By By Lemma 3.2.3 (2™)* =
(y")" = (@ +ay")* = (y"+az")" = (¢ +a2")" = (a7, y")" = (y", ") = (a7, 2")" =
R5 for all m,n,r € N and a € k*. If (2)* contains a power of x or y then by Lemma
3.2.3 (2)* = R3. Thus (2)* C (2). By Lemma 3.2.12 (2")* = (2) for all r € N or
(z")* = (2") for all r € N.

(2aa) Suppose (z7)* = (z) for all » € N. By Lemma 3.2.6 (0)* is proper nonzero

monomial ideal or (0)* = (0).

(2aaa) Suppose (0)* is a proper nonzero monomial ideal. Since (0)* C (z), (0)* =

(2') for some [ € N. By Lemma 3.2.7 (0)* = (2). This is .
(2aab) Suppose (0)* = (0). This is *g.

(2ab) Suppose (z")* = (z") for all r € N. By Lemma 3.2.8 (0)* = (0). This is

*9.9.

(2b) Suppose (z)* = (2)* = Rz and (y)* # Rs3. Similar to (2a) we get xa3, *2.4

and *9.5.

75



Chapter 3. Standard Closures on R;

(2b) Suppose (y)* = (2)* = Rz and (z)* # Rs. Similar to (2a) we get %o, *o.7

and *92.8-

(3) Here we will consider all cases where the closure of one of the ideals, (z), (y),

or (z) is R, and the closure of the remaining two ideals are not Rj.
The following claims will be useful throughout the remainder of the proof.

Claim 3.4.5. Suppose x is a standard closure on Rs with i; € {1,2,3} and i, # ig
for a# B and that (x,*, x;2)* = (2, ;%) for all (ry,,7:,) € N? then either

i1 ) Vig i1 ) Vig

(le + ax:f)* = (le , x:f) for all (ri,,7:,) € N*> and a € k* or

1.
2. (2 +ax;2)* = (2, +ax;?) for all (r;y,73,) € N* and a € k>
Proof. Without loss of generality let x;, =z, z;, =y, r;, = m and r;,, = n. Assume
(™, y")* = (2™, y") for all m,n € N. Let a € k*. The inclusion (2 + ay")* C
(™, y™)* = (2™, y") implies for each 7,7 € N and b € k* , (2" + by’ )* = (2",9?) or
(z' +by’)* = (2' + by?).

Suppose (z° + by?)* = (2%, ’) for some 4,5 € N and b € k*. By Lemma 3.4.1
either (2™ + ay™)* = (z,y) for all m,n € N and a € k* , (2™ + ay")* = (x,y") for
all m,n € N and a € k*, (2™ + ay™)* = (2™, y) for all m,n € N and a € k* or
(™ 4 ay™)* = (a™,y") for all m,n € N and a € k*. The inclusion (z™ + ay")* C
(™, y")* = (2™, y") leads to a contradiction except in the case (z"+ay™)* = (2™, y")

for all m,n € N and a € k*.

Suppose (2% + by’ )* = (2% + by?) for some i,j € N and b € k*. By Lemma 3.4.1
(™ + ay™)* = (2™ + ay™) for all m,n € N and a € k*. This concludes the proof of
the claim. [l

Claim 3.4.6. Suppose x is a standard closure on R3 with i; € {1,2,3} and i, # ig
for a £ 6.
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1. If (2, x, T2 ) = (@, 4,) for all 1y, € N and () T2 )" = (@4, 24,) for all
ri, € N then (acz-2 )" = (x;,) for all ry, € N or (a: 2= (:r; 2) for all ri, € N.

2. If (x4, T )t = (i), 2, x.2) for all r, € N and (z)' T2, x,)* = (Tiy, x4 for all
ri, € N then (miQ = (z -22) for all r;, € N.

3. If (9311, ;) ) = (x”, T, 2) for all v, € N and ( T, 2 x,)" = (x;f,a:i?)) for all
ri, € N then (;2)* = (2;.2) for all r;, € N.

4o If (2t 22" = (24, 2,.2) for all vy, € N then (z;0)* = (2;,) for all 7;, € N or

7,17 ’Lz

(2;)* = (z;.") for all r;; € N.

11

5. If (x;0, 22 ) = (20, 2;2) for all vy, € N then (z;)* = (2;) for all r;, € N.

117 ’LQ 11 ? 7,2

Proof. Without loss of generality let z;, =z, z;, =y, x;;, = 2 and 1, = n.

(1) Assume (z,y")* = (z,y") and (y", 2)* = (y,2) n € N. The inclusion (y/)* C
(z,9) N (9, 2)" = (z,9) N (y,2) = (y) implies (/)" = (y) for some i,j € N. By
Lemma 3.2.12 (y")* = (y) for all n € N or (y")* = (y") for all n € N,

(2) Assume (z,y")* = (z,y) and (y", 2)* = (y,2) n € N. The inclusion (y")* C
(x,y")* N (y", 2)* = (x,y™) N (y,z) = (y") implies (y")* = (y™) for all n € N.

(3) Proof similar to (2). (4) Assume (2™, y™)* = (z,y") for all m,n € N. Since

(™) C ey (2™ y™)* = Ney(x,y™) = (x) by Lemma 3.2.12 (z™)* = (z) for all
m € Nor ()" = (2™) for all m € N.

(5) Assume (2™, y")* = (2™, y") for all m,n € N. Since (z™)* C N>, (™, y")* =
N> (2™, y") = (x™) thus (z)* = (z™) for all m € N.

This concludes the proof of the claim. n
(3a) Suppose (z)* = Rs, (y)* # Rs, and (2)* # R3;. By Lemma 3.2.3 (2™)* =
(@™ + ay™)* = (2™ + az")* = (2™, y")* = (2™, 2")* = Ry for all m,n,r € N and

a € k*. If (y,z)* contains a power of x then by Lemma 3.2.3 (y,2)* = R3. Thus
(y,2)* = Rs or (y,2)* C (y, 2).
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(3aa) Suppose (y,z)* = Rs. If (y)* contains a power of x or z then by Lemma
3.2.3 (y)* = Rs, a contradiction. Thus (y)* C (y). By Lemma 3.2.12 (y")* = (y)
for all n € N or (y"*)* = (y") for all n € N. Similarly (2")* = (2) for all € N or
(2")* = (2") for all » € N. Since (0)* C (y)N(z) = (0), (0)* = (0). Thus we have the

four closures 3 through *3 3.

(3ab) Suppose (y, 2)* C (y, z). By Lemma 3.2.12 (y", 2")* = (y, 2) for all n,r € N,
(y", 2")" = (y,2") for all n,r € N, (y",2")" = (y", 2) for all n,r € Nor (y",2")* =
(y™, 2") for all n,r € N

(3aba) Suppose (y", z")* = (y, z) for all n,r € N. By Claim 3.3.1 (y" 4+ az")* =
(y,2) for all n,r € N and a € k*. Since (y)* C (y, z) by Lemma 3.2.12 (y")* = (y, 2)
foralln e N, (y")* = (y", 2) for all n € N, (y")* = (y) for all n € N or (y")* = (y")
for all n € N. Since (y",z) is not x closed for all n € N only three possibilities

remain.

(3abaa) Suppose (y")* = (y, z) for all n € N. Since (2)* C (y, z) by Lemma 3.2.12
(") = (y,z) for all r € N, (2")* = (y,2") for all r € N, (2")* = (2) for all r € N
or (2")* = (2") for all » € N. Since (y, z") is not * closed for all » € N only three

possibilities remain.

(3abaaa) Suppose (2")* = (y, z) for all » € N. By Lemma 3.2.6 (0)* is a proper

nonzero monomial ideal or (0)* = (0).

(3abaaaa) Suppose (0)* is a proper nonzero monomial ideal. Since (0)* C (y, 2),
(0)* = (i, 2!) for some j,1 € N, (0)* = (y?) for some j € N or (0)* = (2!) for some
leN.

(3abaaaaa) Suppose (0)* = (y,2!) for some j, € N. By Lemma 3.2.7 (0)* =
(y, z). This is x3.4.

(3abaaaab) Suppose (0)* = (y’) for some j € N. By Lemma 3.2.7 (0)* = (y).
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This is *3.5.

(3abaaaac) Suppose (0)* = (2!) for some [ € N. Similar to the previous case

(0)* = (Z) . This is *3.6-
(3abaaab) Suppose (0)* = (0). This is %3 7.

(3abaab) Suppose (z")* = (z) for all » € N. By Lemma 3.2.6 (0)* is a proper

nonzero monomial ideal or (0)* = (0).

(3abaaba) Suppose (0)* is a proper nonzero monomial ideal. Similar to case

(3abaaaab) (0)* = (z). This is *3s.
(3abaabb) Suppose (0)* = (0). This is x3.

(3abaab) Suppose (2")* = (2") for all r € N. By Lemma 3.2.8 (0)* = (0). This is

*3.10-

(3abab) Suppose (y")* = (y) for all n € N. Similar to case (3abaa) we have
(z")* = (y,2) for all r € N, (2")* = (2) for all r € N or (2")* = (2") for all r € N.

(3ababa) Suppose (z")* = (y, z) for all r € N. By Lemma 3.2.6 (0)* is a proper

nonzero monomial ideal or (0)* = (0).

(3ababaa) Suppose (0)* is a proper nonzero monomial ideal. Similar to case

(3abaaaab) (0)* = (y). This is *311.
(3ababab) Suppose (0)* = (0). This is x3.12.

(3ababb) Suppose (2")* = (z) for all » € N. Since (0)* C (y) N (z) = (0),
(0)* = (0). This is *3.13.

(3ababc) Suppose (z7)* = (2") for all r € N. By Lemma 3.2.8 (0)* = (0). This is

*3.14-

(3abac) Suppose (y")* = (y") for all n € N. By Lemma 3.2.8 (0)* = (0). Similar
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to case (3abaa) we have (2")* = (y,2) for all r € N, (2")* = (2) for all r € N or

(z")* = (2") for all r € N. Thus we have %315, x3.16 and *3 17.

(3abb) Suppose (y", z")* = (y, z") for all n,r € N. By Claim 3.3.1 (y" + a2")* =
(y,2") for all n,7 € N and a € k*. By Claim 3.4.6 (y")* = (y) for all n € N or
(y")* = (y") for all n € N.

(3abba) Suppose (y")* = (y) for all n € N. Since (2?)* C (y, 2?) by Lemma 3.2.12
(z")* = (y,2") for all r € N or (2")* = (2") for all r € N.

(3abbaa) Suppose (z")* = (y, 2") for all € N. By Lemma 3.2.6 (0)* is a proper

nonzero monomial ideal or (0)* = (0).

(3abbaaa) Suppose (0)* is a proper nonzero monomial ideal. Since (0)* C (y),

(0)* = (y’) for some j € N. By Lemma 3.2.7 (0)* = (y). This is *31s.
(3abbaab) Suppose (0)* = (0). This is *319.

(3abbab) Suppose (2")* = (2") for all » € N. By Lemma 3.2.8 (0)* = (0). This is

*3.20-

(3abbb) Suppose (y™)* = (y") for all n € N. By Lemma 3.2.8 (0)* = (0). Similar
to case (3abba) (27)* = (y,2") for all r € N or (2")* = (2") for all » € N. Thus we

have *3.91 and *3.99.

(3abc) Suppose (y", z")* = (y", z) for all n,r € N. Similar to case (3abb) we get

*3.93 through *3.96-

(3abd) Suppose (y*,2")* = (y", z") for all n,r € N. By Claim 3.4.6 (y")* = (y")
for all n € N and (2")* = (2") for all » € N. By Lemma 3.2.8 (0)* = (0). By Claim
3.45 (y" +az")* = (y",2") for all n,r € Nand a € k* or (y" + az")* = (y" + az")

for all n,r € N and a € k*. Thus we have %397 and *3.o5.

(3b) Suppose ()* # Rs, (y)* = Rs, and (2)* # Rs. Similar to case (3a) we get
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*3.99 thI'OU.gh *3.57-

(3c) Suppose (z)* # Rs, (y)* # Rs, and (2)* = R3. Similar to case (3a) we get

*3.58 through *3.86-

For parts (4), (5) and (6) We will cover those cases where (x)* # Rs, (y)* # Ra,
and (2)* # Rs.

(4) Suppose (z,y)* = (z,2)* = (y,2)* = Rs. By Lemma 3.2.3 (2 + ay")* =
("4 az") = (y"+az") = (™, y")* = (2™, ") = (y",2")* = Ry for all m,n,r € N
and a € k* . If (z)* contains a power of y or z then (z)* = Rs, a contradiction.
Thus ()* C (z). By Lemma 3.2.12 (2)* = (x) for all m € N or (2™)* = (2™) for
all m € N. Similarly (y")* = (y) for all n € N or (y")* = (y") for all n € N and
(z")* = (z) for all r € N or (2")* = (2") for all » € N. Since (0)* C (z) N (y) = (0),

(0)* = (0). Thus we have the closures x4 through %4 7.

(5) Here we will consider those cases where the closures of two of the ideals, (x,y),

(x,z) or (y,z), are Ry and the closure of the remaining ideal is not Rj.

(5a) Suppose (z,y)* = (z,2)* = Rz and (y,2)* # Rz for all m,n,r € N and
a € k*. By Lemma 3.2.3 (2™ 4+ ay™)* = (2™ + az")* = (2™, y")* = (2™, 2")* = Rs.
Similar to case (4) (z™)* = (x) for all m € N or (z™)* = (2™) for all m € N. And
since (0)* € () N (y,2) = (0), (0)* = (0).

(5aa) Suppose (z™)* = (z) for all m € N. If (y, 2)* contains a power of z then by
Lemma 3.2.3 (y, 2)* = Rs, a contradiction. Thus (y, 2)* C (v, z). By Lemma 3.2.12
(y",2")* = (y, 2) for all n,r € N, (y™, 2")* = (y,2") for all n,r € N, (y", 2")* = (y", 2)
for all n,r € N or (y",2")* = (y",2") for all n,r € N.

(baaa) Suppose (y", z")* = (y, 2) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,z) for all n,r € N and a € k*. Since (y)* C (y, z) by Lemma 3.2.12 (y")* = (y, 2)
foralln € N, (y")* = (y", z) for alln € Nor (y")* = (y) for all n € Nor (y")* = (y")
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for all n € N. However since (y", z) is not x closed for all n € N we are left with just

the three possibilities.

(baaaa) Suppose (y")* = (y, z) for all n € N. Since (2)* C (y, z) by Lemma 3.2.12
(2")" = (y,2) forall r € N, (2")* = (y,2") forall r € Nor (2")* = (z) forall r € N
or (2")* = (2") for all r € N. However since (y, z") is not x closed for all r € N we
are left with just the three possibilities: (2")* = (y, 2) for all r € N, (2")* = (z) for

all 7 € Nor (27)* = (2") for all r € N. Thus we have %5, *51 and *.».

(haaab) Suppose (y")* = (y) for all n € N. Similar to (5aaaa) (2")* = (y, z) for
all 7 € N, (2")* = (2) for all r € N or (2")* = (2") for all r € N. Thus we have *s 3,

*5.4 and *5.5.

(haaac) Suppose (y")* = (y") for all n € N. Similar to case (5aaab) we have x5,

*5.7 and *x g.

(baab) Suppose (y", 2")* = (y, z") for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,2") for all n,r € N and a € k*. By Claim 3.4.6 (y")* = (y) for all n € N or
(y")* = (y") for all n € N.

(haaba) Suppose (y")* = (y) for all n € N. Since (2%)* C (y, 2?) by Lemma 3.2.12

(2")* = (y,2") for all r € N or (2")* = (2") for all r € N. So we have %59 and x5 1.

(baabb) Suppose (y")* = (y") for all n € N. Similar to case(baaba) we get This

is *5.11 and This is *5.12-

(haac) Suppose (y", z")* = (y", z) for all n,r € N. This is similar to case (5aab)

with the roles of y and 2z exchanged. Thus we have x513 through x5 4.

(baad) Suppose (y", 2")* = (y", ") for all n,r € N. By Claim 3.4.6 (y")* = (y")
for all n € N and (2")* = (2") for all » € N. By Lemma 3.2.8 (0)* = (0). By Claim
3.45 (y" +az")" = (y*,2") for all n,r € Nand a € k* or (y" + az")" = (y"* + az")

for all n,r € N and a € k*.

82



Chapter 3. Standard Closures on R;

(5aada) Suppose (y" + az")* = (y", 2") for all n,r € N and a € k*. This is 5 17.

(5aadb) Suppose (y" + az")* = (y" + az") for all n,r € N and a € k*. This is

*5.18-

(5ab) Suppose (z™)* = (™) for all m € N. This case is similar to case (bac).

Thus we get *5.19 through *5.37.

(5b) Suppose (z,y)* = (y, 2)* = R and (x, z)* # Rs. Similar to case (5a) we get

*5.38 thI‘OU_gh *5.75-

(5¢) Suppose (z, 2)* = (y,2)* = R3 and (z,y)* # Rs. Similar to case (5a) we get

*5.7¢ through *5113.

(6) Here we will consider those cases where the closure of one of the ideals,
(x,y), (x,z) or (y,z2), is Ry and the closure of the remaining ideals is not R3. (6a)
Suppose (z,y)* = Rs, (z,2)* # R and (y, 2)* # R3. By Lemma 3.2.3 (2" +ay")* =
(™, y")* = Ry for all m,n € N and a € k*. If (x,2)* contains a power of y then
by Lemma 3.2.3 (z,2)* = Rs, a contradiction. Thus (z,2)* C (z,z). By Lemma
3.2.12 (z™,2")" = (x,2) for all m,r € N, (2™, 2")* = (x,2") for all m,r € N,

(x™, 2")* = (2™, z) for all m,r € Nor (2, 2")* = (2™, 2") for all m,r € N.

(6aa) Suppose (z™,2")* = (z, z) for all m,r € N. By Claim 3.3.1 (2™ + az")* =
(x,z) for all m,r € N and a € k*. Similar to case (6a) (y",z")* = (y,z) for all
n,r € N, (y",2")* = (y,2") for all n,r € N, (y",2")* = (y", 2) for all n,7 € N or
(y™, 2" = (y™, 2") for all n,r € N.

(6aaa) Suppose (y",2")* = (y, z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,2) for all n,r € Nand a € k*. Since (z)* C (z, z) by Lemma 3.2.12 (2™)* = (z, 2)
for all m € N, (z™)* = (2™,2) for all m € N, (2™)* = (z) for all m € N or
(x™)* = (2™) for all m € N. However since (2™, z) is not x-closed for all m € N we

are left with just three cases.
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(6aaaa) Suppose (z™)* = (x, z) for all m € N. Since (y)* C (y, 2) Lemma 3.2.12
(y")* = (y,2) for all n € N, (y")* = (y", 2) for all n € N, (y")* = (y) for all n € N

*

or (y")* = (y") for all n € N. Again (y", z) is not *-closed for all n € N we are left

with just three cases.

(6aaaaa) Suppose (y")* = (y, z) for all n € N. By Claim 3.4.6 (2")* = (z) for all
r € Nor (2")* = (27) for all r € N. (6aaaaaa) Suppose (2")* = (z) for all » € N. By

Lemma 3.2.6 (0)* is a proper nonzero monomial ideal or (0)* = (0).

*

(6aaaaaaa) Suppose (0)* is a proper nonzero monomial ideal. Since (0)* C (z),

(0)* = (2!) for some | € N. By Lemma 3.2.7 (0)* = (z). This is *g.
(6aaaaaab) Suppose (0)* = (0). This is *g.1.

(6aaaaab) Suppose (2")* = (z") for all » € N. By Lemma 3.2.8 (0)* = (0). This

18 *6.2-

(6aaaab) Suppose (y")* = (y) for all n € N. Since (0)* C (y) N (z,z) = (0),
(0)* = (0). By Claim 3.4.6 (2")* = (2) for all r € N or (2")* = (2") for all r € N.

Her we have *g 3 and *g 4.

*

(6aaaac) Suppose (y")* = (y") for all n € N. Similar to case (6aaaab) we get *¢.5

through x4 .6.

(6aaab) Suppose (z)* = (x) for all m € N. Since (0)* C (z) N (y,2) = (0),
(0)* = (0). Similar to case (6aaaa) (y")* = (y,2) for all n € N, (y")* = (y) for all
n € Nor (y")* = (y") for all n € N.

(6aaaba) Suppose (y")* = (y, z) for all n € N. By Claim 3.4.6 (2")* = (2) for all

r € Nor (z")* = (2") for all r € N. Hence we have xg7 and *gg.

(6aaabb) Suppose (y")* = (y) for all n € N. By Claim 3.4.6 (2")* = (2) for all

r € Nor (z")* = (2") for all r € N. Thus we have g9 and *g.10-
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*

(6aaabc) Suppose (y™)* = (y) for all n € N. Similar to case (6aaabb) we have

*6.11 through *6.12-

(6aaac) Suppose (z™)* = (2™) for all m € N. Similar to (6aaab) we get xg.13

through *6.18-

(6aab) Suppose (y", 2")* = (y, z") for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,2") for all n,r € N and a € k*. By Claim 3.4.6 (2")* = (2") for all » € N. And
by Lemma 3.2.8 (0)* = (0). Similar to case (6aaa) (z™)* = (z,z2) for all m € N,

(z™)* = (x) for all m € N or (™)* = (2™) for all m € N.

(6aaba) Suppose (z™)* = (z, z) for all m € N. By Claim 3.4.6 (y")* = (y) for all

n € Nor (y")* = (y") for all n € N. Here we have %419 and *g.o0.

(6aabb) Suppose (z)* = (x) for all m € N. Similar to (6aaba) (y")* = (y) for

all n € Nor (y")* = (y") for all n € N. So we have %¢21 and *g.22.

(6aabc) Suppose (z™)* = (z™) for all m € N. Similar to case (6aabb) we get xg.23

and *6.24-

(6aac) Suppose (y",z")* = (y", z) for all n,r € N. Similar to case (6aab) with

the roles of y and 2z exchanged we get x¢.05 and *g.30.

(6aad) Suppose (y",2")* = (y", 2") for all n,r € N. By Claim 3.4.6 (y")* = (y")
for all n € N and (2")* = (2") for all » € N. By Lemma 3.2.8 (0)* = (0). By Claim
3.45 (y" +az") = (y*,2") for all n,r € Nand a € k* or (y" + az")" = (y"* + az")

for all n,r € N and a € k*.

(6aada) Suppose (y"+az")* = (y", z") for all n,r € N. Similar to (6aaa) (™)* =
(x,2) for all m € N, (™)* = (z) for all m € N or (z™)* = (2™) for all m € N. So

we have *6.31, *6.32 and *6.33-

(6aadb) Suppose (y"+az")* = (y"+az") for all n,r € N. Similar to case (6aada)
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we get xg.34 through *g.3g.

(6ab) Suppose (2™, 2")* = (x, z") for all m,r € N. By Claim 3.3.1 (2™ + az")* =
(x,2") for all m,r € N and a € k*. Similar to case (6aa) (y",z")* = (y,z) for all
n,r € N, (y",2")" = (y,2") for all n,r € N, (y",2")* = (y",z) for all n,r € N or
(y™, 2")* = (y™, 2") for all n,r € N.

(6aba) Suppose (y",z")* = (y, z) for all n,r € N. This is the same as as case
(6aab) with the roles of z and y exchanged. We get xg 37 through xg 40.

(6abb) Suppose (y™, z")* = (y, 2") for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,2") for all n,r € N and a € k*. By Claim 3.4.6 (2")* = (2) for all » € N or
(2")* = (2") for all r € N. By Lemma 3.2.8 (0)* = (0). By Claim 3.4.6 (y")* = (y)
foralln € Nor (y*)* = (y") for allm € Nand (27)* = (2) for all » € Nor (2")* = (2")

for all » € N. Thus we have xg 43 through ¢ 4¢.

(6abc) Suppose (y", 2")* = (y", 2z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y",z) for all n,r € N and a € k*. By Claim 3.4.6 ()" = (2") for all » € N. By
Lemma 3.2.8 (0)* = (0). And again by Claim 3.4.6 (z™)* = (z) for all m € N or
(x™)* = («™) for all m € N.

(6abca) Suppose (z™)* = (z) for all m € N. Since (y?)* C (32, 2), by Lemma
3.2.12 (y")* = (y", z) for all n € N or (y")* = (y") for all n € N. (6abcaa) Suppose
(y")* = (y", z) for all n € N. This is g.47.

(6abcab) Suppose (y")* = (y") for all n € N. This is ¢ 4s-

(6abcb) Suppose (x™)* = (2™) for all m € N. Similar to case (6abca) we get xg.49

O *g.50-

(6abd) Suppose (y", z")* = (y*, 2") for all n,r € N. By Claim 3.4.6 (y")* = (y")
for all n € N and (2")* = (2") for all » € N. By Lemma 3.2.8 (0)* = (0). By Claim
3.45 (y" +az")* = (y*,2") for all n,r € Nand a € k* or (y" + az")* = (y" + az")
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for all n,7» € N and a € k*.

(6abda) Suppose (y" + az")* = (y", z") for all n,r € N and a € k*. By Claim
3.4.6 (2™)* = (z) for all n € N or (2™)* = (2™) for all n € N. Thus we have *g5;

and *6.52-

(6abdb) Suppose (y" + az")* = (y" + az") for all n,r € N and a € k*. Similar to

case (6abda) we have xg53 and *g 54.

(6ac) Suppose (z™,2")* = (2™, z) for all m,r € N. By Claim 3.3.1 (™ 4+ az")* =
(™, z) for all m,r € N and a € k*. Similar to case (6aa) (y",2")* = (y, z) for all
n,r € N, (y",2")* = (y,2") for all n,r € N, (y",2")* = (y", 2) for all n,r € N or
(y™, 2" = (y™, 2") for all n,r € N.

(6aca) Suppose (y", z")* = (y, z) for all n,r € N. Similar to case (6aac) with the

roles of x and y exchanged we get *g55 and xg.¢0.

(6acb) Suppose (y™, z")* = (y, 2") for all n,r € N. Similar to case (6abc) we get

*6.61 and *6.64-

(6acc) Suppose (y", z")* = (y", z) for all n,r € N. By Claim 3.3.1 (y" 4+ az")* =
(y™, z) for all n,r € N and a € k*. Since (z?)* C (22, z) by Lemma 3.2.12 (z™)* =

(x™, z) for all m € N or (2)* = («™) for all m € N.

*

(6acca) Suppose (z™)* = (z™, z) for all m € N. Since (y?)* C (y?, z) by Lemma
3.2.12 (y")* = (y", 2) for all n € Nor (y")* = (y") for all n € N.

(6accaa) Suppose (y")* = (y", z) for all n € N. By Claim 3.4.6 (2")* = (z) for all
reNor ()" = (") for all r € N.

(6accaaa) Suppose (z7)* = (z) for all » € N. By Lemma 3.2.6 (0)* is a proper

nonzero monomial ideal or (0)* = (0).

(6accaaaa) Suppose (0)* is a proper nonzero monomial ideal. Since (0)* C (z),
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(0)* = (2!) for some | € N. By Lemma 3.2.7 (0)* = (z). This is %¢.¢5-
(6accaaab) Suppose (0)* = (0). This is *¢.¢6-

(6accaab) Suppose (27)* = (z") for all r € N. By Lemma 3.2.8 (0)* = (0). This

18 *6.67-

(6accab) Suppose (y")* = (y") for all n € N. By Lemma 3.2.8 (0)* = (0). By
Claim 3.4.6 (2")* = (2) for all € N or (2")* = (2") for all » € N. Here we have %4 s

and *6.69-

(6acch) Suppose (z™)* = (2™) for all m € N. By Lemma 3.2.8 (0)* = (0). Similar
to case (6acca) (y")* = (y", 2) for all n € N or (y")* = (y") for all n € N.

(6accba) Suppose (y")* = (y", z) for all n € N. By Claim 3.4.6 (2")* = (z) for all

r € Nor (z7)* = (2") for all r € N. Here we have ¢70 and xg.71.

(6accbb) Suppose (y")* = (y") for all n € N. By Claim 3.4.6 (2")* = (2) for all

r € Nor (z")* = (2") for all » € N. Hence we have xg75 and *g.73.

(6acd) Suppose (y", z")* = (y", z") for all n,r € N. By Claim 3.4.6 (y")* = (y")
for all n € N and (2")* = (2") for all » € N. By Lemma 3.2.8 (0)* = (0). By Claim
3.45 (y" +az")" = (y*,2") for all n,r € Nand a € k* or (y" + az")" = (y"* + az")
for all n,r € N and a € k*.

(6acda) Suppose (y" + az")* = (y",2") for all n,r € N and a € k*. Similar to
case (6acc) (z™)* = (2™, z) for all m € N or (z)* = (2™) for all m € N. So we have

*6.74 and g 75.

(6acdb) Suppose (y" + az")* = (y" + az") for all n,r € N and a € k*. Similar to

case (6acda) we get xg.76 and g 77.

(6ad) Suppose (z™,2")* = (2™, z") for all m,r € N. (6ada) Now suppose

(y™, 2")* = (y, z) for all n,r € N. Similar to case (6aad) we get xg.75 and *g.g3.
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(6adb) Now suppose (y", z")* = (y, 2") for all n,r € N. Similar to case (6abd) we

get *6.84 and *6.87-

(6adc) Now suppose (y", z2")* = (y", z) for all n,r € N. Similar to case (6acd) we

get *6.88 and *6.91-

(6add) Now suppose (y", z")* = (y", 2") for all n,r € N. By Claim 3.4.6 (2")* =
(™) for all m € N, (y")* = (y") for all n € N and (2")* = (¢") for all » € N. By
Lemma 3.2.8 (0)* = (0). By Claim 3.4.5 (2™ + az")* = (2™, 2") for all m,r € N and
a € kX or (™4 az")* = (™ + az") for all m,r € Nand a € k* and (y" + az")* =
(y",2") for all n,r € N and a € k* or (y" + az")* = (y" + az") for all n,r € N and

a € k™. Thus we have xg.9o through *g.g5.

(6b) Suppose (x,y)* # Rs, (z,2)* = Rs and (y, 2)* # Rs. Similar to case (6a) we

get xg.96 through x4.191.

(6¢) Suppose (x,y)* # Rs, (x,2)* # Rz and (y, 2)* = R3. Similar to case (6a) we

get *6.192 through *6.287-

(7) Suppose (z,y)* # Rs, (v,2)" # Rs and (y,2)* # Rs. If (z,y)* contains
a power of x then (z,y)* = Rj, a contradiction. Thus (z,y)* C (x,y). Similarly
(x,2)* C (x,2) and (y,2)* C (y,z). By Lemma 3.2.12 (z™,y")* = (x,y) for all
m,n € N, (2™, y")* = (x,y") for all m,n € N, (2, y")* = (2, y) for all m,n € N

or (™ y™)* = (™, y") for all m,n € N.

(7a) Suppose (2™, y")* = (x,y) for all m,n € N. By Claim 3.3.1 (2" + ay")* =
(z,y) for all m,n € N and a € k*. By Lemma 3.2.12 (2™, 2")* = (x,z) for all
m,r € N, (2™, 2")* = (x,2") for all m,r € N, (2™, 2")* = (2™, 2) for all m,r € N or

(™, 2")* = (2™, 2") for all m,r € N.

(Taa) Suppose (2™, 2")* = (z,2) for all m,r € N. By Claim 3.3.1 (2™ + az")* =
(x,2) for all m,r € N and a € k*. By Lemma 3.2.12 (y",2")* = (y,z) for all
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n,r € N, (y",2")" = (y,2") for all n,r € N, (y",2")* = (y",2) for all n,r € N
or (y*,2")* = (y",2") for all n,r € N. Since (0)* C (x,y) N (x,z) N (y,z) = (0),

(0)* = (0).

(Taaa) Suppose (y",2")* = (y, z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,z) for all n,r € N and a € k*. This leaves only the colosure of the principal
monmial ideals to be determined. By Claim 3.4.6 (z™)* = (z) for all m € N or
(z™)* = (™) for all m € N, (y")* = (y) for all n € N or (y")* = (y") for alln € N
and (2")* = (z) for all » € N or (2")* = (2") for all » € N. Thus we have %; through

*77.

(7Taab) Suppose (y", 2")* = (y, z") for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,2") for all n,r € N and a € k*. By Claim 3.4.6 (z™)* = (x) for all m € N or
(™) = (a™) for all m € N, (y")* = (y) for all n € Nor (y"*)* = (y") for alln € N

and (z")* = (2") for all » € N. Thus we have %75 through *71;.

(Taac) Suppose (y™, 2")* = (y", z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y™, z) for all n,r € N and a € k*. Similar to case (7aab) with the roles of y and z

exchanged. We get %715 and *7.15.

(Taad) Suppose (y", 2")* = (y", ") for all n,r € N. By Claim 3.4.6 (y")* = (y")
for all n € N and (2")* = (") for all r € N. By Claim 3.4.5 (y" + az")* = (y", 2")
for all n,r € Nand a € k* or (y" +az")* = (y" + az") for all n,r € N and a € k*.

(7Taada) Suppose (y" + az")* = (y", 2") for all n,7 € N and a € k*. By Claim
3.4.6 (z™)* = (x) for all m € N or (2™)* = (2™) for all m € N. Thus we have %716

and *717-

(Taadb) Suppose (y" + az")* = (y" + az") for all n,r € N and a € k*. Similar to

case (Taada) we have %715 and *719.

(Tab) Suppose (z™, 2")* = (x, 2") for all m,r € N. By Claim 3.3.1 (2 4 az")* =
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(x,2") for all m,r € N and a € k*. Similar to case (7aa) (y", z")* = (y, z) for all
n,r € N, (y",2")* = (y,2") for all n,r € N, (y",2")* = (y", ) for all n,r € N or
(y"™, 2")* = (y™, 2") for all n,r € N. Similar to case (7aa) (0)* = (0).

(Taba) Suppose (y", z")* = (y, z) for all n,r € N. Similar to case (7aab) with the

roles of  and y exchanged we have 759 through x7.93.

(7abb) Suppose (y™, 2")* = (y, 2") for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,2") for all n,r € N and a € k*. By Claim 3.4.6 (z™)* = (x) for all m € N or
(x™)* = (™) for all m € N, (y")* = (y) for all n € N or (y")* = (y") for alln € N
and (z")* = (2") for all » € N. Thus we have %754 through *7.o7.

(Tabc) Suppose (y*, 2")* = (y", z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y",z) for all n,r € N and a € k*. By Claim 3.4.6 (z™)* = (x) for all m € N or
(x™)* = (™) for all m € N, (y")* = (y") for all n € N and (2")* = (2") for all € N.

Thus we have %795 through *7.o9.

(Tabd) Suppose (y™, 2")* = (y", 2") for all n,r € N. By Claim 3.4.6 (y")* = (y")
for all n € N and (2")* = (") for all r € N. By Claim 3.4.5 (y" + az")* = (y", 2")
for all n,r € Nand a € k* or (y" +az")* = (y" + az") for all n,r € N and a € k*.

(7Tabda) Suppose (y" + az")* = (y", z") for all n,r € N and a € k*. By Claim
3.4.6 (z™)* = (x) for all m € N or (2™)* = (2™) for all m € N. Thus we have %739

and *7.31-

(Tabdb) Suppose (y" + az")* = (y" +az") for all n,r € N and a € k*. Similar to

case (Tabda) we have 732 and 7 33.

(Tac) Suppose (2™, 2")* = (2™, z) for all m,r € N. By Claim 3.4.6 (z)* = (2™)
for all m € N. By Claim 3.3.1 (2™ +az")* = (2™, z) for all m,r € Nand a € k*. By
Lemma 3.2.12 (y", 2")* = (y, z) for all n,r € N, (y™, 2")* = (y,2") for all n,r € N,
(y", 2")* = (y™, 2) for all n,r € N or (y",z")* = (y",2") for all n,r € N. Similar to
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case (7aa) (0)* = (0).

(Taca) Suppose (y",2")* = (y, z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,z) for all n,r € N and a € k*. By Claim 3.4.6 (y")* = (y) for all n € N or
(y")* = (y") for all n € N and (2")* = (2) for all r € Nor (2")* = (2") for all » € N.

Thus we have %734 through x7 37.

(Tacb) Suppose (y", 2")* = (y, z") for all n,r € N. Similar to case (7abc) we have

*7.38 and *7.39.

(Tacc) Suppose (y™, 2")* = (y", z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y", z) for all n,r € N and a € k*. By Claim 3.4.6 (y")* = (y") for all n € N and

(z27)* = (z) forall r € Nor (z7)* = (2") for all r € N. Thus we have 749 and *7 4.

(Tacd) Suppose (y™, z")* = (y*, 2") for all n,r € N. By Claim 3.4.6 (y")* = (y")
for all n € N and (2")* = (") for all r € N. By Claim 3.4.5 (y" + az")* = (y", 2")
for all n,r € Nand a € k* or (y" +az")* = (y" + az") for all n,r € N and a € k*.

Thus we have *7.49 and *743.

(Tad) Suppose (z™, 2")* = (2™, 2") for all m,r € N. By Claim 3.4.6 (z")* = (™)
(2")* = (2") for all » € N. By Lemma 3.2.8 (0)* = (0). By Claim

3.45 (2™ 4az")* = (2™, 2") for all m,r € Nand a € k* or (2" +az")* = (2™ +az")

for all m € N and

for all m,r € N and a € k*.

(7ada) Suppose (™ + az")* = (2™, 2") for all m,r € N and a € k*. By Lemma
3.2.12 (y™, 2")* = (y, z) for all n,r € N, (3"
(y™, z) for all n,r € N or (y", z")* = (y", 2") for all n,r € N.

L2 = (y,2") for allm,r € N, (y", 2")* =

(Tadaa) Suppose (y", 2")* = (y, z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,2) for all n,r € N and a € k*. By Claim 3.4.6 (y")* = (y) for all n € N or

(y")* = (y") for all n € N. This gives us %744 and 7 45.

(Tadab) Suppose (y", 2")* = (y, z") for all n,r € N. By Claim 3.3.1 (y" +az")* =

92



Chapter 3. Standard Closures on R;

(y,2") for all n,r € N and a € k*. By Claim 3.4.6 (y")* = (y) for all n € N or

(y")* = (y") for all n € N. This gives us %746 and *7 47.

(Tadac) Suppose (y", z")* = (y", z) for all n,r € N. By Claim 3.3.1 (y" +az")* =
(y", z) for all n,r € N and a € k*. By Claim 3.4.6 (y")* = (y") for all n € N. This

18 X7 .48-

(7Tadad) Suppose (y", z")* = (y", 2") for all n,r € N. By Claim 3.4.6 (y")* = (y")
for all n € N. By Claim 3.4.5 (y" + az")* = (y*,2") for all n,r € N and a € k* or

(y" +az")* = (y" +az") for all n,r € N and a € k*. This gives us %749 and *7.5.

(7adb) Suppose (z™ + az")* = (2™ + az") for all m,r € N and a € k*. Similar

to case (7ada) we have x75; through x757.

(7b) Suppose (2, y")* = (x,y") for all m,n € N. By Lemma 3.2.12 (2™, 2")* =
(x,z) for all m,r € N, («™, 2")* = (x,2") for all m,r € N, (2™, 2")* = (2™, 2) for all

m,r € Nor (z™,2")* = (2™, 2") for all m,r € N.

(7ba) Suppose (z™,2")* = (x, z) for all m,r € N. By Claim 3.3.1 (2™ + az")* =
(x,z) for all m,r € N and a € k*. By Lemma 3.2.12 (y", 2")* = (y,z) for all
n,r € N, (y",2")* = (y,2") for all n,r € N, (y",2")* = (y", 2) for all n,r € N or
(y",2")* = (y", 2") for all n,r € N. By Claim 3.4.6 (y")* = (y") for all n € N. By
Lemma 3.2.8 (0)* = (0).

(7Tbaa) Suppose (y",2")* = (y, z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,z) for all n,r € N and a € k*. By Claim 3.4.6 (z™)* = (x) for all m € N or
()" = («™) for all m € Nand (2")* = (2) for all r € Nor (2")* = (2") for all r € N.

Thus we have x7 55 through x7¢;.

(7Tbab) Suppose (y™, z")* = (y, 2") for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,2") for all n,r € N and a € k*. By Claim 3.4.6 (z™)* = (x) for all m € N or

(x™)* = (z™) for all m € N and (2")* = (2") for all » € N. Thus we have %76, and
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*7.63-

(7Tbac) Suppose (y™, 2")* = (y", z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y", z) for all n,r € N and a € k*. By Claim 3.4.6 (z™)* = (z) for all m € N or
(x™)* = (2™) for all m € Nand (2")* = (z) for all € Nor (2")* = (2") for all r € N.

Thus we have %764 through 7 7.

(7Tbad) Suppose (y",2")* = (y™, 2") for all n,r € N. By Claim 3.4.6 (2")* = (2")
for all » € N. By Claim 3.4.5 (y" + az")* = (y", 2") for all n,7 € N and a € k* or
(y" +az")* = (y" + az") for all n,r € N and a € k*.

(Tbada) Suppose (y" + az")* = (y", 2") for all n,r € N and a € k*. By Claim
3.4.6 (z™)* = (x) for all m € N or (2™)* = (2™) for all m € N. Thus we have %7 g3

and *7.69-

(7Tbadb) Suppose (y" +az")* = (y" +az") for all n,r € N and a € k*. Similar to

case (7bada) we have 770 and x7.71.

(7bb) Suppose (z™, 2")* = (z,2") for all m,r € N. By Claim 3.3.1 (2™ + az")* =
(x,z") for all m,r € N and a € k*. By Lemma 3.2.12 (y",2")* = (y, z) for all
n,r € N, (y",2")" = (y,2") for all n,r € N, (y",2")* = (y",2) for all n,r7 € N or
(y", 2")* = (y", 2") for all n,r € N. By Claim 3.4.6 (y")* = (y") for all n € N and
(z")* = (2") for all r € N. By Lemma 3.2.8 (0)* = (0).

(7Tbba) Suppose (y™,2z")* = (y, z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,z) for all n,7 € N and a € k*. By Claim 3.4.6 (z™)* = (z) for all m € N or

(z™)* = (2™) for all m € N. Thus we have %779 and *7.73.

(7Tbbb) Suppose (y", 2")* = (y, z") for all n,r € N. Similar to case (7bba) we have

*7 .74 and *7.75.

(7Tbbc) Suppose (y™, z")* = (y", z) for all n,r € N. Simlar to case (7bba) we have

*7.76 and *7.77.
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(7bbd) Suppose (y", 2")* = (y", 2") for all n,r € N. By Claim 3.4.5 (y" 4+ az")* =
(y™,2") for all n,r € N and a € £~ or (y" + az")* = (y" + az") for all n,r € N and

a€k*.

(7Tbbda) Suppose (y" + az")* = (y",2") for all n,r € N and a € k*. By Claim
3.4.6 (z™)* = (x) for all m € N or (2™)* = (2™) for all m € N. Thus we have %773

and *7.79.

(7Tbbdb) Suppose (y" + az")* = (y" + az") for all n,r € N and a € k*. Similar to

case (Tbbda) we have 79 and *7.g.

(7bc) Suppose (2™, 2")* = (2™, z) for all m,r € N. By Claim 3.3.1 (2™ +az")* =
(™, z) for all m,r € N and a € k*. By Lemma 3.2.12 (y",2")* = (y,z) for all
n,r € N, (y",2")" = (y,2") for all n,r € N, (y",2")* = (y",z) for all n,7 € N or
(y™, 2" )" = (y", z") for all n,r € N. By Claim 3.4.6 (y")* = (y") for all n € N and
(2")* = (2") for all r € N. By Lemma 3.2.8 (0)* = (0).

(7Tbca) Suppose (y",2")* = (y, z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,z) for all n,r € N and a € k*. By Claim 3.4.6 (2")* = (z) for all » € N or

(z7)* = (2") for all r € N. So we have 7.8, and 7 .g3.

(7Tbcb) Suppose (y", z")* = (y, 2") for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,2") for all n,r € N and a € k*. By Claim 3.4.6 (2")* = (z") for all » € N. This is

*7.84-

(Tbee) Suppose (y", 2")* = (y™, z) for all n,r € N. By Claim 3.3.1 (y" + a2")* =
(y",z) for all n,r € N and a € k*. By Claim 3.4.6 (2")* = (2) for all r € N or

(2")* = (2") for all r € N. So we have x7.g5 and %7 g¢.

(7bed) Suppose (y™, 2")* = (y™, 2") for all n,r € N. By Claim 3.4.6 (2")* = (2")
for all r € N. By Claim 3.4.5 (y" + az")* = (y", 2") for all n,r € N and a € k* or

(y" + az")* = (y" + az") for all n,7 € N and a € k*. Thus we have x7g7 and x7gs.
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(7bd) Suppose (z™, 2")* = (z™, z") for all m,r € N. By Claim 3.4.5 (z"+az")* =
(™, z") for all m,r € N and a € k* or (2™ + az")* = (2™ + az") for all m,r € N

and a € k*.

(7bda) Suppose (™ + az")* = (™, z") for all m,r € N and a € k*. By Lemma
3.2.12 (y™, 2")" = (y, 2) for all n,r € N, (y", 2")* = (y,2") for all n,7r € N, (y", 2")* =
(y", z) for all n,r € N or (y",2")* = (y",2") for all n,r € N. By Claim 3.4.6
(x™)* = (z™) for all m € N, (y")* = (y") for all n € N and (2")* = (2") for all r € N.
By Lemma 3.2.8 (0)* = (0).

(7Tbdaa) Suppose (y", 2")* = (y, z) for all n,r € N. By Claim 3.3.1 (y" + a2")* =
(y,2) for all n,r € N and a € k*. This is *7.go.

(7bdab) Suppose (y™, z")* = (y, 2") for all n,r € N. By Claim 3.3.1 (y" +az")* =

(y,2") for all n,r € N and a € k*. This is *7.9o.

(7bdac) Suppose (y™, 2")* = (y", z) for all n,r € N. By Claim 3.3.1 (y" +az")* =
(y", z) for all n,r € N and a € k*. This is x7.91.

(7Tbdad) Suppose (y"*, 2")* = (y", 2") for all n,r € N. By Claim 3.4.5 (y"+az")* =
(y",2") for all n,r € N and a € k* or (y" + az")* = (y" + az") for all n,r € N and

a € k*. Thus we have *7.92 and *7.93.

(7bdb) Suppose (z™ + az")* = (z™ + az") for all m,r € N and a € k*. Similar

to case (7hda) we get x7.94 through 7 gs.

(7c) Suppose (z™,y")* = (z™,y) for all m,n € N. Similar to case (7b) with the

roles of x and y exchanged we get %799 through 7.139.

(7d) Suppose (z™,y")* = (2™, y") for all m,n € N. By Claim 3.4.6 (z™)* = (2™)
for all m € N and (y™)* = (y") for all n € N. By Lemma 3.2.8 (0)* = (0). By Claim
3.45 (2™ 4ay™)* = (™, y") for all m,n € Nand a € k* or (2" +ay™)* = (2™ +ay")

for all m,n € N and a € k*.
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(7da) Suppose (™ + ay™)* = (z™,y") for all m,n € N and a € £*. By Lemma
3.2.12 (2™, 2" = (w,2) for all m,r € N, (2, 2")* = (z,2") for all m,r € N,

(™, 2")* = (2™, z) for all m,r € Nor (2, 2")* = (2™, 2") for all m,r € N.

(7daa) Suppose (z™, 2")* = (x, z) for all m,r € N. By Claim 3.3.1 (2™ 4 az")* =
(x,z) for all m,r € N and a € k*. By Lemma 3.2.12 (y",2")* = (y,z) for all
n,r € N, (y",2")* = (y,2") for all n,r € N, (y",2")* = (y", 2) for all n,”7 € N or
(y™, 2" = (y™, 2") for all n,r € N.

(7daaa) Suppose (y", z")* = (y, z) for all n,r € N. By Claim 3.3.1 (y" + az")* =
(y,z) for all n,r € N and a € k*. By Claim 3.4.6 (2")* = (z) for all » € N or

(z7)* = (2") for all r € N. Thus we have %7149 and *7.141.

(7daab) Suppose (y", z")* = (y, 2") for all n,r € N. By Claim 3.3.1 (y" +az")* =
(y,2") for all n,r € N and a € k*. By Claim 3.4.6 (2")* = (") for all » € N. This is

*7.142-

(7daac) Suppose (y", z")* = (y", z) for all n,r € N. By Claim 3.3.1 (y" +az")* =
(y", z) for all n,r € N and a € k*. By Claim 3.4.6 (2")* = (2) for all » € N or

(z7)* = (2") for all r € N. Thus we have %7143 and *7.144.

(7daad) Suppose (y™, z")* = (y", z") for all n,r € N. By Claim 3.4.5 (y"+az")* =
(y™,2") for all n,r € N and a € k™ or (y" + az")* = (y" + az") for all n,r € N and

a € k*. Thus we have *7.145 and *7.146-

(7dab) Suppose (2™, 2")* = (z,2") for all m,r € N. By Claim 3.3.1 (2" +az")* =
(x,2") for all m,r € N and a € k*. By Claim 3.4.6 (2")* = (2") for all » € N. By
Lemma 3.2.12 (y", 2")* = (y, 2) for all n,r € N, (y™,2")* = (y,2") for all n,r € N,
(y™, 2")* = (y™, 2) for all n,r € N or (y", 2")* = (y",2") for all n,r € N.

(7daba) Suppose (y™, z")* = (y, z) for all n,r € N. By Claim 3.3.1 (y" 4+ az")* =

(y,z) for all n,r € N and a € k*. This is *7.147.
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(7dabb) Suppose (y",z")* = (y, 2") for all n,r € N. Similar to case (7daba) we

have *7 148

(7dabc) Suppose (y*,2")* = (y", z) for all n,r € N. Similar to case (7daba) we

have *7.149-

(7dabd) Suppose (y", z")* = (y", 2") for all n,r € N. By Claim 3.4.5 (y"+az")* =
(y",2") for all n,r € N and a € k* or (y" + az")* = (y" + az") for all n,r € N and

a € k*. Thus we have %7 150 and *7151.

(7db) Suppose (z™ + ay™)* = (™ + ay™) for all m,n € N and a € k*. Similar to

case (7da) we have %7150 through 7163 -

Since we have now covered all cases such that (x,y, 2)* = R3 we will now suppose
for the remainder of the proof that (z,y,2)* = (x,y, z). By Lemma 3.2.11 we have

the following cases:

(8a) (™, y", 2")" = (z,y,2")Ym,n,r € N
(8b) (™, y", 2"V = (x,y", z) Vm,n,r € N
(8¢) (2™, y", 2"V = (2™, y,z)Vm,n,r € N
(9a) (2™, y", 2") = (x,y", 2" ) ¥m,n,r € N
(9b) (™, y", 2") = (™, y,2")Vm,n,r € N
(9¢) (=™, y", 2") = (™, y", z2) Vm,n,r € N
(10) (=™, y", 2")* = (™, y", 2")Ym,n,r € N

(8a) Suppose (™, y", 2" )* = (z,y, 2") Vm,n,r € N. The inclusion
(.T,y,Zr—H) — (xm—l-l,yn—l-l’ Zr—l—l)* g (xm 4 ayn 4 bzr>* g (:L,m’yn,zr)* — (I,y,ZT)

implies (2™ + ay™ + bz")* = (x,y, 2") for all m,n,r € N and a,b € k*. Similarly
(xm + azr’yn + bzr)* — (xm’yn + azr)* — (xm + CLyn,ZT)* — (xm + azr’yn)* —
(x,y,2") for all m,n,r € N and a,b € k*. Since (x™,y™)* C N2 (x™, y", 2")* =
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N2, (z,y,2") = (x,y) by Lemma 3.2.12 (2™, y")* = (z,y) for all m,n € N,
(™ y")* = (z,y") for all m,n € N, (™, y")* = (2™,y) for all m,n € N or
(™, y™)* = (=™, y") for all m,n € N.

(8aa) Suppose (2, y")* = (x,y) for all m,n € N. By Claim 3.3.1 (™ + ay™)* =
(x,y) for all m,n € N and a € k*. Since (z)* C (z,y) by Lemma 3.2.12 we have
(™) = (x,y) for all m € N, (a™)* = (2™, y) for all m € N, (z™)* = (x) for all
m € Nor (2™)* = («™) for all m € N. However (z,y")* # (2™, y) for all m,n € N

since (2™, y) is not * closed for m > 1. This leaves only three cases.

(8aaa) Suppose (z™)* = (z,y) for all m € N. The inclusion (z,y) = («™)* C
(™, 2")* C (z,y,2") implies (2™, z")* = (z,y,2") for all m,r € N. By Claim 3.3.1
(™ 4+ az")* = (x,y,2") for all m,r € N and a € k*. Since (y)* C (z,y) by Lemma
3.2.12 we have (y")* = (z,y) for all n € N, (y")* = (x,y") for all n € N, (y")* = (y)
for all n € N or (y*)* = (y") for all n € N. However (y")* # (z,y") for all n € N

since these ideals are not x closed.

(8aaaa) Suppose (y")* = (z,y) for all n € N. The inclusion (z,y) = (y")* =
(y™, 2")* C (z,y,z") implies (y", z")* = (x,y,2") for all n,r € N. By Claim 3.3.1
(y"+az")* = (x,y,2") for all n,r € Nand a € k*. Since (2%)* C (x,y, 2%) by Lemma
3.212 (2") = (z,y,2") forall r e N, (27)* = (x,2") for all r € N, (2")* = (y, 2") for

2") and (y,2")
are not * closed it must be the case (2")* = (z,y, 2") for all r € N or (2")* = (2") for
all € N.

all r € Nor (2")* = (2") for all » € N. However since the ideals (z,

(8aaaaa) Suppose (2")* = (z,y, 2") for all r € N. By Lemma 3.2.6 (0)* is a proper

nonzero monomial ideal or (0)* = (0).

*

C (z,9)
the only x closed monomial ideal (0)* could be is (z,y). Thus (0)* = (z,y). This is

(8aaaaaa) Suppose (0)* isa proper nonzero monomial ideal. Since (0)

*g.
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(8aaaaab) Suppose (0)* = (0). This is *g.

(8aaaab) Suppose (z")* = (z") for all r € N. By Lemma 3.2.8 (0)* = (0). This is
*8.2-

(8aaab) Suppose (y")* = (y) for alln € N. The inclusion (y) = (y*)* = (y?, 2*)* C
(z,y,2%) and Lemma 3.2.12 imply (y", 2")* = (z,y, 2") for all n,r € N or (y",2")* =
(y,2") for all n,r € N.

(8aaaba) Suppose (y", 2")* = (x,y, 2") for all n,r € N. By Claim 3.3.1
(y"+az")* = (x,y,2") for all n,r € N and a € k*. Since (2%)* C (z,y, z?) by Lemma
3.2.12 (") = (x,y,2") for all r € N, (2")* = (2,2") for all r € N, (2")* = (y,2")
for all » € Noor (27)* = (2") for all » € N. However since (z,2") and (y, 2") are not
* closed for all » € N it must be the case that (z")* = (x,y,2") for all » € N or
(z")* = (2") for all r € N.

(8aaabaa) Suppose (2")* = (z,y,2") for all r € N. By Lemma 3.2.6 (0)* is a

proper nonzero monomial ideal or (0)* = (0)

(8aaabaaa) Suppose (0)* is a proper nonzero monomial ideal. Since (0)* C (y),

(0)* = (y?) for some j € N. By Lemma 3.2.7 (0)* = (y). This is *g3.
(8aaabaab) Suppose (0)* = (0). This is *g 4.

(8aaabab) Suppose (z")* = (2") for all r € N. By Lemma 3.2.8 (0)* = (0). This

is *8.5.

(8aaabb) Suppose (y", 2")* = (y,2") for all n,r € N. By Claim 3.3.1
(y" + az")* = (y,2") for all n,r € N and a € k*. Since (2%)* C (y,2?) by Lemma
3.2.12 (2")* C (y,2") for all r € N or (2")* C (2") for all r € N.

(8aaabba) Suppose (2")* C (y, z") for all » € N. By Lemma 3.2.6 (0)* is a proper

nonzero monomial ideal or (0)* = (0)
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(8aaabbaa) Suppose (0)* is a proper nonzero monomial ideal. Since (0)* C (y),

(0)* = (y?) for some j € N. By Lemma 3.2.7, (0)* = (y). This is xgs.
(8aaabbab) Suppose (0)* = (0). This is xg7.

(8aaabbb) Suppose (z")* = (z") for all » € N. By Lemma 3.2.8 (0)* = (0). This

is *g.8-

(8aaac) Suppose (y")* = (y") for all n € N. By Lemma 3.2.8 (0)* = (0). The

) S
inclusion (y?, z%)* C (z,y, 2?) and Lemma 3.2.12 imply (y",z")* = (x,y, 2") for all
n,r € N, (y", ") = (z,y", 2") for all n,r € N, (y™,2")* = (y,2") for all n,r € N or
(y™, 2")* = (y", z") for all n,r € N. However (y", 2")* # (z,y", z") since (z,y", z") is

not * closed for all n,r € N. This leaves only the three cases.

(8aaaca) Suppose (y", z")* = (z,y,2") for all n,r € N. By Claim 3.3.1
(y"+az")* = (x,y,2") for all n,r € Nand a € k*. Since (2%)* C (x,y, 2%) by Lemma
3.212 (2")" = (z,y,2") forall r € N, (27)" = (z,2") for all r € N, (2")* = (y, 2") for
all r € N or (2")* = (2") for all » € N. Since (x,z") and (y, 2") are not % closed for
all » € N we are left with (2")* = (x,y, 2") for all r € N or (2")* = (2") for all r € N.

This gives Uus *g.9 and *8.10-

(8aaach) Suppose (y", 2")* = (y, 2") for all n,r € N. By Claim 3.3.1
(y" + az")* = (y,2") for all n,r € N and a € k*. Since (2%)* C (y, 2?) by Lemma
3.2.12 (2")* = (y,2") for all r € N or (2")* = (2") for all » € N. This gives us *g1;

and *8.12-

(8aaacc) Suppose (y", 2")* = (y", 2") for all n,r € N. By Claim 3.4.6 (2")* = (2")
for all » € N. By Claim 3.4.5 (y" + az")* = (y", 2") for all n,7 € N and a € k* or

(y" +az")* = (y" +az") for all n,r € N and a € k*. Thus we have %g 13 and *g.14.

(8aab) Suppose (z™)* = (z) for all m € N. The inclusion (z) = (2™)* C

(™, 2")* C (x,y,2") and Lemma 3.2.12 implies (2™, 2")* = (z,y, 2") for all m,r € N
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or (z,2")* = (x,2") for all m,r € N.

(8aaba) Suppose (™, 2")* = (z,y, 2") for all m,r € N. By Claim 3.3.1
(™ + az")* = (x,y, 2") for all m,r € N and a € k*. Similar to case (8aaa) (y™)* =

(x,y) for all n € N, (y")* = (y) for all n € N or (y")* = (y") for all n € N.

(8aabaa) Suppose (y")* = (z,y) for all n € N. Similar to case (8aaaa)
(y" +az")* = (y", 2")" = (z,y,2") for all n,r € N and a € k* and (2")* = (z,y, 2")
for all 7 € N oor (27)* = (2") for all » € N.

(8aabaaa) Suppose (2")* = (z,y,2") for all » € N. By Lemma 3.2.6 (0)* is a

proper nonzero monomial ideal or (0)* = (0).

*

(8aabaaaa) Suppose (0)* is a proper nonzero monomial ideal. Since (0)* C (z),

(0)* = (27) for some j € N. By Lemma 3.2.7 (0)* = (). This is xg 5.
(8aabaaab) Suppose (0)* = (0). This is *g.16-

(8aabaab) Suppose (2")* = (2") for all r € N. By Lemma 3.2.8 (0)* = (0). This

1S *g.17-

(8aabab) Suppose (y™)* = (y) for all n € N. Since (0)* C (z) N (y) = (0) we
have (0)* = (0). Since (y) = (y*)* C (v, 2?)* C (x,9,2%) by Lemma 3.2.12 either
(y", 2")* = (z,y,2") for all n,r € N or (y",2")* = (y,2") for all n,r € N.

(8aababa) Suppose (y", 2")* = (z,y, 2") for all n,r € N. By Claim 3.3.1
(y" + az")* = (z,y,2") for all n,r € N and a € k*. The inclusion (2?)* C (z,y, 2?)
and Lemma 3.2.12 imply (27)* = (z,y,2") for all r € N, (2")* = (2, 2") for all r € N,
(z")" = (y,2") for all r € N or (z")* = (2") for all r € N. However since (z,2") and

(y,2") are not % closed for all 7 € N we must have either (2")* = (x,y,2") for all

r € Nor (z7)* = (2") for all r € N. So we have g 15 and *g 9.

(8aababb) Suppose (y", 2")* = (y, 2") for all n,r € N. By Claim 3.3.1
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(y" + az")* = (y,2") for all n,r € N and a € k*. The inclusion (z?)* C (y, 2%) and
Lemma 3.2.12 imply (2")* = (y,2") for all r € N or (2")* = (2") for all » € N. Thus

we have *8.20 and *8.21-

(8aabac) Suppose (y")* = (y") for all n € N. By Lemma 3.2.8 we have (0)* =
(0). Since (y?, 2?)* C (z,y,2?) by Lemma 3.2.12 either (y",2")* = (z,y,2") for all
n,r € N, (y", 2" = (z,y", 2") for all n,r € N, (y", 2")* = (y,2") for all n,r € N, or
(y™, 2")* = (y", 2z") for all n,r € N. Since (z,y", 2") is not % closed for all n,r € N

we have only the three cases.

(8aabaca) Suppose (y", z")* = (x,y, 2") for all n,r € N. Similar to case (8aababa)

(") = (z,y,2") for all r € N or (2")* = (2") for all » € N. So we have g9 and

*8.23-

(8aabacb) Suppose (y", z")* = (y, 2") for all n,r € N. By Claim 3.3.1 (y"+az")* =
(y,2") for all n,r € N and a € k*. Similar to (8aababb) (z")* = (y,2") for all r € N

or (z")* = (2") for all » € N. This gives us *go4 and *go5.

(8aabacc) Suppose (y", z")* = (y",2") for all n,r € N. By Claim 3.4.6 we have
(z")* = (2") for all r € N. By Claim 3.4.5 (y" + az")* = (y",2") for all n,r € N and
a€k*or(y"+az")* = (y"+az") for all n,r € N and a € k*. So we have g 95 and

*8.27-

(8aabb) Suppose (2™, z")* = (z,2") for all m,r € N. By Claim 3.3.1 Similar to
case (8aaa) (y")* = (x,y) for alln € N, (y")* = (y) for all n € N or (y")* = (y") for
all n € N.

(8aabba) Suppose (y")* = (x,y) for all n € N. Similar to case (8aabaa)
(y" +az")* = (y",2")* = (z,y, 2") for all n,r € N and a € k*. Since (2*)* C (z, 2?),
by Lemma 3.2.12 either (2")* = (z,2") for all r € N or (2")* = (2") for all r € N.

(8aabbaa) Suppose (z")* = (x, z") for all » € N. By Lemma 3.2.6 (0)* is a proper
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nonzero monomial ideal or (0)* = (0).

(8aabbaaa) Suppose (0)* is a proper nonzero monomial ideal. Similar to

(8aabaaaa) (0)* = (x). This is *g.os-
(8aabbaab) Suppose (0)* = (0). This is *g.29.

(8aabbab) Suppose (2")* = (2") for all » € N. By Lemma 3.2.8 (0)* = (0). This

18 *8.30-

(8aabbb) Suppose (y")* = (y) for all n € N. Similar to (8aabab) (0)* = (0) and
(y", 2")* = (x,y,2") for all n,r € Nor (y*, 2")* = (y, 2") for all n,r € N.

(8aabbba) Suppose (y", 2")* = (x,y, z") for all n,r € N. By Claim 3.3.1
(y" + az")* = (x,y,2") for all n,r € N. Since (2%)* C (z,2?), by Lemma 3.2.12
(2")* = (z,2") for all r € N or (2")* = (2") for all » € N. Thus we have xg3; and

*8.32-

(8aabbbb) Suppose (y", z")* = (y, 2") for all n,r € N. By Claim 3.3.1
(y" + az")* = (y,2") for all n,r € N. By Claim 3.4.6 (2")* = (2") for all » € N. This

18 *g.33-

(8aabbc) Suppose (y™)* = (y") for all n € N. Similar to case (8aabac) (0)* = (0)
and either (y", 2")* = (z,y, 2") for all n,r € N, (y", 2")* = (y,2") for all n,r € N, or
(y™, 2")* = (y™, z") for all n,r € N.

(8aabbca) Suppose (y™, 2")* = (z,y, 2") for all n,r € N. Similar to case (8aabbba)
(y"+az")* = (x,y,2") for all n,r € N and(2")* = (x,2") for all r € Nor (2")* = (2")

for all » € N. This gives us *g34 and *g 35.

(8aabbcb) Suppose (y", 2")* = (y, 2") for all n,r € N. Similar to case (8aabbbb)
(y" 4+ az")" = (y,2") for all n,r € N and a € k* and (2")* = (2") for all » € N. This

18 *8.36-
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(8aabbcc) Suppose (y™, z")* = (y™,2") for all n,r € N. By Claim 3.4.6 (z")* =
(z") for all r € N. By Claim 3.4.5 (y" + az")* = (y", z") for all n,7 € N and a € k*

or (y"+az")* = (y"+az") for all n,r € N and a € k*. Thus we have g 37 and *g 3s.

(8aac) Suppose (z™)* = (z™) for all m € N. By Lemma 3.2.8 (0)* = (0).
Since (22, 22)* C (x,vy,2%), by Lemma 3.2.12 (2™, 2")* = (x,y,2") for all m,r € N,
(™, 2" = (x,y™,2") for all m,r € N, (2™, 2")* = (x,2") for all m,r € N or
(™, 2")* = (z, 2") for all m,r € N. However (z,y", z") is not x closed for all n,r € N

so we are left with the remaining three cases.

(8aaca) Suppose (2, 2")* = (x,y, z") for all m,r € N. By Claim 3.3.1
(™ 4+ az")* = (z,y,2") for all m,r € N and a € k*. Similar to case (8aaa) (y")* =
(x,y) for all n € N, (y")* = (y) for all n € N or (y")* = (y") for all n € N.

(8aacaa) Suppose (y")* = (x,y) for all n € N. Similar to case (8aaaa)
(y" +az") = (y", 2")" = (v,y,2") for all n,r € Nand a € k* and (2")* = (z,y, 2")

for all r € N oor (2")* = (2") for all r € N. This gives us xg39 and *g_40.

(8aacab) Suppose (y")* = (y) for all n € N. The inclusion (y) = (y*)* C

)
(y?, 2%)* C (z,y, 2?) and Lemma 3.2.12 implies (y", 2")* = (z,y,2") for all n,r € N
or (y*, 2")* = (y,2") for all n,r € N.

(8aacaba) Suppose (y", 2")* = (z,y, 2") for all n,r € N. By Claim 3.3.1
(y" + az")* = (z,y,2") for all n,r € N and a € k*. Similar to case (8aababa) we

have (2")* = (z,y,2") for all r € N or (2")* = (2") for all r € N. So we get xg4; and

*8.42-

(8aacabb) Suppose (y", 2")* = (y, 2") for alln,r € N. By Claim 3.3.1 (y"+az")* =
(y,2") for all n,r € N and a € k*. The inclusion (2%)* C (y, 2?) and Lemma 3.2.12
imply (2")* = (y,2") for all r € N or (27)* = (2") for all r € N. Thus we have *g 43

and *8.44-
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(8aacac) Suppose (y")* = (y") for all n € N. Since (y?,2%)* C (z,y,2%), by
Lemma 3.2.12 (y™,2")* = (z,y,2") for all n,r € N, (y",2")* = (x,y",2") for all
n,r € N, (y",2")* = (y,2") for all n,r € Nor (y",z")* = (y",2") for all n,r € N.
However (x,y", 2") is not % closed for all n,r € N so we are left with only the three

cases.

(8aacaca) Suppose (y", 2")* = (z,y, 2z") for all n,r € N. By Claim 3.3.1
(y" 4+ az")* = (z,y,2") for all n,r € N and a € k*. Similar to case (8aaaa) (2")* =

(x,y,2") for all r € N or (2")* = (2") for all » € N. So we have *g 45 and xg 4.

(8aacach) Suppose (y"*, 2")* = (y, z") for all n,r € N. By Claim 3.3.1 (y"+az")* =
(y,2") for all n,r € N and a € k*. Similar to case (9aacabb) we have (2")* = (y, 2")

for all € N oor (2")* = (2") for all » € N. This give us xg 47 and *g 4s.

(8aacacc) Suppose (y", z")* = (y", 2") for all n,r € N. By Claim 3.4.6 (2")* = (2")
for all » € N. By Claim 3.4.5 (y" + az")* = (y",2") for all n,r € N and a € k* or

(y" +az")* = (y" + az") for all n,r € N and a € k*. Thus we have xg 49 and *g 50.

(8aach) Suppose (™, 2" )* = (x, 2") for all m,r € N. By Claim 3.3.1 (z™+az")* =
(x,2") for all m,r € Nand a € k*. Similar to case (8aaa) (y")* = (z,y) for alln € N,
(y")* = (y) for all n € N or (y™)* = (y") for all n € N.

(8aacba) Suppose (y")* = (z,y) for all n € N. Similar to case (8aaaa)
(y" + az")* = (y",2")* = (z,y,2") for all n,r € N and a € k*. The inclusion
(2%)* C (7, 2%) and Lemma 3.2.12 imply (2")* = (z,2") for all r € N or (2")* = (2")

for all r € N. Here we have xg 51 and g s9.

(8aacbb) Suppose (y")* = (y) for all n € N. Similar to case (8aabab) (y", 2")* =
(x,y,2") for all n,r € N or (y",2")* = (y, 2") for all n,r € N.

(8aacbba) Suppose (y", z")* = (x,y, 2") for all n,r € N. By Claim 3.3.1

(y" + az")* = (z,y,2") for all n,7 € N and a € k*. Similar to case (8aacba)
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(z")* = (z,2") for all r € Nor (2")* = (2") for all » € N. So we have xg 53 and *g 54.

(8aacbbb) Suppose (y™, 2" )* = (y, z") for all n,r € N. By Claim 3.3.1 (y"+az")* =
(y,2") for all n,r € N and a € k*. By Claim 3.4.6 (2")* = (") for all » € N. This is

*8.55-

(8aacbc) Suppose (y")* = (y") for all n € N. Similar to case (9aacac) (y",2")* =
(x,y,2") for all n,r € N, (y",2")* = (y, 2") for all n,r € Nor (y",z")* = (y", 2") for
all n,r € N.

(8aacbca) Suppose (y", 2")* = (x,y, z") for all n,r € N. By Claim 3.3.1
(y" + az")* = (z,y,2") for all n,r € N. Similar to case (8aacba) (2")* = (z,2") for

all € Nor (27)* = (2") for all r € N. Thus we have *g 55 and *g 57.

(8aacbcb) Suppose (y™, 2")* = (y, 2") for alln,r € N. By Claim 3.3.1 (y"+az")* =
(y,2") for all n,r € N. Similar to case (8aacbbb) (2")* = (2") for all r € N. This is

*8.58-

(8aacbcc) Suppose (y", z")* = (y™,2") for all n,r € N. Similar to (8aacbbb)
(2")* = (#7) for all r € N. By Claim 3.4.5 (y" + az")* = (y", 2") for all n,r € N and
a€k*or(y"+az")* = (y",2") for all n,r € N and a € k*. Thus we have *g 59 and
*8.60-

(8aacc) Suppose (z™, z")* = (2™, 2") for all m,r € N. By Claim 3.4.5
(™ 4+ az")* = (2™, 2") for all m,r € N and a € k* or (2™ + az")* = (2™ + az") for

all m,r € Nand a € k*.

(8aacca) Suppose (™ +az")* = (a™, 2") for all m,r € N and a € k*. Claim 3.4.6
implies (2")* = (2") for all » € N. Similar to case (8aaa) (y")* = (z,y) for all n € N,
(y")* = (y) for all n € N or (y")* = (y") for all n € N.

(8aaccaa) Suppose (y")* = (z,y) for all n € N. Similar to case (8aaaa)
(y" +az")* = (y",2")* = (z,y,2") for all n,7 € N and a € k*. This is *g¢;.
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(8aaccab) Suppose (y")* = (y) for all n € N. The inclusion (y) = (y*)* C
(v%, 2%)* C (z,vy, 2?) and Lemma 3.2.12 imply (y", z")* = (x,vy, z") for all n,7 € N or
(y™, 2")* = (y,2") for all n,r € N.

(8aaccaba) Suppose (y", z")* = (x,y,2") for all n,r € N. By Claim 3.3.1
(y" +az")* = (z,y,2") for all n,r € N and a € k*. This is *g¢2.

(8aaccabb) Suppose (y™, 2")* = (y, z") for all n,r € N. By Claim 3.3.1
(y" +az")* = (y,2") for all n,r € N and a € k*. This is xg¢3.

(8aaccac) Suppose (y")* = (y") for all n € N. Similar to case (8aabac) (y", 2")* =
(x,y,2") for all n,r € N, (y",2")* = (y, 2") for all n,7 € Nor (y",z")* = (y", 2") for
all n,r € N.

(8aaccaca) Suppose (y", z")* = (z,y,2") for all n,r € N. By Claim 3.3.1
(y" + az")* = (z,y,2") for all n,r € N and a € k™. This is *gg4.

(8aaccach) Suppose (y™, 2")* = (y, z") for all n,r € N. By Claim 3.3.1
(y" 4+ az")* = (y,2") for all n,r € N and a € k*. This is *g 5.

(8aaccacc) Suppose (y", 2" )* = (y™, 2") for all n,r € N. By Claim 3.4.5
(Y 4+ az")* = (y", 2") for all n,r € N and a € k* or (y" + az")* = (y", 2") for all

n,r € Nand a € k*. So we have *g g5 and *g g7.

(8aacch) Suppose (2 4 az")* = (2™ + az") for all m,r € N and a € k*. Similar

to case (8aacca) we get *g g through *g 74.

(8ab) Suppose (z™,y™)* = (z,y") for all m,n € N. By Claim 3.3.1 (™ +ay™)* =
(x,y™) for all m,n € N and a € k*. By Claim 3.4.6 (z™)* = (z) for all m € N or
(x™)* = («™) for all m € N.

(8aba) Suppose (z™)* = (z) for all m € N. The inclusion (x) = (2?)* C

(22, 2%)* C (x,9,2%) and Lemma 3.2.12 imply (2™, 2")* = (x,y,2") for all m,r € N
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or (z,2")* = (x,2") for all m,r € N.

(8abaa) Suppose (2™, 2")* = (z,y, z") for all m,r € N. By Claim 3.3.1
(x™+az")* = (x,y,2") for all m,r € N and a € k*. Since (y*)* C (z,y?), by Lemma
3.2.12 (y")* = (z,y") for all n € N or (y")* = (y") for all n € N.

(8abaaa) Suppose (y")* = (x,y") for all n € N. Since (x,9%) = (y*)* C
(y%,2%)* C (z,y,2?), by Lemma 3.2.12 (y",2")* = (z,y,2") for all n,r € N or
(y",2")* = (x,y™,2") for all n,r € N. However the latter is a contradiction since
(x,y™, 2") is not x closed for all n,r € N. By Claim 3.3.1 (y"+az")* = (z,y, 2") for all
n,7 € N and a € k*. Since (2%)* C (,y, 2?) Lemma 3.2.12 implies (2")* = (z,y, ")
forall r € N, (2")* = (z,2") for all r € N, (2")* = (y,2") for all r € N or (2")* = (2")
for all » € N. However since (x, 2") and (y, 2") are not x closed for all r € N we have

(z")* = (z,y,2") for all r € Nor (2")* = (2") for all r € N.

(8abaaaa) Suppose (z")* = (z,y,2") for all r € N. By Lemma 3.2.6 (0)* is a

proper nonzero monomial ideal or (0)* = (0).

*

(8abaaaaa) Suppose (0)* is a proper nonzero monomial ideal. Since (0)* C (z),

(0)* = () for some 7 € N. By Lemma 3.2.7 (0)* = (x). This is *g 75.
(8abaaaab) Suppose (0)* = (0). This is *g.76.

(8abaaab) Suppose (2")* = (2") for all » € N. By Lemma 3.2.8 (0)* = (0). This

18 *R.77-

(8abaab) Suppose (y")* = (y") for all n € N.By Lemma 3.2.8 (0)* = (0).
Since (y?, 2%)* C (x,v,2%), by Lemma 3.2.12 (y", 2")* = (x,y,2") for all n,r € N,
(y", 2")* = (z,y™, 2") for all n,r € N, (y", 2")* = (y,2") for all n,r € Nor (y",2")* =
(y™, z") for all n,r € N. However since (z,y", z") is not = closed for all n,r € N we

are left with only three cases.

(8abaaba) Suppose (y", z")* = (z,y, 2") for all n,r € N. By Claim 3.3.1
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(y"+az")* = (z,y,2") for alln,r € Nand a € k*. Since (2?)* C (z,y, 2%), by Lemma
3.212 (2")" = (z,y,2") for all r € N, (2")" = (z,2") for all r € N, (2")* = (y, 2") for
all 7 € N or (27)* = (2") for all » € N. However since (z,z") and (y, z") are not
closed for all » € N we are left with (2")* = (x,y, 2") for all r € N or (2")* = (2") for

all » € N. Thus we have *8.78 and *8.79.

(8abaabb) Suppose (y", 2")* = (y, 2") for all n,r € N. By Claim 3.3.1
(y" + az")* = (y,2") for all n,r € N and a € k*. Since (2?)* C (y, 2?), by Lemma
3.2.12 (") = (y,2") for all r € N or (2")* = (2") for all » € N. This gives us *ggo

and *g.81-

(8abaabc) Suppose (y",2")* = (y",z") for all n,r € N. Claim 3.4.6 implies
(z")* = (2") for all r € N. By Claim 3.4.5 (y" + az")* = (y", 2") for all n,r € N and
a€k*or(y"+az")* = (y"+az") for all n,r € N and a € k*. So we have xg g, and

*8.83-

(8abab) Suppose (2™, 2")* = (x, z") for all m,r € N. By Claim 3.3.1 (" 4az")* =
(x,2") for all m,r € N and a € k*. Similar to case (8abaa) (y")* = (x,y") for all
n € Nor (y")* = (y") for all n € N.

(8ababa) Suppose (y")* = (z,y") for all n € N. Since (z,y*) = (y*)* C
(v% 23" C (z,y,2%) by Lemma 3.2.12 (y",2")* = (x,y,2") for all n,r € N or
(y", 2")* = (z,y",2") for all n,r € N. However (z,y",2") is not % closed for all
n,r € N. Thus (y*,2")* = (x,y,2") for all n,r € N. The inclusion (2%)* C (z, 2?)

and Lemma 3.2.12 implies (2")* = (z, 2") for all r € N or (2")* = (2") for all r € N.

(8ababaa) Suppose (z")* = (x, z") for all » € N. By Lemma 3.2.6 (0)* is a proper

nonzero monomial ideal or (0)* = (0).

(8ababaaa) Suppose (0)* isa proper nonzero monomial ideal. Since (0)* C (x),

(0)* = () for some i € N. By Lemma 3.2.7 (0)* = (x). This is *g g4.
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(8ababaab) Suppose (0)* = (0). This is *gg5.

(8ababab) Suppose (2")* = (2") for all » € N. By Lemma 3.2.8 (0)* = (0). This

18 *8.86-

(8ababb) Suppose (y")* = (y") for all n € N. By Lemma 3.2.8 (0)* = (0).
Since (y2, 22)* C (z,y, 2?), by Lemma 3.2.12 we have the following possible closures:
(y", 2")* = (x,y,2") for all n,r € N, (y",2")* = (x,y", 2") forall n,r € N, (y", 2")* =
(y,2") for all n,r € N or (y*,2")* = (y*,2") for all n,r € N. We can eliminate

(x,y™, 2") since it is not % closed for all n,r € N.

(8ababba) Suppose (y", 2")* = (x,y, ") for all n,r € N. By Claim 3.3.1
(y"+az")* = (z,y,2") for all n,r € N and a € k*. The inclusion (z2)* C (z, 2?) and
Lemma 3.2.12 implies (2")* = (z,2") for all r € N or (27)* = (2") for all » € N. So

we have *R].87 and *8.88-

(8ababbb) Suppose (y", z")* = (y, 2") for all n,r € N. By Claim 3.3.1
(y" +az")* = (y,2") for all n,r € N and a € k*. By Claim 3.4.6 (2")* = (2") for all

r € N. This is *8.89.-

(8ababbc) Suppose (y", 2")* = (y", 2") for all n,r € N. Similar to case (8ababbb)
(z")* = (2") for all r € N. By Claim 3.4.5 (y" + az")* = (y",2") for all n,r € N and
a € k*or (y"+az")" = (y" +az") for all n,r € N and a € k*. This gives us *g.g0

and *8.91-

(8abb) Suppose (z™)* = (™) for all m € N. By Lemma 3.2.8 (0)* = (0).
Since (z?,2%)* C (z,vy, 2?), by Lemma 3.2.12 we have the following possible closures
(™, 2" = (z,y,2") for all m,r € N, (2™, 2")* = (2™,y,2") for all m,r € N,
(™, 2")* = (x,2") for all m,r € N or (2™, 2")* = (™, 2") for all m,r € N. However

(™, y, 2") is not * closed for all m,r € N. This leaves only three cases.

(8abba) Suppose (z™, z")* = (x,y, 2") for all m,r € N. By Claim 3.3.1
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(™ + az")* = (x,y,2") for all m,r € N and a € k*. Similar to case (8abaa)

(y")* = (w,y") for all n € Nor (y")* = (y") for all n € N.

(8abbaa) Suppose (y")* = (z,y") for all n € N. Similar to (8abaaa) (y",z")* =
(x,y,2") for all n,r € N. By Claim 3.3.1 (y" 4+ az")* = (z,y, 2") for all n,r € N and

a € k*. This is *8.92.

(8abbab) Suppose (y")* = (y") for all n € N. Similar to case (8abaab) (y", 2")* =
(x,y,2") for all n,r € N, (y",2")* = (y, 2") for all n,r € N or (y",2")* = (y", 2") for
all n,r € N.

(8abbaba) Suppose (y", 2")* = (x,y, 2") for all n,r € N. By Claim 3.3.1
(y" + az")* = (z,y,2") for all n,r € N and a € k* . Similar to case (8abaaba)
(z")* = (z,y,2") for all r € N or (2")* = (2") for all » € N. So we have *gg3 and

*8.94-

(8abbabb) Suppose (y", z")* = (y", z") for all n,r € N. By Claim 3.3.1
(y" + az")* = (y,2") for all n,r € N and a € k* . Similar to case (8abaabb)
(2")* = (y,2") for all r € N or (2")* = (2") for all » € N. Thus we have %595 and

*8.96-

(8abbabc) Suppose (y", 2")* = (y", 2") for all n,r € N. Similar to case (8abaabc)
(z")* = (") for all r € N and (y™ + az")* = (y™,2") for all n,r € N and a € k* or

(y" +az")* = (y" + az") for all n,r € N and a € k*. This gives us xgg7 and *g gs.

(8abbb) Suppose (z™, z")* = (z, z") for all m,r € N. By Claim 3.3.1 (2" +az")* =
(x,2") for all m,r € N and a € k* . Similar to case (8abaa) (y")* = (z,y") for all
n € Nor (y")* = (y") for all n € N.

(8abbba) Suppose (y")* = (x,y") for all n € N. Similar to (8abaaa) (y",z")* =
(z,y,2") for all n,r € N. The inclusion (z?)* C (z,2?) and Lemma 3.2.12 imply

(2")* = (z,2") for all r € N and (2")* = (2") for all » € N. So we have xgg99 and
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*8.100-

(8abbbb) Suppose (y")* = (y") for all n € N. By Lemma 3.2.8 (0)* = (0).
Similar to case (8abaab) (y",2")* = (x,y, 2") for all n,r € N, (y"*, 2")* = (y, 2") for
all n,r € Nor (y",2")* = (y",2") for all n,r € N.

(8abbbba) Suppose (y", z")* = (z,y, 2") for all n,r € N. By Claim 3.3.1
(y" + az")* = (z,y,2") for all n,r € N and a € k* . Similar to case (8abbba)

(2")* = (,2") for all r € N and (2")* = (2") for all r € N. This gives us *g 101 and

*8.102-

(8abbbbb) Suppose (y", 2")* = (y, 2") for all n,r € N. By Claim 3.3.1
(y" + az")* = (y,2") for all n,r € N and @ € k* . Similar to case (8aabbbb)

(2")* = (2") for all r € N. This is *g 103-

(8abbbbc) Suppose (y™*, 2")* = (y™, 2") for all n,r € N. Similar to case (8aabbbb)
(z")* = (2") for all r € N. By Claim 3.4.5 (y" + az")* = (y",2") for all n,r € N and
a€k*or(y"+az")" = (y"+az") for all n,r € N and a € k*. Thus we have g 104

and *8.105-

(8abbc) Suppose (™, 2" )* = (2™, 2") for all m,r € N. Claim 3.4.6 implies (z")* =
(z") for all r € N. By Claim 3.4.5 (2 +az")* = (2™, 2") for all m,r € N and a € k*

or (x4 az")* = (2™ + az") for all m,r € N and a € k*.

(8abbca) Suppose (™ + az")* = (2™, 2") for all m,r € N and a € k*. Similar to
case (8abaa) (y™)* = (z,y") for all n € N or (y™)* = (y") for all n € N.

(8abbcaa) Suppose (y")* = (x,y") for all n € N. Since (y) = (y*)* C (y?,2%)* C
(z,y,2?) by Lemma 3.2.12 (y",2")* = (z,y,2") for all n,r € N or (y",2")* =
(x,y", 2") for all n,r € N. However the latter is not possible since (z,y",z") is

not x closed for all n,r € N. This is *g.106-

(8abbcab) Suppose (y")* = (y") for all n € N. Similar to case (8aabac) (y", z")* =
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(x,y,2") for all n,r € N, (y", 2")* = (y,2") for all n,r € N, or (y", 2")* = (y™, z") for

all n,r e N. Thus we have *8.107 and *8.108-

(8abbcabc) Suppose (y™, 2")* = (y", z") for all n,r € N. By Claim 3.4.5
(y" 4+ az")* = (y",2") for all n,r € N and a € k* or (y" + az")* = (y" + az") for all

n,r € N and a € k*. This gives us *xg.109 and *g119.

(8abbcb) Suppose (z™ + az")* = (™ + az") for all m,r € N and a € k£*. Similar

to case (8abbca) we get *g111 through g 115.

(8ac) Suppose (z™,y")* = («™,y) for all m,n € N. Similar to case (8ab) by

exchanging the roles of x and y we get xg.116 through xg 156.

(8ad) Suppose (z™,y")* = (2™, y") for all m,n € N. Claim 3.4.6 implies (z™)* =
(z™) for all m € N. Similarly (y™)* = (y") for all n € N. By Lemma 3.2.8 (0)* = (0).
By Claim 3.4.5 (z™ + ay™)* = (2™, y") for all m,n € N and a € k* or (2" + ay™)* =
(™ + ay™) for all m,n € N and a € k*.

(8ada) Suppose (2™ + ay™)* = («™,y") for all m,n € N and a € k*. Since
(22, 22)* C (1,9,2%), by Lemma 3.2.12 we have the following possible closures:
(™, 2" = (x,y,2") for all m,r € N, (2™, 2")* = (2™, y,z") for all m,r € N,
(™, 2")* = (x,2") for all m,r € Nor (2™, z")* = (2™, z") for all m,r € N. However

since (2™, y, z") is not * closed for all m,r € N we are left with only the three cases.

(8adaa) Suppose (2™, 2")* = (z,y, 2") for all m,r € N. By Claim 3.3.1
(2™ + az")* = (x,y,2") for all m,r € N and a € k*. Since (y2,22)* C (z,v, 2?)
by Lemma 3.2.12 (y", 2")* = (z,y, 2") for all n,r € N, (y*,2")* = (x,y", 2") for all
n,r € N, (y*,2")* = (y,2") for all n,r € N or (y",2")* = (y", 2") for all n,r € N.
However (z,y™, 2") is not = closed for all n,r € N which leaves us with only the three

cases.

(8adaaa) Suppose (y",2")* = (z,y,2") for all n,r € N. The inclusion (2%)* C
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(z,y,2%) and Lemma 3.2.12 implies (2")* = (z,y,2") for all r € N, (2")* = (x,2")
for all » € N, (27)* = (y,2") for all r € N or (z")* = (2") for all » € N. Since (z, z")

and (y,2") are not % closed for all » € N we have (2")* = (z,y,2") for all r € N or

(z7)* = (2") for all r € N. So we have g 157 and *g 15s.

(8adaab) Suppose (y", 2")* = (y, 2") for all n,r € N. By Claim 3.3.1 (y"+az")* =
(y,2") for all n,r € N and a € k*. The inclusion (22)* C (y, 2?) and Lemma 3.2.12
implies (27)* = (y,2") for all r € N or (2")* = (2") for all » € N. So we have *g 159

and *8.160-

(8adaac) Suppose (y", z")* = (y", 2") for all n,r € N. By Claim 3.4.5 (y"+az")* =
(y",2") for all n,r € Nand a € k™ or (y" + az")* = (y" + az") for all n,r € N and

a € k*. This gives us xg161 and *g 162.

(8adab) Suppose (2™, 2" )* = (z, 2") for all m,r € N. By Claim 3.3.1 (2™ +az")* =
(x,2") for all m,r € N and @ € k*. Similar to case (8abaab) we have (y",2")* =
(x,y,2") for all n,r € N, (y",2")* = (y, 2") for all n,7 € N or (y",2")* = (y", 2") for
all n,r € N.

(8adaba) Suppose (y", 2")* = (x,y, z") for all n,r € N. By Claim 3.3.1
(y" + az")* = (z,y,2") for all n,r € N and a € k*. Similar to case (8ababa)

(z")* = (x,2") for all r € N or (z7)* = (2") for all r € N. Thus we have *g 163 and

*8.164-

(8adabb) Suppose (y", z")* = (y, 2") for all n,r € N. By Claim 3.3.1 (y"+az")* =
(y,2") for all n,r € N and a € k*. Similar to case (8ababbb) (2")* = (2") for all

r € N. This is *8.165-

(8adabc) Suppose (y", 2")* = (y™, 2") for all n,r € N. By Claim 3.4.5 (y"+az")* =
(y",2") for all n,r € N and a € k* or (y" +az")* = (y" + az") for all n,r € N and

a € k*. This gives US *g.166 and *8.167-
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(8adac) Suppose (2™, 2")* = (2™, z") for all m,r € N. Claim 3.4.6 implies (z")* =
(z") for all r € N. By Claim 3.4.5 (2 +az")* = (2™, 2") for all m,r € N and a € k*

or (™ +az")* = (2™ 4 az") for all m,r € N and a € k*.

(8adaca) Suppose (™ + az")* = (2™, 2") for all m,r € N and a € k*. Similar to
case (8ababb) (y", z")* = (z,y,2") for all n,r € N, (y",2")* = (y,2") for all n,r € N
or (y",2")* = (y", 2") for all n,r € N.

(8adacaa) Suppose (y", 2")* = (z,y, 2") for all n,r € N. By Claim 3.3.1

(y" +az")* = (z,y,2") for all n,r € N and a € k*. This is g 16s-

(8adacab) Suppose (y", 2")* = (y, ") for all n,r € N. By Claim 3.3.1 (y"+az")* =

(y,2") for all n,r € N and a € k*. This is *g.169-

(8adacac) Suppose (y", z")* = (y", 2") for all n,r € N. By Claim 3.4.5
(y" +az")* = (y",2") for all n,r € Nand a € k* or (y" + az")* = (y" + az") for all

n,r € N and a € k*. Thus we have xg 170 and *g 171.

(8adacbh) Suppose (2 + az")* = (2™ + az") for all m,r € N and a € k*. Similar

to case (8adaca) we get xg 172 through *g175.

(8adb) Suppose (™ + ay™)* = (™ + ay™) for all m,n € N and a € k*. Similar

to case (8ada) we get *g 176 through g 104.

(8b) Suppose (z™,y", 2")* = (z,y", z) Vm,n,r € N. This case is similar to case

(8a) with the roles of y and z exchanged. We get *g 195 t0 *g 350-

(8¢) Suppose (z™,y", 2")* = (™, y,2z) Vm,n,r € N. This case is similar to case

(8a) with the roles of x and z exchanged. We get xg.390 t0 *g 584

For cases (9a), (9b) and (9c) we need the following claim.

Claim 3.4.7. Suppose % is a standard closure on R3 with i; € {1,2,3} and i, # ig
for a # B and that (x,", 2.2 2,3) = (2", 2,2, x5,) for all (ry,,74,,73,) € N then

i1 ) Yig ) Vig i1 ) Vig
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either

(2t +az ) = (w2 @) for all (ryy,1i,) € N? and a € kX or

1
2. (z" +az,2)* = (v, +az,?, zy,) for all (ri,,15,) € N? and a € k>
Proof. The proof is nearly identical to that of Claim 3.4.5. O]

(9a) Suppose (™, y", 2")* = (z,y", 2") Vm,n,r € N. The inclusion
(x’yn+17zr+1> — (merl’ynJrl’ ZrJrl) g (xm 4 ayn’ ZT‘)* g (xm’yn7zr)* — <x7yn’ Zr)

implies (2™ + ay™, 2")* = (x,y",2") for all m,n,r € N and a,b € k*. Similarly
(x"4az", y")* = (z,y", 2") forallm,n,r € Nand a,b € k* and (z"+az",y"+bz")* =

(x,y™, 2") for all m,n,r € N and a,b € k*. The inclusion
((L‘,yn+1,ZT+1> — (ljn—l-ljyn—i-l7 Zr—i—l) g (xm,y” 4 CLZT)* g (Im,y",z’")* — (Ly”, ZT)

implies that for each 4,5, € N and b € kX either (2%,97 + b2!)* = (x,97,2') or
(28,97 + b2')* = (x,97 + bz'). If we suppose the latter for some 4,5, € N and
b € k*, by Lemma 3.4.1 (2™, y" + az")* = (z,y" + az") for all m,n,r € N and
a € k*. Thus (2™, y" 4+ az")* = (z,y",2") for all m,n,r € N and a € k* or

(™ y" +az")* = (z,y" + az") for all m,n,r € N and a € k*.

9aa) Suppose (™, y" + az")* = (z,y™, 2") for all m,n,7r € N and a € k*. The
(9aa) Supp Y NTAN 1,

inclusion
(a:,y"“, Zr-i—l) — (wm+17yn+17zr+1> g (l‘m + ayn + bz’”)* g (azm,y”, Zr)* — (x’yn,zr)

and Lemma 3.4.1 imply either (2™ + ay™ + b2")* = (z,y", z") for all m,n,r € N and
a € k* or (2™ + ay" +bz")* = (z,y" + 2z") for all m,n,r € N and a € k*. However
(x, y”—i—gz’“) is not * closed for all m,n,r € N. Thus (2™ +ay"+b2")* = (z,y", ") for
all m,n,r € N. The inclusion (x™)* C NS, N2, (2™, y", 2")* = N0, N0, (z,y", 2") =

() and Claim 3.4.6 implies (2)* = (x) for all m € N or (2™)* = (z™) for all m € N.
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(9aaa) Suppose (z™)* = (z) for all m € N. The inclusion (z) = (z™)* C
(@™, y")" C M2y (@™, ", 2")" = M2y (2, Y™, 2") = (z,y") implies (2, y")" = (z,y")
for all m,n € N. By Claim 3.3.1 (2™ + ay™)* = (z,y") for all m,n € N and a € k*.
Similarly (z™ + az")* = (2™, 2")* = (x,2") for all m,r € N and a € k*. Since

(y*)* C (x,y?), by Lemma 3.2.12 (y")* = (z,y") for all n € N or (y")* = (y") for all
n € N.

*

(9aaaa) Suppose (y")* = (z,y") for all n € N. The inclusion (z,y?) = (y?)* C
(y%, 2%)* C (z,v% 2%) and Lemma 3.2.12 (y™, 2")* = (z,y",2") for all n,r € N. By
Claim 3.4.7 (y" + az")* = (x,y™, 2") for all n,r € N and a € k™ or (y" + az")* =
(x,y™ + az") for all n,r € N and a € k*. However (z,y" + az") is not * closed for
all n,r € Nand a € k. Thus (y" + az")* = (z,y",2") for all n,r € N and a € k*.
Since (2?)* C (x,2?), by Lemma 3.2.12 (2")* = (z,2") for all r € N or (2")* = (2")
for all r € N.

*

(9aaaaa) Suppose (2")* = (z,2") for all r € N. By Lemma 3.2.6 (0)* is a proper

nonzero monomial ideal or (0)* = (0).

(9aaaaaa) Suppose (0)* is a proper nonzero monomial ideal. Since (0)* C (z),

(0)* = (2) for some i € N. By Lemma 3.2.7 (0)* = (x). This is *o.
(9aaaaab) Suppose (0)* = (0). This is *g 1.

(9aaaab) Suppose (z")* = (z") for all r € N. By Lemma 3.2.8 (0)* = (0). This is

*9.9.

(9aaab) Suppose (y")* = (y") for all n € N. The inclusion (y?, z*)* C (z,y?, 2?)
and Lemma 3.2.12 imply either (y",2")* = (z,y", 2") for all n,7 € N or (y",2")* =
(y™, 2") for all n,r € N.

(9aaaba) Suppose (y",2")* = (x,y", z") for all n,r € N. Similar to case (9aaaa)

(y" + az")* = (z,y", 2") for all n,r € N and a € k* and (2")* = (x,2") for all r € N
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or (27)* = (2") for all » € N.

*

(9aaabaa) Suppose (2")* = (x,z") for all » € N. Similar to case (9aaaaa) (0)* is

a proper nonzero monomial ideal or (0)* = (0).

*

(9aaabaaa) Suppose (0)* is a proper nonzero monomial ideal. Similar to case

(9aaaaaa) (0)* = (x). This is %g 3.
(9aaabaab) Suppose (0)* = (0). This is % 4.

(9aaabab) Suppose (z")* = (2") for all r € N. By Lemma 3.2.8 (0)* = (0). This

is *9.5.

(9aaabb) Suppose (y", z")* = (y*, 2") for all n,r € N. Claim 3.4.6 implies (z")* =
(2") for all » € N. By Lemma 3.2.8 (0)* = (0). By Claim 3.4.5 (y" 4+ az")* = (y", 2")
for all n,r € Nand a € k* or (y" + az")* = (y" + az") for all n,r € N and a € k*.

This gives us %9 and *g.7.

(9aab) Suppose (z)* = (z™) for all m € N. By Lemma 3.2.8 (0)* = (0). The
inclusion (z™,y")* C N2, (x™,y", 2")* = N2, (x,y", 2") = (z,y") and Lemma 3.2.12

implies (z™,y")* = (x,y") for all m,n € N or (™, y")* = (z™,y") for all m,n € N.

aaba) Suppose (2", y")* = (z,y") for all m,n € N. By Claim 3.3.
9aaba) S * for all N. By Claim 3.3.1
(™ 4+ ay™)* = (z,y") for all m,n € N and @ € k*. The inclusion (z™,2")*

N

N (2™, y", 2" = N2 (z,y", 2") = (x,2") and Lemma 3.2.12 implies (2™, 2")* =

(x,z") for all m,r € N or (2™, 2")* = (2™, 2") for all m,r € N.

(9aabaa) Suppose (z™,2")* = (z,2") for all m,n € N. By Claim 3.3.1
(™ + az")* = (x,2") for all m,r € N and a € k*. Similar to case (9aaa) (y")* =

(x,y") for all n € N or (y")* = (y") for all n € N.

(9aabaaa) Suppose (y")* = (z,y") for all n € N. Similar to case (9aaaa)
(y" + az")* = (y*, 2")" = (x,y", 2") for all n,r € N and a € £* and (2")* = (z, 2")
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for all r € N or (27)* = (2") for all r € N. Thus we have %95 and xgg.

(9aabaab) Suppose (y")* = (y") for all n € N. Similar to (9aaab) we have either
(y™, 2")* = (x,y", 2") for all n,r € N or (y", z")* = (y", z") for all n,r € N.

(9aabaaba) Suppose (y", 2")* = (x,y™, 2") for all n,r € N. Similar to case (9aaaa)
(y" +az")* = (z,y",2") for all n,r € Nand a € k* and (2")* = (x,2") for all r € N

or (z")* = (2") for all » € N. So we have xg 19 and *g 1.

(9aabaabb) Suppose (y™,2")* = (y*,2") for all n,r € N. Similar to (9aaabb)
(z")* = (2") for all r € N. By Claim 3.4.5 (y" + az")* = (y", z") for all n,r € N and
a € k*or (y"+az")* = (y" + az") for all n,r € N and a € k*. This gives us %g 1o

and *9.13-

(9aabab) Suppose (x™,z")* = (2™, 2") for all m,r € N. Claim 3.4.6 implies
(2")* = (27) for all € N. By Claim 3.4.5 (2™ + az")* = (2™, 2") for all m,r € N

and a € k™ or (2" 4+ az")* = (2™ + az") for all m,r € N and a € k*.

(9aababa) Suppose (z™ + az")* = (z™, z") for all m,r € N and a € k*. Similar
to case (9aaa) (y")* = (z,y") for all n € N or (y")* = (y") for all n € N.

(9aababaa) Suppose (y™)* = (z,y") for all n € N. Similar to case (9aaaa)
(y" +az")* = (y", 2")* = (z,y", 2") for all n,r € N and a € k*. This is g .14.

(9aababab) Suppose (y")* = (y") for all n € N. Similar to case (9aaab)
(y", 2" = (x,y", 2") for all n,r € N or (y",2")* = (y*,2") for all n,r € N.

(9aabababa) Suppose (y",z2")* = (x,y",2") for all n,r € N. Similar to case

(9aaaa) (y" + az")* = (x,y™, 2") for all n,r € N and a € k™. This is g 15.

(9aabababb) Suppose (y", z")* = (y", z") for all n,r € N. By Claim 3.4.5
(y" +az")* = (y",2") for all n,r € Nand a € k* or (y" + az")* = (y" + az") for all

n,r € Nand a € k*. Thus we have xg 15 and xg 17.
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(9aababb) Suppose (z™+az")* = (2™ +az") for all m,r € Nand a € k*. Similar

to case (9aababa) we get xg 15 through xgo1.

(9aabb) Suppose (z™,y™)* = («™,y") for all m,n € N. Claim 3.4.6 implies
(y")* = (y") for all r € N. By Claim 3.4.5 (2™ + ay™)* = (2™, y") for all m,n € N

and a € k* or (2™ + ay”)* = (2™ + ay”) for all m,n € N and a € k*.

(9aabba) Suppose (z™ + ay™)* = (z™,y") for all m,n € N and a € k*. Similar
to case (9aaba) (2™, z2")* = (x,2") for all m,r € N or (2™, 2")* = (2™, 2") for all

m,r € N.

(9aabbaa) Suppose (z™, 2")* = (x, z") for all m,r € N. By Claim 3.3.1
(x™4az")* = (z,2") for all m,r € N and a € k*. Similar to case (9aaab) (y", 2")* =

(x,y™, 2") for all n,r € Nor (y", 2")* = (y*,2") for all n,r € N.

(9aabbaaa) Suppose (y", 2")* = (x,y™, z") for all n,r € N. Similar to case (9aaaa)
(y" +az")* = (z,y",2") for all n,r € Nand a € k* and (2")* = (x,2") for all r € N

or (z7)* = (2") for all » € N. Thus we have %g 92 and *g o3.

(9aabbaab) Suppose (y™, z")* = (y",2") for all n,r € N. By Claim 3.4.6 (z")* =
(2") for all r € N. By Claim 3.4.5 (y" + az")* = (y", 2") for all n,r € N and a € k*

or (y" +az")* = (y"+az") for all n,r € N and a € k*. Thus we have xg 24 and xg o5.

(9aabbab) Suppose (2™, 2")* = (z™, z") for all m,r € N. Similar to case (9aabab)
(2")* = (2") for all r € N. By Claim 3.4.5 (2 + a2")* = (2™, 2") for all m,r € N

and a € k* or (2™ + az")* = (2" + az") for all m,r € N and a € k*.

(9aabbaba) Suppose (z™ + az")* = (z™, 2") for all m,r € N and a € k*. Similar
to case (9aaab) (y",2")* = (z,y", z") for all n,r € N or (y",2")* = (y",2") for all
n,r € N.

(9aabbabaa) Suppose (y",z")* = (x,y", 2") for all n,r € N. Similar to case

(9aaaa) (y" + az")* = (x,y"™, 2") for all n,r € N and a € k™. This is *g 2.
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(9aabbabab) Suppose (y", z")* = (y", z") for all n,r € N. By Claim 3.4.5
(y" +az")* = (y",2") for all n,r € Nand a € k* or (y" + az")* = (y" + az") for all

n,r € N and a € k*. Thus we have %997 and *g.os.

(9aabbabb) Suppose (z™ + az")* = (2™ + az") for all m,r € N and a € k*.

Similar to case (9aabbaba) we get x99 through xg 3.

(9aabbb) Suppose (2™ +ay")* = (™ +ay") for all m,n € N and a € k*. Similar

to case (9aabba) we get xg 30 through xg 4;.

(9ab) Suppose (2™, y" +az")* = (z,y" +az") for all m,n,r € Nand a € k*. The
inclusion
(x’yn—i-l’zr—i—l) — ($m+17yn+17zr+1) g (:Em + ayn + bzr)*
b b
C xm7 no 2T = z, noy 2
C (@™ y"+ ) = (2" + =)
implies (™ + ay™ + bz")* = (x,y™ + gzr) m,n,r € N and a,b € k*. Similar to case

(9aa) (z™)* = (z) for all m € N or (z™)* = (2™) for all m € N.

(9aba) Suppose (z™)* = (x) for all m € N. Similar to case (9aaa) we have
(2™ +ay™)* = (™, y")* = (z,y"), (" +az")* = (™, 2")* = (x,2") for all m,n,r € N
and a € k* and (y")* = (z,y") for all n € N or (y")* = (y") for all n € N.

(9abaa) Suppose (y™)* = (z,y") for all n € N. Similar to case (9aaa) (y",2")* =
(z,y", 2") for all n,r € N, (y" + az")* = (z,y™, z") for all n,r € N and a € k* or

(y" 4+ az")* = (z,y" +az") for all n,r € N and a € k*. However the former implies
(xjyn,ZT’) — (yn +azT)* g (xm7yn _I_az’f‘)* — (x’yn +CLZT)

which is a contradiction. Thus (y"+az")* = (z,y"+az") for all n,r € Nand a € k*.

Also similar to case (9aaaa) (z")* = (x,2") for all r € N or (2")* = (2") for all r € N.

(9abaaa) Suppose (2")* = (z,2") for all r € N. By Lemma 3.2.6 (0)* is a proper

nonzero monomial ideal or (0)* = (0).
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*

(9abaaaa) Suppose (0)* is a proper nonzero monomial ideal. Similar to case

(9aaaaa) (0)* = (x). This is %9 49.
(9abaaab) Suppose (0)* = (0). This is *g 43.

(9abaab) Suppose (2")* = (2") for all r € N. By Lemma 3.2.8 (0)* = (0). This is

*9.44-

(9abab) Suppose (y™)* = (y") for all n € N. Similar to case (9aaab) (y",2")* =
(x,y", 2") for all n,r € Nor (y", 2")* = (y", 2") for all n,r € N.

(9ababa) Suppose (y™,z")* = (x,y", z") for all n,r € N. Similar to case (9abaa)
(y" + az")* = (z,y" 4+ az") for all n,r € N and a € k* and (2")* = (x,2") for all
re€Nor ()" = (2") for all r € N.

(9ababaa) Suppose (2")* = (z,2") for all r € N. Similar to case (9abaaa) (0)* is

a proper nonzero monomial ideal or (0)* = (0).

(9ababaaa) Suppose (0)* is a proper nonzero monomial ideal. Similar to case

(9aaaaaa) (0)* = (). This is xg 45.
(9ababaab) Suppose (0)* = (0). This is g 46.

(9ababab) Suppose (z")* = (z") for all » € N. By Lemma 3.2.8 (0)* = (0). This

18 *9.47-

(9ababb) Suppose (y", z")* = (y*,2") for all n,r € N. Similar to case (9aaabb)
(0)* = (0), (2")* = (¢7) for all r € N and (y" + az")* = (y*,2") for all n,r € N and
a €k or (y*+az")* = (y" + az") for all n,r € N and a € k*. If we suppose the
former then (y",2") = (y" + az")* C (z,y" + az")* = (x,y™ + az"), a contradiction.

Thus (y™ + az")* = (y" + az") for all n,r € N and a € k™. This is *g 4s.

(9abb) Suppose (z™)* = (™) for all m € N. Similar to case (9aab) (0)* = (0)

and (z™,y")* = (z,y") for all m,n € N or («™,y")* = (2™, y") for all m,n € N.
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(9abba) Suppose (z™,y")* = (x,y™) for all m,n € N. Similar to case (9aaba)
(™ + ay™)* = (z,y") for all m,n € N and a € k* and (2™, 2")* = (x,z") for all

m,r € Nor (2™, 2")" = (2™, 2") for all m,r € N.

(9abbaa) Suppose (z™, z")* = (z,2") for all m,n € N. By Claim 3.3.1
(™ 4+ az")* = (z,2") for all m,r € N and a € k*. Similar to case (9aaa) (y")* =
(x,y") for all n € N or (y")* = (y") for all n € N.

(9abbaaa) Suppose (y")* = (z,y") for all n € N. Similar to case (9abaa)
(y" + az")* = (Y™ + az"), (y",2")" = (x,y", 2") for all n,r € N and a € k* and

(z")* = (,2") for all r € Noor (27)* = (2") for all » € N. So we have xg 49 and *g 5.

(9abbaab) Suppose (y")* = (y") for all n € N. Similar to (9aaab) we have either
(y", 2")* = (x,y", 2") for all n,r € Nor (y",2")* = (y*,2") for all n,r € N.

(9abbaaba) Suppose (y™, 2")* = (z,y", z") for all n, 7 € N. Similar to case (9abaa)
(y" + az")* = (z,y" 4+ az") for all n,r € N and a € k* and (2")* = (x,2") for all

r € Nor (2")* = (2") for all r € N. Thus we have xg 51 and g 5o.

(9abbaabb) Suppose (y", z")* = (y",2") for all n,r € N. Similar to (9ababb)
(z")" = (2") and (y" + az")* = (y" + az") for all n,r € N and a € k*. This is %9 53.

(9abbab) Suppose (z™, 2")* = (2™, 2") for all m,r € N. Similar to case (9aabab)
(2")* = (2") for all r € N and (2™ + az")* = (2™, 2") for all m,r € N and a € k* or
(™ + az")* = (2™ + az") for all m,r € N and a € k*.

(9abbaba) Suppose (z™ + az")* = (2™, 2") for all m,r € N and a € k*. Similar
to case (9aaa) (y")* = (z,y") for all n € N or (y")* = (y") for all n € N,

(9abbabaa) Suppose (y")* = (z,y") for all n € N. Similar to case (9abaa)
)

(y" + az")* = (z,y" + az"), (y",2")" = (x,y", 2") for all n,r € N and a € k*. This

18 *9.54-
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(9abbabab) Suppose (y™)* = (y") for all n € N. Similar to case (9aaab)
(y™, 2" = (x,y", 2") for all n,r € Nor (y",2")* = (y*,2") for all n,r € N.

(9abbababa) Suppose (y",z")* = (z,y",2") for all n,r € N. Similar to case
(9abaa) (y" + az")* = (z,y" + az") for all n,r € N and a € k*. This is *g 55.

(9abbababb) Suppose (y*,z")* = (y*,2") for all n,r € N. Similar to case
(9ababb) (y™ + az")* = (y" + az") for all n,r € N and a € k*. This is *g 56.

(9abbabb) Suppose (2" +az")* = (z™+az") for all m,r € Nand a € k*. Similar

to case (9abbaba) we get *g 57 through *g 59.

(9abbb) Suppose (z,y")* = (™, y") for all m,n € N. Similar to case (9aabb)
(y")* = (y") for all r € N and (2™ + ay™)* = (™, y") for all m,n € Nand a € k* or
(™ + ay™)* = (2™ + ay™) for all m,n € N and a € k*.

(9abbba) Suppose (z™ + ay™)* = (z™,y") for all m,n € N and a € k*. Similar
to case (9aaba) (2™, z")* = (x,2") for all m,r € N or (2™, 2")* = (2™, 2") for all

m,r € N.

(9abbbaa) Suppose (2™, 2")* = (z,2") for all m,r € N. By Claim 3.3.1
(x™4az")* = (z,2") for all m,r € N and a € k*. Similar to case (9aaab) (y", 2")* =

(x,y™, 2") for all n,r € Nor (y", 2")* = (y*,2") for all n,r € N.

(9abbbaaa) Suppose (y", 2")* = (z,y", z") for all n,r € N. Similar to case (9abaa)
(y" + az")* = (z,y" 4+ az") for all n,r € N and a € k* and (2")* = (x,2") for all

r € Nor (27)* = (2") for all » € N.This gives us %960 and *g ¢;.

(9abbbaab) Suppose (y™, z")* = (y",2") for all n,r € N. Similar to case (9aab-
baab) (2")* = (2") for all r € N and (y" +az")* = (y", 2") for all n,r € Nand a € k*
or (y" +az")* = (y" + az") for all n,r € N and a € k*. If we suppose the former
then (y™,2") = (y" +az")* C (x,y" + az")* = (x,y™ + az") which is a contradiction.

Thus (y" + az")* = (y" + az") for all n,r € N and a € k*. This is *g g2.
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(9abbbab) Suppose (™, z")* = (z™, 2") for all m,r € N. Similar to case (9aabab)
(z")* = (2") for all € N. By Claim 3.4.5 (2™ + az")* = (2™, 2") for all m,r € N

and a € kX or (2™ 4 az")* = (2 + az") for all m,r € N and a € k*.

(9abbbaba) Suppose (™ + az")* = (2™, 2") for all m,r € N and a € k*. Similar
to case (9aaab) (y",z")* = (x,y™, 2") for all n,r € N or (y",z")* = (y",2") for all
n,r € N.

(9abbbabaa) Suppose (y",z")* = (z,y",2") for all n,r € N. Similar to case
(9abaa) (y" + az")* = (z,y" + az") for all n,r € N and a € k™. This is *g g3.

(9abbbabab) Suppose (y™, z")* = (y", 2") for all n,r € N. Similar to case (9abb-
baab) (y" + az")* = (y" + az") for all n,r € N and a € k*. This is g ¢4.

(9abbbabb) Suppose (z™ + az")* = (2™ + az") for all m,r € N and a € k*.

Similar to case (9abbbaba) we get %g 65 and *g g6-

9abbbb) Suppose (™ +ay™)* = ("™ +ay™) for all m,n € N and a € k*. Similar
( pp y y

to case (9abbba) we get *g 67 through *g 73.

(9b) Suppose (™, y"™, 2" )* = (2™, y,2") ¥Ym,n,r € N. This case is similar to case

(9a) with the roles of z and y exchanged. We get %974 through xg 147.

(9¢) Suppose (z™,y", 2")* = (2™, y", z) Ym,n,r € N. This case is similar to case

(9a) with the roles of x and z exchanged. We get xg 145 through *g 29o.

(10) Suppose (z™,y", 2")* = (2™, y", 2")Vm,n,r € N. The inclusion (z™)* C
N2 N0y (2™, y™, 27 ) = N2, N2y (2™, y™, 2") = (™) implies (z™)* = (z™) for all
m € N. Similarly we get (y")* = (y") for all n € N and (2")* = (2") for all » € N.
The inclusion (z™,y")* C N2, (z™,y", 2")* = N2 (a™,y™, 2") = (2™, y") implies
(™, y")* = (2™, y") for all m,n € N. Similarly we have (2™, 2")* = (2™, 2") for all

m,r € N and (y",2")* = (y",2") for all n,r € N. Now we need to determine the

closures of the non-monomial ideals.
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By Claim 3.4.5 (™ + ay™)* = («™,y") for all m,n € N and a € k™ or
(™ +ay™)* = (2™ +ay") for all m,n € Nand a € k™, (2 + az")* = (2™, 2") for all
m,r € Nand a € k* or (2™ + az")* = (2™ + az") for all m,r € N and a € k* and
(y" +az") = (y",2") for all n,r € Nand a € k* or (y" + az")* = (y" + az") for all

n,r € N and a € k*. This gives us seven cases.

(10a) Suppose (2™ + ay™)* = (2™, y"), (2™ +az")* = (2™, 2") and (y" + az")* =
(y",2") for all m,n,r € N and a € k*. The inclusion (z,y") = (™ + ay")* C
(™ +ay™, 2")* C (x™,y", 2")* = (2", y", 2") implies (™ + ay™, z")* = (a2, y", z") for
all m,n,r € N and a € k*. Similarly (" + az",y")* = (2, y" + az")*
= (™ +az", y" + bz")* = (2", y", 2") for all m,n,r € N and a,b € k*. Since
(22 4+ y* + 22)* C (22 + y2, 22)* = (2%, 9%, 2%) by Lemma 3.4.1 we have either
(™ +ay™+bz")" = (2™, y", 2") for all m,n,r € Nand a,b € k™ or (2™ +ay"+bz")* =
(™ + ay™ + bz") for all m,n,r € N and a,b € k*.

(10aa) Suppose (z™ + ay™ + bz")* = («™,y", 2") for all m,n,r € N and a,b € k*.

This is *10-

(10ab) Suppose (z™ + ay™ + bz")* = (2™ + ay™ + bz") for all m,n,r € N and

a, b e k*. This is *10.1-

(10b) Suppose (™ + ay™)* = (z™,y"), (2™ + az")* = (2™, 2") and (y" + az")* =
(y" + az") for all m,n,r € N and a € k*. The inclusion (z™,y") = (2™ + ay™)* C
(™ + ay™, 2")* C (™, y", 2" = (2™, y", 2") implies (2™ + ay™, z")* = (2™, y", 2")
for all m,n,r € N and a € k*. Similarly (2™ + az",y")* = (2" + az",y" + b2")* =
(™, y™, 2") for all m,n,r € N and a,b € k*. This leaves only ideals of the form
(z™+ay™ +bz") and (z™,y" +az") for m,n,r € Nand a € k*. Since (22, y*+2?)* C
(22,92, 2%)* = (22,92, 2?) by Lemma 3.4.1 we have either (2™, y"+az")* = (z™,y", 2")
for all m,n,r € Nand a € k* or (2, y" + az")* = (™, y" + az") for all m,n,r € N

and a € k*.
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(10ba) Suppose (z™,y™ + az")* = (™, y",2") for all m,n,r € N and a € k*.
Similar to (10a) (2™ + ay™ + bz")* = (2™, y", 2") for all m,n,r € N and a,b € k* or
(™ + ay™ + bz")* = (™ + ay™ + bz") for all m,n,r € N and a,b € k*.

(10baa) Suppose (2™ +ay™+bz")* = (2™, y", 2") for all m,n,r € Nand a,b € k*.

This is *1¢.2.

(10bab) Suppose (z™ + ay™ + bz")* = (™ + ay™ + bz") for all m,n,r € N and
a, b € k*. This is *193.

(10bb) Suppose (™, y" + az")* = (™, y" + az") for all m,n,r € N and a € k*.
Since (22 + y* + 22)* C (2%, y® + 22)* = (22,9° + 2%) by Lemma 3.4.1 we have
either (2™ + ay™ + b2")* = (2™, y" + 227) for all m,n,r € N and a,b € k* or
(™ + ay™ + bz")* = (™ + ay™ + bz") for all m,n,r € N and a,b € k*.

(10bba) Suppose (z™ + ay™ + bz")* = (2™, y" + 22") for all m,n,r € N and
a, b e k*. This is *10.4-

(10bbb) Suppose (z™ + ay™ + bz")* = (2™ + ay™ + bz") for all m,n,r € N and

a, b € k*. This is *1g5.

(10c) Suppose (™ +ay"™)* = (2™, y"), (z"+az")* = (2™ +az") and (y"+az")* =

(y™, 2") for all m,n,r € N and a € k*. Similar to (10b) we get x196 through x;¢.9.

(10d) Suppose (™ +ay™)* = (z™+ay"™), (z"+az")* = (2™, 2") and (y"+az")* =
(y™, z") for all m,n,r € N and a € k*. Similar to (10b) we get x19.10 through %19 13-

(10e) Suppose (2™ +ay™)* = (™, y"), (z"+az")* = (2™ +az") and (y"+az")* =
(y" + az") for all m,n,r € N and a € k*. The inclusion (z™,y") = (2™ + ay")* C
(™ + ay™, 2")* C (™, y", ") = (2™, y", 2") implies (2™ + ay™, z")* = (™, y", 2")
for all m,n,r € N and a € £*. The inclusion (z™,y") = (2™ — $y")*
C(x™+az",y"+b2")* C (2™, y", 2")" = (™, y", 2") implies (x™ + az",y" + bz")* =

(™, y™, 2") for all m,n,r € N and a,b € k*. This leaves only ideals of the form
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(™ 4+ ay™ + b2"), (z™ + az",y") and (2™, y" + az”) for m,n,r € N and a,b € k*.
Since (22 + y? + 22)* C (2? + 9%, 2%)* = (2%,9% 2%) by Lemma 3.4.1 we have either
(™ +ay™ +b2")* = (x™,y", 2") for all m,n,r € Nand a,b € k* , (2™ +ay™ +b2")* =
(z™+bz",y") for all m,n,r € N and a,b € k* or (™ + ay™ + bz")* = (2™, y" + 22")

for all m,n,r € N and a,b € k*.

(10ea) Suppose (™ + ay™ + bz")* = (2™, y", z") for all m,n,r € N and a,b € k*.
The inclusion (2™, y™, 2") = (2™ 4+ y" + az")* C (™ + az",y")* C (™, y", 2")* =
(™, y", 2") imlpies (™ + az",y™)* = (™, y", 2") for all m,n,r € N and a,b € k*.
Similarly (2™, y™ + az")* = (2™, y", 2") for all m,n,r € N and a,b € k*. This is

*10.14-

(10eb) Suppose (" +ay"+bz")* = (™ +bz",y") for all m,n,r € Nand a,b € k*.
Thus (z™ + az",y") is * closed for all m,n,r € N and a € k*. The inclusion
(xm + CLZT,yn) — (xm + yn —|—CI,ZT>* g (mm’yn —|—(IZT>* g (xm’yn’zr)* — (xm7yn’zr>

implies (2™, y" + az")* = (2™, y", 2") for all m,n,r € N and a € k*. This is *y0.15.

(10ec) Suppose (" +ay™+bz")* = (wm,y”—l—SZT) forallm,n,r € Nand a,b € k*.
Thus (z™,y" + az") is * closed for all m,n,r € N and a € k*. The inclusion
(@™, y" + az") = (@™ +y" +a2")" C (™ +a",y")" C @7y )T = (@my",)
implies (z™ + az",y")* = (2™, y", 2") for all m,n,r € N and a € k*. This is *10.16-

(10f) Suppose (" +ay™)* = (™ +ay™), (2" +az")* = (™, 2") and (y" +az")* =
(y" + az") for all m,n,r € N and a € k*. Similar to (10e) we get x19.17 through

*10.19-

(10g) Suppose (z™+ay"™)* = (z"+ay™), (z™+az")* = (z"+az") and (y"+az")* =

(y", 2") for all m,n,r € N and a € k*. Similar to (10e) we get *19.20 through g.92.

For case (10h) we need the following claim.

Claim 3.4.8. Suppose x is a standard closure operation on R3 and that (x™,y™, 2" )*
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= (2™, y", 2") for all m,n,r € N. If (™ + c2™3 y™ + dz"™3)* = (x"™,y™2,2"3) for
some (my, ma,m3) € N3 and c¢,d € k* then (z™ + az",y™ + bz")* = (z™,y", 2") for

all m,n,r € N and a,b € k*.

Proof. Let a,b € k*. Since * is weakly prime we have

ad a ad a
(24 3y + @™ ez y™ 4 d2™)T C (0 oy + D) (@™ ey 4 d2))

= (xm1+1’ym2+l,zmg+l) g (xm1+1 + a/zmg+l,yﬂ’L2+1 + bzm3+1)*

= (CL’m1+1 + a2m3+1,ym2+1 + bzmg—i-l)* — (Im1+l,ym2+17 ng—l—l)*

mi+1 |, mao+1 m3+1)
) ) .

= (z Yy z

Inductively we have for all v € N,

(xmlJr’U + azm3+v’ym2+v + bzm3+v)* — (xmlJrU? ym2+v’ Zm3+v).

Then similar to Lemma 3.4.1 (1) we have the result for all exponents. Thus
(™ 4+ az", y" + bz")* = (™, y", 2") for all m,n,r € N and a,b € k*. This concludes

the proof of the claim. O

(10h) Suppose (z™+ay™)* = (z™+ay™), (x™+az")* = (2" +az") and (y"+az")* =
(y"+az") for all m,n,r € Nand a € k*. We need to determine the closures of ideals
of the form (z™ 4+ ay™ 4+ bz"), (™ +az",y" + b2"), (™, y" +az"), (z™ 4+ az",y") and
(2™ + ay™, 2") for m,n,7 € N and a,b € k*. Since (2% + 3> + 22)* C (22, 9?, 2%) we
have the following six cases:

by Lemma 3.4.1
(™ 4+ ay™ +bz")* = (™, y", 2")Ym,n,r € N,a,b € kK~

b
(™ 4+ ay™ +bz") = (™, y" + —=2")Vm,n,r € N,a,b € k™
a

(™ +ay™ +bz") = (2™ +b2",y")Vm,n,r € N,a,b € k*
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(™ +ay” +02") = (2™ + ay", ") Ym,n,r € Nya,b € kK~
(™ +ay” +b2") = (2™ + ay" + b2")Vm,n,r € N,a,b € k*

or by Lemma 3.4.2 k = Z/3Z and (2™ 4+ y" + 2")" = (2™ + 22", y" + 227),
(™ 4y + 22" = (2™ + 2Ty + 27, (2" + 2" + 27)F = (2™ 4 227,y + 27) and
(™ 4+ 2y™ + 22") = (2™ 4 2", y" + 22") for all m,n,r € N.

(10ha) Suppose (™ + ay™ + bz")* = («™,y", 2") for all m,n,r € N and a,b € k*.
Similar to case (10ea) we have (z™ + az”,y™ + b2")* = (2™, y" + az")*
= (2™ +az",y")* = (" 4+ ay", 2")* = (a™,y", 2") for all m,n,r € N and a,b € k*.

This is *10.23-

(10hb) Suppose (™ + ay™ + bz")* = (2™, y" + %zT) for all m,n,r € N and
a,b € k*. Thus (2™, y" + az") is % closed for all m,n,r € N and a € k*. The
inclusion (z™,y" + az") = (2" +y" + az")" C (2™ + az",y")* C (2™, y", ") =
(™, y", 2") implies (™ + az",y")* = (2™, y", 2") for all m,n,r € N and a € k*.
This leaves ideals of the form (z™ 4 az",y" + b2") for m,n,r € N and a,b € k*.
For each i,7,1 € N and ¢,d € k*, (2 + ¢z, 9/ + d2')* C (2,97, 2)) = (27,97, ).
Thus for each i,j,] € N and ¢,d € k* either (2% + cz!,y? + d2')* = (2%,47,2!) or
(2% + ezl y? +d2Y) = (2 + 2y + d2b). If (28 + c2lyf + d2Y* = (af, 97, 2Y) for
some i, 5,0 € N and ¢,d € k* by Claim 3.4.8 (™ + az",y" + bz")* = («™,y", 2") for
all m,n,r € N and a,b € k*. Thus either (2™ + az",y™ + bz")* = (2™, y", 2") for
all m,n,r € Nand a,b € k* or (2™ 4 az",y" + b2")* = (™ + az",y" + bz") for all

m,n,r € Nand a,b € k*.

(10hba) Suppose (z™ + az",y" + bz")* = (z™,y",2") for all m,n,r € N and

a, b e k*. This is *10.24-

(10hbb) Suppose (z™ + az",y" + b2")* = (™ + az",y" + bz") for all m,n,r € N
and a,b € k*. By Lemma 3.4.3 this is only a standard closure when k = 7Z/27. This

1S *10.24p-
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(10hc) Suppose (z™+ay™+bz")* = (z™+bz",y") for all m,n,r € Nand a,b € k*.
Thus (2™ + az",y") is * closed for all m,n,r € N and a € k*. The inclusion
(™ 4+ az",y") = (@™ + y* +az")* C (2™, y" 4+ az")* C (2™, y", ") = (™, y", ")
implies (z™,y" + az")* = (2™, y",2") for all m,n,r € N and a € k*. Similarly
(™ 4+ ay™, 2")* = (™, y",2") for all m,n,r € N and a € k*. Similar to case
(10hb) (2™ + az",y"™ + bz")* = (2™, y", 2") for all m,n,r € N and a,b € k* or
(™ + az", y" + b2")* = (2™ 4+ az", y" + bz") for all m,n,r € N and a,b € k*.

(10hca) Suppose (™ + az",y" + bz")* = (™, y", z") for all m,n,r € N and

a, b e k*. This is *10.25-

(10hcb) Suppose (2™ + az",y™ + bz")* = (2™ + az",y" 4+ b2") for all m,n,r € N
and a,b € k*. By Lemma 3.4.3 this is only a standard closure when k = Z/27. This

1S *10.25b-

(10hd) Suppose (" +ay"+bz")* = (z™+ay™, z") for all m,n,r € Nand a,b € k*.
Thus (z™ + ay™,2") is * closed for all m,n,r € N and a € k*. The inclusion
(@™ 4+ ay",z") = (@™ +y" +az")* C (a™,y" +a2")* C (@™, y", ") = (@, 9", 2")
implies (z™,y" + az")* = (2™, y", z") for all m,n,r € N and a € k*. Simlarly
(™ + az",y")* = (™, y",2") for all m,n,r € N and a € k*. Similar to case
(10hb) (2™ + az",y" + bz")* = (a™,y",2") for all m,n,r € N and a,b € k* or
(™ 4+ az", y" + bz")* = (2" + az", y" + bz") for all m,n,r € N and a,b € k*.

(10hda) Suppose (2 + az",y"™ + bz")* = (2™, y™, 2") for all m,n,r € N and

(I,b € k*. This is *10.26-

(10hdb) Suppose (™ + az",y" + bz")* = (z™,y", z") for all m,n,r € N and
a,b € k*. By Lemma 3.4.3 this is only a standard closure when k = Z/27. This is

*10.26b-

(10he) Suppose k = Z /37 and (x™ + y™ + 2")* = (™ + 22", y" + 22"),
(xm+yn +2zr)* — (Im _i_Zr’yn —|—ZT), (xm +2yn +Zr>* — (xm+2zr’yn +ZT>
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and (2™ 4 2y" + 22")* = (2™ + 2", y" + 22") for all m,n,r € N. The inclusion
(@™ + 227, y" +227) = (@™ +y" +27)° C (2™, y" +27) C (a7, y", ") = (27", 2T
implies (z™,y" + 2")* = (2™, y", 2") for all m,n,r € N. Similarly we have the
following: (2™, y™ + 22")* = (™ + 2", y")* = (a™ + 22", y")* = (2™ + y",2")* =

(™ +2y", 2" ) = (™, y", 2") for all m,n,r € N. This is xz/3z.

(10hf) Suppose (z™ + ay™ + b2")* = (2™ + ay™ + bz") for all m,n,r € N and
a,b € k*. We need to determine the closures of ideals of the form (z™+az", y"+bz"),
(™ +ay™, 2"), (z™ 4+ az",y") and (2™, y" + az") for some m,n,r € N and a,b € k*.
Note that ideals of one of these forms are not contained in an ideal of another one
of these forms. Thus their closures are independent of each other. Since
(x™4az", y"+bz")* C (z™,y", 2") similar to case (10hb) either (z™+az", y"+b2")* =
(™, y", 2") for all m,n,r € N and a,b € k* or (2™ + az",y" + bz")*
= (2™ 4+ az",y" + bz") for all m,n,r € N and a,b € k*. The inclusion
(™ y"+az")* C (z™,y", 2") and Lemma 3.4.1 imply (2™, y"+az")* = (™, y", 2") for
allm,n,r € Nand a,b € k* or (™, y"+az")* = (™, y"+az") for all m,n,r € N and
a,b € k*. Similarly (™ 4 az",y")* = (2™, y", 2z") for all m,n,r € N and a,b € k*
or (™ + az",y")* = (2™ 4 az",y") for all m,n,r € N and a,b € k*. Similarly
(™ + ay™, ") = (2™, y", 2") for all m,n,r € N and a,b € k* or (™ + ay™, 2")* =
(™ + ay™, z") for all m,n,r € N and a,b € k*. For the ideals (™ + az",y" + bz"),
(™ +ay™, 2"), (2™ +az",y") and (2™, y" + az") for all m,n,r € N and a,b € k* we
have the following case:

All four are not x closed. This is x1¢.27.
Three are not x closed. Thus we have 1928 through *;.3;.
Two are not x closed. Thus we have 1932 through ;¢ 37.
One is not x closed. Thus we have *1g.35 through *1¢.41.

All four are % closed. This is %1¢ 42, the identity.
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Corollary 3.4.9. If |k| > 4 then |S(R3)| = 1522. If k = Z/3Z then |S¢(Rs)]
1523. If k = 7/27 then |S;(Rs)| = 1525.

Proof. By Theorem 3.4.4 and Lemma 1.2.8.
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Future Research

There are many questions remaining to be answered regarding standard closure oper-
ations on rings of small dimension. We found that under certain conditions the set of
standard closure operations for a 2-dimensional ring is infinite. For a 2-dimensional
Noetherian domain D we know that this is always the case. We would also like
to determine if this is the case for non-domains. The rings S, Ry and Rz provide
several examples of 1-dimensional rings over fields where the set of standard clo-
sure operations is finite. However, since it has been shown that 0-dimensional rings
can have infinitely many standard closures we may find 1-dimensional rings over 0-
dimensional rings, that are not fields, that have infinitely many standard closures. It
needs to be determined under what conditions the set of standard closures is finite

for 1-dimensional rings.

We determined that the ring S has six standard closure operations. Certainly
we should investigate the standard closure operations on the ring (k[x]/(z™))[[t]] for

n > 2. Possibly we can show that the size of this set is a function of n.

Counting the set of standard closures on R; for t > 3 appears to be more difficult.

The number of standard closure operations on R; seems to be increasing rapidly as
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t increases. For t = 4 we can establish a lower bound for the number of standard

closure operations.

Corollary 4.0.10. There are at least 5977 standard closure operations on R,.

Proof. The ring R3 is isomorpic to the rings Ri, Ri, Ri and R}l (as defined in Lemma
3.2.4). By Theorem 3.4.4 each of these rings has 1522 standard closure operations.
By Lemma 3.2.4 each of these standard closures induces a standard closure on Rj.
However some of the closures from R} R3 R2 and Rl induce the same closure
operations on 4. Let my4 @ R3 — Ri be the isomorphism that sends z — xq,
y — xp and z — x3. Let my3 1 Rz — Rf‘l be the isomorphism that sends x — z,

y — o9 and z — 4. Define my5 and w4, similarly.

Since I™* = R3 for all ideals I the image of this closure under the maps m4 4, 743,
T2 and my 1 will be identical. The same is true for x1 ;. So % and % ; induce a total

of two standard closures on Rjy.

The images of xo under the composition of ¢ (as defined in Lemma 3.2.4) with
the maps 74, 42 and 7y, yields the same closure on Ry: (0)* = (25)* = (x3) V
r € N, I*> = R4 V other I. The image of x, under the composition of ¢ with map m4 3
is (0)*2 = (z5)** = (x4) Vs € N, [*> = R, V other I. Thus %, induces two distinct
standard closures on R4. The same is true for x5 1 through x5 5. Thus x5 through x, g

induce a total of 18 standard closures on R,.

The images of x3 under the composition of ¢ with the maps 744 and m4; yields
the same closure on Ry: (0)* = (0), (x5)** = (x9), (25) = (x3) Vn,r € N, I** = Ry
V other I. The image of x3 under the composition of ¢ with the map 7,3 gives the
following closure on Ry: (0)*3 = (0), (5)* = (3), (x5)* = (x4) Vn,s € N, ["* = Ry
V other I. And the image of x3 under the composition of ¢ with the map 72 gives
the closure on Ry: (0)* = (0), (z5)*® = (x4), (25)™ = (2x3) Vr,s € N, ["8 = R3 ¥

other I. Thus %3 induces three distinct standard closures on R4. The same is true
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for %31 through *356. Thus %3 through x3¢ induce a total of 261 standard closures

on Ry.

The image of %, under the composition of ¢ with the map m4 4 gives the following
closure on Ry: (0)* = (0), (27")* = (x1), (xh)** = (x2), (x5)™ = (z3) V. m,n,r € N,
I** = R3 V other I. The image of x4 under the composition of ¢ with the map
mu3 gives the following closure on Ry: (0)* = (0), (27")* = (x1), (25)™ = (22),
()™ = (z4) V myn,s € N, I** = Ry V other I. The image of x4 under the
composition of ¢ with the map myo gives the following closure on Ry: (0)* = (0),
() = (21), ()™ = (z4), (25)* = (x3) V m,n,s € N, I** = R3 V¥ other I. And
the image of x4 under the composition of ¢ with the map my; gives the following
closure on Ry: (0)* = (0), ()" = (z4), (2h)** = (x2), (z5)™ = (z3) V n,r,s € N,
I** = R3 V other I. Thus %4 induces four distinct standard closures on R4. The same
is true for %41 through x19.42. Thus x4 through %1042 induce a total of 5,696 standard

closures on Rjy.
Hence we have at least 5,977 standard closre operations on Ry.

]

We can certainly increase the lower bound for the number of standard closures on
R4 given in Corollary 4.0.10. If ¢ and d are closure operations, we define cNd to be the
operation 1“4 = 1¢N I4. In [MV] we showed that if ¢ and d are semistar operations
then ¢Nd is a semistar operation. We can show similarly that this is the case when ¢
and d are standard closure operations. Certainly we can ”intersect” standard closure
operations from Corollary 4.0.10 to find standard closures not induced by any of the
standard closures on R3. It appears the number of standard closures on R, is many
times greater than for R3. Determining the number of standard closures on R; for

t > 3 will probably require computer aided techniques.
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Appendix A

Standard closure operations from

proof of Theorem 3.4.4

*1: " =Ry V [

*1.1:(0)*11 = (0), [*** = R3 V other [

*x9:(0)2 = (") = (2) Vr € N, I"™> = R3 ¥V other |
*91:(0)21 = (0), (") = (2) Vr € N, [*>' = Ry V other
*92:(0)*22 = (0), (2")**2 = (2") Vr € N, I"*2 = R3 V other [

SIS A o

%93 through x, g see proof

12, %3:(0)* = (0), (y")** = (y), (") = (2) Vn,r € N, [** = Ry V other [

13. x31:(0)31 = (0), (y")=* = (y), (") = (2") V n,r € N, "' = R3 V other [
14. x39:(0)*32 = (0), (y")=2 = (y"), (2")**2 = (2) Vn,r € N, ["32 = R3 V other [
15. %33:(0)33 = (0), (y™)™** = (y"), (27)33 = (2") Vn,r € N, [**% = R3 V other [
16. *3.4:(0)*34 = (y")*4 = (2")34 = (y" + a2" )3 = (Y, 2")%* = (y,2) Vn,r €N

and a € k™, ["34 = R3 V other [

17. *3'5:(0)*3.5 — (y)’ (yn)*3.5 — (ZT)*s.s — (yn + CLZT)*3'5 — (yn’ZT)*s.s — (y’ Z) \vd

n,”r € Nand a € k*, ["35 = R3 V other [

18. *3.6:(0)*346 — (Z), (yn)*&G — (Z"’)*B.G — (yn + aZT)*3.6 — (ynjzf)*&s — <y7 Z) Y
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n,r € Nand a € k*, [*36 = R3 V other [

19. x37:(0)*37 = (0), (y")=7 = (2")37 = (y" + az")37 = (y",2")37 = (y,2) V
n,r € Nand a € k>, [**" = R3 V other [

20. #35:(0) = ()% = (2), (Y")*® = (y" +a2")?s = (y",27)°" = (y,2) ¥
n,r € Nand a € k*, [*3% = R3 V other [

21. *39:(0)*0 = (0), (y")*3° = (y" + az")*3° = (y", 2")*3° = (y,2), (2")32 = (2) V
n,r € Nand a € k>, [**° = R3 V other [

20, w1 (050 = (0), (") = (y* + a0 = (g, )50 = (y,2), ()50 =
(2") ¥V n,r € Nand a € k*, [*310 = R3 ¥V other [

23. *311:(0)3 1 = (y")= = (y), ()30 = (y" 4+ a")B3 = (y", ") = (y,2) V
n,r € Nand a € k*, [**1' = R3 V other [

2wy (05 = (0), ()52 = (y), ()5 = (" + 7)o = (g, 2Ty =
(y,2) Vn,r € Nand a € k™, [*312 = R3 V other [

25. x315(0)55 = (0), ()55 = (y), ()00 = (2) (y" + a0 = (g7, 7)o =
(y,z) Vn,r € Nand a € k*, I*33 = R3 V other [

26. waai 0520 = (0), (575 = (y), ()20 = () (" +az")o2e = (7, 7)o =
(y,2) Vn,r € Nand a € k*, [*314 = R3 ¥ other |

. x5 (055 = (0), ()5 = (1), ()25 = (" + a7} = (4, 27y =
(y,z) Vn,r € Nand a € k*, I*35 = R3 V other [

28, wagi 0510 = (0), (5520 = (), ()10 = (2) (y"+az") o0 = (7, 7)o =
(y,2) Vn,r € Nand a € k>, [*316 = R3 V other |

29. #317:(0)7 = (0), (y")=7 = (y"), (2")=17 = (") (y" +az")™7 = (y", ")
=(y,z) Vn,r € Nand a € k*, "7 = R3 V other [

30. H31s:(0) = (y")= = (y), (7)™ = (y" +az")™® = (y", ") = (y,2")
Vn,reNandaek™, I™®=R3V other |

3 w090 = (0), ()55 = (1), ()% = (" +az' ) = (7, )5 =
(y,2") Vn,r € Nand a € k™, [*319 = R3 ¥ other [

32 H320:(0)20 = (0), (y")=** = (y), (Y" + a2")>> = (y,2)*> = (y,2"),
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33.

34.

35.
39.

40.

41.

70.

99.

100.

101.

102.

103.

104.

105.

106.

(2")320 = (2") Vn,r € Nand a € k*, I"2° = Ry V other |

a0 = ()8 = (y7), ()8 = (57 + @z = (7, 25 = (1)
Vn,reNandacek™, [ = R3V other |

roa (052 = (0), (1) = (1), (1) = (), (4 + o = (g, 27}
=(y,2")Vn,r € Nand a € k*, [*322 = R3 V other [

*3.93 through 326 see proof

*3.07:(0)"327 = (0), (y")™=27 = (y"), (27)=2" = (2"), (y" +az")"=2 = (y",2")=
= (y",2")Vn,r € Nand a € k¥, [**2" = R3 V other [

*3.28:(0)22 = (0), ()22 = (y"), (27)*> = (2"), (y" +az")** = (y" + az"),
(y", z")328 = (y",2") ¥ n,r € Nand a € k*, ["32 = Ry V other |

*3.99 through x5 57 see proof

%358 through x5 g4 see proof

*4:(0)* = (0), (2™)" = (z), (") = (y), (z")* = (2) Vm,n,r € N, I"" = Ry
V other [

w0 = (0), (™) = (@), (") = (), (7)1 = (=) ¥ monr € N,
"1 = R3 V other [

*a.2:(0)2 = (0), (&™) = (2), (y")™** = (y"), (2)** = (2) V. m,n,r € N,
I*+2 = R3 V other I

#a3:(0)4 = (0), (™) = («™), (y")** = (), (z7)"** = (2) V. m,n, 7 € N,
43 = Rs V other [

*ka.4:(0)4 = (0), (™) = (z), (y")** = (y"), (2)** = (z") Vm,n,r €N,
I+ = R3 V other I

*a5:(0)° = (0), (&™) = (™), (y")*e = (y), (Z")*° = (&) V.m,n,r €N,
145 = R3 V other I

*a.6:(0)40 = (0), (&™) = (z™), (") = ("), (2)*° = (2) V. m,n,r €N,
146 = R3 V other I

ka7 (0)47 = (0), (@) = (™), (y")™7 = (y"), (z")*7 = (z") V. m,n, 7 € N,
1*+" = R3 V other I
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107, w:(0)" = (0), (&™) = (), (1) = (1) = (4" + 0"} = (47, = (3.2)
Vm,n,r € Nand a € k*, I"> = R3 V other [

108. *51:(0)1 = (0), (z™)* = (z), (y")™! = (y" + az")™1 = (y", ") = (y, 2),
(z")1 =(2) Vm,n,r € Nand a € k*, [**' = R3 V other |

109, (027 = (0), (+")" = (0), ()2 = (" + @) = (4", 27)"%% = (5,2,
(z")52 = (2") Vm,n,r € Nand a € k*, "2 = Ry V other [

10, k550055 = (0), @) = (), ()55 = (1), ()55 = (4 + az)ss —
(y", 2")3 = (y,2) Vm,n,r € Nand a € k*, [**3 = R3 V other [

L w0 = (O @7 = (&) 57" = 1) () = G 0 + 037 =

= (

112, x5,5:(0)*2 = (0), (l’m)* = (90), (y")ee = (y)a (") = (2"), (y" + az2")™e =
(y", 2")5 = (y,2) Vm,n,r € Nand a € k*, I**5 = R3 V other [

113. 56 through x5 see proof

16w 0)7 = (0), (™) = (2), (7)™ = (), (7% = (" + a5 =
(y", 2")s° = (y,2") Vm,n,r € Nand a € k*, [**9 = R3 V other [

1T, wa0i0)70 = (0), (27)° = (&), ()50 = (), ()50 = (), (" +az7)o0 =
(y", 2")=10 = (y,2") ¥ m,n,r € Nand a € k*, [*1° = R3 V other [

118, 4511:(0) = (0), (2™)* = (z), (") = (y"), (2")=" = (y" +a2")™" =
(y", 2" )1 = (y,z") Vm,n,r € Nand a € k*, [**' = Ry V other [

119. 512:(0)%2 = (0), (2™)* = (z), (y")* = (y"), (z7)** = (&),
(y" + az")s 12 = (Y, 2" )52 = (y,2") Vm,n,r € Nand a € k*, [**12 = Ry V
other [

120. %513 through %516 see proof

124, 55.47:(0)27 = (0), (2™)* = (x), (y")**7 = (y"), (z7)™7 = (&),
(Y™ + az")s1 7 = (y", 2" )7 = (y", 2") Vm,n,r € Nand a € k*, [**7 = R3 V
other [

125. 45.45:(0)* = (0), (2™)* = (x), (y")*** = (y"), (z7)** = (&),
(y" + az")*18 = (y" + az"), (y",2")"® = (y",2") Vm,n,r € N and a € k*,
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126.

145.

183.

221.

222.

223.

224.

225.

226.

227.

228.

229.

1518 = Ra ¥ other [

*5.19 through x5.37 see proof

*5.38 through *5.75 see proof

*5.76 through x5.113 see proof

k(05 = (1) = (2), (@) = (2™ +a)* = (&™) = (2,2), (") =
(y" + az")* = (y", 2")* = (y,2) Vm,n,r € Nand a € k*, I*¢ = R3 V other [
k61051 = (0), (5™)* = (&7 + az)* = (a7, 27)* = (2, 2), (4"}

= (y" +az")or = (y", 2")% = (y,2), (") = (2) Vm,n,r € Nand a € k*,
I*61 = R3 V other [

ko052 = (0), (#7)* = (&7 + az")* = (2™, )" = (2, 2), (y")*s2

= (y" +az")o? = (y",2")2 = (y,2), (7)> = (") Vm,n,r € Nand a € k*,
162 = Rs V other [

ko053 = (0), (") = (@™ + az') = (@ 2) = (5,2), () = ()
(z")*e3 = (2) , (Y™ + az")*3 = (y*, 2")*3 = (y,2) Vm,n,r € Nand a € k*,
I*63 = R3 V other I

x6.4:(0) 0 = (0), (™) = (&™ +a2")* = (27, 2")" = (x,2), W) = (y),
(2")res = (27), (y" + az")ot = (y",27)*4 = (y,2) Vm,n,r € Nand a € k*,
I*64 = R3 V other [

x65:(0)*00 = (0), (2™)" = (@™ 4+ a2")* = (2™, 27)" = (z,2), (") = (¥"),
(z")*es = (2) , (Y + az")os = (y*, 2")s = (y,2) Vm,n,r € Nand a € k¥,
I1*65 = R3 V other [

ko (0)00 = (0), (#™) = (@™ + a2’} = (a2 = (2,2), (y)50 = ("),
(zM)re6 = (27), (Y™ + az")*e6 = (y™, 2")*6 = (y,2) V m,n,r € Nand a € k*,
%66 = R3 V other [

*6.7:(0)07 = (0), (™) = (x), (y")°7 = (y" + a2")*7 = (y",27)"°7 = (y,2),
(z7)e” = (2), (@™ + az")* = (2™, 2")* = (x,2) ¥V m,n,r € N and a € k*,
167 = R3 V other [

ko055 = (0), (#™)* = (&), (5")"5* = (57 +a2")s = (g7, 278 = (1, 2),
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230.

231.

232.

233.

234.
240.

241.

242.

243.

244.

(zM)res = (27), (2™ 4+ a2")" = (™, 2")" = (z,2) V m,n,r € N and a € k*,
68 = R3 V other [

x69:(0)0 = (0), (&™) = (z), (") = (), (2")*° = (2), (y" +az")" =
(y™, 2") 0 = (y, z), (™ + az")* = (™, 2")* = (z,2) Vm,n,r € Nand a € k*,
169 = Rs V other [

*6.10:(0)010 = (0), ()" = (2), (y")*r = (y), (z7) = ("), (y" +az")or =
(y", 2"y 10 = (y, 2), (2™ +az")* = (2™, 2")* = (z,2) Vm,n,r € Nand a € k¥,
I*610 = R4 ¥V other [

s 0)7 = (0), (27)° = (@), (57)700 = (), ()00 = (2), (" +a)on =
(y™, 2"y = (y, 2), (@™ 4az")* = (2™, 2")* = (z,2) Vm,n,r € Nand a € k*,
I*611 = Rs ¥V other [

*6.12:(0)%012 = (0), (2™)* = (x), (y")*r = (y"), (z") = (2"),

(Y™ + az")oz = (y*, 2")* 12 = (y,z2), (2™ + az")* = (2™, 2") = (2,2) V
m,n,r € Nand a € k*, [ = R3 V other [

*6.13 through x4.1s see proof

*6.10:(0)%010 = (0), (™) = (2™ + a2")" = (@™, 2")" = (z,2), (") = (y),
(2r)re19 = (27), (y" 4 az") o1 = (y*, 2") 10 = (y,2") Vm,n,r € Nand a € k*,
%619 = R4 V other [

*6.20:(0)*620 = (0), (2™)* = (&™ + a2")* = (2™, ") = (x,2), (y")** = (y"),
(2")re20 = (27), (y" +az")* 20 = (y", 2")*20 = (y,2") Vm,n,r € Nand a € k*,
%620 = R4 V other [

*6.21:(0)2 = (0), (27)" = (2), (") = (y), (z7)0* = (27), (@™ + a2")" =
(™, 2" = (x,2), (y* + az")o2 = (y*,2")o* = (y,2") ¥V m,n,r € N and
a € k>, [*2 = Ry V other [

*6.22:(0)*0% = (0), (&) = (2), (y")*> = (y"), (") = (27), («" +az")" =
(™ 2" = (z,2), (Y" + az")22 = (y", 27)e2 = (y,2") V m,n,r € N and
a € k*, I*¢22 = Ry V¥ other [

*6.23:(0)%0% = (0), (2™)* = (™), (y")*> = (y), (2")** = (27), (2" +az")" =
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245.

246.
252.

253.

254.

255.
258.
264.

265.

266.

267.

(™, 2") = (x,2), (Y" 4+ az")*o3 = (y, 2")» = (y,2") V m,n,r € N and
a € k*, I*¢23 = Ry ¥ other [

*6.24:(0)702 = (0), (™) = (™), (y")*>* = (y"), (z")02 = (2"), (2™ +a2")* =
(™, 2" = (z,2), (y" + az")o2 = (y", 27)e2 = (y,2") V m,n,r € N and
a € k*, [*¢2¢ = R3 V¥ other [

*6.25 through xg.39 see proof

*6.31:(0)0% = (0), (2™)" = (2™ + a2")* = (¢™,2")" = (x,2), (y")**" = (y"),
(zr)rest = (27), (y" + az")*o3r = (y",2")e3 = (y",2") V. m,n,r € N and
a € k*, I*¢31 = Rg ¥ other [

*6.32:(0)0%2 = (0), (2™)* = (), (y")*** = (y"), (z7)** = (), (@™ +a2")* =
(™, 2") = (x,2),(y" + az")*e32 = (y", 2")*s2 = (y,2") ¥V m,n,r € N and
a € k*, I*¢32 = Rg V¥ other [

*6.33:(0)0* = (0), (2™)" = (™), (y")** = (y"), (z")** = (2"), (2™ +a2")" =
(™, 2" = (x,2),(y" + az")*o38 = (y", 2")*3 = (y",2") ¥V m,n,r € N and
a € k*, "3 = Ry V other [

*6.34 through x¢.3¢ see proof

*6.37 through g 42 see proof

*6.43:(0)0# = (0), (2)* = (2), (y")or = (y), (z")o® = (27), (@™ + az")" =
(™, 2" = (z,2"),(y" + az")* o3 = (y",2")43 = (y,2") ¥V m,n,r € N and
a € k*, I*¢4 = R3 ¥ other [

*6.44:(0)04 = (0), (2™)* = (), (y") o = (y"), (z7)** = (27), (@™ +a2")" =
(™, 2" = (,2"),(y" + az")* o = (y",2") o4 = (y,2") V¥V m,n,r € N and
a € k*, [*6% = R3 ¥V other [

*6.45:(0)0# = (0), (2™)* = (&™), (y")** = (y), (z7)** = (27), (" +a2")" =
(™, 2" = (z,27),(y" + az")o% = (y", 2")% = (y,2") V¥ m,n,r € N and
a € k*, [*6% = Rg V¥ other [

*6.46:(0)0% = (0), (2™)" = (™), (y")*** = (y"), (z")o* = (27), (2™ +a2")" =
(@™, 2" = (x,27),(y" + az")*e26 = (y", 2")*4 = (y,2") ¥ m,n,r € N and
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268.

269.

270.

271.

272.

273.

274.

275.

276.
282.
286.

a € k>, I = R3 V other I

e.a7:(0)047 = (0), (2™)" = (x), (y")* = (¥" + a2")o4 = (y", 2")e =
(Y™, z), (z7) 47 = (27), (™ 4 az")* = (2™, 2")" = (x,2") V. m,n,r € N and
a € k*, [*47 = R3 ¥ other [

kg (0)5 = (0), (&™)* = (x), (7)o = (), ()6 = (=7), (2™ + azr)* =
(™, 2" = (x,27), (y" + az")o = (y", 2")4 = (y",2) V m,n,r € N and
a € k*, [*% = Ry ¥ other [

kg (0)50 = (0), (ZM)* = (&™), (1) = (3" + azT)on = (g, 2Ty =
(Y™, z), (7)1 = (27), (™ 4+ az")* = (2™, 2")" = (x,2") Vm,n,r € N and
a € k*, ["0% = Ry ¥V other [

kg0 (0)550 = (0), (&™)* = (a™), (57)5 = (3), (7)o = (), (2™ +az")* =
(™, 2") = (z,2"), (y" + az")*o%0 = (y", 2")e%0 = (y",z) ¥V m,n,r € N and
a € k*, I*¢50 = Ry ¥ other [

*6.51:(0)%0% = (0), (&) = (2), (y")oor = (y"), (2)° = (27), (a™ +az")" =
(™, 2" = (x,2"), (y" + az")*est = (y",2")* s = (y",2") V m,n,r € N and
a € k*, "5 = Rg V¥ other [

*6.52:(0)%0% = (0), (2™)* = (&™), (y")** = (y"), (z7)*7 = (&), (¢ +az")" =
(™, 2" = (z,2"), (Y + az")* 52 = (y", 2")* 52 = (y",2") V. m,n,r € N and
a € k*, I*52 = Rg V¥ other [

*6.53:(0)%0% = (0), (2)" = (2), (y")*® = (y"), (2)°% = (27), (& +az")" =
(@™, 2")" = (z,27), (y"+az")» = (y"+az"), (y*, 2")** = (", 2") Vm,n,r €
N and a € k>, 653 = R3 V other [

*6.54:(0)702 = (0), (2™)* = («™), (y")*>t = (y"), (") = (),

(2™ 4+ az")* = (@™, ") = (x,27), (y* +az2")* o = (y* +az"), (y*, 7)o =
(y",2") Vm,n,r € Nand a € k*, [*5 = R3 V other |

*6.55 through x¢.60 see proof

*6.61 through x¢.¢4 see proof

*6.65:(0)00 = ()00 = (2), (@) = (@™ + @) = (@™, 27)" = (27, 2),
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287.

288.

289.

290.

291.

292.

293.

294.

295.

(y")res = (y" + az")* e = (y", 2")*e® = (y",2) ¥V m,n,r € Nand a € £,
%665 = R4 V other [

g0 = (O), () = @+ a2) = (@) = @2, () =
(Y™ + az")*ee6 = (y", 2" )66 = (y", z), (") = (2) V m,n,r € Nand a € k*,
17666 = R ¥V other 1

05 = (O), ) = @7+ a2 = @) = @2, () =
(Y™ + az") o7 = (Y, 2")e = (y", z), (") = (") ¥V m,n,r € N and
a € k*, "7 = Rg ¥ other [

*6.68:(0)0 = (0), (™) = (@™ + a2")" = (27, 27)" = (2™, 2), (y")** = (y"),
(27)ro08 = (2) (y" + az") oo = (y", 2")*% = (y",2) Vm,n,r € Nand a € k*,
I*6-68 = R4 V other [

*6.60:(0)0 = (0), (a™)" = (2™ + az")* = (2™, 2")* = (¢, 2), (y")** = (y"),
(2)re60 = (27) (Y™ + az" ' = (y", 2" )6 = (y" 2) Vm,n,r € Nand a € k*,
%669 = R4 V other [

ko (05T = (0), (&™) = (™), (y7)5m = (" + az")om = (g, 2y =
(Y™, 2), (") = (2), (2™ + az")" = (™, 2")" = (2™, 2) V m,n,r € N and
a € k>, [*67 = Ry ¥ other [

x671:(0)07 = (0), (™) = (2™), (y")*e™ = (y" + a2") 6T = (Y, 7)o =
(y", 2), (") = (27), (™ +az")* = (2™, 27)" = (2™, 2) V m,n,r € N and
a € k*, I*¢™ = R3 V¥ other [

*6.72:(0)%07 = (0), (&) = (2™), (") = (y"), ()™ = (2), (¢ +a2")" =
(™, 2" = (2™, 2), (y" + az")o™ = (y", ") = (y",2) Vm,n,r € N and
a € k*, [ = Rg V¥ other [

*6.73:(0)%07 = (0), (z™)" = (2™), (y")o™ = (y"), (") = ("), (z™" +az")" =
(™, 2" = (2™, 2), (y* + az")*o™ = (y",2")*e3 = (y",2) ¥V m,n,r € N and
a € k*, [*¢™ = Rg ¥ other [

w057 = (O), ) = @7+ a) = ) = @2, () =

(y™),(z")em = (27), (y" + az")* o™ = (y", 2")o™ = (y",2") V. m,n,r € N and
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296.

297.

298.

299.
305.
309.
313.

314.

315.

316.

317.
413.
509.

a € k*, [*¢™ = Rg ¥V other [

*6.75:(0)07 = (0), (z™)* = (2™), (y")e™ = (y"),(z1)*™ = (), (" +a2")" =
(™, 2" = (2™, 2), (y"* + az")o™ = (y",2")*%" = (y",2") Vm,n,r € N and
a € k*, [*¢™ = Rg ¥ other [

*6.76:(0)* 07 = (0), (a™)" = (¢ + a2")* = (&, 2")" = (™, 2), (y")oT0 =
(y"),(z)em = (27), (y" +a2")em = (y" +az"), (y",27)7" = (y",2") ¥
m,n,r € Nand a € k*, [ = R3 V other [

xri(0)77 = (0), (&™) = (a™), ()57 = (y), (") = (), (2™ +az")" =
(™, 2" ) = (2™, 2), (Y"+az" )7 = (y"+az"), (y", 2")7 = (y*, ") Vm,n,r €
N and a € k>, I'¢" = R3 V other [

*6.78 through x4.s3 see proof

*6.84 through x4 g7 see proof

*6.88 through xg.91 see proof

*6.92:(0)002 = (0), (z™)* = (2™), (y")o2 = (y"),(z7)** = (27), (¢" +a2")* =
(™, 2") = (2™, 27), (y" + az")*e92 = (y", 2")*692 = (y", 2") V m,n,r € N and
a € k*, I*¢92 = R3 V¥ other [

*6.93:(0)00 = (0), (z™)* = (2™), (y")e = (y"),(z7)*" = (27), (¢" +a2")" =
(@™, 2")" = (@™, 2"), (y* + a2")% = (y" + az"), (y",27)°" = (y",2") V
m,n,r € Nand a € k*, [*69 = Rg V other [

*6.94:(0)700 = (0), (z™)* = (&™), (y")e = (y"),(z7)** = (27), (¢" +a2")" =
(@™ + az"), (@™, 27)" = (a™,27), (y" +a2")oo = (y", ") = (y",2") ¥
m,n,r € Nand a € k*, [ = R3 V other [

x05:(0)0% = (0), (2™)* = (&™), (55 = (y), (7)o = (27), (& +a2")" =
(@™ + az"), (@™, 2")" = (@™, 27), (y" + a2")*® = (y° +az"), (y",2")0" =
(y",2") Vm,n,r € Nand a € k*, [*9 = R3 V other I

*6.96 through x4.191 see proof

*6.192 through xg.087 see proof

7 (0)7 = (0), (@) = (2), ()7 = (), )7 = (2), (@™ +ay")" =
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(@™ y")7 = (2,y), (@™ +a2")7 = (@™, 2")7 = (z,2), (y°" +a2")" = (y", ")

= (y,z) Ym,n,r € Nand a € k*, I*" = R3 ¥V other |

510, w2.25(0) = (0), ()71 = (@), ()7 = (1), () = (), (@ +ay") =
(@) = (), (@ 0y = @) = (22), (e =
(y", 2" ) = (y,2) Vm,n,r € Nand a € k¥, I*"* = R3 V other [

S1L. H72:(0)*72 = (0), (&™)*72 = (2), (y")7> = (y"), (z7)7* = (2), (@™ 4+ ay")"* =
@) = (), (@7 0 = @) = (22), (e =
(y", 2" )72 = (y,2) Vm,n,r € Nand a € k*, I*"?> = R3 V other [

512, #1(0)7 = (0), (2775 = (57, ()72 = (9), ()7 = (2), (2" 4y} =
(™ y" )7 = (z,y), (@™ + a2")73 = (2™, 273 = (x,2), (Y" + az")73 =
(y", 2")73 = (y,z) Vm,n,r € Nand a € k*, [*"% = R3 V other [

513. #7.4:(0) 7% = (0), (™)™ = (z), (y")"* = (y"), (z")7* = (), (@™ +ay") ™ =
@)™ = (), @7 ey = @) = (22), (e =
(y", 2")74 = (y,z) Vm,n,r € Nand a € k*, [*"* = R3 V other [

L x75:(0)7 = (0), (57)77% = (&), (5")7* = (o), ()% = (=), (2" +ay")™ =
@y = (), @+ @) = @) = (5,2), (0 + ) =

y,z2) Vm,n,r € Nand a € k*, I*"* = R3 V other [

S15. H7,6:(0)*7 = (0), (z™) 70 = (™), (y")7° = (y"), (z")7° = (2), (2" +ay")"* =

(z,y), (™ + az")76 = (™, 2")76 = (x,2), (Y* + az")*"6 =

(y", 2" )76 = (y,2) Vm,n,r € Nand a € k*, [*"¢ = R3 ¥V other |

516. H77:(0)77 = (0), ()77 = (a™), ()77 = (y"), (z7)77 = (2"),

(™ + ay") T = (2™, y" )T = (z,y), (@™ +a" )T = (27, 27)7TT = (w, 2),
(y" + az")* 77 = (y", 2" = (y,2) Vm,n,r € Nand a € k¥, [*"7 = Ry V
other J

ST, sy si(0)7 = (0), (2778 = (&), (1) = (9), ()% = (27), (&7 + )72 =
(Im,y")*7‘8 — (:L‘ y) (xm + azr)*rg — (xm’zr)*rs — (ZE Z) (yn + az/l")*'fg —
(y", 2")*78 = (y,2") Vm,n,r € Nand a € k*, [*"* = R3 V other [

518, x75:(0)" = (0), (™) = (&), ()7 = (), (7% = (), (2™ ™)™ =
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519.

520.

521.
525.

526.

527.

528.

529.

(™" )T = (@), (@ + az)e = (@) = (3,2), (5 + an) =
(y", 2" )79 = (y,2") Vm,n,r € Nand a € k*, [*"® = R3 V other |
*710:(0)720 = (0), (&™) 70 = (2™), (y") 7 = (y), ()70 = ("), (@ +
ay") T = (a™,y") T = (z,y),

(™ + az")T0 = (2™, 2770 = (2, 2), (y" +az") T = (Yt )T = (y, 27) ¥
m,n,r € Nand a € k*, [ = R3 V other [

x711:(0)*710 = (0), (2) 71 = (2™), (y") 71 = (y"), (27)71 = (27),

(&7 + ay") T = (@ g = (2,y), (@7 + a ) = (@72 = (2,2),
(y" + az" )71 = (y", 2" )7 = (y,2") Vm,n,r € Nand a € k*, [*" = Ry ¥
other [

*7.12 through 715 see proof

*716:(0)* 710 = (0), (x) 710 = (z), (y") 710 = (y"), (2")710 = (=),

(@™ + ay") 70 = (2, y") 70 = (2,y), (@™ +a2")T0 = (27, 21T = (2, 2),
(Y™ + az") 716 = (y", 2" )76 = (y", 2") Vm,n,r € Nand a € k*, ['"16 = R3 V
other [

77 (0)77 = (0), (&™) = (a™), (") = (y"), (1) = (27),

(@™ + ay") ™7 = (@, ") = (2,y), (@7 + ") = (27, )T = (2, 2),
(Y™ + az") 717 = (y", 2" )77 = (y", 2") Vm,n,r € Nand a € k*, ['7 = R3 V
other [

s (0)75 = (0), (@) = (&), ()75 = (), ()72 = (7).

(@74 gy = (@ )T = (), (2 0 = (2T = (2,2),
(y" + az")718 = (y" + az"), (y",2")78 = (y",2") Vm,n,r € Nand a € k¥,
1’718 = R V other 1

*719:(0)720 = (0), (2) 7 = (™), (y")7 = (y"), ()7 = (2"),

(@™ + ay") 70 = (@™, y") 7 = (2,y), (@™ +a2")7T0 = (@, )70 = (7, 2),
(y" 4+ az")* 719 = (y" + az"), (y",2")7° = (y",2") Vm,n,r € Nand a € k*,
I*719 = Rs ¥ other 1

*7.90 through 723 see proof
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933.

5934.

939.

536.

537.

538.

539.

*7.241(0)720 = (0), (2™)72 = (), (y°)7> = (y), (z7)72 = (&),

(@™ +ay") 7>t = (2™, ") 7 = (2,y), (@7 + a2")TH = (a7, 27) 7 = (3, 27),
(y" + az") 724 = (y", 2") 72 = (y,2") Vm,n,r € Nand a € k*, ['"2* = Ry V
other [

*725:(0)*720 = (0), (2™) 7> = (x), (y")7>° = (y"), (") = ("),

(@™ +ay") 7> = (2™, y") 7> = (2,y), (@7 +a2")7® = (a7, 27)7 = (z,27),
(y" + az")* 7 = (y", ") 7 = (y,2") Vm,n,r € Nand a € k*, [*"?» = R3 V
other [

a0 = (0), (277 = (27, (37)70 = (3), ()7 = (),

(@7 a7 = (1 )T = (2, (27 a2 = (a2 = (),
(Y™ + az") 726 = (y", 2" )72 = (y,2") V. m,n,r € Nand a € k*, [*"26 = R3 V
other [

#727:(0)*727 = (0), (2™) 727 = (™), (y") 77 = (y"), (z7)7*7 = (27),

(@™ +ay") 7" = (@™, y") 7 = (2,y), (@7 + a2")7TT = (2™, 27)77 = (3, 27),
(Y™ + az")*727 = (y", 2" )72 = (y,2") V. m,n,r € Nand a € k*, ['"?" = R3 V
other [

#728:(0)*72% = (0), (a™)7> = (x), (y")7> = (y"), (") = ("),

(@™ +ay") 7> = (2™, y")7> = (z,y), (@ + a2")7> = (2™, 2")7 = (z,2"),
(y" + az") 728 = (y", 2")72 = (y*,z) Vm,n,r € Nand a € k>, [""2 = R3 V
other [

*7.20:(0)7720 = (0), (a™) 720 = (™), (y") 7> = (y"), (z7)7* = (27),

(£ + gy = (a7, )T = (1), (57 + a2’ = (17, 2T = (1, 27),
(Y + az")* 72 = (y", ") = (y*,z) Vm,n,r € Nand a € k>, ["">» = R3 V
other [

st (0)790 = (0), ()79 = (&), ()7 = (), ()7 = (1),

(@™ 4 )T = ()T = (1,9), (@74 a2) 70 = (@, )T = (1,27,
(Y™ 4 az") 780 = (y", 2" )70 = (y", 2") V m,n,r € Nand a € k*, [*"30 = Ry V
other [
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540.

o41.

542.

543.

544.

545.

546.

w07 = (0), (277 = (@), () = (), (27 = (),

(@™ +ay" T3 = (2™, y" )T = (2,y), (27 4 az" )T = (2, 2T = (x, 2T),
(Y™ 4+ az") 73t = (y*, 2" )73 = (y", 2") Vm,n,r € Nand a € k*, '3 = Ry V
other [

a0 = (0), (2775 = (), (5)™2 = (3"), (+7)7 = ("),

(@™ +ay" )T = (2™, y" )T = (2,y), (27 4 az") T = (2, 27) T = (2, 27),
(Y™ + az" )72 = (y" + az"), (y",2")72 = (y",2") Vm,n,r € Nand a € k¥,
I*732 = Rg V other [

*7.33:(0)°78 = (0), (2)7 = (™), ()7 = (y"), (z")7* = (&),

(@™ +ay" )73 = (2™, y") T = (2,y), (27 4 az")T = (2, 27) T = (x, 27),
(Y™ + az")73 = (y" + az"), (y",2")7 = (y",2") Vm,n,r € Nand a € k¥,
1733 = R ¥ other 1

*7.34:(0) 7% = (0), (2m) 7 = (2™), ()7 = (y), (27)7* = (2),

(@™ 4 ay") 7ot = (27, y" )T = (2,y), (27 ") T = (a7, 27T = (2 2),
(Y + az" )73 = (Y, 2" )73 = (y,2) Vm,n,r € Nand a € k*, [""3 = Ry V
other [

w07 = (0), ()T = (@), ()7 = (), ()7 = (),

(@™ a7 = ()T = (1), (27 ) = (2 = (a2),
(y" + az")735 = (y", 2")*73 = (y,2) Vm,n,r € Nand a € k*, [*"3 = R3 V
other [

s (0)7% = (0), ()7 = (@), ()7 = (o), ()7 = (2),

(@™ + a7 = (@ )T = (2,9), (@ 0y = (2,7 = (a7, 2),
(Y™ + az")* 736 = (y", 2")730 = (y,2) Vm,n,r € Nand a € k*, [""36 = Ry V
other [

*7.37:(0) 77 = (0), (&) = (™), ()77 = (y"), (2")77 = (&),

(57 ay" ) = (a7, )T = (1), (&7 + a2 = (17, YT = (5 2),
(Y™ + az") 73 = (y", 273 = (y,2) Vm,n,r € Nand a € k*, [""37 = Ry ¥
other I
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547. %733 through 739 see proof

549.

550.

951.

952.

953.

554.

959.

*7.40:(0)"740 = (0), (2™)740 = (™), (y")70 = (y"), (2")7 = (2),

(@7 )T = ()T = (1), (24 0T = (7 ) = (o7, 2)
(y" + az") 710 = (y", 2" )70 = (Y, z) Vm,n,r € Nand a € k%, "% = Ry V
other [

*r.a1:(0) 740 = (0), (am) 7 = (™), (y") 7 = (y"), (") 7 = (27),

(@™ 4 ay) o = (£ )T = (@), (£ a) e = (2,2 = (),
(y" + az") 70 = (y", 2" 74 = (y",2) Vm,n,r € Nand a € k%, " = Ry V
other [

*7.42:(0)7742 = (0), (2™)*742 = (a™), (y")74 = (y"), ()72 = (2,

(@ )T = (@ )T = (), (@ ) = T = (a7 2),
(Y™ + az") 742 = (y", 2" )72 = (y", 2") Vm,n,r € Nand a € k¥, [*"*2 = Ry V
other [

*7.43:(0)7% = (0), (2)79 = (a™), (") = (y"), ()7 = (2"),

(@™ + ay"™) 7 = (™, y" )78 = (x,y), (" 4+ a") T8 = (2™, 27 )78 = (2, 2),
(Y™ + az")* 748 = (y™ + az"), (y™, 2")"4 = (y",2) Vm,n,r € N and a € k*,
174 = Ry V other [

x7.44:(0) 740 = (0), (™)1 = (a™), (y")7H = (y), (7)1 = (27),

(@7 o) = (2, ) = (@), (274 0 = (@, ) = (2,2,
(Y™ + az") 74 = (y", 2" )7 = (y,2) Vm,n,r € Nand a € k*, [""% = Ry V
other [

H7.45:(0) 74 = (0), (a™)74 = (a™), (y")7 = (y"), (z7)7+ = (27),

(E da) = (7Y = (2,y), (e = (2, )T = ),
(Y™ + az" )74 = (y", 2")* 745 = (y,2) Vm,n,r € Nand a € k¥, [*"% = R3 V
other [

H7.46:(0)740 = (0), (a™)740 = (a™), (y") 7 = (y), (27)7 = (27),

(a7 e = (57, ) = (2,), (e T = (2, )T = ()

(y" + az") 46 = (y", 2")*746 = (y,2") ¥V m,n,r € Nand a € k*, [*™4 = Ry V
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956.

957.

958.

559.

260.
227.

528.

529.

other I

H7.47:(0) 747 = (0), (a™)*747 = (a™), (y") 77 = (y"), (z7)77 = (&),

(a7 )T = (@ g = (1), (1) = (g, 2 = (),
(y" + az") 7 = (y", 2" )7 = (y,2") Vm,n,r € Nand a € k%, "™ = Ry V
other

*7.48:(0)74 = (0), (&™) = (2), (y")7+ = (y°), (7)™ = (&),

(xm—l—ay”)*“s — (xmjyn)*wxs — (I‘,y), (xm+az’")*7~43 — (Im, z"')*7.48 — (xm’ ZT),
(y" + az") 78 = (y", 2" )74 = (y",2) Vm,n,r € Nand a € k%, "% = Ry V
other [

*7.49:(0)74 = (0), (&) 74 = (™),
(@™ +ay") 7o = (2™, y") 70 = (z,y
(Y™ 4 az") 740 = (y", 2" )79 = (y", 2") Vm,n,r € Nand a € k*, [*"% = Ry V
other [

*7.50:(0)7%0 = (0), (z) 70 = (a™), (y") 7 = (y"), (") = (2"),

($m+ayn)*750 — (xm’yn)*rso — (Z[Z,y), (:L“m—f—CLZT)*”’O — (:L‘m, 27")*750 — (:L‘m, ZT),

g = (), ()7 = (),

, (xm+aZT)*7A49 — (l‘m’ ZT)*7‘49 — (xm’ Z?”)7

~—

(Y™ + az")70 = (y" 4+ az"), (y", ") 70 = (y*,2") YV m,n,r € N and a € k¥,
I[*7%0 = R3 V other [

*7.51 through %7 57 see proof

#7.58:(0)*7%% = (0), (2™)7% = (2), (y") 7 = (y"), (2")7* = (2),

(@™ +ay") 7o = (2, y" )T = (z,y7), (2 +az") TS = (2, 27) T = (x, 2),
(Y™ + az")* 78 = (y", 2758 = (y,2) Vm,n,r € Nand a € k*, [*"5 = Ry V
other [

*7.50:(0)*7% = (0), (2™) 7% = (x), (y") 7 = (y"), (") = ("),

(@™ +ay") 7 = (2™, y" )T = (z,y7), (2™ +az") T = (2, 27)7 = (z, 2),
(Y™ + az")* 75 = (y", 2")750 = (y,2) Vm,n,r € Nand a € k*, [*"* = Ry V
other [

*7.60:(0)7% = (0), (2) 70 = (a™), (") = (y"), ()7 = (2),

(xm + ay”)*7-60 — (xm,y")*7-6° — (x,y”), (xm + azr)*mo — (;L’m,z’")*7»60 = (;1;7 z),
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530.

o31.

932.

933.

534.

939.

536.

(Y™ + az") 70 = (y", 2")*70 = (y,z) ¥V m,n,r € Nand a € k*, [*" = Ry V
other [

*761:(0)7 = (0), (zm)7or = (a™), (y") T = (y"), (") = (27),

(@™ + ay" ) ot = (2™, y" )T = (2, "), (7 + a2")TO = (a7, 270 = (2, 2),
(Y™ + az") 70 = (y", 2") 7 = (y,2) Vm,n,r € Nand a € k*, [""¢' = Ry V
other [

*762:(0)7% = (0), (z)702 = (x), (y")7* = (y"), (2")7* = ("),

(5™ + ay") e = (@7, )T = (2,y"), (274 @) = (@, ) = (o, 2),
(y" + az") 762 = (y", 2")* 762 = (y,2") Vm,n,r € Nand a € k*, ['"62 = Ry V
other [

*763:(0)7% = (0), (z) 708 = (a™), (y") 7 = (y"), (") = (2"),

(@™ + ay" )7 = (2, y" )T = (2, "), (27 + ") = (a7, 27)70 = (1, 2),
(y" + az") 768 = (y", 2")* 768 = (y,2") Vm,n,r € Nand a € k*, ['"63 = Ry V
other [

0781 = (0), ()7 = (), (177 = (3, (1) = (2),

(24 gy on = (@, )T = (), (2 + 0T = (@, 2 = (),
(Y™ + az") 7ot = (y", 2" )70t = (y",2) Vm,n,r € Nand a € k*, [*¢* = Ry ¥
other [

*7.65:(0)*700 = (0), (2™) 7% = (x), ()7 = (y"), (") = ("),

(@™ +ay") o0 = (2, y" )T = (z,y7), (2™ +az") T = (2, 27)7 = (, 2),
(Y™ + az") e = (y", 2") 7 = (y",2) Vm,n,r € Nand a € k*, [*65 = Ry V
other [

*7.66:(0)*700 = (0), (x™) 7o = (™), (y") 70 = (y"), (") = (2),

(@™ +ay") o0 = (2, y" )T = (z,y7), (2™ +az") T = (2", 27) 7 = (x, 2),
(Y™ + az") 766 = (y", 2") 766 = (y", 2) ¥V m,n,r € Nand a € k*, [*66 = Ry V
other [

*767:(0)797 = (0), (&) 70" = (a™), (y")TeT = (y"), (") = (27),

(xm + ayn>*7.67 — (Im7yn)*7.67 — (x,y”), (xm + az”)*”" — (xm,zr)*rm = (;1;7 z),
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537.

238.

939.

540.

o41.

042.

543.

(Y™ 4+ az") 767 = (y", 2") 77 = (y",2) Vm,n,r € Nand a € k¥, [*"7 = R3 V
other [

*7.68:(0)7% = (0), (2) 708 = (x), (y") 7o = (y"), (27)7 = (27),

(@™ 4 ay™) 7o = (2, y" )T = (2, "), (@7 4 a2") T = (a7, 2) T = (1, 2),
(Y™ + az") 768 = (y", 2" )78 = (y",2") Vm,n,r € Nand a € k*, ['"% = R3 V
other [

*769:(0)7 = (0), (z) 7 = (™), (y") 7 = (y"), (") = (2"),

(@™ 4 ay™ ) 7o = (2, y" )T = (2, "), (@7 4 az")TO = (a7, 2")T = (z, 2),
(Y™ + az") 700 = (y", 2")* 70 = (y",2") Vm,n,r € Nand a € k*, ['"% = R3 V
other [

*770:(0)770 = (0), (z™)7™ = (x), (y") 7 = (y"), (") = ("),

(@™ + ay" )77 = (2™, y" )T = (2, "), (7 + ") = (a7, 27T = (2, 2),
(Y™ + az")770 = (y" 4+ az"), (y", ") 70 = (y*,2") ¥V m,n,r € N and a € k¥,
177 = Rs V other [

(077 = (0), (2m) 7 = (2™), (") = (y"), (27)7 T = (27),

(@™ +ay" )T = (@™ y" )T = (2, "), (7 + a2 = (@ 2T = (x, 2),
(Y™ + az")7 = (y" 4 az"), (y", 277 = (y*,2") Vm,n,r € N and a € k¥,
""" = Rs V other [

*772:(0)*772 = (0), (2™)77 = (x), (y")77 = (y"), (") = (),

(™4 ay™) 77 = (2, y" )72 = (x,y"), (2" +az") T = (2™, 2" )72 = (x, 2"),
(Y™ + az") 772 = (y", 2" = (y,2) Vm,n,r € Nand a € k*, """ = Ry V
other [

*773:(0)*77 = (0), (2™)77 = (™), (y")77 = (y"), (z7)7™ = (27),

(5 + a7 = (@, gy = (1,4, (@7 02T = (7, 2T = (2, 7),
(Y™ + az") 77 = (y", 2" = (y,2) Vm,n,r € Nand a € k*, [*"™ = Ry V
other [

*7.74:(0)77 = (0), (2™m)77 = (x), (y")77 = (y"), (z")"™ = (27),

(mm+ayn)*7.74 — (xm’yn)*zm — (l’, yn)’ (xm _i_azr)*rm — (xm7 Z?")*7.74 — (l’, ZT),
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o44.

545.

546.

o4T7.

048.

549.

550.

(y" + az") 7 = (y",2")7™ = (y,2") Vm,n,r € Nand a € k*, [*"™ = Ry V
other [

*775:(0)77 = (0), (2™) 77 = (a™), (") = (y"), (") = (2"),

(@™ ey = (@) = (), e )T = (@ )T = (0,2,
(y" + az" )7 = (y*, 2" )7 = (y,2") Vm,n,r € Nand a € k*, [*"™ = Ry V
other [

*776:(0)770 = (0), (z™)77 = (x), (y") 77 = (y"), (2")77° = ("),

(@7 )T = (&, = (2, 7), (27 = (@, 2y = (2, 2)
(Y™ + az")* 776 = (y", ") = (y"*,z) Vm,n,r € Nand a € k*, [*"7 = Ry ¥
other [

w07 = (0), (2777 = (@), () = (), (1) = (),

(£ )T = (£ = (), (@7 )T = (5 ) = (2, 27
(y" + az") 777 = (y", 2" )7 = (y*,z) Vm,n,r € Nand a € k*, [*"7 = Ry ¥
other [

H775:(0)77 = (0), (2™)77 = (x), (y")7™ = (y"), (7)™ = (27),

(57 + 0y = (a7, g = (), (@7 a2 = (7, Y = (3, 27),
(Y™ + az")7 = (y", ") 7 = (y",2") Vm,n,r € Nand a € k*, ['"™ = R3 V
other [

w07 = (0), (277 = (@™, ()7 = (), (1) = (),

(@™ ) = ()T = (o), (@ a7 = (@ ) = (5,27,
(Y™ + az")7m = (y", 2" )7 = (y", 2") Vm,n,r € Nand a € k*, ['"™ = R3 V
other [

*7.80:(0)*7%0 = (0), (2™) 7% = (x), (y")7* = (y"), (") = ("),

(@™ )T = (@7, ) = (g7, (27 40T = (@, )T = (2, 7),
(Y™ + az" )70 = (y" + az"), (y*,2")7 = (y",2") Vm,n,r € Nand a € k¥,
I*780 = R4 ¥V other [

*rs1:(0)7750 = (0), (2m) 7 = (™), (y")7 = ("), (27)7 = (27),

(mm+ayn)*7.81 — (xm’yn)*fsl — (x7yn)’ (xm_i_azr)*mn — (mm7z7")*7.s1 — (l’, ZT),
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551.

952.

953.

554.

959.

956.

257.

(Y™ + az")78 = (y" + az"), (y", 2")78 = (y",2") V. m,n,r € N and a € k*,
781 = R ¥V other [
*782:(0)7% = (0), (z) 7% = (a™), ()7 = (y"), ()7 = (2),
(2™ a2 = (27, ") = (), (@) = (a7, = (2, ),
(Y + az") 782 = (y", 2")78 = (y,2) Vm,n,r € Nand a € k*, [""8> = Ry V
other [
*783:(0)7% = (0), (z)75 = (a™), (y")7 = (y"), ()7 = (2"),
(57 a5 = (27, ) = (), (@7 = (27, 2T = (2, 2),
(Y™ + az") 78 = (y", 2")78 = (y,2) Vm,n,r € Nand a € k*, [""8 = Ry V
other [
*784:(0)7% = (0), (z™) 75t = (a™), (y")7st = (y"), (") = (2"),
(574 ay) s = (@ g = (), (a2 )T = (0, 2T = (),
(y" + az") 8 = (y", 2" )78 = (y,2") Vm,n,r € Nand a € k*, ['"8 = Ry V
other [
o (00735 = (0), (27)7 = (&), (57)7 = (), (1) = (2),
(a7 )T = (a7, ) = (g7, ()T = (a7, ) = (o 2),
(Y™ + az") 78 = (y", 2")78 = (y*,z) Vm,n,r € Nand a € k*, [*% = R3 ¥
other [
#7.86:(0)77%0 = (0), (&™) 720 = (™), (y")7° = (y"), (z7)7 = (27),
(77 = ()75 = 0 (00 = (07 = 05,
(y" + az") 78 = (y", 2" )7 = (y",z) Vm,n,r € Nand a € k%, ["% = Ry V
other [
s (00757 = (0), (2777 = (&™), (5")7 = (3"), (+7)7 = (=7),
(5™ a7 = (a7, g = (), (5T = (a7, ) = (g 2),
(Y™ + az")787 = (y", 2" )78 = (y", 2") Vm,n,r € Nand a € k*, [ = R3 V
other [
*788:(0)7% = (0), (2) 7 = (a™), (") = (y"), (") = (27),

)

(mm_i_ayn)*?‘ss — (Q;m,yTL)*rss — (x7yn , (xm+azr)*7.ss — (:Cm7 ZT)*rss — (Q;m, z)’
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958.

959.

960.

o61.

2962.

963.
608.
649.

(Y™ + az")78 = (y" + az"), (y", 2")7 = (y",2") V. m,n,r € N and a € k*,
1*788 = Rs V other [

*7.80:(0)7% = (0), xm)*”g = (@™), (") = (y"), (z7)7% = (27),

(@™ by = (27 )T = (2,y"), (27 = (5,2 = (),
(Y™ + az") 780 = (y", 2")* 7% = (y,z) Vm,n,r € Nand a € k*, I*"* = R3 V
other [

*7.90:(0)*70 = (0), (a™) 70 = (™), (y") 7 = (y"), (z7)7 = (27),

(e ay™) 7 = (27, y7) 90 = (0,y7"), (™ bazT) T = (a7, 2T)T0 = (47 7).
(y" + az") 70 = (y", 2" )70 = (y,2") Vm,n,r € Nand a € k*, ['° = Ry ¥
other [

*791:(0)7 700 = (0), (a™) 7o = (™), (y") 7 = (y"), (z7)7 = (27),

($m+ay )*791 — (l.m yn)* 91 — (x’yn)’ ( m+azr)*7,91 — ({L’m,ZT)*Tgl — (Qfm,ZT),
(Y™ 4+ az" 7ot = (y™, 2" )70 = (y",2) Vm,n,r € Nand a € k*, "9 = Ry V
other [

*7.02:(0)7792 = (0), (&™) 72 = (™), (y")7* = (y"), (z7)7 = (27),

(s ay )y = (27" = (2, (3R = (2 ) = (o, )
(Y™ 4+ az")* 792 = (y", 2")72 = (y",2") Vm,n,r € Nand a € k*, ['"? = Ry V
other [

#7.93:(0)*79% = (0), (&™) 798 = (™), (y") 7 = (y"), (z7)7 = (27),
(5™ ay s = (2, ") = (2,7, (27 = (2, 2T = (5, )
(y" + az")* 79 = (y" + az"), (y",2")*79 = (y",2") V m,n,r € N and a € k*,
I*798 = Rg V other [

*7.94 through x79g see proof

*7.99 through %7 139 see proof

*7.120:(0)7 110 = (0), (™) 720 = (2™), (y") 720 = (y), (27) 710 = (2),

(£ + ay")T = (7 ) = (7 ), (@7 4 a2t = (g, 27y =
(,2), (Y" + az") 7140 = (y", 2" = (y,2) ¥V myn,r € N and a € k¥,
[*7140 = R3 VY other [
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650. H7.141:(0)*7 10 = (0), (&™) 724 = (a™), (y")7 e = (y"), (27) 7 = (),
(67 + ayyTan = (g = (o), (@7 4 sy = (g ) =
(x,2), (Y 4+ az") 714 = (y", ") = (y,z) V m,n,r € N and a € k¥,
I*7141 = R3 VY other [

651, H7.149:(0)*712 = (0), (&™) 71 = (a™), (y")7 4 = (y"), (27)71 = (&),
(47 4 gy = (g7, g = (o), (2 a2ty = (o 27 =
(x,2), (y" + az") 42 = (y",2")7%2 = (y,2") V m,n,r € N and a € k¥,
I*7142 = Rg ¥V other I

552 x7105:(0)7728 = (0), (27715 = (27), ()20 = (), ()70 = (2),
(a7 4 ) = (@ )T = ), (7 0z = (o, )T
(x,2), (y" + az") 718 = (y" 2"y 7148 = (y" z) V m,n,r € N and a € k*,
I*7143 = Ra YV other [

653. %7.144:(0) 714 = (0), (&™) 71t = (&™), (y") ™4 = (y"), (1) 7 = (27),
(@™ +ay" )T = (@™t = (2™ "), (2T 4 a2l = (2 2T =
(x,2), (Y* + az") 714 = (y", 2") 74 = (y",2) V. m,n,r € N and a € k*,
[*7144 = Ra ¥V other [

654. %7.145:(0) 714 = (0), (&™)712 = (™), (y") ™+ = (y"), ()7 = (27),
(o7 + gy T = (a7, ) = (5 ), (2 4+ a2 = (57, 27 =
(x,2), (y* + az") 71 = (y*, 2")71 = (y*,2") V m,n,r € N and a € k*,
I*7145 = Ra ¥V other [

655. %7.146:(0) 71 = (0), (&™) 710 = (™), (y") 74 = (y"), (") = (27),
(£ + ay )y = (a7 YT = (a7 ), (27 4 )T = (g, o) =
(x,2), (Y*+ az")7146 = (y" + az"), (y*,2") 71 = (y*,2") ¥V m,n,r € N and
a € k*, [*"146 = R3 Y other [

656. *7.147:(0) 7147 = (0), (&™) 717 = (™), (y") 77 = (y"), (") = (27),
(27 4 ay" )T = (e g = (a7 ), (@7 4 gl = (g, 2Ty =
(,27), (y* + a2 = (y", 2" = (y,z) ¥V myn,r € N and a € k¥,
[*7147 = R3 Y other [
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657. *x7.148:(0)* 714 = (0), (x™)* 7118 = (2™), (y") 718 = (y"), (27) 714 = (27),
(™ 4 ay™) s = (a7, y" )T = (2™, y"), (2™ + a2") T = (™, 27 )T =
(x,2"), (y* + az") 71 = (y", 2" = (y,2") ¥V m,n,r € N and a € k*,
I*7148 = R3 VY other [

658. *7.149:(0) 714 = (0), (z™)* 10 = (™), (y") 710 = (y"), (27) 71 = (27),
(@7 4 gy = (@) = (@), (2 0y = (o, 2T =
(x,27), (Y 4+ az") 7149 = (y", 2" = (y" z) V m,n,r € N and a € k¥,
I*7149 = R3 VY other [

659. *x7.150:(0)*71%0 = (0), (x™)* 7150 = (2™), (y") 7150 = (y"), (27) 710 = (27),
(a7 4 @) = (@ T = (), (7 0z = (o, )T
(x,27), (y" + az") 710 = (y*, 2")7150 = (y" 2") V m,n,r € N and a € k*,
I*7150 = Ra ¥ other [

660. *7.151:(0) 7150 = (0), (2™) 151 = (2™), (y") 7150 = (y"), (27) 715 = (27),
(™ 4 ay™)FTet = (M Yy = (2™ y"), (™ 4+ ") = (g™ 27)FTe =
(x,27), (" + az") 7150 = (y" + az"), (y", 2")715 = (y",2") V. m,n,r € N and
a € k*, [*151 = R3 V other [

661. %7152 through 7143 see proof

673. x:(0) = (2™)* = (y")*s = (2™ + ay™)* = (@™, y")™ = (z,y), (") =
(2™ +a2")® = (y" +a2")® = (2" +ay” +02") = (2™, 2N)™ = (y", ") =
(™ +az", y"+b2" )8 = (2™, y"+az" )t = (2™ +ay", 2")® = (2" Haz", y" ) =
(™ y™, 2" )8 = (x,y,2") Vm,n,r € Nand a,b € k*

674. %51:(0)1 = (0), (™)1 = (y")*s1 = (2™ + ay™)™' = (™, y" ) = (,y),
(27)st = (2™ +az" )™ = (Y + a2 ) = (2" ay” + b7 ) = (@™, ) =
(Y™, 2" ) st = (2™ + az", y" + b2" ) = (2™ y" + az" ) = (2™ + ay”, 2" ) =
(™ + az" y")er = (2™ y", 2" ) = (2,y,2") Vm,n,r € Nand a,b € k*

675. *g2:(0)2 = (0), (z™)*®2 = (y")*2 = (2™ + ay™)*™2 = (2™, y")**> = (x,y),
(27)22 = (27), (@™ + az")™2 = (y" + a2")®? = (2™ + ay" + b2")S2 =

(xm727")*8,2 — (yn72r)*8,2 — (xm + CLZT,yn _|_bz7")*g.2 — (xmjyn —|—(IZT)*8'2 —
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676.

677.

678.

679.

680.

681.

(™ 4ay™, 2")82 = (™t a2, y")s: = (" y", 2782 = (v,y,2") Vm,n,r €N
and a,b € k£~
*8‘33(0)*8‘3 — (yn)*8.3 — (y)7 (xm)*sﬁ — (Im + ayn)*s,a — (xm,yn>*s.3 — (x,y),
(ZT‘)*&S — (:Em + CLZT)*&S — (yn + azr)*sa — (:L“m + ayn + bzr)*s.s — (:Em, ZT)*BB —
(yn,ZT)*8'3 = (;Em + azr’yn + bz?")*s,s — (xm’yn + aZT')*S.B — (xm + ayn’ Zr)*g‘g —
(™ + az", y")es = (2™, y", ") = (z,y,2") Vm,n,r € Nand a,b € kX
*8-4:(0)*8‘4 = (0>’ (Im)*SA = (xm+ayn)*8‘4 = (Imv yn)*SA = (ZE, y)) (yn)*s.4 = (y)7
(ZT)*SA — (xm + azr)*gA — <yn + az’l’)*&4 — (Im +ayn _I_ bz’l’)*g_4 — (Im’ ZT‘)*S_4 —
(yn,z'r)*gA — (mm + azr’yn _'_ bZT)*SA — (:L,m’yn + CLZT)*&AL — (l.m + ay",z”)*&‘l —
(™ + az" y")es = (2 y", 27 )B4 = (2,y,2") Vm,n,r € Nand a,b € kX
*8.5:(0)*8.5 — (0)7 (xm)*8.5 — (:L‘m + ayn)*8.5 — (xm’yn)*s.s — (:L',y), (yn)*&5 —
(y), (2")®e = (27), (@™ + a2")®® = (y" + a2")™5 = (2 + ay” + b2")*s5 =
(LEm,ZT)*S'S — (yn,zr)*g,5 — (:Cm + GZT,yn _'_ bZT)*S's — (xm’yn + CI,ZT>*8'5 —
(™ +ay™, 2" )5 = (2" +az", y")Es = (2™, y", )5 = (z,y,2") Vm,n,r €N
and a,b € £~
*8'6:(0)*8.6 — (yn)*s.G — (y)’ (xm>*8.6 — (Jim + ayn)*s.ﬁ — (.rm’yn)*s.e‘ — (iL‘,y),
(27")*8.6 — (y” + azr)*s.G — (yn7z7')*8.6 — (y,zr), (a;m + aZT)*&G
= (2™ + ay" + bz")*s6 = (2™, 27)E6 = (2™ + az", y" + by )

m n b T\ % m T\ % m 's n b T\%
— (xm’yn_{_azr)*g,g — (l‘m—Fa,yn,ZT)*gﬁ — ([L’m—FCLZT,yn)*S'G — (ajm7yn’ ZT‘)*S_G —
(x,y,2") ¥V m,n,r € Nand a,b € k*
*3.7:(0)"57 = (0), (&™) = (2" +ay")™7T = (2", y")"7 = (z,y), (¥")7 = (y),
(ZT‘)*&7 E— (y” + azr)*gﬂ — (yn’ ZT)*BJ — (y);ﬂ“)7 (:L‘m + a,zr)*8~7
= (xm + ayn + bzr)*8.7 — (:L‘m’ 2”')*8.7 — (:L‘m _|_ azr’ yn + bZT)*SJ
= (2™, y" +az")T = (2" +ay", 27T = (@™t Yt )T = (2T Yt 27T =
(x,y,2") ¥V m,n,r € Nand a,b € k*
*35:(0)%5 = (0), (&™) = (@™ +ay")™ss = (@™, y")"" = (z,y), (y")™* = (y),
(ZT)*&S — (ZT), (yn + aZT)*&s — (y"7 ZT)*&s — (y7zr)’ (xm + az"’)*&S
— (xm _|_ ayn + bzr>*s_8 — (:Um72r)*8'8 — (xm + CLZT,yn + bZT)*g‘S
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682.

683.

684.

685.

686.

687.

= (2™ y" +a2")"E = (2" +ay”, 27)E = (@M a2, y")Ee = ("t 2T) S =

(x,y,2") ¥V m,n,r € Nand a,b € k*

ki (050 = (0), (27)™0 = (@7 + ay")™0 = (@7, y")0 = (,9), (") =

("), (z")™ = (@™ + az")™ = (y" + az )*89 = (@™ + ay" + b2")™0 =

($m7z7¢)*8'9 = (ynJ?ZT)*S'g = ($m + az", y" + bzr) 8= (xm’yn + azr)*g,g =

" +ay™, 270 = (2™ +az", y")s0 = (™, y", 2" )0 = (x,y,2") Vm,n,r € N

( y", 2") Y Y Y, 1,

and a,b € £~

*8.10:(0)*8.10 — (0)7 (xm)*s.lo — (:Em+ayn)*8'10 — (:L‘m’yn)*s.lo — (x,y), (yn)*&lo —

(yn>7 (ZT)*&lo — (ZT), (l‘m + &27’)*8.10 — (yn + az"')*&lo — ($m + ayn + bZT)*s.lo —

(mm7 Zv")*s.m — (yn’ Zr)*s.m — (xm + az?") yn + bzr)*s.m — (xm’yn + az?“)*sw —

" +ay™, 2" )10 = (2™ +az 810 — (g 2" )10 = (1, y, 2 m,n,r €

( m yn7 r‘)* ( m r7yn)* ( m’yn’ r)* ( Y, r)\vl .,

N and a,b € k*

*8.11:(0>*8.11 — (O)7 (xm)*s.u — ($m+ayn>*s.11 — (xm,yn)*&u — (.Qﬁ,y), (yn)*&ll —

(yn>7 (27”)*8.11 — (yn + azr)*s.n — (yn’zr)*s.u — <y727”)7 <$m + aZT)*s.u

= (2™ 4+ ay™ + bz" )1 = (™, ") = (2 4 a2, y" + bz" )

= (a7, a2 ) = (@ ay®, 2T = (27 azt, g = (2 g, )

= (z,y,2") Vm,n,r € N and a,b € k*

*8.12:(0>*3A12 — (O)7 (xm)*&u — (Im_i_ayn)*&u — (Im’yn)*&w — (x’y)’ (yn)*g,m —

y"), (27812 = (), (2™ + az")*$12 = (2™ + ay” + b2")*s12 = (g™, 7)1z =
n T\ %, ' m T\ % m n b T\ % m T\ %

(a:m + aZT,y” + bz’r’)*g,lg — (xm’y’n + az'f’)*g,m — (xm + a/yn’z'r“)*g,lz

— (xm + azrjyn)*&lz — (xm7yn7 Z?")*&lz — (l‘,y,Zr), (yn _|_azr)*s.12 — <yn7z7“>*s.12

= (y,2") YV m,n,r € Nand a,b € k*

*3.13:(0)712 = (0), (z™)™=13 = (2" +ay")*s1 = (2™, y")s8 = (z,y), (y")=" =

(y"), (27) = (27), (@™ 4 az")™ = (2™ + ay” + bz")"™ = (2™, 27)1 =

(ZEm +az", y" + bzr>*&13 = (J}m, Yy 4 azr>*8.13 = (l’m + ay™, ZT)*8.13

— ({Em +az1“’yn)*&13 — (Im,yn, ZT)*&ls — (I,y,ZT), (yn +az7')*8‘13 — (yn,ZT)*&lS

= (y",2")Vm,n,r € Nand a,b € k*

k(010 = (0), ()3 = (@) = (a7, ") = (o), (") =
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688.

689.

690.

691.

692.

(y"), (") = (27), (2™ + az")*H = (2 4 ay”™ + b))t = (a™, 27)1 =
(2™ + az", y" 4 b2" )t = (2™, y" +a’ )M = (27 + ay”, 27)

(@ ) = (@ g, ) = (29,2, (5 4 a2 = (g 0,
(y", 2" ) s = (y", 2") Vm,n,r € Nand a,b € k*

*g15:(0)1° = (27)= 0 = (x), (y")=1° = (" +ay" )= = (@7, y")r = (2,y),
(27)s15 = (2™ +az")S 1 = (y'4az" s = (@M Hay"+b2" ) = (™, 278 =
(y™, 2" ) 815 = (™M 4az", y" 402" )85 = (2™ Y Haz" )15 = (M 4ay”, 2")85 =
(™ 4 az", y")Ee = (" y", 2" ) = (x,y,2") Vm,n,r € Nand a,b € k*
g (0)75 = (0), (27500 = (&), ()55 = (a7 + gy = (@, gy =
(z,y), (27)*16 = (2™ + az")*16 = (y" + az" )10 = (2™ 4 ay”™ + bz")*™16 =
(™) 2N)e16 = (yn Z")ee = (2™ + az", y" + b2")*816 = (2™ y" 4 az")*E1e =
(™ +ay™, 2") e = (2" +az", Yy )6 = (2™, y", 27 = (x,y,2") Vm,n,r €
N and a,b € k£~

*xg17:(0)207 = (0), (&™) = (z), (y")=7 = (@™ + ay" )7 = (2, y")T =
(5,9), (1) = (), (57 +27)™17 = (5 +a2")57 = (&7 + ay" + ba")s17 =
(™, 27) T = (y", 2")ET = (2™ + az", y" + b2")T = (2™, y" 4 az")T =
(™ +ay™, 2") T = (2™ +az", y" )T = (2™ Yy, 27T = (x,y, 2") Vom,n,r €
N and a,b € k*

*8.18:(0)*51% = (0), (2™)™15 = (), (") = (y), (z7)™® = (@™ + a2")™ =
(Y™ +az" )18 = (2™ + ay” + b2")SE = (@, 2SI = (Y, 27 )res

= (2™ 4+ az", y" + b2" ) = (2™ y" + az")*8 = (2™ + ay”, 2" )*818

= (e g = (g, ) = (1,9, 7), () = (g
= (z,y) Vm,n,r € Nand a,b € k*.

g 0510 = (0), (275 = (&), () = (o), (7)o = (),

(@7 ) = (@) = (o), (57 a) = (g e =
(™ 4 ay™ + bz" )10 = (g™ 2781 = (y", ") = (2™ + a2, y" + b2")*s 10 =
(@™, y" +az" )1 = (2" 4 ay”, 2")S0 = (@M 4 a", Yy ) = (2™, Yyt 2T =
(

x,y,2") ¥ m,n,r € Nand a,b € k*
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693.

694.

695.

696.

697.

698.

s (02 = (0), (7) = (a), (1")* = (1), ()% = (5" +az) =
(Y™, 2") 20 = (y,27), (@™ + ay”)®20 = (2™, y")s2° = (x,y), (2™ + az")*™2 =
(2™ + ay™ + bz")*s820 = (™, 27820 = (2™ + az”, y" + bz")*s20

= (2™, y" +az")s20 = (2™ fay”, 270 = (2™ +az",y") S0 = (2™, y", 2" )20
= (z,y,2") Vm,n,r € Nand a,b € k*

t(0)75 = (0), ()73 = (&), ()75 = (o), ()52 = (=),

(@™ +ay") s = (@™, y")e 2 = (,y), (27 +a2") = (2" +ay” +02") =
(a7, 27550 = (a2, g b2 — (a7 a2 ) — (2P ay”, ) —
(@™ 0z, ) = () = (0,2, (0 0o = (o, 2 =
(y,2") ¥V m,n,r € Nand a,b € k*

w05 = (0), (2757 = (@), ()5 = (), ()% = (27 4 az7)om =
(Y™ 4+ az")* 22 = (x™ + ay™ + b2" )22 = (a™, 2" )82 = (y", 2" )2

= (2™ + az", y" + b2")"2 = (2™ y" + az")™2 = (2™ + ay™, ") = (2" +
Q)R = (2 yn VR = (x,y,27), (2T 4 ayt)eeE = (27 ) =
(x,y) ¥V m,n,r € Nand a,b € k*

ki (O)5 = (0), (@)™ = (&), ()5 = (), ()5 = (), (@™ +
gy = (@7 ) = (), (@7 @) = (5 a) R = a4
bz" )28 = (g 27828 = (y" ") = (2™ 4 az”, y" + bz")*e

= (g 02T = (T gy, 2T = (5, g = (a7, g, 2T
= (z,y,2") Vm,n,r € Nand a,b € k*

k20052 = (0), (@52 = (), ()52 = (), (21)52 = (" +a27)52e) =
(y", 27 )82 = (y, 27), (2™ + ay)*s2 = (2™, y")*s2 = (z,y), (z™ + az" )52 =
(2™ + ay™ + beT)*s21 = (g™, 27)83 = (g™ 4 az”, " + baT)rea

= (2™, y"+az" ) = (2" Fay”, 27)S = (a7 Faz, Y = (" Yt 27 )
= (z,y,2") Vm,n,r € Nand a,b € k*

o O3 = (0), (a™)% = (a), (") = (37, () = (),

(@4 a0 = (@775 = (), (27 a2 = (@74 ay? b)Y =

(xm,ZT‘)*SQS — (xm_i_azr,yn_i_bzr)*s.% — (xm7yn+azr)*s.2s — (xm—l—ay", Z’I‘)*&Q}; —
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699.

700.

701.

702.

703.

704.

(@™ +az", y") e = (2™, ", 2T = (2, 27), (Y" 4 a2")S = (Y, 27) =
(y,2") ¥V m,n,r € Nand a,b € k*

*8.26:(0)7520 = (0), (a™)™20 = (x), (y")=>0 = (y"), (") = ("),

(@™ +ay™)s2e = (a™,y")™* = (z,y), (2™ +az")™* = (2" +ay" +b2")>0 =
(x™, 27)826 = (2" 4az", y"+bz" )82 = (27, y"+az" )% = (2 +ay", 27)E6 =
(@™ +az" y")ee = (2, Y, 27) 0 = (2,y,27), (Y +az")™s2 = (y",27) 2 =
(y",2") Vm,n,r € N and a,b € k*

*s.27:(0)*527 = (0), (2™)7 = (x), (y")™>7 = (y"), (7)™ = ("),

(™4 ay™)*e2" = (2™, y" )7 = (x,y), (2" +az")ST = (2™ 4 ay” + b2 )T =
(™, 27 )82 = (2™ 4az", y"+b2" )27 = (27, y"+az" )T = (2™ +ay”, 27)ST =
(@™ 4 az",y")=2 = (2™, y", )5 = (2,9, 27), (Y" + a2")RT = (Y + az’),
(y", 2")s27 = (y",2") V m,n,r € N and a,b € k*

*g.28:(0)7828 = (2™)"82 = (z), (y")=2 = (2 +ay") = = (2, y")"™2 = (z,y),
(27)®28 = (2™ 4 az" )™’ = (2™ 27)*88 = (1,2"), (y" + az")*s2

= (2™ + ay™ + bz")*® 2 = (y", 2")® = (2™ 4 az”, y" + bz")*e8

= (2™, y" +az")2® = (™ +ay”, 27)EE = (™ +az", y")eE = (a™, y", 27)re
= (z,y,2") YVm,n,r € N and a,b € k*

*8.20:(0)7520 = (0), (a™)™2 = (), (") = (2™ + ay")*™» = (2™, y")>* =
(z,y), (z7)®» = (@™ +az")™» = (@7, 2")* = (2,2"), (y" + az")™» =
(™ + ay™ + bz")*s20 = (y", 27)*820 = (2™ + a2z, y" + b2")re

= (2™, y" +az")*s2 = (2™ +ay", 27)*e20 = (™ +az", y")*e0 = (™, y", 2")*s20
= (z,y,2") Vm,n,r € Nand a,b € k*

*8.30:(0)*550 = (0), (2™)™%0 = (), (7)™ = (¢ + ay")*>® = (2™, y")™>* =
(z,y), ()% = (27), (& 4 az")™>0 = (¢, 27)™% = (,2"), (Y + az")™>* =
(2™ + ay™ + bz")*s30 = (y", 27)*e30 = (™ + az", y" + bz")*e0

= (@™, y" +az")m = (2" +ay”, 27)S0 = (2" F a2,y = (a7, Y, 2T) e
= (z,y,2") YVm,n,r € N and a,b € k¥

*g31:(0)7550 = (0), (2™)™2 = (), ()= = (y), (27)™% = (@™ + a2")™>" =
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705.

706.

707.

708.

709.

(@, 2y = (@, 27), (& 4 )0 = (e = (), (y + az o =
(2™ + ay™ 4+ bz" )3 = (Y, 27 )8 = (2™ 4 az”, y" + b))

= (2™, y" +az")* 3 = (™ +ay”, 27)*E3 = (™ +az", y")Est = (a™, y", 27)res
= (z,y,2") Vm,n,r € Nand a,b € k*

(05 = (0), ()5 = (2), ()55 = (9), ()5 = (1),

(@™ 4 oo = (e = (1), (@7 4 02T)70 = (a7, 7)o = (1,27,
(y"+az") 32 = (2" +ay™ + bz")*®32 = (y", 2732 = (2" 4 az", y" + b2 )82 =
(@, " Faz")es = (@ day”, 1) = (@ ezl Yt ) = (@t 2T) e =
(x,y,2") ¥V m,n,r € Nand a,b € k*

s (0)795 = (0), (@)% = (&), (57)7% = o), () = (=),

(@7 + gy = (@, 7)o = (), (&7 a2y = (@, ) = (2,27,
(4" + 027 = (7, 278 = (3, 27) (a7 + ag” + bar)ss

= (@™ +az", y" +b2")e3 = (27, y" 4 az") S = (2™ 4 ay”, 27 )

= (2™ 4 az", y")Ess = (2™, y", 2" )88 = (x,y,2") YV m,n,r € Nand a,b € k*
ks (0)59 = (0), (7)1 = (2), (y7)55 = (), (1) = (&7 + a2")ss =
(™, 2" )rs8h = (x,27), (™ + ay™) s = (2™, y" ) = (x,y), (Y + az")*s3 =
(™ + ay™ + bz" )84 = (y", 27834 = (2™ + az”, y" 4 ba")e

= (2™, y"+az" e = (™t ay™, 2")E3 = (2" 4 az", y") s = (o™ Y, 27 )88
= (z,y,2") Vm,n,r € Nand a,b € k*

*3.35:(0)"5%5 = (0), (2™)=5 = (x), (y")™=* = (y"), (2")™=* = (2"),

(@™ +ay")™o = (2™, y")o® = (2,y), (@7 + a2")® = (2™, 27)% = (z,2"),
(y"+az") 35 = (2™ +ay™ +bz")*®35 = (y", 2" )35 = (2" 4 az", y" + b2 ) =
(™ y"+az")E = (2™ +ay™, 2" )83 = (" 4 a2, y")EH = (2™, y", 27 ) =
(x,y,2") ¥V m,n,r € Nand a,b € k*

*8.36:(0)% = (0), (z™)™° = (x), (y")™* = (y"), (z")™*° = ("),

(@™ + ay")™ss = (@™, y")50 = (z,y), (@™ 4 az")0 = (2™, 27)"% = (z,2"),
(Y™ + az")*s36 = (y", 27 )86 = (y,2") (x™ + ay" + bz")*s-3

= (@™ + az", y" + b7 )30 = (27, y" 4 az") S = (™ 4 ay”, 27)*e0
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= (2™ + az", y")rsse = (2™, y", 2" )6 = (x,y,2") Vm,n,r € Nand a,b € k*.
L0, i (055 = (0), (27557 = (&), ()" = (), ()" = (=0)
(@74 s = (27, = (), (2 a2y = (@, e = (2, 2)
(y" +az")s57) = (y", ") = (y", 27), (a™ +ay” + bz")"
= (2™ 4+ az", y" + b2" )3T = (2, y" + az" ) = (2™ + ay™, 2" )T
= (2™ 4 az", y")EsT = (2™, y", 2" )8 = (x,y,2") VY m,n,r € Nand a,b € k*
T Hgss:(0)"3% = (0), (z™)™% = (), (y")™* = (y"), (z7)"™* = (&),
(57 + ay ) = (2 gy = (2,y), (27 + a2 = (27, 2T = (2, 27),
(y" +az")™®) = (y" + az"), (y", ") = (y",2"), (@™ + ay” + b2")*S =
(2™ 4 az", y" 4+ b2" )3 = (™, y" + az")*38 = (7 + ay”, 2" )
= (2™ 4 az", y")Ess = (2™, y", 2" )88 = (x,y,2") VYV m,n,r € Nand a,b € k*
712, xg35i(0)"9 = (0), (2™)5 = (am), (y7)5 = (2™ -+ g} = (am, gy —
(z,y), (27)*3 = (™ + az")™>® = (y" +az")**) = (2™ + ay” + bz")*>» =
(™, 27839 = (y", 2"V = (2™ 4 az", y" 4 b2")*E0 = (2™ y" 4 az")*s =
(™4 ay™, 2")E30 = (2" +az", y")ee = (2 y", 2" )80 = (x,y, ") Vm,n,r €
N and a,b € k*
T13. #g.40:(0)240 = (0), (z™)™54 = (2™), (y")™*40 = (2 +ay" )+ = (2™, y")*>+ =
(2,9), (27)510 = (27), (2™ +az")*% = (y"+a2")*0) = (2" +ay" +b2" )10 =
(™, 27)840 = (y", 27 )840 = (2™ + az", y" + b2 )0 = (2™, y" + az”)*s40
= (™ 4+ ay", 2")*0 = (2™ + az",y" )0 = (2™, y" 270 = (2,y,2") V
m,n,r € N and a,b € k*
TLL g ()5 = (0), ()70 = (&), ()"0 = (y), ()75 = (o 4 0o =
(Y + az")s0) = (2™ 4 ay” + bz" s = (2, 27)ea = (Y, ")
= (@™ +az", y" + 02" )4 = (27, y" 4 a2")S = (2™ + ay”, 27)EA
= (e, gy = (@ g ) = (), (e = (e
= (z,y) Vm,n,r € Nand a,b € k*
T15. Hga2:(0) = (0), (x™)=# = (a™), (y")™* = (y), (2")=* = (27),
(@™ 4 ay")ee = (™) = (2,y), (@ +a2")52 = (Y +az")2) =
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716.

717.

718.

719.

720.

(2™ + ay™ + b )2 = (2™, 27 )R = (Y, 2T )2 = (2 + a2, Yyt 4 b ) =
(™, Y+ az" ) S = (2™ 4 ay”, 272 = (2™ 4 a2t Yt = (g YR, o7z =
(x,y,2") Vm,n,r € Nand a,b € k*

kg agi(0)758 = (0), (£m)*s = (@), (55 = (y), (2785 = (" a2) ) =
(y", 2" = (y,2"), (2™ +ay")™=e = (2™, y" )= = (2,y), (2™ +a2")e =
(2™ + ay™ + bz")*s43 = (g™, 27)*843 = (2™ + az", y" + ba")*e43

(g ) = (@, 2T = (5 a2, ) = (o g, )
= (x,y,2") Vm,n,r € Nand a,b € k*

kgt (044 = (0), (@)t = (am), () = (y), (1) = (27,

(2™ + ay" 54 = (2, yP)su = (z,y), (2™ + a2’ )54 = (2 + ay” + bz" )4 =
(x™) 2" )4t = (2 4az", y"+bz" ) = (27 Y Haz" ) e = (2 Hay”, 27)E =
(™4 az", yn ) = (2™ Yy, 2T ) = (2, y, 2T), (YT azt)e) = (Yt 2T =
(y,2") ¥V m,n,r € Nand a,b € k*

s 51 (0545 = (0), (25 = (), ()5 = (), (1) = (o hazr)ss —
(Y™ + az")*®45) = (2™ 4 ay™ + b7 ) = (™, 27)*as = (y", 27)*eas

= (™ + a2’ y" + b2")R = (@, " + ") = (2™ +ay”, 2T)

= (Q;m_|_azr7yn)*s,45 — (xm’yn’zr)*s,ALS — <x7y’zr>’ (xm—l—ay")*&% _ (xm,y”)*8-45
= (xz,y) Vm,n,r € Nand a,b € k*

sea(0)750 = (0), (270 = (@), (y7)">00 = ("), ()% = (7).

@+ @)y = (@7 y)ne = (2,y), (@7 4+ az) = (7 4 a)) =
(@7 ay 4 bR = (a7, ) = (3,27 = (2 4 az Y 4 b =
(@, 0270 = (@7 ay?, 0 = (0, )R = (g, ) =
(x,y,2") ¥V m,n,r € Nand a,b € k*

g7 (0)247 = (0), (&)= = (2™), (y")s4 = (y"), (27)™47 = (y"+az2")™47 =
(Y™, 2" )= = (y,27), (@™ + ay”) s+ = (27, y" ) = (2,y), (2™ 4 a2")™T =
(47 + ay™ bR = (@7, 2T (a7 s by

= (2™, y" +az" )T = (2™ Fay”, 2" )T = (2" Faz", Yy )T = (™, y", 2T )T

= (2,9,2") Vm,n,r € Nand a,b € k*
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721.

722.

723.

724.

725.

726.

(05 = (0), (@) = (2m), () = (), ()5 = (=0),
(@™ + ay" ) = (™) = (2,y), (" £ az")ss = (Yt ) = (y,27),
(™4 az" )88 = (™4 ay™+bz" )88 = (™, 27848 = (" +az", Y+ b2 )8 =
(@, +a ) = (@ ay?, PR = (0, )R = (g, ) =
(x,y,2") ¥V m,n,r € Nand a,b € k*

a0+ = (0), (2715 = (&), ()5 = (), (1) = (),

(@™ 4 ay")e = (2™, y") s = (2, y),(y" + az")m = (y" 2 = (Yt 2),
(™ +az" )81 = (™ +ay™ +bz" )8 = (2™, ") = (2" +az", y" +b2" )8 =
(™, y" +az" ) e = (2" ay”, 2")E0 = (@M 4 a2", Yy ) = (2™ Yyt 2T)E0 =
(x,y,2") ¥V m,n,r € Nand a,b € k*

s (05 = (0), (&) = (&), ()% = (), ()55 = (1),
(x™Fay") s = (2™, y" )0 = (2,y),(y" +a’) S0 = (yhtaz’)eo, (yt, )
= (y",2"), (™ 4 az") S0 = (2™ + ay” 4 b2")*S0 = (2™, 27)*e0 =

(™ + az", y" + b2" )80 = (2™ y" + az" )0 = (2™ + ay™, 2" )0 =

(™ 4 az", y")Es0 = (™ y", 2" )80 = (z,y,2") Vm,n,r € Nand a,b € k*
(055 = (0), (2755 = (@), ()5 = (27 4 ay" o = (o, ) =
(), ()50 = @+ azyos = (@25 = (5,2), (f + e =
(™ + ay™ + bz")*est = (Y, 27 = (2™ + az”, y" 4 b2")ree

= (2™, y" +az" ) = (2™ +ay™, 2")E5 = (2" 4 a2yt = (™, y", 27) e
= (z,y,2") YVm,n,r € N and a,b € k*

i (0)'552 = (0), (2755 = (@), ()2 = (&7 + ay")ose = (a7, 7)o =
(9), ()75 = (), (27 a5 = (a7, 2752 = (2,2), (4" + az")'o5 =
(2™ + ay™ + bz" )52 = (y", 27 )5 = (2™ + az”, Yy + bp")res

= (2™, y"+az" )2 = (2" Fay”, 27)S2 = (2" F a2, y")ee2 = (), y", 27 )2
= (x,y,2") Vm,n,r € Nand a,b € k*

s (05 = (0), (2755 = (27), (") = (o), (7)o = (27 4 02" =
(@™, 27) 8% = (2, 27),(a™ + ay")™>* = (@™, ") = (2,y), (y" +az")™ =

(2™ + ay™ 4+ bz" )58 = (y", 25 = (2™ + az”, Yy + be")*ess
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27.

728.

729.

730.

731.

732.

= (2™, y" +az" )3 = (a™+ay™, 2")E58 = (2" 4 az", y") e = (a™ Yy, 27 )ress
= (z,y,2") YVm,n,r € N and a,b € k*

*8.54:(0)2% = (0), (z)=ot = (a™), (y")=o = (y), (2")= = (27),

(@™ 4 ay") oo = (2™, y")ot = (2,y), (27 +az")sot = (2™, 270 = (2, 27),
(Y"+az") 5t = (2" +ay” +b2" )5 = (y", 2")s = (2" az", Y b2 ) =
(™ y"+az" )t = (2™ +ay”, 2" )5 = (2 4 a2, y")Est = (™, y", 2T) e =
(x,y,2") ¥V m,n,r € Nand a,b € k*

*8.55:(0)*59° = (0), (2™)% = (2™), (y")>*° = (y), (z7)™> = (27),

(57 + ayyess = (@7, ) = (2,y), (@7 4 a2) = (27,2 = (3,27,
(y" + az")e = (y", 2")s50 = (y,27), (a™ + ay" + bz") s

= (2™ 4+ az", y" + b2")* = (2™, y" 4 ") = (2™ + ay”, 27)*E

= (™ + az", y")rss = (2™, y", 2" ) = (x,y,2") Vm,n,r € N and a,b € £k~
s (0)'550 = (0), @)% = (&), (5755 = (), () = (&7 +az" o =
(@, 25 = (2,27), (&7 + a o = (&g = (@), (" + 0y =
(4 ay™ +bz")*856 = (y", 2" )86 (™t az”, Yy 402" )85 = (2™, Yyt +az")E6 =
(™ +ay™, 2") 50 = (2™ +az", Yy ) = (™, y", 27 )80 = (x,y,2") YV m,n,r €
N and a,b € £~

w057 = (0), ()57 = (&), ()" = (), ()57 = (&7),

(@7 ay o = (@ o = (), (@ a) = (@, ) = (),
(Y™ + az") =57 = (2™ + ay™ + b2")*5T = (y", 275 (2™ 4 a2, y" + b2")E5T =
(™ y" +az" )T = (2™ +ay”, 2" )T = (a4 a2yt )esT = (™, y", 27 )T =
(x,y,2") ¥V m,n,r € Nand a,b € k*

roa (055 = (0), (2775 = (@), (57)55 = ("), ()5 = (),

(@4 s = (27,45 = (), (2 a2y = (@, 2o = (2, 2)
(y" +az")™s = (y", 27) % = (y, 2"), (2™ + ay" + bz")*™>

= (2™ + az", y" + b2" )85 = (2™, y" + az" s = (2™ + ay”, 2" )*ess

= (2™ 4 az",y")Ess = (2™, y", 27 )88 = (x,y,2") VY m,n,r € Nand a,b € k*
*8.50:(0)2% = (0), (z)=* = (a), (y")=* = (y"), (2")> = (2"),
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(@™ +ay" ) = (2™, y")=0 = (2, y), (@7 + az")=0 = (@, 270 = (2, 27),
(" + azryssn = (7, 2y = (g7, ), (2™ + oy + baryes
= (2™ + az", y" + b2" )" = (2™, y" + az2")s = (2 + ay”, 2" )
= (2™ + az", y")*so = (2™, y", 2" )0 = (x,y,2") Vm,n,r € Nand a,b € £k~
83, ru(0)7%0 = (0), (27500 = (&), ()"0 = (47), ()50 = (1),
(@™ 4 oo = (27, = (1,9), (@™ + a2T) = (@, 7)o = (3,7,
(y" +az")™0 = (y" 4 az")m0, (Y, 27)00 = (Y7, 27), (27 4 ay” + b2")*0 =
(™ 4+ az", y" + b2" )60 = (2 Yy + az" )0 = (2™ + ay™, 2")*860
= (2™ 4 az", y")Ee0 = (2™, y", 2" )80 = (x,y,2") ¥V m,n,r € Nand a,b € k*
734 xs61:(0)™ 0 = (0), (&™)t = (a™), (y")= = (&" +ay")™ o = (a7, y")0r =
(5,9), (27550 = (27), (27 + a2y = (@, 27)son = (a7, 1), (4 +az ) =
(2™ + ay™ 4+ bz" )0 = (Y, 27 )0t = (2™ + az”, y" + b")ee
= (2™, y"+az" )0 = (2" Fay”, 27)S0 = (a7 +az”, y")ee = (2, y", 27 )
= (x,y,2") Vm,n,r € Nand a,b € k*
5. w05 = (0), ()5 = (), ()50 = (), ()7 = (),
(@™ ay)res = (o, ) = (2,), (@7 azr) = (a7, 2 = (g,

*8.62 —

Laz" )86z = (g™ 4 gyt - by )*s62 = 27 )862 = (2 4 az", y" + bz
yn T\ % m yn b T\ % yn T\ %, m T yn b Y
(07, QYR = (a7, 2T = (a2 g = (g g )
(x,y,2") V¥V m,n,r € Nand a,b € k*
736. *8.63:(())*8.63 — (O)7 (zm)*s.ess — (xm)’ (yn)*8.63 — (y>7 (Z?“)*&ea — (ZT),
(l‘m—i—ayn)*&“ — ($m7yn)*8.63 — (xhy)? (xm+azr)*s.63 - (xm7 Z”’)*&G:ﬁ = (xm7 27")7
4T )rse3 — 2TV = (y, 27, (2™ + ay™ + bz")*s63
yn T\% yn T\ %, y ' m yn b T\*,
= (xm + CLZT, y” + bZT)*8.63 — (:Bm, y” + azr)*s.m — ({Em + ayWJ’ ZT)*S.GS
= (2™ 4 az",y")Ees = (2™, y", 2" )88 = (x,y,2") ¥V m,n,r € Nand a,b € k*
737, xs.64:(0)0t = (0), (z™)=0t = (2™), (y")™=ot = (y"), (2")™=0 = (27),
(Im+ayn)*854 — (xm’yn)*&m — ($7y)7 (xm+aZT)*&64 — (:L,m’ 27")*&64 — (xm’ ZT),
(y”+azT)*8‘64 — (a:m+ay”+bz’“)*8<64 — (y"7ZT)*8.64 — (Z’m—FCZZT,yn—l—bZT)*S-M —

(&, az oo = (2" ay®, 27 = (27 az, ) = (o, gt ) =
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738.

739.

740.

741.

742.

743.

(x,y,2") ¥V m,n,r € Nand a,b € k*

*g.65:(0)2% = (0), (z)=0 = (a™), (y")= = (y"), (") = (2"),

(@™ +ay") o0 = (2™, y")o = (2,y), (2" +a2")0 = (2™, ") = (2™, 27),
(y" +az")=o = (y", 27)% = (y, 27), (& + ay” + bz")™

= (2™ 4+ az", y" + b2")* = (2™, y" 4 az")* = (™ + ay”, 27)*E 6

= (2™ 4 az", y")Ee = (2™, y", 2" )% = (x,y,2") VY m,n,r € Nand a,b € k*
*g.66:(0)% = (0), (z™)=00 = (a™), (y")=° = (y"), (") = (2"),

(@™ +ay" )5 = (2™, ") = (z,y), (@ +az")w00 = (2™, ") = (2™, 27),
(Y™ + az")*s66 = (y", 27)*s68 = (y" 2"), (2™ + ay™ + bz")*s-66

= (2™ 4+ az", y" 4 b2")*e06 = (x™, y" 4 ") = (x™ + ay”, 2")*66

= (2™ 4 az", y")ees = (2™, y", 2" )86 = (x,y,2") V¥V m,n,r € Nand a,b € k*
*a.67:(0)207 = (0), (z™)*=7 = (a™), (y")™>7 = (y"), (z7)=7 = (&),
(@™ ey o = @y = (2,9), (27 0 = (5, 7Y = (@, ),
(y" +az")™7 = (y" +az"), (y",27) = (y", 2"), (2™ + ay” + bz")>

= (2™ + az", y" + b2" )86 = (2™, y" + az" )T = (2™ + ay”, 2" )*s67

= (2™ 4 az", y")EeT = (2™, y", 2" )8 = (x,y,2") ¥V m,n,r € Nand a,b € k*
st (0)795 = (0), (@m0 = (27, (377958 = (&7 oo = (am, 7)o =
(@), ()75 = (), (& +az oo = (@ o+ azr), (@725 = (2, 2),
(Y"+az" s = (™ 4 ay" + bz )8 = (y", 2786 = (2™ +az”, y" 4 b2" )68 =
(™, y" +az" ) = (2 4 ay”, 2")E = (a4 az",y" ) = (a™, Yy, 27) s =
(x,y,2") ¥V m,n,r € Nand a,b € k*

ks (0)550 = (0), (™) = (&), (y7)50 = (y), (1) = (=),

(574 a5 = (27 ) = (2,5), (27 a0 = (7 a2, (a7, 2T)
= (™, 2"), (Y" 4 az")s = (™ + ay™ + b)) = (y", 2")*ee

= (2™ 4 az", y" + b2" )60 = (2™ y" + az")*e = (2™ + ay”, 2" )*s60

= (™ + az", y")rse = (2™, y", 2" )0 = (x,y,2") Vm,n,r € N and a,b € k*
*g70:(0)07 = (0), (z)=1 = (a™), (y")=7 = (y), (2")=7 = (27),

(xm+ay")*8-7° — (:Cm,y”)*&m — (Jc,y), (xm_i_azr)*&?o — (xm_|_azf‘)7 (xm7zr)*s.7o
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744.

745.

746.

T47.

748.

= (2™, 2"), (y* + az 8.70 — Y,z 8.70 — y,2"), (2™ + ay™ + bz 8.70

m ' n T\ % n T\ % 'S m n b T\ %
= (@™ +az", y" + b2 )70 = (27, y" 4+ az" )BT = (2™ 4 ay”, 27 )0
= (" Faz",y")e 0 = (2", y", 2" )0 = (1,y, 2 m,n,r € N and a,b €

m T, n\* m o o,m T\* ™ Y N d b J 2

rais(0)77 = (0), (@) = (@), ()= (), () = (),
(.il:m—i—ay”)*&” — (xm,y”)*&” — (a:,y), (xm_{_azT)*&n — (mm—l—az’"), (Qfm, ZT)*8.71
= (@7, %), (y" + )T = (@ ay” b2 = (2T
= (2™ + a2, + bz 8.71:1;7 4+ az" )81 = (z™ 4+ q L2 8.71

( m r yn b r)* ( m yn r)* ( m yn r)*
=" taz",y") = (2", y", 2" )T = (2,y, 2 m,n,r € N and a,b €

m ' T\ %, m n T\ % T v N d b kX

*8.72:(())*8.72 — (O)7 (xm)*s.n — (l‘m), (yn)*8.72 — (yn)’ (27’>*8.72 — (ZT),
(mm+ayn)*s.72 — (xMJyn)*&m — (m,y), (xM_i_azT)*&?z — (mm—i—azr), (:Em727’)*s.72
= (2™, 2"), (y" +az")=m = (Y, 2) e = (y, 27), (2 + ay” + bz")e T
— (x.m + CLZT,yn + bzr)*gjg — (l.m’yn + azr)*gjg — (l.m + ayn72r>*g,72
= (2™ 4 az", y")E = (2™, y", 2" )82 = (x,y,2") YV m,n,r € Nand a,b € k*
*8.73:(())*8.73 — (O)7 (xm)*sis — (:L’m), (yn)*8.73 — <yn)7 (ZT‘>*8.73 — (ZT),
(:Em+ayn)*8‘73 — (lvm’yn)*&m — (x,y), (:L‘m—{—azr)*&” — (mm+azT)7 (xmsz)*&m
= (xm’ ZT), (yn + aZT)*8.73 — (y”’ Z’”)*&?S — (yn’ ZT), (.CEm + ay” + bZT)*8.73
— (xm _|_ CLZT,yn + bzr)*gjg — (xm’yn + az”")*gjg — (xm + ayn7z7")*8,73
= (2™ 4 az", y")E = (2™, y", 2" )8 = (x,y,2") V m,n,r € Nand a,b € k*
*3.74:(0)7070 = (0), (am)=m = (™), (y")=" = (y"), (2")=7 = (27),
(mm_i_ayn)*s.m — (xm’y”)*&m — ($,y), (xm_FaZ"')*&?Al — (a:m—i—azr), (xm’zT)*s.m
— (l,m7 ZT)7 (yn_i_azr)*gjz; — (yn—FCLZT), (yn7 ZT)*&M — (yn7z7")7 (Im+ayn_|_bzr>*s_74
— (:L,m + azr7yn + bzr)*&m — (mm7yn ‘l’ (IZT)*S'M — (l,m _|_ ayn7zr)*g,74
= (2™ 4 az", y")E = (2™, y", 27 )8 = (x,y,2") VY m,n,r € Nand a,b € k*
*8.75:(())*8.75 — (xm)*s.m — (I), (yn)*8.75 — (xm + ayn)*&75 — (xm’ yn)*&m —
(:I), yn)J (ZT)*8.75 — (xm + aZ?“)*s.?s — (yn + az?‘)*s.75 — (xm + ayn + bZ"')*S.?S —
(Im7z1")*8,75 — (yn’ZT)*sAm — (:Em + az’",y” + bz"')*&75 — (xm,y” + azr)*&m —
(™ +ay™, 2")e = (2" +az", y" ) = (2™, Yy, 27T = (x,y,2") Vm,n,r €

N and a,b € k*
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749. *576:(0)270 = (0), (™)™ = (x), (y")™7 = (™ + ay")™*7 = (2™, y")*s7
(a:,y”), (ZT)*8.76 — (xm + azr)*g,?ﬁ — (yn + azr)*g.m — ((IJm + ayn 4 bzr)*g_m

(™, 27876 = (y", 2"V = (2™ 4 az", y" 4 b2")8T6 = (2™, y" + az")*sT6 =
(™4 ay™, 2")E = (" +az", y") e = (2, y", 2" )8 = (x,y,2") VYV m,n, T €
N and a,b € k*

70, wri(0)757 = (0), (2757 = (&), (57)°7 = (a7 + )T = (@, ) =
(z,y™), (2")=7 = (27), (a™+a2")*7 = (y"+az" )7 = (2™ +ay” +b2" )T =
(™, 2" )87 = (y", 2" )T = (2™ 4 az", y" + b2 )T = (2™, y" + az" )T
= (™ 4+ ay", ") = (2™ + az",y")S = (2™, y", 2"V = (2,y,2") V
m,n,r € N and a,b € k*

TEL. rgs ()5 = (0), ()77 = (@), ()™ = (), ()77 = (& + a7 =
(Y" + az")™ = (2™ + ay™ 4 b2" )8 = (a™, 27 )T = (y", 27 )T
= (@™ +az", y" +b2")¢T = (27, y" 4+ a2")ST = (2™ 4 ay”, 27)ST
= (e, ) = (@ g ) = (), (e = (e
= (z,y") Vm,n,r € Nand a,b € k*

52 w05 = (0), ()7 = (@), ()5 = (), ()77 = (),
(@7 ag o = (@ = (2, (@74 a)S = () =
(™ + ay™ + bz" )80 = (2™ 27T = (y" 28T = (2 4 az", y" + b2 )T =
(™ y" +az")*s = (" +ay™, ") = (2" +az", y")sT = (2™, Y, 27)ET =
(x,y,2") ¥V m,n,r € Nand a,b € k*

753, s (0)75 = (0), (27550 = (@), ()5 = (37), ()70 = (47 + Yo =
(y", 2750 = (y, 2"), (&™ 4 ay")™ = (z™,y")*% = (z,y"), (2" + az")*s* =
(2™ + ay™ + bz" )0 = (2™, 27)80 = (2" + az", y" + bz")*e0
= (2™, y"+az" )0 = (2" Fay”, 27)S0 = (2" Faz", y")Es0 = (", y", 27 )re0
= (x,y,2") Vm,n,r € Nand a,b € k*

oA, xga(0)75 = (0), (27 = (), (y)5 = (), ()55 = (=7,
(2™ Fay™) s = (2™, y" ) = (2, y"), (T Haz2")SS = (2 Fay” + ") =

(xm7zr)*g,81 — (xm_i_azr’yn_i_bzr)*s,gl — (xm7yn+azr)*g,81 — (:I:m—i—ay", Z’I‘)*g‘sl —
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755.

756.

797.

758.

759.

760.

(@™ az”, Y ) = (2™, " 2T = (2, 27), (YT 4 a2h)Ss = (Y7 2T =
(y,2") ¥V m,n,r € Nand a,b € k*

w055 = (0), (2755 = (2), () = (), (=) = (),

(27 + a5 = (@, ) = (), (27 a2 = (7 ay? b —
(™, 2" )82 = (™ 4az", Yy +02") 82 = (a7, y" " +az" )2 = (" Fay”, 27)S2 =
(@7 407, g5 = (@, 2T = (2, 2), (9 + 0 = (37, ) =
(y",2") Vm,n,r € N and a,b € k*

*8.83:(0)755% = (0), (2™)% = (x), (y")=* = (y"), (7)™ = ("),

(™ +ay™) s = (™, y" )88 = (x,y"), (2™ +az" )™ = (2" +ay™ +bz" )8 =
(x™, 2") 888 = (2 4az", y"+bz" )88 = (27 y"+az")*E8 = (M +ay”, 27)E8 =
(@™ 4 az",y")=s = (2™, y", ") = (2,9, 2"), (Y" + a2")FS = (Y + az’),
(y", 2" )ss8 = (y",2") V m,n,r € Nand a,b € k*

xegar(0)08 = (am)et = (x), (y") = (a7 4 ay") = (a7t =
(z,y"), ()% = (@™ 4+ az")™ = (@, 27)"% = (z,27), (y" + az")™* =
(™ 4 ay™ + bz" )84 = (Y, 2788 = (2™ + az”, y" + b2 )*ss

= (2™, y" +az")es = (™t ay”, ") = (™t az", y")ess = (a™, y", 2T) e
= (z,y,2") Vm,n,r € Nand a,b € k*

*8.85:(0)755° = (0), (a™)™% = (), (y")=*° = (2™ + ay")*™>® = (2™, y")"* =
(z,y"), (27)™% = (@™ + a2y = (2, 2")% = (2,2"), (" + a2")™>* =
(™ + ay™ + bz")*sss = (y", 27)ess = (2™ + a2z, y" + b )res

= (2™, y" +az")*ss = (™ +ay”, 27)* e = (™ +az", y")ess = (a™, y", 2")*ess
= (z,y,2") Vm,n,r € Nand a,b € k*

*8.86:(0)*5%0 = (0), (2™)™20 = (), (7)™ = (2™ + ay")*>® = (2™, y")™* =
(z,y7"), (z7)™0 = (27), (2™ Faz")™™s = (2™, ") = (z,2"), (" +az")™* =
(™ + ay™ + bz")*s80 = (y" 27880 = (2™ + az2", y" + bz")ress

= (@™, y" + a2 = (2" +ay”, 27) = (2" F a2,y = (a7, Y, 2T) e
= (z,y,2") YVm,n,r € Nand a,b € k¥

*g.g7:(0)257 = (0), (2)7 = (x), (y")™*7 = (y"), (2")*57 = (¢ 4 a2")*57 =
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761.

762.

763.

764.

765.

(@7, 275 = (@, 27), (& 4 o) = (2%, )57 = (2,07, (" a7 =
(a: + ay” + b2 )T = (y", 27 )T = (2 4 az”, y" + bz )T

= (2™, y" +az")* s = (™t ay”, 27)* T = (™ +az", y")esT = (a™, y", 27 )T
= (z,y,2") Vm,n,r € Nand a,b € k*

ks (0)55 = (0), (27)5 = (2), (") = (57), ()5 = (),

(@™ +ay™) s = (2™, y") s = (2, "), (2" +az")s = (2™, 270 = (x,27),
(y" +az")s = (2™ +ay" +b2")*s5 = (y", 27)"5 = (2™ + a2, y" +b2")" =
(67, " 02T = (2 ay?, 2T = (5 g g = (g g, o)
(x,y,2") ¥V m,n,r € Nand a,b € k*

w0550 = (0), (275 = (&), () = (), (=) = ()

(@74 ) = (2, )55 = (1, y7) (27 + a5 = (a7, 2700 = (),
(4" + 0270 = (7, 2780 = (3, 27), (a7 + ay” + bar)e

= (@™ +az", y" + b2 )% = (27, y" 4+ az") S = (™ 4 ay”, 27)*S0

= (2™ + az", y")e = (2™, y", 2" ) = (2,y,2") ¥V m,n,r € Nand a,b € k*
*8.90:(0)290 = (0), (z™)* = (), (y")= = (y"), (27)™>* = (2"),

(@™ + ay" )50 = (&, y") S0 = (z,y"), (2™ + a2")50 = (2™, 27)50 = (x, 2"),
(y" +az")=e = (y", 27)=* = (y", 2"), (2™ + ay" + b2")*s

= (2™ 4 az", y" + b2" )0 = (2™ y" + az" )0 = (2™ + ay™, 2" )*s0

= (2™ + az", y")so0 = (2™, y", 2" )0 = (x,y,2") Vm,n,r € N and a,b € k*
*g01:(0)590 = (0), (z™)™or = (x), (y")= = (y"), (7)™ = ("),

(@™ +ay") o = (2™, y" ) = (2, "), (2 + a2 = (a7, 27)0 = (3, 27),
(y" + 2" = (y" +a2")so, (Y, 27) 0 = (y", 2"), (¢ + ay” 4 bz")*s!

= (2™ 4+ az", y" + b2")*0 = (2™, y" 4 ") = (2™ + ay”, 27)E

= (2™ 4 az",y")Eor = (2™, y", 2" )80 = (x,y,2") YV m,n,r € Nand a,b € k*
*8.92:(0)7592 = (0), (x™)92 = (a™), (y")™= = (2™ +ay")*> = (¢, y")™? =
(@,y"), (2")22 = (2™ + az")™ = (y" + az")®”? = (2™ + ay” + bz")"» =
(™, 2N)e02 = (y", 2")e02 = (2 + az",y" + b2")"92 = (2™, y" + az")*s? =
(x™+ay™, 27)* 02 = (™ +az", y")s02 = (™, y", 2" )82 = (z,y,2") Vm,n,r €
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766.

767.

768.

769.

770.

771.

N and a,b € £*

g 079 = (0), (25 = (@), ()5 = (1), (& + ")

= () = (), () = (7 ) = (g )

= (2™ +ay™ +bz")e3 = (g™ 2798 = (y", 2")*e98 = (2" 4 a2, y" + b2 )89 =
(a7, 47 4 a5 = (2 g, )5 = (£ a7 = (a7, ) =
(x,y,2") ¥V m,n,r € Nand a,b € k*

o (0759 = (0), (27700 = (@), (7)o = (), ()59 = (0),

(@7 a7 = (@ e = (ng), (@ 4 a) = (g 0y =
(2™ + ay™ + b7 )0t = (2™, 27 )R = (Y, 2T )0t = (2 + az”, Yy 4 b )t =
(@7, 57+ a2 )5 = (&g, R = (£ s ) = (2, ) =
(x,y,2") ¥V m,n,r € Nand a,b € k*

o (0759 = (0), (277555 = (&™), ()% = (4, ()5 = (" +azr) =
(Y™, 27 = (y, 27), (& +ay™)= = (a7, y")= = (2,y"), (@™ + a2")™* =
(2™ + ay™ + bz")*895 = (™, 2785 = (2™ + az", y" + bz")*s95

= (2™, y" + a2’ ) = (@ ay”, 2)S0 = (27 F a2,y = (Yt 2T)
= (z,y,2") Vm,n,r € Nand a,b € k*

*g.96:(0)2% = (0), (z)=0 = (a™), (y")=* = (y"), (") = (2"),

(@™ +ay" ) = (a™,y")>0 = (z,y"), (37" +az")™ = (2" +ay" +b2")*5% =
(™, 27) 896 = (2" 4az", y"+b2")* 8 = (2, y"+az" )% = (2™ +ay", 2")*86 =
(@™ 4 az", y") s = (2™, ", 27)0 = (2,y,27), (Y 4 a2")S = (Y7, 27) 8 =
(y,2") V¥V m,n,r € Nand a,b € k*

*8.07:(0)297 = (0), (z™)=o7 = (a™), (y")>7 = (y"), (") = (2"),

(™ +ay") o = (™, y" )7 = (x,y"), (™ +az" )BT = (2" +ay™ +bz2" )T =
(™, 27) 807 = (2 4az", y"+b2" )BT = (27, y"+az" )T = (2™ +ay”, 27)ST =
(@™ +az",y")=or = (2™, y", 27T = (2,y,27), (Y +az")™r = (y", 2") T =
(y",z") ¥V m,n,r € Nand a,b € k*

*g.08:(0)2% = (0), (2)=5 = (a™), (y")=* = (y"), (") = (2"),

(@™ +ay" )= = (2™, y")> = (2, y"), (2" +az")*"® = (2" +ay" +b2")*5% =
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T72.

773.

774

T75.

776.

(2™, 2" ) 898 = (x™+az", y"+bz" )88 = (2™, y"+az" )8 = (2" +ay”, ") =
(™ 4 az", y")sos = (2™ y", ") = (z,y,2"), (Y + az")E8 = (y" + az”),
(y™, 2" ) s = (y",2") V m,n,r € Nand a,b € k*

(05 = (0), (@) = (&), (57)5 = (&7 4 o) = (a™, 7)o =
(04, ()59 = (& a2y = (27,25 = (,27), (" +az')o =
(2™ + ay™ 4+ bz" )00 = (y", 27 ) = (2™ + az”, Yy + be" )

= (2™, y" +az" )8 = (2™ +ay™, 2")00 = (2" +az", y") s = (a™, Yy, 2" )8
= (z,y,2") Vm,n,r € Nand a,b € k*

*8.100:(0)*8100 = (0), (z™)*8100 = (™), (y") 100 = (2™ + ay™)*s100

= (@ = (@), ()6 = (), (@ 4 az e = (@, s =
(3, 27), (" + a2 )10 = (a4 a4 baryeam = (g7, 7)o

= (2™ 4+ az", y" + b2") 10 = (2 y" + az") S0 = (2 + ay”, 27)*S00

= (2™ +az", y")er0 = (™ y" 2" )80 = (x,y, 2") Vm,n,r € Nand a,b € k*
a0 = (0), ()0 = (27, (7)o = (57), (7)o

= (& @) = (7,20 = (,7), (27 o+ g = (g =
(z,y"), (y" + az")s100 = (2™ 4 ay” + bz" )01 = (y", 27 )10

= (2™ 4+ az", y" + b2")S10 = (2, y" + az”)S0 = (a7 + ay”, 27)*S0

= (™ +az" Yy = (g™ y" 270 = (x,y, 2") Vm,n,r € Nand a,b € k*
k10 (0)51 = (0), (™) = (@), (yrysa = (i), (27 = (o),

(™ + ay™)s102 = (M y" )2 = (z,y"), (2™ + az")*E102 = (g, 7)1 =
(z,27), (Y™ + az")=102 = (™ 4 ay™ 4 bz")* 102 = (y", 27102

= (2™ 4 az", y" + b2")102 = (2 y" 4 a2 )12 = (2™ + ay”, 2")*s102

= (™ +az", y")er0z = (2™ y" 2" )82 = (x,y,2") Vm,n,r € Nand a,b € k*
*g.103:(0)220% = (0), (2)*s108 = (™), (y")=1 = (y"), (27)™2 = (27),

(@™ 4 ay™)er0r = (@™ Yt = (z,y"), (@7 F @z = (a7, 270 =
(z,27), (Y + az" )10 = (y",27)™108 = (y, 2"), (2™ + ay" + bz")™s1%8

= (2™ 4+ az", y" 4 b2" )18 = (2™, y" 4 az" )18 = (2™ + ay”, 2")Fe108

= (xm + CLZT, yn>*8.103
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7.

T78.

779.

780.

781.

782.

= (2™, y", 2" )13 = (z,y,2") ¥V m,n,r € Nand a,b € k*

ra0(0)719 = (0), (&) = (@), () = (3), (7)o = (),

(@7 oy = (@ e = (ny), (5 4 gy = (@, ) =
(3, 27), (" aar o0 = (', )50 = (4, 2), (& ay” + b oo

= (2™ +az", y" + b2 )10 = (27, y" 4 aZ") S0t = (2™ 4 ay”, 27)*S1

= (™ +az" y")eror = (™ y" 2" )84 = (x,y, 2") Vm,n,r € Nand a,b € k*
*8.105:(0)207 = (0), (2™)*105 = (™), (y")=1° = (y"), (27)™1 = (2"),

(@7 a0 = (@ e = (a,g7), (2 + 0y = (5, 2y =
(2,27), (" + 250 = (5 az7), (57, 2710 = (7, ),

(@™ 4 ay”™ 4+ bz" )15 = (2™ 4+ az", y" + b2")* 8105 = (2", y" 4 az")*s108

(7 g, ) = (@ e, ) — (g, 2 — (g, 27)
m,n,r € N and a,b € k*

i (0)710 = (0), (&) = (@), ()"0 = (2 + ay) o

= (e = (ny), ()5 = (), (2 o+ azryee = (2, o) =
(67, 27), (57" + Q") — (2 4+ ay 4 berame — (yn, 27y

= (2™ +az", y" + bz" )16 = (2, y" 4 az")* 108 = (2™ + ay”, 27 )06

= (2™ +az", y")ers = (g™ y" 2" )86 = (x,y, 2") Vm,n,r € Nand a,b € k*
rsaari(0)'5207 = (0), (&) = (27, (g = (57), () = (&)

(@7 a0 = (@ = (o), (27 0z = (e =
(@™, 27), (y" + az")*$107 = (2 + ay” + bz" )07 = (y", 27 )re0r

= (2™ 4 az", y" + b2" )BT = (g™ y" 4 az" )17 = (2™ 4 ay”, 2")*E107

= (2™ 4 az", y")r107 = (2™, y", 2" ) = (z,y,2") Vm,n,r € Nand a,b € k¥
rsaasi (05155 = (0), (@)1 = (@), ()50 = (y7), ()70 = (=7),

(@7 oy = (@ e = (zy), (57 4 gy = (@, ) =
(@), (g + o = (g e = (g,2), (5 + ay’ o+ b =
(™ 4 az", y" + bz )08 = (™ y" + az")*8108 = (2™ 4 ay", 2")*s108

= (2™ +az", y")eros = (™ y" 2" )88 = (x,y,2") Vm,n,r € Nand a,b € k*
*5.109:(0)%100 = (0), (a™)™100 = (z™), (y")™=100 = (y"), (27)=10 = (27),
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783.

784.

785.

786.

T87.

(a7 4+ ) = () = (), @ az) e = (2 =
(@), (5 a2y = () = (), (@ a by =
(™ + az", Y™ 4 b2" )00 = (2™, y" 4 az" )00 = (2™ 4 ay”, 2")*E100

= (2™ 4 az", y")rs100 = (2™, y", 2" )19 = (z,y,2") Vm,n,r € Nand a,b € k¥
s 0)'5110 = (0), (2750 = (27, (s = (97), ()70 = (&)

(@™ ay e = (27, gy = (@,g"), (@ + ey = (@, s =
(@7, ), (" a2 = (4 a2, (5,2 = (57, ),

(m +ay” + b2" )10 = (2™ 4 az”, y" + bz" )*8 10 = (g™ y" + az")re 10

= (@™ + ay”, 2" )0 = (2 + a2",y")Ene = (a7, y", 27)10 = (2,y,2") V
m,n,r € N and a,b € k~*

s (0)°511 = (0), ()oih = (&), () = (27 4 ay)oon

= (e = (), ()R = (), (@ 4 ey = (e =
(@™, 27), (y" +az" ) = (2™ + ay” + b7 ) = (yn, 27 )

= (2™ 4 az", y" + b2" ) = (2™ y" 4 ") = (2™ 4 ay”, 27

= (2™ 4 az", y")s = (2™ y", 2" ) = (z,y,2") Vm,n,r € Nand a,b € k*
sz (0)'57 = (0), (@) = (2), () = (), () = (27,

(@7 agr e = () = (0 g), (a7 0y = (@, sy =
(67, 27), (" + az")*ss = (a7 4 ay + bar ) = (g, )

= (2™ +az", y" + b2 )12 = (27, y" 4 a2") 12 = (2™ + ay”, 27)E

= (™ +az" y")enz = (2™ y" 2" )2 = (x,y,2") Vm,n,r € Nand a,b € k*
g (0)780 = (0), (@) = (@), () = ), (7o = (),

(@7 Y = (@ = (), (7 gy = (@, ) =
(6™, 27), (4 + a2y = (2 = (,27), (@ 4 agt by —
(™ 4 az", y" 4 b)) = (2™, y" + a2 ) = (2™ 4 ay”, 27)

= (™ +az" y")Ens = (g™ y" 2"y = (x,y,2") Vm,n,r € Nand a,b € k*
a1 (0)511 = (0), ()it = (&), () = (y7), ()0 = (1),

(™ + ay™)se = (M Yy = (z,y"), (7 4 az”)ENe = (g 27 =
(@), (" a o = () = (), (@ ey b =
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788.

789.
830.

831.

832.

833.

(2™ 4+ az", y" 4 b7 ) St = (2™, y" +a" ) = (a7 + ay”, 27)S

= (™ +az" y")ens = (™ y" 2"y = (x,y,2") Vm,n,r € Nand a,b € k*
s (0)780 = (0), (@) = (@), () = (), (e = (),

(@7 gy = () = (o), (o 4 ey = (o, 2y =
(™, 2"), (Y" +az") s = (y" +az2"), (y", ") = (Y, 2),

(@™ + ay™ 4+ b2" )15 = (2™ 4 az”,y" + b2")S 15 = (2, y" + az”)*Ss

= (™ + ay", 2")s15 = (2™ 4 @z, y")Ee = (2 y", 2R = (xyy,2") ¥
m,n,r € N and a,b € £~

*g. 116 through xg 156 see proof

wasri0)717 = (0), (&) = (@), ()"0 = (37), (7)o

= (2™ + az" )17 = (y" + az") BT = (2™ + ay™ + b2")*S5T = (™M 7)1 =
(y", 2" )57 = (2" +az", y" 02" )T = (a7, y" Faz" )T = (2" Fay”, 27)S5
= (@ = (g R = (0, 2), (2 oy

= (x™m, y")rse7 = (2™, y") ¥V m,n,r € Nand a,b € k*

w055 = (0), (@)= = (@), (1) = (), (e = (),
(@™ + az" )15 = (Y 4 az2")S8 = (2 + ay” + b2") s = (g, 7)1 =
(y™, 2")e1m8 = (" 4az2", y"+b2") S8 = (2, Yy Faz" )8 = (2 Fay", 27815
= (a2, ) = (g, ) = (1, ), (27 o)

= (2™, y")=s = (2™, y") ¥V m,n,r € Nand a,b € k*

s (0)719 = (0), (2550 = (@), ()15 = (37), (7)o

= (y" a2’y = (Yt )R = (y,27), (@ 4 ay") e = (a7, ) =
(™ y™), (2™ 4 az")*8159 = (2™ 4 ay" + bz")*8159 = (g™ 278159

= (2™ +az", y" + b2 )10 = (27, y" 4 az") S0 = (2™ + ay”, 27 )15

= (™ +az" y")ee = (2™, y", 2" )8 = (x,y,2") Vm,n,r € Nand a,b € k*
*g.160:(0)%10 = (0), (xm)=10 = (™), (y")=10 = (y"), (7)1 = (27),
(@™ + ay" )10 = (2, y") e = (2, y"), (2™ 4 az”)e

= (2™ 4+ ay” + bz")B160 = (g, Z)S160 = (g™ 4 a2, y" + bz")*E160

— (Q;m7 yn + az?“)*s.leo — (wm + ayn7 Z?“)*&wo — (xm +az", yn)*&wo
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834.

835.

830.

837.

838.

= (@™, ", ) = (3,y,27), (yh 4 az")me0 = (YT = (y,27) ¥
m,n,r € N and a,b € k*

foagrt 019 = (0), (0 = (@), () = (), () = (),
(2™ 4 ay™)Fsi6r = (g™, y")rser = (2™, y"), (2™ + az")*s16

= (2™ 4+ ay” + bz")*s16 = (g, 2SI = (2™ 4 a2, y" + bz")se

= (2™, y" + az")*s16 = (2™ + ay”, 2" )6 = (2™ 4 az", y")rse

= (2™t 2 = (3, 27), (Y 4 a2t = (Yt 2T = (Yt 2h)
m,n,r € N and a,b € k*

*g.162:(0)5102 = (0), (z™)*162 = (a™), (y")*=192 = (y"), (2")™102 = (27),

(@™ +ay") =1 = (2™, Y = (2™, y"), (3" + az")ee

= (2™ 4 ay™ + b7 )82 = (g™ )62 = (g™ 4 q2" y" + ba")rs162

= (2™, y" + az")E102 = (2™ + ay™, 2" )12 = (27 4 az”, y")ree

= (2™ y" 2 = (n,y,2"), (Y +az")e = (Yt +azt), (Yt ) =
(y",2") Vm,n,r € N and a,b € k*

*8.163:(0)*52% = (0), (™)1 = (2™), (y*)=1 = (y"), (27)03

= (& + a2’y = (g™, 27 = (2,27), (a7 4 ay”) e = (2 y")ee =
(@™, "), (Y" +az")™108 = (™ + ay” + b2")*81% = (y", 7)1

= (2™ 4 az", y" + b2")s 1 = (g y" 4 az" )16 = (™ + ay™, 2")*e163

= (2™ 4 az", y")rs16s = (2™, y", 2" )8 = (r,y,2") Vm,n,r € Nand a,b € k¥
xg.164:(0)5101 = (0), (z™)*s160 = (2™), (y")*s16t = (y"), (7)1 = (27),

(@™ + ayt)ies = (g, yn ) = (@, y"), (@ F ag”) e = (a7, 27)mae =
(@,27), (" + az")=100 = (2™ + ay” + bz")=100 = (y", 27)*s 10

= (2™ 4+ az", y" + b7 )10t = (2™, y" 4 a2 )0 = (2™ + ay”, 27)Fe e

= (™ +az" y")eres = (™ y" 2" )86 = (x,y,2") Vm,n,r € Nand a,b € k*
*g.165:(0)%19° = (0), (a™)™165 = (z™), (y")™105 = (y"), (27)"165 = (27),

(@™ 4 ay")=0s = (o™, y")men = (2, y"), (@™ + az") B = (2, 27 =
(@,27), (" + az" )1 = (y",27)=10° = (y, 2"), (™ + ay” + bz")™s10°

= (@™ + az", y" + b7 )15 = (7, y" 4 az")* S0 = (2™ + ay”, 27 )16
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= (2™ 4 az", y")Eres = (2™, y", 2" )86 = (x,y, 2" )V m,n,r € N and a,b € k*

{39. *8.166:<O)*8.166 — (O)’ (xm)*&me — (xm)’ (yn>*8.166 — (yn), (ZT)*8.166 — (ZT),

(xm + ayn)*s.ms — (xm’yN)*s.we — (Im7yn)7 (xm + aZT)*s.wG — (xm’zr)*s.wﬁ —

(:E, ZT)7 (yn + azr)*s.mﬁ — <yn, ZT)*&IGG — (yn’ ZT), (J}m + ayn + bzr)*s.mﬁ
= (2™ + az", y" + bz" )16 = (2, y" 4 az")*S16 = (2™ + ay”, 27 )66

= (2™ 4 az", y")reres = (g™ y" 2" )66 = (x,y, 2" )V m,n,r € N and a,b € k*

840. *8.167:<0)*8.167 — (0)’ (xm)*&w? — (.Tm), (yn>*8.167 — (yn), (z"')*&lG? — (ZT)’

™ + ay )*8.167 — (l»m’yn)*&ltﬂ — (xWL’yn)’ (Im + azﬁ‘)*&lm — (xm’zT)*SAl(S? —

(
(7). (" + @) = (g + az), (4, 2) 0 = (3, ),
(™ 4 ay™ 4+ bz" )17 = (x™ 4 az”, y" + b)) = (2™, y" + az")*eeT
= (@7 by, YN = (@7 e = (@ ) = (2,
m,n,r € N and a,b € £~
A1 g 16si(0)75 15 = (0), (@m)ims — (gm), (yr)sies = (y), () — (o),

2"V

(xm + ayn)*s.ms — (xm7yn>*8.168 — (C(Zm,yn), (:L'm + azr)*s.ms — (xm,zr)*s.lﬁs —

(xm,z’"), <yn + azr)*glag — (:L,m + ay” + bzr)*&lﬁg — (yn’ Zr)*&ws
= (xm + azr’yn + bzr)*g.ms — (xm’yn + az?‘)*g'ng _ (:Bm + ay",z’")*B-lﬁS

= (2™ 4 az", y")reres = (g™, y" 2"y = (x,y, 2" )V m,n,r € N and a,b € k*

849. *8.169:<O)*8.169 — (O)’ (Im)*&lw — (l’m), (yn>*&169 — (yn), (z"')*8.169 — (ZT)’

(27 + ay )*g 169 — (:L»m’yn)*s.mg — (l,m’yn)’ (ﬁm + az’!‘)*&l(}g — (l’m,ZT)*S'mg _
( r)’ (yn + aZT)*g.mg — (yn’zr)*s.wﬁ) — (y,ZT), (xm + ay” + bzr)*g_leg _

(l‘ + az" ,y + bz" )*s 169 — ( m,y" + az?“)*s.lﬁg — ($m + aynjzr)*&wg

= (2™ + az", y")rs1e0 = (2™, y", 2" )19 = (z,y,2")V m,n,r € Nand a,b € k*

843. *8'170:(0)*8.170 — (O)’ (xm)*&lm — (xm)7 (yn)*s.no — (yn)’ (ZT)*&NO — (ZT)’

(CIZ + ay )*8 170 — (xm’yn)*s.lm — (xmny)’ (xm + az?")*s.wo — (xm7z7")*8.170 —

(xm721“), (yn + CLZT)*SAI'?O — (yn7zr)*s.17o — (yn,Zr), (l‘m + ayn + bzr>*8.170 —

(™ 4 az", y" + bz )0 = (2™, y" + az2" )10 = (2™ 4 ay”, 2" )*s 170

= (2™ 4+ az", y")Ere = (2™, y", 2" )0 = (x,y, 2" )V m,n,r € N and a,b € k¥

844. *8.171:<0>*8.171 — (0)7 (xm)*&ln — (xm)’ (yn>*s.171 — (yn>7 (27’)*84171 — (ZT‘)7
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845.

846.

847.

848.

(@7 ay ) = (@ g = (), (a7 0z = (a7, ) =
(@™, 2"), (y" + az" )1 = (y" +az"), (y", 2")* 7 = (y", 2"),

(ac +ay”™ + b2" )T = (2™ 4 az”, y" + b2" )T = (2™, y" 4 a2 )

(@™ oy, ST = (@7 a2t ) = (@ gt ) (o, 2
m,n,r € N and a,b € £~

xga72:(0)207 = (0), (zm)=m = (2™), (y")r o= (y"), (7)o = (&),
(@™ + ay")=m = (27 yn)= e = (@ y"), (@7 + a2 = (2™ 4 az’),
(@™, 2"y = (2™, 27), (y" +az")™m = (™ +ay" +b2")0 = (y", 27)S =
(a: + a2, Yyt +b2") 2 = (2, Y 4 a2" )T = (a2 4 ay”, 27)T

= (2™ 4 az", y")Ee = (2™, y" 2" )82 = (x,y, 2" )V myn,r € N and a,b € k*
*g173:(0)07 = (0), (zm)=m = (2™), (y")=m = (y"), (7)™ = (@),
(@™ + ay")om = (27 Yty = (@ y"), (@7 4 a2’ = (2™ 4 az’),
(@™, 2" = (2™, 27), (y" 4 az")™m = (Y, 27)s 0 = (y, 27),

(™ + ay™ + bz")*173 = (2™ + az", y" 4 b2")*81T = (2™ y" + az")*E 1

(@™ oy, ST = (@7 a2t )R = (@ g, 2T (g, 2
m,n,r € N and a,b € k*

*ga7ai(0)20m = (0), (am)m = (2™), (yh)em o= (y), (7))o= (@),
(@™ + ay")=m = (@™ Yty = (@ y"), (@ + a2")ST = (2™ 4 az’),
(@™, 2r)samt = (2™, 27), (y" + az")sm = (y", )T = (Y 27,

(™ + ay™ + bz )1 = (2™ + az", y" 4 b2" )T = (2™ y" + az”)E T

= (2™ 4 ay", ") = (2™ + az", y")eE = (2™ y", 27 ) = (z,y, 2" )V
m,n,r € N and a,b € k*

*g175:(0)517 = (0), (a™)=m = (a™), (y")=rr = (y"), (27) = (),
(@™ + ay")ore = (27 Yty = (@ y"), (@7 + eSS = (2™ 4 az'),
(@™, 2" = (2™, 2"), (" 4 a2")sm = (Y 4 az”), (", 7)) = (Y, 27),
(™ 4+ ay™ + bz" )17 = (2™ 4 az”, y" + b2" ) = (27, y" + az" )T

= (2™ 4+ ay", 2" ) = (2™ + az2",y")e = (2™, y", ") = (x,y, 2" )V
m,n,r € N and a,b € k*
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849.

850.

851.

852.

853.

854.

s (0)7517 = (0), ()sime = (&), () = (3, ()

= (2™ 4 az")*e176 = (y" + az")*B16 = (2™ + ay” + b2" )16 = (g™ ") =
(y™, 2" ) 8176 = (2" 4az", y"+bz" )16 = (2 Y Haz" )86 = (M +ay™, 2")*176
= (a2, ) = (g, ) = (1, ), (57 o)

= (2™ + ay™), (z™,y")s176 = (2", y") Vm,n,r € N and a,b € k*
O = (0), @) = (@), ()T = (), ()T = (),
(™ + az" )17 = (Y + az")ST = (2™ + ay” + b2" )T = (g™, 2" )87 =
(4, 277 = (0, )T = (2 g )T = (a2
= (£ 4 az )T = (2 g, )T = (2,9, 27), (a7 @)

= (2™ + ay™), (z™,y")s77 = (2", y") V m,n,r € N and a,b € k*
ran(0)71 = (0), (&) = (@), () = (57), (7)o

= (y" Faz)ysm o= (yn 2T = (y,27), (@7 +ay")em = (@™ + ay”),
(™ yr)sams = (2™ y"), (™ +az" )BT = (2™ 4 ay” + b )T = (g™, 27 )ere
= (2™ 4 az", y" + b2" ) = (2 y" 4 az" )8 = (2™ + ay™, ")

= (2™ 4 az", y")rss = (2™, y", 2" ) = (2,y,2") Vm,n,r € Nand a,b € k*
*g179:(0)277 = (0), ()17 = (™), (y")=17 = (y"), (27)=17 = (27),

(@™ 4+ ay") s = (2™ +ay"), (", y" ) = (27, y"), (a7 + az")s

= (2™ 4 ay™ + b7 )81 = (™, 2") 1 = (2™ + az", y" + b )81 =

(™ Y+ az" )81 = (2™ +ay™, 27)0 = (2™ +az", y" )T = (2™ Yy, 27 )8
= (x,y,2"), (y" + az")s170 = (y", 2")s17 = (y,2") ¥V m,n,r € Nand a,b € k*
*g.180:(0)%150 = (0), (a™)™150 = (z™), (y")™s150 = (y"), (27)=10 = (27),

(@™ 4+ ay™)=m = (@™ 4+ ay”), (@™, y") =0 = (2™, y"), (¢ + az")se

= (2™ + ay" + bz")*8180 = (g™ 7)1 = (g 4 qz" y" + bz")*8180 =

(™ Yy az" )80 = (M ay”, 2" )80 = (M az”, y")SIs0 = (g™ Yy, 27)*s 180
= (x,y,2"), (Y"+az")s10 = (y" zr)y*s1s0 = (y" 2") ¥ m,n,r € Nand a,b € k*
*g.181:(0)2 180 = (0), (™)t = (a™), (y")= = (y7), (7)== (27),

(@™ +ay" )= = (2™ + ay”), (@7, y")E = (@™, y"), (3" + az")s

= (2™ 4+ ay” + bz" ) = (M, ) = (2™ 4 az", Yy + b ) =
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(lwm?yn_{_azr)*&wl — ($m_|_ayn’ ZT)*8.181 — (l»m+aZT’yn>*8.181 — (wmyyn’ZT)*S.lsl

= (z,y,2"), (y" + az")s18 = (y" + az"), (y",2")*ew = (y", 2") V. m,n,r € N

and a,b € k£~
855. *8.182:<0)*8.182 — (O)’ (l.m)*&lsz — (ZL’m), (yn)*&182 — (yn)’ (zr)*&lsz —
(.CEm + azr)*s.mz — (xm’ZT)*8.182 — (JZ,ZT), (ZL‘m + ayn)*&lsz — (.Tm + ayn)7

(xm7yn)*8.182 — (xm’yn)’ (yn+azT)*8.182 — (xm+ayn+bzr)*8.182 — <yn727’)*8.182 —
(ZEm + CLZT, yn + bzr>*&182 — (l‘m, yn + CLZT)*&1S2 — (ZEm + ayn7 ZT)*8.182 —
(™ 4 az", y")Eise = (g™ y" 2" )82 = (x,y,2") V m,n,r € N and a,b € k*
856. *8.183:<O)*8.183 — (O)’ (:L-m)*S.lSB — (Z‘m), (yn)*8.183 — (yn)’ (ZT)*8.183 — (27‘)’
(mm + ayn)*&183 — (xm + ayN)’ (xm7yn)*8.183 — (mm7yn)7 (xm + azr)*s.183 —
(gjm7 ZT)*8.183 — (5(;, ZT)’ (y" + azr)*&lss — (:)Sm + ayn + bz?”)*s.lss — (y”) ZT)*SAISS =
(l'm +az", y" + bzr)*s.lss — (xm’ Y+ azr)*s.lss — ($m + ay™, z?‘)*&ws _
(™ + az", y")ess = (o™ y" 2" )88 = (x,y,2") ¥V m,n,r € Nand a,b € k*
857. *8.184:<0)*8.184 — (0)7 (xm)*&lszx — (I‘m), (yn)*8.184 — (yn)7 (ZT)*8.184 — (27")7
(ZEm + ayn)*&184 — ({L‘m + ayn)’ (xm’yn)*&um — (xm,y”), (:L‘m + aZT)*8A184 —
(.CEm, zT)*8.184 — (1-7 ZT), (y” + azT>*8.184 — (y”’ Z”“)*84184 = (y’ ZT)’
(xm + ayn + bzr>*s.1s4 — (le + azr’yn + sz)*&lsz; — (xm’yn + aZT)*8.184 —
(ZEm + ayn’zr)*s.lszx — (l’m + azr,yn>*s.184 — (xm,yn7z7”)*8.l84 — (I7y721“) Y
m,n,r € Nand a,b € k*
858, a1 (01 = (0), (@) = (@m), () = @), () = (),
(@ 4 ay" )y = (@ ay), (@) = (@), (@7 e
(:Em, ZT)*8.185 — (J}, ZT)’ (yn + aZT)*8A185 — (yn’ ZT)*&IBS — (yn7 ZT),
(.Tm + ayn + bzr)*8.185 — (Jﬁm + &ZT7yn + bZT)*&lss — (:Bm,y" + aZT)*8.185 —
(@™ + ay”, 2")= = (@™ + a2yt )R = (2™t )RS = (2,y,27) Y
m,n,r € N and a,b € k*
870. *8.186:(0)*&186 — (0>’ (wm)*&w(s — (l‘m), (yn)*s,ls(s — (yn% (ZT)*SJSG — (ZT),
(mm + ayn)*&l% = (xm + ay”)? (mmvyn)*&l% = (mm,yn)’ (xm + azr)*g'lgﬁ =

(xm727')*8.186 — (LE,ZT), (yn + azr)*s.mﬁ — (yn + CLZT), (yn’zr>*s.1se = (y”jzr),
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860.

861.

862.

863.

864.

(J;m + ayn + bZT)*s.lsﬁ — (Z’m + azr,y” + bZT)*8.186 — (:Bm,y" + azT)*S.ISG —
(a:m + ayn’ZT)*s.l% = (xm + azr,yn)*&ms = ($m7ynvzr)*8'186 = (a;,y,zr) v
m,n,r € N and a,b € k*
*8.187:(0)*8.187 — (0)’ (xm)*&187 — (l’m), (yn)*8.187 — (yn)7 (ZT‘)*&187 — (21”)7
(‘Im + ayn)*&w? = (xm +ay”)7 (ajm?yn)*&m? = <$m7yn)’ (xm +azr)*8'187 =
(xm7 ZT)*8.187 — (wm’ Zr>, (y"—i—azr)*s-m — (xm_i_ayn_i_bzr)*s.m? — <yn7 ZT)*8.187 —
(™ 4+ az", y" + b2" )T = (2 Y 4 az" )BT = (2™ + ay™, 2" )T =
(™ 4 az", y")EsT = (2™ y", 2" )8 = (x,y,2") V m,n,r € Nand a,b € k*
*8.188:<O)*8.188 — (O)’ (:L-m)*S.lSS — (Z’m), (yn)*&ms — (yn)’ (ZT)*8.188 — (27‘)’
(@ +ay" ) = @ ay?), @) = (@), (@ e =
(gjm7 ZT)*8.188 — (SL’m, ZT), (yn + az"')*8.188 — (y"’ ZT)*S.lss = (y, Z’”)’
($m + ayn + bZT)*s.lgs — (xm + azT,y” + bZT)*&lss — (:Bm,y" + aZT)*s.lss —
(:Em + ayn,ZT)*S‘ISS — (xm + az?",yn)*s.uss — (xm,yn7z7')*8.188 — (m,y,zr) A4
m,n,r € N and a,b € k*
*8.189:(0)*&189 — (0)’ (mm)*&189 — (l‘m), (yn)*8,189 — (yn)7 (ZT)*&lsg — (21“)7
(a7 + ay"y= = (@™ + ay"), (@) = (@), (@ ) =
(™, 2" = (™, 2"), (y" 4 az")"s1 = (y?, 27)"s e = (y", 27),
(ZEm + ayn + bzr)*sisg — (ZL‘ + az” 7y + bz )*g 189 — (mm7y + az )*8.189 —
(J;m + ayn’ZT)*&lgg — (l‘m + aZT,yn)*s.lsg — ($m7yn7z7’)*8.189 — (x’y7z1“) \v4
m,n,r € Nand a,b € £~
*8‘19(]:(0)*8.190 — (0)7 (xm)*&lgo — (Im)’ (yn>*s.190 — (yn)7 (27’)*&190 — (Zr),
(@ 4 ) = (@7 4 ay), @7y = (@), (@7 ) =
(mm,zﬂ“)*s.mo — (xm7z7’)’ (y" + aZT)*s.lgo — (y” + (ZZT), (y"7 ZT)*&lgo = (y”’ Zr)’
™+ ay”™ + bz 8190 — (g™ 4 qz Y™+ bz 8190 — (o Y+ az 8.190 —

m mn b T\ * m ' n b T\ % m n T\ %
(:Em + ayn’ZT)*&lgo — (J}m + azf"yn>*8.190 — (xm’yn727")*8.190 — (x7y727”) A4
m,n,r € N and a,b € £~
*8.191:<O)*8.191 — (O)’ (xm)*&l&)l — (Z‘m), (yn>*8.191 — (yn)’ (ZT)*&lgl — (ZT),
(@ +ay" ) = @ ay?), @) = (@), (@ e =
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865.

866.

867.

368.
1063.
1258.

1259.

(@™ +az"), (2™, 2") 819 = (2, 2"), (Y + az") 19 = (2 + ay” + b)) =
(y", 2" )19t = (2" +az", y"+b2") 10 = (a7, y"+az")S 9 = (2" Fay”, 27)S90
= (™ +az" Yy = (2™ y" 2"y = (x,y,2") Vm,n,r € Nand a,b € k*
*8.102:(0)75292 = (0), (™)1 = (2™), (y")=1 = (y"), (27)=22 = (&),

(2™ + ag)em = (@7 o), (@) = (@), (7 4+ az)en =
(@ azr), (o, 2Ty = (@, 2), (0 = () = (g, 2)
(™ + ay™ + bz")*e192 = (2™ + az", y" 4 b2")*8192 = (2™ y" + az")*E102 =

(6™ + ayP, 2Ty = (@7 g = (o ) = (3,2 Y
m,n,r € N and a,b € k*

g (0)75 = (0), (&) = (@), () = (3), (7)o = (),

(@7 + gy = @ ay), (@ e = (@), (@ ey =
(6 4 a27), (™, 27y = (g7, 27, (7 a2t = (2 = (g, ),
(2™ + ay” + 02" )19 = (2™ 4+ az", Y 4 b2") 1% = (2™, y" + ") =

(™ 4 ay™, 2")s198 = (2™ 4 az", y")s18 = (2™ y", 2" ) = (x,y,2") V
m,n,r € N and a,b € k*

rsaags (0500 = (0), (27w = (27, (g = (), () = (30),

(@7 gy = ), g = (), (@ e =
(@™ baz), (27,27 = (7,2, (37 a2 o0 = (4 aa"), (g, 2 =
(Y™, 2"), (2™ 4 ay™ +b2" )19 = (2™ Faz", Yt b2 )19 = (2, y" +az” )0 =
(™ 4+ ay™, 2" ) = (a7 + aZ",y" ) = (2™ Yy 2T = (2,y,27) Y
m,n,r € N and a,b € k*

*g.195 through xg 3g9 see proof

*g 390 through xg ss4 see proof

*9:(0) = (a™)* = (x), (y*)*° = (&" +ay")” = (", y")" = (z,y"), (2")" =
(@™ 4+ az")* = (™, 2")° = (z,27), (Y" +az")® = (2" + ay” + b2")* =
(17,270 = (@7 + az g+ bT) = (2 g a2) = (7 ay, 2T =
(™ + az", y")0 = (™, y", 2")0 = (x,y", 2") ¥V m,n,r € Nand a,b € k*

i 0)1 = (0), (@700 = (@), (P = (@ ) = ) =
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1260.

1261.

1262.

1263.

1264.

(@, y"), (z7)0 = (&™ + az")t = (2™, 27)0 = (2,27), (y" + a2")" =

(@™ +ay™+b2" )01 = (y", 2")0 = (2" +az", Yyt +b2") 0 = (a7, y" +a’ )0 =
(™ +ay™, 2" )0t = (2" 4az", y" )0t = (™, y", 27)0 = (2, y", ") VY m,n,r €N
and a,b € £

jo(0)07 = (0), (272 = (1), (y7)2 = (& + ay)o2 = (2™, y)or =
(@, y"), (27)02 = (27), (&™ 4 a2")> = (2™, 27)2 = (2,27), (y" +az")? =
(2™ +ay™+b2")02 = (y", 2")02 = (2" +az", Yyt +b2")02 = (a7, y" +a )02 =
(" 4ay™, 2" )92 = (™ +az", y")*02 = (", y", 2")92 = (z,y", 2" ) Vm,n,r €N
and a,b € k~

g0 = (@70 = (@), () = () ()0 = (e =
(@, 2708 = (x,2"), (a™ +ay")*® = (@™, y")% = (2,9"), (y* + a2")* =
(2™ Hay™ +b2")* 03 = (Y, 2")03 = (2" Haz", y" +b2")03 = (2™, y" +az")d =
(™ +ay™, 2" )93 = (2" 4az", y")0s = (™, y", 27)03 = (x,y", ") Vm,n,r € N
and a,b € £~

ko (0)4 = (0), (274 = (2), (1) = (57), ()94 = (@™ + az")os =
(@™, 270t = (x,27), (@™ +ay™)ot = (@™, y") = (z,y"), (Y" +a2")* =
(@™ +ay™+b2" )04 = (y", 2")04 = (2" +az", Yyt +b2") 04 = (a7, y" a0 =
(x™+ay™, 2" )94 = (2™ +az", y")os = (2™ Yy, 2" )04 = (x,y™, 2" )V m,n,r €N
and a,b € £~

*9.5:(0)70% = (0), (&™) = (2), (y*)°° = (y"), (z7)° = ("), (z" +ay")e =
(@™, y" )00 = (z,y"), (&™ 4+ a2")0® = (27, 27)00 = (2,2"), (y" + a2")™ =
(™ +ay™+b2")*95 = (y", 2")05 = (a™4az", Yt +b2")*05 = (2™, y"+az" )05 =
(™ +ay™, 2" )95 = (™ +az", y" ) = (2™, y", 2" )05 = (x,y", 2")Vm,n,r €N
and a,b € k~

g0 = (0), (2790 = (&), (> = (), ()00 = (=), (2" -+ay)™e =
(@ )08 = (), (@ a2y = (20 = (), (0 =
(Y™, 2")o6 = (y", 2"), (2™ + ay™ + b2" )¢ = (™ + az",y" + b2")*06 =

(™ Yy + az" )6 = (2™ + ay™, 2" )00 = (2™ + az",y")*0os = (a™, y", 2" )96 =
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(x,y",2") V¥V m,n,r € Nand a,b € k*

1265, 2072077 = (0), (277 = (2), (5")7 = ("), ()7 = (27, (@™ ay")>7 =
(@5 = (), (@ 4 )T = (@207 = (), () =
(" +az"), (57, 27007 = (4, ), (@7 +ay" +b2T) 07 = (57 sty b )T =
(7 + a2 )07 = (2 4 g, )T = (@ 0 )T = (a2 =
(x,y™, 2") ¥V m,n,r € Nand a,b € k*

1266. 20,5(0) = (0), (275 = (), ()™ = (&7 + @y} = (27, y) =
(4", ()% = (& + 0z o5 = (2, 2700 = (2,2, (3" + az7)>* =
(2™ 4ay™ +b2")* 08 = (y", 27)08 = (2" a2, y" +b2")08 = (2™, y" +az") s =
(™ ay™, 2" )98 = (2" 4az", y") oS = (™, y", ") = (x,y", ") VY m,n,r €N
and a,b € £~

1267, x9.0:(0)* = (0), (z™)** = (™), (y")*° = (&™ + ay”)™* = (™, y")° =
(@,y"), (z7)0 = (2"), (@™ 4+ a2") = (2™, 27)° = (x,2"), (" + a2")*® =
(™ +ay"+02")99 = (y", 2")90 = (a™+az", y" +b2")00 = (27, y"+az" )0 =
(" 4ay™, 2" )90 = (™ +az", y")*o0 = (™, y", 2" )90 = (z,y", 2" ) Vm,n,r €N
and a,b € k*

1268. 20,100y = (0), (27220 = (&), ()0 = (), ()90 = (a4 o0 =
(@, 2530 = (2, 27), (@7 4 a0 = (7,720 = (2,47, (37 + a0 =
(2™ + ay™ 4+ bz" )10 = (Y, 2" )00 = (2™ + az”, y" + b)) =
(™, y" +az" )01 = (2" 4 ay”, 2")010 = (@™ 4 az",y" )00 = (™, Yy, 27)00 =
(x,y™, 2") ¥V m,n,r € Nand a,b € k*

1269, #o11:(0)11 = (0), (2™)*511 = (&™), ()11 = (y7), (%) = (27),
(™4 ay™)on = (2™, y" ) = (x,y"), (2" +az")0n = (2™, 27 ) = (x, 2"),
(y"+az")on = (2" +ay” +b2" )0 = (y", 2" )0 = (2" 4 az", y" + b2 )01 =
(™ y"+az" )0 = (2™ +ay™, 2" )01 = (M 4 a2,y = (™ y", 27 ) =
(x,y",2") V¥V m,n,r € Nand a,b € k*

1270. %9.12:(0)**> = (0), (2™)1 = (z™), (y")*r = (y"), (z7)** = (&),

(xm+ayn)*9.12 — (xm’yn)*giz — (x7yn)’ (xm_i_azr)*g‘lz — (mm727")*9.12 — (l’, ZT),
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1271.

1272.

1273.

1274.

1275.

(
(
(

yn + azr)*g,w — (yn,zr)*g.m — (y",zr), (Qfm + ayn + bZT‘)*g'lg _
xrm + azr’yn + bzr)*g,m — (xm’yn + az’r’)*g'lg _ (l‘m 4 ayn’zr)*g'u _

™+ azZ" Yo = (" y", 27)02 = (z,y", 2") Vm,n,r € N and a,b € kX

*9.13:(0)*913 — (0>7 (:L‘m)*g.w — (xm)7 (yn)*gas — <yn)7 (ZT)*9A13 — (zr)7

™ 4 qy™)*918 = (™, )13 = (g y" ™ 4 qz" ) = (g™, TV — (g ZT’
( y") (™, y") (z,y™), ( ) , :

(
(
(

PO Q) = (g ), (g ) = (), (e ay” o+ by
™ azZ" Yyt 4 02" )0 = (2™ y" + az")*0s = (2™ + ay™, 2")018 =

™4 az" Yo = (™ y", 2" )08 = (z,y", 2") Vm,n,r € Nand a,b € k£~

*9.14:(())*9.14 — (O)7 (l-m)*g.m — (:Bm), (yn)*9.14 — (xm—i—ay”)*g-“ — (xm’yn)*am

(
(
(
(

ﬂc,y”), (Zr)*9.14 — (ZT)’ (xm_'_azr)*g.m — (xmjzr)*g.m — (xm7 ZT), (y”+azr)*9‘14
xrm + ayn + bzr)*g.m — (yn’ Zr)*9414 — (:L.m + azrjyn + bzr)*glzl —
’Im?yn+aZT)*g,14 — ($m+ayn, ZT)*9'14 — ($m+azT’yn)*g,14 — (x.m’yn’ ZT)*9'14

z,y", 2") ¥ m,n,r € Nand a,b € k*

*9.15:(())*9.15 — (O)7 (xm)*g.w — (xm)’ (yn)*9.15 — <yn)7 (ZT‘>*9.15 — (ZT),

" 4q 915 — (o 9.15 — (p x"4az 9.15 — (o z 9.15 — (r z
( m yn)* ( m’yn)* ( 7yn)’( m r)* ( m’ r)* ( m’ 1")7

(
(
(

y”+az’“)*9<15 — (‘Im_‘_ayn_i_sz)*gw — (yn7z7“)*9.15 — (xm_{_aZT’yn_i_bZT)*s).ls
xm7yn+az’r)*g‘15 — (xm+ayn, ZT)*Q‘K’ — (Q:m—l-azr,y")*g‘“’ — (1;’rn’yn7 ZT)*Q‘K’

x,y", 2") ¥V m,n,r € Nand a,b € k*

*9.16:(0)"1¢ = (0), (&™)10 = (a™), (y")=1° = (y"), (") = (27),

(a:m_i_ayn)*gm — (xm’yn>*9.16 — (x7yn)’ (xm+azT)*9.16 — (xm, ZT)*9.16 — (xm’ ZT),

(
(
(

yn T CLZT)*Q‘IG — (yn,zr)*g.w — (yn’zr>7 (l’m 4 ayn 4 bZT)*g_16 —
™ + azrjyn + bzr)*giﬁ — (xmjyn + aZT)*gJG — (xm + aynyzr)*gjg —

™ azZ" Yyt = (" y", 27)0e = (z,y", 2") Vm,n,r € N and a,b € kX

*9.17:(0)*9.17 — (O)7 (xm)*g.w — (ZL‘ )7 (yn)*g.w — <yn)’ (zr>*9.17 — (ZT),

xm+ayn)*9.17 — (xm7yn)*g17 — (x,y”), (xm+azr)*9.17 — (Im, zT)*9.17 — ($m’ 27")7

(

(
(
(

Y+ az" )07 = (y" 4 az"), (y", ") = (Y, 2"), (™ 4 ay” + b)) =
2"+ az”, Yt + bzr)*g.n — (xm’yn + azr)*g.n — (xm + ayn7zr)*9,17 _

™+ azZ" Yy ) = (" y", 27)0T = (z,y", 2") Vm,n,r € N and a,b € kX
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1276.

1277.

1278.

1279.

1280.

1281.

*9.18:(0)01% = (0), (2™)18 = (a™), (y")01® = (2" +ay")o™ = (™, y")0 =
(z,y"), (z7)r = (27), (2™ +az") = (2™ 4 az"), (a7, 27)° = (2™, 27),
(Y +az" )01 = (2™ 4 ay™ +b2")* s = (y", 2" )0 = (2" +az", Yyt 4 bz")*o1s =
(@™ y" +az")or = (2™ ay”, 27)00 = (2 +az",y"t)or = (2™ Yt 2T) 0 =
(x,y™, 2") ¥V m,n,r € Nand a,b € k*

*019:(0)%020 = (0), (z™)1 = (a™), (y")r = (y"), (") = (2"),

(@M Fay™ )01 = (a™,y" )0 = (z,y"), (2" +a2")0 = (a"+az"), (2, 27)0
= (@™, 27), (y" + a2")0r = (@™ 4 ay" + b2")00 = (Y, 2")0 =

(™ + az", y" + b2" )9 = (2™ y" + az )*9 Y= (2™ 4 ay", 2")*019 =

(™ + az" y")or = (2™ y", ") = (z,y", 2") Vm,n,r € Nand a,b € k¥
*0.20:(0)20 = (0), (z™) = (z™), (y" ) = ("), (z7)° = (&),

(@™ +ay") o0 = (2™, y")0 = (z,y"), (2" +a2")*>0 = (2" +az"), (™, 2")0
= (&, 2"), (" + ") = (Y, 27) 00 = (Y, 2), (@ 4 ay” 4 b2") =

(@™ + az", y" + b2")*00 = (2™, y" 4 az")*020 = (™ + ay”, 27)020 =

(™ 4+ az", y")r o0 = (2™ y", 2" )90 = (z,y", 2") Vm,n,r € N and a,b € k*
*0.21:(0)02 = (0), (zm)2r = (a™), (y") = (y"), (7)o = (27),

(@M Fay") o = (2™, y" )0 = (2, y"), (2" +az" )0 = (2" +az"), (a7, 27)0
= (@™, 2"), (y* +az")o? = (y" +az"), (y*, ") = (y",2"),

(@™ 4+ ay™ + bz") 2 = (2™ + az",y" + b2")02 = (2™, y" + az")0 =

(™ +ay™, 27)0 = (M taz", y") o = (2™ Yy, 20 = (z,y", 2" ) Vm,n,r €
N and a,b € k£~

ko2 (0)0% = (0), (2™ = (a7), (y7)02 = (), ()0 = (a7 az")o =
(2, 2")2 = (2, 27), (2" +ay" ) = (2™, y")02 = (a7 y"), (" +a2’) =
(2™ + ay™ 4+ bz" )02 = (Y, 202 = (2™ + az", y" + b)) =

(™ y"+az")o022 = (2™ +ay™, 2" )02 = (M 4 a2, y")ro2 = (2™, y", 27 )02 =
(x,y",2") V¥V m,n,r € Nand a,b € k*

oz 0)2 = (0), (270 = (&), ()0 = (), (27)"0% = (),

(@ by = ()0 = (), (a0 = (@ )0 = (0,),
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1282.

1283.

1284.

1285.

1286.

(Y +az")*2 = (2™ +ay” +b2")*023 = (y", 270 = (2™ 4 az", y" + b)) =
(™, y" +az" )0 = (2" 4 ay”, 2")0B = (@™ 4 a",y") 0B = (2™, y", 27)0B =
(x,y™, 2") ¥V m,n,r € Nand a,b € k*

ro (02 = (0), (2o = (&), (y7)> = ("), (7)o = (&7),
ey — (a7, ) — (), (a2} — (a7, ) — (3, 27),
(y" +az")ot = (y", 27)02 = (y", 27), (2™ + ay” +bz")0 =

(™ 4+ az", y" + b2" )92 = (2™ y" + az")*0 = (2™ + ay™, 2" )0 =

(™ 4 az", y")ron = (2™ y", 2" )9 = (z,y", 2") Vm,n,r € N and a,b € k*
oz 0)5 = (0), (270 = (&), ()02 = (), (27)0% = (),

(@ a0 = (e o = (), (a0 = (@, 2 = (2, ),
(Y™ + az")02 = (y" + az"), (2™ + ay™ + b2")* 92 = (2™ + az", y" + b2")*0B =
(@™, y" +az" )0 = (2" ay”, 2")0 = (2™ 4 az",y" )0 = (™, y", 21)0 =
(x,y™, 2"), (y*, 2")*2 = (y*,2") V m,n,r € Nand a,b € k*

*0.26:(0)20 = (0), (z)2 = (a™), (y")> = (y"), ()22 = (2"),

(@™ + ay")o= = (@™ y")0r = (@™, y"), (@™ + az")0® = (a™ )0 =
(@™, 27), (Y™ + az" )% = (™ 4+ ay™ + b2")*% = (y", 2")0% =

(@™ +az", y" 4+ b2")*02% = (2™, y" 4 az")*02 = (™ + ay”, 27)0 =

(™ + az" y")ow = (2™ y", 2")*0% = (z,y", 2") Vm,n,r € Nand a,b € k*
*9.27:(0)027 = (0), (x™)*027 = (a™), (y")*" = (y"), (z7)** = (&),

(@™ + ay")om = (@™, y")0r = (2", y"), (@ + az")0 = (a7, )0 =
(@™, 27), (y" +a2")o2 = (y", 27)7 = (y", 2"), (2™ + ay" + b2")**" =

(™ + az", y" + b2" )92 = (2™ y" + az")*0 = (2™ + ay™, ") =

(™ + az", y")o2m = (2™, y", ") = (z,y", 2") Vm,n,r € Nand a,b € k*
*0.28:(0)0% = (0), (zm)2 = (a™), (y")> = (y"), (") = (2"),

(@™ + ay")ox = (2™, y")e = (@T,y"), (@ + af)O = (a7, 27)0n =
(@™, 2"), (" + az")02 = (y* + az"), (y*, ") = (y",2"),

(@™ + ay™ + bz")*2 = (2™ + az", y" + b2")9B = (2™, y" + az" )0 =
(x™4ay™, 27)* 0 = (2" +az", y" )0 = (a™, y", 2" )0 = (z,y", 2" )V m,n,r €
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1287.

1288.

1289.

1290.

1291.

N and a,b € k*

o 0)2 = (0), (279 = (&), ()0 = (), (27)0 = (),

(@74 oy = (2, gy = (5, (@7 4 a0 = (7 4 ),
(Y"+az") 92 = (2™ 4 ay" +bz" )02 = (y", ") = (2™ +az", y" +b2")0 =
(@™, y" +az" )02 = (2" +ay”, 2")0 = (2™ 4 a2",y" )0 = (2™, y", 21)0 =
(x,y™, 2"), (™, 2")2 = (2™, 2") V m,n,r € Nand a,b € k*

*9.30:(0)%% = (0), (z™)0 = (a™), (y")® = (y"), (") = (2"),

(57 + ayyos0 = (a7, )0 = (& ), (&7 + a2) = (57 + az'),

(y" +az")o0 = (y", 27)% = (y", 27), (&7 4 ay” +bz")0%0 =

(™ + az", y" + b2")980 = (2™ y" + az")*00 = (2™ + ay™, 2" )30 =

(@ + azr, ) = @y, ) = (o, 2), (@7 ) = (27 2)
m,n,r € N and a,b € k*

ross(0)9 = (0), (2795 = (&), ()% = (), (1) = (),

(@7 4 ayysn = (&) = (2", (@7 4 a9 = (a7 + ),

(Y™ + az")o3t = (y" + az"), (™ 4+ ay™ + bz")*3 = (2™ + a2, y" + b2" )03 =
(@™, y" +az" )03 = (2" ay”, 2")03 = (2™ 4 az", y" ) = (™, Yyt 21O =
(x,y™, 2"), (2™, 28 = (2™ 2"), (y",2")o% = (y",2") V m,n,r € N and
a,b € k*

o (059 = (0), (279 = (27), (57552 = (), (27)"9% = (" +azr) 2 =
(™, 2" )982 = (x,2"), (a™ 4+ ay™)™*32 = (2™ + ay"), (y" + az" ) =

(™ + ay™ + bz")*082 = (y", 2")*982 = (2™ + az”, y" 4 b2")*0s2 =

(@, +a2 )P = (@ ay?, PP = (@0, ) = (g, ) =
(x,y™, 2"), (™, y")os2 = (2™, y") V m,n,r € Nand a,b € k*

s 0)9 = (0), (279 = (&), ()% = (), (1) = (),

(™ + ay™)*o3 = (2™ + ay™), (2™ 4 az")*938 = (a™, ") = (z,2"),
(y"+az") o3 = (" 4ay" +b2" )38 = (y", 2")*938 = (2™ +az", Yy +bz")*088 =
(@™, y" +az" )03 = (2" 4 ay”, 2")03 = (@™ 4 a",y" )0 = (™, y", 270 =
(

Yy 2", (™ yt)oss = (2™, y") VYV m,n,r € Nand a,b € k*
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1292. *9.342(0)*9'34 = (O), ($m)*9'34 = (l’m), (y")*9'34 = (yn)a (ZT)*Q'M = (ZT)7
(ajm + ayn)*9.34 — (.Z‘m + ayn)’ (zm + azT)*9.34 — ($m, ZT)*9.34 = (;1;’ 27’)’
(yn + CLZT)*9‘34 — (y”, ZT)*9.34 — (y”’ ZT>7 (I‘m + ayn + bz?“>*9.34 =
(mm + CLZr,yn + bZT)*g‘M — (l.mjyn + aZT)*9A34 — (xm + ayn7zr)*934 —
(:Em + azr’yn)*g,M — (xm7yn,z'r)*g'34 — (Zlﬁ,yn,ZT), (xm’yn)*g'm — (xm’yn) v
m,n,r € Nand a,b € k*
1293. *9.35:(0>*9A35 — (0)7 (xm)*9.35 — (:L’m), (yn>*9.35 — <yn)7 (27“)*9‘35 — (ZT),
(Im + ayn)*gss - (l‘m + ayTL)’ (:L.m + aZT)*9.35 — (:L,m’ 27")*9‘35 = (;p’ zr)’
(yn + azr)*g.st’» — (yn + CLZT>, (a;m + ayn + bzr>*9.35 — (.Z‘m + &27” yn + bzr>*9.35 =
(@™, y" +az") s = (2 +ay", 2")0B = (2" a2, y")0® = (@™, y", )0 =
(x,y™, 2"), (2™ y")*oss = (2™, y"), (y™, 2")935 = (y",2") V m,n,r € N and
a,be k*
1294. *9.36:(0>*9.36 — (O)7 (xm)*g.sa — (xm)’ (yn)*9.36 — <yn), (Z’V’>*9.36 — (ZT),
(™ + ay™)* 3 = (2™ + ay™), (2™ + az")*0 = (a™, 2")*036 = (™, 2"),
(Y"+az" )96 = (2™ 4 ay” +bz")*36 = (y", 2" )96 = (2™ +az", y" 4 bz" )06 =
(£, g +azT)530 = (27 ay, 270 = (@4, gy = (a7, g, ) =
x,y", 2", (™ y" )03 = (2™, y") VYV m,n,r € N and a,b € k*
Yy Yy Y
1295. *9.37:(())*9‘37 — (O)7 (l‘m)*9'37 — (:L‘m), (yn>*9.37 — <yn)7 (ZT)*9A37 — (ZT),
($m + ayn)*g_37 — (l.m _|_ ayn)’ (:L.m + azr)*g,;w — (:L.m’ zr)*g,37 — (xm’ ZT),
(yn + aZT)*9‘37 — (y”, ZT)*9.37 — (yn’ 27’>7 (l’m + ayn + bzr)*9.37 =
(xm + CLZT,yn + bzr>*g_37 — (xmjyn + azr>*9_37 — (Im + ayn’zr)*g,m —
(mm + azr’yn)*g_?q _ (xm’yn,zr)*g,m — (x’yn’zr)7 (xm’yn)*g,gq — (xm7yn) \v/
m,n,r € N and a,b € £~
1206, 3 (0)"235 = (0), (&™) = (2m), (y)2 = (y7), (=7} = (7),
(2™ + ay™)* 3 = (2™ + ay™), (2" + a2")*0 = (2™, 2")*03 = (2™, 2"),
(yn + alzr)*ggg — (yn + CI,ZT),(iL'm + ayn + bzr)*ggg — (:Em + CI,ZT,yn + bzr)*gg,g —
(&7, g +azT)55 = (27 ay, 270 = (@, gy = (a7, g, ) =
(

x? ynJZT)7 (xm7yn)*9‘38 = (xm7yn)7 (yn7 Zr>*9.38 = (yn7z7‘) v m7 n7r E N and
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1297.

1298.

1299.

1300.

1301.

a,b € k>

o095 = (0), ()9 = (&), ()% = ("), ()05 = (1),

(2™ 4+ ay™)*® = (™ + ay™),(z™ + az" )0 = (2" 4+ az2"), (y* + a2")0 =
(™ 4 ay™ + bz")*930 = (y", 2")930 = (2™ + a2, y" + b2" )03 =

(™, y" +az" )00 = (2™ +ay”, 2")030 = (@™ 4 az",y" )0 = (™, y", 270 =
(x,y™, 2"), (x™,2") 930 = (2™ "), (™, y")% = (2™, y") ¥V m,n,r € N and
a,bek”

#9.40:(0)*040 = (0), (2™)*10 = (™), (y")% = (y"), (z7)* = (27),

(@™ 4+ ay™)* 0 = (2™ + ay"), (2™ + az" )0 = (2™ 4+ az"), (Y" + az")00 =
(y™, 2" )40 = (y™, 2"), (™ 4 ay™ + bz")*040 = (2™ + az",y" + bz")00 =
(@™, y" +az")0%0 = (z" +ay”, ") = (2" 2", y") O = (2, ", 270 =
(x,y™, 2"), (™, y")oo = (™ y"), (™, 2")2%0 = (2, 2") ¥V m,n,r € N and
a,b e k>

x9.41:(0)*11 = (0), (z™)*o1 = (2™), (y") 1 = (y"), (27)<1 = (27),

(@™ + ay" )M = (2™ +ay"), (27 + a2")0 = (2 +az"), (Y 4 a2")0n =
(y"+az"), (2™ 4ay™ +bz" )4 = (2™ +az", y" +bz" )04 = (2™, y"+az" )0 =
(@™ +ay™, 2") 00 = (2™ 4 a2’ Yt = (27 2T = (2, 27,

(@™, y")yos = (2™, y"), (@, 27) o = (2™, 27), (y", 2 = (Y, 27)
Vm,n,r € Nand a,b € k*

ro () = (@) = (2), ()0 = (a7 4 ag) = (@) =
(o), (1) = (@™ 4 @z = @) = (27, (4 + )0
(2™ 5 + a2y = (gt az"), (5t eyt bR = (a4 b,
(y", 2" )92 = (™ 4az", y"+b2" )92 = (" 4ay”, 2" )02 = (M 4az", y" )02 =
(™, y™, 2" )94 = (x,y", 2") ¥V m,n,r € Nand a,b € k*

a0 = (0), (@) = (@), ()™ = (@ + ay) e = (@, 7)o =
(@), ()25 = @+ azr)os = (@) = (,2), (" +az)o =
(™ y" + az")o% = (24" + az"), (@™ + ay™ + bz2")0 = (z,y" + L27),

(yn72r>*9,43 — (Im+azr7yn+bzr)*g,43 — (xm_i_ayn,,zr)*g,zm — (xm_i_azr’yn)*g‘@ —
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1302.

1303.

1304.

1305.

1306.

1307. *9.49:(0)*9.49 — (())7 (xm>*9.49 — (xTn), (yn)*9.49 — (xm+ayN>*9.49 — (:Em7 yn)*9449

(™, y", 27043 = (z,y",2") ¥V m,n,r € N and a,b € k*
*9.44:(())*9.44 — (O)’ (l.m)*9.44 — (l’), <yn)*9444 — (xm 4 ayn)*9.44 — (xm’yn)*g‘u _
(@, y"), (z1) 08 = (27), (& +az")os = (2™, 27) 0 = (z,27), (y" +az")os =

($m7yn + a?ﬂ")*&u = (g}7yn _f_azr)? (:Em +ayn + bzr)*9A44 — (x,yn + gzr%

(yn7z7“)*9.44 — (a:m+az’“,y"+bz’")*9-44 — (:Um—{—ay”,z’“)*g"“ — ($m+azr’yn)*g.44

(xm,y”, ZT)*9‘44 — (l‘, yn’ ZT) 4 m,n,r € N and a, b e kX
*9.45:(0>*9A45 — (Im)*g.z;s — ($>7 (yn)*9.4s — (yn)7 (ZT)*9,45 — (J]m + aZT)*9.45
($m7zr)*9.45 — (l‘, ZT)7 (xm +ayn)*9,45 — (xm’yn)*g.% — (x’yn)’ (yn + azr)*g% —

(ajm,yn + azr)*sms = (.Z‘,y" + aZT)7 (a:m _'_ayn + bzr)*9_45 — (:L‘,y" + gzr)’

(yn72r>*9.45 — (xm+azr7yn+bzr)*g.45 — (xm_i_ayn,zr)*g,@ — (xm—kaz’”,y”)*g%

(xm,y", Zr)*9‘45 — (gj’yn’ ZT) 4 m,n,r € N and a, b e kX

*9'46:(0)*9.46 — (O)7 (l-m)*9.46 — ($), (yn)*9.46 — (yn)’ (ZT)*9.46 — (l"m + CLZT)*Q"‘G

(xm7 27')*9.46 — (l‘, ZT), (xm + ayn)*g.m — ((Em’ yn)*9.46 — (l‘, yn)’ (yn + aZT)*9446

(xm7yn -+ CLZT)*QAG = (g;,yn + CLZT)7 (xm + ay” + bZT)*QAG — (Lyn 4 SZT);

(yn7zr)*946 — (xm_i_azr’yn_’_sz)*gAG — (I.m_’_ayn7zr)*9.46 — (xm_f_azr’yn)*g% —

(™, y", 2" ) 06 = (2,9, 2") ¥V m,n,r € N and a,b € k*
*o.47:(0)7247 = (0), (a™)47 = (x), (y")*+ = (y"), (2")"47 = ("),

(xm+ayn)*9.47 — (xm7 yn)*gu — (l‘, yn)7 (Im +az7")*9‘47 — (:Em, ZT)*9.47 — (:L', Z?”)7

(Y™ + az")7 = (2™ y" + az")o = (x,y" + az"), (@™ + ay™ + b2")0 =

(a:,yn + gzr)a (yn’ ZT)*Q‘M =
(™ + az", y") o4 = (2™, y", 2")0 = (z,y", 2") Vm,n,r € Nand a,b € k¥

(xm + azr’yn + bz'r)*g,u — (a:m + ayn7zr>*g,47

*9.48:(0)*948 — (0>7 (xm)*9.48 — (l’), (yn)*9.48 — (yn), (ZT)*9.48 — (;ﬂ“))

($m+ayn)*9.48 — (ZBm,yn)*g"‘s — (x’y")’ (ﬂfm—FaZT)*‘g-‘lS — (ajm?ZT)*QAS = (;[;’ Zr)’

(y" 4 az") o1 = (y" +az"), (2™ + ay™ + bz")*0 = (x,y" + 227, (y", 27)ro
(yn’zr)’ (xm + CLZT,yn + bzr)*gAs — (mm + ayn’zr)*g,zlg — (xm + az?”Jyn)*g‘zlg

(™ y", 2" = (x,y", 2", (2™ Yt 4 az")0 = (2, y" 4+ az2") ¥ myn,r €

and a,b € k*
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( ) ( )*9.49 — (ZL‘m + aZT)*9.49 — (gjm,ZT)*QAQ — (ZL‘,ZT), (yn + aZT)*9.49 —

(33 7y + az )*9.49 — <x7yn + aZT), (l‘m 4 ayn + bZT)*9‘49 — (:L‘,y" + gzr)’

(y",z )*9 49 — ( m+azr7yn+bzr)*g.49 — (l,m+ayn7zr)*9,49 — (xm_i_azﬁyn)*g%;g —

(™ y", 2" )94 = (z,y™, 2") ¥V m,n,r € N and a,b € k*

1308. *9'50:(0)*9.50 — (O), (xm)*g.so — (xm% (yn)*g.so — ($m+ayn)*9,5o — (xm’yn)*Q.SO —
(J?,yn), (ZT)*9450 — (Z?")7 (xm+azr>*9.50 — (xm7zr>*9.50 — (SL’,ZT>, (yn_i_azr)*gﬁo —
(xm’yn + azr)*g.so — (x’yn + azr)7 (ZL’m + ayn + bzr)*ta‘so — (x’yn + gzr)7
(yn7zr)*950 — (l‘m—}—azr,yn—{—sz)*g'so — (wm+ayn7zr)*9.5o — (l,m_}_azr’yn)*gw —
(™, y", 2" ) o0 = (2,9, 2") ¥V m,n,r € N and a,b € k*

1309. *9.51:(0)*9.51 — (O), (xm)*9451 — (xm)7 <yn)*9451 — (yn)7 (Zr)*g.m — (xm+az7")*9<51 —
(xm7zr)*9.51 — (ZL’, ZT), (xm _’_ayn)*gﬁl — (xm’yn)*am — (x’yn)’ (yn + azT)*gﬁl —
(J:m?yn + azr)*gﬁl — (x,yn + CLZT), (mm + ayn + bZT)*9'51 — (l’,yn + gzr)’
(yn,zr)*s).sl — (xm_'_azr,yn_i_bzr)*g.m — (xm_i_ayn?z;r)*g.m — (xm_'_azr,yn)*g‘m —
(xm,y", 27”)*9‘51 — (ZL’7 yn7 ZT) v m,n,r € N and a, b e kX

1310. *9.52:(0)*952 — (O), (xm)*9.52 — (xm)7 (yn)*gﬁg — <yn), (Zr)*gfg — (Zr)7
($m+ayn)*9.52 — (wm’yn)*g.m — (x’yn)’ (asm—l—azr)*"ﬁ? — <$m7ZT)*9'52 — (.CL’, ZT),
(yn + azr)*g.sﬂ — (xm’yn + azr>*9,52 — (x’yn + CLZT), (Q?m + ayn + bzr)*g_g,g —
(2" + L"), (57, 27)0% = (2 4+ az",y" + by = (@ 4 ay®, 2T} =
(™ 4+ az", y")ros2 = (2™ y", 2" )95 = (x,y™, 2") Vm,n,r € N and a,b € k*

1311. *9.53:(())*9.53 — (O)7 (zm)*gss — (xm)’ (yN)*9.53 — (yn)’ (27’>*9.53 — (ZT),
(xm+ayn)*9.53 — (Im,yn)*9‘53 — (Jf,yn), (l,m_i_azr)*gﬁg — (xm7z7")*9.53 — (% ZT),
(yn_’_aZT)*gf)S — (yn —f-azr), (xm —I—ay” —i—bzr)*9‘53 — (x,y” + gzr)’ (yn’ ZT)*9A53 —
(yn,zr)’ (l.m + azr’yn + bzr)*g.ss — (xm + ayn,zr)*g,sg — (l.m + azr’yn)wﬁs —
(™ y™, 2" )95 = (z,y", 2"), (™, y" + az")*5 = (z,y" +az") ¥V m,n,r € N
and a,b € £~

1312, %0,56:(0)05¢ = (0), (a™)05¢ = (a™), (57054 = (2™ +ay") = (™, ") o5t =
(a:,y”), (Zr)*9.54 = (ZT), (IBm—G—CLZT)*Q'M = (xm’ ZT)*9.54 _ (xm’ ZT), (yn+azr)*9_54 _
(])m,yn —+ CLZT)*Q‘M = (x,yn + CLZT)7 (g;m + ayn 4 bZT)*Q‘M — (x7yn 4 gzr)’
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1313.

1314.

1315.

1316.

1317.

(yn,zr)*9.54 — (l.m_‘_azr’yn_{_bzﬂ“)*g,w — (xm+ayn7zr>*9.54 — (l.m_‘_azr’yn)*g,m —
(™, y™, 2" )95 = (x,y", 2") ¥V m,n,r € Nand a,b € k*
*9‘55:(0)*9.55 — (O)7 (xm)*ass — (:Em), (yn)*9.55 — <yn)7(ZT)*9.55 — (ZT),
(:Em—i—ayn)*9'55 - (xm’y")*gsk’) — (x7y")’ (:Lvm_}_aZT)*gA% — (:L,m’ 2”")*955 = (xm’ 27")7
(yn + az¢”)*9.55 — (xm’ y” + az"')*Q.BS — <x7y” + (ZZT), (xm + ay” + bZT)*9.55 =
(x,y™ + gz’"), (y", 2" )9 = (2™ 4 az", y" + bz")*05 = (2™ + ay”, 2")0H =
(™ + az", y")oss = (2™, y", 2")0 = (z,y", 2") Vm,n,r € Nand a,b € k*
*g.56:(0)*2¢ = (0), (z™)* 50 = (™), (y")*0 = (y"),(2")** = (2"),
(a:m—i—ay”)*?’“ — (Z‘m,yn)*9~56 — (x’yn% (xm+azT)*9.56 — (xm’ ZT)*9.56 = ($m’ Z”)’
(yn + azr)*9.56 — (yn —+ CLZT), ($m + ayn + bz"")*9456 — (x) y” —+ 327’% (yn7 ZT)*9‘56 =
(yn, ZT)’ (:L‘m + CLZT, yn + bZT)*gf)G p— (C(}m + ayn, ZT)*9.56 p— (.I‘m + CLZT, yn)*9.56 =
(™, y", 2" )95 = (z,y", 2"), (™, y" + az")* = (z,y" +az") ¥V m,n,r € N
and a,b € k£~
*9.57:(0)*9.57 — (O)7 (xm)*s;‘s? — (xm)7 (yn)*9.57 — (xm+ayn>*9.57 — (xm7 yn)*gm —
(:E’yn)’ (Zr)*g,m — (zr)7 (:L,m _}_azr)*gAm — (xm —f-CLZT), (l‘m,ZT)*g‘m — (mm’zr)7
(yn + azr)*9.57 — (azm, y” + azT)*g.m — <x7y” + (IZT), (xm + ay” + sz)*g.m —
(x,y™ + gz’"), (Y™, 2" )57 = (2™ 4 az", y" + bz")*05T = (a™ + ay”, 2")0T =
(™ + az", y")osT = (2™, y", 2")05 = (z,y", 2") Vm,n,r € Nand a,b € k*
*g.58:(0)"%% = (0), (z™)* 58 = (™), (y")*= = (y"),(2")"* = (2"),
(mm_{_ayn)*g.ss — (l’m, yn)*gss — (3;’ y”)’ (xm+azr)*9»58 — (:cm—l—azT), (l‘m, ZT)*9.58
= (2™, 2"), (y" + a2")"%® = (2™, y" + a2")® = (z,y" +az"),
(2™ + ay™ + bz")* 058 = (z,y" + L27), (Y, 27)*05 = (2™ + az", y" + b2 ) =
z"+ay"”, 2" )58 = (2" +az", y" )8 = (2™, y", 2" )98 = (x,y", 2 m,n,r
m n T\ % m ' T\ * m n T\ % n 'S v
N and a,b € k*
*9.59:(())*9‘59 — (0)7 (xm)*sa.sg — (:L’m), (yn>*9.59 — (yn)7(z1”)*9.59 — (ZT),
(mm+ayn)*g59 — (:L‘m’yn)*gss» — (x’yn)’ (xm+az7“)*9‘59 — ($m+azr)7 (xm’ZT)*Qﬁg
— (xm’z'r’)’ (yn + CLZT)*Q‘59 — <yn 4 az'r), (:L.m 4 ayn 4 bZT)*9_5g — (l.’yn 4 gzr)’
(yn7 Z?")*9.59 — (y"7 ZT)7 ($m +az", yn + bzr)*g.w — (g;m + ayn7 27")*9.59 =
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($m + az?"’yn)*gﬁg — (xm’yn’ Zr)*g,g,g — (:E’yn’ ZT), (ajm,yn + azr)*g,g,g —
(x,y" +az") ¥V m,n,r € Nand a,b € k*
1318. *9‘60:(0)*9.60 — (O)7 (xm)*g.so — (xm)7 (yn)*9.60 — <yn)’(z7")*9.60 — (xm_i_azr)*gﬁo —

(mm7z1”)*9.60 — (l‘, ZT), (xm+ayn)*9.60 — (xm7yn)*960 — (xm’yn)7 (yn_’_azr)*gﬁo —

(™ y™, 2" )96 = (z,y" 2") ¥V m,n,r € Nand a,b € k*

1319. xg.61:(0)*" = (0), (™) = (2™), (y")0 = (y"),(2")*% = (27),
(mm_i_ayn)*wﬂ — (:L-m7yn>*9.61 — (xm’yn)’ (mm_i_azr)*gm — (:Em?Z"')*Q.fSl — (.1', 27‘)’
(y" + az")*o6t = (2™ y" + az")* = (x,y" + az"), (2™ + ay" + bz")*o0L =
(Z)S, yn + LQLZT‘)’ (yn’ 27”)*961 = (Im + az", y" + bZT‘>*9A61 = (xm + ayn7 ZT)*9A61 —
(™ + az", y")oor = (™, y", 7)o = (z,y", 2") Vm,n,r € Nand a,b € k*

1320, x0 (025 = (0), (57)252 = (&), ()52 = (), (2> = (7).
(xm+ayn)*9'62 — (xm’y’IL)*g_sQ — (xmjyn)7 (xm_i_azT)*g‘Gg — (xm727”)*9,62 — (x7 ZT‘)7
(4" + )0 = (4 + az"), (a7 + ay® +b2T) 0 = (3, + Lar), (g, 270 =
(47, 7). (@™ + @27,y + bT)eE = (2 4 ay, Y = (a7 4 0ty —

(™ y™, 2" )96 = (z,y", 2"), (™, y" + az")* = (z,y" +az") ¥V m,n,r € N

and a,b € £~
1321. *963:(0)*63 = (0), (x™)*63 = (™), (y™)* = (y"),(2")*3 = (27),
(a:m + ayn)*g.63 — (xm’yn)*g.es — (:Um,y”), (l‘m + aZT)*9.63 — (xm’ Z"')*9463 —

(™, 27), (Y"+az")96 = (2™ y" +az" )08 (x, y" +az"), (2™ + ay” 4+ bz" )63 =

(2, y" + 227), (y", )0 = (2™ + az’, g + 0208 = (2 + ay”, 2" =

(™ + az", y") o6 = (2™, y", 2" )98 = (z,y",2") Vm,n,r € Nand a,b € k*
1322. *9.64:(())*9.64 — (O)7 (xm)*9.64 — (xm)’ (yn)*9.64 — <yn)’(z7")*9.64 — (Zr),

(:Em + ayn)*gfm — (I»m7yn)*9.64 — (me,yn), (xm + aZT)*9.64 — (xmjzr)*gﬁz; —
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1323.

1324.

1325.

1326.

1327.

(x,y" 4+ az") ¥Vm,n,r € Nand a,b € k*

*9.65:(0)7> = (0), (&™) = (27), (y") = (y"),(z7) = (),

(@™ 4 ayss = (&) = (2, y"), (@7 4 a0 = (@7 + ),

(2, 27y = (27,27, (4 + a2 ) = (5 g+ a2} = (o, + a2,
(2™ + ay™ 4+ b2")*06 = (z,y" 4+ 227), (y", 2")0% = (2™ + az", y" + b")*0e5 =
(™ +ay™, 27)0e = (2™ +az", y")oss = (™ y", 2" )0 = (z,y", ")V m,n,r €
N and a,b € k£~

*9.66:(0)00 = (0), (2)00 = (™), (y") = (y"),(z7) = (27),

(@™ + ay™ ) = (o™, y")o0e = (2™, y"), (3 + az")000 = (2 + az2”),

(™, 2R = (™, 2"), (Y" + az" )0 = (y" + az"), (™ + ay” + bz")*0e0 =
(2, y"+327), (", 27) 00 = (y",27), (@™ a2, y" +b2")" = (2" +ay", 2") oo
= (@ a g = (g ) = (), (2 ez =

(x,y" +az") ¥V m,n,r € Nand a,b € k*

roari(0)57 = (0), (27957 = (&™), ()27 = (47),(7) = (&7 +az7) > =
(@, 2")o0m = (2, 27), (@™ + ay")>o" = (2™ + ay"), (7, y")0 = (27, y"),
(Y™ + az" ) = (2™, y" + az") = (z,y" + az"), (™ + ay™ + b2 )07 =
(z,y™ + 227), (y",2")07 = (2™ + az",y" + b2")07 = (a™ + ay", 2" )0 =
(™ + az", y")oeT = (

*9.65:(0)7008 = (0), (2) = (2™), (y") = (y"),(z7) = (27),

(@™ 4 ay™)os = (2™ + ay"), (@™, y")0s = (27, y"), (@™ + aZ")0 =
(™, 208 = (z,27), (Y + az")*08 = (2™ y" + az")*% = (z,y" + az"),
(67 4 ay + b7y = (g7 + 2T, (g7, 27 = (7 sy + by —
(™ +ay™, 27) 06 = (x™+az", y") o = (a™, y", ") = (x,y", ") Vm,n,r €
N and a,b € k*

*0.60:(0) = (0), (&™) = (™), (y")* = (y"), (") = (=),

(@™ + ay") = (2™ + ay"), (@™ ") = (@7, y"), (@ 4 a")00 =
(™, 27) 000 = (z,2"), (Y" + az" )9 = (y" + az"), (™ + ay™ + bz")* =

¥069 = (y", 2"), (2" Haz", Yyt +b2" )0 = (2 4-ay”, 27)*90

xm’yn’ 27")*9‘67 — (x’yn7zr) 4 m,n,r € N and a, b e kX

)
)

(z, y"+L27), (y", 2"
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= (@™ + a2y = @yt ) = (2,yt 27, (@Yt +a2l)0 =
(x,y" +az") ¥V m,n,r € Nand a,b € k*

1398, 20700 = (0), (&) = (&™), (57> = () (=) = (=0),
(mm + ayn)*g,m — (xm + ayn), (‘,Em,yn)*gjo — (xm’yn), (l,m + aZ’f‘)*gjo —
(™, 2o = (2™ 2"), (y" + az")0 = (2™ y" + az")*00 = (z,y" + az"),
(2™ + ay™ + bz")*070 = (z,y" + L27), (y", 27070 = (2™ + az", y" + b2 )T =
(x™+ay™, 7)1 = (™ +az", y)OT0 = (™, y", ") = (z,y", 2") VY m,n, T €
N and a,b € k*

1329. *9.71:(())*9.71 — (O)7 (xm)*9.71 — (l‘m), (yn)*9.71 — (yn)’<ZT)*9.71 — (27’),
(™ agyon = (@ ag?), (@ yn)n = (@), (5t asyen =
(xm7zr)*9.71 — (CL’m,ZT), (yn + azr)*g.ﬂ — (yn + azr)) (C(}m + ayn + bzr)*gﬂ —
(JT,yn—l-%ZT), (yn’ zr)*g,n — (yn’ ZT), (Qfm—FCLZT,yn—FbZT)*Q'” — (xm_i_ayn’ Zr)*9'71
— (xm + az’r’yn)*gln — (xm,yn,zr>*9,71 — ($,yn,ZT), (l.m,yn + azr)*gjl —
(x,y"+az") ¥Vm,n,r € Nand a,b € k*

1330, %972:(0)"57 = (0), (a™)57 = (a™), (57} = (y7), (/)07 = (=7),
(5™ + ayyor = (a7 4 ay"), (27, g = (5 g, (a7 + az)e =
(2™ + az"), (2™, 2")0 = (2™, 27), (Y* 4 a2") = (2™, y" + a2’ )0 =
(x,y™ +az"), (2™ 4 ay™ + bz")*72 = (x,y" + 92”), (y™, 2" )om =
(@™ +az", y" +b2")07 = (2™ + ay”, ") = (™ + a2, y")O T =
(™, y™, 2" )97 = (x,y", 2") ¥V m,n,r € Nand a,b € k*

1331, Hg.73:(0)*07 = (0), (z™)7 = (2™), (y")*™ = (y"),(")*7™ = ("),
(@ a5 = (@ ay?), (@) = (@), (2 0z =
(™ + az"), (™, ") = (2™, 2"), (y" + az")* = (y" + az’),
(@™ 4 a4 b7 = (1,7 4 BaT), (4, 2 = (57, ),
(@™ + az", y" + b2")*0™ = (™ + ay”, ") = (™ + az", y")O =
(™ y", 2o = (x,y", 2"), (2™, y" 4+ az")* = (z,y" +az") ¥V myn,r € N
and a,b € k£~

1332. *g.74 through xg 147 see proof
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1406.

1480.

1481.

1482.

1483.

1484.

*g.148 through xg 991 see proof

*10:(0)*10 = (0), (&™)10 = (2™), (") = (y"), (") = (2"), (™ +ay")"™* =
(@™, ") = (@™, y"), (™ +az")0 = (2™, 27)70 = (@™, 27), (y" +az")"0 =
(y™, 2") e = (y™, 2"), (2™ + ay™ + b2")*10 = (2™ + az", y" + bz")*10 =

(™ y" 4+ az") 0 = (2™ 4+ az",y")0 = (27 + ay™, 2")0 = (a7, y", ") =
(™ y™, 2") ¥V m,n,r € Nand a,b € k*

(01 = (0), (@)700 = (&), ()00 = (), ()01 = (1),

(@7 + ay s = (@ = @), (4 ety = (@ ) =
(@™, 2"), (y" +az") ot = (y,2") 0t = (y", 2"), (2™ 4 ay” + bz")0r =

(™ + ay™ 4+ b2"), (™ 4+ az", y" + b2 )10 = (2™, y" + 2" )0t =

(@™ + az",y" )0 = (2™ 4 ay", )00 = (2T gt 200 = (@ gt 2T
m,n,r € N and a,b € £~

*102:(0)102 = (0), (z™)7102 = (™), (y")02 = (y"), (z7)702 = (27),

(@™ + ay")rer = (2™, yn)ner = (@™, y"), (@ + a2l = (2™, 7)1 =
(@™, 2"), (y" + az")"02 = (y" +az"), (2™ + ay” + b2")"102 =

(™ +az", y" + b2")*102 = (2™, y" 4 az")*10? = (™ + a2, y")* 02 =

(@™ 4 ay”, z")0 = (2™, y", 2T)0 = (2™t 2T), (Y 2T = (Y 2, Y
m,n,r € N and a,b € k*

*10.3:(0)7102 = (0), (z™)"02 = (a™), (y")7°° = (y"), (z7)"0* = (&),

(47 + ay")os = (@ oS = (2 ), (7 4 ast)es = (g7, n)nes =
(™, 2"), (Y™ + az")* 108 = (y" 4+ az"), (™ + ay™ + bz")*108 = (2™ + ay™ + b2"),
(47, 27)103 = (4, 27), (&7 + ",y + b2T)H09 = (2™, 4 aT)H0s =

(™ 4 az", y")os = (2™ 4 ay”, ") = (2™ y", 2")08 = (2", y", ") ¥
m,n,r € Nand a,b € k*

*10.4:(0)7104 = (0), (z)04 = (a™), (y")os = (y"), (7)o = (27),

(@7 + ay s = (@ o = @), (4 ey = (@ ) =
(2™, 2"), (Y™ + az")* 04 = (y" + az"), (2™ + ay™ + bz")*04 = (2™ y" + gz’“),
(y™, 2" )04 = (y™, 2"), (a™ + az", y" + b2" )04 = (2™ y" + az")F10t =
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1485.

1486.
1490.
1494.

1495.

1496.

e Y I G N e (Y A e AN
m,n,r € N and a,b € k*

*10.5:(0)*10.5 — (O)7 (xm)*m.s — (xm)’ (yn)*10.5 — <yn)7 (ZT‘>*10.5 — (ZT),

(xm + ayn)*um — (xm7yn)*105 — (mﬂ%?yn)7 (:L‘m + azr)*ms — (:L‘m, ZT)*lo.s —
(™, 2"), (Y™ + az")*10s = (y" 4+ az"), (™ + ay™ + bz")*105 = (2™ + ay™ + b2"),
(yn7z7")*10,5 — <yn’z7‘)7 (xm + CLZT,’yn + bzr)*10,5 — (l,m’yn + az?")*loj —

(xm + az?nyn)*loj — (Im + ayn7zr)*1o_5 — (xm’ynjzr)*lo,s — (l.m’yn’zr) \v4
m,n,r € N and a,b € £~

*10.6 through x99 see proof

*10.10 through %1913 see proof

*10.14:(0)*1014 — (O)’ (wm)*m.m — (l‘m), (yn>*10A14 — (yn)’ (ZT)*10414 — (ZT),

($m + ayn)*lo.m — ($m7yn)*10.14 — ($m,yn)’ ($m + azﬂ’)*lo.m — (xm + azr)7
(yn + azr)*lo.m — (yn + aZT), (xm + ayn + bzr)*lo.m — (xm + azT, yn + bzr)*10414 —
(xm7yn+az7“)*1o.14 — (xm—i—azr,y”)*w'l‘* — (mm—i—ay”,zr)*w'l‘* — (Im7yn’z1”)*1o.14
= (2™, y", 2"), (™, 2" = (2™ "), (y", 2" )Mo = (y*, "), ¥V myn,r € N
and a,b € k~

*10.15:<0>*10.15 — (O)’ (xm)*m.m — (xm)’ (yn>*10.15 — (yn)’ (ZT)*H)‘IE’ — (27‘)’

(0 4 ay)s = (@ g = (@), (@7 a2 = (@ 4 e,
(y'+az")005 = (y"+az"), (a7 Fay" +b") 100 = (&b, "), (2™, 27) 00 =
(@2, ()70 = (2, (270 b = (@ g0
( + a]yn7 ZT)*10.15 — (xm’yn7 Zr)*10,15 — <$m7 yn’ Zr)) (xm + azr’yn)*lo‘m —

(™ +az",y") ¥V m,n,r € Nand a,b € k*

s (0)700 = (0), @)t = (@), () = (), () = (@),
(@ + ayyoe = (g = (@), (@ 4 a) s = (a7 + ),
(y"+az")* 1016 = (y"+az"), (2" +ay"+bz")*1010 = (z™, y"+L27), (a™, 27)*1000 =
(Im7zr)’ (yn’ Zr)*lglﬁ — (yn7z7‘)’ (:L,m+azr’yn+bzr)*1()‘16 — (l.m+ayn’zr)*1()‘16 —
(

(
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1497. x19.17 through x19.19 see proof

1500. %1020 through 1929 see proof

1503, xi0a(0)70% = (0), ()03 = (&), ()0n = (), ()0 = (1),
(6™ + gy = (a7 + ay"), (a7 + a2 )05 = (7 4 027), (5 + @) —
(Y +az"), (@ +ay"+b2")*102 = (2™4az", y"+bz")10% = (2™, y" +az" )10 =
(@ a2 P = (g ) = (g = (),
@y = @), (@ = (@), (S = () Y
m,n,r € N and a,b € £~

1504. H10.24:(0)102¢ = (0), (zm)o2 = (2™), (y)o = (y"), (") = (&),
(2™ + ay™)102 = (2™ + ay”), (2™ + az")*0* = (2™ + az"), (Y" + az")F02 =
(47 +a27), (a7 + ay? + b0 = (g 4 B, (a7, g = (a7, ),
(™, zryrod = (g™ "), (Y™, 27)Fe = (y", 2", (™ + az",y" 4 b")*on =
(@ a2 P = (g )R = (g = (),
(™ y™ + az")* 02 = (2™ y" 4+ az") Vm,n,r € Nand a,b € k*

1505, #105(0)"105 = (0), (7)1 = (@), ()0 = (), (7)o = (=7,
(@™ + ay™)*10® = (2™ + ay”), (2™ + a2")*10B = (2™ + az"), (Y" + a2 )10 =
(y" +az"), (@™ 4+ ay” + b2")0 = (z™ +b2",y"), (2™, y")0F = (2™, y"),
(@, 20w = (2, 27), (7,208 = (7, 2), (7 4 as g by =
(@7, 00 = (@ g, 20 = (@, )0 = (),
(™ + az", y") 10 = (2™ +az",y") Vm,n,r € Nand a,b € k*

1506, +10a0: (0102 = (0), ()00 = (&), (57102 = (y7), ()"0 = (=7,
(6™ + ag)0m — (27 4 ay®), (@7 + a2} — (7 + a2, (" + a2y
(Y" + az"), (@™ + ay” + bz")10% = (2™ 4 ay”, 2")10® = (2™ + ay”, 2"),
(o = (), (270 = (2, 2), (270 = (g, ),
(™ + az", y" + bz" )02 = (2™ y" 4 az")*1026 = (2™ + ay™, 2")*1026 =
(™, y", 2" )02 = (™ y" 2") V m,n,r € N and a,b € k*

1507. *19.97: see proof

1508. *10.98 through 1931 see proof
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1512. *q9.32 through 1937 see proof

1518. *10.38 through 1941 see proof

1522. *10.4221*10'42 V ideals I
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Appendix B

Standard closure operations
from Theorem 3.4.4
for k = 7/27

L oz (0)700 = (0), (@) = (z7), (e = (), () = (1),
(@0 = (), (@0 = (2 427), () = (),
(@ 4y ) = (g g g Y = (g ), (2, g =
(&, 47), (@™, 2r ) — (g, 27), (g, ) — (g, o),

(& 4 27y 4 TR0 = (2 2Ty 4 2, (a7 F 2T, yt) o =
L R R

2. xa0m (0107 = (0), (@10 = (&), (yyom = (), (7)o = (=),
(@10 = (), (24270 = (27427), () = (),
(@7 by 4 I = (@) = (5 ), (e =
(@™, "), (&, 2")rosst = (2™, 27), (y", 27)mee = (Y, 27),

(™27 Y2 )02 = (g™ 2" 2T, (2™ Y2 ) R0 = (Mg 2T )ri0-25
= (x™, y", ")t = (g™ y" ") ¥V m,n,r € N
3. H1026:(0)10260 = (0), (™) 02t = (2™), (yr)reze = (y"), (27)02r = (27),

Yt 2Z") Y myn,r € N
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Appendix B. Standard closure operations from Theorem 3.4.4  for k = Z /27

() = (@), (@) = (@), () — (),
(33 + y + z )*10.2617 — (l‘m + yn’zT)*lozeb — (l’m + y”,zT), (ajm,yn)*w.zeb —
(l‘m ) ( m ZT)*loaeb — (xm7 ZT), (yn’ ZT)*10A26b — (yn’ ZT)7

(LE + Z y + z )*10 26b — (ZE + Z 7y + z ) ( 7:yn _|,_ zr)*IO.QGb —

(™ 4 y", 2026 = (M y" Z7)F0ee = (g™ y" 2") V¥V m,n,r € N
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Appendix C

Standard closure operations
from Theorem 3.4.4
for k =7/37

L xgy32:(0)25% = (0), (a™)#/52 = (a™), (y") = = (y"), (2")%% = ("),
(&7 gy = (@™ 4y, (@ 4 2 = (a7 2y, (5 2 =
(67 o 27), (@ 227y = (a7 4 227), (" ) = (g + 2T),
y + z Z/3Z — y + z , x + y + z 7/3Z — x + z 7y + z Z/3Z —
2 *: 2 m n \*% m 2 s n 2 7\ %
(I + 22" y" + 227 ), (xm +y" + QZT)*Z/SZ — (wm + 2"y + Zr)*z/sz —
(@ 427y 4 27), (2 4 27 4 2T = (2 22y 2 =
(l‘ + 22" y" + Zr), (a:m + Qy” + 2/’)*2/32 — (xm + 2", yn + 22;7")*2/32 —
(xm 7yn_’_2z7")7 (xm’yn)*z/gz — (‘,L.m,yn)7 (CL’m7ZT>*Z/3Z — (‘,L.m7 zr)7 (yn,Zr>*Z/3Z
= (y", 2"), (™, y" + 27 ) = (@™ Yy 4 227 ) = (2 2Tyt =
($ 12" Ly )*2/32 — ($ +y - )*2/32 — (iE _|_2y > )*Z/3Z _ ( m,yn,zr>*2/3z _
(z™,y", 2") for all m,n,r € N
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