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Abstract

This paper will discuss high performance clustering from a series of critical topics: architectural design, system
software infrastructure, and programming environment. This will be accomplished through an overview of a
large scale, high performance SuperCluster (named Roadrunner) in production at The University of New Mex-
ico (UNM) Albuquerque High Performance Computing Center (AHPCC). This SuperCluster, sponsored by the
U.S. National Science Foundation (NSF) and the National Computational Science Alliance (NCSA), is based
almost entirely on freely-available, vendor-independent software. For example, its operating system (Linux), job
scheduler (PBS), compilers (GNU/EGCS), and parallel programming libraries (MPI). The Globus toolkit, also
available for this platform, allows high performance distributed computing applications to use geographically
distributed resources such as this SuperCluster. In addition to describing the design and analysis of the Roadrun-
ner SuperCluster, we provide experimental analyses from grand challenge applications and future directions for
SuperClusters.

Please seewww.alliance.unm.edu for further information.

Keywords
Cluster Computing, Message Passing Interface (MPI), Symmetric Multiprocessors (SMP), Communication

Primitives, Experimental Parallel Algorithmics.
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1 Introduction

Over the next decade, clusters will span the entire range of high-performance computing platforms. Instead of
being restricted solely to supercomputers for achieving high-performance computing, the spectrum of available
platforms will spread out to Beowulf-class clusters, to SuperClusters, and on to supercomputers. Moving along
this continuum represents increasing computational resources, which in turn allows the capability for solving
larger classes of applications or instances of problems. Compute-bound applications on workstations often may
take advantage of the extra horsepower provided by symmetric multiprocessors. Applications with even larger
computational requirements and a high-degree of concurrency may use Beowulf clusters, that is, clusters that
are home-built from mass-market, commercial off-the-shelf workstations and networks, for instance, PC’s inter-
connected by Fast Ethernet. A SuperCluster may contain commodity SMP nodes interconnected with scalable,
low-latency, high-bandwidth networks, and is integrated by a system vendor rather than the computational sci-
entist. Applications with greater complexity, for example, grand challenges from the sciences, demand scalable
systems with high-performance, interconnects, perhaps coupled with terascale I/O subsystems, and thus, are ap-
propriate for these superclusters. Finally, supercomputers, the largest of the clusters, may provide the ultimate
platform for the highest-fidelity models and simulations and data-intensive applications. At each step up this
ladder of cluster architectures, the system cost increases approximately by an order of magnitude, but having the
high-performance capability to solve the problem of interest may require an entry point at any of these levels, the
Beowulf, or SuperCluster, or even supercomputer platform.

Cluster computing with Beowulf-class or SuperClusters may be one or two orders of magnitude less expensive
than a supercomputer yet still provide a cost-effective solution and capability that was not available on a worksta-
tion. But this cost comparison measures just the basic system price. What about the applications? As recently as
a few years ago, the lack of a canonical high-performance architectural paradigm meant that migrating to a new
computer system, even from the same vendor, typically required redesigning applications to efficiently use the
high-performance system. Thus, the application must be redesigned with parallel algorithms and libraries that
are optimized for each high-performance system. This process of porting, redesigning, optimizing, debugging,
and analyzing, the application may in fact be prohibitively expensive, and certainly frustrating when the process
is completed just in time to greet the next generation system! With the successful standardization of system-level
interfaces, many of these issues no longer hinder our expedited use of these new, high-performance clusters.

The U.S. National Science Foundation (NSF) currently supports two large advanced computing partnerships,
National Computational Science Alliance (NCSA) based at The University of Illinois, Urbana-Champaign, and
the National Partnership for Advanced Computing Infrastructure (NPACI) at The University of California, San
Diego. Traditionally these centers have purchased large, expensive parallel machines such as the SGI Origin and
IBM SP-2. Researchers that require large computational resources can request time on these machines.

The dilemma is that these machines are so heavily utilized that jobs will often sit in the queue for weeks
before they are able to run, and quite understandably, many researchers find this delay unacceptable. It is also the
case that many applications do not require the complex architectural features available on these large, expensive,
parallel machines. For example, the SGI Origin has the ability to provide non-uniform shared memory, but this
feature may not be required, or worse, adversely affect the performance of codes that have not been fully tuned.
In addition, several classes of applications tend to be computationally demanding with minimal communication.
Examples include Monte Carlo simulations, computational fluid dynamics problems, and lattice computation
problems which are used in computational physics.

To address these needs, scientists at The University of New Mexico and NCSA have established the first NSF-
funded Linux SuperCluster at UNM using PC-class (Intel-based) hardware, a high-performance interconnection
network, and the Linux operating system. This production cluster costs a fraction of the price of a commercial
supercomputer, and performs well for many classes of applications.
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1.1 What is a SuperCluster?

Currently there are many commodity clusters being built using mass-market commercial “off the shelf” (COTS)
parts. Typically this involves purchasing or ordering the necessary components such as PC’s with Fast Ethernet
NICs, and a hub or a switch to connect them together. Then comes the installation of the operating system as well
as the necessary parallel processing software packages. These types of clusters are often classified as “Beowulf
Systems” [3]. Our SuperCluster design on the other hand follows a different principle and does not require
computational scientists also to be expert computer hobbyists. SuperClusters, while PC-based, are integrated
(hardware and software) by a vendor (in our case, Alta Technologies) and may have additional supercomputing-
like hardware, such as a high-performance networks and hardware monitors, that improves scalability. In this
manner, a SuperCluster may support the scalable execution of a greater number of applications than a Beowulf-
class machine. The Roadrunner SuperCluster arrived as a unit, and came pre-installed with Linux, a programming
environment, and custom disk cloning software that allows a system administrator simply to configure a single
node, and then clone it to the rest of the machine. This approach means the system as a whole is easier to get
running initially and maintain into the future.

Figure 1: The Alliance/UNM Roadrunner SuperCluster.

The UNM/Alliance Roadrunner SuperCluster (shown in Figures 1 and 2) is an Alta Technology Corporation
64-node AltaCluster containing 128 Intel 450 MHz Pentium II processors. The SuperCluster runs the 2.2.12
Linux operating system in SMP mode with communication between nodes provided via a high-speed Myrinet
network (full-duplex 1.2 Gbps) or with Fast Ethernet (100 Mbps). The AltaCluster is also outfitted with an exter-
nal monitoring network that allows supercomputing-like features; individual processor temperature monitoring,
power cycling, or reseting of the individual nodes. Each node contains components similar to those in a com-
modity PC, for instance, a 100 MHz system bus, 512KB cache, 512 MB ECC SDRAM, and a 6.4 GB hard drive.
However, the nodes do not require video cards, keyboards, mice, or displays.

The Myrinet topology (see Figure 3) consists of four octal 8-port SAN switches (M2M-OCT-SW8 Myrinet-
SAN), each with 16 front-ports attached to each of 16 nodes, and eight (8) SAN back-ports attached to the
other switches. The Fast Ethernet uses a 72-port Foundry switch with Gigabit Ethernet uplinks to the vBNS and
Internet.

2



UNM Technical Report: EECE-TR-99-003

Figure 2: A Peek Inside the Roadrunner.

1.2 Project Goals

The motivation behind Roadrunner is “capability computing,” where users intend to maximize one or more of the
available computational resources and to continuously execute an application over a long period of time (on the
order of days to weeks). We are attempting to solve grand challenge class problems that require large amounts of
resources and scalable systems unavailable in Beowulf PC clusters. What the Roadrunner project demonstrates
is a well-packaged, scalable cluster computer system that gives the best computational power per dollar.

Myrinet Switch 1 Myrinet Switch 2

Myrinet Switch 3Myrinet Switch 4

Figure 3: An example Myrinet topology for 64 hosts using four Octal 8-port SAN switches.
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2 Linux Operating System

2.1 Motivation for Linux

Linux was chosen as a base for the SuperCluster for several reasons. The scientific community has a history of
success with freely-available applications and libraries and has found that development is improved when source
code is openly shared. Application codes are generally more reliable because of the multitude of researchers
studying, optimizing, and debugging the algorithms and code base. This is very important in high performance
computing. When researchers encounter performance problems in a commercial computing environment, the
vendor must be relied upon to fix the problem which may impede progress.

Free operating systems have recently matured to the point where they can be relied upon in a production
environment. Even traditional HPC vendors like IBM and SGI are now supporting Linux. We feel that this is
clearly the direction in which the world of high performance computing is moving.

The particular version of Linux we are running on the SuperCluster is the Redhat Linux distribution version
5.2, with a custom compiled SMP kernel 2.2.12. It is important to note that our system would work equally well
under another Linux distribution or another free OS altogether such as FreeBSD or NetBSD.

There are several other reasons for using Linux: low to no cost, SMP support performs well in practice
(continuously improving), and wealth of commercial drivers and applications that are easily ported or written
for Linux. Ease of development is another very important factor in choosing Linux. Because of the availability
of Linux, scientists may develop algorithms, code, and applications on their own locally available machines and
then run on Roadrunner with little or no porting effort. Nearly all of the software used on Roadrunner is freeware
making it very easy for users to setup a similar system for development at their home site.

2.2 Linux Customizations

Although the Roadrunner is based upon the 5.2 release of Redhat Linux, several customizations were needed for
interoperability with system software as well as increased performance.

One of Roadrunner’s extra operating system components is the ‘GM’ Myrinet messaging layer. GM is dis-
tributed by Myricom in either source or binary format. We have used the binary distribution thus far, and tend
to upgrade our GM fairly soon after each release to gain additional performance and stability. Myricom releases
their binary distributions of GM for Linux based upon a given kernel revision. This drives what Linux kernel
Roadrunner has installed (2.2.12 at current writing). Since Redhat 5.2 is shipped with kernel version 2.0.36, we
must maintain a custom kernel for Roadrunner. GM is shipped as a module that will run on an SMP system, so
our kernel must be built with support for loadable modules. The GM driver is then dynamically loaded at boot
time.

We maintain a list of customizations that must be made to Linux and related system software for it to scale up
to tens, hundreds, or even thousands of nodes. For instance, one of the supported interactive shells on Roadrunner
is ‘tcsh ’. Because some parallel jobs generate a long command-line argument list (for instance, including each
host machine name), we found that jobs were failing due to “Word too long” messages from the shell. With more
than 1010 characters on the command line, the jobs were failing. This problem was due to a limitation intcsh in
which words could be no longer than 1024 characters. The define “BUFSIZE” which limits word size was set to
1024 by default. Our solution was to compile a new shell with the BUFSIZE increased 4-fold since the machine
list for our full 64 nodes required over 1400 characters.
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3 Systems Software

There are a number of core components that we have identified for running a production SuperCluster like the
Roadrunner. As discussed in previous sections, the first is a robust UNIX-like operating system. After that the
only add-ons are programs that allow one to use the cluster as a single, parallel resource. These include MPI
libraries, a parallel job scheduler, application development software, and programming environment.

3.1 Message Passing Interface (MPI): MPICH

MPI provides a portable, parallel message-passing interface. On Roadrunner we are using MPICH, a freely
available, portable implementation of the full MPI specification developed by Argonne National Labs [8]. We
chose MPICH over the commercially available MPI implementations for several reasons. MPICH has been very
successful, and is essentially the de-facto standard for freely-available MPI implementations largely because it is
the reference implementation of the MPI standard. Commercial MPI implementations also tend to be operating
system dependent. MPICH on the other hand is available in source code form and is highly portable to all the
popular UNIX operating systems including Linux.

Two general distributions of MPICH are available on Roadrunner. First, the standard Argonne release of
MPICH is available for those using the Fast Ethernet interface. Also available is MPICH over GM which uses
the Myrinet interface. MPICH-GM is distributed by Myricom. Within each of these distributions two builds
of MPICH are available based upon the back-end compilers. One set uses the freely available GNU project
compilers, and the second uses the commercial Portland Group suite of compilers. Thus, the user has four flavors
of MPICH to choose from on Roadrunner. All MPICH distributions on Roadrunner are configured to use the
Secure-Shell (SSH) remote login program for initial job launch. As we will discuss later, this provides a more
secure alternative to the ‘rsh ’ default without compromising performance.

3.2 Parallel Job Scheduling

It is also very helpful in a clustered environment to deploy some type of parallel job scheduling software. Users
running a parallel application know beforehand that there is a finite amount of resources such as memory and CPU
available for their application, so they naturally want to use all of these resources. In this capability computing
environment, it is not sufficient to rely solely on a friendly user policy. Many of the codes on Roadrunner are
very time consuming, and the risk of job conflict is therefore great. This risk is compounded further as the cluster
size increases, and the more users it accommodates. Parallel job scheduling software eliminates these types of
conflicts and at the same time enforces the particular site usage policy.

For parallel job scheduling, Roadrunner uses the Portable Batch System, or PBS, which was developed at
NASA Ames Research Center [9]. PBS is a job scheduler that supports management of both interactive and
batch style jobs. The software is configured and compiled using popular GNU autoconf mechanisms, which
makes it quite portable including to Linux. PBS is freely distributed in source-code form under a software license
that permits a site to use PBS locally, but does not allow one to redistribute it. PBS has some nice features
including built-in support for MPI, process accounting, and an optional GUI for job submission, tracking, and
administration of jobs.

3.3 Application Development: EGCS and Portland Group Suite

Lastly, parallel application development requires parallel compilers and debuggers for clusters. Supported stan-
dard languages on Roadrunner include C, C++, Fortran 77 and Fortran 90.

Our system uses a mix of compilers. For C, C++, and Fortran 77, we use EGCS, the experimental version
of the GNU compilers optimized for Intel x86 processors. On top of these we have the MPI libraries to provide
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parallelism. However, applications also may be written in Fortran 90, and currently there is little free software
support for Fortran 90 like there is for the other languages. To address this, we have installed a suite of commercial
high performance FORTRAN compilers from the Portland Group. This suite also includes C and C++ compilers
and a debugging tool.

4 Usage Policy, Access, & Security

As mentioned previously, system software such as a job scheduler allows the enforcement of the particular site
usage policy. This section provides details on how this policy may be enforced on clusters through systems
software. Scalability issues will also be discussed.

4.1 Access Control Methodology

As with many supercomputing sites, our local usage policy dictates that only one user (or group) be allowed to
use a particular compute node at a time. Again, for quality of service, we do not want to rely only upon a friendly
user policy where users compete unfairly for system resources. Thus, we need a system where users are unable
to circumvent the job scheduler either maliciously or accidentally. That is, users should not able to login or use
resources on the compute nodes without first being granted an allocation through PBS. This prevents users from
directly launching parallel programs on the nodes and potentially interfering with other running jobs.

In its default state, each compute node has a persistent ‘/etc/nologin ’ file in place which disables all user
logins except for the root (administrative) user. Support for the ‘nologin ’ file is standard under Linux and many
other UNIX flavors. With our implementation, the ‘/etc/pbsuser ’ file overrides ‘/etc/nologin ’ if it exists.
Thus, any user listed in thepbsuser file on a node is permitted access to that node. This file is automatically
created when a job is allocated nodes through PBS and then removed when the job terminates.

4.2 Access Control Implementation

Node access control on a SuperCluster may be enforced using the job scheduler (PBS), the Secure-Shell (SSH)
securersh /rlogin replacement, and the ‘masshosts ’ tool.

On Roadrunner, user access to nodes can only take place through SSH. SSH is configured with a particular
option (‘--with-nologin-allow ’) that allows it to check an arbitrary file (/etc/pbsuser in our case) for users
who are allowed to override thenologin file and access the node.

Thepbsuser file is manipulated by the PBS job scheduler. PBS allows the system administrator to create a
‘prologue’ and an ‘epilogue’ script that handle job pre- and post- processing, respectively. These scripts are run
as root (that is, with full system privileges), must be executable, and can be written in the programming language
of choice. Our prologue is responsible for creating an/etc/pbsuser file on all scheduled nodes containing the
username of the scheduled user. This allows that user to override/etc/nologin and run commands on those
nodes. Executed when the job terminates, our epilogue script deletes the/etc/pbsuser file on all scheduled
nodes which locks the user back out.

Masshosts is a freely available Perl script written by John Mechalas [7] that can be used to execute arbitrary
commands on groups of hosts in an efficient and flexible manner. Masshosts is called from both prologue and
epilogue and is responsible for running the remote SSH commands on the compute nodes to manipulate the
pbsuser file. The advantage of using masshosts rather than a sequential command loop is speed. The script
has an option that allows the system administrator to specify the number of remote SSH connections to run in
parallel. For example, with masshosts set to run 16 parallel sessions, it takes under 10 seconds to finish prologue
and epilogue processing on Roadrunner’s full 64 nodes.
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4.3 Thoughts on Future Limitations & Scalability

This access control method has proven effective and reliable in our current (64 compute node) environment. It is
also a portable implementation since it uses pre-existing system software mechanisms and requires no source code
modifications of these programs. However, as the number of compute nodes grow on a SuperCluster, the question
of whether the existing implementation will continue to perform adequately arises. One possible limitation is in
the pbsuser file creation/deletion step carried out by masshosts. With 512 compute nodes for example, the
amount of time needed by masshosts to finish execution of remote commands on all nodes may well exceed what
is reasonable by user and administrator expectations.

A more scalable solution might be to house thepbsuser file on a read-write network filesystem that is shared
across all compute nodes rather than on the local filesystems of each node. Currently the ‘--with-nologin-allow ’
SSH option only supports lookups from a static filename specified at compilation time. However, since SSH is
open-source, it would be feasible to modify the program to perform nologin-allow lookups on a shared, net-
work file named dynamically based on a local hostname. For example, SSH on node 15 would look to file
‘ /shared/pbsuser-node15 ’, node 422 to ‘/shared/pbsuser-node422 ’, etc. for usernames that should be
granted local access. Then, the PBS prologue and epilogue scripts could create and delete onepbsuser file per
node on the shared filesystem instead of connecting to each node with masshosts to accomplish this. This would
undoubtedly provide a faster and more efficient implementation.

5 Roadrunner on the GRID

5.1 What is a Computational Grid?

A computational grid is a hardware and software infrastructure that provides dependable, consistent, pervasive
and inexpensive access to high-end computational capabilities [6]. This infrastructure is analogous to the electric
power grid; it allows a large-scale sharing of resources through a common “plug-in” interface with little depen-
dence or thought as to the supplier of power. Although computers are faster than ever, more computational power
is needed to solve grand challenge problems. The Grid can help solve these problems by making significant re-
sources available at a reasonable cost. In addition, the Grid may connect geographically distributed resources such
as SuperClusters and supercomputers, scientific instruments, as well as data repositories, visualization suites, and
people.

5.2 Globus & GUSTO Testbed

One mechanism for allowing communication between the nodes of a computational grid is Globus (www.globus.org ).
The Globus Infrastructure is a high performance, distributed computing toolkit that allows ready access to ge-
ographically distributed resources as described above. The Roadrunner SuperCluster is fully integrated with
Globus and GUSTO (Globus Ubiquitous Supercomputing Testbed Organization), and allows scientists from all
over the world to use all of the Globus resources for computation. GUSTO combines 40 sites with over 2.5
TeraFlops of computing power in the largest demonstration of a computational grid.

6 Experimental Results & Applications Performance

Next we analyze the system performance of a SuperCluster using both low-level benchmarks and application ker-
nels. Many benchmarks have been run on Roadrunner to test everything from computational power of the nodes
to communication across the interconnection networks. The most important aspect of Roadrunner’s performance
is not the embarrassingly parallel applications, for instance, Monte Carlo simulations, but those that require large
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amounts of computational power and inter-processor communication. First we provide experimental results from
the communication subsystem, followed by empirical results for two important grand challenge class applications
for computational physics and 3-dimensional numerical relativity simulations.

6.1 Various Benchmarks and their Results

Myrinet vs. Ethernet performance comparisons

The time to send and receive a message is directly affected by how much bandwidth is available at the time of
transmission, and by the effectiveness of the routing method. In this context, we compare Myrinet performance
with that of Fast Ethernet. In order to test Roadrunner’s communication capabilities, we used a standard ping-
pong test for both latency and bandwidth over an increasing, user defined message size.

In Figure 4, we see both Fast Ethernet and Myrinet time performance against application-level messages
ranging in size from zero to one megabyte. Myrinet has a latency of approximately 28.0 microseconds while
Fast Ethernet’s average is about 178 microseconds as seen in Figure 5. Not only does Myrinet have an order of
magnitude less latency than Fast Ethernet, but it is continuously faster for all sizes of packets.

Time for Large Messages
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Figure 4: Comparison of Fast Ethernet and Myrinet Performance for Large Messages.

In Figure 4, the time period required to send and receive a message between two nodes is displayed. Myrinet
has blatant repeatability and consistency, combined with excellent speed (unlike Ethernet’s erratic performance).

In Figure 6, Fast Ethernet and Myrinet bandwidth performance is compared again in message sizes ranging
from zero to one megabyte. Myrinet has a peak achievable bandwidth of about 69.1 MB/s while Fast Ethernets’
peak is around 8.09 MB/s (Fast Ethernet is switched). Unlike Ethernet’s use of the operating system’s TCP stack,
Myrinet drivers bypass the operating system and use azero-copymechanism that copies a message directly from
source to destination application buffer without the need for unnecessary local copying of the message. It is also
interesting to note that Myrinet is using different communication algorithms based on the size of the message
being transfered. This is indicated by the saw tooth markings of the Myrinet performance curve in Figure 6.
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Time for Small Messages
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Figure 5: Comparison of Fast Ethernet and Myrinet Performance for Small Messages.

Bandwidth for Large Messages
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Figure 6: Comparison of Fast Ethernet and Myrinet Bandwidth.
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MILC

The MIMD Lattice Computation (MILC) [4] is a body of high performance research software for modeling
SU(3) and SU(2) lattice gauge theory on several different (MIMD) parallel computers in current use. The MILC
benchmark problem used in this paper is a conjugate gradient algorithm for Kogut-Susskind quarks. Note thatL
refers to the problem size, and thatL= 4 means that there is a 44 piece of the domain on each node.

MILC Performance on Roadrunner
(nodes=1)
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Figure 7: MILC single node benchmark.

MILC Performance on Roadrunner
(L=4)
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Figure 8: MILC Benchmark withL= 4.

In Figures 7 - 9, this MILC benchmark was run on two Linux clusters. The Indiana University (IU) Physics
Linux cluster is a Beowulf-class 32-node Fast Ethernet cluster with a single 350 MHz Pentium II processor, 64
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MILC Performance on Roadrunner
(L=8)
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Figure 9: MILC Benchmark withL= 8.

MB RAM and 4.3 GB disk per node. Looking at the single node benchmarks (see Figure 7), we see that the
for small problem sizes that fit completely or mostly in the cache, the Roadrunner SuperCluster with its 450
MHz processor is faster than the 350 MHz system. ForL > 6, however, memory access becomes a limiting
factor, and there is little performance difference. ForL � 6, the Roadrunner SuperCluster achieves greater than
60 MF/node for almost all cases. For the IU Beowulf, forL� 8, on up to 32 nodes, the performance is near 50%
of the SuperCluster performance. As a point of reference forL = 8 on 16 nodes, the Cray T3E-900 achieves 76
MF/node and on an Origin 2000 (250 MHz) MILC achieves 119 MF/node.

In Figure 10, the MILC benchmark for a fixed problem size is run on a variety of architectures varying the
machine size. Here, the SuperCluster performs quite well compared with traditional supercomputers.
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MILC
L=8; 4096 lattice pts per node
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Figure 10: Comparison with additional architectures is shown below for a L=8 case. Non-Roadrunner data -
courtesy of NCSA NT Cluster Group.
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CACTUS

CACTUS [1] is a high-performancecomputing toolkit that implements a framework for solving three-dimensional
computational astrophysics problems on parallel machines. In this paper we benchmark the CACTUS grand chal-
lenge application using an instance that solves the Bona-Mass hyperbolic formulation of the Einstein equations
for numerical relativity calculations.

CACTUS Benchmark Execution Time
on 32 processors
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Figure 11: CACTUS benchmark running time for various machines.

Figure 11 shows the running time for the CACTUS benchmark for 32 processors as the problem size increases.
As a key, the machines are configured as follows. ‘NASA Beowulf’ is a 64-node dual PPro 200 MHz, 64MB
RAM, ‘NCSA NT Cluster’ runs Microsoft Windows NT with 32 dual PII 333 MHz with 512 MB RAM, and 64
dual PII 300 MHz with 512 MB RAM, ‘SGI Origin 2000’ is the NCSA Origin 2000 with 32 R12K 300 MHz
processors, and ‘RR’ is the Roadrunner SuperCluster. In Figure 12 the scalability of these machines is compared
using the CACTUS benchmark and increasing problem sizes. Notice that Roadrunner contains the best scalability
for this problem, more than 99 % as the problem size increases.

7 Future Directions

7.1 Maui Scheduler

PBS is one of the few commodity parallel schedulers available for use with computational clusters. This made
PBS a natural choice for use in our cluster. However, PBS does not readily support several key features (e.g.,
backfill scheduling, flexible priority assignments, shortpool policies, etc.) that we believe are needed for ef-
fectively managing the resources provided by the Roadrunner cluster. To address these shortcomings, we have
undertaken a direct port of the Maui scheduler to the Linux cluster environment. This port uses the Wikiman
interface provided by the Maui scheduler and is nearing completion.
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CACTUS Benchmark Scaling
on 32 processors
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Figure 12: CACTUS scalability.

7.2 Improved Message Passing Layers: HPVM & Portals

While the newer implementations of MPICH-GM have shown significant improvement in message passing perfor-
mance, we will continue to investigate alternative implementations of MPI on Myrinet. One such implementation
is HPVM, the MPI implementation based on FM (Fast Messages) being developed by Andrew Chien at UCSD
[5]. Because HPVM is used in the NT clusters at the University of Illinois, using HPVM on our cluster would
enhance application portability between the two types of clusters as well as a more direct comparison of the Linux
and NT approaches. Another implementation that we will evaluate is the Portals communication layer being de-
veloped jointly between the University of New Mexico and Sandia National Laboratories. This communication
layer was originally developed for massively parallel supercomputers (including the nCUBE, Intel Paragon, and
ASCI Red machines) [10] and is being adapted to the Linux cluster environment. Beyond the obvious tie to
UNM, we are interested in this communication layer because it is one of the few communication layers that has
been shown to scale to systems with thousands of nodes (the ASCI Red machine at Sandia has over 4,500 nodes).

7.3 Advanced Programming Models

Hardware benchmark results reveal awesome performance rates for both SMP nodes and high-performance
networks in a SuperCluster; however, few applications on these hybrid SMP clusters ever reach a fraction of
these peak speeds. While methodologies for symmetric multiprocessors (e.g., OpenMP or POSIX threads) and
message-passing primitives for clusters (e.g., MPI) are well developed, performance dictates the use of a hybrid
solution. In contrast, our approach called SIMPLE [2], a hybrid, hierarchical methodology, is a much closer
abstraction of the underlying machine and is ideally suited to SMP clusters. SIMPLE provides an integrated
complexity cost scheme for SMP clusters that accurately models the hierarchical memory system and networks,
while retaining the benefits of the RAM model. Namely, our complexity model will be simple to apply, provide
a “rule of thumb” for algorithmic complexity, and aid algorithmic designers in discovering efficient and portable
algorithms on clusters.
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