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Figure 4.7: For error-adapted and non-error-adapted swarms foraging on clustered
resources, (a) the probability of laying pheromone as a function of the count c of
resources in the neighborhood of the most recently found resource (Eq. 4.4: k ← c,
λ ← λlp), and (b) the pheromone waypoint decay rate (λpd). Asterisks indicate a
statistically significant difference (p < .001).

Figure 4.7 compares the probability of laying pheromone (Fig. 4.7(a)) and

the rate of pheromone decay (Fig. 4.7(b)) in error-adapted and non-error-adapted

swarms foraging for clustered resources. Error-adapted strategies are significantly

more likely to use pheromones than non-error-adapted strategies when 4 or fewer re-

sources are detected in the local neighborhood of a found resource (i.e. when c ≤ 4,

see Fig. 4.7(a)). We interpret the increase in pheromone use for small c as a result

of sensor error (only 43% of neighboring resources are actually detected by iAnts).

The evolved strategy compensates for the decreased detection rate by increasing the

probability of laying pheromone when c is small. In other words, given sensor er-

ror, a small number of detected tags indicates a larger number of actual tags in the

neighborhood, and the probability of laying pheromone reflects the probable number

of tags actually present.
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In error-adapted swarms, pheromone waypoints are evolved to decay 3.3 times

slower than in swarms evolved without sensor error (Fig. 4.7(b)). Slower pheromone

decay compensates for both positional and resource detection error. Robots foraging

in worlds with error are less likely to be able to return to a found resource location,

as well as being less likely to detect resources once they reach the location, therefore

they require additional time to effectively make use of pheromone waypoints.

Sensor error affects the quality of information available to the swarm. These

experiments show that including sensor error in the clustered simulations causes

the GA to select for pheromones that are laid under more conditions and that last

longer. This increased use of pheromones is unlikely to lead to overexploitation of

piles because robots will have error in following the pheromones and in detecting

resources. Thus, while pheromones can lead to overexploitation of found piles (and

too little exploration for new piles) in idealized simulations [77], overexploitation is

less of a problem for robots with error.

Figures 4.5–4.7 show that error has a strong detrimental effect on the efficiency of

swarms foraging for clustered resources. Swarms foraging on random distributions are

only affected by resource detection error; however, the efficiency of cluster-adapted

swarms is reduced by both positional and detection error. Generally speaking, dif-

ferent types of error affect different strategies in different ways [56]. In situations

where resources are clustered, as is often the case in the real world [135, 25, 136], it

is beneficial to adapt to the sensor error experienced by real robots.

4.5.2 Flexibility

Figure 4.8 shows the efficiency of simulated and physical robot swarms evolved on

one resource distribution (clustered, power law, or random), then evaluated on all

three distributions. All results are for 6 simulated or physical robots foraging with
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Figure 4.8: Foraging efficiency (resources collected per hour, per swarm) using pa-
rameters adapted to different resource distributions for (a) 6 robots foraging in a
simulation that includes sensor error and (b) 6 physical robots. Asterisks indicate a
statistically significant difference (p < .001).

error. As expected, robot swarms evolved for each of the three distributions perform

best when evaluated on that distribution. That is, cluster-adapted swarms perform

best on the clustered distribution, power-law-adapted swarms perform best on the

power law distribution, and random-adapted swarms perform best on the random

distribution. Strategy specialization is best illustrated in foraging experiments on

the clustered distribution: the cluster-adapted strategies are twice as efficient as the

random-adapted strategies.

Figure 4.8 demonstrates that the GA is able to evolve both specialist and gener-

alist strategies. If the resource distribution is known a priori, then the robot swarm

will be most efficient when using a specialist strategy adapted for that distribu-

tion. However, power-law- adapted strategies are sufficiently flexible (Eq. 4.7) to

function well on all three distributions. Simulated robot swarms using power-law-

adapted parameters are 82% as efficient as cluster-adapted swarms when evaluated
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on a clustered distribution, and 86% as efficient as random-adapted swarms when

evaluated on a random distribution. The power-law-adapted strategy is also the most

flexible strategy for physical robot swarms: power-law-adapted swarms are 93% as

efficient as cluster-adapted swarms on a clustered distribution, and 96% as efficient

as random-adapted swarms on a random distribution.

While Figure 4.8 demonstrates the expected result that specialist strategies are

most efficient, Figure 4.9 illustrates several ways in which strategies are specialized.

The four-panel figure shows the probability of exploiting information about resource

density in the local neighborhood of a found resource in worlds with error (top)

and worlds without error (bottom) by returning to the site via site fidelity (Fig.

4.9(a,c)) or laying pheromone (Fig. 4.9(b,d)). Error-adapted swarms evolved to

forage for clustered distributions show large and consistent differences from swarms

evolved for power law distributions: they are 3.5 times less likely to return to a site

via site fidelity with a single resource in the local neighborhood (Fig. 4.9(a)), and

7.8 times more likely to lay pheromone (Fig. 4.9(b)). Non-error-adapted swarms

evolved to forage for clustered distributions are equally likely to return to a site

via site fidelity with a single resource in the local neighborhood (Fig. 4.9(c)), but

twice as likely to lay pheromone (Fig. 4.9(d)), compared to swarms evolved for

power law distributions. In all cases, swarms evolved for random distributions have

a significantly lower probability of returning to a site via site fidelity or pheromones.

These results show differences in how each strategy is evolved to use information

for different resource distributions, and how these strategies adapt to error by chang-

ing how swarms communicate information. Cluster-adapted strategies make frequent

use of both memory (site fidelity) and communication (pheromones). Power-law-

adapted strategies are nearly equally likely to use memory as cluster-adapted strate-

gies (Fig. 4.9(a,c)), but they are less likely to use pheromones (Fig. 4.9(b,d)). In

contrast, swarms foraging on random distributions neither benefit from information,
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nor evolve to use it. This result also helps to explain why random-adapted swarms

with error experience a relatively small change in fitness (Fig. 4.5(c)): information is

irrelevant for random-adapted strategies, therefore error in information has no effect

on swarms using these strategies.

The differences among the strategies are most evident when the local resource

density estimate c is small: site fidelity and laying pheromones are both effectively

absent in random strategies, but they are important components of strategies for

clustered distributions. Additionally, it is particularly likely that c will be small in

the environment during evaluation when resources are distributed at random. Thus,

for clustered distributions, robots are both more likely to lay pheromones for any

given c, and more likely to detect large c in the environment, further increasing the

probability that pheromones will be laid. This illustrates that the likelihood of a

particular behavior being used depends both on the rules that have evolved and on

the environment in which it is evaluated.

This point is further illustrated by considering the response to encountering large

c: the random strategy evolves a non-zero probability of using site fidelity and laying

pheromones when nine resources are discovered. However, the probability of encoun-

tering a cluster with nine adjacent resources is vanishingly small in a random resource

distribution. Since that condition is never encountered, there is no selective pressure

on behaviors under that condition. Thus, the probability of laying pheromone in a

random-adapted strategy is effectively zero because the GA evolves zero probability

for the cases that are actually encountered.

When interpreting Figure 4.9, it is important to note tradeoffs and interactions

among behaviors. If a robot decides to return to a site via site fidelity, it necessarily

cannot follow pheromone (Alg. 2, lines 11–16). Thus, the decision to return to a site

via site fidelity preempts the decision to follow pheromones, such that the probability

of following pheromone is at most 1−Pois(c, λsf). However, a robot can both lay a
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pheromone to a site (Alg. 2, lines 8–9) and return to that site via site fidelity (Alg.

2, lines 11–13). Furthermore, a robot can return to its own previously discovered site

by following its own pheromone. This alternative method of returning to a previously

found resource by a robot following its own pheromone may in part explain the lower

values of Pois(c, λsf) for the error-adapted clustered strategy: Pois(c, λsf) may be

low because Pois(c, λlp) is high (Fig. 4.9(a,b)).

These strategies produced by the GA logically correspond with the resource distri-

bution for which they were evolved. All of the resources in the clustered distribution

are grouped into large piles, so finding a single resource is predictive of additional re-

sources nearby. Power-law-adapted swarms are more selective when deciding to share

a resource location because robots encounter both large piles and small piles, as well

as randomly scattered resources; thus, power-law-adapted swarms have evolved to

be more cautious when laying pheromones to avoid recruiting to low-quality resource

sites. The power-law-adapted strategies are also the most variable in their use of site

fidelity and pheromones, suggesting that many combinations of the two are effective

given a distribution with a variety of pile sizes.

4.5.3 Scalability

Figure 4.10 shows the efficiency per robot of simulated and physical swarms with 1,

3, and 6 robots foraging on a power law resource distribution in a world with error.

Not surprisingly, we observe that both simulated and physical swarms collect more

resources as swarm size increases, however larger swarms are less scalable (Eq. 4.7,

where E1 and E2 are defined per robot). In simulation, scalability to 3 robots is

89%, while scalability to 6 robots is 79% (Fig. 4.10(a)); in physical experiments,

scalability to 3 robots is 68%, while scalability to 6 robots is 56% (Fig. 4.10(b)).

The simulation accurately represents the efficiency of a single robot, but increas-
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ingly overestimates swarm efficiency as swarm size increases: 1 simulated robot is

1.1 times more efficient than 1 physical robot, while a simulated swarm of 3 robots

is 1.4 times more efficient than a physical swarm of 3, and a simulated swarm of

6 is 1.6 times more efficient than a physical swarm of 6. We hypothesize that this

increasing discrepancy is a result of inter-robot interference in the real world that is

not captured in the simulation.

Figure 4.11 shows how efficiency per robot changes as swarm size increases from 1

to 768 robots. As in Figure 4.10, there is an increase in overall swarm efficiency, but

a decrease in per-robot efficiency, as swarm size scales up. The solid line in Figure

4.11 shows how per-robot foraging efficiency scales when robots forage on a power

law distribution (without sensor error) and robots are able to adapt behaviors to

swarm size (slope on logged axes = −0.17, R2 = 0.96, p < 0.001). The scalability

(Eq. 4.7) for 768 robots using the full CPFA is 27%. We compare the efficiency of

subsets of the full CPFA at different swarm sizes to assess which behaviors contribute

most to scalability.

The other three lines in Figure 4.11 show how efficiency scales when swarms

are prevented from adapting the full CPFA to the environment in which they are

evaluated. The dashed line shows the efficiency of swarms that use a fixed set of

parameters evolved for a swarm size of 6 (i.e. parameters are evolved for a swarm

size of 6, but evaluated in swarm sizes of 1 to 768). Comparing the solid line to the

dashed line shows how adapting to swarm size improves efficiency. The difference

in efficiency (Fig. 4.11, solid vs. dashed) increases as swarm size increases. For

example, adapting to a swarm size of 24 improves overall swarm efficiency by 4.0%,

and adapting to a swarm size of 768 improves swarm efficiency by 51%.

The dash-dotted line shows the efficiency of swarms that adapt to swarm size but

are unable to use information (site fidelity and pheromones are disabled so that CPFA

parameters λid, λsf , λlp, and λpd have no effect on robot behavior). By comparing
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the efficiency of swarms with and without information (Fig. 4.11, solid vs. dash-

dotted), we observe that adapting to use information improves swarm efficiency by

an average of 46% across all swarm sizes.

Finally, the dotted line shows swarms that are restricted in both of the ways

described above: information use is disabled, and parameters are fixed to those

evolved for swarms of size 6. By comparing the dash-dotted line to the dotted line,

we can observe how the GA evolves the remaining parameters that govern robot

movement (pr, ps, and ω) in order to adapt to swarm size. The GA is able to adapt

movement to scale up more efficiently: adapting movement parameters to a swarm

size of 24 improves swarm efficiency by 6.8%, and adapting movement parameters to

a swarm size of 768 improves swarm efficiency by 59%. Thus, parameters governing

movement improve efficiency more than parameters governing information use (59%

vs. 46%, respectively, for swarms of 768).

The scaling exponents are remarkably similar for swarms under the 4 conditions

shown in Figure 4.11 (slopes ranging from -0.14 to -0.21): those that adapt to swarm

size, those with behaviors adapted only to a swarm of 6 robots, those that do not use

individual memory or pheromone communication, and those with behaviors adapted

to a swarm of 6 robots that do not use memory or communication. The cause of these

similar exponents is unclear. Central-place foraging produces diminishing returns

as swarm size increases because the central nest imposes a constraint on swarm

efficiency – robots in larger swarms have to travel farther to collect more resources.

However, it is not obvious why that should lead to similar scaling exponents for all

four cases. Other researchers have focused on inter-robot interference as the main

cause of sub-linear scaling [82, 76], but we observe sub-linear scaling even without

including collisions in the simulation.

Figures 4.12(a) and 4.12(b) show two ways in which the GA evolves different

strategies for different swarm sizes. Both parameters are drawn from the single best
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strategy evolved for each swarm size. Figure 4.12(a) shows that the variation in the

uninformed random walk (ω) declines with swarm size. Other movement parameters

are also correlated with swarm size: robots in larger swarms use the straight motion

of the travel behavior for a longer period of time (i.e. ps decreases; see Fig. A.1(a)),

and they are less likely to give up searching and return to the nest (i.e. pr decreases;

see Fig. A.1(b)). These three trends result in robots in large swarms using more

directed motion to disperse farther to cover a larger area and reduce crowding.

Figure 4.12(b) shows how the GA evolves the probability of laying pheromone

for different swarm sizes. The probability of laying pheromone decreases with swarm

size when two resources are found in the local neighborhood of a found resource (Eq.

4.4: k ← 2, λ ← λlp). This decreasing trend is observed for all numbers of neigh-

boring resources (this follows from Eq. 4.4). Additionally, pheromone waypoints

decay faster as swarm size increases (λpd) (Fig. A.1(d)). Small swarms may evolve

to lay pheromones more often because they deplete piles more slowly than larger

swarms. The preference for less pheromone laying and faster pheromone decay in

larger swarms may be advantageous to avoid the problem of overshoot in real ant

foraging [137], where pheromones can adversely affect foraging rates by recruiting

ants to previously depleted food sources.

The two remaining parameters evolved by the GA, the rate of site fidelity (λsf)

and the decay rate of the informed random walk (λid), show no significant correla-

tion with swarm size (Fig. A.1(f,g)). Figure A.2 shows the full distributions for the

parameters of all 10 strategies evolved by the GA in simulation. We see the same

trends in the median parameter values as we see in the best parameter values in

Figure A.1, but we also observe some outlier strategies that are substantially differ-

ent from the best performing strategies. For example, an asterisk in Figure A.2(c)

corresponds with an outlier strategy which performs at 37% of the efficiency of the

best strategy. This particular outlier evolved by converging on an unusually high
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rate of pheromone use coupled with ineffective spatial dispersal. Such premature

convergence on suboptimal strategies is common in evolutionary computation, but

because we repeat the evolutionary process multiple times (see Section 4.4.2), we can

evolve a rich variety of interactions among parameters and transfer only the most

effective parameter sets into physical robots.

4.6 Discussion

We have described a central-place foraging algorithm (CPFA) whose parameters are

evolved by a genetic algorithm (GA) to maximize foraging performance under differ-

ent experimental conditions. Experiments show that the system successfully evolves

parameters appropriate to a wide variety of conditions in simulation, and these lead

to successful foraging in iAnt robots. We show that foraging for heterogeneously dis-

tributed resources requires more complex strategies than foraging for the randomly

distributed resources that have been the focus of previous work. Strategies that

automatically tune memory and communication substantially increase performance:

Figure 4.8(a) shows that the more complex strategy doubles foraging efficiency for

clustered resources compared to a simpler strategy evolved for randomly distributed

resources. The same behaviors that allow flexible foraging for different resource dis-

tributions can also adapt to tolerate real-world sensing and navigation error (Fig.

4.6) and scale up to large swarm sizes (Fig. 4.11). This system contributes to solving

a key challenge in swarm robotics: it automatically selects individual behaviors that

result in desired collective swarm foraging performance under a variety of conditions.

The error tolerance, flexibility, and scalability of this system arise from interac-

tions among the set of behaviors specified in the CPFA, and dependencies between

those behaviors and features of the environment. These interactions allow a small set

of 7 parameters (Table 4.1) to generate a rich diversity of foraging strategies, each
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tuned to a particular amount of sensing and navigation error, a particular type of

resource distribution, and a particular swarm size. Post-hoc analysis of evolved pa-

rameters reveals that pheromone-like communication is one among many important

components of the evolved strategies, and interactions among multiple behaviors (i.e.,

memory, environmental sensing, and movement patterns) are important for generat-

ing flexible strategies. Further, the relative importance of pheromone communication

varies with sensing and navigation error, resource distribution, and swarm size.

Several examples illustrate how the parameters are automatically adapted to fea-

tures of specific foraging problems. The power-law-distributed resources are placed

in a range of pile sizes, so effective strategies balance the use of random exploration to

find scattered resources, individual memory to collect resources from small piles, and

recruitment to collect resources from large piles. This balance is altered when the

simulations include real-world sensing and navigation error. When error is included,

the power law strategy uses less pheromone laying and less site fidelity (Fig. 4.9(a,b).

vs. Fig. 4.9(c,d), light gray bars); thus, search automatically becomes more random

when information is less reliable due to error. In contrast, the cluster-adapted strat-

egy uses more pheromone communication when robots have error: pheromones are

laid more often and evaporate more slowly (Fig. 4.7), and robots reduce rates of site

fidelity in order to follow pheromones more (Fig. 4.9(a) vs. Fig. 4.9(c), white bars).

Sensing and navigation errors have the least effect on foraging performance when

resources are distributed at random (Fig. 4.5), and random-adapted strategies are

unaffected by error (Fig. 4.9, dark gray bars) because those strategies do not evolve

to use information.

Thus, introducing more complex resource distributions reveals effects of sensing

and navigation error that are not apparent in simpler foraging problems. Under-

standing how error affects foraging for heterogeneously distributed resources, and

having an automated way to adapt to those effects, are both important given that
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landscapes in the real world have complex resource distributions [130, 135], and that

robots in the real world have error. Additionally, real-world scenarios will have vari-

able numbers of robots to achieve different tasks. We demonstrate that systematic

changes in behaviors are adaptive in larger swarms. We find that power-law-adapted

robots in larger swarms evolve to disperse more (Fig. 4.12(a)) and communicate

less (Fig. 4.12(b)), and that parameters governing movement have a greater effect

on scaling performance than parameters governing communication (59% vs. 46%

improvement). Thus, the same parameters that adapt to improve performance for

different distributions and error cases can also be automatically tuned to improve

performance for variable swarm sizes.

Our approach differs from prior work in that we focus on finding combinations of

individual behaviors that result in collective foraging success. We make no attempt

to evolve low-level controllers, nor do we attempt to evolve new ways to remember,

communicate, or move. We focus the GA on identifying combinations of parameters

governing individual behaviors that maximize collective performance. This mirrors

the natural evolutionary process that has shaped the successful foraging strategies

of different ant species by tuning and combining a common set of existing behav-

iors. The results show significant performance improvements when parameters are

evaluated in the same context in which they are evolved. The success of the evolved

foraging strategies demonstrates that this approach is a practical method to gener-

ate effective foraging strategies from interactions among foraging behaviors and the

specified foraging environment.

Experiments with this swarm robotics system can also test existing biological hy-

potheses and generate new ones, a potentially important role for robotics as suggested

by Webb [134] and Garnier [43]. For example, the balance between communication

and memory may shift in ants in response to resource distribution. This could be

tested by comparing the typical distribution of resources foraged for by species that
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rarely use pheromones [46, 49] to the distribution foraged for by species that use

pheromones ubiquitously [3]. Our finding that individual robots in small swarms are

more likely to lay pheromones than those in large swarms (Fig. 4.12(b)) conflicts

with the hypothesis by Beckers et al [10] that communication increases with colony

size. One potential explanation is that large colonies tend to forage for more clus-

tered distributions, a factor not accounted for in our simulations in which all swarms

foraged on a power law distribution. Thus, the relationship between colony size and

pheromones may be driven by environmental differences in the niches of large and

small colonies. How communication among individuals depends on colony size and

resource distribution is worthy of further study in real ants, as well as in swarm

robotics. More generally, our system provides a way to test how memory, commu-

nication, and movement interact in different foraging conditions with experimental

control that is not possible with ants in natural environments.

4.7 Conclusions

This paper presents an ant-inspired swarm robotics system whose parameters are

specified by a GA. The GA automatically selects individual behaviors that result in

desired collective swarm foraging performance under a variety of conditions. This

work emphasizes the importance of incorporating environmental conditions into the

design process at the outset, rather than assuming idealized conditions and adapting

them to environmental realities afterwards. It is the interactions with features of the

specified foraging problem during the evolutionary process that generate complex

and flexible behaviors. Foraging strategies emerge from the interactions among rules

and dependencies in the foraging environment, including the amount of error in robot

sensing and navigation, the complexity of the resource distribution, and the size of

the swarm.
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Our work demonstrates one approach toward the common goal of developing

robot swarms that can function in the varied and complex conditions of the real

world. Of course, real environments are vastly more complex than the conditions we

have considered here. Future work should test whether and how a GA can adapt

the CPFA to more complex environments, additional sources of robot error, and

larger physical robot swarms. This work also provides a foundation for automatically

evolving behaviors that interact with environmental conditions to accomplish other

collective tasks, for incorporating other ant behaviors, and for adapting behavioral

rules in response to sensed environmental conditions in real time. By demonstrating

how a rich set of strategies can evolve from simple behaviors interacting with complex

environments, we suggest that biologically-inspired swarm robotics can benefit from

leveraging a larger set of biological behaviors to accomplish complex real-world tasks.
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Algorithm 2 Central-Place Foraging Algorithm

1: Disperse from nest to random location

2: while experiment running do

3: Conduct uninformed correlated random walk

4: if resource found then

5: Collect resource

6: Count number of resources c near current location lf

7: Return to nest with resource

8: if Pois(c, λlp) > U(0, 1) then

9: Lay pheromone to lf

10: end if

11: if Pois(c, λsf) > U(0, 1) then

12: Return to lf

13: Conduct informed correlated random walk

14: else if pheromone found then

15: Travel to pheromone location lp

16: Conduct informed correlated random walk

17: else

18: Choose new random location

19: end if

20: end if

21: end while
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Figure 4.9: For error-adapted swarms (top) and non-error-adapted swarms (bottom),
(a,c) the probability of returning to a site (Eq. 4.4: k ← c, λ ← λsf) and (b,d) the
probability of laying pheromone (Eq. 4.4: k ← c, λ ← λlp) given the number of
resources c in the neighborhood of a found resource.

83



Chapter 4. Evolving Error-Tolerant, Flexible, and Scalable Ant-Inspired Swarms

1 3 6
Robot swarm size

0

10

20

30

E
ffi

ci
en

cy
p
er

ro
b
o
t

(a) Simulated

1 3 6
Robot swarm size

0

10

20

30

E
ffi

ci
en

cy
p
er

ro
b
o
t

(b) Physical

Figure 4.10: Foraging efficiency (resources collected per hour, per robot) of 1, 3, and
6 robots foraging on a power law distribution for (a) swarms in a simulation that
includes sensor error and (b) physical swarms. All results are statistically different
(p < 0.001).
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Figure 4.11: Foraging efficiency (resources collected per hour, per robot) in simulated
swarms of 1 to 768 robots foraging without sensor error. Data are shown on a log
scale, and linear regression lines are shown for log-transformed data. Per-robot
efficiency is shown for four cases: using the full CPFA parameter set adapted to
swarm size (slope = −0.17, R2 = 0.96), using the full CPFA with parameters fixed
to values evolved for a swarm size of 6 (slope = −0.19, R2 = 0.83), using parameters
adapted to swarm size without information (i.e. the CPFA without memory and
communication; slope = −0.14, R2 = 0.95), and using parameters fixed to values
evolved for a swarm size of 6 without information (slope = −0.21, R2 = 0.91). All
linear fits are statistically significant (p < 0.001).
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Figure 4.12: (a) Swarm size versus best evolved uninformed search variation (ω)
(slope = -0.035, R2 = 0.94, p < 0.001) (see Fig. A.2 for statistical distribution). (b)
Swarm size versus best evolved probability of laying pheromone when two resources
are found in the resource neighborhood (Eq. 4.4: k ← 2, λ ← λlp) (slope = -0.040,
R2 = 0.84, p < 0.001) (see Fig. A.2).
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Chapter 5

Exploiting Clusters for Complete

Resource Collection in

Biologically-Inspired Robot

Swarms

5.1 Abstract

The complete collection of resources from a predefined search area is a challenging

task for autonomous robot swarms. Because naturally-occurring resources are likely

to be distributed in clusters, foraging robot swarms can identify and exploit these

resource clusters to improve collection efficiency. We describe an ant-inspired robot

swarm foraging system that searches for and collects resources from a variety of dis-

tributions, and a cluster prediction and exploitation algorithm that augments swarm

foraging by directing robots to residual resources. By characterizing the cumulative

resource collection time for a robot swarm foraging in a variety of clustered resource
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distributions, we can identify the relationship between the “clusteredness” of the

distribution and the change in the resource collection rate over time. Experiments

show that collection efficiency is most significantly increased when robots switch

from ant-inspired foraging to focused exploitation of clusters after approximately

90% of resources have been collected. Not surprisingly, clustering algorithms are

most effective when resources are highly clustered in the environment. This work

demonstrates the feasibility of efficient, complete resource collection using simple,

range-limited robot swarms programmed with ant-inspired foraging behaviors.

5.2 Introduction

Robot swarms are appealing because they can be made from inexpensive components,

their decentralized design is well-suited to tasks that are distributed in space, and

they are potentially robust to communication errors that could render centralized

approaches useless. Central-place foraging is a canonical task for robot swarms, and

can be instantiated into a number of real-world resource collection tasks, including

hazardous waste clean-up [107], humanitarian demining [42, 71], and in-situ resource

utilization [27, 129]. Total, or complete, collection of all resources is a challenging

task, and one that may prove effectively intractable when robots are placed in com-

plex environments with unknown and variable resource distributions. Additionally,

naturally-occurring resource distributions are likely to be spatially heterogeneous

[135, 25, 136], with some large clusters of resources that are relatively rare and thus

difficult to find. However, foraging robot swarms that are able to identify and re-

member the locations of clusters can exploit them to improve complete collection

efficiency.

The central-place foraging algorithm (CPFA) emulates ant behaviors which gov-

ern memory, communication, and movement, as well as an evolutionary process that
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tailors those behaviors into foraging strategies that maximize error-tolerance, flexi-

bility, and scalability under varied and complex environmental conditions [58]. These

robot swarms use information to direct their search to clustered resources – individual

robots are more likely to remember or communicate the locations of resources that

are found in dense clusters. Swarms that are evolved for a particular environmen-

tal condition employ foraging strategies that integrate the movement patterns and

communication strategy appropriate for that condition. In prior work, the evolved

swarms foraged efficiently by maximizing resource collection during a 1 hour exper-

imental window, but resource intake rates tend to drop sharply when only a small,

sparsely distributed fraction of residual resources remain.

This work presents a novel extension to robot swarm foraging that mitigates

the diminishing returns encountered during the complete collection task. Simulated

robot swarms combine machine learning with statistical models to predict the loca-

tion, size, and number of clusters remaining in the residual distribution after some

fraction of resources have been collected. Swarms exploit clusters by switching from

foraging with the CPFA to searching the cluster locations predicted by the statistical

model. Robot swarms that predict and exploit resource cluster locations, particu-

larly those with few remaining resources, significantly reduce diminishing returns

when foraging in highly clustered distributions.

5.3 CPFA Background

The CPFA and its biological roots are described in detail in our previous work

[58]. Here we summarize the essential features that the current work builds upon.

The CPFA mimics foraging behaviors used by desert seed-harvester ants that have

adapted to forage under hot, dry conditions. We emulate harvester ant foraging

strategies, which have evolved to forage in short time windows during which not all
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Figure 5.1: Our approach leverages studies on biological ants, multi-agent simulations
guided by genetic algorithms, and our physical iAnt robot platform.

available resources can be collected [50]. Foragers initially disperse from their central

nest in a travel phase, followed by a search phase [34] in which a correlated random

walk is used to locate seeds [26]. Foragers then navigate home to a remembered nest

location [61]. Seed-harvester ants typically transport one seed at a time, sometimes

sampling other seeds in the neighborhood of the discovered seed [61] to estimate local

seed density [77]. Ants that detect high seed density are more likely to return to

previously found food patches using individual memory or pheromone recruitment.

When foragers return to a patch, they appear to alter their search behavior such

that they initially search the local area thoroughly, but eventually disperse to search

more distant locations [35].

We instantiated ant foraging behaviors in an algorithm (the CPFA) that gov-

erns simulated and physical iAnt robot swarms [55, 56, 59, 57] (Fig. 5.1). We

demonstrated a close correspondence between the behaviors of simulated and physi-
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cal robots; consequently, in this paper, we conduct experiments only with simulated

robot swarms. Most recently, we demonstrated that the GA is able to evolve foraging

strategies that are tolerant of real-world sensing and navigation error, flexible for a

variety of resource distributions, and scalable to large swarm sizes [58]. The swarm

foraging system evolved appropriate solutions to different environmental challenges.

Solutions included: i) increased communication when sensed information was reliable

and resources to be collected were highly clustered, ii) less communication and more

individual memory when cluster sizes were variable, and iii) greater dispersal with

increasing swarm size. Analysis of the evolved behaviors reveals the importance of

interactions among behaviors, and of the interdependencies between behaviors and

environments. The effectiveness of interacting behaviors depends on the uncertainty

of sensed information, the resource distribution, and the swarm size.

Here we extend our previous results by i) characterizing the time for robot swarms

to completely collect all available resources from a range of resource distributions,

ii) predicting the location, size, and number of resource clusters in each distribution

from a partial list of resource locations, and iii) identifying the most effective point

in time to switch from ant-inspired foraging to exploitation of cluster locations.

5.4 Methods

5.4.1 Central-Place Foraging and Evolutionary Algorithms

The CPFA implements robot foraging behaviors as a series of states connected by

directed edges with transition probabilities (Fig. 5.2). Each robot begins its search

at a central nest site and sets a search location. Robots traveling to a random loca-

tion with no prior information search using an uniformed correlated random walk.

Robots traveling to a previously found resource location search using an informed
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Figure 5.2: The central-place foraging algorithm, or CPFA, describes the flow of
behavior for individual robots in the swarm during the foraging task (reprinted from
our prior work [58]).

random walk that is initially undirected and localized, then becomes more directed

and straighter over time. When a robot locates a resource, it first collects the re-

source, and then records a count of resources in the neighborhood of the found

resource. Robots use this count to decide whether to exploit information through

memory or communication. Robots who have not found a resource will probabilisti-

cally return to the nest.

We use a genetic algorithm (GA) to evolve a population of CPFA parameters

that maximizes the foraging efficiency of simulated robot swarms evaluated in an

agent-based model. These parameters control the sensitivity threshold for triggering

CPFA behaviors, the likelihood of transitioning from one behavior to another, and

the length of time each behavior should last.

92



Chapter 5. Exploiting Clusters for Complete Resource Collection in Robot Swarms

5.4.2 Predicting Optimal Clusters

Expectation-maximization (EM) is a procedure for finding the means µ and covari-

ance matrices Σ for the components of a Gaussian mixture model θ using maximum

likelihood estimation (MLE). We predict the most likely k-component mixture model

θ = (µ,Σ) by training EM on a given set of observed data x. The predicted values

for µ and Σ identify the locations and sizes of clusters in the observed data x

EM requires the number of mixture model components k to be determined a

priori, which presents a challenge when training on partially observed data with

an unknown number of clusters. We predict the optimal mixture model Opti-

malEM (Algorithm 3) for a set of discovered two-dimensional resource locations

x = {(x1, y1), (x2, y2), . . . , (xN , yN)}, where N is the number of discovered resources.

For each model EM(x, k), where k > 0, we calculate the maximum likelihood L

and the number of free parameters f . We then calculate the Bayesian Information

Criteria (BIC) for the model as:

BIC = 2 log(L)− f log(N) (5.1)

The number of free parameters for a two-dimensional Gaussian mixture model is

defined as f = 4k − 1 [52]. The BIC evaluates the relative quality of the model by

rewarding for goodness of fit, which is predicted by the maximum likelihood L, but

penalizing for the complexity of the predicted model defined by the number of model

components k. Comparing BIC values for competing mixture models trained on a

shared set of input data is a common method for selecting the most representative

model and estimating the number of clusters [37].

The OptimalEM function calculates the finite difference ∇BIC(k) = BIC(k)−
BIC(k− 1) between the BIC values of trained EM models for an increasing number
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of clusters k. OptimalEM initializes k to 0, then increases k until ∇BIC(k) ≥ 0,

at which point the function returns the predicted mixture model EM(x, k − 1).

5.4.3 Exploiting Clusters

Robot swarms begin each experiment by foraging for resources using the CPFA (Fig.

5.2). After some fraction of resources N have been collected by the swarm, all

robots return to the nest and compile the locations of the N resources into a single

list x. Note that this compilation process requires a one-time communication cost

that scales linearly with the number of robots in the swarm. The list x containing

the (x, y) positions of the discovered resources is divided, according to the function

OptimalEM(x, N), into a k-component Gaussian mixture model θ with means

µ and diagonal covariance matrices Σ. Sampling each Gaussian component θi at

one standard deviation of the mean µi produces a two-dimensional ellipse. The

rectangular bounding box containing the ellipse is defined as a cluster region ci

Algorithm 3 Select Optimal Clustering

1: function OptimalEM(x, N)

2: k ← 0

3: BIC[0]← MAXFLT ⊲ Initialize to maximum float

4: do

5: k ← k + 1

6: EM [k]← EM(x, k) ⊲ Train EM

7: L← EM [k].L ⊲ Retrieve likelihood value

8: BIC[k]← BIC(L, k,N) ⊲ Calculate BIC

9: while BIC[k]− BIC[k − 1] < 0

10: return EM [k − 1]

11: end function
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Figure 5.3: The central-place cluster exploitation algorithm, or CPCEA, describes
the flow of behavior for robots after switching from foraging with the CPFA to
exploiting the clustered regions predicted by OptimalEM (Algorithm 3).

with width Σi,0,0, height Σi,1,1, and center µi. Individual robots are then randomly

assigned to search each of the clusters regions predicted by OptimalEM(x, N).

Each robot makes a behavioral switch from foraging using the CPFA to exploiting

the clustered regions defined by the mixture model θ. After this behavioral switch,

all robots follow the central-place cluster exploitation algorithm (CPCEA) shown in

Figure 5.3. A robot at the nest starts its search by first choosing a cluster region c

with random probability, then selecting an (x, y) point at random from within region

c as its search location. The robot travels to the search location and begins searching,

using an informed random walk to search locally where it expects to find a resource

(i.e. within the predicted cluster region), but to straighten its path and disperse to

another location if the resource is not found. Robots that have not found a resource

will probabilistically give up searching and return to the nest. If a robot locates and

collects a resource, it records a count of resources in the immediate neighborhood of

the found resource, then returns to the nest.
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Figure 5.4: Top: 256 resources are placed one of five different clustered distributions:
(a) 1×256 has 1 randomly placed pile of 256 resources, (b) 2×128 has 2 piles of 128
resources, (c) 4×64 has 4 piles of 64 resources, (d) 8×32 has 8 piles of 32 resources,
and (e) 16 × 16 has 16 piles of 16 resources. Bottom: (f)–(j) The residual resource
distribution after 224 resources have been collected.

5.4.4 Experimental Setup and Evaluation

Swarms of 6 simulated robot agents search for resources on a 125× 125 cellular grid;

each cell simulates an 8 × 8 cm square. The simulation architecture replicates the

physical dimensions of our real robots, their speed while traveling and searching, and

the area over which they can detect resources. The spatial dimensions of the grid

reflect the distribution of resources over a 100 m2 physical area. 256 resources are

placed on the grid (each resource occupies a single grid cell) in one of five clustered

distributions (see Fig. 5.4(a)–(e)): 1 × 256 (1 randomly placed cluster of 256 re-

sources, 2 × 128 (2 clusters of 128), 4 × 64 (4 clusters of 64), 8 × 32 (8 clusters of

32), and 16× 16 (16 clusters of 16).

Following the evolutionary methods introduced in our previous work [58], we use
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a GA to generate robot swarm foraging strategies, represented by CPFA parameter

sets, that maximize resource collection efficiency for each of the five distributions.

The GA evaluates the fitness of each strategy, where fitness is defined as the total

number of resources collected by a swarm foraging with the CPFA during a simu-

lated 1 hour time period. The evolution process requires 600,000 simulated hours to

generate a foraging strategy for each distribution.

A population of 100 simulated robot swarms evolve for 50 generations using

recombination and mutation. Each swarm’s strategy is randomly initialized, and

robots within a swarm use identical parameters throughout each hour-long experi-

ment. During each generation, all 100 swarms undergo 12 fitness evaluations, each

with a different random placement of clusters; Figure 5.4(a)–(e) shows representative

sample placements. Deterministic tournament selection with replacement (tourna-

ment size = 2) is used to select 99 candidate swarm pairs, then each pair is recombined

using uniform crossover and 10% Gaussian mutation with fixed standard deviation

(0.05). We use elitism to copy the swarm with the highest fitness, unaltered, to the

new population – the resulting 100 swarms make up the next generation. After 50

generations, the strategy with highest fitness is kept as the best foraging strategy.

We repeat the evolutionary process 10 times to generate 10 independently evolved

foraging strategies, then we evaluate the best of these 10 foraging strategies for each

distribution on the complete resource collection task, for robot swarms foraging with

and without the use of the OptimalEM function (Alg. 3) and the CPCEA (Fig.

5.3).

We define collection time as the amount of time required to collect some fraction

of resources from one of the five experimental distributions, and total collection time

as the total time required to collect all 256 resources. We define relative change in

efficiency as:
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∆Er =

∣

∣

∣

∣

T1 − T2

T2

∣

∣

∣

∣

× 100% (5.2)

where T1 is the total collection time for a robot swarm foraging only with the CPFA,

and T2 is the total collection time for a swarm that switches from the CPFA to the

CPCEA after some fraction of resources have been collected.

We also evaluate the accuracy of our cluster prediction algorithm by comparing

the number of clusters predicted by OptimalEM to the actual number of clusters

discovered by robot swarms. We define mean absolute error in cluster prediction

over n experimental replicates as:

εc =
1

n

n
∑

i=1

|ki − ci| (5.3)

where ki is the predicted number of clusters, and ci is the actual number of clusters,

for replicate i.

Finally, we measure the effect of switching from foraging with the CPFA to ex-

ploiting clusters after different numbers of resources have been collected: we test

how switching to cluster exploitation after collecting N resources affects ∆Er, where

N = 32i and i ∈ {1, 2, . . . , 7}. That is, we measure the total collection time for

robot swarms that switch to exploiting clusters after 32, 64, . . . , 224 resources have

been collected. In order to thoroughly explore the performance of ∆Er when only a

small fraction of resources remain, we also exhaustively test all integer values for N

between 225 and 256. We define the effect size of switching to exploiting clustering

as:

r =
z√
M

(5.4)
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according to Richler et al [41], where z is the z-score from the Mann-Whitney U

test comparing the total collection time for swarms foraging only with the CPFA

to the total collection time for swarms that switch from foraging with the CPFA to

exploiting clusters, and M is the total number of samples. We also define the degree

of dispersion in the total collection time for each swarm as:

d = mediani(|yi −medianj(yj)|) (5.5)

where d is the median absolute deviation for a data set y = {y1, y2, . . . , yM} contain-
ing M samples.

5.5 Results

Results below compare resource collection times and cluster prediction errors across

five resource distributions that vary in the number and size of clusters (Fig. 5.4(a)–

(e)). All experiments are replicated 1000 times; medians and quartiles represent the

distribution of resource collection times, means and standard deviations summarize

cluster prediction error (Eq. 5.3), and the Mann-Whitney U test measures the effect

of switching from the CPFA to the CPCEA.

Figure 5.5 shows the median cumulative collection time for robot swarms us-

ing only the CPFA to forage for each of the five clustered resource distributions.

Swarms foraging on the 1× 256 distribution collect 88% of the total resources in the

shortest amount of time (224 resources collected in approximately 6,600 timesteps).

Increasing the number of clusters (while simultaneously decreasing the resources per

cluster) produces a corresponding increase in collection time for the first 224 re-

sources: swarms foraging on the 16 × 16 distribution collect 88% of resources in
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Figure 5.5: Median cumulative collection time (in timesteps) for 1 to 256 resources
in each of five resource distributions.

approximately 13,000 timesteps, nearly twice the collection time required for the

1 × 256 distribution. In all five distributions, the time required to collect the first

224 resources (between 6,600 and 11,000 timesteps) is approximately half of the time

required to collect the last 32 resources (between 16,000 and 29,000 timesteps). In

other words, swarms foraging only with the CPFA spend between 63% and 75% of

their time collecting the last 12% of the total resources in each distribution.

Figure 5.6 shows the mean absolute error of the OptimalEM cluster prediction

algorithm (εc, Eq. 5.3) for each of the five resource distributions with an increasing

number of resources collected before switching to exploiting clusters. Prediction

error decreases monotonically with time for four of the five distributions; i.e., as

expected, predication error decreases when predictions are made after robot swarms

have sampled more of their environment. Error for the 16× 16 distribution initially
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Figure 5.6: Mean absolute error εc (Eq. 5.3) when predicting the number of clusters
in each of five resource distributions, with increasing numbers of resources collected
before switching to cluster exploitation.

increases, then decreases after 160 resources have been collected. We also observe

that prediction error is larger for large numbers of clusters.

Figure 5.7 shows the effect r (Eq. 5.4) for robot swarms that switch from for-

aging with the CPFA to exploiting clusters after collecting the indicated number of

resources (on the x-axis), compared to swarms that do not switch and forage using

only the CPFA (Eq. 5.4). A positive effect indicates that the swarms that switch

to exploiting clusters outperform the swarm that do not switch, while a negative

effect indicates the reverse. We observe that r generally increases as more resources

are collected before switching to cluster exploitation. That is, swarms that collect

more resources before clustering those resources, then exploiting the resulting clus-

ters, perform better than swarms that collect fewer resources before clustering and

exploiting. However, in four of the five distributions, change in effect size tends to
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Figure 5.7: The effect r (Eq. 5.4) of clustering for robot swarms that switch from the
CPFA to the CPCEA after some fraction of resources have been collected, compared
to swarms that do not switch and forage only with the CPFA.

plateau after approximately 90% of resources have been collected. Swarms foraging

on the 16 × 16 distribution that switch to clustering never outperform CPFA-only

swarms, regardless of the number of resources collected before switching. Addition-

ally, the effect for a given number of resources collected before switching generally

decreases as the number of clusters increases. For example, swarms foraging on the

1×256 distribution that switch to exploiting clusters consistently outperform swarms

foraging using only the CPFA, whereas swarms that switch to exploiting clusters on

the 16× 16 distribution perform consistently worse than CPFA-only swarms. In all

five resources distributions, we observe the largest effects of exploiting clusters for

swarms that switch after at least 224 resources have been collected, indicating that

the majority of resources should be collected before switching to clustering.

Figure 5.8 shows the distribution of total collection times for robot swarms forag-

102



Chapter 5. Exploiting Clusters for Complete Resource Collection in Robot Swarms

1 x 256 2 x 128 4 x 64 8 x 32 16 x 16
Resource distribution

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
o

m
p

le
te

co
ll

ec
ti

o
n

ti
m

e
(t

im
es

te
p

s)

×105

No information

CPFA-only

CPFA + CPCEA

Perfect information

Figure 5.8: Total collection time for robot swarms foraging without information using
a correlated random walk, for swarms foraging only with the CPFA, for swarms that
switch from the CPFA to the CPCEA after 224 resources have been collected, and
for idealized swarms with perfect information (all resource locations are known a
priori).

ing only with the CPFA, and for swarms that switch from foraging with the CPFA to

exploiting clusters after 224 resources have been collected. As a comparative bench-

mark, we also include the distribution of total collection times for swarms that forage

without information using a correlated random walk (robots do not use memory or

communication), and for idealized swarms that forage with perfect information (all

resource locations are known a priori, therefore search is not required). Swarms for-

aging with the CPFA on the 1 × 256 distribution are 5.7 times more efficient than

swarms that forage without information, and 82% less efficient than idealized swarms

with perfect information. Swarms that switch to exploiting clusters with the CPCEA

are 11 times more efficient than swarms that forage without information, and only

66% less efficient than swarms with perfect information. The advantage of foraging
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using either the CPFA or the CPCEA decreases as the number of clusters increases

and the distribution of resources become more random.

We observe that clustering and exploiting after 224 resources are collected reduces

the total collection time required for the CPFA on four of the five distributions,

increasing efficiency (∆Er, Eq. 5.2) by 92% for the 1 × 256 distribution (z = 26),

81% for 2 × 128 (z = 32), 52% for 4 × 64 (z = 27), and 6% for 8 × 32 (z = 5.8).

The increase in efficiency was statistically significant in all four cases (p < 0.001).

Additionally, the dispersion d (Eq. 5.5) of the total collection time decreases when

swarms switch to exploiting clusters in four of the five distributions. We observe

6.1 times less dispersion for the 1 × 256 distribution, 3.5 times less for 2 × 128, 2.4

times less for 4× 64, and 13% less for 8× 32. This result demonstrates how cluster

exploitation significantly reduces the variation in total collection time; for example,

CPFA-only swarms foraging on the 1× 256 distribution have a worse-case collection

time of 26 simulated hours, compared 3.3 hours for swarms that switch to cluster

exploitation.

5.6 Discussion

We have described a novel extension to our robot swarm central-place foraging algo-

rithm (CPFA) that mitigates the diminishing returns encountered during the com-

plete resource collection task. Experiments show collection efficiency is most signif-

icantly increased when robot swarms switch from ant-inspired foraging to directly

exploiting clusters after approximately 90% of resources have been collected. As ex-

pected, cluster exploitation is most effective when resources are highly clustered in

the environment.

The effect of clustering tends to level off after robot swarms collect more than

90% of resources, and eventually decreases to zero as all 256 resources are collected
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(Fig. 5.7). We attribute this result to the diminishing returns of cluster exploitation

relative to the performance of ant-inspired foraging: as expected, swarms that delay

the use of clustering until very few resources remain experience a less significant gain

from cluster exploitation. However, swarms actually perform better when they delay

cluster exploitation until approximately 90% of resources are collected. Until that

point, the CPFA is a more efficient foraging algorithm than cluster exploitation,

which demonstrates the value of ant-inspired foraging. In summary, the resource

location information gathered by foragers while collecting the first 90% of resources

is vital to cluster exploiters collecting the last 10% of resources. This calls for a more

thorough investigation of the interactions and interdependencies between exploration

and exploitation in foraging robot swarms.

Interestingly, accurate estimation of the number of clusters is not necessarily

predictive of efficient resource collection. For example, increasing and subsequently

decreasing prediction error with increasing numbers of resources for the 16× 16 dis-

tribution (Fig. 5.6) does not match the monotonically increasing effect of switching

for the same distribution (Fig. 5.7). This result is likely indicative of latent cluster

exploitation mechanisms that are not accounted for in the error measure εc (Eq.

5.3). Additionally, we hypothesize that decreasing neighborhood resource density

may help to explain the corresponding decrease in resource collection rate for CPFA-

only swarms (Fig. 5.5): sparsely distributed residual resources (Fig. 5.4(f)-(j)) tend

not to trigger memory or communication behaviors crucial to ant-inspired foraging.

Future work should implement mathematical models to formally specify the rela-

tionship between the number, size, and density of resource clusters, and the optimal

point for switching to cluster exploitation.

Our work demonstrates a novel approach for augmenting ant-inspired robot

swarm foraging with machine learning and statistical models. We show that com-

bining our existing, biologically-inspired CPFA with a cluster exploitation algorithm
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produces more efficient total resource collection compared to each algorithm acting

alone. More generally, the results of this study support the efficacy of augmenting

biologically-inspired methods with machine learning algorithms to generate new,

robust techniques supported by solid mathematical foundations.
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Concluding Remarks

As human beings, we are driven to explore distant new worlds as we seek to under-

stand the fundamental nature of the Universe, and to unravel the mysteries of our

own existence. Because of the inherent dangers of human spaceflight, modern ex-

traplanetary exploration missions often use telerobotic, partially autonomous rovers

in place of humans to investigate these remote worlds [138]. As the technology be-

hind these machines continues to advance, the conceptual ambitions of researchers

and scientists to design and build low-cost, durable, fully autonomous rovers are

being realized [27, 121, 127]. Emerging research in biologically-inspired robotics sug-

gests that swarms of inexpensive, robust, quintessentially autonomous robots are

destined to surpass today’s Mars rovers as the extraplanetary explorers of the future

[55, 59, 58, 54].

With this contribution, we aim to advance the ambitious goal of designing and

programming robots that can successfully navigate unknown and variable environ-

ments, such as extraplanetary surfaces. Accordingly, Chapters 2 through 5 describe

in detail our swarm robotics system controlled by a central-place foraging algorithm

(CPFA) whose parameters are evolved by a genetic algorithm (GA) to maximize for-
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aging performance under different experimental conditions. This work demonstrates

how robot swarms built from inexpensive components can successfully operate out-

side of the typical robot laboratory setting, employing evolutionary computation and

machine learning to mitigate the adverse effects of unreliable information, variable

environments, congestion bottlenecks, and sparse resources.

In Chapter 2, we translated a GA-evolved agent-based model of seed-harvester

ants into a foraging algorithm for tag-seeking robot swarms. We investigated the

benefits of private and shared information by conducting one set of experiments

with swarms using individual memory (i.e. site fidelity), and a second set of exper-

iments with swarms using shared communication (i.e. pheromone-like waypoints).

We found that both memory and communication are advantageous behaviors for

swarms collecting resources from large clusters: sensing the local resource density

in the immediate neighborhood of a found resource is an effective mechanism for

guiding robots to densely-packed, resource-rich locations. However, shared commu-

nication was less beneficial than individual memory as a result of positional errors

that were propagated through the swarm, causing other robots to become lost and

thus waste valuable exploration time.

In Chapter 3, we introduced models of positional and resource detection error

into our robot swarm simulation to describe the empirically-measured sensor error

in our physical iAnt robots. Using this simulation, we evolved foraging behaviors for

simulated swarms in the presence these error models, then transferred these behaviors

into iAnt robots and evaluated their performance. When compared to iAnts foraging

using parameters evolved in a simulation without error, the error-adapted physical

swarms collected more resources, and their foraging performance was not statistically

different from error-adapted simulated swarms. Error-adapted swarms also employed

distinctly different foraging strategies from non-error-adapted swarms, including a

higher likelihood of using individual memory, and, for clustered distributions, a lower
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likelihood of using shared communication for a given local density of resources.

In Chapter 4, we presented a systematic analysis of our swarm robotics system,

specifically the system’s ability to tolerate error, to flexibly forage in different envi-

ronments, and to scale to large swarm sizes. We found that adapting to sensor error

is most valuable when resources are clustered: cluster-adapted swarms are highly

dependent on sensed information, and thus gain the most benefit from tuning their

information-dependent behaviors to match the inherently noisy iAnt sensors. Evolv-

ing to efficiently forage for heterogeneously-distributed resources produced strategies

that balanced the extent and thoroughness of search, using random exploration to

find scattered resources, individual memory to collect resources from small piles,

and recruitment to collect resources from large piles. We also found that power-

law-adapted robots in larger swarms evolved to disperse more and communicate

less, and that parameters governing movement had a greater effect on scaling per-

formance than parameters governing communication. The success of these evolved

foraging strategies demonstrated that our approach is a practical method to gener-

ate effective foraging strategies from interactions among foraging behaviors and the

specified foraging environment.

Finally, in Chapter 5, we augmented our swarm robotics approach with machine

learning and statistical models to improve collection efficiency for robots foraging on

sparse clusters of resources. These robots combined a modified central-place foraging

algorithm with a clustering procedure and a optimal model selection approach to

predict and exploit the locations of residual resources. Experiments showed collection

efficiency was most significantly increased when robot swarms switched from ant-

inspired foraging to directly exploiting clusters after approximately 90% of resources

had been collected. Not surprisingly, cluster exploitation was most effective when

resources were highly clustered in the environment.

Taken as a whole, this dissertation presents a comprehensive swarm robotics
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system, consisting of i) a set of high-level behaviors that constitute a foraging

strategy, ii) an agent-based model that implements each foraging strategy in

a simulated robot swarm, iii) a genetic algorithm that selects the most efficient

foraging strategy according to the performance of the simulation, and iv) a swarm

of physically-embodied iAnt robots that implement the most efficient strategy in

the real world. Although our system was designed to be a demonstration platform

for swarm robotics research, this work provides a foundation for designing and im-

plementing autonomous robot swarms that can function outside of the academic

research laboratory. The ability of robot swarms to tolerate sensor noise, adapt to

variable environments, distribute work across large teams, and identify and exploit

heterogeneously-distributed resources are all critical factors for successful remote

exploration missions on distant worlds.

6.1 Major Findings

In the course of our research on foraging robot swarms, we have uncovered several

key findings that are particularly novel, innovative, and/or unexpected. We highlight

those findings here.

First, we used a relatively simple GA to quickly evolve a small set of integrated

strategies that foraged efficiently in varied and complex environments. Previous

studies have developed or evolved foraging behaviors for randomly distributed re-

sources [7, 28, 80], while others have studied foraging from one or two infinite sources

[60, 38]. However, previous studies have not attempted to evolve strategies that are

sufficiently flexible to perform well in both of those environments, nor have they

developed strategies that are effective at collecting from more complex distributions.

We showed that foraging for resources in heterogeneous clusters requires more com-

plex communication, memory, and environmental sensing than strategies evolved in
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previous work.

As we tested these evolved foraging strategies for different robot swarm sizes,

we observed a sub-linear scaling relationship between the size of the swarm and

the resources collected per robot. Other researchers have focused on inter-robot

interference as the main cause of sub-linear scaling [82, 76], but we observe sub-

linear scaling even without including collisions in the simulation. We hypothesized

that the central-place foraging paradigm produces diminishing returns as swarm

size increases because the central nest imposes a “bottleneck” constraint on swarm

efficiency – robots in larger swarms have to travel farther to collect more resources.

This bottleneck could potentially be mitigated by increasing the number of nests

in proportion to the size of the swarm, a scaling technique inspired by the flexible

recruitment strategies of Argentine ants [36].

We also found that individual robots in smaller swarms were more likely to lay

pheromones than those in larger swarms, a result that conflicts with a previous pre-

diction that communication in ant colonies increases with colony size [10]. Contrary

to the field studies conducted in previous work, however, our experiments were pur-

posefully designed to fix all other known factors that could potentially influence

foraging rate: territory size, quantity and distribution of resources, as well as all

aspects of the individuals in the swarm. In reality, territory size is thought to scale

with ant colony size [63] and colony growth rate [48]; colonies with larger territories

naturally have access to more resources; and body size and ground speed vary widely

across ant species [35]. Future studies should therefore incorporate some or all of

these factors when considering the role of pheromones in swarm scalability.

Finally, we demonstrated the advantage of ant-inspired robot swarm foraging over

a mathematical optimization technique. We also demonstrated a synergy between

our ant-inspired foraging algorithm and a more traditional clustering algorithm [54].

Identifying and exploiting resources through machine learning and model selection
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was disadvantageous until approximately 90% of the resources had been collected

by the CPFA. However, the collection of these first 90% of resources was vital to

foragers that switched to exploiting the remaining 10% of the identified resource

clusters. In other words, our swarm foraging algorithm was essential to collecting

the majority of resources, but also benefited from cluster exploitation in order to

efficiently accomplish the complete collection task. These most recent findings sup-

port the efficacy of augmenting biologically-inspired methods with machine learning

algorithms to generate new, robust search behaviors that function efficiently in a

variety of environments.

6.2 Foraging Robot Swarms Within the Context

of Evolutionary Robotics

Evolutionary robotics (ER) is an automated design approach for generating sensing,

morphology, and control architectures for robots. ER is a integrated method of robot

design, meaning that the robot (or robot swarm) is evolved as a single, cohesive

unit, as oppose to traditional engineering approaches which generally follow the

reductionist methodology of designing each of the robot’s functions (e.g. mapping,

path planning, kinematics, etc.) in isolation. Following a recent ER review article

by Doncieux et al [30], we consider our work on foraging robot swarms as it relates

to the state of the art in evolutionary robotics.

We generated a diverse set of foraging strategies by evolving our robot swarms in

different environmental contexts. This approach mitigated premature convergence

by providing an analogue of the archive system used in novelty search [75]. In this

case, the diversity of the environments functioned as the novelty metric, driving the

search process in order to produce a variety of different, efficient foraging strategies.
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According to Doncieux et al, environment-driven evolution also provides selection

pressure that can promote the development of novel foraging strategies, a hypothesis

that is empirically supported by our findings in this manuscript. Although ER aims

to design robots with “as little prior knowledge as possible,” Doncieux et al also

mention that “drawing inspiration from nature can be helpful” [30]. In fact, our

work demonstrates that efficient and flexible foraging strategies can emerge from

simple, biologically-inspired behaviors evolved in response to varied and complex

environments.

6.3 The Exploration-Exploitation Tradeoff

The fundamental challenge for designing robot swarms that forage efficiently is decid-

ing how to balance the tradeoff between exploration and exploitation. Foraging ant

colonies, as well as any other species of foraging animal, face similar challenges. More

specifically, i) how much time should be spent searching for new, previously undis-

covered resources (exploration), vs. ii) how much time should be spent identifying,

localizing, and returning to areas known to have high resource density (exploita-

tion). The goal of determining the optimal tradeoff, commonly presented as the

multi-armed bandit problem [45], is computationally intractable and has been inves-

tigated in numerous studies across a wide variety of disciplines, including machine

learning [4], economics [73], and philosophy [23].

In our work, the genetic algorithm is able to appropriately balance exploration

and exploitation for different environments by tuning a small set of behavioral pa-

rameters. We hypothesize that the GA’s ability to select efficient foraging strategies

for each resource distribution stems from the fact that the evolutionary process is

able to indirectly sample the environment via the local resource density sensing pro-

cedure. That is, repeated environmental sampling by individual robots facilitates
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an intensive testing of the behaviors governing information decisions (i.e. individual

memory and shared communication), and the GA responds to the results of this

testing (in the form of foraging efficiency) by promoting the strategies that provide

the most effective explore-exploit tradeoff for a given environment. An alternative

approach might be to attempt to balance exploration and exploitation in a more

direct, straightforward manner, for example with a single real-valued parameter con-

trolling the probability of exploring vs. exploiting. However, the lack of input from

the environment would prevent such an approach from discerning the characteristics

of different environments, and thus it would be difficult for this approach to achieve

efficient foraging for a variety of resource distributions. Instead, our approach unifies

the effectiveness of our foraging robot swarms with the environment in which they

are evaluated, and therefore ensures that selection pressure from the environment

drives the evolution of efficient foraging behavior (see Section 6.2 for a more detailed

discussion of this phenomena).

6.4 Extensions to Foraging Robot Swarms

We have developed several innovative extensions that use our swarm robotics system

to study new interdisciplinary problems, and to further our goal of reaching a wide

range of researchers, developers, and students.

6.4.1 Alternative Search Strategies Inspired by the Immune

System

Cells in the immune system protect biological organisms by quickly detecting and re-

moving pathogens that may otherwise cause harm. As with colonies of seed-harvester

ants, these immune cells have evolved strategies that enable them to efficiently search
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for pathogens in a variety of environments. We previously characterized the move-

ment patterns of T cells in the lymph node as following a heavy-tailed, Lévy-like

distribution [39]. This Lévy walk-based search strategy is particularly efficient at

finding target objects that are clustered, but sparsely distributed in space [132].

We modified our swarm robotics system to incorporate this T cell-inspired Lévy

walk as an alternative search strategy, and compared the efficiency of heavy-tailed

movement to the correlated random walk used in the CPFA [39]. As in previous

experiments with the standard CPFA, we evolved the step length of the Lévy walk

for efficient search on different target distributions. We observed a small, but statis-

tically significant improvement in efficiency for simulated robot swarms using heavy-

tailed search, and we saw repeated convergence of the evolved step length to a value

consistent with the heavy-tailed, Lévy-like walk observed in T cells.

Another collaborative study focused on T cells and robots that visit some lo-

cations more frequently than others [40]. Results of this study showed similar dis-

tributions of step length for T cells and robots, which may be indicative of some

underlying mechanism that is inherent to efficient spatial search in both biological

and mechanical systems. These results also support the existence of a previously

hypothesized adaptive T cell response to environmental cues, such as dendritic cells

(DCs) carrying antigen indicative of a foreign pathogen.

6.4.2 Alternative Recruitment Strategies Inspired by Forag-

ing Ants

Chemical pheromones provide foraging ants with a stigmergic, mass recruitment

method that is highly scalable, fully decentralized, and generally tolerant of envi-

ronments with little or no volatility. Robot swarms that mimic ant pheromones,

on the other hand, are restricted to foraging in tightly controlled environments that
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require complex, monolithic infrastructure. For example, swarm researchers have

constructed elaborate stigmergic mechanisms using an always-on ink pen and white

paper flooring [123]; a tightly-coupled video camera, video projector, and vision pro-

cessing system [44]; and a phosphorescent-painted floor combined with ultraviolet

light emitters [86].

Ants also use simpler, more primitive recruitment strategies such as tandem run-

ning and group raids, which include a local recruitment display to stimulate nest

mates to return to high-quality food patches [22]. Robot swarms mimic these short-

range recruitment strategies using robot-to-robot physical connections [72], nearest-

neighbor local communication [118], and robot-chain path formation [102]. These

swarms employ relatively simple communication schemes that do not require global

coordination or preexisting infrastructure in order to collectively forage for resources

or aggregate in target areas.

We recently used our swarm robotics system to demonstrate that nest recruitment

strategies are at least as efficient as pheromone recruitment strategies for many envi-

ronments [78]. Nest recruitment is relatively simple to implement in robot swarms,

while pheromone recruitment requires robot- and environment-specific infrastructure.

Further, the foraging success of nest recruiters depends only on local, agent-to-agent

communication, while pheromone recruiters often depend on global coordination

with a single point of failure. The results of this study suggest that research in

swarm robotics should focus less on mimicking ant stigmergy, and more on designing

and evaluating new decentralized information-sharing protocols that are more scal-

able and easier to implement in natural environments as foraging strategies for real

robots.
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6.4.3 Furthering Swarm Robotics Research and Technology

Through Student Competition

Successful exploration of the Moon, Mars, and asteroids requires the location and

retrieval of local resources on extraplanetary surfaces. Technologies are needed to

find and collect materials such as ice (convertible into liquid water, hydrogen fuel

and oxygen to support human life) and rocks, minerals and construction materials

to build human shelters. In-situ resource utilization (ISRU) will be dramatically

improved by robotic swarms able to efficiently locate, identify and collect resources

over large and previously explored territory.

To that end, we have recently received funding from NASA’s Minority University

Research and Education Project (MUREP) to present an innovative swarm robotics

challenge that pushes the state of the art in swarm robotics. Our cooperative NASA

Swarmathon competition, which includes a three-year $1.8 million grant, will chal-

lenge 1,000 students at 50 minority-serving institutions across the country to further

advance swarm robotics by programming teams of robots (Fig. 6.1) to autonomously

search for and retrieve resources in unmapped environments. This technology has

the potential to revolutionize space exploration programs that collect valuable ma-

terials. These samples have the potential to unravel mysteries about the origins of

life.

6.5 Future Work

This work proposes and tests several fundamental hypotheses about foraging robot

swarms. Even so, swarm robotics is a nascent field with numerous, equally significant

research questions to pursue. Here we consider additional research directions to

extend our existing swarm analysis as future work.
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Figure 6.1: The Swarmie hardware platform developed through a UNM partnership
with NASA Kennedy Space Center’s (KSC) Swamp Works laboratory. The Swarmie
platform is an integrated system with adaptive software and a simulator that al-
lows rapid testing of new algorithms in software and rapid porting to hardware for
verification in physical experiments.

We considered error tolerance in our system as the swarm’s ability to mitigate

noisy sensor data (i.e. errors in positional and resource detection information), but

robots that function outside of the laboratory must also tolerate the loss of sensor

and/or actuator functionality, as well as the complete loss of individual robots in

the swarm. Following Bjerkenes and Winfield [14], future studies should consider

a systematic study of fault tolerance in our system to assess the effect of hardware

failure on foraging efficiency, as well as the ability of the GA to tune robot behaviors

in order to mitigate these failures. Because some foraging behaviors are dependent on

emergent properties (e.g. pheromone recruitment), we predict that experimentally

measuring the mean time before failure (MTBF) in our foraging robot swarms would

provide a quantitative benchmark to estimate our system’s k-out-of-N reliability, the
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approximate number of robots required to maintain emergent behavior [14]. This

reliability metric should also be applied to future scalability studies (our previous

scalability experiments did not implement hardware failure) in order to generate

more accurate models of foraging efficiency for large swarms.

We previously demonstrated that our foraging strategies could be evolved in real

time in swarms of 12 simulated robots using a distributed coevolutionary framework

[57] based on work by O’Dowd et al [103]. Unpublished experiments with support

vector machine (SVM) classifiers have also shown promise for accurate prediction of

resource distributions given a small sample of the local resource density. Based on

these empirical observations of the strong statistical correlation between resource dis-

tribution and local resource density, we have additionally proposed a lifelong learning

architecture based on Ruvolo and Eaton’s work [115] that could adapt robot swarm

foraging strategies in real time using a cloud-based storage system. In future work,

we plan to fully implement one or more of these real-time evolution system in our

physical robot swarm, which would enable our swarm to adapt its behavior to previ-

ously unknown environments without the need for offline simulation and parameter

transfer.

Finally, we plan to explore the feasibility of incorporating unmanned aerial vehi-

cles (UAVs) with integrated cameras into our foraging robot swarm [13]. This type

of heterogenous swarm would extend the visual sensing range of our existing system,

in addition to significantly increasing the speed of local sensing. The top cover of

our recently introduced Swarmie robot platform (Fig. 6.1) would provide the UAVs

with an ideal “home base” from which to take off and land, as well as a charging

station and long-distance transportation system. This heterogeneous swarm would

be particularly advantageous in very large environments where ground-based search

is inefficient, but local, short-range sensing is still required to complete the task as-

signed to the swarm. Ideal tasks for this type of swarm could include environmental
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monitoring of farms or ecological research stations, locating and collecting water-ice

on the Moon, or mining of raw materials from near-Earth asteroids.
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Figure A.1: The best evolved parameters for simulated swarms of 1 to 768 robots for-
aging without sensor error on a power law distribution. (a) Swarm size versus prob-
ability of switching to searching behavior (ps) (slope = -0.058, R2 = 0.30, p = 0.10),
(b) swarm size versus probability of switching to traveling behavior (pr) (slope =
-0.00075, R2 = 0.79, p < 0.001), (c) swarm size versus uninformed search correlation
(ω) (slope = -0.035, R2 = 0.94, p < 0.001), (d) swarm size versus rate of pheromone
decay (λpd, Eq. 4.5) (slope = 0.011, R2 = 0.73, p = 0.0016), (e) swarm size ver-
sus probability of laying pheromone (Eq. 4.4: k ← 2, λ ← λlp) (slope = -0.040,
R2 = 0.84, p < 0.001), (f) swarm size versus probability of returning to a site (Eq.
4.4: k ← 2, λ ← λsf) (NS, p = 0.27), and (g) swarm size versus decay rate of
informed search (λid, Eq. 4.3) (NS, p = 0.38).
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Figure A.2: Statistical distributions of parameters evolved for simulated swarms of 1
to 768 robots foraging without sensor error on a power law distribution. (a) Swarm
size versus probability of switching to searching behavior (ps), (b) swarm size versus
probability of switching to traveling behavior (pr), (c) swarm size versus uninformed
search correlation (ω), (d) swarm size versus rate of pheromone decay (λpd, Eq. 4.5),
(e) swarm size versus probability of laying pheromone (Eq. 4.4: k ← 2, λ← λlp), (f)
swarm size versus probability of returning to a site (Eq. 4.4: k ← 2, λ← λsf), and
(g) swarm size versus decay rate of informed search (λid, Eq. 4.3). Gray dots indicate
outliers beyond interquartile range; an asterisk represents an outlier at ω = 9.3.
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[44] S. Garnier, F. Tâche, M. Combe, A. Grimal, and G. Theraulaz. Alice in
pheromone land: An experimental setup for the study of ant-like robots. In
Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007), pages
37–44, Piscataway, NJ, 2007. IEEE.

[45] J. Gittins, K. Glazebrook, and R. Weber. Multi-armed bandit allocation indices.
Wiley, Hoboken, NJ, 2011.

[46] D. M. Gordon. The relation of recruitment rate to activity rhythms in the har-
vester ant, Pogonomyrmex barbatus (F. Smith) (Hymenoptera: Formicidae).
Journal of the Kansas Entomological Society, 56(3):277–285, 1983.

[47] D. M. Gordon. The spatial scale of seed collection by harvester ants. Oecologia,
95(4):479–487, 1993.

[48] D. M. Gordon. The development of an ant colony’s foraging range. Animal
Behaviour, 49:649–659, 1995.

[49] D. M. Gordon. The regulation of foraging activity in red harvester ant colonies.
The American Naturalist, 159(5):509–518, 2002.

[50] D. M. Gordon and A. W. Kulig. Founding, foraging, and fighting: Colony size
and the spatial distribution of harvester ant nests. Ecology, 77(8):2393–2409,
1996.

[51] S. Goss, S. Aron, J.-L. Deneubourg, and J. M. Pasteels. Self-organized short-
cuts in the Argentine ant. Naturwissenschaften, 76(12):579–581, 1989.

129



References

[52] U. D. Gupta, V. Menon, and U. Babbar. Detecting the number of clusters
during expectation-maximization clustering using information criterion. In
2010 Second International Conference on Machine Learning and Computing
(ICMLC), pages 169–173, Piscataway, NJ, 2010. IEEE Press.

[53] E. Haasdijk, A. Eiben, and A. F. T. Winfield. Individual, social and evolu-
tionary adaptation in collective systems. In Handbook of Collective Robotics:
Fundamentals and Challenges, pages 295–336. Pan Stanford Publishing, Sin-
gapore, 2010.

[54] J. P. Hecker, J. C. Carmichael, and M. E. Moses. Exploiting clusters for
complete resource collection in biologically-inspired robot swarms. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (in
press), 2015.

[55] J. P. Hecker, K. Letendre, K. Stolleis, D. Washington, and M. E. Moses.
Formica ex machina: Ant swarm foraging from physical to virtual and back
again. In Swarm Intelligence: 8th International Conference, ANTS 2012, pages
252–259. Springer Berlin Heidelberg, Berlin, DE, 2012.

[56] J. P. Hecker and M. E. Moses. An evolutionary approach for robust adap-
tation of robot behavior to sensor error. In Proceedings of the 15th Annual
Conference Companion on Genetic and Evolutionary Computation (GECCO
’13 Companion), pages 1437–1444, New York, NY, 2013. ACM.

[57] J. P. Hecker and M. E. Moses. Real-time evolution of iAnt robot foraging strate-
gies. In ALIFE 14: Proceedings of the Fourteenth International Conference on
the Synthesis and Simulation of Living Systems, pages 835–836, Cambridge,
MA, 2014. MIT Press.

[58] J. P. Hecker and M. E. Moses. Beyond pheromones: Evolving error-tolerant,
flexible, and scalable ant-inspired robot swarms. Swarm Intelligence, 9(1):43–
70, 2015.

[59] J. P. Hecker, K. Stolleis, B. Swenson, K. Letendre, and M. E. Moses. Evolv-
ing error tolerance in biologically-inspired iAnt robots. In Proceedings of the
Twelfth European Conference on the Synthesis and Simulation of Living Sys-
tems (Advances in Artificial Life, ECAL 2013), pages 1025–1032, Cambridge,
MA, 2013. MIT Press.

[60] N. Hoff, R. Wood, and R. Nagpal. Distributed colony-level algorithm switching
for robot swarm foraging. In Distributed Autonomous Robotic Systems: The
10th International Symposium, pages 417–430. Springer, New York, NY, 2010.

130



References

[61] B. Hölldobler. Recruitment behavior, home range orientation and territoriality
in harvester ants, Pogonomyrmex. Behavioral Ecology and Sociobiology, 1(1):3–
44, 1976.

[62] B. Hölldobler and E. O. Wilson. The multiple recruitment systems of the
African weaver ant Oecophylla longinoda (Latreille) (Hymenoptera: Formici-
dae). Behavioral Ecology and Sociobiology, 60(1):19–60, 1978.

[63] B. Hölldobler and E. O. Wilson. The ants. Harvard University Press, Cam-
bridge, MA, 1990.

[64] M. A. Hsieh, E. Forgoston, T. W. Mather, and I. B. Schwartz. Robotic manifold
tracking of coherent structures in flows. In IEEE International Conference on
Robotics and Automation (ICRA), pages 4242–4247, Piscataway, NJ, 2012.
IEEE Press.

[65] D. E. Jackson, S. J. Martin, F. L. Ratnieks, and M. Holcombe. Spatial and
temporal variation in pheromone composition of ant foraging trails. Behavioral
Ecology, 18(2):444–450, 2007.

[66] N. Jakobi. Half-baked, ad-hoc and noisy: Minimal simulations for evolutionary
robotics. In Fourth European Conference on Artificial Life, pages 348–357,
Cambridge, MA, 1997. MIT Press.

[67] N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The use of
simulation in evolutionary robotics. In Advances in Artificial Intelligence: 3rd
European Conference on Artificial Life, pages 704–720. MIT Press, Cambridge,
MA, 1995.

[68] A. R. Johnson, J. A. Wiens, B. T. Milne, and T. O. Crist. Animal movements
and population dynamics in heterogeneous landscapes. Landscape Ecology,
7(1):63–75, 1992.

[69] S. Kazadi. Swarm engineering. PhD thesis, California Institute of Technology,
2000.

[70] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou,
and S. Shimada. Robocup rescue: Search and rescue in large-scale disasters
as a domain for autonomous agents research. In 1999 IEEE International
Conference on Systems, Man, and Cybernetics (SMC’99), volume 6, pages
739–743, Piscataway, NJ, 1999. IEEE Press.

[71] C. S. Kong, N. A. Peng, and I. Rekleitis. Distributed coverage with multi-robot
system. In IEEE International Conference on Robotics and Automation, pages
2423–2429, Piscataway, NJ, 2006. IEEE Press.

131



References

[72] M. J. B. Krieger, J.-B. Billeter, and L. Keller. Ant-like task allocation and
recruitment in cooperative robots. Nature, 406:992–995, 2000.

[73] K. Kyriakopoulos and C. Moorman. Tradeoffs in marketing exploitation and
exploration strategies: The overlooked role of market orientation. International
Journal of Research in Marketing, 21(3):219–240, 2004.

[74] T. H. Labella, M. Dorigo, and J.-L. Deneubourg. Division of labor in a group of
robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous
and Adaptive Systems, 1(1):4–25, Sept. 2006.

[75] J. Lehman and K. Stanley. Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary Computation, 19(2):189–223, 2011.

[76] K. Lerman and A. Galstyan. Mathematical model of foraging in a group of
robots: Effect of interference. Autonomous Robots, 13(2):127–141, 2002.

[77] K. Letendre and M. E. Moses. Synergy in ant foraging strategies: Memory and
communication alone and in combination. In Proceedings of the 15th Annual
Conference Companion on Genetic and Evolutionary Computation (GECCO
’13 Companion), pages 41–48, New York, NY, 2013. ACM.

[78] D. Levin, J. P. Hecker, M. E. Moses, and S. Forrest. Volatility and spatial
distribution of resources determine ant foraging strategies. In Proceedings of
the European Conference on Artificial Life 2015 (ECAL 2015), pages 256–263,
Cambridge, MA, 2015. MIT Press.

[79] W. Liu and A. F. T. Winfield. Modelling and optimisation of adaptive foraging
in swarm robotic systems. The International Journal of Robotics Research,
29(14):1743–1760, 2010.

[80] W. Liu, A. F. T. Winfield, and J. Sa. Modelling swarm robotic systems: A case
study in collective foraging. In Towards Autonomous Robotic Systems (TAROS
07), volume 23, pages 25–32, Aberystwyth, UK, 2007. University of Wales.

[81] E. B. Mallon and N. R. Franks. Ants estimate area using Buffon’s needle.
Proceedings of the Royal Society of London. Series B: Biological Sciences,
267(1445):765–770, 2000.
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