The Role of Interleukin-10 in Regulating Neuroinflammation Relevant to Tauopathies

Lea L. Weston
Shanya Jiang
Devon Chisholm
Kiran Bhaskar

Follow this and additional works at: https://digitalrepository.unm.edu/hsc-bbhrd
The role of interleukin-10 in regulating neuroinflammation relevant to tauopathies
Lea L Weston, Shanya Jiang, Devon Chisholm, and Kiran Bhaskar
University of New Mexico Health Sciences Center, Albuquerque, NM

Background

Tauopathies are neurodegenerative diseases, including Alzheimer’s disease, that are associated with pathological accumulation of the microtubule associated protein tau (MAPT, or tau) (Lee et al., 2001). Abnormal **hyperphosphorylated tau** (pTau) strongly correlate with cognitive impairment (Nelson et al., 2012).

Neuroinflammation is also associated with tauopathies (Gerhard et al., 2006b; Edison et al., 2008) and is implicated in driving tau pathology (Yoshiyama et al., 2007, Maphis et al., 2015b). Therefore, it is compelling to understand the role of anti-inflammatory cytokines in limiting neuroinflammation and tau pathology. **Interleukin-10 (IL-10)** is a well-established anti-inflammatory cytokine with roles in limiting inflammation in the central nervous system (CNS) (Strie et al., 2003; Lobo- Silva et al., 2016; Burmeister and Marriott, 2018).

Here, we determine if IL-10 regulates inflammatory-induced tau pathology by examining the role of IL-10 on tau phosphorylation during an acute inflammatory challenge. We also examined IL-10 in the context of slow progression of neuroinflammation and pTau progression in a human tau expressing (hTau) mouse model.

Our findings suggest a distinct importance of IL-10 in limiting tau hyperphosphorylation after an acute inflammatory challenge, however, its role in limiting early expression and/or chronic progression of cytokines and tau phosphorylation remains unclear.

Hypothesis

The anti-inflammatory effects of IL-10 regulate tau phosphorylation in tauopathies.

Support and Acknowledgements

IDP T32

BHII Mini-Grant

Project ID: BHII 2017-2001
BHII RFA: 2017-2018

The Stephanie Ruby Predoctoral Travel Award Molecular Genetics Microbiology Dept.

Thanks to Dr. Erin Milligan for #10 mice; Dr. Lauren Turgeon for MIG training; Dr. Russ Morten for Behavior Training; and Jeff Thompson for fMRI assistance and other lab support.

Induce tau pathology with LPS

IL10 vs. non-Tg (WT) (3 mg/kg i.p) 24 hours

Neuroinflammation and Tau Pathology?

IL10 enhances LPS-induced cytokine levels and microglia activation

IL10 increases LPS-induced levels of activated p38 MAPK*

IL10 enhances LPS-induced tau phosphorylation

Human tau (hTau) transgenic mouse model experiments

IL10 mice have increased IL-1β, IL-6, & IL-12 but low levels of IL-10. Further deletion of IL-10 does not enhance cytokine levels.

Deletion of IL-10 in hTau mice does not significantly alter tau phosphorylation or total tau levels by 6 months of age.

Summary

- IL-10 deficiency in increased inflammatory markers, microglia activation and tau pathology in an acute model of inflammation.
- IL-10 deficiency did not alter inflammatory cytokines, microglia activation, or tau phosphorylation in this human tau (hTau) mouse model at 6 months of age.
- This suggests that the low-level cytokine expression in 6-month hTau mice is not dependent on IL-10 regulation. It’s not clear if IL10 affects inflammation and pTau with increased aging.