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ABSTRACT  

This research focused on developing and characterizing rare-earth doped, solid-state 

materials for laser cooling. In particular, the work targeted the optimization of the laser-

cooling efficiency in Yb3+ and Tm3+ doped fluorides. The first instance of laser-induced 

cooling in a Tm3+-doped crystal, BaY2F8 was reported. Cooling by 3 degrees Kelvin 

below ambient temperature was obtained in a single-pass pump geometry at λ = 1855 nm. 

Protocols were developed for materials synthesis and purification which can be applied to 

each component of ZBLANI:Yb3+/Tm3+ (ZrF4 – BaF2 – LaF3 – AlF3 – NaF – InF3: 

YbF3/TmF3) glass to enable a material with significantly reduced transition-metal 

impurities. A method for OH- impurity removal and ultra-drying of the metal fluorides 

was also improved upon. Several characterization tools were used to quantitatively and 

qualitatively verify purity, including inductively-coupled plasma mass spectrometry 
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(ICP-MS). Here we found a more than 600-fold reduction in transition-metal impurities 

in a ZrCl2O solution. A non-contact spectroscopic technique for the measurement of 

laser-induced temperature changes in solids was developed. Two-band differential 

luminescence thermometry (TBDLT) achieved a sensitivity of ~7 mK and enabled 

precise measurement of the zero-crossing temperature and net quantum efficiency. 

Several Yb3+-doped ZBLANI glasses fabricated from precursors of varying purity and by 

different processes were analyzed in detail by TBDLT. Laser-induced cooling was 

observed at room temperature for several of the materials. A net quantum efficiency of 

97.39±0.01% at 238 K was found for the best ZBLANI:1%Yb3+ laser-cooling sample 

produced from purified metal-fluoride precursors, and proved competitive with the best 

commercially procured material. The TBDLT technique enabled rapid and sensitive 

benchmarking of laser-cooling materials and provided critical feedback to the 

development and optimization of high-performance optical cryocooler materials. Also 

presented is an efficient and numerically stable method to calculate time-dependent, 

laser-induced temperature distributions in solids, including a detailed description of the 

computational procedure and its implementation. The model accurately predicted the 

zero-crossing temperature, the net quantum efficiency, and the functional shape of the 

transients, based on input parameters such as luminescence spectra, dopant concentration, 

pump properties, and several well-characterized material properties.  
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Chapter 1 

Introduction  

 

Historical overview of laser cooling and ZBLAN glass 

In 1929 lasers had not yet been invented, but the concept of using light to cool 

solid objects was proposed by German physicist Peter Pringsheim [1]. His idea of a 

"cooling cycle" was based on the principle of fluorescence. Counterintuitive to the idea 

that radiation causes materials to heat is this concept of laser induced cooling, also 

referred to as optical refrigeration. For most materials, the application of intense radiation 

causes heating, even damage, such as is the case of lasers used to vaporize biological 

material and to cut metal. Optical refrigeration occurs when a material emits photons of 

higher average energy than those it absorbs. In the case of a solid, the extra energy comes 

from the absorption of phonons. In essence, heat energy is converted into light energy 

and carried out of the sample. This process is described in more detail in the Laser 

Cooling Fundamentals section of this manuscript as well as in the comprehensive book 

on laser cooling by Epstein and Sheik-Bahae [2]. 

Although it was initially thought that anti-Stokes fluorescence violated the second 

law of thermodynamics, Landau disproved this by assigning entropy to radiation [3]. 

Landau showed that entropy of a radiation field increases proportionally to its frequency 

bandwidth and the solid angle through which it propagates. In the case of laser cooling, 

the incident pump light is a laser which has a small bandwidth and is highly directional, 
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having almost no entropy. The fluorescence emitted, however, is considered broadband 

and omni-directional, therefore having large entropy. During laser cooling, incident laser 

light is converted into isotropic and broadband fluorescence, and we have therefore 

conserved the second law of thermodynamics.  Application of the second and third laws 

of thermodynamics to the laser cooling process can be used to derive a fundamental limit 

of cooling. It was calculated that an upper limit of 20% of the pump radiation could be 

converted to cooling power given an impurity-free material [4].  

Although the first successful attempt to apply these principles to experiment 

produced a mere 0.3 K of cooling [5], great success has recently been made where a 

YLF:Yb3+ crystal was cooled to 164 K and is predicted to cool as low as 105 K [6]. Many 

glasses and crystals doped with various rare-earth ions have shown laser cooling, with a 

comprehensive summary given Table 1. Rare earth doped ZBLAN glass, the workhorse 

of the laser cooling hosts, was previously commercially available in reasonably high 

purity and has favorable properties for laser cooling. Such glasses are no longer 

commercially available, necessitating the development of ultra-pure, rare earth doped, 

laser cooling grade ZBLAN for this research. These heavy-metal fluoride glasses were 

first discovered by Poulain et al. [7] who reported glass formation for a composition of 

50% ZrF4 – 25% BaF2 – 25% NaF (mol%) in the mid 1970s. From these early results, 

ZBLAN glasses were developed by patient experimental trial and error. A relatively 

stable composition was determined to be around 53% ZrF4 – 20% BaF2 – 4% LaF3 – 3% 

AlF3 – 20% NaF. This is often referred to as the “standard” ZBLAN composition. Rare 

earth ions such as TmF3 or YbF3 can substitute for LaF3 in the ZBLAN host and enable a 

variety of optical applications. Pure ZrF4 does not exist in the vitreous form, and glass 
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modifiers such as NaF or BaF2 are needed to provide charge neutrality in the interstices 

of the network. The NaF acts as a stabilizer reducing the tendency to crystallize. The 

addition of in situ oxidizers, such as InF3, to ZBLAN is required in reducing 

atmospheres. However, these modifiers tend to decrease the glass stability. InF3 

concentrations of up to 2.5 mol% have been found to be effective in preventing the 

formation of black precipitates, which are recognized as reduced ZrF4 species, while still 

allowing the formation of crystal-free glasses using standard melting techniques [8]. This 

modified ZBLANI glass was the focus of this research. 

 

Table 1 Summary of rare-earth doped glasses and crystals that have exhibited laser 
induced cooling.  

Dopant Glasses Crystals 
Yb3+ ZBLAN [5],[60]-[64]  YAG  [73] 

 
BIGaZYT [65][66]  Y2SiO5 [73] 

 
CNBZn [65][66] KPb2Cl5 [66] 

 
ABCYS [67] LiY2F8 [75],[39] 

  
KGd(WO4)2 [37]  

  
KY(WO4)2 [72] 

  
BaY2F8 [74] 

Tm3+ ZBLAN [68]-[40] BaY2F8 [76][77] 

Er3+ CNBZn [70][71] KPb2Cl5 [70] [71] 
 

 

Laser cooling fundamentals  

The laser-cooling cycle is illustrated in Figure 1 (for the example of 

ZBLAN:Yb3+) and begins when the properly tuned pump laser excites the dopant atoms 

from the top of the ground state multiplet to the bottom of the excited state multiplet. The 
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atoms thermalize within the upper and lower multiplets by absorbing vibrational energy 

(or phonons) from the host material. This thermalization process is represented in Figure 

1 by the dashed, curved lines in the upper and lower multiplets. When an atom absorbs 

energy, it reaches an excited state. The new state is unstable, and the molecule must lose 

the extra energy. The atoms decay through fluorescence at an average energy greater than 

that of the pump. This process is known as anti-Stokes fluorescence. Therefore, by 

interacting with the molecular vibrations of the host, the Yb3+ ion can extract extra 

energy from the material. If emitted radiation contains more energy than was absorbed 

from the laser, the target loses energy and becomes colder. By repeating this process, the 

solid material sheds more and more thermal energy, leaving it cooler than its original 

state.  

 

 

Figure 1  Schematic of energy levels in Yb3+-doped ZBLAN showing the ideal case of 
laser cooling occurring between the two multiplets of Yb3+. The dopant is excited by the 
pump laser at frequency ν  from the top of the ground state multiplet (2F7/2) to the bottom 
of the excited state multiplet (2F5/2). Thermalization in both the upper and lower 
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multiplets (represented by the curved, dashed arrows) absorbs vibrational energy from the 
host. The energy emitted via fluorescence, f fE hν= , is greater than that absorbed and 

thereby the material is cooled.  

 

Anti-Stokes fluorescence is a general process and has been observed in different 

states of matter such as organic laser dyes in an alcohol solution [9] and also dilute gases, 

where the de-exciting collision cross section is small [10]. Laser cooling in gases is 

defined by a reduction in translational kinetic energy versus a reduction in average 

thermal vibrations of the host material atoms, as is the case with solid state laser cooling. 

One may also use energy conservation to explain the heat loss from the target against the 

energy gain of the radiation. This applies to both cooling of solids and Doppler cooling of 

atoms. Solid state laser cooling (herein referred to as either laser cooling, laser induced 

cooling or optical refrigeration) involves excitation of an absorption band by a laser 

beam. Anti-Stokes fluorescence refers to the condition when significant absorption 

occurs at wavelengths longer than the average fluorescence energy. As an example, 

Figure 2 shows the absorption and emission spectra for a BaY2F8:Tm3+ crystal in E//b 

orientation. If the glass is illuminated in this overlapping wavelength region (hatched 

area), it will potentially emit photons of higher energy on average, than those it absorbs 

and the sample is cooled.  
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Figure 2 Absorption coefficient (left axis) overlapped with the luminescence intensity 
(right axis) for a BaY2F8:1.2%Tm3+ crystal at room temperature, oriented such that E//b. 
The hatched area is the “cooling tail”, that is, the region that is probed for laser induced 
cooling. The dotted vertical line indicates the mean luminescence wavelength, 

1793nmfλ = . Pumping at wavelengths greater than fλ  will result in cooling for a 

sample exhibiting anti-Stokes fluorescence. 

 

In order to understand why a material exhibiting anti-Stokes fluorescence is able to 

cool, we must also consider the timescales for the processes occurring in the excited state. 

For rare earth ions embedded in glass, absorption of phonons in the excited state happens 

quickly (on the order of ps [11]) compared to the timescale for radiative optical 

transitions (ms). This means that for any wavelength used to excite the dopant transition, 

the population distribution in the upper multiplet, where the spacing for the crystal-field 

levels is small (~200 cm-1) relative to kT, reaches a local thermal equilibrium before 

relaxing to the ground state multiplet [12].  

For this laser-cooling process, we can define an efficiency to tell us how efficient 

this cooling cycle is. This laser cooling efficiency is defined as [13],  
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,f
cool

f

ηλ λ
η

λ
−

=  (1) 

where η  is the net quantum efficiency of the rare-earth excited state containing all 

processes which quench the excited state of the dopant ion and λ
 
and 

fλ  are the pump 

and mean fluorescence wavelengths, respectively. η is defined as 

( , ) ,p abs extTη λ η η=   (2) 

where extη describes the efficiency with which an excited ion produces a luminescence 

photon that escapes from the sample. The absorption efficiency, 

( )/( ) ) ,(abs r r bη α λ α λ α= +  accounts for the fraction of excited photons that are engaged 

in cooling, where ( )rα λ is the resonant (e.g. Yb3+) absorption at a given wavelength and 

bα  is the background absorption of the material, typically assumed to be independent of 

pump wavelength and temperature. Note that η  is a function of both temperature and 

pump wavelength, largely through the absorption term, absη , but also due to the spectral 

overlap between the rare-earth ion emission and the impurity absorption. Further details 

regarding η  have been covered extensively in the publication “Measurement of solid-

state optical refrigeration by two-band differential luminescence thermometry”, which is 

reproduced as Chapter 5 of this document. From Eq.(1), we see that as the laser input is 

tuned to longer wavelengths, the efficiency of the cooling process increases. This 

increase in cooling efficiency at longer wavelengths is offset by the fact that there is less 

dopant absorption as we move to longer wavelengths (see Figure 2), due to the thermal 

distribution of the ground state population. Additionally, parasitic background absorption 

(
bα ) due to impurities further limits the desirable pump wavelength range. There exists 
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an optimal pump wavelength for a given temperature where these two cases are 

optimized. This is illustrated inFigure 3 where an optimal pump wavelength for a 

BaY2F8:Tm3+ crystal at room temperature is found to be ~1860 nm. Also, as the sample 

temperature decreases, absorption in the long wavelength tail will decrease due to 

reduced thermal broadening. As the temperature is lowered, the red shifting of the 
fλ  and 

the reduction of the resonant absorption (
rα ) reduce the cooling efficiency. Therefore, as 

the sample is cooled, the optimal pump wavelength would also need to be decreased to 

maintain an optimal cooling efficiency. Hence, without a tunable pump source, optimal 

cooling could not be achieved throughout a cooling run from ambient down to low 

temperatures. There is a critical sample temperature where the heating and cooling are 

balanced. Here, 0coolη =  and we can then determine η  which is a qualitative measure of 

sample purity. Evaluation of laser cooling materials developed and synthesized at LANL 

is the focus of the publication “Preparation and characterization of high-purity metal 

fluorides for photonic applications”, Chapter 3 of this document. 
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Figure 3  Change in temperature, ∆T (relative to a reference sample), normalized to input 
pump power, Pin, as a function of pump wavelength, λ, for a BaY2F8:1.2%Tm3+ crystal at 
room temperature, pumped in the E//b orientation. Here we are probing the “cooling tail” 
shown as the hatched region of Figure 2.  Data points below the horizontal line indicate 
net cooling. The solid line is a fit to the data, described in the publication “Anti-Stokes 
luminescence cooling of Tm3+-doped BaY2F8”, reproduced as Chapter 2 of this document 
below. At some wavelength longer than fλ , cooling begins and continues until 

background absorption (αb) overwhelms the cooling at longer wavelengths. 

 

Additionally, from Eq.(1) we can see that coolη  scales inversely with the dopant 

energy gap ( fE h hν ν∆ = − ), giving a bit of insight into the desirable properties of a 

dopant ion for laser cooling. This is discussed more thoroughly in the Materials Selection 

section. Ultimately, cooling is limited by the fact that as we cool to lower temperatures, 

population in the manifolds is decreased due to the Boltzmann distribution. Throughout 

the remainder of this manuscript, the circumstances and necessary material characteristics 

desirable for optimizing laser cooling are described. This can be accomplished with 
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engineering techniques (with a few examples given in Figure 4), while the emphasis in 

this research is in optimizing the laser cooling material.  

 

Figure 4 Engineering tactics designed to optimize the cooling power, Pcool, from a sample 
(blue) by increasing the absorption length, αrLsample. The red lines represent the pump 
beam trajectories in three different schemes which have been employed to increase the 
absorbed power (Pabs from Eq.(3)). (a) Cavity enhanced cooling whereby the sample is 
contained in a resonator. (b) A monolithic optical maze, trapping incident light via total 
internal reflection. (c) High quality dielectric mirrors trap incident pump light fed through 
a small hole in a non-resonant cavity.  
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Fluoride crystals and glasses are of interest to a wide range of photonic 

applications including optical fibers for high power or long-haul transmission [13]-[15], 

host materials for lasers and optical amplifiers [14],[16]-[19], scintillators [20],[21], 

upconversion phosphors [22], and optical refrigerators [2]. These applications take 

advantage of the high band gap energy and/or the low phonon energies (typically < 500 

cm-1) of fluorides. Specifically, fluoride-based fibers find application in low-loss 

communication links, CO2 laser transmission for medical applications, thermal imaging 

and remote temperature monitoring and gas sensing [15]. Ultrapure fluorides are also 

needed for bulk optics for deep ultraviolet (UV) photolithography [23]. Field-deployable 

thorium nuclear clocks would also greatly benefit from pure fluoride precursors. These 

are potentially capable of >1,000 times higher accuracy over current atomic clocks used 

in GPS navigation systems [24].  One current limitation is residual absorption in the 

vacuum UV, which degrade the performance by reducing the transmittance near the 7.6 

eV transition energy of thorium. The preparation of ultra-pure binary fluorides is 

therefore critical to enabling the desired performance of many fluoride optical materials. 

One prominent advantage ZBLAN has over other glasses (such as silica) is 

superior infrared transmittance, covering a broad spectral range from 0.25 µm – 7 µm. 

Fluoride fibers have received the most attention for low-loss telecommunication 

applications because the theoretical limit for Rayleigh scattering is considerably lower 

than for silica-based glasses. This is due both to a higher energy UV absorption edge and 

better IR transparency. This spectral range can be extended even further into the IR by 

substitution of Hf for Zr, as well as by adding InF3. Other characteristics that make 

ZBLAN attractive are its low refractive index, low dispersion, low phonon energy, and 
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low loss. In fact, ZBLAN has a theoretical attenuation coefficient of 0.002 db/km at 2.6 

µm (compared to silica, given that the state-of-the-art is the Corning SMF-28 fiber, 

having 0.25 db/km attenuation at 1.55 µm). However, due to impurities and small 

crystallites [25], this low attenuation coefficient has not been achieved to date. These 

impurities are identified as transition metals (TMs) and hydroxyl ions, which have strong 

optical absorptions in the near IR and UV spectral regions [26]. In optical refrigerators, 

the impurity absorptions non-radiatively quench the optical excitation and cause 

unwanted heating that limits the laser-cooling performance (discussed in more detail in 

the Role of Impurities section). For optical refrigerators based on ZBLAN it was 

estimated, for example, that TM and OH- impurities in excess of ~100 parts-per-billion 

(ppb) severely compromise the material performance [27]. Other applications have 

similarly stringent purity requirements. To date, the best commercially available ZBLAN 

glasses contain parts-per-million (ppm) impurity levels, which are inadequate in order to 

achieve the desired cryogenic performance. This is the primary motivation behind the 

materials synthesis development discussed in Chapter 3. 

The principal application of laser cooling grade glasses or crystals, such as 

ZBLAN, is the realization of an all solid state optical cooler. Such a device would consist 

of a small diode laser used to excite a specially designed material in thermal contact with 

the load to be cooled. The primary application would be to cool radiation detectors and 

other sensitive electronic devices to cryogenic temperatures on earth, but especially in 

space [28] and detectors that have interband versus intersubband transitions. Such a solid state 

cooling device would be advantageous over current methods of cooling these electronics 

given that they (1) are vibration free, (2) are compact, given that sub-mm diode lasers 
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already exist, allowing a device having < 1 cm3 volume and thus having a low total 

system mass, (3) have no fluids or moving parts, (4) have a potentially extremely long 

lifetime, due the long lifetime of laser diodes, (5) allow for possible remote laser 

pumping, (6) can withstand high g-forces, (7) do not require cryogenic fluids, (8) have a 

potential to cool to the ~100 K range, (9) use only photons as the cooling mechanism, no 

electrons, thus no electronic noise, (10) can withstand a high temperature environment, 

and (11) are low cost to manufacture. 

Compared with thermoelectric coolers, solid state optical refrigeration devices 

would be more efficient when the difference between the hot and cold reservoir is large 

or below 190 K, where Peltier devices become severely inefficient [29]. The electrical 

connections required in Peltier devices limit both their reliability and the temperature 

differential at which they can operate. Although the majority of laser cooling experiments 

in the condensed phase to date have been performed at room temperature, applications 

where this form of cooling is likely to be more competitive versus other methods are 

predominately at low temperatures.  

Yet another interesting potential application of solid state optical refrigeration 

might include cooling of interferometric gravitational wave detectors for the laser 

interferometer gravitational wave observatory (LIGO). Thermal noise is the current main 

limitation, as the project moves towards a low temperature system in order to improve the 

overall sensitivity curve of the detectors. Laser cooling could be used to obtain local 

cooling of the flexural points of the suspension wires of the interferometer mirrors, 

without adding any seismic noise [30],[31]. The cooling of amplifiers in MEMS 

gyroscopes for missile guidance systems is also a prospective application [32],[33] as 



Chapter 1. Introduction 
 

14 

 

well as cooling of imaging sensors and quantum dot IR photodetectors [34]. The idea of 

creating a thermally balanced laser has been proposed by Bowman [35], whereby the heat 

produced by a laser gain material during lasing may be offset by the cooling from anti-

Stokes fluorescence. This is feasible given that many laser cooling materials are also laser 

gain mediums. High critical temperature superconductors, such as YBCO [36], as well as 

compact SQUID magnetometers for geophysical and biomedical sensing might also 

benefit from application of an optical refrigerator.     

Materials selection 

Although a number of different types of materials are candidates for laser cooling 

in the condensed phase, the most successful combination to date involves rare-earth ions 

embedded in a transparent solid host (see Table 1). To achieve cooling, an appropriate 

ion embedded in a transparent host with minimal impurities is required. This section will 

discuss the ion and additional host properties required for laser cooling. Several groups 

have tried to find other materials suitable for cooling but even those which show promise 

from analysis of their absorption and emission spectra have either exhibited too low a 

quantum efficiency, or have excessive background absorption due to impurities [37].  

The primary goal of this research was to develop a material capable of laser 

cooling to cryogenic temperatures. Although much effort has been dedicated to a number 

of engineering techniques which can be used to increase the absorbed power, Pabs (see 

Figure 4), this research was the first to explore material optimization to effect the largest 

temperature drop, T∆ , possible. The cooling power is given as,  

,cool cool absP Pη=  (3) 
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where coolη  is defined above in Eq.(1) and Pabs is the absorbed power. In order to 

maximize T∆  (which is proportional to Pcool), we primarily seek to increase coolη . 

Engineering methods used to increase the [1 exp(( ) )]abs in b R sampleP P Lα α= − + , via 

increasing the absorption length (sampleLα ) have included, (1) shaping the material into a 

fiber [38], (2) making the sample a resonant [39] or non-resonant cavity [69], (3) trapping 

the light via total internal reflection [Figure 4 (b)], or (4) placing the cooling sample 

directly within a laser cavity [40], as summarized in Figure 4. The remainder of this section 

will outline material requirements for optimization of coolη . 

An ideal dopant-host pair should allow for effective ion-phonon coupling, which 

otherwise should not be large enough to result in multi-phonon relaxation. The energy 

gap law states that the non-radiative, multi-phonon emission rate, Wnr is inversely 

proportional to the exponential of energy difference ( E∆ ) between the excited and 

ground states,  

.a E
nr oW W e− ∆∝  (4) 

Here, Wo is a characteristic of the host material and is temperature dependent, E∆ is the 

energy gap of the dopant ion, and a is proportional to the phonon energy of the host. 

Figure 5 is a logarithmic plot of the non-radiative decay rate (Eq.(4)) for several potential 

host materials, as a function of E∆  [42]. Also shown are the absorption spectra for the 

relevant laser cooling transitions: 3H6 � 3F4 for Tm3+ and 3F7/2 � 
3F5/2 for Yb3+.  From 

Eq.(4) and Figure 5, we see that dopants with smaller energy gaps (Tm3+) will generally 

be subject to higher non-radiative decay rates, due to more potential for interaction with 

host phonon modes. This dependence is due to phonon energy distributions that vary with 
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material composition and symmetry. For this reason, low phonon energy of the host 

material is desirable for laser cooling. As an example, the phonon energies in ZBLAN are 

significantly lower than in silica, thus a greater number of phonons need to interact 

simultaneously to thermally de-excite the electronic excited state of the dopant. This 

makes multi-phonon transitions, which reduce the optical quantum efficiency, much less 

likely in a ZBLAN host than in silica [43]. Other host materials, such as BIG (BaF2-InF3-

GaF3) which have transmission extending further into the IR, will have even lower 

phonon energy than ZBLAN [44]. 

 

Figure 5 The relationship between the energy gap of the rare earth dopant (shown here 
with the absorption spectra of Tm3+ and Yb3+) and the non-radiative decay rate, as given 
in Eq.(4) for various potential host materials. Here we can see, for example, that a 
ZBLAN host doped with Yb3+ will exhibit a lower non-radiative decay rate and thus a 
larger quantum efficiency compared to the same material doped with Tm3+.  The 
horizontal line represents the maximum non-radiative rate for cooling to occur at room 
temperature (assuming no background absorption). From this figure, we see that a 
Borate:Yb3+ sample has potential to cool whereas the efficiency in a Borate:Tm3+ sample 
is too low for laser cooling.  
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In order to allow for more cooling at lower temperatures, a narrow Stark splitting 

of the ground state multiplet is desired. A small ground state splitting results in a large 

population density in the upper Stark sublevels. This allows for a lower zero-crossing 

temperature, TZCT (also referred to as minimum achievable temperature), however, lower 

efficiency at room temperature. Other desirable properties of a laser cooling host material 

include: (1) high thermal conductivity, allowing for fast thermal diffusion, (2) low 

background absorption, as impurity/pump interactions reduce the cooling efficiency 

(discussed in detail in the Role of Impurities section), (3) high material hardness, which 

allows for better polish and direct deposition of optical coatings, (4) large absorption 

cross-section, allowing for a large absorption efficiency thus large coolη , and (5) low 

thermal emissivity, giving higher transparency at thermal wavelengths (far-infrared) for a 

material less susceptible to radiative heat loading.  

In addition to these material properties, structural properties can affect the degree 

of laser cooling. Many glasses and crystals have exhibited laser cooling. In glasses there 

is no long range order, thus the Stark splitting is not homogeneous as in a crystalline 

material where each rare-earth ion experiences an essentially identical Stark interaction. 

In the inhomogeneously broadened case of the glass, oscillator strength is not used 

efficiently; in a crystal, the oscillator strength is concentrated, resulting in sharp 

absorption peaks. The difficulty imposed by the more discrete transition energies, and 

regular structure, is that phonon energies supported in the crystal must match the 

difference in energy between transitions if absorption at one wavelength is to lead to 

emission at another, as required for cooling to occur. 
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When selecting a laser cooling material, the choice of dopant is equally important 

as the choice of host material. Typically, rare earth ions are chosen as they provide a 

broadened two level system with high quantum efficiency, as required. For this reason, 

materials that lase make good candidates for laser cooling, in general. The optically 

active 4f electrons are well shielded from the surrounding environment by the filled 5s 

and 5p shells and as a consequence, the interaction between the electrons and the 

surrounding medium lattice phonons is very weak. This results in a narrow spread of the 

Stark structure (compared to transition metals, which involve 3d electrons shielded only 

by two outer 4s electrons) and thus sharper linewidths and greater absorption. Due to 

sufficient shielding, the spectra do not exhibit large variations from host to host, and 

many excited states have relatively low non-radiative decay rates.  The rare earths of 

interest are the lanthanides which are chemical elements characterized by the filling of 

the 4f shell. They are in the sixth period of the periodic table with atomic numbers 

varying from 58 to 71. The 4f electrons have almost no contribution to the chemical 

valence, therefore the atom can easily lose three electrons, usually 5d1 and 6s2 to attain 

their most stable oxidization state as trivalent ions. Due to the practical experimental 

limitations and availability of tunable sources and spectrometers, practical choices for 

rare-earth dopants include Yb3+, Tm3+, and Er3+. 

According to the definition of the cooling efficiency (Eq.(1)), dopant ions with 

larger energy gaps will produce more efficient cooling. The energy levels for the two 

main dopant ions of interest, Tm3+ and Yb3+ are shown in Figure 6 where the primary 

transition used for laser cooling is emphasized. Thus doping with Tm3+ (having an energy 

gap of ~0.7 eV, versus ~1.25 eV for Yb3+), for example should be nearly twice as 
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efficient. However, Yb3+ only has one excited state manifold, 2F5/2. Therefore, excited 

state absorption (ESA) and cross-relaxation via concentration quenching are not issues. 

Both of these processes typically involve non-radiative energy transfers detrimental to 

laser cooling. ESA is possible for ions with multiple electronic levels, such as Er3+ or 

Tm3+, whereas it is not possible for Yb3+. Given the trade-offs between Tm3+ and Yb3+ 

discussed in this section, the superior dopant for laser cooling has yet to be established 

and research continues using both dopants. 

 

Figure 6 Calculated energy levels for ZBLAN:Tm3+ and ZBLAN:Yb3+. The red arrows 
indicate the transition that is typically pumped to effect laser induced cooling. The blue 
arrows represent the anti-Stokes luminescence which carries away energy from host 
phonons enabling laser cooling. The ordinate axis for both systems are shown on equal 
scales for easy visual comparison. More detail on the 2F7/2 � 2F5/2 transition for Yb3+ is 
shown in Figure 1. 
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In the context of laser cooling, an impurity is any species in the material that 

lowers the quantum efficiency of the excited state of the dopant ion. A great number of 

successful cooling cycles (each extracting only a few kT of heat) are required to 

compensate for each non-radiative event. A high quantum efficiency, indicating primarily 

radiative energy transfer, is therefore central to the operation of laser coolers. Competing 

processes that tend to introduce heating (and thus lower the cooling efficiency) are: (1) 

multi-phonon relaxation of the rare-earth excited state, (2) non-radiative energy transfer 

from the excited rare earth-ion to an nearby impurity, or (3) background absorption by an 

impurity.  

The depopulation of an excited state can occur due to a radiative transition, where 

the energy is emitted as fluorescence, or by phonon assisted transitions, where the energy 

is taken up by the host material in the form of phonons. The lifetime of a metastable 

electronic state of a dopant ion can be reduced by decay processes which involve the 

simultaneous emission of several phonons. Such a process is a multi-phonon transition or 

relaxation. Multiple phonons are typically required for such transitions because the 

energy of a single phonon is not sufficient to match the difference in level energies. For 

example, multi-phonon relaxation of the 3F4 excited state of the Tm3+ ion in a ZBLAN 

host would require ~ 6 phonons while multi-phonon relaxation of 2F5/2 excited state of 

Yb3+ would require ~ 10 phonons for such a transition in the same host material. The 

process can be significantly reduced given the proper choice of a host material with low 

phonon energy (such as ZBLAN), as discussed in the Materials Selection section. In 

addition to this interaction between dopant and host phonon modes, multi-phonon 

relaxation can also occur due to excitation of impurities with high energy vibrational 
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modes or multi-relaxation processes following upconversion or cross-relaxation. 

Specifically, impurities with high energy vibrational modes can degrade material 

performance by introducing UV absorption enhancing multi-phonon relaxation rates of 

excited states [44], [45]. Any impurity with ħ maxω  > 1000 cm-1 can potentially introduce 

such a heat load that becomes competitive with optical cooling. Examples include 

oxygen-based impurities such as oxides, hydroxyl (OH-) ions, and water as well as CO2, 

C-H bonds and N-H bonds. 

Transition metal (TM) ions have optical transitions in the UV and visible spectral 

regions [25], leading to undesired background absorption by direct absorption at the 

pump wavelength. Additionally, impurities can act as acceptors in a non-radiative energy 

transfer from the excited state of the dopant ion causing quenching of the rare earth 

excited state, even at trace levels [27], [44]. Examples include certain TMs as well as 

several rare-earth ions (Pr3+, Sm3+, Dy3+, Ho3+, Yb3+, Er3+ and Tm3+). For Yb3+, 

impurities with optical absorption bands around 1 μm can act as acceptors in an energy 

transfer from the 2F5/2 excited state followed by non-radiative relaxation of the excited 

impurity ion. Such impurities become particularly relevant as the dopant concentration is 

increased and energy migration through the dopant ions to those excitation traps becomes 

efficient. To illustrate this effect and determine which impurities are most deleterious to 

laser cooling, Figure 7 shows absorption cross-sections of several TMs adapted from 

France et al. [46] overlapped with the absorption spectra of Yb3+ and Tm3+ in ZBLAN. 

We can make several observations based on the spectral overlap between the dopant ion 

and these select TM ions. As compared to unwanted rare earths (which are likely present 

due to the difficulty in chemically separating similar species) transition metals are worst 
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for degrading cooling performance due to their comparatively large line widths, which 

overlap somewhat with the dopants. The rare earth impurities are not as problematic [47] 

due to their relatively narrow spectrum. The TMs will also lead to significant background 

absorption since the excitation pump source will also overlap with these ions. Here we 

can also see that a Tm3+ doped material might exhibit less heating from impurity 

absorption, as the spectral overlap is smaller compared with the overlap for Yb3+. From 

this data, Hehlen et al. [27] concluded that the most problematic transition metals (in 

decreasing order of most to least problematic) include Cu2+, Fe2+, Co2+, Ni 2+, V3+, Ti 3+, 

and Cr 3+. They also calculated that in order to develop an all solid state cryocooler 

capable of laser cooling to 100 K, such transition metals and OH- impurities would need 

to be reduced to 10 – 100 ppb total in the final host. In particular, they concluded that 

Cu2+ would have the most stringent requirement, and would need to be reduced to < 2 

ppb. They estimated that even the best laser cooling glasses to date would require a 

further 20-30 fold reduction in impurities to achieve this goal. This finding was the basis 

for developing the capabilities that enable processing of ultra-pure ZBLAN glass at 

LANL. This process strategy is briefly discussed in the Fluoride Purification section and 

is compared to other methods of purifying the host material components. The details for 

the final purification strategy used can be found in the publication, "Preparation and 

Characterization of high-purity metal fluorides for photonic applications" reproduced as 

Chapter 3 of this document. Now that the most problematic impurities for laser cooling 

have been identified, a strategy for their removal can be explored as outlined in the 

following section, Fluoride Purification Methods. 
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Figure 7 This figure illustrates the spectral overlap, and thus potential interaction or 
energy transfer between Tm3+ or Yb3+ ions with selected transition metal ions. All 
spectral data were taken at room temperature. The absorption cross sections of the 
transition metals were adapted from France et al.[46].  
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during glass synthesis to remove OH- impurities. The use of CF4, NF3, SF6, Cl2, CC14, or 

O2 reactive gas atmospheres during melting has been widely used [49],[50], however, 

such methods are not acceptable for many high purity glass applications such as laser 

cooling, as they re-contaminate the final glass with unwanted species. For example, the 

use of CCl4 will result in the introduction of Cl- impurities into the melt by the 

replacement of trace quantities of OH- with Cl- so that the anion stoichiometry is 

unknown. In other words, the glass fluoride stoichiometry would then be incomplete. The 

added Cl- also produces a higher crystallization tendency and, in extreme cases, may lead 

to reduced resistance to attack from environmental moisture. Electrochemical purification 

of the fluoride melts was also previously performed as a clean-up method for the 

transition metals (TMs) [44]. However, this technique is not capable of reducing the 

impurities to the ppb regime required for efficient laser cooling. While the slow growth 

of fluoride crystals can reduce the concentration of some of these impurities, fluoride 

glasses generally contain all of the impurities that were present in the melt from which 

they were quenched. More recent developments in fluoride purification include vapor 

phase processes, which appear attractive due to the success of chemical vapor deposition 

(CVD) in purifying silica for fiber technology. Some preliminary results appear to be 

encouraging. However, the practical achievement of fluoride glasses through CVD 

appears difficult due to the high evaporation temperature of several of the fluoride glass 

components [51]-[53]. Although reasonable success has been reported in reducing TMs 

in ZrF4, no strategy has been identified to reduce impurities to the desired levels for all 

components in ZBLAN glass. It is universally regarded that new synthesis processes are 

needed for the achievement of very pure ZBLAN glass.  
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In this research, we have developed a streamlined approach which targets 

undesirable TM ions in all components of ZBLANI:Yb3+/Tm3+. Our method utilizes a 

bottom-up approach, where we start with the purest precursors commercially available 

and further purify them before converting them to the appropriate fluoride. Our synthesis 

strategy focuses on purification and preparation of individual fluoride starting materials 

under well-defined, tightly-controlled atmospheric conditions before they are mixed to 

form ZBLANI glass. In this work, we aim to significantly reduce problematic TM 

impurities down to the ppb level using a well established technique, chelate assisted 

solvent extraction. Our approach is to exploit a single chelate/organic solvent system 

suitable for the individual purification of all ZBLANI:Yb 3+/Tm3+ components in order to 

minimize the development effort and to simplify processing, allowing future scale-up for 

producing larger quantities of materials. The system consisting of ammonium-

pyrrolidine-dithio-carbamate (APDC) as the chelate and methyl-isobutyl-ketone (MIBK) 

as the organic solvent is well developed and used in analytical chemistry for heavy metal 

trace analysis [54]-[58]. Ling et al. used the APDC/MIBK system to reduce Co2+, Ni2+, 

and Cu2+ to < 5 ppb and Fe2+ to < 10 ppb in zirconium solutions [54]. The APDC/MIBK 

system is ideal for the removal of the specific TMs that are detrimental to laser cooling 

while not affecting the metal ions of the glass components. Solvent extraction uses a 

chelate that preferentially binds only to specific metal ions in the aqueous phase, forming 

a hydrophobic complex. The resulting metal-chelate complexes are extracted from the 

aqueous into a second, immiscible organic phase. By extracting only the aqueous phase, 

the desired metal ions are retained and the unwanted TM ions are removed with the 

organic phase. Although the ratio of metal ions extracted to the organic phase to those 
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metal ions in the aqueous phase is high for TM ions in the APDC/MIBK system 

[55],[57],[58], three sequential extraction steps were performed to ensure a nominal 

reduction of the target impurities by at least a factor of 103. Further details on these 

methods and the glasses produced for this research are contained in the article 

"Preparation and characterization of high-purity metal fluorides for photonic 

applications" (given as Chapter 3 of this document). In addition to the removal of TMs, 

this research also developed methods to remove OH- and water from fluoride precursor 

materials. This is outlined in detail in Chapter 3 of this manuscript. These methods can be 

extended to purification of a variety of host glasses and crystals and is not limited to 

ZBLANI:Yb 3+/Tm3+. Other materials of interest are currently under investigation, 

including the crystalline YLF:Yb3+ which has shown great potential [6].  

Manuscript organization 

The bulk of this document, Chapters 2-5, consists of peer-reviewed journal 

articles either published or in the process of submission to high-impact journals in optics 

and materials science. The purpose of this Introduction chapter was to relate all of these 

journal articles, and provide more details on important topics touched on throughout the 

various articles. Specifically, the motivation for this research and the materials selection 

sections have been expanded. Note that the citations within each chapter are referenced at 

the end of the given chapter, with each chapter having its own bibliography. 

Much of the motivation behind this research lies in the unavailability of 

commercially available laser cooling grade materials.  For this reason, we initially began 

to seek sources of rare-earth doped, pure host materials under development by other 
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research groups. One of our collaborators at the University of Pisa has the capability of a 

making a very high purity, high quality BaY2F8 crystal. The first paper given in Chapter 1 

shows successful laser induced cooling for the first Tm3+-doped crystal, BaY2F8. It was 

found that this material has similar favorable properties to ZBLAN, making it a good host 

material for laser cooling. However, due to limited availability and the need to control the 

strict purity requirements, it was deemed necessary to synthesize our own laser cooling 

grade materials. This lead to the research presented in Chapter 3, where capabilities were 

developed to synthesize and purity fluoride precursor materials for synthesis of ultra-

pure, rare earth doped ZBLANI glass. This chapter provides all the details necessary to 

produce a laser-cooling grade glass. In developing a figure of merit for evaluating laser 

cooling materials, it was necessary that the method test an intrinsic property of the 

material, related at least qualitatively to the amount of impurities present in the material. 

This method must also be insensitive to surface preparation methods and re-absorption 

effects, sensitive to temperature changes as small as tens of mK, practical over a wide 

range of sample temperatures, and be relatively expedient. Two such interrelated figures 

of merit were selected, the zero crossing temperature, TZCT and the net quantum 

efficiency, η . An experimental method, two band differential luminescence thermometry 

(TBDLT), was developed to determine TZCT which can in turn, be used in conjunction 

with the temperature depended luminescence spectra to find η . Chapter 5, “Measurement 

of solid-state optical refrigeration by two-band differential luminescence thermometry” 

describes in detail how these two parameters were obtained. Given the feedback from this 

experiment, we were able to make several iterations of our ultra-pure laser cooling 

material, with each iteration resulting in improvement of the glass as described in 
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Chapters 3 and 5. During this TBDLT experiment, temperature dependent transients are 

recorded and analyzed to determine TZCT. In order to predict the functional form of the 

experimental data, it was necessary to correctly model the thermal processes occurring in 

the ZBLANI:Yb3+ system. This is presented in Chapter 4, “Model of laser-induced 

temperature change in solid-state optical refrigerators”. This model can be easily adapted 

to other glass host materials, and could be extended to crystals as well. This work 

presents the first attempt to predict laser cooling transients, based on material and 

experimental parameters, before undertaking a costly and time consuming experiment.  

   

 

 

 

 
 

 

 

 

 

 

 

 
 

 



Chapter 1. Introduction 
 

29 

 

REFERENCES 

[1] P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz – 
und Temperaturstrahlung,” Z. Phys. 57, 739 (1929).  

[2] R. I. Epstein and M. Sheik-Bahae, eds., in Optical Refrigeration. Science and 
Applications of Laser Cooling of Solids, (Wiley, Weinheim, 2009), pp. 1-28. 

[3] L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 
10, 503 (1946). 

[4] C. E. Mungan, “Radiation thermodynamics with applications to lasing and 
fluorescent cooling,” Am. J. Phys 73 [4], 315-322 (2005). 

[5] R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, 
“Observation of laser-induced fluorescent cooling of a solid,” Nature, London 
377, 500-503 (1995). 

[6] D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, R. I. 
Epstein, and M. Sheik-Bahae, “Demonstration of an Optical Cryocooler,” in 
Conference on Lasers and Electro-Optics/International Quantum Electronics 
Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), 
paper IPDA9. 

[7] M. Poulain, J. Lucas, and P. Brun, “Verred fluores au tetrafluorure de zirconium. 
Proproetes optiques d’un verre dope au Nd3+,” Mat. Res. Bull 10, 243 (1975). 

[8] B. T. Hall, L. J. Andrews and R. C. Folweiler, “Method for preparing fluoride 
glasses,” U.S. Patent 4,946,490 (1989).  

[9] C. Zander and K. Drexhage, “Cooling of a dye solution by anti-Stokes 
fluorescence,” in Advances in Photochemistry, Vol. 20, D. C. Neckers, D. H. 
Volman, and G. V. Bunau, eds. (John Wiley, New York, 1995), pp. 59-68.  

[10] S. Chu, C. Cohen-Tannoudji, and W. D. Philips, Nobel Prize in Physics for the 
development of methods to cool and trap atoms with laser light (1997).  

[11] W. J. Miniscalo, in Rare Earth Doped Fiber Lasers and Amplifiers, M. J. F. 
Digonnet, ed., (Marcel Dekker, New York, USA, 1993). 

[12] J. T. Verdeyen, Laser Electronics, Prentice Hall Series in Solid State Physical 
Electronice, 3rd ed. (Prentice Hall, New Jersey, 1995). 

[13] M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nature Photonics 1, 
693–699 (2007). 



Chapter 1. Introduction 
 

30 

 

[14] S. Sudo, “Progress in Optical Fiber Amplifiers,” in Current Trends in Optical 
Amplifiers and their Applications, T. P. Lee ed., (World Scientific, New Jersey, 
1996), pp. 19-21.  

[15] T. G. Brown, “Optical fibers and fiber-optic communications,” in Fiber Optics 
Handbook: Fiber, devices and systems for optical communications, M. Bass and 
E. W. Van Stryland, eds., (McGraw-Hill, NY, 2002), pp. 1-49. 

[16] S. Bedo, M. Pollnau, W. Luthy, and H. P. Weber, “Saturation of the 2.71 um 
laser output in erbium-doped ZBLAN fibers,” Opt. Commun. 116, 81–86 (1995).   

[17] X. Zhu and R. Jain, “Numerical analysis and experimental results of high-power 
Er/Pr:ZBLAN 2.7 um fiber lasers with different pumping designs,” Applied 
Optics 45 [27], 20 (2006).  

[18] T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, 
and S. Sudo, “35 dB gain Tm-doped ZBLAN fiber amplifier operating at 1.65 
um,” Tech. Digest of CLEO/Pacific Rim PD2.12, (July 1995).  

[19] B. Pedersen, W. J. Miniscalo, and R. S. Quimby, “Optimization of Pr3+:ZBLAN 
fiber amplifiers,” IEEE Photonics Technol. Lett 4 [5], 446-448 (1992). 

[20] D. F. Anderson, “Cerium fluoride: a scintillator for high-rate applications,” Nucl. 
Instrum. Methods Phys. Res. A287 [3], 606-612 (1990).  

[21] E. Auffray, D. Bouttet, I. Dafinei, J. Fay, P. Lecoq, J. A. Mares, M. Martini, G. 
Maze, F. Meinardi, B. Moine, “Cerium doped heavy metal fluoride glasses, a 
possible alternative for electromagnetic calorimetry,” Instrum. Methods Phys. 
Res. A380 [3], 524-536 (1996). 

[22] J. Freek Suijver, “Upconversion Phosphors,” in Luminescence: From Theory to 
Applications, C. Ronda ed., (Wiley-VCH, Weinheim, 2008), pp. 133-175. 

[23] T. M. Bloomstein, M. W. Horn, M. Rothschild, R. R. Kunz, S. T. Palmacci and 
R. B. Goodman, “Lithography with 157 nm lasers,” J. Vac. Sci. Technol. B 15, 
2112 (1997). 

[24] E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in Th-
229,” Euro-phys. Lett. 61, 181 (2003). 

[25] K. Fujiura, S. Sakaguchi, Y. Ohishi and Y. Terumnuma, “Formation Reaction of 
ZrO2 Scatterers in ZrF4-Based Fluoride Fibers,” J. Am. Ceram. Soc. 71, 460 
(1988). 

[26] S. Mitachi, T. Miyashita and T. Manabe, “Preparation of fluoride optical fibers 
for transmission in the mid-infrared,” Physics and Chemistry of Glasses 23, 196-
201 (1982). 



Chapter 1. Introduction 
 

31 

 

[27] M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-
doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75 [14], 144302 (2007). 

[28] B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills and A. J. Mord, 
“Demonstration of a solid-state optical cooler: An approach to cryogenic 
refrigeration,” Journal of Applied Physics 86, 6489-6493 (1999).  

[29] R. Frey, F. Micheron, and J. P. Pocholle, “Comparison of Peltier and anti-Stokes 
optical coolings,” J. Appl. Phys. 87, 4489–4498 (2000). 

[30] T. Uchiyama, D. Tatsumi, T. Tomaru, M. E. Tobar, K. Kuroda, T. Suzuki, N. 
Sato, A. Yamamoto, T. Haruyama, T. Shintomi, “Cryogenic cooling of a 
sapphire mirror-suspension for interferometric gravitational wave detectors,” 
Physics Letters A 242 [4-5], 211-214 (1998).  

[31] F. Bondu, J. Vinet, “Mirror thermal noise in interferometric gravitational-wave 
detectors,” Physics Letters A 198 [2], 74-78 (1995). 

[32] V. K. Varadan and V. V. Varadan, “Microsensors, microelectromechanical 
systems (MEMS), and electronics for smart structures and systems,” Smart 
Mater. Struct. 9, 953-972 (2000).  

[33] W. P. Platt, B. R. Johnson, “Cryogenic inertial micro-electromechanical system 
(MEMS) device,” U. S. Patent 6,487,864 (2002). 

[34] S. Tsao, H. Lim, W. Zhang, and M. Razeghi, “High operating temperature 320 x 
256 middle-wavelength infrared focal plane array imaging based on an 
InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector,” Appl. Phys. Lett. 
90, 201109 (2007). 

[35] S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quant. Elect. 
35, 115–122 (1999). 

[36] T. P. Sheahen, “Refrigeration,” in Introduction to high-temperature 
superconductivity (Plenum Press, NY, 1994). 

[37] S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” App. 
Phys. B B71, 807 (2000). 

[38] T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room 
temperature,” Opt. Lett. 24, 1041-1043 (1999).   

[39] D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and 
M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” 
Proc. SPIE 6907, 69070B (2008). 



Chapter 1. Introduction 
 

32 

 

[40] C. W. Hoyt, W. Patterson, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, J. 
Thiede, and D. Seletskiy, “Laser cooling thulium-doped glass by 24K from room 
temperature,” Trends in Optics and Photonics 89, QThL4 (2003).  

[41] B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, P. A. DeBarber, 
“Experimental demonstration of intracavity solid-state laser cooling of 
Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass,” Phys. Rev. A 70, 21401 (2004). 

[42] L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-
doped ZBLAN glasses,” Journal of Non-Crystalline Solids 140, 35-40 (1992). 

[43] B.M. Walsh, N.P. Barnes, “Comparison of Tm3+:ZBLAN and Tm3+:silica fiber 
lasers; Spectroscopy and tunable pulsed laser operation around 1.9 µm,” App. 
Phys. B: Lasers and Optics 78 [3], 325-333 (2004).  

[44] D. R. MacFarlane, Z. Zhou and P. J. Newman, “Differential pulse voltammetry 
studies of heavy metal fluoride melts,” Journal of Applied Electrochemistry 34, 
197–204 (2004).   

[45] B. E. Kinsman and R. Hanney, “Preparation and purification of metal fluorides 
for crystals and glasses,” Adv. Matls. for Opt. and Elect. 5, 109-115 (1995). 

[46] P. W. France, S. F. Carter, J. M. Parker, “Oxidation states of 3d transition metals 
in ZrF4 glasses,” Phys. Chem. Glasses 27, 32 (1986). 

[47] P. Goldner and M. Mortier, “Effect of rare earth impurities on fluorescent 
cooling in ZBLAN glass,” J. of Non-Cyrst.Solids 284 [1-3], 249-254 (2001). 

[48] D. R. MacFarlane, P. J. Newman and A. Voelkel, “Methods of purification of 
zirconium tetrafluoride for fluorozirconate glass,” J. Am. Ceram. Soc. 85 [6], 
1610-12 (2002). 

[49] A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis 
of sol-gel heavy metal fluoride glasses,” J. Mater. Res. 7 [6], 1534-1540 (1992).  

[50] M. G. Drexhage, C. T. Moynihan, B. Bendow, E. Gbogi, K. K. Chung, and M. 
Boulos, “Influence of processing conditions on IR edge absorption in 
fluorohafnate and fluorozirconate glasses,” Mater. Res. Bull 16, 943-947 (1981). 

[51] M. Jardin, J. Guery, and C. Jacoboni, “Preparation in vapour state of fluoride 
glass components by a chemical vapour deposition process,” J. Non-Cryst. 
Solids 184, 204-208 (1995).  

[52] Y. Nishida, K. Fujiura, H. Sato, S. Sugawara, K. Kobayashi and S. Takahashi, 
“Preparation of ZBLAN fluoride glass particles by chemical vapor deposition 
process,” Jpn. J. Appl. Phys. Part 2 31 [12A], 1692-1694 (1992).  



Chapter 1. Introduction 
 

33 

 

[53] K. Fujiura, Y. Ohishi, M. Fujiki, T. Kanamori, S. Takahashi, “Process for the 
preparation of fluoride glass and process for the preparation of optical fiber 
perform using the fluoride glass,” U.S. Patent 5,071,460 (1991). 

[54] Z. Ling, Z. Chengshan, D. Gaozian, and W. Kangkang, "ZrOCl2 for fluoride 
glass preparation," J. Non-Cryst. Solids 140, 331-334 (1992). 

[55] H. Malissa, E. Schöffmann, “Über die Verwendung von substituierten 
Dithiocarbamaten in der Mikroanalyse,” Mikrochim. Acta 1, 187 (1955).  

[56] J. D. Kinrade, J. C. Van Loon, “Solvent extraction for use with flame atomic 
absorption spectrometry,” Anal. Chem. 46, 1894 (1974).  

[57] R. R. Brooks, M. Hoashi, S. M. Wilson, and R. Zhang, “Extraction into methyl 
isobutyl keytone of metal complexes with ammonium pyrrolidine 
dithiocarbamate formed in strongly acidic media,” Analytica Chimica Acta 217, 
165-170 (1989).  

[58] M. Arnac, G. Verboom, “Solubility product constants of some divalent metal 
ions with ammonium pyrrolidine dithiocarbamate,” Anal Chem. 46, 2059 (1974). 

[59] M. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E 
(2009).   

[60] J. Thiede, J. Distel, S.R. Greenfield, R.I. Epstein, “ Cooling to 208 K by optical 
refrigeration,” Appl. Phys. Lett. 86, 154107 (2005).  

[61] T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room 
temperature,” Opt. Lett. 24 1041 (1999);  B. C. Edwards, J. E. Anderson, R. I. 
Epstein, G. L. Mills, A. J. Mord, “Demonstration of a solid-state optical cooler: 
An approach to cryogenic refrigeration,” J. Appl. Phys. 86, 6489 (1999).   

[62] X. Luo, M. D. Eisaman, T. R. Gosnell, “Laser cooling of a solid by 21K starting 
from room temperature,” Optics Lett. 23, 639 (1998).  

[63] C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, T. R. Gosnell, 
“Laser Cooling of a Solid by 16 K Starting from Room Temperature,” Phys. 
Rev. Lett. 78, 1030 (1997).  

[64] A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, H. Rubinsztein-
Dunlop, “Laser cooling of a solid from ambient temperature,” J. Modern Optics 
48, 103 (2001). 

[65] J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda and J. L. Adam, “Anti-Stokes 
laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213 
(2000).  



Chapter 1. Introduction 
 

34 

 

[66] J. Fernandez, A. Mendioroz, R. Balda, M. Voda, M. Al-Saleh, A. J. Garcia-
Adeva, J. L. Adam, and J. Lucas, “Origin of laser-induced internal cooling of 
Yb3+-doped systems,” Proc. SPIE 4645, 135 (2002).  

[67] J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, W. M. 
Patterson, “Yb3+ and Tm3+-doped fluoroaluminate glasses for anti-Stokes 
cooling”, Phys. Chem. Glasses 47, 167 (2006). 

[68] C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, 
“Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” 
Phys. Rev. Lett. 85, 3600 (2000).  

[69] C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. 
Thiede, J. Distel, J. Valencia, “Advances in laser cooling of thulium-doped 
glass,” J. Opt. Soc. Am. B 20, 1066 (2003).  

[70] J. Fernandez, A. J. Garcia-Adeva and R. Balda, “Anti-Stokes Laser Cooling in 
Bulk Erbium-Doped Materials,” Phys. Rev. Lett. 97, 033001 (2006).  

[71] A. Garcia-Adeva, R. Balda, J. Fernandez, “Anti-Stokes laser cooling in erbium-
doped low phonon materials,” Proc. SPIE 6461, 646102 (2007). 

[72] C. E. Mungan, S. R. Bowman, T. R. Gosnell, ”Solid-state laser cooling of 
ytterbium-doped tungstate crystals,”  2000 International Conference on Lasers, 
4-8 Dec. 2000, Albuquerque, NM, USA. 

[73] R. I. Epstein, J. J. Brown, B. C. Edwards, A. Gibbs, “Measurements of optical 
refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815 (2001). 

[74] S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, “Laser 
cooling of Yb3+-doped BaY2F8 single crystal,” Opt. Mater. 28, 1321 (2006). 

[75] S. Bigotta, A. Di Lieto, D. Parisi, A. Toncelli, M. Tonelli, “Single fluoride 
crystals as materials for laser cooling applications,” Proc. SPIE 6461, E1 (2007). 

[76] W. M. Patterson, M. P. Hasselbeck, M. Sheik-Bahae, S. Bigotta, D. Parisi, A. 
Toncelli, M. Tonelli, R. I. Epstein, J. Thiede, “Observation of optical 
refrigeration in Tm3+:BaY2F8,”  Lasers and Electro-Optics (CLEO), 16-21 May 
2004, San Francisco, CA, USA.  

[77] W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, R. I. Epstein, 
“Anti-Stokes luminescence cooling of Tm3+-doped BaY2F8,” Optics Express 16, 
1704 (2008). 

[78] A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, A. J. Garcia-
Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 
1525 (2002). 



Chapter 2. Anti-Stokes luminescence cooling of Tm3+doped BaY2F8 
 

35 

 

 
Chapter 2 
 
Anti-Stokes luminescence cooling of Tm3+doped BaY2F8 
 
 
Wendy Patterson1, Stefano Bigotta2, Mansoor Sheik-Bahae1, Daniela Parisi2, Mauro Tonelli2, and 
Richard Epstein3 
 
1    Optical Science and Engineering Program, Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 
87131 
2   INFN - Sez. di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy NEST - Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 
Pisa, Italy 
3  Los Alamos National Laboratory, Los Alamos, NM 87545 
 
Abstract: We report laser-induced cooling with thulium-doped BaY2F8 single crystals grown using the 
Czochralski technique. The spectroscopic characterization of the crystals has been used to evaluate the laser 
cooling performance of the samples. Cooling by 3 degrees below ambient temperature is obtained in a 
single-pass geometry with 4.4 Watts of pump laser power at λ = 1855 nm. 
 
© 2007 Optical Society of America 
 
OCIS codes: (140.3320) Laser cooling; (160.5690) Rare-earth-doped materials; (140.3380) Laser materials; (300.6280) 
Spectroscopy, fluorescence and luminescence; (160.1190) Anisotropic optical materials. 
 
Received 23 Oct 2007; revised 28 Nov 2007; accepted 29 Nov 2007; published 24 Jan 2008 
(C) 2008 OSA 4 February 2008 / Vol. 16, No. 3 / OPTICS EXPRESS 1704 

 

1. Introduction 

Laser cooling of solids is receiving increased attention because it can be the 

foundation of compact, rugged, efficient, and reliable cryo-coolers [1]. This concept — 

sometimes referred to as optical refrigeration — uses anti-Stokes fluorescence to remove 

thermal energy from a condensed matter system, thereby reducing its net temperature. A 

laser beam excites the material in its low energy absorption tail, i.e. below the mean 

fluorescence photon energy, νf. Optical excitations thermalize with the lattice by 

absorbing phonons; these excitations then recombine at wavelengths blue-shifted from 

the pump light, with a cooling efficiency of ηc = (ν − νf) / ν.  

The first experimental demonstration was made in 1995, in which a cw titanium 

sapphire laser (λ = 1015 nm) pumped Yb3+ atoms doped in a heavy-metal-fluoride glass 
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(ZBLAN) leading to a net temperature reduction of about 0.3 degrees [2]. The cooling 

record has since been pushed to an absolute temperature of 208 K using Yb3+:ZBLAN 

corresponding to a temperature drop of ∼ 88 degrees below the ambient [3]. Laser-cooled 

solids have now entered the temperature regime of high-performance thermoelectric 

coolers, with the potential to attain cryogenic temperatures. It has been predicted that 

laser-cooling of direct-gap semiconductors such as GaAs may allow realization of 

absolute temperatures approaching 10 K [4]. 

There has been an ongoing effort to explore other rare-earth dopants and hosts 

because they can have advantages compared to Yb3+:ZBLAN glass. Early work focused 

on Yb3+-doped glasses and crystals due the small excited-state absorption. An important 

milestone was the observation of laser cooling in the presence of excited state absorption 

using Tm3+:ZBLAN [5]. The Tm3+:ZBLAN material system also provides an 

approximate two-fold increase in quantum efficiency, which scales inversely with 

excitation energy. Largely due to its inherently higher efficiency, Tm3+:ZBLAN holds the 

current record for cooling power (i.e. radiative heat lift) of ∼ 70 mW. In 2006, laser 

cooling of an erbium-doped KPb2Cl5 crystal and CNBZn glass was reported [6]. This is a 

significant result because the cooling transition in erbium is accessible to high-power 

laser diodes. 

Here, we present results from laser cooling experiments with Tm3+-doped 

BaY2F8. To the best of our knowledge, this is the first time a Tm3+-doped single crystal 

showed net cooling. This crystalline host offers many important advantages compared to 

ZBLAN that make it attractive for laser cooling applications [7]. First, it has lower 

phonon energy (45 meV compared to 72 meV) which reduces the rate of deleterious non-
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radiative decay via a multi-phonon emission pathway. This leads to higher quantum 

efficiency. It also has greater transparency at thermal wavelengths (far-infrared) that 

make it less susceptible to radiative heat loading. We estimate the emissivity to be ε ≈ 

0.77 compared to 0.89 for ZBLAN. Additionally, the thermal conductivity is ∼ 7 times 

higher than ZBLAN. A fourth advantage we note is the higher material hardness of the 

BaY2F8 host which allows for better polish and direct deposition of optical coatings. 

Moreover, it is significantly less hygroscopic than ZBLAN [8]. The Stark splitting in the 

ground state manifold is greater than Tm3+:ZBLAN, which limits the absolute minimum 

achievable temperature, but has the advantage of increasing efficiency at room 

temperature. Although BaY2F8 has less favorable conductivity and hardness compared to 

the widely used YAG laser crystal, its superior optical properties and quantum efficiency 

make it a better choice for laser cooling [7]. 

 

2. Experimental 

2.1. Crystal growth 

Crystal growth was carried out at the Physics Department of the University of Pisa in a 

Czochralski furnace with resistive heating. With this apparatus, BaY2F8 single-crystals 

with nominal doping of 1.2% thulium have been grown by adding suitable amounts of 

BaTm2F8. To avoid OH− contamination, the fluoride starting materials are purified at AC 

Materials (Orlando, FL) and the growth process carried out in a high-purity (99.999%) 

argon atmosphere. During growth, the rotation rate of the sample is 5 rpm, the pulling 

rate 0.5 mm/h, and the temperature of the melt is in the range 987-995ºC. The furnace is 

also equipped with a computer controlled apparatus for diameter control. The average 
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size of the BaY2F8 crystals was about 15 mm in diameter and 55 mm in length. The 

crystals are of good optical quality and appear to be free of cracks. The crystals were 

analyzed using the X-ray Laue technique, verifying their monocrystalline structure and 

crystallographic axis orientation. The crystals are cut in small samples with edges along b 

and c axes because they are the most important orientations for optical applications. The 

faces are polished to high optical quality using alumina suspensions.  

2.2. Spectroscopic set-up 

The measurement of the room temperature absorption coefficient has been performed by 

means of a spectrophotometer (VARIAN CARY 500 Scan) operating in the range 250–

3200 nm, with typical resolution near 0.1 and 1 nm in the visible and in the NIR, 

respectively. The room temperature fluorescence spectra of the 3F4 → 3H6 transition 

were performed with the aim to measure the mean fluorescence wavelength (λf) and to 

derive a better estimate for the absorption coefficient in the long wavelength tail of the 

absorption spectra. The pump source was a tunable cw Ti:Al 2O3 laser, pumped by an Ar+ 

laser. The fluorescence signal is detected perpendicular to the pump laser direction to 

avoid spurious pump scattering. The luminescence was chopped then focused by a 

monochromator with 25 cm focal length, equipped with a 300 gr/mm grating; the 

resolution of the measurement was 1.2 nm. To record the spectra in various sample 

orientations, a Glan-Thomson polarizer is placed in front of the input slit of the 

monochromator. The signal was filtered by a silicon filter, detected by a liquid nitrogen 

cooled InSb detector, fed into pre-amplifiers, processed by a lock-in amplifier and 

subsequently stored on a PC. 

2.3. Laser cooling 
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We excited the sample using a high power, singly-resonant, optical parametric oscillator 

(OPO) based on periodically-poled LiNbO3 [9]. The OPO is synchronously pumped by 

80 ps (FWHM) mode-locked pulses from a Nd3+:YAG laser at a wavelength of 1.064 

µm with a repetition rate of 76 MHz, delivering up to 20W. The OPO output is tunable 

between 1.7–2.1 µm with power in the range of 4–6Watts. However, when the OPO is 

operating at high power and near degeneracy (2.128 µm), there is a tendency towards 

several resonant oscillations, together with the undesirable features of frequency and 

mode instability [13]. As a result, the signal bandwidth can be as large as tens of 

nanometers. The insertion of two etalons within the OPO cavity significantly stabilized 

and reduced the bandwidth of the signal radiation to within the limitations of the 

spectrometer (≈ 1 nm). The room temperature reference sample is placed in a vacuum 

chamber (∼10−5 Torr) suspended by two glass microscope slides in order to minimize 

heat load from thermal conduction. The pump light makes a single pass through the 

sample. The change in temperature is measured relative to the reference sample using a 

micro-bolometer camera (Raytheon 2000AS) which views the sample through an IR-

transparent window (NaCl). The camera was calibrated against a precision silicon 

temperature diode in a separate measurement by placing the sample in a variable 

temperature cryostat. The data were stored by a frame grabber card on a PC as 8-bit pixel 

image files. 

 

3. Spectroscopic and cooling results 

BaY2F8 is a biaxial crystal, and therefore requires six spectra to be fully characterized. 

Transitions between 3F4→3H6 levels in Tm3+ ions, however, are dominated by the 
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electric-dipole term and, as a result, it is not necessary to take the orientation of the 

magnetic field into account. Additionally, the polarized spectroscopic properties of 

Tm3+doped BaY2F8 are readily available in the literature [11]. For the aim of this work, it 

is sufficient to show the spectroscopic measurements carried out along the E || b 

polarization, i.e. the one used for our laser cooling experiments, even if we used all three 

polarization components in order to derive the mean fluorescence wavelength, λf. 

Luminescence and absorption data for Tm3+:BaY2F8 are shown in Fig. 1, which displays 

appreciable absorption at wavelengths longer than λf = 1793 nm (shaded region to the 

right of the solid vertical line). The presence of absorption beyond λf (by at least kT) is a 

key requirement for cooling. We note that crystalline hosts exhibit sharper spectral 

features, as compared to amorphous materials, due to the regular periodic structure of 

their atoms. These larger peaks in the target absorption region can be used 

advantageously in a laser cooling experiment.  
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Fig. 1. E || b absorption (solid curve) and emission (dotted curve) spectra for our 1.2% 
Tm3+:BaY2F8 sample. The solid vertical line indicates the mean fluorescent wavelength at 
λf = 1793 nm. In a laser cooling experiment, excitation takes place on the long 
wavelength side of this line in the shaded absorption region. 
 

In order to exactly predict the expected temperature drop and determine the 

cooling efficiency, the value of the absorption coefficient in the long-wavelength tail 

must be known with high precision. Given that the absorption coefficient in the region of 

interest for laser cooling applications is usually very small when obtained using 

transmission spectroscopy, it is common practice to derive the absorption coefficient 

from the emission spectra using a reciprocity relation [12].  

Generalizing the expression found in the cited work for the case of anisotropic 

crystals, we obtain: 

 5 /exp / ( ) hc kTu
abs em ZPL

l

Z hc
kT I eE

Z
γ γ γ λσ σ λ λ

λ
  = ∝−    

 (1) 

 

 

Fig. 2. E || b-polarized absorption spectrum of 1.2% Tm3+:BaY2F8. The open circles 
represent the data obtained with the spectrometer, while the solid line indicates the 
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absorption derived from the emission spectrum using the reciprocity relation shown in the 
text. 
 

where ,abs em
γ γσ σ and ( )I γ λ are the absorption and emission cross sections and the 

intensity of the fluorescence emission for the γ polarization; Zu and Zl are the partition 

functions for the upper and the lower electronic levels and EZPL is the energy of the zero 

phonon line. The values obtained by inserting the emission intensity data (normalized to 

the spectrometer absorption coefficient at large absorption) were over an order of 

magnitude above the noise level of our instrument. As shown in Fig. 2, the data obtained 

from reciprocity are in excellent agreement with those acquired with the spectrometer, 

and they give a better signal-to-noise ratio for α < 10−1 cm−1. The discrepancy between 

the two curves at the largest peak (1650 nm) can be easily ascribed to the re-absorption 

process which decreases the luminescence intensity and hence the inferred absorption 

coefficients.  

The change in temperature (relative to a reference sample) is recorded as a 

function of time for a given pump wavelength, and subsequently fitted to a single 

exponential decay, whereby the maximum temperature change at a given pump 

wavelength can be inferred. On average, a sample will take approximately 40 minutes to 

reach its equilibrium cooling or heating state. This wavelength-dependent temperature 

change (∆T) normalized to pump power (P) is shown in Fig. 3 for the E || b orientation of 

the crystal. We correlate the two minima at ∼1850 and ∼1925 nm with the presence of 

absorption peaks around these wavelengths for the E || b polarization. This experimental 

data is analyzed quantitatively by fitting with the following relation [5]: 

 ( )(1 ) ( ) F
B R q R q

F

T

P

λ λα α λ η α λ ηκ
λ
−∆  + − − 

 
∼  (2) 



Chapter 2. Anti-Stokes luminescence cooling of Tm3+doped BaY2F8 
 

43 

 

where αB is the wavelength-independent background absorption coefficient, αR(λ) is the 

resonant absorption data shown in Fig. 2, ηq is the non-unity quantum efficiency 

coefficient to account for deleterious fluorescence quenching, and κ takes into account 

the geometry of the sample and the vacuum chamber as well as thermo-dynamic factors 

(i.e. the radiative heat transfer). The constant coefficients ηq and αB and κ are adjusted to 

fit the heating/cooling data. We find ηq ≈ 0.98, αB ≈ 2×10−4 cm−1 for E || b and κ = 723 

cmK/W for the data presented in Fig. 3. It is worth noting that the experimental value of 

κ is lower than the theoretical value. This can be ascribed to stray light circulating in the 

vacuum chamber due to the spurious reflections of the pump beam which can 

inadvertently heat the sample. A more refined pumping scheme could reduce the spurious 

reflections inside the vacuum chamber and hence enhance the cooling efficiency. Our 

configuration produced a maximum temperature drop of 3.2 degrees, at a wavelength of 

1855 nm, given 4.4 W of pump power.  

For practical applications, an estimate of the cooling efficiency, i.e. the ratio of 

the absorbed and the cooling power, is crucial. The absorbed power can be easily 

estimated using the Lambert-Beer law: 

 (1 )abs inP P e α−= − ℓ  (3) 
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Fig. 3. Wavelength-dependent temperature change normalized to pump power for BaY2F8 
doped 1.2% Tm3+ for E || b. Data points below the horizontal reference line indicate net 
cooling. The solid curve is a fit as described in the text. 
 

whereℓ is the length of the crystal, α is the total absorption coefficient and Pin is the 

incident power on the sample. The cooling power can be obtained from general 

thermodynamical considerations. In fact, at equilibrium the cooling power must balance 

the incoming power. If we consider that the only heat load on the sample is due to the 

radiation from the vacuum chamber, we can write: 

 4 4( )cool heat S C SP P A T Tε σ= = −  (4) 

where Ts is the temperature of the sample, Tc is the vacuum chamber temperature, εs is 

the emissivity of the host material, A is the surface area of the sample, and σ is the 

Stefan-Boltzmann constant. The cooling efficiency, ηcool, is then obtained by dividing Eq. 

4 by 3. Shown in Fig. 4 are both the theoretical and the experimental cooling efficiency 

versus pump wavelength for the 1.2% Tm3+:BaY2F8 crystal when pumped in the E || b 

polarization. A maximum cooling efficiency of ηmax = 3.4% has been observed at 1934 
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nm. The slope attained at λ = 1855 nm is -0.74 deg/Watt which compares favorably to the 

best previously reported values of ηmax = 3% and –0.73 deg/Watt for Tm3+:ZBLAN [10]. 

The discrepancy between the theoretical and experimental data at wavelengths longer 

than ∼ 1950 nm can be ascribed to the low absorption coefficient in this region (hence, 

the large error bars).  

 

Fig. 4. Cooling efficiency as a function of the pump wavelength for the 1.2% Tm3+- 
BaY2F8 crystal. The theoretical prediction (solid line) and experimental data (dots) are 
shown for E || b. 
 

 

Note that the maximum cooling efficiency occurs at 1934 nm, while the 

maximum temperature drop occurs at 1855 nm. In the ideal case with no impurities,η 

cool increases with increasing wavelength [2]. This is clearly visible in Fig. 4 for 

wavelengths up to 1934 nm, beyond which the impurity absorption dominates and the 

cooling efficiency decreases. According to Eq. 2, the temperature drop for a given pump 

power is proportional to the product of αR (Fig. 2) and ηcool (Fig. 4). Since with increasing 
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wavelength, αR decreases and ηcool increases, ∆T/P (Fig. 3) forms a minimum which is 

found at 1855 nm.  

A similar analysis was performed also for the E ⊥ b,c polarization. The results, 

not shown here, are comparable with that observed for the E || b polarization and are in 

good agreement with theoretical values. 

 

4. Conclusion  

In summary, we report the first observation of laser cooling with Tm3+:BaY2F8. This 

crystalline host has shown net cooling when doped with the rare-earth ions Yb3+ and 

Tm3+ which allows for pumping at distinctly different wavelengths. BaY2F8 possesses a 

range of properties that compare favorably with ZBLAN glass in laser cooling 

applications. 
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High-purity fluorides for optical refrigeration.  

We present a chelate-assisted solvent-extraction method that can be applied to every 

component of ZBLANI:Yb3+ (ZrF4 – BaF2 – LaF3 – AlF3 – NaF – InF3: YbF3) glass to 

enable a material with significantly reduced transition-metal impurities. In addition, an 

advanced method for the precipitation of the respective binary fluorides and the removal 

of oxide and OH- impurities is described. Several characterization tools are used to 
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quantitatively and qualitatively verify the reduction of both transition metal and hydroxyl 

ions. First, the concentrations of several problematic transition-metal impurities in the 

zirconium precursor were measured at various stages of the purification process using 

inductively-coupled plasma mass spectrometry (ICP-MS). Chelate-assisted solvent 

extraction was found to be successful in reducing transition-metal concentrations in a 

ZrCl2O solution from 72,500 to ~100 parts-per-billion (ppb). Second, laser-induced 

cooling in bulk ZBLANI:Yb3+ samples was used as a sensitive probe for ppb-level 

impurities. Laser cooling was observed at room temperature for ZBLANI:Yb3+ samples 

fabricated from purified metal fluoride precursors, confirming the results of the ICP-MS 

analysis and demonstrating the effectiveness of the purification methods in an optical 

material. The high-purity metal fluorides synthesized by the methods presented here are 

expected to enable a number of high-performance optical materials, including solid-state 

optical refrigerators and deep-ultraviolet transparent crystals.  

 

Introduction 

Fluoride crystals and glasses are of interest to a wide range of photonic applications 

including bulk optics for deep ultraviolet (UV) photolithography [1], optical fibers for 

high power or long-haul transmission [2],[3], host materials for lasers and optical 

amplifiers [2],[4]-[7], scintillators [8],[9], upconversion phosphors [10], and solid-state 

optical refrigerators [11]. These applications take advantage of the high band gap energy 

and/or the low optical phonon energies (typically <500 cm-1) of fluorides. The attractive 
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intrinsic properties of fluorides, however, can be substantially degraded by the presence 

of impurities. Transition metal ions have optical transitions in the UV and visible spectral 

regions [12],[13], leading to undesired background absorption as well as non-radiative 

quenching of excited states even at trace levels. Furthermore, oxygen-based impurities 

such as oxides, hydroxyl (OH-), and water can degrade material performance by 

introducing UV absorption [14],[15] and high-energy vibrational modes that enhance 

multi-phonon relaxation rates of excited states [16]-[21]. While the slow growth of 

fluoride crystals can reduce the concentration of some of these impurities, fluoride 

glasses generally contain all of the impurities that were present in the melt from which 

they were quenched. Solid-state optical refrigerators, also known as laser coolers, have 

particularly demanding purity requirements. For the fluorozirconate glass ZBLAN (ZrF4 

– BaF2 – LaF3 – AlF3 – NaF), for example, it was estimated that transition- metal and 

OH- impurities in excess of ~100 parts-per-billion (ppb) severely compromise material 

performance [22]. Other applications have similarly stringent purity requirements. The 

preparation of high-purity binary fluorides is therefore critical to enabling the desired 

performance of many fluoride optical materials.   

There currently exists no comprehensive method for the purification and synthesis of 

ultra-pure metal fluorides. The chemical inertness and fairly high melting temperatures of 

fluorides prevent the use of many of the standard purification methods. While some 

successes have been achieved by sublimation and distillation of ZrF4 as well as zone 

refining [23],[24], these are not applicable to many of the metal fluorides of interest. The 

use of CF4, NF3, SF6, Cl2, CC14, or O2 reactive gas atmospheres during melting has been 

widely used to reduce oxide impurities [25],[26], however, such methods are not 
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acceptable for many high purity glass applications as they can re-contaminate the final 

glass with unwanted species. More recent developments include vapor phase processes, 

which appear attractive due to the success of chemical vapor deposition (CVD) in 

purifying silica for fiber technology. Some preliminary results appear to be encouraging 

[27]-[29]. However, the practical achievement of fluoride glasses through CVD appears 

difficult due to the high evaporation temperature of several of the fluoride glass 

components. A comprehensive purification strategy must, therefore, target the chemistry 

before the formation of the metal fluoride. One such method is chelate-assisted solvent 

extraction (CASE). In this process, a chelate is used to bind to undesired metal ions in an 

aqueous phase and to transfer the metal-chelate complexes into a second organic phase. 

Chelate-assisted solvent extraction is widely used in analytical chemistry to pre-

concentrate heavy metals for trace analysis [30]-[33]; alternatively, it can be used to 

remove metal ions from the aqueous phase to achieve purification. Ling et al. have used 

the latter approach with ammonium-pyrrolidine-dithio-carbamate (APDC) as the chelate 

and methyl-isobutyl-ketone (MIBK) as the organic phase to reduce Co, Ni, and Cu to < 5 

ppb and Fe to < 10 ppb in zirconium solutions [33].  

Our approach is to exploit a single chelate/organic solvent system suitable for the 

individual purification of all components of the laser-cooling glass ZBLANI:Yb3+ (ZrF4 – 

BaF2 – LaF3 – AlF3 – NaF – InF3 – YbF3), in order to minimize the development effort 

and to simplify processing. The APDC/MIBK system is ideal for the removal of the 

specific transition metals that are detrimental to laser cooling while not affecting the 

metal ions of the glass components.  
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In this paper, we (1) expand CASE to the purification of main group elements (Zr, Ba, 

Al, Na, In) and the rare earths (La, Yb, Tm), (2) advance the method to include the 

precipitation and ultra-drying of the resulting binary metal fluorides, and (3) 

quantitatively verify the impact of reduced impurities in an optical refrigerator material. 

We begin the Materials Synthesis section with a detailed description of all processing 

steps used to produce ultra-pure ZBLANI:Yb3+ glass. As a measure of our ability to 

successfully remove both transition metal and hydroxyl ions, we use several 

characterization tools to quantitatively and qualitatively verify purity, detailed in the 

Experimental section. These include ICP-MS where the zirconium precursor solutions are 

analyzed for quantities of particular transition metal ions of interest. We also outline 

measurements on the bulk ZBLANI:Yb3+ samples, where we test for optical refrigeration.  

Materials Synthesis  

Figure 1 shows a flow chart outlining the general steps used to produce ultra-pure 

ZBLANI:Yb 3+ glass. 
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Figure 1. Outline of the major steps for reduction of transition metals and oxidic 
impurities in an effort to produce ultra-pure ZBLANI:Yb3+ glass. The boxes represent 
material synthesis steps while the ovals indicate various characterization tools.   

 

Hydrofluoric acid and hydrogen fluoride gas: The following procedures involve 

experimentation with concentrated hydrofluoric acid and hot hydrogen fluoride gas. 

These substances are toxic and can pose a severe health hazard if not handled properly.  

High-Purity Reagents and Clean Processing: Hydrofluoric acid (49%), nitric 

acid (69%), and hydrochloric acid (33%) were doubly-distilled and trace-metal grade 

(GFS Chemicals, Veritas). The ultra-high purity (UHP) water was obtained from 

Inorganic Ventures. Methyl-isobutyl-ketone (also known as 4-Methyl-2-pentanone or 

MIBK) was from Acros Organics, electronic grade. All processing steps were carried out 

in a fume hood inside a Class 100 clean room environment. Acid evaporations were 
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performed in a distillation still constructed entirely from perfluoroalkoxy (PFA) resin 

(Savillex Corp.) and operated inside a fume hood in the clean room. The evaporation side 

of the still was heated to 190 °C by a temperature-controlled heating jacket. The PFA 

evaporation tube was wrapped in an aluminum sleeve before inserting it into the heating 

jacket to allow for more even heat distribution. Performing acid evaporations in the still 

reduced the risk of recontamination by keeping the solutions enclosed during the lengthy 

evaporation process. Furthermore, the still safely contained the highly corrosive acidic 

fumes and allowed for easy and proper disposal of the acidic distillate. All vessels and 

utensils used in the following processing steps were cleaned by leaching them in dilute 

nitric acid at elevated temperatures for several days before use. This released undesirable 

ions potentially trapped within the matrix of the polymer which might have contaminated 

the solutions. 

Preparation of APDC Chelate Solution: The ammonium-pyrrolidine-dithio-

carbamate  (APDC) chelate (Acros Organics) was stored at 4 °C until needed for solvent 

extraction. A 1% solution of APDC in UHP H2O was prepared daily by dissolving 1 g of 

APDC in 100 mL of water and filtering through a < 0.2 µm pore size Nylon syringe filter.  

Preparation of Buffer Solution: Proper extraction of unwanted transition metal 

impurities required a stable pH of the aqueous solution in the range of 2.5 - 5.5 [31]-[33]. 

This was achieved by use of a buffer solution typically prepared by dissolving 50 g of 

ammonium acetate (Fluka, 99.995%) in 100 mL of UHP water and adding acetic acid to 

adjust the pH to ~ 4.5. 
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 Chelate-Assisted Solvent Extraction (CASE): 5 mL of the 1% APDC solution 

was added to the buffered (see below) aqueous solution of the metal ion to be purified. 

The mixture was briefly shaken. 35 mL of MIBK was added, and the two-phase system 

was shaken vigorously for 1 minute. After letting the system equilibrate for 10 minutes, 

the bottom aqueous phase was collected and the organic phase was discarded. This 

extraction procedure was repeated three times. The final aqueous phase was collected in 

poly-tetrafluoroethylene (PTFE) beakers. Separate PTFE beakers were used for each 

metal ion to prevent cross-contamination. 

Zirconium fluoride (ZrF4): 41 g of ZrCl2O·xH2O (Alpha Aesar, Puratronic®, 

99.9985%) were dissolved in 68 g UHP water. The pH of this solution was increased by 

boiling the solution and continuously adding water (typically ~350 mL total) over the 

course of 24 hours to reach a pH of ~1, thus reducing the amount of buffer needed to 

adjust the pH for the subsequent solvent extraction. This step was important as excess 

buffer interfered with the final precipitation of zirconium fluoride. The volume of the 

solution was ~65 mL after this step. 60 g of buffer solution was added to adjust the pH to 

> 2, preferably ~2.5, and the solution was filtered through a < 0.2 µm Nylon syringe filter 

to remove larger particulates. The filtered solution was transferred into a separatory 

funnel for CASE (see above). During solvent extraction, the organic phase progressed 

from yellowish to colorless with each successive extraction step. After three extractions, 

the last aqueous phase was combined with 28 g of hydrofluoric acid to form a slurry of 

zirconium fluoride precipitates which was evaporated to dryness (see above) over 12 

hours. The product was ZrF6(NH4)3 which was decomposed to ZrF4·H2O (see below).   
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Barium Fluoride (BaF2): 10 g of BaCO2 (Strem Chemicals, Puraterm, 99.999%) 

were dissolved in 30 g of hydrochloric acid. The acid was added very slowly in order to 

control the violent release of CO2. The milky solution was evaporated to dryness over 7 

hours. The resulting BaCl2 was dissolved in 34.5 g of UHP water, and 33 g of the buffer 

solution was added to reach a pH of ~3.8. The buffered aqueous solution was filtered 

through a < 0.2 µm pore size syringe filter directly into the separatory funnel for solvent 

extraction (see above). The color of the organic phase progressed from light yellow to 

colorless by the last extraction. The final aqueous phase was collected, and 42.5 g of 

hydrofluoric acid was added. A thick opaque slurry of BaF2 could be isolated by carefully 

decanting the excess hydrofluoric acid after allowing the precipitates to settle for several 

hours.   

Lanthanum Fluoride (LaF3): To 2.9 g of La2O3 (Metall Rare Earth Limited, 

99.9999%) 38 g of doubly distilled HNO3 was added very slowly to dissolve the oxide 

and to form lanthanum nitrate. It was necessary to very slowly add the nitric acid in order 

to control the violent reaction with the lanthanum oxide powder. The entire solution was 

transferred to the evaporation tube and evaporated to dryness over the course of 10 hours. 

The resulting lanthanum nitrate was dissolved in 27 g of UHP water. Next, 18.5 g of the 

prepared buffer solution was added, raising the pH to 3.3. This buffered solution was 

filtered with a Nylon syringe filter into the separatory funnel for solvent extraction. After 

three extractions, the last aqueous phase was collected into a designated PTFE beaker. It 

was found that the rate at which the HF acid was added affected the LaF3 crystallization 

dynamics. Therefore, the HF acid was added very slowly while the solution was stirred 

with a PTFE stir bar at 550 rpm. This method favored the formation of LaF3 and 
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suppressed the competing precipitation of ammonium compounds. The excess HF was 

easily decanted from the resulting white slurry.  

Aluminum Fluoride, (AlF3): The synthesis of AlF3 began with the addition of 27 

g of UHP water to 6 g of aluminum chloride hexahydrate (Alfa Aesar, Puratronic®, 

99.9995%). A significant amount of buffer, typically more than 50 g, was required to 

reach a pH of >2.8. This buffered chloride solution was filtered into a separatory funnel 

for purification. The organic phase progressed from a light yellow tint to colorless by the 

third extraction. Following purification, the last aqueous phase was collected and 40.6 g 

of HF acid was added to form visible precipitates. These precipitates did not settle, and 

thus the entire solution had to be evaporated in the evaporation tube during the course of 

8 hours.   

Sodium Fluoride (NaF):  7 g of Na2CO3 (Sigma-Aldrich, 99.999%) were 

dissolved in 32 g of UHP water. 73 g of buffer solution was added to raise the pH to ~5. 

This solution was filtered and purified via CASE three times as usual. After collecting the 

last aqueous phase from the third solvent extraction step, 40.5 g of HF acid was added to 

the solution to precipitate the NaF. The excess HF acid was easily decanted.  

Indium Fluoride (InF3): 7.7 g of indium metal (Alfa Aesar, Puratronic®, 

99.9999%) was placed in a glass beaker, and 100 g of HNO3 was very slowly poured over 

the metal. It was imperative that this step occurred as slowly as possible to control the 

violent generation of NOx gas and to avoid boiling of the acid. This resulting solution was 

evaporated to dryness in the evaporation tube over the course of 12 hours to obtain 

indium nitrate. 32 g of UHP water was added to form a milky solution the pH of which 

was raised to ~2.5 by adding 25 g of buffer solution. This solution was then purified by 
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solvent extraction as usual. Following the third purification, the last aqueous phase was 

collected in a PTFE beaker, 25.4 g of HF acid were added, and this solution evaporated to 

dryness over 12 hours. The resulting (NH4)3InF6 was decomposed to yield InF3 as 

described below.  

Ytterbium Fluoride (YbF3):  2.5 g of Yb2O3 (Metall Rare Earth Limited, 

99.9999%) were combined with 35.5 g of HNO3, resulting in a milky solution which was 

dried in the evaporation tube for 8 hours to yield ytterbium nitrate. 22 g of UHP water 

was added to the nitrate and allowed to sit for 1 hour until the powder was dissolved. 21.3 

g of buffer solution was then added to raise the pH to ~3.6. This solution was filtered 

with a Nylon syringe filter into the separatory funnel followed by the usual three steps of 

solvent extraction. The aqueous phase of the last purification step was collected in a 

PTFE beaker, and 21.3 g of HF acid was added to precipitate the fluoride which was 

recovered by decanting the excess HF.   

Decomposition and washing: Two of the metals, Zr4+ and In3+, formed 

(NH4)3ZrF6 and (NH4)3InF6, respectively, by reaction with the NH4Ac buffer solution 

rather than directly precipitating as metal fluoride. These compounds were decomposed 

in a large glassy carbon crucible on a hot plate in the fume hood. The (NH4)3ZrF6 

compound was slowly heated to 370 °C and the (NH4)3InF6 to 460 °C to effect the 

decomposition and evaporation of ammonium fluoride (NH4F) and the formation of the 

respective metal fluoride. The NH4Ac buffer did not compete with the fluoride formation 

for the other metal ions. 

All fluorides were subjected to a series of washing and drying steps to remove residual 

buffer, excess acid, or non-fluoride, water soluble compounds. Each fluoride was washed 
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by adding ~30 mL of UHP water and sonicating the slurry for 0.5 - 1 hour. The insoluble 

fluoride settled and the excess water was decanted, a procedure that was repeated three 

times. The product was dried in a PTFE beaker on a hot plate at 190 °C to remove excess 

water.  

Drying of fluorides in hydrogen fluoride (HF) gas: The fluorides obtained above 

were subjected to drying and fluorination by treating them in HF gas at elevated 

temperatures using a custom HF gas drying apparatus adapted from Burkhalter et al. [34] 

and Krämer et al. [35]. The apparatus was designed to allow for drying of two fluoride 

samples per drying run. For this purpose, the fluorides were transferred to glassy carbon 

boats in the clean room and inserted into a sealed, corrosion-resistant tube, constructed 

from Inconel Alloy 600 steel. The Inconel tube was further lined with a glassy carbon 

tube to protect the fluorides from potential vessel corrosion residues. The drying tube was 

connected to the HF gas drying apparatus via PFA tubing and inserted into a horizontal 

tube furnace.  

HF gas was produced by decomposing KHF2 in a separate vertical tube furnace. During 

a typical 19 hour drying run, 25.6 g of HF gas was produced by decomposing 100 g of 

previously dried KHF2 (dried at 190 oC for > 60 hours in vacuum) in a glassy carbon 

crucible by heating it to 390 oC at 135 o/hr, to 440 oC at 4.5 o/hour, and to 480 oC at 8.3 

o/hour. A mass-flow controller (Aalborg, GFC17) maintained a constant flow of 

semiconductor grade argon (Ar) to provide a ~7 vol% average HF concentration. The 

Ar/HF gas mixture was injected into the drying tube, which was heated to 300 oC. Excess 

Ar/HF gas emerging from the drying tube was bubbled through a saturated calcium 

hydroxide solution that quantitatively removed HF by precipitation of CaF2. The entire 
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system was contained in a fume hood. Each metal fluoride was subjected to this drying 

and fluorination step before being used as a starting material for glass synthesis.  

   Glass formation and post-processing:  The dried fluorides were transferred into 

an argon drybox in the sealed drying tube. The metal fluorides were weighed, mixed, and 

transferred to a glassy carbon crucible and covered with a glassy carbon lid. A typical 

batch size was 4 g, and typical glass compositions are shown in Table 1. The melting 

crucible was inserted into a computer-controlled chamber furnace which was preheated to 

750 oC. The melt remained in the furnace for up to 5 hours to completely dissolve all 

components. The melt was subsequently cooled to 550 oC at 10 o/minute before the 

crucible was removed from the furnace and the melt was cast into a platinum mold at 

room temperature.  

Table 1. Composition of the ZBLANI:Yb3+ glass samples fabricated in this study. Also 
shown are vendor-quoted purities of the respective commercial metal fluorides as well as 
the various chlorides, carbonates, and oxides (along with their vendor quoted purities) 
that were used as starting materials for the CASE process.  

 
Z I B L A N Yb 

ZrF4 InF3 BaF2 LaF3 AlF3 NaF YbF3 
Typical sample 
stoichiometry 

(mol%) 
53 2.5 20 3 3 17.5 1  

Purity of comm. 
fluoride (%) 99.5 99 99.99 99.9 99.9 99.5 99.9  

Commercial 
starting material 

ZrOCl2 
. 

8H2O 
In BaCO3 La2O3 

AlCl3 
.  

6H2O 
Na2CO3 Yb2O3  

Quoted purity (%) 99.9985 99.9999 99.999 99.99993 99.99956 99.997 99.99992  
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The resulting glass was annealed in the mold to relieve internal stress and to improve 

mechanical durability and optical homogeneity. Annealing consisted of heating the glass 

to just below the glass transition temperature of 250 ºC at 2 º/minute, holding for 1 hour, 

and cooling to room temperature at a slow rate of 0.2 º/minute.  

The glass samples were to undergo a variety of optical characterization techniques, 

many of them discussed in the Experimental Section. Surface contaminants and 

imperfections cause heating when exposed to either direct or scattered radiation in the 

optical experiments. In order to distinguish internal or bulk heating from such surface 

heating, a polish of extremely high quality was necessary. To prepare a sample for optical 

characterization, the annealed glass was cut into a rectangular parallelepiped with an 

ethylene glycol-cooled diamond saw. The two parallel sides designated to receive the 

pump laser beam were polished to optical quality, while the other sides were polished to 

transparency. A “wet polish” was necessary to obtain the desired optical finish. To that 

effect, dried aluminum oxide particles, ranging in diameter from 12 µm down to 0.05 µm, 

were suspended in emulsions of water-free ethylene glycol and glycerin. The viscosity of 

the suspensions was controlled by adjusting the amount of glycol. The polishing 

compounds were prepared daily to ensure that the suspensions did not coagulate and form 

larger than expected particles that were found to scratch the surface. The sample was wax 

mounted on a hand held polishing assembly and manually polished with the slurry spread 

over a fine textured, non-abrasive, polishing cloth until the desired optical finish was 

obtained. The final samples were stored in the argon drybox until optical testing. Before 

use, the samples were sonicated in optical grade methanol for several hours then gently 

cleaned with lens paper. 



Chapter 3. Preparation and characterization of high-purity metal fluorides for photonics applications 
 

63 

 

Table 2 summarizes the glasses synthesized over the course of this development effort 

and provides comments on sample preparation conditions. Sample No. 1 was fabricated 

from commercially available metal fluoride precursors (with purities as given in Table 1) 

without conducting any further purification, except the mandatory ultra-drying and 

fluorination of metal fluoride precursors in hot hydrogen fluoride gas. Without this ultra-

drying step, significant crystallization of the glasses occurred yielding a glass unfit for 

optical characterization. Samples No. 2, 3, and 4 represent various stages during the 

CASE process development. Sample No. 5 is identical to Sample No. 4, except for a 

higher 2 mol% Yb3+ concentration. For Sample No. 6, sublimated ZrF4 (rather than 

solvent extracted ZrF4) was provided by the University of Bern. The other glass 

components were identical to the fluorides used to prepare Sample No. 4. Sample No. 7 is 

a commercial ZBLAN:2%Yb3+ sample procured from IPG Photonics that has shown 

good laser cooling performance, and it was used as a point of reference in this study.  

 

Table 2. Summary of the Yb3+-doped fluorozirconate samples synthesized and 
characterized in this study. 

Sample 
Number 

Yb3+ 

(mol%) 
ZBLANI composition 

(mol%) 
Sample descriptions and preparation 
notes 

1 1 54–21–3.5–3.5–16.5–0.5 
Produced from commercial metal 
fluoride precursors without further 
purification. Some bulk scattering. 

2 1 54–21–3.5–3.5–16–1 First generation CASE. Some bulk 
scattering. 
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3 1 53–20–3–3–17.5–2.5 
Second generation CASE. Improved 
melting/casting scheme. Excellent 
optical quality. 

4 1 53–20–3–3–17.5–2.5 
Third generation CASE. Modified HF 
gas drying process. Excellent optical 
quality. 

5 2 53–20–2–3–17.5–2.5 Same as No. 4 but with 2% Yb3+ 
doping. 

6 1 53–20–3–3–17.5–2.5 
Same as No. 4 but ZrF4 was purified 
by sublimation rather than solvent 
extraction. 

7 2 Unknown Commercial ZBLAN sample from 
IPG Photonics. 

 

Experimental Section  

ICP-MS Characterization: A Thermo Electron Corporation Element II high-

resolution magnetic sector inductively-coupled plasma mass spectrometer (ICP-MS) was 

used to measure trace metals at various stages during the CASE process. This ICP-MS 

has a high sensitivity (low parts-per-trillion, ppt) with a linearity over nine orders of 

magnitude. The purification of Zr4+ was chosen as a representative example. Samples 

were collected immediately before CASE, after each of the CASE steps, and for the UPH 

water. All samples were digested using hydrogen peroxide and 1:2 HCl:HNO3, then 

diluted 20-fold to reduce interference of the ammonium acetate buffer with the ICP-MS. 

The instrument was calibrated using certified 63Cu, 56Fe, 59Co, 58Ni, 60Ni, 51V, 52Cr, 55Mn, 

and 64Zn standards. The total concentration of each metal was obtained by scaling the 

measured isotope by its terrestrial abundance. In order to eliminate sample matrix effects 
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and to account for variations in background readings, 1 ppb of In was added to each 

sample as an internal standard.  

Powder X-ray Diffraction: The phase purity of each metal fluoride was verified 

by a commercial Rigaku X-ray Diffractometer (XRD) (see Figure 2). 

 

Figure 2. Powder x-ray diffraction for each of the individual fluorides used to fabricate 
ZBLAN:Yb3+. 

 

Laser Cooling: Two band differential luminescence thermometry (TBDLT) was 

used to measure local laser-induced cooling or heating in ZBLANI:Yb3+ samples and is 

described in detail elsewhere [36],[37]. TBDLT monitors the luminescence from a 

sample and deduces laser-induced temperature changes from changes in the spectral 

distribution, achieving a ~7 mK sensitivity in rare-earth doped materials. Two bands in 

the luminescence spectrum are optically selected by interference filters that, in 
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combination with large-core optical fibers and highly amplified, balanced photodetectors, 

achieve improved optical throughput and higher sensitivity compared to earlier DLT 

studies. The experiment consists of turning on the laser for a period of time and 

monitoring the temperature change that occurs due to intrinsic cooling or heating 

processes, followed by turning off the laser for a period of time for the sample to 

thermalize back to the ambient temperature. This sequence is repeated, and the signals 

are averaged over many cycles. The slope of the transient signal is correlated to the laser 

induced temperature change. The TBDLT technique allows examination of the reduction 

in efficiency of the laser cooling process due to presence of impurities.  

The TBDLT characterization included six Yb3+-doped ZBLANI samples produced in 

our laboratory (Samples No. 1-6) and a commercial 2% Yb3+-doped ZBLAN sample 

(IPG Photonics; Sample No. 7) which had shown substantial laser cooling in earlier 

experiments (see Table 2). The TBDLT parameter, ϑ, which is a quantity proportional to 

the change in temperature, was measured at room temperature for all six samples. The 

rate of laser-induced cooling is a measure of the amount of impurities in the material and 

thus a benchmark for the effectiveness of the purification process.  

Results and Discussion 

Materials Synthesis:  Our strategy for the synthesis of ultra-pure metal fluorides 

consists of (1) removing transition metal impurities from an aqueous phase by chelate-

assisted solvent extraction (CASE) and precipitation of the metal fluoride, (2) removing 

residual oxidic impurities (such as water, OH-, and oxides) by drying and fluorination of 

the “wet” metal fluorides in hot hydrogen fluoride (HF) gas, followed by (3) glass 
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synthesis in a controlled environment. It is this second drying and fluorination step that 

enables the preceding aqueous CASE process. Furthermore, the aqueous phase in the 

CASE process offers many choices for starting materials, as long as the compound can be 

dissolved and is of relatively high purity. Together, CASE and drying/fluorination in HF 

gas constitute a purification method that is applicable to the synthesis of a wide range of 

metal fluorides.  

In the present case of purification and synthesis of ZrF4, BaF2, LaF3, AlF3, NaF, InF3, 

YbF3 for the fabrication of ZBLANI:Yb3+ laser cooling glass, we chose metal oxides, 

carbonates, and chlorides as commercial starting materials (see Table 1). Even the purest 

commercial starting materials, however, typically contained ppm-level contaminations. 

For example, a ZBLANI:Yb3+ glass prepared from the commercial starting materials in 

Table 1 without further purification is estimated to have ~16 ppm of transition-metal 

contamination in the final glass, an impurity level that exceeds the 10 - 100 ppb target by 

factors of 102 - 103. Additional purification by CASE was therefore necessary to produce 

metal fluorides having the < 100 ppb transition-metal impurity levels needed for optical 

refrigeration. 

While purification of an aqueous phase by CASE is effective in reducing transition 

metals, it always yields metal fluorides with residual oxidic impurities which can be 

equally detrimental in many applications, including optical refrigeration. Treatment of 

metal fluorides in hot HF gas is effective in removing these oxidic impurities by two 

mechanisms: (1) surface water and water of crystallization evaporate from the fluorides 

as they are heated, and (2) remaining hydroxides and oxides, which are 

thermodynamically less stable than the respective fluoride react with HF to form the 
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metal fluoride by releasing water. The initial glasses synthesized and evaluated in this 

paper (Samples 1-3, see Table 2) were made from fluorides which were dried in HF gas 

at an unnecessarily high temperature of 550 °C [35]. We found that metal fluorides 

exposed to HF at this temperature had a grayish tint, and a brownish gelatinous residue 

emerged from the output port of the drying vessel during the HF process. These residues 

were likely a result of corrosion of the Inconel Alloy 600 parts and the glassy carbon 

inserts. We have found that lowering the drying temperature to 300 oC eliminated these 

corrosion residues and resulted in white metal fluoride powders. This lower HF process 

temperature is also supported by results reported by Kwon et al. who have shown that 

finely powdered CeO2, Nd2O3, and SrO can be quantitatively converted to the respective 

fluorides by exposure to 33 vol% HF in argon at 300 oC in less than 1 hour [38]. We 

therefore expect the drying/fluorination in our apparatus (19 hours at 300 oC in ~7 vol% 

HF in argon; see the Materials Synthesis Section) to be highly effective in removing 

oxidic impurities.    

All glass fabrication steps - including melting, casting, quenching, and annealing - were 

carried out inside an argon filled drybox, equipped with HEPA filters, containing less 

than 0.1 ppm of O2 and < 0.6 ppm H2O. Such an inert atmosphere was necessary to 

suppress the formation of oxides during melting of the fluoride glass. Oxides can increase 

multiphonon absorption, increase the tendency of glass to crystallize, increase light 

scattering, and decrease chemical durability [39]. A practical limit for the ZBLAN:Yb3+ 

melting temperature is set by the volatilization rate of ZrF4, which sublimes at 600°C. 

Preheating the furnace was necessary to prevent excess sublimation of ZrF4 from the 

batch of precursor fluoride powders before melting occurred. The optimized melting and 
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annealing schedule described in the Materials Synthesis Section yielded mechanically 

rugged samples of excellent optical quality.   

Effectiveness of Chelate-Assisted Solvent Extraction:  ICP-MS was used to 

quantify the effectiveness of removing transition-metal impurities (Cu, Fe, Co, Ni, V, Cr, 

Mn, Zn) from the aqueous metal-ion solutions.  Zirconium was chosen as the relevant test 

case because the final product, ZrF4, amounts to more than half of the final ZBLANI 

glass composition. The UHP water, which was used extensively throughout the CASE 

process, was also analyzed for transition-metal impurities, both to verify its purity and to 

establish a point of reference. None of the measured transition-metal ions were detected 

in the UHP water within the detection limits of the ICP-MS. We also analyzed the doubly 

distilled acids, the buffer solution, and the hydrogen peroxide used in the CASE process 

and ICP-MS sample preparation. Transition metal concentrations in these reagents were 

found to be negligible, indicating that any significant transition-metal impurities detected 

in the solutions were introduced by the ZrCl2O starting material.  

Figure 3 shows the concentrations of each of the transition metal impurities (on a log-

scale, in ppb) at various stages of the zirconium solution purification process. The 

"Before CASE" sample was the buffered aqueous ZrCl2O solution taken directly before 

the first CASE step. This initial ZrCl2O solution was substantially contaminated, having a 

total of ~72,500 ppb of the measured transition metals, the majority of which was Fe.  

The remaining three samples shown in Figure 3 were taken after each of the three 

successive solvent extraction steps. In most cases, each solvent extraction step reduced 

the transition metal concentration. The extraction coefficients (percentage of impurity 

removed per step) for the first CASE step were found to be 99.3% (Mn), 98.7% (Fe), Co 
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(98.3%), 98.0% (Ni), 95.6% (Cr), 94.1% (Zn), and 84.5% (V). These values are 

consistent with earlier reports of solvent extraction using the APDC chelate in a 

water/MIBK two-phase system [31],[40],[41].  These extraction coefficients also 

illustrate that at least two extraction steps are needed to reduce the initial concentration 

by 103 for most transition metals. It is also noteworthy that the apparent extraction 

coefficients were generally lower for the second and third extraction steps (where 

applicable), indicating that possible recontamination masked the effect of the chelate at 

concentrations < 50 ppb. This is seen for Zn and Cr, for which a slight increase in the 

concentration (although still < 35 ppb) after the third extraction step was observed.  
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Figure 3. Results from ICP-MS analysis of the chelate assisted solvent extraction (CASE) 
purification of a ZrCl2O solution. Reference standards were prepared for 8 transition 
metal ions known to be deleterious to numerous applications which rely on ultra-pure 
fluorides. The solution was analyzed before CASE, and after each successive CASE step. 
Note the different axis scales for the various graphs.  

 

Overall, the first CASE step was able to reduce the total concentration of the measured 

transition metals from ~72500 ppb to ~1400 ppb, with the residual impurities consisting 

primarily of Fe, but also Zn and Cr. The second CASE step further reduced the total 

impurity concentration from ~1400 ppb to ~100 ppb. The third CASE step did not reduce 
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impurity levels any further and appears to be ineffective. Hydrofluoric acid was added to 

the aqueous solution after the third CASE step to precipitate ZrF6(NH4)3 which was then 

decomposed to ZrF4.H2O (see the Materials Synthesis Section). The residual transition 

metal impurities in the final zirconium solution (see Figure 3) are therefore considered to 

be representative of the purity in the final fluoride ZrF4.H2O (before HF gas 

drying/fluorination). The impurity level of ~100 ppb compares favorably with the 

estimated maximum impurity level of 10-100 ppb required for efficient optical 

refrigerator materials.    

  

Table 3. Transition metal concentration (ppb) in a ZrCl2O solution before and after 
CASE. This data is presented as a series of bar graphs in Figure 3.  

 Cu Fe Co Ni V Cr Mn Zn Total 

Before 
CASE 

0 51600 177 7130 32.8 2140 3820 7640 72500 

After      
1st CASE 

0 711 3.09 143 5.07 93.9 26.4 454 1440 

After     
2nd CASE 

0 83.0 0.078 0 0.695 17.5 15.1 0 116 

After      
3rd CASE 

0 58.5 0 0 1.10 18.6 2.56 33.9 115 

UHP H2O 0 0 0 0 0 0.147 0 0 0.147 

 

Laser Cooling:  Laser cooling removes thermal energy from a solid by anti-

Stokes fluorescence and thereby reduces its temperature. A comprehensive introduction 

to laser refrigeration has been given elsewhere [11]. Impurities can introduce several 
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undesirable processes that cause internal heating and therefore degrade the laser cooling 

performance. The primary quenching mechanism is by non-radiative energy transfer from 

the excited laser cooling ion (e.g. Yb3+) to transition metal impurities (such as Cu2+, Fe2+, 

Co2+ and Ni2+) which subsequently decay non-radiatively. Furthermore, impurities with 

high-energy vibrational modes (such as OH- and H2O) can quench the excited state of the 

laser cooling ion via multi-phonon relaxation. Finally, impurities can also directly absorb 

at the pump wavelength causing heating in the form of background absorption. Reducing 

transition metal and oxidic impurities suppresses these impurity-induced undesired decay 

channels and thus improves the laser cooling performance. The TBDLT characterization 

method (see the Experimental Section) provides a measure of the laser-cooling efficiency 

of a material and, therefore, an indirect measure of the aggregate impurity concentration.  

  Each sample listed in Table 2 was characterized by TBDLT to measure the degree 

of laser cooling via the parameter ϑ (see Figure 4). Sample No. 1 clearly illustrates that 

even the best commercial metal fluorides have insufficient purity to enable laser cooling; 

this sample showed substantial laser-induced heating even at room temperature. The use 

of CASE purification of precursor materials, sufficiently high InF3 oxidizer 

concentration, optimized hydrogen fluoride drying, and sufficiently long melting times, 

provided a substantial improvement of laser cooling performance (successive 

implementation of these processes in samples No. 2, 3, and 4). The 1% Yb3+ 

concentration of Sample No. 4 was increased to 2% in Sample No. 5, which resulted in 

substantial heating. The rate of energy migration among Yb3+ ions increases with 

increasing Yb3+ concentration, and some of the excitations can find impurity sites where 

non-radiative relaxation takes place. This process is more efficient in the 2% sample (No. 
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5) compared to the 1% sample (No. 4), and the fact that sample No. 5 showed substantial 

heating is direct evidence for the presence of transition metal and/or oxidic impurities. 

Also note that the use of ZrF4 purified by sublimation (at the University of Bern; sample 

No. 6) resulted in a sample that cooled, albeit not as much as the best sample fabricated 

from precursors purified by the CASE process. 

 

 

Figure 4. TBDLT parameter at 300 K measured for each of the samples in Table 2. ϑ is 
proportional to the laser-induced change in temperature, where a positive and negative 
TBDLT parameter corresponds to laser-induced heating and cooling, respectively. 
Samples 2-4 exhibited laser cooling, indicating that the CASE purification and HF 
drying/fluorination were successful in significantly reducing transition-metal and oxidic 
impurities. 

  

 

Conclusions  

A comprehensive purification method suited for all of the ZBLANI:Yb3+ glass 

constituents had not yet been reported and was presented here. We show that chelate 

assisted solvent extraction (CASE) using APDC as a chelate and MIBK/water as a two-
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phase system is effective in removing relevant transition metal impurities from a ZrCl2O 

solution. The transition metal contamination was reduced by almost a factor of 103, and a 

residual transition metal concentration of ~100 ppb was achieved. Subsequent drying and 

fluorination of the resulting metal fluorides in hot hydrogen fluoride (HF) gas has proven 

effective in removing residual oxidic impurities, as confirmed by laser cooling 

measurements. Current work is focused on optimization of CASE with the APDC chelate 

and on finding other chelates/solvent systems with improved characteristics. The suite of 

processes presented here is applicable to the preparation of a wide range of ultra-pure 

binary fluorides, and it established a foundation for the growth of a variety of fluoride 

crystals and glasses for demanding photonic applications.   
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Abstract  

We present an efficient and numerically stable method to calculate time-dependent, laser-

induced temperature distributions in solids and provide a detailed description of the 

computational procedure and its implementation. This study combines the two-

dimensional heat equation with laser-induced heat generation and temperature-dependent 

luminescence. The time-dependent optical response of a system is obtained numerically 

by the Crank-Nicolson method. This general model is applied to the specific case of 

optical refrigeration in ytterbium (Yb3+) doped fluorozirconate glass (ZBLAN). The 

laser-induced temperature change upon optical pumping and the respective transient 
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luminescence response are calculated and compared to experimental data. The model 

successfully predicts the zero-crossing temperature, the net quantum efficiency, and the 

functional shape of the transients. We find that the laser-cooling transients have a fast and 

a slow component that are determined by the excited-state lifetime of the luminescent ion 

and the thermal properties of the bulk, respectively. The tools presented here may find 

application in the design of a wide range of optical and opto-electronic devices.  

 
 
 

I. Introduction  

Thermal processes in luminescent materials are a critical factor determining the 

performance of solid state optical refrigerators [1], laser gain materials [2], display and 

lamp phosphors [3], solid-state lighting devices [4]-[6], luminescent biomarkers [7]-[9], 

and fiber lasers and amplifiers. Light-induced heating also plays a key role in laser 

ablation [10], photothermal therapy [11]-[13], laser-induced damage of tissue, and 

thermal lensing. While the fundamental aspects of this problem are readily comprehended 

from the basic heat equation, actual calculations of time-dependent laser-induced 

temperature gradients are more challenging and often require advanced numerical tools 

and considerable computational power[14],[15]. The concept of laser-induced heating in 

general has been studied extensively [16]-[18], but no comprehensive model of laser-

induced heat diffusion and its effect on luminescence in bulk solids exists.  

This paper presents an efficient and numerically stable method to calculate time-

dependent laser-induced temperature distributions in solids and provides a detailed 

description of the computational procedure and its implementation. In addition, we 
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introduce a temperature dependent material property, in this case luminescence from a 

rare-earth ion, and show that the respective transient response of the system upon optical 

pumping is predicted correctly by the model. To our knowledge, this study is the first to 

combine the heat equation with temperature-dependent luminescence in order to predict 

the time-dependent optical response of a system. The tools presented here may find 

application in the design of a wide range of optical and opto-electronic devices.  

As an example, we apply the method to optical refrigeration in the Yb3+ doped 

fluorozirconate glass ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF). The development of laser-

cooling materials and devices has made significant progress over the past decade [19], 

[1]. The focus has been primarily on the study of a variety of rare-earth doped materials 

and ways to fabricate them in the exceedingly high purity and optical quality required for 

laser cooling applications. However, a quantitative description of the dynamics of laser-

induced cooling is still needed and is critical for the characterization of laser-cooling 

materials as well as for the design and performance optimization of actual optical 

cryocooler devices. The relaxation of excited rare-earth ions in solids involves both 

radiative and non-radiative processes. The non-radiative processes are exothermic in 

most rare-earth doped materials, that is, net heat is deposited into the host, and the 

material heats as a result of laser excitation. Both radiative and non-radiative processes 

also occur in laser-cooling materials; but here, the net result of the non-radiative 

processes is endothermic, and the material cools as a result of laser excitation. Two-band 

differential luminescence thermometry (TBDLT), a technique that measures laser-

induced changes in the luminescence spectrum in the time domain to infer subtle changes 

in internal sample temperature [19], builds on transient laser-induced temperature 
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changes and serves as a test of the model developed in this study. We show that the 

model correctly predicts the time-dependence of the TBDLT signal and finds that the 

transients have a fast and a slow component that are determined by the excited-state 

lifetime of the luminescent ion and the thermal properties of the bulk, respectively.   

 In Section II, the two-dimensional heat equation is introduced, laser-induced 

internal thermal processes in a two-level system are incorporated, and a formal 

description of TBDLT is presented.  Section III applies the model to laser cooling in 

ZBLAN:Yb3+ glass and compares the calculated performance with experimental TBDLT 

transients.  

II. Model of Time-Dependent Laser-Induced Heating in 

Solids 

Consider a rectangular solid sample that is excited by a single-mode laser focused 

into the center of the bulk material. If scattering can be neglected, laser-induced radiative 

and non-radiative processes will occur over the focused range of the laser, that is over 

2 Rz  in the longitudinal direction, where 2
0 /R pz ω π λ=  is the Rayleigh range. 

Temperature changes in the longitudinal direction over the Rayleigh range will be 

minimal, and the three-dimensional system can be approximated by a two-dimensional 

(2D) transverse slab with thickness 2 Rz . We will first present the well-known 2D heat 

equation, describe the numerical method for solving the respective differential equations 

(Section II.A), and subsequently introduce laser-induced heating (Section II.B). Section 

III.C introduces a formal description of two-band differential luminescence thermometry 
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(TBDLT) that will be used as example and validation of the model developed in this 

section.  

A. The 2D Heat Equation and the Crank-Nicolson Method  

 The diffusion of heat is governed by the heat equation, which follows from the 

Fourier Law and conservation of energy. The Fourier Law,  

,q Tφ κ= − ∇
�

 (1) 

states that the local heat flux 
qφ
�

 
is proportional to the temperature gradientT∇ . Note 

that the thermal conductivity, κ , generally varies with temperature and direction in 

anisotropic materials, in which case κ  becomes a tensor. In the following we shall 

ignore both these dependencies. Assuming that no work is being performed, the change 

in internal energy per unit volume, Q∆ , is proportional to the change in temperature, T∆

, that is 

.pQ C Tρ∆ = ∆  (2) 

We now assume that the specific heat capacity, Cp, and the mass density, ρ, are 

both independent of temperature. In the absence of internal heat generation, the change in 

internal energy must be accounted for entirely by heat flux across the boundaries, and 

therefore the change in internal heat and the heat flow across the boundary must be equal. 

This yields the heat equation, which in the 2D case is given by  

( ) ( ) ( )2 2

2 2

, , , , , ,
.

p

T x y t T x y t T x y t

t C x y

κ
ρ

∂ ∂ ∂ 
= + ∂ ∂ ∂ 

                 (3) 

In Eq.(3), ( , , )T x y t is the temperature (in K) at time t (in s) and location (x, y) (in m), κ is 

the thermal conductivity (in W m-1 K-1), ρ is the mass density (in kg m-3), and Cp is the 
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specific heat capacity (in J kg-1 K-1). The heat equation is a second-order partial 

differential equation (PDE), specifically it is a parabolic PDE. Note that this equation 

does not account for internal heat generation, which is added as a source term later in this 

section (Eq.(7)) when the equation is solved using the Crank-Niholson formalism.     

The heat equation can only be solved analytically in a few cases and usually must 

be evaluated numerically, especially in two and three dimensional problems. Several 

explicit and implicit numerical methods exist for this purpose. Explicit methods calculate 

the state of the system ( )Y t t+ ∆  at a later time t t+ ∆  from the state of the system 

( )Y t at the current time t, that is ( ) ( )( )Y t t F Y t+ ∆ = . Implicit methods on the other 

hand solve an equation that contains both the current and the later state of the system, that 

is ( )( ), ( ) 0G Y t Y t t+ ∆ = . Explicit methods are easier to implement than implicit 

methods, however they often fail because the PDEs tend to be unstable unless ∆t is 

chosen to be extremely small, which makes explicit methods slow and sensitive to round 

off errors. In contrast, implicit methods require upfront computation that is usually more 

than offset by their advantages of unconditional stability and larger time steps. 

 The Crank-Nicolson (CN) scheme is an implicit method [21] that is a particularly 

powerful approach for numerically solving parabolic PDEs such as the heat equation. It is 

a second order method that is implicit in time and that is numerically stable. In the 2D 

case on a uniform Cartesian coordinate grid, the heat equation in the CN-scheme 

becomes [21] 

( ) ( )

( ) ( )

1 1 1 1 1
, 1, 1, , 1 , 1

, 1, 1, , 1 , 1

1 2
2

1 2 ,
2

n n n n n
i j i j i j i j i j

n n n n n
i j i j i j i j i j

T T T T T

T T T T T

µµ

µµ

+ + + + +
+ − + −

+ − + −

 + − + + + 
 

 = − + + + + 
 

                (4) 
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where ,
n

i jT  is the temperature at time step n and at grid location( , )i j . µ is the 

dimensionless Courant-Friedrichs-Lewy (CFL) number for the two-dimensional case and 

is given by [22] 

( )2 ,
p

t

C d

κµ
ρ

∆=
∆

 (5) 

where d∆  is the lattice constant of the Cartesian square grid that comprises N x N cells. 

These quantities are illustrated in Figure 1. Equation (4) can be written in matrix 

notation as 

1 1 ,n n n nT Tµ µ+ + =                (6) 

where 1nT +    and nT    are one-dimensional matrices of length N 2 containing the 

temperatures at locations ( , )i j for time step n+1 and n, respectively. 1nµ +   and nµ    

are two-dimensional matrices of size N 2 x N 2 that contain the 1 2µ±  and / 2µ±  

factors in Eq.(4) as well as the boundary conditions (see Section II.A.2). In the presence 

of internal thermal processes (e.g. laser-induced heating or cooling) with power P, 

Q P t∆ = ∆  of thermal energy will be deposited into the material during the time interval

.t∆  According to Eq.(2), this will raise the temperature by / /p pT Q C P t Cρ ρ∆ = ∆ = ∆ . 

The temperature at time step n+1 can now be found by multiplying Eq.(6) with the 

inverse of matrix 1[ ]nµ + ,  and adding the effect of this additional heat source such that 
 

11 1 .n n n n nT T Tµ µ−+ += + ∆                    
                  (7) 
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Figure 1 Definition of quantities for the Crank-Nicolson method in a two-
dimensional square grid. 

 

1[ ]nµ +  and [ ]nµ  are constant for a given system if κ  and Cp in Eq.(5) are 

assumed to be independent of temperature. If that is a good approximation, 1 1[ ] [ ]n nµ µ+ −  

can be computed up front, and the method then proceeds efficiently from one time step to 

the next by the simple matrix multiplication of Eq.(7) (see Figure 1), yielding the time-

dependent spatial temperature distribution. The following subsections describe the 

structure of the µ−matrices, the implementation of boundary and initial conditions, and 

the choice of time step in the numerical evaluation of Eq.(7). 

1. Structure of the µµµµ-Matrices 

The µ-matrices in Eq.(7) are sparse and have a band-diagonal structure with non-zero 

elements only on the diagonal and on two diagonals on either side. The bandedness is a 

result of the heat flow being local, i.e. heat only flowing between neighboring cells. A 

sparse matrix with a band-diagonal structure is computationally easier to invert than a 
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dense matrix; however, we have not taken advantage of this property in the numerical 

implementation used in this study and have used a standard matrix inversion routine. 

Let us denote the diagonal and off-diagonal elements of the µ - matrices in Eq.(4) 

by a0 and a1, respectively. For the 1[ ]nµ +  and [ ]nµ  matrices, these elements then 

become: 

1 1
0 1

0 1

1 2 / 2 ( )

1 2 / 2 ( ).

n n

n n

a a a

a a b

µ µ
µ µ

+ += + = −

= − =
                    (8) 

To illustrate the structure of the resulting µ-matrices, let us consider a simple 2D-system 

consisting of 4×4 cells. The right hand side of Eq.(6) can be explicitly written as shown 

in Figure 2 using the definitions in Eq.(8) (b). The matrix structure of the left-hand side 

of Eq.(6) is identical but uses the elements defined in Eq.(8) (a). Note that the µ-matrix 

consists of N rows of N rows, i.e. it has one row for every cell of the N x N Cartesian 

grid.  
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Figure 2 Structure of the matrices on the right side of Eq.(6) for the example of a 4×4 
Cartesian grid. Zero elements are represented by dots for clarity. 
 
 

2. Boundary Conditions and Initial Conditions 

One can choose either Dirichlet boundary conditions, that hold the boundary at a given 

temperature, or Neumann boundary conditions, that hold the boundary at a given heat 

flow rate (e.g. imperfect insulation). Here we choose Dirichlet boundary conditions 

which place the system in a bath with infinite heat capacity and a fixed temperature, i.e. 

the temperature of the cells around the perimeter of the N x N system does not change. 

Specifically, these are the cells in the top row, bottom row, left column, and right column 

of the N x N Cartesian grid (see Figure 1). The matrix elements for these cells have to be 

modified to ensure constant temperature. Specifically, the first and last N rows of the 

above µ - matrix (see Figure 2) correspond to the top and bottom row of the N x N 
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Cartesian grid, respectively, and the respective diagonal elements are replaced by 1 and 

the respective off-diagonal elements by 0. In each of the other blocks of N rows, the first 

row and last row correspond to the left and right column of the N x N Cartesian grid, 

respectively; again, the respective diagonal elements are replaced by 1 and the respective 

off-diagonal elements by 0 to ensure constant temperature. With these boundary 

conditions, the matrix structure of the right side of Eq.(6) (see Figure 2) is modified to 

the structure shown in Figure 3. 

 

 
Figure 3 Structure of the matrices on the right side of Eq.(6) for the example of a 4×4 
Cartesian grid and using the Dirichlet boundary conditions of Section II.A.2. Zero 
elements are represented by dots for clarity. 
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Initial conditions are provided in the temperature vector 0
,i jT  for all grid locations 

( , )i j  at t = 0. This initial temperature distribution can be arbitrary. However it is 

important to note that the temperature of the perimeter cells of the N x N Cartesian grid 

will be held constant at their respective 0
,i jT value by the boundary conditions defined 

above.  

3. Choice of Time Step  

 The numerical stability of the CN method does not depend on the size of the time 

step t∆  [21]. However, there is an upper limit for t∆ . Note in Eq.(8) that the diagonal 

elements should be sufficiently close to 1. Rather than choosing t∆ , it is preferable to fix 

µ and calculate t∆  from Eq.(5), that is,       

( )2

.pC d
t

µρ
κ

∆
∆ =  (9) 

With proper choice of µ , this approach guarantees numerical stability and the maximum 

possible t∆  for the given system. The range of 0.1...0.2µ = has proven to be a practical 

choice.    

B. 2D Heat Equation with Laser-Induced Heating or 

Cooling 

In order to calculate 1[ ]nT +

 
in Eq.(7), we must first obtain the rate of internal heat 

generation, P. Assume a two-level system that is optically pumped and that can decay 

radiatively and non-radiatively. The fraction, ε , of the laser excitation energy is 

converted to heat (non-radiative relaxation) while the fraction, 1 ε− , undergoes radiative 
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relaxation as either stimulated or spontaneous emission. Note that stimulated emission is, 

by definition, resonant with the laser and does not generate any heat. The rate of internal 

heat generation, ( ), ,P x y t , is therefore proportional to the spontaneous emission rate 

according to   

( ) ( )2, , ,a
p

hc
P x y t n t A N Vε

λ
=  (10) 

where 2( )n t  is the upper level population, A is the spontaneous decay rate, and Na is the 

number density of absorbers. In the Crank-Nicolson scheme, the excited volume V in 

Eq.(10) corresponds to the volume of one cell, 22 ( )RV z d= ∆ , where 2
02 2 /R pz wπ λ= is 

the confocal parameter for a Gaussian beam.  

 Following the analysis of a two-level system allowing for saturation by van Dijk 

[24], the upper level normalized population is given by 

( ) ( ){ }2 1 exp ,a
a

a

w
n t gw A t

gw A
= − − +  +

              (11) 

for continuous constant pumping and the initial condition 2(0) 0n = . In Eq.(11) we have 

made use of the fact that the Einstein coefficients for absorption ( 12B ) and stimulated 

emission ( 21B ) are related by 21 12 1 2/ /B B g g=  and have introduced 1 21 ( / )g g g= + , 

where 1g  and 2g  are the degeneracies of the lower and upper level, respectively. The 

degeneracy is completely lifted in the low coordination symmetries of the glasses studied 

here, and we therefore assume1 2g g=  for our computations. In Eq.(11), the absorption 

rate constant aw  is given by 

( ) ( ) ( ),
, , , ,a p

a P

T
w T I x y t

hc

σ λ λ
λ =  (12) 
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where ( , , )PI x y t  is the laser irradiance (in W m-2) and ( , )a Tσ λ is the absorption cross 

section (in m-2). Note that in steady state (t → ∞ ) and for high irradiance (PI → ∞ ) we 

have aw → ∞  and 2 1/ 2n → , i.e. at most half of the absorbers can be excited. This 

properly accounts for saturation and is consistent with the fact that sustained inversion 

cannot be achieved in a two-level system under adiabatic conditions [25]. The irradiance 

at a Crank-Nicolson cell at location ( , )x y  is given by 

( )
( )o 2

( , )
, , ( ) ,

x y
E x y t P t

d

φ=
∆

 (13) 

where the incident laser power o( )P t  (in Watts) is chosen to be a step function at 0t t= . 

The normalized transverse spatial laser power distribution, ( , )x yφ , in Eq.(13) is 

assumed to be Gaussian, i.e.   

( ) ( ) ( )
2

2 2
02

0

2
, exp 2 / ,

d
x y r w

w
φ

π
∆

= −  (14) 

where 2 2 2r x y= + . Equation (14) places the center of the Gaussian beam at the origin. 

To ensure energy conservation, the physical size of the Crank-Nicolson grid has to be 

chosen such that it substantially contains the Gaussian beam profile, i.e.  

/2

0

( ) 1.
N d

r drφ
∆

≈∫  (15) 
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C. Model of Differential Luminescence Thermometry in 

Solid-State Optical Refrigerators 

By far, the most widely studied solid-state optical refrigerator system is Yb3+-

doped into the fluorozirconate glass ZBLAN [1]. The schematic in Figure 4 illustrates the 

concept of solid-state laser cooling using Yb3+. A pump laser is tuned to a wavelength 

(λp) that is longer than the mean luminescence wavelength (
fλ ), and the energy 

difference corresponds to the amount of heat that is extracted as heat from the solid for 

each excitation/emission cycle. The respective laser-cooling efficiency of this ideal case 

is given by ( ) / .cool p f fη λ λ λ= −  Note that the thermal population of the crystal field 

levels in the excited state is temperature dependent, causing 
fλ  to red-shift and 

coolη  to 

decrease as temperature decreases.  
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Figure 4 Schematic of energy levels in Yb3+-doped ZBLAN  showing the ideal case of 
laser cooling occurring between the two multiplets of Yb3+. The dopant is excited by the 
pump laser from the top of the ground state multiplet (2F7/2) to the bottom of the excited 
state multiplet (2F5/2). Vibrational energy is absorbed from the host during thermalization 
in both multiplets and, as a result, the material cools.  

 
 

In a real system, the excited state may have a net quantum efficiency, ( , )pTη λ , 

that is less than unity because of non-radiative processes occurring as a result of 

interactions with impurities as well as background absorption due to direct absorption of 

pump energy by the impurities. Note that η  is a function of both temperature and pump 

wavelength primarily due to its dependence on the resonant absorption, but also due to 

the spectral overlap between the rare-earth ion emission and the impurity absorption [27]. 

Incorporating these effects, the cooling efficiency thus becomes  

( , ) ( )
( ) .

( )
p p f

cool

f

T T
T

T

η λ λ λ
η

λ
−

=  (16) 
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As the temperature is lowered, 
fλ  red-shifts, 

coolη  decreases, and there is a temperature 

at which laser-induced heating and laser-induced cooling are exactly balanced, i.e. 

0coolη = . This temperature is referred to as the zero-crossing temperature (TZCT), and it 

can be used as a relative measure of the concentration of impurities and the overall 

quality of a laser cooling material. The net quantum efficiency at TZCT can thus be 

calculated from ( , ) ( ) /ZCT p f ZCT pT Tη λ λ λ= . At temperatures above TZCT, 0coolη >  and 

heat is extracted from the solid, while below TZCT , 0coolη <
 

and there is net heating of 

the solid. The corresponding laser-induced rate of cooling or heating is given by Eq.(10). 

The factor ε in Eq.(10) corresponds to the negative cooling efficiency (i.e. heat 

generation) of Eq.(16). Thus, in the context of optical refrigeration of solids, laser-

induced internal cooling is simply considered as negative heating, coolε η= − .  

Laser-induced temperature changes inside a solid can be measured by observing 

the subtle changes that occur in the material’s luminescence spectrum as the laser is 

turned on. This technique is known as differential luminescence thermometry (DLT); 

specifically, we have developed two-band differential luminescence thermometry 

(TBDLT) as a sensitive, non-contact method to characterize laser-induced temperature 

changes in solids [20]. TBDLT infers changes in the local sample temperature from 

changes in the luminescence spectrum that occur during the laser-induced cooling 

process, and it provides a temporally and spatially resolved temperature measurement 

that allows for rapid performance screening of laser-cooling samples. Here, a brief 

description of TBDLT is presented, and it will be used in Section III to validate the 

model developed in Sections II.A. and II.B.  
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 The luminescence spectrum of Yb3+ in ZBLAN glass is at a wavelength near 1 

µm. As shown in Figure 6, it consists of two wavelength regions for which the 

luminescence intensity increases (A, C) and two wavelength regions for which the 

luminescence intensity decreases (B, D) as the temperature is raised. Regions A and D 

are spectrally fairly broad and can be easily selected by commercial bandpass 

interference filters. The TBDLT method chooses these two bands, A and D, and detects 

changes in their relative intensity to obtain a measure of the associated internal 

temperature change. At a given location (x, y) with temperature Tx, y, the TBDLT signal is 

defined as   

* *
, ,

, * *
, ,

( , ) ( , )
( , ) .

( , ) ( , )
A x y D x y

x y
A x y D x y

I T t I T t
T t

I T t I T t
ξ

−
=

+    
            (17) 

The luminescence intensities * ,( , )A x yI T t  and *
,( , )D x yI T t  in Eq.(17) are integrated over 

the product of the luminescence spectrum ( , )I Tλ  and the bandpass filter transmission 

spectrum ( )θ λ , i.e.,  

( ) ( )
( ) ( )

*
, ,

*
, ,

( ) ,

( ) , .

A x y x y A

D x y x y D

I T I T d

I T I T d

λ θ λ λ

λ θ λ λ

=

=

∫

∫
             (18) 
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Figure 5 2F5/2→2F7/2 luminescence spectra of Yb3+ in ZBLAN glass at various 
temperatures. The gray areas indicate wavelength regions in which the luminescence 
intensity increases (A and C) and regions where the luminescence intensity decreases (B 
and D) as the temperature is raised. Portions of regions A and D can be selected with 
commercially available interference filters.    
  
 

The experimental implementation of the TBDLT method uses a gain-balanced 

amplified pair of photo-detectors for the simultaneous measurement of * ( )AI T , * ( )DI T  

and * *( ) ( )A DI T I T− , and it requires that the optical powers reaching the two detectors are 

balanced [20]. In practice this is achieved by simply detuning the optical alignment of the 

band with the larger signal to match the signal of the other band. Here, let us introduce a 

factor ζ  by which we can scale * ( )DI T  such that it matches * ( )AI T at the bath 

temperature 0T , i.e.  
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( ) ( )
( ) ( )

0

0

,
.

,

A

D

I T d

I T d

λ θ λ λ
ζ

λ θ λ λ
= ∫
∫

        (19) 

Finally, since luminescence is collected from the entire pumped volume, we must 

account for the temperature distribution in the pumped volume not being uniform. The 

measured TBDLT signal, ( ),T tΞ , is therefore obtained by integration of ( ), ,x yT tξ  

[Eq.(17)] over the transversal plane. Note that the luminescence intensity is proportional 

to the excited state population 2( , , )n x y t  [Eq.(11)], and ( ), ,x yT tξ is thus weighted by 

2( , , )n x y t  according to 

( ) ( ) ( )2 ,, , , , ,x yT t n x y t T t dx dyξΞ = ∫∫              (20) 

where T becomes the average temperature in the optically excited volume. With these 

definitions, we obtain 0( ) 0T TΞ < < , 0( ) 0T TΞ = = , and 0( ) 0T TΞ > > . That is, the 

TBDLT signal will become positive/negative upon laser-induced heating/cooling of a 

system that was initially thermalized at 0T . 

III. Results and Discussion  

In the following, the model developed in Section II is applied to optical 

refrigeration in Yb3+-doped ZBLAN glass as both an example and a quantitative 

validation. In Section III.A we will first present the relevant material parameters of Yb3+-

doped ZBLAN glass that are required for the calculation of laser-induced temperature 

changes (Section III.B) using the model developed in Section II. Section III.B presents a 

calculation of the laser-induced temperature distribution in ZBLAN:Yb3+ as a function of 

time, and Section III.C shows the transient response of the respective two-band 
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differential luminescence thermometry (TBDLT). Finally, a discussion of sample size 

effects is given in Section III.D.  

Two Yb3+-doped fluorozirconate glass samples were used for the measurements in 

this study. Sample I was a ZBLANI:1%Yb3+ (ZrF4-BaF2-LaF3-AlF3-NaF-InF3-YbF3) 

glass fabricated in our laboratory from purified precursor materials. Sample II was a 

ZBLAN:2%Yb3+ glass obtained from IPG Photonics and known to be a good laser 

cooler. The samples were mounted in a liquid-nitrogen flow cryostat in close thermal 

contact with the cold finger. The sample temperature was measured with a miniature 

temperature sensor mounted directly on the sample surface. Optical excitation was 

achieved by a single-pass geometry with focusing the laser into the center of the sample.  

A. Spectroscopic and material properties of ZBLAN:Yb3+ 

for thermal diffusion modeling 

Several spectroscopic parameters of ZBLAN:Yb3+ are needed for the thermal 

diffusion calculations. The temperature-dependent absorption cross section at the pump 

wavelength (Eq.(12)) and was obtained by fitting a cubic polynomial to measurements of 

the absorption cross section at λp = 1020.6 nm at different temperatures (see Figure 6 

(a)). Likewise, the temperature dependencies of the mean luminescence wavelength fλ  

(in Eq.(16)) as well as the luminescence intensity integrals ( ) ( ), AI T dλ θ λ λ∫  and 

( ) ( ), DI T dλ θ λ λ∫  
(Eq.(18)) were obtained by fitting cubic polynomials to respective 

experimental data obtained at different temperatures (see Figure 6 (b) and 6 (c)). Table 1 

summarizes the respective polynomial coefficients. Table 2 summarizes material 
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properties typical of ZBLAN glass as well as laser and computational parameters specific 

to the present experiments.  

 

 
Figure 6 Temperature dependence of spectroscopic parameters of ZBLAN:Yb 3+ : (a) 
Absorption cross section, σa(λ, T), at λp = 1020.6 nm [26]; (b) Mean luminescence 
wavelength, 

fλ , derived from luminescence spectra at different temperatures; (c) 

Spectral overlap integrals ( ) ( ), AI T dλ θ λ λ∫  (circles) and ( ) ( ), DI T dλ θ λ λ∫  (squares) (see 

Eq.(18)). The solid lines in each of the plots are least-squares fits to a cubic polynomial, 
and the respective parameters are summarized in Table 1.  
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Table 1 Coefficients obtained from least-squares fits of the function 
2 3

0 1 2 3( )y T a a T a T a T= + + +  to the experimental data shown in Figure 6. 

 
Coefficient Absorption Cross  

Section, σa [m
2] 

Mean Luminescence 
Wavelength,

fλ  
[nm] 

Band A 
[a.u.] 

Band D 
[a.u.] 

a0  1.29E-26 1011.33 -2.58 0.669 

a1  -3.90E-28 -0.130 0.030 0.071 

a2  3.09E-30 3.21E-4 -4.64E-5 -2.91E-4 

a3  -4.46E-33 -3.52E-7 4.09E-8 3.73E-7 

 
 

Table 2 Summary of key parameters characterizing the ZBLAN:Yb3+ glass, the laser 
excitation, and the Crank-Nicolson computation. 
 

Parameter Symbol Value Units Ref. 

 
Material Parameters 

    

Thermal Conductivity  κ 0.77 W m-1 K-1 
[26] 

Density ρ 4445 kg m-3 
[26] 

Specific Heat Cv  670 J kg-1 K-1 
[26] 

Specific Heat Capacity Cp = Cν ρ 2.9782 x 106  J m-3 K-1 
 

Yb3+ Ion Density (1 mol%) Na  1.899  x 1026  m-3 
[27] 

Radiative relaxation rate wr  540 s-1 
[27] 

Internal Net Quantum 
Efficiency 

η Varied   

 
Laser Parameters 

    

Laser Power Ψ0 3.75 W  

Laser Wavelength λp 1020.6  nm  

Beam Waist w0  10 
µm  

Laser ON time t0  0 s  

 
Crank-Nicolson Parameters 

    

Square lattice constant ∆d 50  µm  

Square Grid Elements N× N  71 x 71   

CFL number Μ 0.2   
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B. Laser-Induced Temperature Changes in ZBLAN:Yb3+ 

The thermal response (Eq.(7)) and the resulting luminescence response (Eq.(20)) 

of a solid under Gaussian beam irradiation can now be calculated. As an example, Figure 

7 shows four calculations of the time-dependent transversal temperature distribution (at 

T0 = 300 K) for four hypothetical samples of ZBLAN:Yb3+ having different net quantum 

efficiencies (η = 1, 0.98, 0.97, and 0.94). Continuous wave (CW) laser excitation with a 

Gaussian beam profile begins as a step function at t = 0 in these calculations. The lower 

part of Figure 7 shows the corresponding change in temperature at the center of the 

Gaussian beam over the course of 5 seconds. The top row in Figure 7 represents the case 

of an ideal ZBLAN:Yb3+ sample that has η = 1 and exhibits laser-induced cooling. For 

this case, the center of the pumped area cools from 300 K to 299.587 K during the first 20 

ms and reaches a steady-state temperature of 299.18 K (at t = 5 s). Samples with lower 

net quantum efficiency show less laser-induced cooling or even laser-induced heating, as 

illustrated for the η = 0.94 case (Figure 7, bottom row). Note that internal heat generation 

is essentially zero at η = 0.97. This is expected from Eq.(16): coolη  is zero for 

/ 0.9718f pη λ λ= = , i.e. 300 K is the TZCT for ZBLAN:Yb3+ with η = 0.9718 pumped at 

1020.6 nm. Net laser-induced heating thus occurs for η < 0.97.   
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Figure 7 Spatial (top) and temporal (bottom) representation of calculated laser-induced 
heat diffusion in ZBLAN:1%Yb3+ glass pumped at 1020.6 nm. The calculation was 
performed using the two-dimensional CN method in a 3.55 × 3.55 mm grid (see Section 
II) and the parameters of Tables 1 and 2. The internal net quantum efficiency η is 
reduced from top to bottom in the figure. The gray scale covers the range of 299.0 K 
(black) to 300.1 K (white) with the bath temperature held at T0=300 K.   

 

C. Transient Response of ZBLAN:Yb3+ 

Luminescence 

The TBDLT transients measured for Samples I and II at various bath temperatures 
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signal, ( , )T tΞ . The dependence of the TBDLT signal as a function of time is linear in 

the double-logarithmic representation of Figure 8, indicating that it follows a simple 

power law according to 

( ) .t tϑΞ ∝  (21) 

The slope, ϑ , of the line in double-logarithmic representation is a metric for the laser-

induced temperature change, and it can be used as a figure of merit for the laser-cooling 

performance of the material at a given bath temperature. Laser-induced cooling or 

heating is therefore present if 0ϑ <  or 0ϑ > , respectively. Figure 9 presents the ϑ  

values obtained from fits of Eq.(21) to the experimental data (Figure 8), and TZCT was 

estimated to be 158 K and 238 K for Sample II (filled squares) and Sample I (filled 

circles), respectively. At these temperatures, the mean luminescence wavelength is found 

to be 995.9 nm and 993.96 nm, respectively (see Figure 6 (b) and Table 2). With a fixed 

laser excitation wavelength of 1020.6 nm, the net quantum efficiency η  at TZCT is thus 

calculated to be 0.9758 (Sample II) and 0.9739 (Sample I) [Eq.(16)]. Figure 9 also shows 

ϑ  values calculated from the model presented in Section II [Eq.(20)]. The calculations 

assumed the above net quantum efficiencies, and a scale factor was applied to the 

experimental data to match the absolute value of ϑ  at 300.25 K (Sample I) and 257.05 K 

(Sample II). The model provides a good quantitative description of the experimental data 

and thus serves as a useful tool to predict the laser cooling performance of other 

materials. 
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Figure 8 Experimental TBDLT transients of ZBLAN:Yb3+ Samples I and II (see Section 
III.A) recorded at different bath temperatures, T0. The solid lines are fits to Eq.(21), and 
the respective �-values are shown in Figure 9.  
 

An interesting feature is observed at low temperatures for Sample II. ϑ  and thus 

laser-induced heating reaches a maximum at 133 K. This maximum is the result of two 

counteracting effects. On the one hand, the laser cooling efficiency gradually decreases 

with decreasing temperature [Eq.(16)] causing more of the absorbed power to be 

converted to heat [Eq.(10)]. On the other hand, the absorption coefficient at the pump 

wavelength decreases rapidly with decreasing temperature (Figure 6 (a)). Therefore, T → 

0 causes σa → 0 causing the rate of internal heat generation P → 0 and thus ϑ → 0, a 

trend that is confirmed by the experimental data.  
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Figure 9  TBDLT parameter ϑ  (Eq.(21)) for experimental data (filled symbols) and 
calculated data (open symbols) for Samples I and II (see Section III). The TZCT is found to 
be 238 K and 158 K for Sample I and II, respectively.      

 
 

D. Sample size and associated characteristic time 

constants 

The model also allows the study of the dependence of the transient response on 

the size of the sample. This is illustrated in Figure 8, which shows calculated TBDLT 

transients over the course of 60 seconds for ZBLAN:Yb3+ with η  = 0.9739 and various 

two-dimensional sample sizes. Three regimes are found. There is an initial fast 

component that is independent of sample size and that has a time constant governed by 
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characteristic of how quickly heat is removed from (cooling) or deposited into (heating) 

the sample in the small excitation volume defined by the focused laser. This time 

constant is on the order of only a few milliseconds in ZBLAN:Yb3+ and was not resolved 

in the measurements shown in Figure 8. The initial fast component is followed by a 

slower component the duration of which depends on the sample size. The time constant 

of this component is governed by the heat capacity and thermal conductivity of the 

material and extends for several seconds for ZBLAN:Yb3+ samples with cross-sectional 

areas of >5 mm2. This is the time regime in which the measurements of this study were 

carried out (Figure 8) and from which the TBDLT parameter ϑ  was calculated (Figure 

9). Finally, the thermal processes induced by a CW laser, combined with the sample 

surface being held at the constant bath temperature T0, produces a steady-state 

temperature distribution (and thus a constant TBDLT signal) after some longer time. The 

time period for this steady state to develop in larger ZBLAN samples is on the order of 

many seconds and is determined by the total amount of heat being deposited into the 

sample (i.e. sample size) and the thermal properties (thermal conductivity and heat 

capacity). Note that the initial fast temporal response of the 0.55 x 0.55 mm2 grid shown 

in Figure 10 is typical of what would be expected for a sample with small cross-sectional 

area such as a bare optical fiber. In the case of bulk ZBLAN:Yb3+, the measured TBDLT 

transients during the first few seconds are well described by assuming a sample size 

larger than 3 x 3 mm2 (see Figure 10), which is consistent with the transversal dimension 

of the actual samples used in our experiments.  
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Figure 10  TBDLT transients for ZBLAN:Yb3+ calculated from Eq.(20) with η  = 
0.9739 and  varying the sample size. The spatial resolution was held constant (50 x 50 
µm2 grid element size), and the sample size was varied via the grid dimension, N. 
Material parameter values from Tables 1 and 2 were used. 

 

IV. Conclusions 

We have presented a quantitative model that (1) describes the time-dependent 

laser-induced temperature distribution in a solid and (2) correlates the laser-induced 

temperature changes with changes in luminescence properties. The implicit Crank-

Nicolson scheme used for the computational evaluation of the heat equation was found to 

be numerically stable and efficient, allowing for the rapid exploration of the parameter 

space. As an example, the model was validated for two-band differential luminescence 

thermometry (TBDLT) in ZBLAN:Yb3+ optical refrigerator samples. The laser-cooling 

performance as a function of temperature was accurately predicted by the model, 

allowing the TZCT  and net quantum efficiency to be calculated. Furthermore, the model 
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revealed the presence of three distinct time constants that govern the luminescence 

response in optical refrigerators upon laser excitation. The tools developed in this study 

are general and can be readily applied to other materials and temperature-dependent 

properties, enabling quantitative studies of light-matter interactions in a wide range of 

materials and devices.   
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Abstract  

We present a non-contact optical technique for the measurement of laser-induced 

temperature changes in solids. Two-band differential luminescence thermometry 

(TBDLT) achieves a sensitivity of ~7 mK and enables precise measurement of the net 

quantum efficiency of optical refrigerator materials. TBDLT detects internal temperature 

changes by decoupling surface and bulk heating effects via time-resolved luminescence 

spectroscopy. Several Yb3+-doped fluorozirconate (ZBLANI) glasses fabricated from 

precursors of varying purity and by different processes are analyzed in detail. A net 

quantum efficiency of 97.39±0.01% at 238 K (at a pump wavelength of 1020.5 nm) is 

found for a ZBLANI:1%Yb3+ laser-cooling sample produced from metal fluoride 

precursors that were purified by chelate-assisted solvent extraction and dried in 

hydrofluoric gas. In comparison, a ZBLANI:1%Yb3+ sample produced from commercial-

grade metal fluoride precursors showed pronounced laser-induced heating that is 

indicative of a substantially higher impurity concentration. TBDLT enables rapid and 

sensitive benchmarking of laser-cooling materials and provides critical feedback to the 

development and optimization of high-performance optical cryocooler materials.   
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1. Introduction  

The first successful laser-induced cooling of a solid in 1995 produced a mere 0.3 

Kelvin of cooling in the Yb3+-doped fluorozirconate glass ZBLAN (ZrF4-BaF2-LaF3-

AlF3-NaF) [1]. Since then, the field has made steady progress in material preparation 

methods [2],[3], optical configurations [4], and characterization techniques; and this 

effort has recently resulted in the laser cooling of a LiYF4:Yb3+ bulk crystal to 164 K [5]. 

This temperature rivals high-end thermoelectric coolers [6] and underscores the potential 

of laser cooling as an emerging solid-state cryogenic refrigeration technology. Laser 

cooling down to ~70 K is theoretically possible in Yb3+-doped materials [7],[8], and even 

lower temperatures may be achieved with other rare-earth ions (such as Tm3+ or Dy3+) 

that have smaller energy gaps and respectively higher laser-cooling efficiencies. 

The ability to accurately and rapidly measure the laser-cooling efficiency of a 

sample is critical for the systematic development of the purification and fabrication 

processes associated with the preparation of optical refrigerator materials. The 

measurement of the laser-cooling efficiency, however, is met with difficulties. Significant 

pump light absorption and a corresponding significant temperature change is only 

achieved in multi-pass pump geometries.  These involve not only the setup and alignment 

of a pump cavity, but also the laborious preparation of a sample with high quality optical 

surfaces. Furthermore, non-contact thermometry is required since a temperature sensor in 

thermal contact with the sample would potentially become a heat load when exposed to 

the pump light and sample luminescence. A simple single-pass pump geometry and a 

thermometry method that is insensitive to surface preparation would greatly facilitate 
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sample characterization and enable expeditious feedback of laser-cooling performance 

data to the process development effort. A non-contact thermometry method is therefore 

needed that (1) has sufficiently high sensitivity to detect the < 0.1 K temperature changes 

that are typical of single-pass pumping of laser-cooling materials, (2) is insensitive to 

laser-induced heating at imperfect sample surfaces, (3) can be used at low temperatures, 

and (4) can resolve the fast thermal response in the time domain. Luminescence spectra 

have been used in the past as non-contact internal temperature probes and, in the case of 

rare-earth doped materials, absolute temperature measurements with ±0.1 ºC accuracy 

have been reported [9]. The changes in the luminescence intensity distribution for rare-

earths are quite subtle, especially when compared to those observed in semiconductors 

where substantial wavelength shifts produce large changes in the intensity distribution 

[10]. In contrast, the 4f electrons in rare-earths are well shielded from the environment in 

the solid, and crystal field transitions therefore do not appreciably shift with temperature. 

The temperature-induced intensity changes in rare-earth luminescence spectra are thus 

primarily due to changes in (1) the Boltzmann population of the crystal field levels of the 

emitting state and (2) the homogeneous linewidths of the individual crystal-field 

transitions. Seletskiy et al. reported a time-resolved technique that detects small laser-

induced temperature changes inside the sample via changes in its luminescence spectrum 

[11]. Their differential luminescence thermometry (DLT) experiment correlated the 

relative intensity change of two adjacent regions in the luminescence spectrum to a 

temperature change and, using a monochromator in conjunction with a balanced pair of 

photodiodes, achieved milli-Kelvin sensitivity for a GaAs heterostructure sample.  
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In this paper we present a two-band differential luminescence thermometry 

(TBDLT) method that achieves ~7 mK sensitivity in rare-earth-doped materials. By 

selecting two bands in the luminescence spectrum by interference filters, in combination 

with large core optical fibers and highly amplified balanced photodetectors, improved 

optical throughput and significantly higher sensitivity is achieved compared to earlier 

DLT studies [9]. The TBDLT method offers substantially higher sensitivity than data 

acquisition with a commercial luminescence spectrometer and is a tool to study laser-

induced thermal processes in any doped luminescent solid. In this study, we apply 

TBDLT to rare-earth doped optical refrigerator materials. We present a detailed analysis 

of several Yb3+-doped fluorozirconate glasses and show that the measured laser-cooling 

performance correlates with the fabrication history of the sample, providing valuable 

information for further optimizing the material preparation processes. The TBDLT 

technique and data analysis methods are described in Section 2 followed by a description 

of the experiments in Section 3. Section 4 presents measurements of two ZBLAN:Yb3+ 

laser-cooling samples, and Section 5 summarizes the findings of this study. 

2. Two-Band Differential Luminescence Thermometry 

A. Principle of Operation  

Two-band differential luminescence thermometry (TBDLT) monitors the 

luminescence from a sample and deduces laser-induced temperature changes from 

changes in the spectral distribution. Laser-induced temperature changes can arise from 

(1) local cooling or heating inside the material and (2) heating at imperfect sample 
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surfaces. The main advantage of TBDLT is in its ability to distinguish the intrinsic laser-

induced cooling or heating processes from laser-induced heating at the sample surfaces, 

thereby eliminating the need for difficult and laborious surface preparation and thus 

greatly facilitating sample characterization. Bulk cooling or heating is decoupled from 

surface heating by monitoring laser-induced temperature changes in the time domain and 

in a small internal volume. This can be achieved because internal cooling or heating 

processes dominate the temperature change immediately after turning on the laser, and it 

is only after some time that heat generated at the sample surface reaches the locally 

monitored excitation volume inside the sample. The experiment, therefore, consists of 

turning on the laser for a period of time and monitoring the temperature change that 

occurs due to intrinsic cooling or heating processes, followed by turning off the laser for 

a period of time for the sample to thermalize back to the ambient temperature. This 

sequence is repeated, and the signals are averaged over many cycles. This cycled 

pumping method also eliminates the effects of long-term ambient temperature drifts. 

Such an experiment is also, importantly, insensitive to re-absorption effects which plague 

experiments taken with an infrared camera for example.  
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Figure 1  Area normalized luminescence spectra at different temperatures for sample No. 
4 (see Table 1). As the temperature is increased, the luminescence intensity of regions A 
and C increases while the luminescence intensity of regions B and D decreases. Note that 
the full spectrum, which extends to > 1030 nm, is not shown for clarity.  

 

Let us now look more closely at one such pumping cycle for the example of the 

Yb3+-doped fluorozirconate glass ZBLANI (ZrF4-BaF2-LaF3-AlF3-NaF-InF3). Assume a 

bulk sample of ZBLANI:Yb3+ in thermal equilibrium with the surrounding bath 

temperature. A pump laser with a Gaussian transverse intensity distribution is focused 

into the bulk of the sample and turned on at time t = 0. A spatially non-uniform and time-

dependent temperature distribution will develop as a result of laser-induced internal 

heating or cooling processes. As illustrated in Figure 1, the  2F5/2→2F7/2  luminescence 

spectrum of Yb3+ is temperature dependent, and the Yb3+ ions can therefore serve as local 
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temperature probes. Specifically, the ZBLANI:Yb3+ luminescence spectrum contains four 

spectral regions in which the luminescence intensity either increases (regions A and C) or 

decreases (regions B and D) as the sample temperature is raised (See Figure 1). We will 

focus on regions A and D since they can be easily selected with commercial bandpass 

filters (see Section 3.B). The Yb3+ luminescence spectral distribution ( , , )I T tλ at time t is 

determined by the local temperature T  and the respective differential luminescence 

signal is defined as [12] 

( )
* *

* *

( , ) ( , )
, .

( , ) ( , )
A D

A D

I T t I T t
T t

I T t I T t

−Ξ =
+

                                         (1) 

In Eq.(1), * ( , )AI T t and * ( , )DI T t are integrals over the product of the luminescence 

spectrum, ( , , ),I T tλ  and the bandpass filter transmission spectra ( )Aθ λ  and ( )Bθ λ , 

respectively, i.e. 

( ) ( )
( ) ( )

*

*

( , ) , ,

( , ) , , ,

A A

D D

I T t I T t d

I T t I T t d

λ θ λ λ

λ θ λ λ

=

=

∫

∫
                                    (2) 

where  Figure 2 shows this overlap for our particular example. 
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Figure 2  Area normalized luminescence spectra at different temperatures for Sample 
No. 4 (left axis) and transmission spectra of the commercial band pass filters (right axis) 
used in the TBDLT experiment. Filters A and D are chosen such as to select and integrate 
a sizeable portion of the luminescence spectrum regions +A and -D (see Figure 1), 
respectively. 

 

Finally, since luminescence is collected from a finite volume, we must account for 

the temperature distribution in the collection volume not being uniform. The measured 

TBDLT signal, ( ),T tΞ
 
is therefore obtained by integration of Eq. (1) over the transversal 

plane. Note that the luminescence intensity is proportional to the excited state population 

2( , , )n x y t , and ( ),T tΞ is thus weighted by 2( , , )n x y t  accordingly, as discussed in detail 

elsewhere [12]. ( ),T tΞ  is defined such that it decreases with decreasing sample 
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temperature, i.e. laser-induced cooling will cause the value of ( ),T tΞ  to decrease with 

time. Normalization to the total luminescence intensity * *
A DI I+  accounts for the 

temperature dependence of the absorption coefficient as well as for drifts in optical 

alignment and laser power. The change in ( ),T tΞ is thus a direct measure for the laser-

induced temperature change in the collection volume. ( ),T tΞ can be found, in principle, 

from a series of luminescence spectra recorded in rapid succession after the laser has 

been turned on. The sensitivity of commercial luminescence spectrometers, however, was 

found to be insufficient and did not allow for sufficiently high data acquisition rates to 

resolve ( ),T tΞ . This provided the main motivation for developing the TBDLT method 

presented here.  

B. Data Analysis Method  

 The local temperature in the excited volume, and thus the measured TBDLT 

signal ( ),T tΞ , varies as a function of time after turning on the laser. ( ),T tΞ  therefore 

depends on several factors including (1) host material properties such as  heat capacity, 

thermal conductivity and the mass density, (2) pump beam characteristics such as beam 

waist and laser power, (3) rare-earth dopant ion density and relaxation rate, (4) the net 

quantum efficiency, η, which is affected by impurity concentrations, and (5) sample size. 

A formal description of the spatial and temporal dependence of temperature in laser-

cooling materials is given elsewhere [12]. From these calculations we expect the TBDLT 

signal ( ),T tΞ  to have three temporal components. There is an initial fast component 
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with a time constant governed by the excited state lifetime of the rare-earth ion, and it is 

characteristic of how quickly heat is removed from (cooling) or deposited into (heating) 

the sample in the small excitation volume defined by the focused laser. A subsequent 

second slow component has a time constant that is governed by the material properties, 

and it is characteristic of how quickly heat flows out of (cooling) or into (heating) the 

much larger bulk volume of the sample. Finally, the sample reaches thermal equilibrium 

and ( ),T tΞ reaches a steady-state value. The period of time required for the steady state 

to develop depends on the sample size and was found to be > 5 seconds for the samples 

of this study. The experimental setup, described in detail in Section 3.B, did not allow for 

measurement of the initial fast component and therefore only captured the second slow 

component (beginning at t ≈ 25 ms in ZBLANI:Yb3+). The functional form of the slow 

component of the ( ),T tΞ transient follows a simple power law [12] 

( ), tT t ϑΞ ∝
.
                     (3) 

The slope, ϑ, of the respective line in double-logarithmic representation is a metric for 

the laser-induced temperature change, and it can be used as a characteristic TBDLT 

parameter that provides a measure of the laser-cooling performance of the material at a 

given bath temperature. Laser-induced cooling or heating is therefore present if 0ϑ <  or 

0ϑ > , respectively. 0ϑ =  corresponds to the temperature at which the rates of laser-

induced heating and cooling processes are exactly balanced. As shown in the next 
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section, this heat-balanced point is of particular significance as it can be used to 

determine the net quantum efficiency of the material. 

C. TBDLT of Optical Refrigerator Materials 

In rare-earth-doped optical refrigerators, a pump laser is tuned to excite the rare-earth 

ion at a wavelength pλ that is longer than the mean luminescence wavelength ( )fλ , and 

thermal energy is subsequently removed from the solid by anti-Stokes luminescence. The 

laser-cooling process is characterized by the cooling efficiency 

( ) ,/f fcool pη ηλ λ λ= −                                         (4) 

where η  is the net quantum efficiency of the rare-earth excited state [13]. η is defined as 

( , ) ,p abs extTη λ η η=                                   (5) 

where extη describes the efficiency with which an excited ion produces a luminescence 

photon that escapes from the sample. The absorption efficiency, 

( )/( ) ) ,(abs r r bη α λ α λ α= +  accounts for the fraction of excited photons that are engaged 

in cooling, where ( )rα λ is the resonant (e.g. Yb3+) absorption at a given wavelength and 

bα  is the background absorption of the material, typically assumed to be independent of 

pump wavelength and temperature. Note that η  is a function of both temperature and 

pump wavelength, largely through the absorption term, absη , but also due to the spectral 

overlap between the rare-earth ion emission and the impurity absorption. Previous studies 



Chapter 5. Measurement of solid-state optical refrigeration by two-band differential luminescence 
thermometry 

 

126 

 

have identified certain transition metal ions (e.g. Cu2+, Fe2+, Co2+, and Ni2+) and 

impurities having high-energy vibrational modes (e.g. OH- and H2O) as contributors to 

lowering the net quantum efficiency [14].  It was estimated that the concentration of such 

impurities must be below the 100 parts-per-billion (ppb) range for a material to realize 

practical cooling efficiencies at cryogenic temperatures. The measurement of impurity 

concentrations is therefore a prerequisite for the systematic development of advanced 

purification and fabrication methods for laser-cooling materials.  

Here we use the net quantum efficiency of the material as an indirect measure of the 

aggregate impurity concentration, providing a quantitative benchmark for the quality of a 

sample. While measurements of absolute quantum efficiencies of luminescent materials 

are notoriously difficult, particularly when η  is close to 1, the situation is fortunate in 

laser-cooling materials. Here, the wavelength difference fpηλ λ− can be tuned to one of 

the two points where laser-induced cooling and laser-induced heating are exactly 

balanced and no laser-induced temperature change occurs. Figure 3 illustrates the 

normalized laser-induced change in temperature, ∆T (which is proportional to coolη ), as a 

function of pump wavelength. The heat-balanced points (solid dots) can be reached by 

tuning fpηλ λ− either by (1) changing pλ at a fixed sample temperature and observing 

the wavelength where this crossover point occurs (referred to as the zero crossing 

wavelength, λZCW), or (2) by changing ( )f Tλ via the sample temperature at a fixed laser 

wavelength. In the latter case, � then gradually increases as the sample temperature is 
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lowered (and fpηλ λ− is decreased via increasing fλ ) until laser-induced cooling 

switches over to laser-induced heating (� > 0) at a characteristic sample temperature. 

This crossover point is referred to as the zero-crossing temperature (TZCT) where laser-

induced cooling and heating are exactly balanced, i.e. � = 0 . This is the lowest 

temperature at which the sample can sustain laser-induced cooling and is yet another 

benchmark for laser-cooling performance. At the two heat-balanced points, the laser 

induced temperature change, ( ) 0/ ,f fcool pT η ηλ λ λ∆ − =∝ =  and the net quantum 

efficiency ( ), / ,fp pTη λ λ λ=  can be calculated from two easily observable quantities. 

Laser-induced temperature changes near the heat-balanced point are small, and a 

sensitive, non-contact thermometry method is therefore needed.  



Chapter 5. Measurement of solid-state optical refrigeration by two-band differential luminescence 
thermometry 

 

128 

 

 

Figure 3  Calculation of the normalized laser-induced temperature change as a 
function of wavelength illustrating the two points for a given sample temperature where 
∆T (and thus ηcool) go to 0. The long-wavelength zero crossing arises due to αb > 0. A 
widely tunable pump source would clearly be required to predict the TZCT for this long-
wavelength zero crossing. However, near this zero crossing, a large ∆T is observed, 

allowing greater sensitivity. The short-wavelength zero crossing occurs when fpλ λ= . 

Here, αr is large and αb can be neglected, allowing for a measurement of ηext. The values 
of ηext, ηabs and αb used for this example calculation are also shown. These calculations 
were derived from Eq. 2 in Chapter 2. 

 

Changing the pump wavelength to locate one of the temperature balanced points is a 

conceivably easier experiment; however, widely tunable, high power lasers are not 

necessarily available at the desired pump wavelengths. At longer pump wavelengths, we 

can take advantage of the second approach to finding a temperature balanced point when 
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such tunable pump sources are not readily available, as was the case for our particular 

experiment.  

At shorter wavelengths, where p fλ λ≈ , αb is insignificant with respect to the large 

αr. Therefore, ~1absη  and thus ~ extη η  and the cooling efficiency should be 

approximately linear with respect to pλ . In this case, extη  can be measured by a standard 

fractional heating experiment [14] that observes T∆  as a function of pλ  to find λZCW. 

However, in the longer wavelength region, αr is significantly smaller and αb becomes 

more significant and must be accounted for. Assuming that extη
 
does not vary with 

wavelength, αr can be found at the shorter wavelength and used to determine absη [in Eq. 

5]. Additionally, given αr(T), we can estimate the background absorption, αb. Thus, each 

zero crossing point provides valuable information on extη
 
and αb and thus on the impurity 

concentration.   

An experiment thus consists of measuring ( ),T tΞ transients at different sample 

temperatures, fitting the power law [Eq.(3)] to the slow component of each transient, 

calculating the slopes �, deducing the TZCT from a plot of � versus sample temperature, 

and calculating /f pη λ λ= from fλ
 
at the TZCT. The measured net quantum efficiency η  

or the TZCT can be used as a measure for the quality of a laser-cooling sample, where a 

higher value of η  or lower TZCT is indicative of a sample with a lower level of impurities. 
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This method enables performance benchmarking of laser-cooling samples by correlating 

lower impurity samples with lower TZCT values.   

3. Experimental Section 

A. Yb3+-doped Fluorozirconate Glasses 

Several Yb3+-doped ZBLANI (ZrF4-BaF2-LaF3-AlF3-NaF-InF3) glasses were 

characterized by the TBDLT method described in Section 2. Table 1 summarizes the 

glass compositions and provides comments on sample preparation conditions. Sample 

No. 1 was synthesized from commercially available high-purity metal fluoride precursors 

without conducting any further purification except the mandatory drying and fluorination 

of metal fluoride precursors in hot hydrogen fluoride gas. Samples No. 2, 3, and 4 

incorporate progressive stages of the solvent-extraction purification currently under 

development in our laboratory, a process that aims at reducing transition-metal impurities 

to low-ppb levels [2],[3]. Samples No. 5 and 6 are identical to Sample No. 4, except for a 

higher 2 mol% Yb3+ concentration in Sample No. 5, and sublimated (another purification 

technique) rather than solvent-extracted ZrF4 in sample No. 6. Sample No. 7 is a 

commercial ZBLAN:Yb3+ sample procured from IPG Photonics that has shown good 

laser-cooling performance, and it was used as a point of reference in this study. 

B. TBDLT Experiments 

The TBDLT experimental setup is shown schematically in Figure 4. The sample 

was mounted on the temperature-controlled cold finger of liquid-nitrogen flow cryostat 
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(Helitran, LT-3-110) and cooled to the desired temperature in the 100–300 K range. The 

ambient sample temperature was measured by a miniature (1.5 mm diameter) calibrated 

silicon diode (Lakeshore DT-421) mounted directly onto the surface of the sample using 

a small amount of Apiezon grease. Direct measurement of the sample temperature was 

important because different samples exhibited different temperature gradients between 

the sample and the cold finger temperature sensor depending on the quality of the thermal 

contact. TBDLT decouples laser-induced temperature changes at the surface from those 

inside the sample in the time domain, and we confirmed that any potential heating of the 

small silicon diode at the sample surface during exposure to laser and luminescence light 

did not affect the measurement.  
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Figure 4  Schematic of the TBDLT experimental setup described in detail in Section 3.B. 
The transmission spectra of the filters used to define bands A and D are shown in Figure 
2. 

 

A diode-pumped continuous-wave (CW) Yb:YAG laser (Nanolase, DP12011-

T01) equipped with a tunable birefringent filter (1010-1050 nm) produced ~3.5 W of 

pump power at 1020.5 nm with a Gaussian intensity distribution. This pump wavelength 

was chosen as a compromise between maximizing the absorbed power for the entire 

temperature range (favoring a shorter wavelength) and maximizing the laser-cooling 

efficiency (favoring a longer wavelength). Excitation of the sample was performed in a 

time sequence consisting of pump laser exposure for 5 seconds during which the sample 
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heated or cooled, followed by the pump laser being off for 5 seconds during which the 

sample equilibrated back to the ambient temperature set by the cryostat. A function 

generator was used to control the respective laser shutter and to trigger the data 

acquisition system. The time constant of the mechanical laser shutter was ~20 ms, and 

luminescence transient data collected for t < 25 ms was therefore discarded. The pump 

beam was focused into the sample and, in order to reduce the effects of luminescence 

reabsorption, the focal spot was aligned near the sample surface through which the 

luminescence was collected.  

Sample luminescence was collected and collimated by a 2-inch diameter lens (f = 

60 mm) and coupled into a 600-µm diameter multimode fiber by a second lens (f = 100 

mm). For reference, the luminescence spectrum was recorded with an Ocean Optics mini-

spectrometer (SD2000) at each sample temperature. The luminescence emerging from the 

multimode fiber was collimated and then divided into two beams by a 50:50 non-

polarizing beam splitter cube. One beam was filtered by bandpass filter A (Andover 

Corporation, 950FS10), and the other beam was filtered by bandpass filter D (Andover 

Corporation, 100FS10). Figure 2 shows the transmission spectra of the commercial 

interference filters used to select bands A and D of the Yb3+ luminescence spectrum. 

Note that the spectrally narrower bands B and C (indicated in Figure 1) were omitted for 

simplicity and because they could not be selected easily with commercially available 

bandpass filters. Each filtered beam was re-coupled into respective 600-µm diameter 

multimode fibers that terminated on a pair of InGaAs balanced photodiodes (ThorLabs 

PDB150C). The PDB150C balanced photodetector consists of two photodiodes with well 
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matched responsivity and provides separate voltage outputs that are proportional to the 

optical power received in each band A and D. In addition, the PDB150C includes an 

ultra-low noise, high speed transimpedance amplifier that generates an output voltage 

proportional to the difference in the optical power in bands A and D, i.e. * *( )A DI I− . The 

voltage at each of these three detector outputs was independently and simultaneously 

measured by a multi‐channel data acquisition (DAQ) board (Measurement Computing, 

USB‐1616FS) that provided 16-bit resolution at a simultaneous acquisition rate of 36 

kHz/channel, enabling time resolutions of up to ~30 µs in the measured TBDLT 

transients. The DAQ board transferred the data via USB to a PC-based LabView 

application that captured and analyzed the data real-time. To achieve maximum dynamic 

range, the two filtered beam paths were aligned for each measurement such that the 

measured difference signal * *( )A DI I− was zero for CW pumping.    

The transients recorded during each 5-second pump interval were averaged until 

the desired signal-to-noise ratio in the TBDLT transient was obtained. Typical averaging 

times ranged from 10 minutes (60 intervals) to 2 hours (720 intervals), depending on the 

luminescence intensity available at a particular temperature.  

4. Results and Discussion 

The TBDLT characterization included six Yb3+-doped ZBLANI samples prepared in our 

laboratory (Samples No. 1-6) and a commercial 2% Yb3+-doped ZBLAN sample (IPG 
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Photonics; Sample No. 7) which had shown substantial laser cooling in earlier 

experiments (see  Table 1).  

Table 1  Yb3+-doped fluorozirconate glass samples used in this study. The ZBLANI 
composition is given in mol% of the respective ZrF4–BaF2–LaF3–AlF3–NaF–InF3 metal 
fluoride constituents. A detailed description of solvent-extraction and hydrogen fluoride 
gas drying processes is given in Ref.[2]. 
 

Sample 
Number 

Yb3+ 

(mol%) 
ZBLANI composition 
(mol%) 

Sample descriptions and preparation 
notes 

1 1 54–21–3.5–3.5–16.5–0.5 Synthesized from commercial metal 
fluoride precursors without further 
purification. Some bulk scattering.  
 

2 1 54–21–3.5–3.5–16–1 First generation solvent-extraction 
purification process. Some bulk 
scattering.  
 

3 1 53–20–3–3–17.5–2.5 Second generation solvent-
extraction purification process. 
Excellent optical quality. 
 

4 1 53–20–3–3–17.5–2.5 Third generation solvent-extraction 
purification process. Improved 
hydrogen fluoride gas drying 
process. Excellent optical quality.  
 

5 2 53–20–2–3–17.5–2.5 Same as No. 4 but with 2% Yb3+ 
doping. 
 

6 1 53–20–3–3–17.5–2.5 Same as No. 4 but ZrF4 was purified 
by sublimation rather than solvent 
extraction. 
 

7 2 Unknown Commercial ZBLAN sample from 
IPG Photonics.  

  

Figure 5 shows TBDLT transients for Sample No. 4 and Sample No. 7 at different 

temperatures. The solid lines represent least-squares fits of the power law in Eq.(3) to the 
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transient data. The measured TBDLT transients are described well by this functional 

shape. Both samples exhibit laser cooling at 300 K as evident from the negative slope of 

the transient at that temperature. The magnitude of cooling gradually diminishes as the 

temperature is lowered, i.e. as fpηλ λ−  decreases due to the increase in fλ . This is more 

clearly illustrated in Figure 6, which shows the respective TDBLT parameter �  as a 

function of sample temperature. The closed symbols are the experimental data while the 

open symbols were obtained from modeling calculations described in detail elsewhere 

[12]. The temperatures at which laser-induced cooling and heating are exactly balanced, 

TZCT, are found by interpolation to be 238 K and 158 K for Samples 4 (filled circles) and 

7 (filled squares), respectively. Note that � goes through a maximum around 133 K for 

Sample 7. With decreasing temperature, the pump absorption coefficient decreases and 

causes the sample to heat less; while the cooling efficiency decreases and causes the 

sample to heat more. The maximum at 133 K is a result of these two competing effects.  
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Figure 5  Transient TBDLT signal corresponding to the laser-induced temperature 
change at different ambient sample temperatures for Sample 4 (left) and Sample 7 (right). 
Negative slopes indicate laser-induced cooling while positive slopes indicate laser-
induced heating. The solid lines are fits of the power law [Eq.(3)] to the experimental 
data. 
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Figure 6  TBDLT parameter as a function of ambient temperature for Samples 4 (circles) 
and 7 (squares). Open symbols indicate ϑ calculated from a theoretical model [12], while 
closed symbols indicate experimental data. Points below the horizontal line (ϑ < 0) 
indicate laser-induced cooling while points above the line (ϑ > 0) indicate heating. From 
this data, the ZCT can be deduced as 238 K for Sample 4 and 158 K for Sample 7. 

 

The 150 K measurement of � for Sample 7 has an uncertainty that is just above 

the zero line, indicating that this temperature change is just resolvable with the TBDLT 

technique. The calculated laser-induced temperature change at this point is ~7 mK [12], a 

value that is representative of the sensitivity of the TBDLT method. This sensitivity is 

indicative of what can be achieved for Yb3+-doped ZBLAN glass. Other materials will 

have different luminescence spectra with different temperature dependence and may thus 

lead to a different sensitivity. 
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Figure 7 shows the mean luminescence wavelength ( )f Tλ calculated from the 

luminescence spectra recorded at different temperatures for Samples No. 4 and 7. ( )f Tλ  

is fit with a cubic polynomial function, and the respective fits (solid lines in Figure 7) can 

be used to calculate ( )f ZCTTλ . Using the TZCT found in Figure 6, this yields 993.9±0.4 

nm and 995.9±0.4 nm for Sample No. 4 and 7, respectively. Given the fixed laser 

wavelength of 1020.6 nm, the net quantum efficiency /f pη λ λ= can now be calculated 

to yield 97.39±0.01% (at 238 K) and 97.58±0.01% (at 158 K) for Sample No. 4 and 7, 

respectively. The higher TZCT and slightly lower net quantum efficiency of Sample No. 4 

indicates that this sample had a higher concentration of impurities than commercial 

sample No. 7, demonstrating that precise measurements of net quantum efficiency 

efficiencies are possible with TBDLT. These values are also summarized in Table 2.  



Chapter 5. Measurement of solid-state optical refrigeration by two-band differential luminescence 
thermometry 

 

140 

 

 

Figure 7  Mean luminescence wavelength, ( )f Tλ , as a function of temperature for 
Samples 4 (open circles) and 7 (filled squares). The cubic polynomial fits (solid lines) 
were used to interpolate ( )f Tλ  at temperatures of interest. The mean luminescence 

wavelength is defined as ( ) ( , ) ( , )f T I T d I T dλ λ λ λ λ λ= ∫ ∫ which is calculated from 

luminescence spectra ( , )I Tλ . 

 

Table 2 Summary of parameters critical for assessment and comparison of Samples 4 and 
7. TZCT and η were measured as described in detail in this article. ηext was measured using 
a thermal camera and a Ti:Sapphire pump source in a fractional heating experiment as 
described elsewhere [14]. ηabs was derived from the measurements of η and ηext. αb was 
calculated given ηabs and αr. Sample 7 has a lower TZCT, ηabs, αb and a higher η and ηext, 
indicating it contained fewer impurities as compared to Sample 4. The values for ηabs, αb  

and αr are reported at TZCT and λp = 1020.6 nm.  

  TZCT [K] ηηηηext ηηηηabs ηηηη ααααr [cm-1] ααααb [cm-1]    
Sample 4 238 0.9906 0.9831 0.9739 0.0315 5.42E-4 
Sample 7 158 0.9942 0.9815 0.9758 0.0165 3.11E-4 
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A more detailed discussion of the net quantum efficiency in Eq.(4) is instructive, 

as past reports of the quantum efficiency were higher than those we report here [13]. This 

lower η in the present experiments is due to the fact that the material is pumped at a 

longer wavelength where the absorption efficiency (ηa, in Eq.(5)) is lower, indicating the 

presence of impurities. In an impurity-free material, αb = 0 and η  ~ ηext. As shown in 

Table 2, this is clearly not the case for Samples 4 and 7. Given ηext and αr(TZCT,λp), αb 

can be calculated. Background absorption coefficients of αb = 5.42×10-4 cm-1 and αb = 

3.11×10-4 cm-1 are found for Sample 4 and Sample 7, respectively, indicating a lower 

impurity concentration in Sample 7. This trend is in agreement with a lower TZCT for 

sample 7, compared to Sample 4.   

An even more expeditious characterization can be done by simply measuring the 

TBDLT parameter � at room temperature. As seen in Figure 6, a smaller value of � 

corresponds to a lower TZCT and thus higher quantum efficiency. While a room-

temperature measurement alone does not provide the TZCT or η , it allows for a relative 

comparison of the performance of different laser-cooling samples. All samples listed in 

Table 1 were characterized in this manner, and the respective �-values are shown in 

Figure 8. Sample No. 1 clearly illustrates that even the best commercial metal fluorides 

have insufficient purity to enable laser cooling; this sample showed substantial laser-

induced heating even at room temperature. Purification of precursor materials along with 

a sufficiently high InF3 oxidizer concentration, optimized hydrogen fluoride drying, and 

sufficiently long melting times [2] provide a substantial improvement of laser cooling 
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performance as evident from the successive implementation of these processes in samples 

No. 2, 3, and 4. The 1% Yb3+ concentration of Sample No. 4 was increased to 2% in 

Sample No. 5, which resulted in substantial heating. The rate of energy migration among 

Yb3+ ions increases with increasing Yb3+ concentration, and some of the excitations can 

find impurity sites where non-radiative relaxation takes place. This process is more 

efficient in the 2% sample (No. 5) compared to the 1% sample (No. 4), and the fact that 

sample No. 5 showed substantial heating is direct evidence for energy migration to 

transition-metal and/or OH- impurity sites. Also note that the use of ZrF4 purified by 

sublimation (sample No. 6) resulted in a sample that cooled, however not as much as the 

best sample fabricated from precursors purified by solvent extraction. 

 

Figure 8  TBDLT parameter, ϑ , (measured in vacuum at room temperature (T = 296 K) 
and with λp = 1020.5 nm) for a qualitative comparison of several ZBLANI:Yb3+ samples 
fabricated in our laboratory (Samples 1 - 6) and one sample commercially procured (IPG, 
Sample 7). A positive ϑ corresponds to heating, while a negative ϑ corresponds to local 
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laser-induced cooling. Here we show a steady improvement in our purified materials over 
those produced with commercially available starting materials. 

5. Conclusions 

We have successfully demonstrated TBDLT – a non-contact spectroscopic 

technique for measuring laser-induced temperature changes in optical materials. This 

method was used to characterize and benchmark the performance of optical refrigerator 

materials. The TBDLT method uses two commercially available band pass filters to 

select regions of the luminescence spectra that show different temperature dependences. 

These temperature induced luminescence intensity changes can quantify laser-induced 

heating and cooling processes. TBDLT achieved a sensitivity of 7 mK and could 

successfully detect the temperature at which laser-induced heating and cooling are 

exactly balanced. We have shown that net quantum efficiency can be obtained with high 

precision using TBDLT. Several Yb3+-doped fluorozirconate glasses were characterized 

by this method, and the results provided valuable feedback to the development of 

material purification and fabrication processes. The best ZBLANI:1%Yb3+ sample 

produced in our laboratory had a TZCT of 238 K and a corresponding net quantum 

efficiency of 97.39% at a pump wavelength of 1020.6 nm. This laser-cooling 

performance is a substantial improvement over samples prepared from commercial grade, 

high-purity metal fluoride precursors. While the TBDLT technique was shown to be an 

expedient and effective experimental method for characterizing the laser-cooling 

performance of Yb3+-doped fluorozirconate glasses, it can be adapted easily to other rare-
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earth doped crystals and glasses. TBDLT enables a key diagnostic capability that is 

critical to the further development of high performance solid-state optical cryocoolers. 
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Chapter 6  

Conclusions 

 

Optical refrigeration has made significant advances over the past decade, and is primed to 

deliver a promising technology by providing a rugged, low cost, compact, cryogenic 

cryocooler in the near future. This technology is predicted to be especially beneficial for 

cooling satellite instrumentation and space-based sensors where long lifetimes, low mass, 

and the lack of moving parts are crucial. Although not reviewed specifically in this 

manuscript, much progress has been made in semiconductor-based optical refrigerators, 

where advanced heterostructure growth and novel device fabrication are currently 

underway in an effort to achieve high external quantum efficiency. 

Summary and significance of contributions 

The focus of this research was in developing and characterizing rare-earth doped, solid 

state materials for laser cooling by optimizing the cooling efficiency. This manuscript has 

outlined the essential qualities of a laser cooling material, providing insight into what 

constitutes an ideal host material. To summarize, some characteristics of a host material 

for laser cooling include:  

• Low phonon energy 

• High thermal conductivity 

• Narrow ground state splitting 

• High absorption cross-section 

• High material hardness and durability 
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• Low Thermal emissivity 

• Low impurity concentration. 

The necessity of these properties was each reviewed in detail in the Materials Selection of 

the Introduction in this manuscript.  

Also discussed in the Materials Selection section of the Introduction were the 

characteristics of a dopant ion favorable for laser cooling. To summarize, we found that a 

smaller dopant energy,E∆ , (such as is the case of Tm3+ versus Yb3+) provides higher 

cooling efficiency, coolη , yielding more cooling power. This advantage of a smaller 

bandgap is offset by enhanced interaction of the excited state with host phonon modes, 

increasing  multiphonon relaxation rates. Additionally, the higher energy levels present in 

Tm3+ or Er3+ give the potential for excited-state absorption and cross-relaxation. In 

contrast to these and other rare earth ions, Yb3+ is unique in that its electron configuration 

produces only a 2F manifold split into a 2F7/2 ground state and one 2F5/2 excited state 

multiplet. The absence of other electronic states greatly simplifies the excitation 

dynamics, comparatively. It specifically excludes up-conversion or cross-relaxation 

processes. The multi-phonon relaxation rate is thus relatively low.  

Although significant progress has been made in purifying our materials to remove 

impurities (such as transition metals and OH-), they still exist and must be considered 

accordingly. The potential for excited state energy transfer from transition metal 

impurities to Tm3+ might possibly be less problematic since there is less spectral overlap 

between the emission of the Tm3+ ion, versus the Yb3+ ion, and the absorption of the 

impurity. Even after considering these pros and cons for thulium versus ytterbium, it is 

not clear which ion will provide the most benefit to the field of optical refrigeration and 



Chapter 6. Conclusions 

149 
 

researchers continue employing both. In this dissertation, both have been demonstrated 

and the main discoveries are now briefly summarized. 

This research was the first to demonstrate laser induced cooling in a thulium doped 

crystal, namely BaY2F8:Tm3+, as summarized in Chapter 2. Protocols for materials 

synthesis and purification of ZBLANI:Yb3+/Tm3+ glass components were also developed, 

providing a contribution to materials science outside the specific field of laser cooling. 

This research was first to synthesize and purify all of the components of ZBLANI glass. 

From this development, we prepared a material capable of laser induced cooling as low 

as 238 K with a net quantum efficiency of 0.9739. The details regarding these 

purification methods described in Chapter 3 can be extended to other potential ultra-pure 

host materials, for applications beyond laser cooling, to a variety of optical glasses and 

crystals. The need for a very sensitive (7 mK) non-contact temperature measurement 

technique was necessary for this research. The experiment, as outlined in Chapter 5, is 

general and could easily be modified to evaluate other materials with temperature 

dependent fluorescence spectra. Finally, the theory and simulation developed in Chapter 

4 is also not limited to our particular example of ZBLAN:Yb 3+. The basis for this theory 

can be applied to evaluate cooling or heating in any material exhibiting laser induced 

heating or cooling. The specific benefit to our laser cooling effort is in its ability to 

predict what materials will cool and by how much. 

Future Work  

Materials 

Certainly, the work presented in this dissertation can be extended and improved. 

Improving and optimizing the purification techniques of the precursor materials and the 
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glass/crystal synthesis is an obvious extension given that only a few iterations of the 

entire process were performed for the materials discussed in this study. An exploration of 

the optimum pH for more efficient transition metal extraction for each fluoride 

component could be studied more comprehensively. There are also a number solvents 

and reagents used throughout the purification process which could be investigated as 

well. For example, APDC (see Chapter 3) is the chelate used to remove transition metals 

in our current system, however, other chelates such as DDTC or DOED might prove 

more efficient at extraction in one component of the glass system. The buffer used to 

control the pH was an acetate found to interfere with fluoride formation for two of the 

fluorides. Perhaps an alternative buffer could be explored, such as a citrate or formate. 

Additionally, the analysis of transition metal concentration was only performed on the 

zirconium portion of the glass. Further studies would analyze the degree of purification in 

the remainder of the glass components as well. One might also find from such a study 

that three successive extraction steps are not required to reduce impurities to the desired 

level. There is also room for improvement of the HF/Ar ultra-drying system developed to 

reduce OH- impurities. Different drying temperatures and times could be explored, and 

the concentration of HF monitored, to better control the amount of HF exposure for the 

fluorides.  

New materials, in addition to ZBLANI, are certainly being investigated [1]. For 

simplicity, the six component system of ZBLANI could be reduced to a more simple 

glass, such as BIG, for example. Although we have presented methods for purifying 

fluoride glasses, many properties make crystals the likely choice for next generation 

coolers. For example, high dopant concentrations for ZBLANI are not stoichiometrically 
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feasible, given that the dopant partially substitutes for LaF3 (constituting only 4% at 

most). Also, as discussed in detail in the Materials Selection section in the Introduction of 

this manuscript, crystals not only allow higher doping concentrations, but also exhibit 

crystal field splitting which leads to sharp Stark manifolds and thus higher, concentrated 

peak absorptions near the cooling wavelengths of interest. A good example of that is the 

recent demonstration of optical cooling in LiYF4 [2].  Certainly there is much to explore 

regarding the influence of the doping level on the cooling efficiency. Additionally, the 

radiative heat load on the sample could be dramatically decreased by using a host 

material such as BaY2F8 that has low emissivity.  

Experiment  

Improvements in the characterization and evaluation of our laser cooling 

materials, as well as methods to increase the absorbed power in the samples are needed. 

Although the TBDLT method outlined in Chapter 5 is quite sensitive, measuring laser 

cooling transients at very low temperatures proved time consuming. An even more 

sensitive experiment incorporating a spectrometer (or monochrometers) with better 

resolution could reduce the need for long averaging times. This will become more 

important as materials cool at lower and lower temperatures, as is expected.  

New pump sources will be necessary as we seek to increase the pumping power 

and expand the tunability of experiments (a current limitation). The use of a high power, 

tunable, solid state pump laser is very useful for studying the cooling properties of a 

material; however, the use of a diode laser is more appealing from a technological point 

of view. The limited power, tunability, and poor optical quality of diode lasers would 

need to be improved.  
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In order to increase the absorbed power, new pump geometries could be 

employed. Cavity-enhanced and other advanced multi-pass pumping schemes have 

already been successfully demonstrated and provide a starting point in developing more 

efficient ways to trap the pump radiation. Showing great promise, are the cavity enhanced 

methods, where the sample is placed in a resonant cavity external to the pump source. 

However current limitations in cavity stability must be overcome [3]. Trapping the beam 

in a non-resonant cavity has also been demonstrated where the cooling power was 

increased over 250% [4]. Finally, improvements in the deposition of extremely high 

quality mirrors should be pursued for either of these methods. The benefits of ion beam 

sputtering techniques could be explored for such high quality dielectric mirrors.  
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