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Abstract

As an extension of conventional Fourier transform and a time-frequency signal

analysis tool, the fractional Fourier transforms (FRFT) are suitable for dealing

with various types of non-stationary signals. Taking advantage of the properties

and non-stationary features of linear chirp signals in the Fourier transform do-

main, several methods of extraction and parameter estimation for chirp signals

are proposed, and a comparative study has been done on chirp signal estimation.

Computation of the discrete fractional Fourier transform (DFRFT) and its chirp

concentration properties are dependent on the basis of DFT eigenvectors used

in the computation. Several DFT-eigenvector bases have been proposed for the

transform, and there is no common framework for comparing them. In this thesis,

we compare several different approaches from a conceptual viewpoint and point

out the differences between them.

We discuss five different approaches, namely: (1) the bilinear transformation

method, (2) the Grunbaum method, (3) the Dickenson-Steiglitz method, also

known as the S-matrix method, (4) the quantum mechanics in finite dimen-

sion(QMFD) method, and (5) the higher order S-matrix method, to find centered-
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CHAPTER 3. CDFT COMMUTING MATRICES 37

Figure 3.16: Valid mapping regions for the QMOD method for N = 256

3.6 The Joint Diagonalization Method

All the methods that we have been discussing so far are unable to produce eigen-

value spectrum that is strictly linear. Similarly, none of these approaches produces

a valid mapping region for the entire α−ω plane. We therefore combined the two

approaches- the Grunbaum method and the QMOD method- to see whether this

combination would produce more linearity in eigenvalues than that of either of the

methods. Our intention in using joint diagonalization was also to get a better valid

mapping region than that of the individual methods. This joint diagonalization is

obtained using the matlab function ’eig’.

[V,D] = eig(TG,TQ), (3.13)

where V = eigenvectors, D = digonalized eigenvalues, TG = CDFT matrix ob-

tained using the Grunbaum method and TQ = CDFT matrix obtained using the

QMOD method. The eigenvalues obtained from this joint diagonalization are de-

picted in figure 3.17. We then calculated the linearity of the eigenvalues obtained

using the joint method, but we did not observe any improvement in linearity. In

fact, the linearity decreased in comparison to the QMOD method.
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Figure 3.17: Eigenvalue plot for the joint diagonalization method

We also checked the valid mapping region corresponding to the joint method.

Figure 3.18 shows the valid mapping region for the joint diagonalization method.

Contrary to our expectation , we did not observe any improvement in the mapping

region.

Figure 3.18: Valid mapping regions for the joint method for N = 256

From these observations, we can conclude that the joint diagonalization method

would not produce any improvement in the linearity of eigenvalues and in the map-



CHAPTER 3. CDFT COMMUTING MATRICES 39

ping region in comparison to the individual methods. In fact, the joint method

produces the average results of the two methods, which are used in joint diago-

nalization.

3.7 Conclusion

In this chapter, we discussed the five different methods, which we used to gener-

ate a centered DFT matrix, whose eigenvectors and eigenvalues closely resemble

those of the continuous G-H function. We also discussed some of the properties,

such as eigenvalues, eigenvectors, error-norm, and invertibility regions for peak-

to-parameter mapping, for each of those matrices.



Chapter 4

Comparison of Different CDFT

Approaches

Pei, Hsue and Ding used the error-norm parameter to compare the eigenvectors

of different DFT commuting matrices [13] to check the similarity between the

eigenvector and the continuous G-H function. Serbes and Durak-Ata also used

the same parameter for comparison in [12]. These analyses only determined how

close the eigenvectors were to the sampled G-H function. As stated in [31], the

linearity of the eigenvalues is another important parameter used to determine the

closeness of the generating matrix to the G-H functions. Santhanam and Peacock

introduced the valid mapping region criteria for peak-to-parameter mapping esti-

mation [2]. In addition to the all the above mentioned parameters, we employed

a few other parameters to find the best among the various CDFT commuting ma-

trix approaches. In order to compare the different methods, we used the following

parameters;

• Mainlobe-to-Sidelobe Ratio

• 10-dB Bandwidth

• Quality Factor

• Linearity of Eigenvalues

• Error-norm of the Eigenvectors

• Parameter Estimation Error

• Peak-to-Parameter Mapping Region

40
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Using these seven parameters we tried to find the best CDFT commuting matrix

among the five different methods to be used in chirp signal applications. As

discussed in the previous chapter, the five methods used in this thesis are (1) the S-

matrix method [11], (2) the Infinite order second derivative approximation method

[13], (3) the bilinear transformation method [12], (4) the Quantum mechanics in

finite dimension with modification (QMOD) [10] and (5) the Grunbaum method.

As we have already discussed in the previous chapters, the eigenvectors of these

commuting matrices are related to the continuous G-H function. Therefore, after

this comparison we will be able to find the particular commuting matrix whose

eigenvectors and eigenvalues are closest to those of the continuous G-H operator.

In addition, this comparison tells us the quality of a peak which corresponds to

the central frequency and chirp rate.

We considered a chirp signal to discuss the above mentioned parameters as;

x[n] = e(crm
2+wcn), 0≤ n≤ (N −1), m= n− N −1

2 , (4.1)

where, cr = chirp rate and wc = central frequency.

We assumed cr = 0.001 and wc = 0 for this analysis.

We used the MA-CDFRFT approach, as discussed in section 2.2.2, to see where

the peak occurs for a given chirp rate and a central frequency. Then we took

a row (where the peak occurs) of the MA-CDFRFT matrix to plot the peak

that corresponds to the given chirp rate and the central frequency. Figure 4.1

describes the magnitude of the MA-CDFRFT of the above signal obtained from

five different methods. From this plot, we can observe that we actually have two

maxima because the CDFRFT at α+π is the reversed version of the CDFRFT

at α.

We can observe from figure 4.1 that the least fringe occurs with the Grunbaum

basis and the QMOD method, which means that the Grunbaum method results

in the least side-lobes for MA-CDFRFT in comparison to the other four methods,

whereas the bilinear transformation method, the higher order S-matrix method
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(a) (b)

(c) (d)

(e)
Figure 4.1: 3D plot of magnitude of MA-CDFRFT at cr = 0.001 and wc = 0 for N = 256
obtained from (a) Bilinear transformation method, (b) Grunbaum method, (c) Higher order
S-matrix method, (d) QMOD method and (e) S-matrix method

and the D-S method produce larger sidelobes. We can see on a 2D plot of MA-

CDFRFT that the two peaks on the magnitude plot of MA-CDFRFT occur at

r = 68 and r = 196 for all the methods. We used only the lower half for our

consideration. Then we took a slice of the MA-CDFRFT at r = 68. Figure 4.2

shows the slice of the MA-CDFRFT at r = 68 for all the methods.

From figure 4.2, it is clear that the sharpest peak is obtained with the QMOD
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Figure 4.2: Plot of slice of MA-CDFRFT at r = 68 for cr = 0.001, wc = 0 and N = 256 obtained
from (a) Bilinear transformation method, (b) Grunbaum method, (c) Higher order S-matrix
method, (d) QMOD method and (e) S-matrix method

method. Note that the closer the is peak to the ideal delta function, the better

the peak. Hence we can conclude that the QMOD method is the best among

the five methods in terms of quality of the peak obtained from the MA-CDFRFT

approach.
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4.1 Mainlobe-to-Sidelobe Ratio

In antenna theory, main-lobe is the lobe containing the maximum power whereas

side-lobes are the lobes that are not the main lobe, and the ratio of the power

of these two lobes is defined as mainlobe-to-sidelobe ratio. For the purpose of

this thesis, in the same fashion, the ratio of the peak value to the value of the

second peak is defined as the mainlobe-to-sidelobe ratio. We can see those peak

values and side-lobes in figure 4.2. In order to compute mainlobe-to-sidelobe ratio

we first took the absolute value of the row of MA-CDFRFT matrix where peak

occurs. We then found the highest peak as mainlobe and the second peak as

sidelobe. Finally, we took the ratio of these two values as mainlobe-to sidelobe

ratio. Figure 4.3 shows the mainlobe-to-sidelobe ratio for different combinations

of cr and wc.

From these figures, it is clear that the mainlobe-to-sidelobe ratio (MLSLR) in-

creases as N increases only in the case of the Grunbaum basis. Also, the QMOD

method has a better mainlobe-to-sidelobe ratio in the case of zero central frequency

until N = 512, whereas the Grunbaum method has a better mainlobe-to-sidelobe

ratio in the case of non-zero central frequency. Therefore, we can conclude that

the QMOD method and the Grunbaum method are the best choice among all the

five methods towards attaininng a better mailobe-to-sidelobe ratio. We observed

that the mainlobe-to-sidelobe ratio decreases for some methods for higher values

of N. This is due to the fact that the MA-CDFRFT approach picks more side

lobes as we increase transform size.

4.2 10-dB Bandwidth

In communication systems, the X-dB bandwidth of a communication channel is

the part of the system’s frequency response that lies within X-dB of the response

at its peak, which in the pass-band filter case is typically at or near its center

frequency, and in the lowpass filter is near 0 hertz. If the maximum gain is 0 dB,

the X dB gain is the range where the gain is more than -X dB, or the attenuation
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(b)
Figure 4.3: Mainlobe-to-Sidelobe ratio comparison for (a) cr = 0.001 and wc = 0 and (b) cr =
0.0005 and wc = π

4

is less than X dB. Similarly, 10-dB bandwidth, in this thesis, is defined as the
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range of frequencies where the signal1 has its value 10 dB below the peak value

of the signal. Figure 4.4 shows the 10-dB bandwidth comparison for different

combinations of cr and wc.

From these figures, we can see that the bandwidth continuously decreases only for

the QMOD basis in the case of zero central frequency. And for non-zero central

frequency, the bandwidth requirement continuously decreases as N increases. The

bilinear transformation method and the S-matrix method have the least bandwidth

requirements for non-zero central frequency.

4.3 Quality Factor

Quality factor, also known as Q-factor, is a dimensionless quantity which char-

acterizes a signal’s bandwidth relative to its central frequency. It measures the

quality of the peak in relationship with central frequency. Mathematically, it is

the ratio of the central frequency to the bandwidth of the signal. i.e.

Q−factor = wc
BW

, (4.2)

where wc = Central frequency and BW = Bandwidth of the signal.

We set the central frequency as π
4 and chirp rate as 0.0005 in equation (4.1) to

find the Q-factor of the peaks for all the five methods. Therefore the signal used

to find Q-factor became;

x[n] = e(0.0005m2+π
4n), 0≤ n≤ 255, m= n− 255

2 . (4.3)

Figure 4.5 shows the quality factor comparison for cr = 0.0005 and wc = π
4 . From

this plot, it is clear that the Q-factor increases for all the bases as N increases,

1Signal refers to the magnitude of a slice of the MA-CDFRFT matrix at r = 36.
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(b)
Figure 4.4: 10-dB Bandwidth comparison for (a) cr = 0.001 and wc = 0 and (b) cr = 0.0005 and
wc = π

4

which is obvious from the previous section, because the lower bandwidth require-

ment for a fixed center frequency is equivalent to a higher quality factor. We
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can see from the figure that the bilinear transformation method and the S-matrix

method are the best choice for quality factor consideration.
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Figure 4.5: Quality factor comparison for cr = 0.0005 and wc = π
4

4.4 Linearity of Eigenvalues

Santhanam et. al. in [10] stated that eigenvalues of the G-H opertor is a linear

function. Therefore the eigenvalues of the matrices obtained from all the five

different approaches should be linear in nature in order to resemble the eigenvalues

of the continuous G-H operator. As discussed in chapter-3, we first plotted the

eigenvalues of the five different matrices to determine the extent of the linearity

of eigenvalue spectrum. Then we calculated the percentage of number of points

where the eigenvalues spread linearly for different values of N. Figure 4.6 shows

the percentage of number of points where the eigenvalues are as linear as that of

the continuous G-H operator.

From figure 4.6, it is evident that the eigenvalue spectrum from the QMODmethod

best resembles those of the continuous G-H operator. They are linear for about

80 percent of the total points which is far better than all other methods. The
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Figure 4.6: Percentage of number of points where eigenvalues are linear

linearity of the eigenvalue spectrum is directly related to the mapping region for

peak-to-parameter mapping which we will discuss in a later section of this chapter.

4.5 Error-norm of the Eigenvectors

We have already observed in the previous chapter that the eigenvectors of the

matrices that we discussed look like the corresponding G-H function; however

they are not exactly the same. Pei, Hsue and Ding defined the error-norm of

eigenvectors as the second norm of the difference between the eigenvectors obtained

from the G-H like eigenvector2 and the samples of its corresponding continuous

G-H function [13]. We, therefore, plotted the error-norm of the eigenvectors for all

the five different methods for N = 64 to determine eigenvectors of which matrix

better resembled those of the continuous G-H operator. Figure 4.7 depicts the

error-norm comparison for N = 64 for all the methods we discussed.

2G-H like eigenvectors are the eigenvectors of any of the matrices obtained from the five
different approaches.
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Figure 4.7: Error-norm comparison for N = 64

From this figure, it is clear that the error-norm increases as the number of zero

crossings increases for all the methods, as we discussed in the previous chapter. We

can also see that the QMODmethod results in a very low error-norm in comparison

to the other four methods. Therefore, eigenvectors of the QMOD matrix better

resemble the eigenvectors of the corresponding G-H operator in comparison to the

other four methods.

4.6 Parameter Estimation Error

Subspace decomposition techniques have been investigated for use in conjunction

with the DFRFT with the aim of providing a robust and accurate estimation in

the presence of noise [32]. Peacock and Santhanam discussed the chirp parameter

estimation error using 2D peak picking [2]. We used parameter estimaion error

as one of the bases for comparison of five proposed approaches. We measured the

parameter estimation error of those five approaches and compared them to the

Cramer-Rao lower bound and resolution bound. Figure 4.8 shows the parameter

estimation error using 2D peak picking for central frequency and chirp rate, for N

= 256.
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Figure 4.8: 2D parameter estimation error: The MSE was calculated at each SNR using 1000
chirps of length N = 256, in the ’safe’ range of |α|(N −1)+ |w|= IF < 0.85π.

From this figure, we can see that the detection error for the QMOD method

attains the resolution bound for higher SNR for both center frequency estimation

and chirp rate estimation, and the error for the Grunbaum method is close to that

of the QMOD method. However the other three methods result in significantly

more parameter estimation errors. This is because the peak-to-parameter mapping

depicts multiple disconnected regions of chirp parameters mapping to the same

peak location. We can also see that, both the center frequency estimation and

chirp rate estimation for the bilinear transformation method do not decrease as

gradually as in other methods. This is because of the fact that the particular

combination of center frequency and chirp rate, where the mean square error

goes up, does not lie withn the invertible mapping region. Figure 4.9 shows the

parameter estimation error calculated using the cross-hair technique combined

with the minimum-norm-subspace technique. From this figure, we can see that the

chirp parameter estimaion error for the QMOD method approaches the Cramer-
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Rao lower bound for chirp parameter estimation [26]. From this analysis, we can

conclude that either of these techniques has more success using the QMOD basis.
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Figure 4.9: Cross-hairs estimation error: The MSE was calculated at each SNR using 1000 chirps
of length N = 256, in the ’safe’ range of |α|(N−1)+ |w|= IF < 0.85π. A transform of size NXN
was used, refined using minimum norm subspace decomposition and FFT of size R = 4096.

4.7 Peak-to-Parameter Mapping Region

As we already discussed in section 3.1, application of the DFRFT to chirp pa-

rameter estimation is not meaningful if a complete analysis of the invertibility

of mapping is ignored. Therefore we looked at the peak-to-parameter mapping

region in the α−ω plane to see where the mappings satisfied the connectivity

and adjacency conditions. The connectivity criteria is satisfied when the set of

all chirp parameters that map to a single location in the chirp-rate versus center-

frequency plane form a connected set, and adjacency criteria is satisfied when

locations which are adjacent in the transform plane map to adjacent regions in

the chirp parameter space. In the previous chapter, we calculated the mapping

regions where both connecticity and adjacency criteria were satisfied for all the

five methods. We calculated the percentage of pixels in which both the connectiv-

ity and adjacency conditions were satisfied. Upon doing this, we had a clear idea

of which method, among the five proposed methods, had the best valid mapping

region in comparison to the expected mapping region shown in figure 3.4. Figure

4.10 depicts the percentage of pixels in α−ω plane in which both connectivity



CHAPTER 4. COMPARISON OF DIFFERENT CDFT APPROACHES 53

and adjacency criteria are fulfilled.
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Figure 4.10: Plot of percentage of pixels in α−ω plane where both connectivity and adjacency
criteria are fulfilled

From these mapping regions, we can see that the connectivity and adjacency con-

ditions are not fulfilled for large regions in the case of the bilinear transformation

method, the S-matrix method and the higher order S-matrix method. The regions

in which these two conditions are violated overlap in these three cases. In the

case of Grunbaum method, we can see that, the two conditions are not satisfied in

two different regions. The connectivity criteria is almost satisfied in the diamond

region for the Grunbaum method, but the adjacency criteria is not satisfied as

expected in the diamond region. Finally, both the criteria are satisfied in almost

entire region of the α−ω plane for the case of the QMOD method.

From this comparison, we can also see that the QMOD is the only method in

which the percentage of pixels satisfying both the connectivity and adjacency

criteria, increases as N increases. This fact is further related to the linearity of the

eigenvalue spectrum. We saw in section 4.4 that the linearity of the eigenvalue

spectrum increases when N increases only in the case of the QMOD basis. We
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also observed that the percentage of eigenvalue linearity for the QMOD method

is far above than that of all other methods. From figure 4.10, we can see that

the percentage of pixels reaches almost 90% for the QMOD method for N = 512,

which is far better than all the other methods. This confirms the fact that the

QMOD basis produces the least estimation error because it has the largest valid

peak-to-parameter mapping region in the α−ω plane. We can also say that the

valid mapping region will cover the entire α−ω plane if N is sufficiently large for

the QMOD basis. Note that if the valid mapping region spreads over the entire

α−ω plane, it will correspond to the case in which there is no estimation error

for both center frequency and chirp rate. This condition of no estimation error is

equivalent to the expected mapping region shown in figure 3.4.

4.8 Conclusion

In this chapter, we discussed different performance metrics to find the best method

for chirp signal applications. From these comparisons, we found that the QMOD

method produces the best results for all the parameters we discussed. Therefore,

we can conclude that the QMOD method is the most appropriate method to use

in chirp signal applications among all the five methods.



Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, we studied the centered DFRFT, its properties, the nature of its

eigenvalues and eigenvectors, and its relationship with linear chirp signals. The

main objective of this thesis was to find the best algorithm to use for the compu-

tation of the centered version of DFRFT. We studied some properties of each of

the CDFRFT matrices that were obtained from different approaches. We looked

at the eigenvalues and eigenvectors of those matrices to see whether or not they

resembled those of the continuous G-H operator. We also calculated the error-

norm of eigenvectors to determine whether or not there were any deviations of

those eigenvectors from those of the corresponding G-H operator. In addition, we

calculated the chirp parameter estimation errors using 2D peak detection in the

MA-CDFRFT chirp-rate versus central-frequency plane. Finally, we measured the

peak-to-parameter mapping region where connectivity and adjacency criteria were

satisfied.

The main findings of this thesis can be summarized as;

• Among all the five methods discussed in this thesis, the QMOD method, a

method in which the diagonal matrix Q takes its diagonal as the zero crossings

55
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of the Nth order G-H function instead of taking its diagonal as equally spaced

values in between −N−1
2 and N−1

2 used in the conventional QMFD method,

produces the sharpest peak for single chirp application. This result was verified

by using different metrics such as mainlobe-to-sidelobe ratio, 10-dB bandwidth,

and quality factor.

• The QMOD method produces the best linearity on eigenvalues, which confirms

the fact that the eigenvalues obtained from the QMOD method are closest to

the eigenvalues of the continuous G-H operator.

• The QMOD method results in less error-norm than the other methods, which

confirms that the eigenvectors of the QMOD matrix are closest to that of the

continuous G-H operator.

• As is evident from the previous chapter, the QMOD method produces the least

parameter estimation error for both center frequency estimation and chirp rate

estimation. This estimation error almost attains the Camer-Rao lower bound

when it is calculated for the QMOD method in combination with the cross-hair

estimation technique.

• As we saw in the previous chapter, the QMOD method has an invertibility

region of almost 90% of the α−ω plane, which is far better than those of the

other four methods.

• Deviation from a fully linear eigenvalue spectrum produces a large proportion

of peak-to-parameter mapping where the invertibility criteria are violated.

• Loss of invertibility results in larger chirp parameter estimation error.

5.2 Future Work

We have seen that none of the approaches we discussed is able to produce the

entire region of the α− ω plane for peak-to-parameter mapping. This creates

error in chirp parameter estimation. We think that the future extension of this
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thesis could be focused on how to completely avoid parameter estimation error.

The approach that, we believe, could be used is described a s follows:

• Find a CDFT commuting matrix which has a completely linear eigenvalue spec-

trum. This spectrum is same as those of the eigenvalue spectrum of the corre-

sponding G-H operator. However, it is practically impossible to obtain a CDFT

commuting matrix whose eigenvalue spectrum is completely linear.

• Once we have such a matrix, we will be able to produce an invertibility region

of entire the α−ω plane for peak-to-parameter mapping. This provides us with

an easier way to do peak-to-parameter mapping by using a relationship between

chirp parameters (wc and cr) and peak location(r).

• Once there is an entire α− ω plane of invertibility region, there will be no

parameter estimation error for two reasons. The first reason is that the set

of all chirp parameters that map to a single location in the chirp-rate versus

center-frequency plane forms a connected set. This will satisfy the connectivity

criteria for the peak-to-parameter mapping. The second reason is that the

locations which are adjacent in the transform plane map to adjacent regions in

the chirp parameter space.

There are also some other research dimensions that could be considered as exten-

sions of this thesis work, which are applications of DFRFT.

Chirp signals are sinusoidal waveforms with linearly changing instantaneous fre-

quency. They find wide applications in radar systems, including synthetic aperture

radar. A robust method of multicomponent parameter estimation would enable

the estimation of the vibrational frequency of a target and improve estimation

performance in the presence of clutter. The DFRFT shows promise in multicom-

ponent chirp parameter estimation, as it generates a strong peak for each chirp

whose location in the 2D transform plane corresponds to the specific center fre-

quency and chirp rate.

A discrete version of the fractional sine and cosine transforms has been proposed

in [37], and it is therefore expected that significant progress will be made in the
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area of image processing. Some interesting applications of FRFT in the areas of

control systems and telecommunications are now being probed. It is, therefore,

quite reasonable to expect that the FRFT will eventually replace the Fourier

transform as the single most effective tool in signal analysis. Thus it becomes

exceedingly important both to develop and to implement the discrete version of

the FRFT.
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