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Appendix F 

Arguments Presented to Participants During the Study 

 

Argument L 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: If , then 2 9n = 3n = . 

  

 divisible also divisible 

 by 3  by 3 

 If , then 2 36n = 6n = . 

 If , then 2 81n = 9n = . 

 Thus, by induction, if  is a multiple of 3, so is n. 2n

 

Argument M 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: Let  be a multiple of 3; that is, 2n 2 3n k=  for some integer k.  

 Since , then 2 3n = k 3n n k=⋅ . 

 So, 3kn
n

=  or 3 kn
n

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

 Thus, n is a multiple of 3. 

 Hence,  is a multiple of 3 implies n is a multiple of 3. 2n
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Argument E 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: Let n be a positive integer such that 3n k=  for some integer k.  

 Then . 2 2 2(3 ) 9 3(3 )n k k k= = = 2

q

n

2

 That is,  for some integer . 2 3n = 23q k=

 Hence, if  is a multiple of 3, then n is a multiple of 3. 2n

 

Argument J 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: Assume that  is an odd positive integer that is divisible by 3. 2n

 That is, . 2 2 2(3 1) 9 6 1 3 ( 2) 1n n n n n n= + = + + = + +

 Therefore,  is divisible by 3. 2n

 Assume that  is even and a multiple of 3. 2n

 That is, . 2 2 2(3 ) 9 3 (3 )n n n n= = =

 Therefore,  is a multiple of 3. 2n

 If we factor , we get 3 ( , which means n is a multiple of 3. 2 9n n= 3 )n n

 

92 



Argument G 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: Let n be a positive integer such that  is a multiple of 3. 2n

 Then , where m3n m= +∈  (set of positive integers). 

 So, . 2 2 2(3 ) 9 3(3 )n m m m= = = 2

x

 This breaks down into 3  times 3 , which shows m is a multiple of 3.  m m

 

Argument K 

Statement: For any positive integer n, if  is a multiple of 3, then n is a multiple 

of 3. 

2n

Proof: Let n be an integer such that 2 3n = , where x is any integer. 

 Then 3 divides , or 2n 23 n . 

 Since , then 2 3n = x 3n n x= .  Thus, 3 n . 

 Therefore, if  is a multiple of 3, then n is a multiple of 3. 2n
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Argument Y 

Statement: If a number is not divisible by 2, then it is not divisible by 6. 

Proof: Let n be a number that is divisible by 6. 

 Then  for some integer k. 6n = k

q

2

 Hence,  for some integer q. 2(3 ) 2n k= =

 Therefore, n is divisible by 2. 

 Thus, by contrapositive, the statement is correct. 

 

Argument P 

Statement: In a triangle with side lengths a, b, and c, if 2 2a b c+ = , then the 

triangle is a right triangle. 

Proof: Consider the triangle shown with side lengths 2a = , , and 2b = 3c = . 

 Then a b  since 2 2 2c+ ≠ 22 22 2 3+ ≠ . 

 Therefore, the triangle is not a right triangle.  

 Thus, by contrapositive, the statement is correct. 

 

2 2 

3 
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Argument Q 

Statement: In a triangle with side lengths a, b, and c, if 2 2a b c2+ = , then the 

triangle is a right triangle. 

Proof: Consider an equilateral triangle  with side lengths of s (with ABC 0s ≠ ). 

 That is, a s , = b s= , and c s= . 

 Since m A , triangle  is not a right triangle. 60m B m C∠ = ∠ = ∠ = °

2c+ ≠ 2

ABC

 Also, a b  since 2 2 2 2s s s+ ≠  (with 0s ≠ ). 

 That is, triangle ABC  is not a right triangle implies . 2 2a b c+ ≠ 2

 Thus, by contrapositive, the statement is correct. 

 C 

A B 

a s=b s=  

c s=
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Appendix G 

Writing Prompts 

 

The following prompts were used to solicit written responses from study participants. 

Participants completed responses for Prompts 1, 2, and 4 in class the same day the 

prompts were presented. Participants completed a response for Prompt 3 as homework. 

 

Prompt 1 

To ascertain what you already know about rubrics, provide a one or two sentence 

response to each of the following items. 

1) What is a rubric? 

2) Describe your experience(s) with rubrics. (What courses have you been in that 

used rubrics for grading your work? Was the rubric approach helpful? Have 

you ever graded student work using a rubric?) 

3) Why or how is a rubric helpful? 

4) What do you believe is involved in developing rubrics for scoring student 

work? 
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