





Appendix E

Example Rubrics
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Appendix F

Arguments Presented to Participants During the Study

Argument L

2

Statement: For any positive integer n, if n~ is a multiple of 3, then » is a multiple

of 3.

Proof: If n*> =9, then n=3.

P

divisible also divisible
by 3 by 3

If n* =36, then n=6.

If n* =81, then n=9.

2

Thus, by induction, if »° is a multiple of 3, so is 7.

Argument M

Statement: For any positive integer n, if n* is a multiple of 3, then # is a multiple

of 3.
Proof: Let n” be a multiple of 3; that is, n> =3k for some integer k.

Since n* =3k, then n-n=3k.

So, n=% or n:3(kj.
n n

Thus, n is a multiple of 3.

Hence, n” is a multiple of 3 implies # is a multiple of 3.
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Argument E

2

Statement: For any positive integer n, if n~ is a multiple of 3, then » is a multiple

of 3.

Proof: Let n be a positive integer such that n =3k for some integer k.
Then n* = (3k)* =9k* =3(3k?).
That is, n* =3¢ for some integer ¢ =3k”.

Hence, if n” is a multiple of 3, then 7 is a multiple of 3.

Argument J

Statement: For any positive integer #, if n* is a multiple of 3, then # is a multiple

of 3.
Proof: Assume that n” is an odd positive integer that is divisible by 3.
That is, n* =(3n+1)> =9n” +6n+1=3n(n+2)+1.
Therefore, n* is divisible by 3.
Assume that n? is even and a multiple of 3.
That is, n* = (3n)* =9n* =3n(3n).
Therefore, n* is a multiple of 3.

If we factor n> =9n”, we get 3n(3n), which means # is a multiple of 3.
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Argument G

2

Statement: For any positive integer n, if n~ is a multiple of 3, then » is a multiple

of 3.

Proof: Let n be a positive integer such that »n? is a multiple of 3.
Then n=3m, where m e Z" (set of positive integers).
So, n* =(3m)* =9m* =3(3m?).

This breaks down into 3m times 3m , which shows m is a multiple of 3.

Argument K

Statement: For any positive integer n, if n* is a multiple of 3, then # is a multiple

of 3.
Proof: Let n be an integer such that n* = 3x, where x is any integer.

Then 3 divides n?, or 3| n>.
Since n? =3x, then nn=3x. Thus, 3|n.

Therefore, if n* is a multiple of 3, then # is a multiple of 3.
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Argument Y

Statement: If a number is not divisible by 2, then it is not divisible by 6.
Proof: Let n be a number that is divisible by 6.

Then n =6k for some integer k.

Hence, n=2(3k) =2q for some integer g.

Therefore, n is divisible by 2.

Thus, by contrapositive, the statement is correct.

Argument P

Statement: In a triangle with side lengths a, b, and c, if a’ +b* = ¢*, then the
triangle is a right triangle.

Proof: Consider the triangle shown with side lengths a=2, =2, and c=3.

Then a® +b* # ¢* since 2% +2% # 37,
Therefore, the triangle is not a right triangle.

Thus, by contrapositive, the statement is correct.
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Argument Q

Statement: In a triangle with side lengths a, b, and ¢, if @ +b* = ¢*, then the
triangle is a right triangle.

Proof: Consider an equilateral triangle ABC with side lengths of s (with s #0).
Thatis, a=s, b=s,and c=s.
Since mZA=msB=mZC =60°, triangle ABC is not a right triangle.

? since s° +s° #s” (with s 20).

Also, a’ +b* # ¢
That is, triangle ABC is not a right triangle implies a* +b* # ¢*.

Thus, by contrapositive, the statement is correct.
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Appendix G

Writing Prompts

The following prompts were used to solicit written responses from study participants.
Participants completed responses for Prompts 1, 2, and 4 in class the same day the

prompts were presented. Participants completed a response for Prompt 3 as homework.

Prompt 1

To ascertain what you already know about rubrics, provide a one or two sentence

response to each of the following items.

1) What is a rubric?

2) Describe your experience(s) with rubrics. (What courses have you been in that
used rubrics for grading your work? Was the rubric approach helpful? Have
you ever graded student work using a rubric?)

3) Why or how is a rubric helpful?

4) What do you believe is involved in developing rubrics for scoring student

work?
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