Environmental Restoration Operations Consolidated Quarterly Report, October 2010

Sandia National Laboratories/NM

Follow this and additional works at: https://digitalrepository.unm.edu/snl_er

Recommended Citation

This Article is brought to you for free and open access by the Sandia National Labs/NM Technical Reports at UNM Digital Repository. It has been accepted for inclusion in Environmental Restoration by an authorized administrator of UNM Digital Repository. For more information, please contact amywinter@unm.edu, Isloane@salud.unm.edu, sarahrk@unm.edu.
OVERVIEW

This Sandia National Laboratories, New Mexico Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) fulfills all quarterly reporting requirements set forth in the Compliance Order on Consent. Table I-1 lists the six sites remaining in the corrective action process. This ER Quarterly Report presents activities and data as follows:

SECTION I: Environmental Restoration Operations Consolidated Quarterly Report, April – June 2019

SECTION II: Perchlorate Screening Quarterly Groundwater Monitoring Report, April – June 2019

SECTION III: Technical Area-V In-Situ Bioremediation Treatability Study Full-Scale Operation, April – June 2019
ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/L</td>
<td>microgram(s) per liter</td>
</tr>
<tr>
<td>ABCWUA</td>
<td>Albuquerque Bernalillo County Water Utility Authority</td>
</tr>
<tr>
<td>AGMR</td>
<td>Annual Groundwater Monitoring Report</td>
</tr>
<tr>
<td>AOC</td>
<td>Area of Concern</td>
</tr>
<tr>
<td>BSG</td>
<td>Burn Site Groundwater</td>
</tr>
<tr>
<td>CME</td>
<td>Corrective Measures Evaluation</td>
</tr>
<tr>
<td>COC</td>
<td>constituent of concern</td>
</tr>
<tr>
<td>Consent Order</td>
<td>Compliance Order on Consent</td>
</tr>
<tr>
<td>CY</td>
<td>Calendar Year</td>
</tr>
<tr>
<td>CYN</td>
<td>Canyons (acronym used for well identification numbers in tables only at Burn Site Groundwater Area of Concern)</td>
</tr>
<tr>
<td>Dhc</td>
<td>Dehalococcoides</td>
</tr>
<tr>
<td>DO</td>
<td>dissolved oxygen</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DP</td>
<td>Discharge Permit</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ER</td>
<td>Environmental Restoration Operations</td>
</tr>
<tr>
<td>ER Quarterly Report</td>
<td>Environmental Restoration Operations Consolidated Quarterly Report</td>
</tr>
<tr>
<td>FOP</td>
<td>Field Operating Procedure</td>
</tr>
<tr>
<td>GEL</td>
<td>GEL Laboratories LLC</td>
</tr>
<tr>
<td>GWQB</td>
<td>Ground Water Quality Bureau</td>
</tr>
<tr>
<td>HWB</td>
<td>Hazardous Waste Bureau</td>
</tr>
<tr>
<td>INJ</td>
<td>injection (acronym used for well identification only)</td>
</tr>
<tr>
<td>ISB</td>
<td>in-situ bioremediation</td>
</tr>
<tr>
<td>LWDS</td>
<td>liquid waste disposal system (acronym used for well identification only)</td>
</tr>
<tr>
<td>MCL</td>
<td>maximum contaminant level</td>
</tr>
<tr>
<td>MDL</td>
<td>method detection limit</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligrams per liter</td>
</tr>
<tr>
<td>MW</td>
<td>monitoring well (acronym used for well identification only)</td>
</tr>
<tr>
<td>ND</td>
<td>nondetect</td>
</tr>
<tr>
<td>NMED</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>NNSA</td>
<td>National Nuclear Security Administration</td>
</tr>
<tr>
<td>NPN</td>
<td>nitrate plus nitrite</td>
</tr>
<tr>
<td>ORP</td>
<td>oxidation reduction potential</td>
</tr>
<tr>
<td>pH</td>
<td>potential of hydrogen (negative logarithm of the hydrogen ion concentration)</td>
</tr>
<tr>
<td>SC</td>
<td>specific conductivity</td>
</tr>
<tr>
<td>SNL/NM</td>
<td>Sandia National Laboratories, New Mexico</td>
</tr>
<tr>
<td>SWMU</td>
<td>Solid Waste Management Unit</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TA1-W</td>
<td>Technical Area-I (Well) (acronym used for well identification only)</td>
</tr>
<tr>
<td>TA2-W</td>
<td>Technical Area-II (Well) (acronym used for well identification only)</td>
</tr>
<tr>
<td>TA2-SW</td>
<td>Technical Area-II (Southwest) (acronym used for well identification only)</td>
</tr>
<tr>
<td>TAG</td>
<td>Tijeras Arroyo Groundwater</td>
</tr>
<tr>
<td>TAV</td>
<td>Technical Area-V (acronym used for well identification numbers in tables only)</td>
</tr>
<tr>
<td>TA-V</td>
<td>Technical Area-V</td>
</tr>
<tr>
<td>TAVG</td>
<td>Technical Area-V Groundwater</td>
</tr>
<tr>
<td>TCE</td>
<td>trichloroethene</td>
</tr>
<tr>
<td>TJA</td>
<td>Tijeras Arroyo (acronym used for well identification numbers in tables only)</td>
</tr>
<tr>
<td>TOC</td>
<td>total organic carbon</td>
</tr>
<tr>
<td>TSWP</td>
<td>Treatability Study Work Plan</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
</tbody>
</table>
SECTION I
TABLE OF CONTENTS

ENVIRONMENTAL RESTORATION OPERATIONS CONSOLIDATED QUARTERLY REPORT, April – June 2019

1.0 Introduction ... I-1
2.0 Environmental Restoration Operations Work Completed... I-1
 2.1 Sites Undergoing Corrective Action .. I-2
 2.1.1 Burn Site Groundwater Area of Concern .. I-2
 2.1.2 Technical Area-V Groundwater Area of Concern .. I-2
 2.1.3 Tijeras Arroyo Groundwater Area of Concern .. I-5
 2.2 Sites in Corrective Action Complete Regulatory Process ... I-6
3.0 References ... I-6

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>Solid Waste Management Units and Areas of Concern Where Corrective Action is Not Complete</td>
</tr>
<tr>
<td>I-2</td>
<td>Groundwater Sampling and Analysis</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
1.0 Introduction

This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the April - June 2019 reporting period.

Table I-1 lists the Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM. This section of the ER Quarterly Report summarizes the work completed during this quarterly reporting period at sites undergoing corrective action. Corrective action activities were conducted during this reporting period at the three groundwater AOCs (Burn Site Groundwater [BSG] AOC, Technical Area-V [TA-V] Groundwater [TAVG] AOC, and Tijeras Arroyo Groundwater [TAG] AOC).

Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active mission sites are located in Technical Area-III.

There were no SWMUs or AOCs in the corrective action complete regulatory process during this quarterly reporting period.

2.0 Environmental Restoration Operations Work Completed

The following subsections identify the constituents of concern (COCs), summarize the corrective action milestones, and describe the ER work completed during the April - June 2019 reporting period at the three groundwater AOCs.
2.1 **Sites Undergoing Corrective Action**

In a letter dated April 14, 2016, the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) defined the scope and milestones for corrective action at three groundwater AOCs (BSG AOC, TAVG AOC, and TAG AOC) (NMED April 2016). Sections I.2.1.1 through I.2.1.3 discuss the specific milestones from this letter.

2.1.1 **Burn Site Groundwater Area of Concern**

Nitrate has been identified as a COC in groundwater at the BSG AOC based on detections above the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) in samples collected from monitoring wells. The EPA MCL and State of New Mexico drinking water standard for nitrate (as nitrogen) is 10 milligrams per liter (mg/L).

The U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) and SNL/NM personnel met with the NMED HWB on July 20, 2015 to discuss the status of sites currently undergoing corrective action. For the BSG AOC, all parties agreed to a weight-of-evidence characterization program: (1) to conduct additional isotopic analyses/nitrate fingerprinting and age-dating of the groundwater; (2) to conduct a transducer study using existing wells to determine whether the groundwater is unconfined, semi-confined, or confined; and (3) to conduct an aquifer pumping test to help determine the origin of the elevated nitrates in the groundwater.

The groundwater sampling and analysis program for the BSG AOC currently includes perchlorate analyses of water from one groundwater monitoring well (CYN-MW15).

The following activities occurred at BSG AOC during the April - June 2019 reporting period:

- Groundwater sampling was conducted in April 2019. Table I-2 presents the identification and the sampling frequency for BSG AOC monitoring wells. The analytical results for CY 2019 groundwater monitoring will be presented in the SNL/NM CY 2019 Annual Groundwater Monitoring Report (AGMR), which is anticipated to be submitted to the NMED in the summer of 2020.

- Perchlorate analysis of groundwater samples from the BSG AOC is discussed in Section II of this ER Quarterly Report.
Technical Area-V Groundwater Area of Concern

Trichloroethene (TCE) and nitrate have been identified as COCs in groundwater at the TAVG AOC based on detections above the EPA MCLs in samples collected from monitoring wells. The EPA MCLs and the State of New Mexico drinking water standards for TCE and nitrate (as nitrogen) are 5 micrograms per liter (µg/L) and 10 mg/L, respectively.

Personnel from the DOE/NNSA, DOE Headquarters Office of Environmental Management, SNL/NM, and NMED HWB worked together to address the groundwater contamination at the TAVG AOC. A meeting was held with the NMED HWB on July 20, 2015, and all parties agreed on a phased Treatability Study of in-situ bioremediation to evaluate the effectiveness of in-situ bioremediation as a potential technology to treat the groundwater contamination at the TAVG AOC.

To implement the Treatability Study, SNL/NM personnel plan to install up to three injection wells (TAV-INJ1, TAV-INJ2, and TAV-INJ3) at TA-V near the highest contaminant concentrations in groundwater detected in monitoring wells TAV-MW6, TAV-MW10, and LWDS-MW1, respectively. The substrate solution containing essential food and nutrients for biostimulation will be prepared in aboveground tanks. This substrate solution, along with the biodegradation bacteria, will be gravity-injected to groundwater via injection wells.

The NMED HWB approved the Revised Treatability Study Work Plan (TSWP) (SNL/NM March 2016) on May 10, 2016 (NMED May 2016). In accordance with the Revised TSWP, the Treatability Study will be conducted in two phases. Phase I includes a pilot test followed by full-scale operation at the first injection well (TAV-INJ1). SNL/NM personnel have completed the pilot test at injection well TAV-INJ1. The operation and results of the pilot test were presented in Section III of the October 2018 ER Quarterly Report (SNL/NM October 2018). Based on the results of the pilot test, DOE/NNSA and SNL/NM personnel proposed eight modifications for the full-scale operation at TAV-INJ1 (DOE July 2018). The NMED HWB subsequently approved the modifications on August 13, 2018 (NMED August 2018). Therefore, the forthcoming implementation of the Treatability Study is governed by the Revised TSWP and where applicable, the approved modifications for full-scale operation.
Phase II of the Treatability Study includes well installation and full-scale operation at the second and third injection wells (TAV-INJ2 and TAV-INJ3). A decision to install the Phase II wells is dependent upon the findings of the Phase I full-scale operation.

The NMED Ground Water Quality Bureau (GWQB) requires a groundwater Discharge Permit (DP) for operation of the injection wells. NMED GWQB issued DP-1845 to DOE/NNSA for the SNL/NM TA-V Treatability Study injection wells on May 26, 2017 (NMED May 2017a). The DP-1845 term starts on May 30, 2017 and ends on May 30, 2022. As required by DP-1845, DOE/NNSA and SNL/NM personnel submit separate quarterly reports to the NMED GWQB.

The following activities occurred at TAVG AOC during the April - June 2019 reporting period:

- Full-scale operation of Phase I of the Treatability Study began in October 2018. The injection period was completed on April 25, 2019. The injection period spanned approximately six months, as planned in the Revised TSWP (SNL/NM March 2016). One hundred and ten (110) injections totaling 531,516 gallons of treatment solution were discharged to groundwater over the six-month period via injection well TAV-INJ1. The average volume of treatment solution per injection was approximately 4,832 gallons. Along with the treatment solution, a total of 122.8 liters of the biodegradation bacteria were injected to groundwater over the six-month period. No significant problems were encountered during these full-scale injections. Section III of this ER Quarterly Report provides more details on the full-scale operation for this reporting period.

- The injection period of the full-scale operation of Phase I is followed by two years’ monitoring for the performance of the in-situ bioremediation, at a monthly frequency for three months and then quarterly for the remainder of the two-year period, as planned in the Revised TSWP (SNL/NM March 2016). Groundwater monitoring was conducted at the treatment zone (i.e., in the proximity of injection well TAV-INJ1) as well as outside the treatment zone during this reporting period. Section III presents the groundwater monitoring results for the Treatability Study for this quarter. Analytical results for DP-specific requirements are presented in DP quarterly reports that are submitted separately to the NMED GWQB.
• The TA-V groundwater monitoring network currently comprises 18 active monitoring wells. Of these 18 wells, well TAV-MW6 is designated as a Treatability Study performance monitoring well and follows the sampling frequency and analytes specified for the Treatability Study (see Section III). Because of its proximity to the injection well TAV-INJ1, well TAV-MW7 continues to serve as a monitoring well for the Treatability Study, although programmatically it belongs to the TA-V groundwater monitoring network (SNL/NM January 2019). Groundwater monitoring results at wells TAV-MW6 and TAV-MW7 will continue to be reported in Section III of the ER quarterly reports for the duration of the Treatability Study.

• Table I-2 presents the sampling frequency for the monitoring wells at TAVG AOC for the 17 wells in the TA-V groundwater monitoring network (18 wells, minus well TAV-MW6). Groundwater sampling was conducted in May and June 2019. The SNL/NM CY 2019 AGMR will present the analytical results for CY 2019 groundwater monitoring, which is scheduled for submittal to the NMED HWB in the summer of 2020.

• Two first-time exceedances of EPA MCLs occurred in this reporting period at the TA-V groundwater monitoring network:
 o Concentrations of nitrate plus nitrite in May in well LWDS-MW2 were 12.3 mg/L and 10.1 mg/L in the environmental sample and duplicate, exceeding the EPA MCL of 10 mg/L.
 o Concentration of TCE in May in well TAV-MW4 was 5.44 µg/L, exceeding the EPA MCL of 5 µg/L.
These two wells will be sampled in the third quarter of CY 2019. The sampling results will be evaluated for any increasing trend at these two wells in subsequent ER Quarterly Reports.

2.1.3 **Tijeras Arroyo Groundwater Area of Concern**

Nitrate has been identified as a COC in groundwater for the TAG AOC based on exceedances of the EPA MCL in samples collected from monitoring wells completed in the Perched Groundwater System and in the merging zone above the Regional Aquifer. TCE has been identified as a COC for the Perched Groundwater System. No TCE concentrations in Regional Aquifer samples have exceeded the EPA MCL. The EPA MCLs and State of New Mexico drinking water standards for TCE and nitrate (as nitrogen) are 5 µg/L and 10 mg/L, respectively.
In May 2017, NMED HWB completed its review of the Current Conceptual Model and Corrective Measures Evaluation Report for the TAG AOC (SNL/NM December 2016), which was submitted to the NMED HWB on November 23, 2016 (DOE November 2016). This November 23, 2016 report was submitted in accordance with NMED’s “Agreements and Proposed Milestones” letter of April 14, 2016 (NMED April 2016). The subsequent disapproval letter issued by the NMED HWB (NMED May 2017b) requested the inclusion of additional information in a revised report. The Revised TAG Current Conceptual Model and Corrective Measures Evaluation Report was then submitted to the NMED HWB on February 13, 2018 (SNL/NM February 2018). During a June 20, 2018 meeting, NMED HWB personnel stated that they will complete their review of the revised report in CY 2019.

During June 2019 groundwater samples were collected from the seven monitoring wells (TA2-W-19, TA2-W-26, TA2-W-28, TJA-2, TJA-3, TJA-4, and TJA-7) scheduled for quarterly sampling. Table I-2 presents the CY 2019 sampling frequency for the TAG monitoring wells. The analytical results for the TAG AOC CY 2019 groundwater monitoring will be included in the SNL/NM CY 2019 AGMR, which is scheduled for submittal to the NMED HWB in the summer of 2020.

2.2 Sites in Corrective Action Complete Regulatory Process

There are currently no SWMUs or AOCs in the corrective action complete regulatory process.

3.0 References

DOE, see U.S. Department of Energy.

New Mexico Environment Department (NMED), May 2017a. Ground Water Discharge Permit, Sandia National Laboratories/New Mexico, Discharge Permit-1845, NMED, Ground Water Quality Bureau, Santa Fe, New Mexico, May 26, 2017.

NMED, see New Mexico Environment Department.

SNL/NM, see Sandia National Laboratories, New Mexico.

Tables
This page intentionally left blank.
Table I-1
Solid Waste Management Units and Areas of Concern
Where Corrective Action is Not Complete

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Site Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>Long Sled Track</td>
</tr>
<tr>
<td>84</td>
<td>Gun Facilities</td>
</tr>
<tr>
<td>240</td>
<td>Short Sled Track</td>
</tr>
<tr>
<td>NA</td>
<td>Tijeras Arroyo Groundwater Investigation (TAG AOC)</td>
</tr>
<tr>
<td>NA</td>
<td>TA-V Groundwater Investigation (TAVG AOC)</td>
</tr>
<tr>
<td>NA</td>
<td>Burn Site Groundwater Investigation (BSG AOC)</td>
</tr>
</tbody>
</table>

Notes:

- **AOC** = Area of Concern.
- **BSG** = Burn Site Groundwater.
- **NA** = Not applicable. A site number was not assigned.
- **TAG** = Tijeras Arroyo Groundwater.
- **TA-V** = Technical Area-V.
- **TAVG** = Technical Area-V Groundwater.
<table>
<thead>
<tr>
<th>Investigation Site</th>
<th>Sampling Frequency in CY 2019</th>
<th>Quarter of Sampling in CY 2019</th>
<th>Location of Analytical Results</th>
<th>Location of Perchlorate Analytical Results</th>
<th>Monitoring Wells in Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAVG AOC a</td>
<td>Quarterly</td>
<td>1,2,3,4</td>
<td>AGMR</td>
<td>NA</td>
<td>LWDS-MW1, TAV-MW2, TAV-MW4, TAV-MW7, TAV-MW8, TAV-MW10, TAV-MW11, TAV-MW12, TAV-MW14, TAV-MW15, TAV-MW16</td>
</tr>
<tr>
<td></td>
<td>Annually</td>
<td>2</td>
<td>AGMR</td>
<td>NA</td>
<td>AVN-1, LWDS-MW2, TAV-MW3, TAV-MW5, TAV-MW9, TAV-MW13</td>
</tr>
<tr>
<td>BSG AOC</td>
<td>Semiannually</td>
<td>2,4</td>
<td>AGMR</td>
<td>Section II of ER Consolidated Quarterly Report</td>
<td>CYN-MW4, CYN-MW7, CYN-MW8, CYN-MW9, CYN-MW10, CYN-MW11, CYN-MW12, CYN-MW13, CYN-MW14A, CYN-MW15</td>
</tr>
<tr>
<td>TAG AOC b</td>
<td>Quarterly</td>
<td>1,2,3,4</td>
<td>AGMR</td>
<td>NA</td>
<td>TA2-W-19, TA2-W-26, TA2-W-28, TJA-2, TJA-3, TJA-4, TJA-7</td>
</tr>
<tr>
<td></td>
<td>Semiannually</td>
<td>1,3</td>
<td>AGMR</td>
<td>NA</td>
<td>TA1-W-06, TA2-W-01, TA2-W-27, TJA-6</td>
</tr>
<tr>
<td></td>
<td>Annually</td>
<td>3</td>
<td>AGMR</td>
<td>NA</td>
<td>PGS-2, TA1-W-01, TA1-W-02, TA1-W-03, TA1-W-04, TA1-W-05, TA1-W-08, TA2-NW1-595, WYO-3</td>
</tr>
</tbody>
</table>

Notes:

a TAVG AOC monitoring network comprises 18 active wells: 17 wells are listed here; well TAV-MW6 currently is part of the Treatability Study and follows a separate monitoring plan (see Section 2.1.2).

b Monitoring well WYO-4 was deleted from the sampling schedule in response to the August 2017 meeting with NMED HWB personnel.

AOC = Area of Concern.
AVN = Area-V (North) (acronym used for well identification only).
BSG = Burn Site Groundwater (Area of Concern).
CY = Calendar Year.
CYN = Canyons (Burn Site Groundwater Area of Concern; acronym used for well identification only).
ER = Environmental Restoration Operations.
HWB = Hazardous Waste Bureau.
LWDS = Liquid waste disposal system (acronym used for well identification only).
MW = Monitoring well (acronym used for well identification only).
NA = Not applicable. No wells in the site network are currently being sampled and analyzed for perchlorate, or were not sampled during this quarterly reporting period.
NMED = New Mexico Environment Department.
PGS = Parade Ground South (acronym used for well identification only).
TA1-W = Technical Area-I (Well) (acronym used for well identification only).
TA2-NW = Technical Area-II (Northwest) (acronym used for well identification only).
TA2-W = Technical Area-II (Well) (acronym used for well identification only).
TAG = Tijeras Arroyo Groundwater (Area of Concern).
TAV = Technical Area-V (acronym used for well identification only).
TAVG = Technical Area-V Groundwater (Area of Concern).
TJA = Tijeras Arroyo (acronym used for well identification only).
WYO = Wyoming (acronym used for well identification only).
SECTION II
TABLE OF CONTENTS

PERCHLORATE SCREENING QUARTERLY GROUNDWATER MONITORING
REPORT, April – June 2019

1.0 Introduction .. II-1
2.0 Scope of Activities ... II-2
3.0 Regulatory Criteria ... II-3
 3.1 Burn Site Groundwater Area of Concern ... II-4
 3.2 Tijeras Arroyo Groundwater and Technical Area-V Groundwater Areas of Concern .. II-5
4.0 Monitoring Results ... II-6
5.0 Summary and Conclusions ... II-6
6.0 References .. II-7

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-1</td>
<td>Sandia National Laboratories, New Mexico, Current Perchlorate Screening Monitoring Well Network, April – June 2019</td>
</tr>
<tr>
<td>II-2</td>
<td>Groundwater Elevations and Perchlorate Concentrations Over Time in CYN-MW15</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-1</td>
<td>Current Perchlorate Screening Monitoring Well Network, April – June 2019</td>
</tr>
<tr>
<td>II-2</td>
<td>Monitoring Wells Discussed in Previous Perchlorate Screening Reports</td>
</tr>
<tr>
<td>II-3</td>
<td>Sample Details for Perchlorate Sampling, April – June 2019</td>
</tr>
</tbody>
</table>
LIST OF TABLES (concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-4</td>
<td>Summary of Perchlorate Screening Analytical Results for the Current Monitoring Well Network, April – June 2019</td>
</tr>
<tr>
<td>II-5</td>
<td>Perchlorate Screening Groundwater Monitoring Field Water Quality Measurements, April – June 2019</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Analytical Laboratory Certificates of Analysis for the Perchlorate Data</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Data Validation Sample Findings Summary Sheets for the Perchlorate Data</td>
</tr>
</tbody>
</table>
SECTION II
PERCHLORATE SCREENING QUARTERLY GROUNDWATER MONITORING REPORT, April – June 2019

1.0 Introduction

Section IV.B of the Compliance Order on Consent (the Consent Order), between the New Mexico Environment Department (NMED), the U.S. Department of Energy (DOE), and Sandia National Laboratories, New Mexico (SNL/NM), effective on April 29, 2004, stipulates that a select group of groundwater monitoring wells at SNL/NM be sampled for perchlorate (NMED April 2004). This section of the Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) summarizes the perchlorate screening groundwater monitoring completed during the April – June 2019 reporting period in response to the requirements of the Consent Order. The outline of this report is based on the required elements of a “Periodic Monitoring Report” described in Section X.D. of the Consent Order (NMED April 2004).

In November 2005, DOE/National Nuclear Security Administration (NNSA) and SNL/NM personnel submitted a letter report on the status of perchlorate screening in groundwater at SNL/NM monitoring wells (SNL/NM November 2005). The letter report summarized previous correspondence and sampling results and outlined proposed future work to comply with NMED Hazardous Waste Bureau (HWB) requirements for perchlorate screening of groundwater. As specified in the letter report, quarterly reports are submitted for wells active in the perchlorate screening monitoring well network.

Based on the NMED HWB response (NMED January 2006), DOE/NNSA and SNL/NM personnel submit each quarterly report within 90 days following the quarter that the data represent. In November 2008, DOE/NNSA and SNL/NM personnel received approval from the NMED HWB to proceed to semiannual reporting (NMED November 2008); however, upon further consideration, the NMED HWB once more required quarterly reporting (NMED April 2009). This did not alter the previously negotiated frequency for monitoring well CYN-MW6, an existing Burn Site Groundwater (BSG) Area of Concern (AOC) monitoring well that has been under the sampling and reporting requirements of the Consent Order since the well was installed, which remains at a semiannual frequency for sampling and reporting. Due to declining water levels, CYN-MW6 has insufficient water to routinely sample and the replacement monitoring well (CYN-MW15) was installed in December 2014; the negotiated semiannual sampling frequency transferred to the replacement well.
In September 2011, DOE/NNSA and SNL/NM personnel requested an extension of the submittal dates by one month for ER Quarterly Reports (SNL/NM September 2011). The NMED HWB approved the request (NMED September 2011), which allows DOE/NNSA and SNL/NM personnel to submit perchlorate quarterly reports within 120 days following the quarter that the data represent.

This report is the forty-eighth perchlorate screening quarterly report submitted since the November 2005 letter report; the previous reports were submitted for fourth quarter of CY 2005 through the fourth quarter of CY 2018 (SNL/NM February 2006 and April 2019).

Groundwater at BSG AOC monitoring well CYN-MW15 was sampled semiannually for the tenth time during the reporting period (Table II-1). The corresponding reporting will continue for as long as a well remains active in the perchlorate screening network, or unless otherwise negotiated with the NMED.

2.0 Scope of Activities

This report provides April – June 2019 perchlorate screening groundwater monitoring analytical results for the well CYN-MW15, the only well currently active in the perchlorate screening program (Figure II-1, Table II-1). In accordance with the requirements of Table XI-1 of the Consent Order, a well with four consecutive quarters of non-detects (NDs) for perchlorate at the screening level/method detection limit (MDL) of 4 micrograms per liter (µg/L) is removed from the requirement of continued monitoring for perchlorate. Data for numerous wells identified in the Consent Order have satisfied this requirement; therefore, these wells have been removed from the perchlorate screening program. Previous reports provided perchlorate results for these wells and are not discussed in this current report. Table II-2 lists the wells discussed in previous perchlorate screening reports.

SNL/NM personnel performed groundwater sampling for perchlorate at monitoring well CYN-MW15 in April 2019 (Table II-1). Groundwater sampling activities were conducted in accordance with procedures outlined in the Burn Site Groundwater Monitoring, Mini-SAP for Third Quarter, Fiscal Year 2019 (SNL/NM March 2019).

As described in the Mini-Sampling and Analysis Plan (SAP), groundwater sampling was performed in accordance with current SNL/NM Long-Term Stewardship Project Field Operating Procedures (FOPs). A portable Bennett™ groundwater sampling system was used to collect the groundwater samples. The sampling pump and tubing bundle were decontaminated prior to placement into the monitoring well in accordance with procedures described in FOP 05-03, “Groundwater Monitoring Equipment Decontamination” (SNL/NM...
January 2018a). The well was purged a minimum of one saturated screen volume before sampling in accordance with FOP 05-01, “Groundwater Monitoring Well Sampling and Field Analytical Measurements” (SNL/NM January 2018b). Field water quality measurements for turbidity, potential of hydrogen (pH), temperature, specific conductivity (SC), oxidation-reduction potential (ORP), and dissolved oxygen (DO) were obtained from the well prior to collecting the groundwater sample. Groundwater temperature, SC, ORP, DO, and pH were measured with an In-Situ Incorporated Aqua TROLL® 600 Multiparameter water quality meter. Turbidity was measured with a HACH™ Model 2100Q turbidity meter. Purging continued until four stable measurements for turbidity, pH, temperature, and SC were obtained. Groundwater stability is considered acceptable when the following parameters are achieved:

- Turbidity measurements are less than 5 nephelometric turbidity units, or within 10 percent for turbidity values greater than 5 nephelometric turbidity units.

- pH is within 0.1 units.

- Temperature is within 1.0 degree Celsius.

- SC is within 5 percent.

Field measurement logs documenting details of well purging and water quality measurements have been submitted to the SNL/NM Customer Funded Record Center.

Groundwater samples were submitted to GEL Laboratories, LLC (GEL) for chemical analysis of perchlorate using U.S. Environmental Protection Agency (EPA) Method 314.0 (EPA November 1999). Table II-3 provides the sample identification, Analysis Request/Chain-of-Custody form number, and the associated groundwater investigation. The analytical report from GEL, including certificates of analysis (COA) (Appendix A), analytical methods, MDLs, practical quantitation limits, dates of analyses, results of quality control analyses, and data validation findings (Appendix B), have been submitted to the SNL/NM Customer Funded Record Center.

3.0 Regulatory Criteria

For a given monitoring well, four consecutive ND results using the screening level/MDL of 4 µg/L are considered by the NMED HWB as evidence of the absence of perchlorate, such that additional monitoring for perchlorate in that well is not required. If perchlorate is detected using the screening level/MDL of 4 µg/L in a specific well, then monitoring will
continue at that well at a frequency negotiated with the NMED. The Consent Order (NMED April 2004) also requires that detections equal to or greater than 4 µg/L be evaluated by DOE/NNSA and SNL/NM personnel to determine the nature and extent of perchlorate contamination and incorporate the results of this evaluation into a Corrective Measures Evaluation (CME), based on a screening level/MDL of 4 µg/L. The Consent Order, Section VII.C, clarifies that the CME process will be initiated where there is a documented release to the environment, and where corrective measures are necessary to protect human health and the environment.

3.1 Burn Site Groundwater Area of Concern

In March 2007, NMED HWB sent a letter of approval, which required DOE/NNSA and SNL/NM personnel to “determine the nature and extent of the contamination and complete a CME for the perchlorate-impacted groundwater in the vicinity of CYN-MW6” (NMED March 2007). As this was based solely on four quarters of monitoring results, DOE and SNL/NM personnel submitted a letter to the NMED HWB in April 2007 (SNL/NM April 2007) recommending further characterization through continued quarterly monitoring of monitoring well CYN-MW6 for an additional four quarters, ending in December 2007, to ensure appropriate characterization of this well. In January 2008, DOE/NNSA and SNL/NM personnel requested a meeting with the NMED HWB to discuss the need for continued monitoring or additional characterization work and, potentially, a CME.

In preparation for discussing the perchlorate-impacted groundwater in the vicinity of monitoring well CYN-MW6, and to show that the requirement “to determine the nature and extent of contamination” (NMED March 2007) had been met, DOE/NNSA and SNL/NM personnel provided supporting information to the NMED HWB (SNL/NM March 2008). Perchlorate in surface soil has been characterized at several Solid Waste Management Units (SWMUs) in the study area (SNL/NM June 2006 and March 2008–Appendix C). Based on these data, DOE/NNSA and SNL/NM personnel consider the nature and extent of perchlorate in groundwater at the BSG AOC to be sufficiently characterized. Since 2004, groundwater samples from four other monitoring wells in the vicinity of the BSG AOC have been analyzed for perchlorate, including monitoring wells CYN-MW1D, CYN-MW5, CYN-MW7, and CYN-MW8. All wells were sampled for four quarters and all results were ND for perchlorate (SNL/NM March 2008–Appendix D).

In accordance with the requirements of Section VI.K.1.b of the Consent Order (NMED April 2004), a human health risk assessment has been performed to evaluate the potential for adverse health effects from the concentrations of perchlorate detected in monitoring well CYN-MW6 groundwater samples. The maximum perchlorate concentration to date of 8.93 µg/L was used in the risk assessment. The calculated hazard
quotient of 0.35 is less than the NMED HWB target level of a hazard index (the sum of all hazard quotients) of 1.0 (NMED June 2006, SNL/NM March 2008–Appendix E). For another point of comparison, NMED HWB risk assessment guidance lists a tap water standard of 13.8 μg/L for perchlorate (NMED February 2019); therefore, the historical maximum concentration detected is 35 percent less than the NMED HWB tap water standard.

Because perchlorate concentrations in samples from monitoring well CYN-MW6 have exceeded the screening level, DOE/NNSA and SNL/NM personnel initiated a negotiation process with the NMED HWB (SNL/NM March 2007) to determine the frequency of continued monitoring. In November 2008, DOE/NNSA and SNL/NM personnel received approval from the NMED HWB to proceed with semiannual monitoring of perchlorate in monitoring well CYN-MW6 and proceed with semiannual reporting of all perchlorate results (NMED November 2008). Upon further consideration, the NMED HWB once more required that DOE/NNSA and SNL/NM personnel resume quarterly reporting of perchlorate results with the exception of monitoring well CYN-MW6 (NMED April 2009). Due to declining water levels, CYN-MW6 has insufficient water to routinely sample and was replaced; the last sample collected at CYN-MW6 was on October 15, 2012. The replacement monitoring well (CYN-MW15) was installed in December 2014 and assumed the negotiated semiannual monitoring frequency. Monitoring well CYN-MW14A was also installed in December 2014; this well was considered a new monitoring well that requires quarterly sampling due to its deep screen interval.

In April 2009, NMED HWB sent a letter that required DOE/NNSA and SNL/NM personnel to characterize the nature and extent of the perchlorate contamination in soil and groundwater in the BSG AOC (NMED April 2009). A characterization work plan was prepared and submitted to the NMED HWB (SNL/NM November 2009), approved by the NMED HWB (NMED February 2010), and implemented in July 2010.

3.2 Tijeras Arroyo Groundwater and Technical Area-V Groundwater Areas of Concern

The April 2009 letter from the NMED HWB to DOE/NNSA and SNL/NM personnel was not limited to the BSG AOC (NMED April 2009). The NMED HWB had also requested that DOE/NNSA and SNL/NM personnel monitor perchlorate concentrations for a minimum of four quarters at five monitoring wells in the Tijeras Arroyo Groundwater (TAG) AOC and at four monitoring wells in the Technical Area-V Groundwater AOC. All nine wells from these two AOCs have been sampled for four consecutive monitoring events with no perchlorate detections being reported; therefore, these nine wells have been removed from the perchlorate monitoring network. A TAG monitoring well (TA2-SW1-320) was damaged and was replaced by well, TA2-W-28 in December 2014. The replacement well
was installed for monitoring the same depth interval as damaged well TA2-SW1-320. Because well TA2-SW1-320 was not one of the four TAG wells selected for perchlorate sampling, replacement well TA2-W-28 does not require perchlorate sampling.

4.0 Monitoring Results

Table II-3 summarizes the details of samples collected from monitoring well CYN-MW15 in the April - June 2019 reporting period. Table II-4 summarizes the current and historical perchlorate results for this well. Appendix A provides the analytical laboratory COAs for the April – June 2019 perchlorate data. For the fifth time in ten sampling events (since December 2014), perchlorate was ND at the screening level/MDL of 4.0 µg/L in the April 2019 CYN-MW15 environmental groundwater sample (Figure II-2). The hydrograph for monitoring well CYN-MW15 (Figure II-2) shows that the water table elevation has been slightly decreasing over the past several years.

Table II-5 summarizes the stabilized water quality values measured immediately before the groundwater samples were collected. The field water quality measurements include turbidity, pH, temperature, SC, ORP, and DO.

The analytical data were reviewed and validated in accordance with Administrative Operating Procedure 00-03, “Data Validation Procedure for Chemical and Radiochemical Data,” (SNL/NM June 2017). No problems were identified with the analytical data that resulted in qualification of the data as unusable. The data are acceptable, and reported quality control measures are adequate. Appendix B provides the data validation sample findings summary sheets for the perchlorate data.

No variances or nonconformances in perchlorate sampling field activities, or field conditions from requirements in the groundwater monitoring Mini-SAP (SNL/NM April 2019), were identified during the April - June 2019 sampling activities.

5.0 Summary and Conclusions

Based on analytical data presented in Table II-4 and in previous reports, the following statements can be made:

- The perchlorate concentration for the groundwater sample from monitoring well CYN-MW15 for the April - June 2019 sampling event was ND. This is the fifth sampling event
(non-consecutive) that perchlorate was ND at this well since December 2014 (Figure II-2).

- Since June 2004 (the start of sampling as required by the Consent Order), perchlorate was detected above the screening level/MDL (4 μg/L) in groundwater samples from only one well (CYN-MW6) and its replacement well (CYN-MW15) in the perchlorate monitoring network.

- DOE/NNSA and SNL/NM personnel will continue semiannual monitoring of perchlorate at monitoring well CYN-MW15.

6.0 References

EPA, see U.S. Environmental Protection Agency.

New Mexico Environment Department (NMED), November 2008. “RE: Perchlorate Issues.” E-mail correspondence to J. Cochran (SNL/NM) from S. Brandwein (NMED), November 7, 2008.

NMED, see New Mexico Environment Department.

Sandia National Laboratories, New Mexico (SNL/NM), June 2017. “Data Validation Procedure for Chemical and Radiochemical Data,” Administrative Operating Procedure 00-03, Revision 5, Sample Management Office, Sandia National Laboratories, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), January 2018a. “Groundwater Monitoring Equipment Decontamination,” Field Operating Procedure 05-03, Revision 05, Long-Term Environmental Stewardship, Environmental Management Department, Sandia National Laboratories, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), January 2018b. “Groundwater Monitoring Well Sampling and Field Analytical Measurements,” Field Operating Procedure 05-01, Revision 05, Long-Term Environmental Stewardship, Environmental Management Department, Sandia National Laboratories, New Mexico.

SNL/NM, see Sandia National Laboratories, New Mexico.

This page intentionally left blank.
Figures
This page intentionally left blank.
Figure II-1
Sandia National Laboratories, New Mexico
Current Perchlorate Screening Monitoring Well Network, April – June 2019
Figure II-2
Groundwater Elevations and Perchlorate Concentrations Over Time in CYN-MW15
Tables
This page intentionally left blank.
Table II-1
Current Perchlorate Screening Monitoring Well Network
April - June 2019

<table>
<thead>
<tr>
<th>Well</th>
<th>Date Sampled</th>
<th>Number of Consecutive Sampling Events<sup>a</sup></th>
<th>Remaining Number of Sampling Events</th>
<th>Sampling Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYN-MW15</td>
<td>17-Apr-19</td>
<td>10</td>
<td>TBD<sup>b</sup></td>
<td>Bennett™ Pump</td>
</tr>
</tbody>
</table>

Notes

^aIncludes this sampling event.
^bThis well was installed as a replacement well for CYN-MW6. Because perchlorate concentrations in CYN-MW6 have exceeded the screening level/MDL, DOE/NNSA, SNL/NM, and the NMED HWB have agreed to further characterization through continued monitoring in the BSG AOC (NMED February 2010).

AOC = Area of Concern.
BSG = Burn Site Groundwater.
CY = Calendar Year.
CYN = Canyons (Burn Site Groundwater Area of Concern).
DOE = U.S. Department of Energy.
HWB = Hazardous Waste Bureau.
MDL = Method detection limit.
MW = Monitoring well.
NMED = New Mexico Environment Department.
NNSA = National Nuclear Security Administration.
SNL/NM = Sandia National Laboratories, New Mexico.
TBD = To be determined.
<table>
<thead>
<tr>
<th>Well</th>
<th>Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCBA-MW1</td>
<td>MWL-MW1</td>
</tr>
<tr>
<td>CCBA-MW2</td>
<td>MWL-MW7</td>
</tr>
<tr>
<td>CTF-MW1</td>
<td>MWL-MW8</td>
</tr>
<tr>
<td>CTF-MW2</td>
<td>MWL-MW9</td>
</tr>
<tr>
<td>CTF-MW3</td>
<td>NWTA3-MW2</td>
</tr>
<tr>
<td>CYN-MW1D</td>
<td>OBS-MW1</td>
</tr>
<tr>
<td>CYN-MW5</td>
<td>OBS-MW2</td>
</tr>
<tr>
<td>CYN-MW6</td>
<td>OBS-MW3</td>
</tr>
<tr>
<td>CYN-MW7</td>
<td>SWTA3-MW4</td>
</tr>
<tr>
<td>CYN-MW8</td>
<td>TA1-W-03</td>
</tr>
<tr>
<td>CYN-MW9</td>
<td>TA1-W-06</td>
</tr>
<tr>
<td>CYN-MW10</td>
<td>TA1-W-08</td>
</tr>
<tr>
<td>CYN-MW11</td>
<td>TA2-W-01</td>
</tr>
<tr>
<td>CYN-MW12</td>
<td>TA2-W-27</td>
</tr>
<tr>
<td>CYN-MW14A</td>
<td>TAV-MW11</td>
</tr>
<tr>
<td>LWDS-MW1</td>
<td>TAV-MW12</td>
</tr>
<tr>
<td>MRN-2</td>
<td>TAV-MW13</td>
</tr>
<tr>
<td>MRN-3D</td>
<td>TAV-MW14</td>
</tr>
<tr>
<td>MWL-BW1</td>
<td>TAV-MW15</td>
</tr>
<tr>
<td>MWL-BW2</td>
<td>TAV-MW16</td>
</tr>
</tbody>
</table>

Notes

- **BW** = Background well.
- **CCBA** = Coyote Canyon Blast Area.
- **CTF** = Coyote Test Field.
- **CYN** = Canyons (Burn Site Groundwater Area of Concern).
- **LWDS** = Liquid waste disposal system.
- **MRN** = Magazine Road North.
- **MW** = Monitoring well.
- **MWL** = Mixed Waste Landfill.
- **NWTA** = Northwest Technical Area (-III).
- **OBS** = Old Burn Site.
- **SWTA** = Southwest Technical Area (-III).
- **TA1-W** = Technical Area-I (Well).
- **TA2-W** = Technical Area-II (Well).
- **TAV** = Technical Area-V.
Table II-3
Sample Details for April - June 2019 Perchlorate Sampling

<table>
<thead>
<tr>
<th>Well</th>
<th>Sample Identification</th>
<th>AR/COC Number</th>
<th>Associated Groundwater Investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYN-MW15</td>
<td>108030-008</td>
<td>619631</td>
<td>BSG AOC</td>
</tr>
</tbody>
</table>

Notes

AOC = Area of Concern.
AR/COC = Analysis Request/Chain-of-Custody.
BSG = Burn Site Groundwater.
CY = Calendar Year.
CYN = Canyons (Burn Site Groundwater Area of Concern).
MW = Monitoring well.
Table II-4
Summary of Perchlorate Screening Analytical Results for the Current Monitoring Well Network as of April - June 2019

<table>
<thead>
<tr>
<th>Well</th>
<th>Sample Date</th>
<th>AR/COC Number</th>
<th>Sample Number</th>
<th>Result (µg/L)</th>
<th>MDL (µg/L)</th>
<th>PQL (µg/L)</th>
<th>MCL (µg/L)</th>
<th>Laboratory Qualifier¹</th>
<th>Validation Qualifier²</th>
<th>Analytical Method³</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burn Site Groundwater Area of Concern</td>
<td></td>
</tr>
<tr>
<td>CYN-MW15</td>
<td>17-Dec-14</td>
<td>615941</td>
<td>096979-020</td>
<td>ND</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>U</td>
<td></td>
<td>EPA 314.0</td>
<td>Duplicate sample</td>
</tr>
<tr>
<td></td>
<td>11-Jun-15</td>
<td>616178</td>
<td>097842-020</td>
<td>ND</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>U</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-Nov-15</td>
<td>616396</td>
<td>098486-020</td>
<td>ND</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>U</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05-Apr-16</td>
<td>616862</td>
<td>099139-008</td>
<td>ND</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>U</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21-Oct-16</td>
<td>617385</td>
<td>100705-004</td>
<td>4.09</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100705-R04</td>
<td>3.98</td>
<td>0.25</td>
<td>1</td>
<td>NE</td>
<td></td>
<td>SW846 6850</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100706-004</td>
<td>4.18</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td>Duplicate sample</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100706-R04</td>
<td>4.01</td>
<td>0.25</td>
<td>1</td>
<td>NE</td>
<td></td>
<td>SW846 6850</td>
<td></td>
<td>Duplicate sample</td>
</tr>
<tr>
<td></td>
<td>19-Apr-17</td>
<td>617823</td>
<td>102400-013</td>
<td>4.07</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>102400-R13</td>
<td>3.19</td>
<td>0.1</td>
<td>0.4</td>
<td>NE</td>
<td>Hh</td>
<td>J-</td>
<td>SW846 6850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13-Oct-17</td>
<td>618205</td>
<td>103748-004</td>
<td>4.05</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td>Duplicate sample</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>103748-004</td>
<td>4.66</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td>Duplicate sample</td>
</tr>
<tr>
<td></td>
<td>19-Apr-18</td>
<td>618667</td>
<td>105068-008</td>
<td>4.60</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-Oct-18</td>
<td>619203</td>
<td>106473-004</td>
<td>ND</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>106474-004</td>
<td>4.04</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td>Duplicate sample</td>
</tr>
<tr>
<td></td>
<td>17-Apr-18</td>
<td>619631</td>
<td>108030-008</td>
<td>ND</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>U</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
</tbody>
</table>

Notes

¹ **Laboratory Qualifier**
- If cell is blank, then all quality control samples meet acceptance criteria with respect to submitted samples.
- H = Analytical holding time was exceeded.
- h = Prep holding time exceeded.
- J = Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL.
- U = Analyte is absent or below the MDL.

² **Validation Qualifier**
- If cell is blank, then all quality control samples meet acceptance criteria with respect to submitted samples.
- J- = The associated numerical value is an estimated quantity with a suspected negative bias.
Summary of Perchlorate Screening Analytical Results for the Current Monitoring Well Network as of April - June 2019

Notes (continued)

Analytical Method

% = Percent.
µg/L = Micrograms per liter.
AR/COC = Analysis Request/Chain-of-Custody.
CY = Calendar Year.
CYN = Canyons (Burn Site Groundwater Area of Concern).
EPA = U.S. Environmental Protection Agency.
MCL = Maximum contaminant level. Established by the EPA Primary Water Regulations (40 CFR 141.11, Subpart B) and subsequent amendments or Title 20, Chapter 7, Part 1 of the New Mexico Administrative Code, incorporating 40 CFR 141.
MDL = Method detection limit. The minimum concentration that can be measured and reported with 99% confidence that the analyte is greater than zero; analyte is matrix-specific.
MW = Monitoring well.
ND = Non-detect (at MDL).
NE = Not established.
PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the indicated method under routine laboratory operating conditions.
Table II-5
Perchlorate Screening Groundwater Monitoring
Field Water Quality Measurements*, April - June 2019

<table>
<thead>
<tr>
<th>Well</th>
<th>Sample Date</th>
<th>Temperature (°C)</th>
<th>Specific Conductivity (µmhos/cm)</th>
<th>Oxidation-Reduction Potential (mV)</th>
<th>pH</th>
<th>Turbidity (NTU)</th>
<th>Dissolved Oxygen (% Sat)</th>
<th>Dissolved Oxygen (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burn Site Groundwater Area of Concern</td>
<td>CYN-MW15</td>
<td>17-Apr-19</td>
<td>14.28</td>
<td>1132.1</td>
<td>221.1</td>
<td>7.10</td>
<td>0.37</td>
<td>13.11</td>
</tr>
</tbody>
</table>

Notes

*Field measurements obtained immediately before the groundwater sample was collected.

°C = Degrees Celsius.
% Sat = Percent saturation.
µmhos/cm = Micromhos per centimeter.
CY = Calendar Year.
CYN = Canyons (Burn Site Groundwater Area of Concern).
mg/L = Milligrams per liter.
mV = Millivolt(s).
MW = Monitoring well.
NTU = Nephelometric turbidity unit.
pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).
Appendix A
Analytical Laboratory Certificates of Analysis for the Perchlorate Data
Contract Laboratory Analysis Request and Chain of Custody

Internal Lab

Batch No: N/A

Project Name: BSG ACC

Project/Task Manager: Michael Skelly

Service Order: CF058-19

Lab Contact: Edie Kent/843-769-7385

Lab Destination: GEL

Contract No.: 1963530

Tech Area

Building: Room:

Operational Site:

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Fraction</th>
<th>Sample Location Detail</th>
<th>Depth (ft)</th>
<th>Date/Time Collected</th>
<th>Sample Matrix</th>
<th>Container Type</th>
<th>Volume</th>
<th>Preservative</th>
<th>Collection Method</th>
<th>Sample Type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>108029</td>
<td>001</td>
<td>BSG-FY 5</td>
<td>NA</td>
<td>4/17/19 10:16</td>
<td>DW</td>
<td>G</td>
<td>3x40 ml</td>
<td>HCl</td>
<td>FB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108030</td>
<td>001</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:16</td>
<td>GW</td>
<td>G</td>
<td>3x40 ml</td>
<td>HCl</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108030</td>
<td>002</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:20</td>
<td>GW</td>
<td>AG</td>
<td>4x1 L</td>
<td>None</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108030</td>
<td>003</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:22</td>
<td>GW</td>
<td>AG</td>
<td>4x1 L</td>
<td>NONE</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108030</td>
<td>004</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:18</td>
<td>GW</td>
<td>AG</td>
<td>3x40 ml</td>
<td>NONE</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108030</td>
<td>005</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:24</td>
<td>GW</td>
<td>AG</td>
<td>125 ml</td>
<td>H2SO4</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108030</td>
<td>006</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:25</td>
<td>GW</td>
<td>AG</td>
<td>125 ml</td>
<td>None</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108030</td>
<td>007</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:26</td>
<td>GW</td>
<td>AG</td>
<td>500 ml</td>
<td>None</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108030</td>
<td>008</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:27</td>
<td>GW</td>
<td>AG</td>
<td>250 ml</td>
<td>None</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108030</td>
<td>009</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:28</td>
<td>GW</td>
<td>AG</td>
<td>500 ml</td>
<td>HNO3</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Tracking: Yes

Sample Tracking: SMO Use

Validation Req'd: Yes

Background: Yes

Confirmation: Yes

Sample Team Members:

- **Name:** Robert Lynch
 - **Signature:**
 - **Contact:** SNL/88888/505-844-4013/505-250-7090

- **Name:** William Gibson
 - **Signature:**
 - **Contact:** SNL/88888/505-284-3307/505-239-7387

Conditions on Receipt:

- **Special Instructions/QC Requirements:**
 - **EDD:** Yes
 - **Turnaround Time:** 7-Day
 - **Nominated TAT:** 30-Day
 - **Sample Disposal:** Yes
 - **Return to Client:** Yes
 - **Disposal by Lab:**

Comments: Received trip blanks from lab with head space. Must perform organic analysis within hold time requirements.

Lab Use:

<table>
<thead>
<tr>
<th>Relinquished by</th>
<th>Org</th>
<th>Date</th>
<th>Time</th>
<th>Reassigned by</th>
<th>Org</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Lynch</td>
<td>SNL</td>
<td>4/17</td>
<td>12:17</td>
<td></td>
<td>Org</td>
<td>Date</td>
<td>Time</td>
</tr>
<tr>
<td>William Gibson</td>
<td>SNL</td>
<td>4/17</td>
<td>12:15</td>
<td></td>
<td>Org</td>
<td>Date</td>
<td>Time</td>
</tr>
</tbody>
</table>

Prior confirmation with SMO required for 7 and 15 day TAT
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Fraction</th>
<th>Sample Location Detail</th>
<th>Depth (ft)</th>
<th>Date/Time Collected</th>
<th>Sample Matrix</th>
<th>Container Type</th>
<th>Volume</th>
<th>Preservative</th>
<th>Collection Method</th>
<th>Sample Type</th>
<th>Parameter & Method Requested</th>
</tr>
</thead>
<tbody>
<tr>
<td>108030</td>
<td>010</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:29</td>
<td>GW</td>
<td>P</td>
<td>1 L</td>
<td>HNO3</td>
<td></td>
<td>G</td>
<td>GAMMA SPEC, SHORT LIST (EPA 901)</td>
</tr>
<tr>
<td>108030</td>
<td>011</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:30</td>
<td>GW</td>
<td>P</td>
<td>1 L</td>
<td>HNO3</td>
<td></td>
<td>G</td>
<td>GROSS-ALPHA/BETA (EPA 900)</td>
</tr>
<tr>
<td>108030</td>
<td>012</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:31</td>
<td>GW</td>
<td>P</td>
<td>1 L</td>
<td>HNO3</td>
<td></td>
<td>G</td>
<td>ISO U (HAAS-300)</td>
</tr>
<tr>
<td>108030</td>
<td>013</td>
<td>CYN-MW15</td>
<td>182</td>
<td>4/17/19 10:32</td>
<td>GW</td>
<td>AG</td>
<td>250 ml</td>
<td>NONE</td>
<td></td>
<td>G</td>
<td>TRITIUM (EPA 906)</td>
</tr>
<tr>
<td>108031</td>
<td>001</td>
<td>BSG-TB 23</td>
<td>NA</td>
<td>4/17/19 10:16</td>
<td>DIW</td>
<td>G</td>
<td>3x40 ml</td>
<td>HCl</td>
<td></td>
<td>G</td>
<td>TRICHLOROETHANE (TCE)</td>
</tr>
<tr>
<td>108060</td>
<td>004</td>
<td>BSG-TB 24</td>
<td>NA</td>
<td>4/17/19 10:18</td>
<td>DIW</td>
<td>AG</td>
<td>3x40 ml</td>
<td>NONE</td>
<td></td>
<td>G</td>
<td>TPH-GROD (SW846-8015)</td>
</tr>
<tr>
<td>108061</td>
<td>004</td>
<td>BSG-FB 6</td>
<td>NA</td>
<td>4/17/19 10:18</td>
<td>DIW</td>
<td>AG</td>
<td>3x40 ml</td>
<td>NONE</td>
<td></td>
<td>G</td>
<td>TPH-GROD (SW846-8015)</td>
</tr>
</tbody>
</table>
Certificate of Analysis

Company: Sandia National Laboratories
Address: 1515 Eubank SE,ORG 4142
BLDG. 1090/120, MS 1103
Albuquerque, New Mexico 87123
Contact: Ms. Wendy Palencia
Project: Groundwater, Level C Package

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>DL</th>
<th>RL</th>
<th>Units</th>
<th>PF</th>
<th>DF</th>
<th>Analyst Date</th>
<th>Time Batch</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Chromatography</td>
<td></td>
</tr>
<tr>
<td>EPA 314.0 Perchlorate by IC "As Received"</td>
<td></td>
</tr>
<tr>
<td>Perchlorate</td>
<td>U</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.004</td>
<td>0.012</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LXA2 05/10/19 2004 187195</td>
</tr>
</tbody>
</table>

The following Analytical Methods were performed:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Analyst Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPA 314.0 DOE-AL</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Column headers are defined as follows:
DF: Dilution Factor
DL: Detection Limit
MDA: Minimum Detectable Activity
MDC: Minimum Detectable Concentration
Lo/LC: Critical Level
PF: Prep Factor
RL: Reporting Limit
SQL: Sample Quantitation Limit
Appendix B
Data Validation Sample Findings
Summary Sheets for the Perchlorate Data
Memorandum

Date: June 17, 2019
To: File
From: Linda Thal
Subject: Inorganic Data Review and Validation – SNL
Site: BSG AOC
ARCCOC: 619631
SDG: 476753
Laboratory: GEL
Project/Task: 195122.12.11.01
Analysis: General Chemistry

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 5.

Summary

One sample was prepared and analyzed with accepted procedures using methods EPA 9056A (anions by IC), SM 2320B (total alkalinity), EPA 314.0 (perchlorate) and EPA 353.2 (nitrate/nitrite). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

Anions:
1. The MS and replicate were performed on sample 475535006, an EB from another SNL SDG. The associated sample results were detects and will be qualified J,MS1,RP1 due to lack of matrix-specific accuracy and precision data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

Calibration

All initial and continuing calibrations met QC acceptance criteria except as follows. The initial calibration intercept was negative with an absolute value > the MDL but ≤3X the MDL for fluoride. The associated sample result was a detect >3X the absolute value of the intercept and will not be qualified.
Blanks

No target analytes were detected in any of the blanks.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Matrix Spike and Matrix Spike Duplicate (MS/MSD)

The MS/PS met QC acceptance criteria except as noted above in the Summary section. It should be noted that the MS/PS analyses for alkalinity and nitrate/nitrite were performed on SNL samples of similar matrix from other SDGs. No data will be qualified.

Laboratory Replicate

The replicate analysis met all QC acceptance criteria except as noted above in the Summary section. It should be noted that the replicate analyses for alkalinity and nitrate/nitrite were performed on SNL samples of similar matrix from other SDGs. No data will be qualified.

Detection Limits/Dilutions

All detection limits were properly reported and correctly adjusted for dilutions performed due to elevated target analyte concentrations and/or matrix interference.

Anions:
The sample was diluted 20X for chloride and sulfate.

Nitrate/Nitrite:
The sample was diluted 25X.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Jeanne Peterson Level: 1 Date: 06/17/2019
Sample Findings Summary

AR/COC: 619631

<table>
<thead>
<tr>
<th>Analytical Method</th>
<th>Sample ID</th>
<th>Analyte Name (CAS#)</th>
<th>Qualifier, RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE EML HASL-300, U-02-RC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>108030-012/CYN-MW15</td>
<td>Uranium-235/236 (15117-96-1/13982-70-)</td>
<td>J, FR7</td>
</tr>
<tr>
<td>EPA 900.0/SW846 9310</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>108030-011/CYN-MW15</td>
<td>BETA (12587-47-2)</td>
<td>R, FR4</td>
</tr>
<tr>
<td>EPA 901.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>108030-010/CYN-MW15</td>
<td>Americium-241 (14596-10-2)</td>
<td>BD, FR3</td>
</tr>
<tr>
<td></td>
<td>108030-010/CYN-MW15</td>
<td>Cesium-137 (10045-97-3)</td>
<td>BD, FR3</td>
</tr>
<tr>
<td></td>
<td>108030-010/CYN-MW15</td>
<td>Cobalt-60 (10198-40-0)</td>
<td>BD, FR3</td>
</tr>
<tr>
<td></td>
<td>108030-010/CYN-MW15</td>
<td>Potassium-40 (13966-00-2)</td>
<td>BD, FR3</td>
</tr>
<tr>
<td>EPA 906.0 Modified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>108030-013/CYN-MW15</td>
<td>Tritium (10028-17-8)</td>
<td>BD, FR3</td>
</tr>
<tr>
<td>SW846 3005A/6020B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>108030-009/CYN-MW15</td>
<td>Manganese (7439-96-5)</td>
<td>R, CK3</td>
</tr>
<tr>
<td>SW846 3535A/8015D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>108030-003/CYN-MW15</td>
<td>Diesel Range Organics (68334-30-5)</td>
<td>UJ, M55</td>
</tr>
<tr>
<td>SW846 3535A/8330B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>108030-002/CYN-MW15</td>
<td>m-Nitrotoluene (99-08-1)</td>
<td>UJ, I4</td>
</tr>
<tr>
<td></td>
<td>108030-002/CYN-MW15</td>
<td>Nitrobenzene (98-95-3)</td>
<td>UJ, I4</td>
</tr>
<tr>
<td></td>
<td>108030-002/CYN-MW15</td>
<td>o-Nitrotoluene (88-72-2)</td>
<td>UJ, DL3</td>
</tr>
<tr>
<td></td>
<td>108030-002/CYN-MW15</td>
<td>p-Nitrotoluene (99-99-0)</td>
<td>UJ, I4</td>
</tr>
<tr>
<td>SW846 8015A/B VOC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>108030-004/CYN-MW15</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>UJ, MS3, MS5</td>
</tr>
<tr>
<td></td>
<td>108060-004/BSG-TB 24</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>UJ, MS3, MS5</td>
</tr>
<tr>
<td></td>
<td>108061-004/BSG-FB 6</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>UJ, MS3, MS5</td>
</tr>
<tr>
<td>SW846 8260B DOE-AL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Method</td>
<td>Sample ID</td>
<td>Analyte Name (CAS#)</td>
<td>Qualifier, RC</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>1,1,2,2-Tetrachloroethane (79-34-5)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>1,2,3-Trichlorobenzene (87-61-6)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>1,2,4-Trichlorobenzene (120-82-1)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>1,2-Dibromo-3-chloropropane (96-12-8)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>1,2-Dichlorobenzene (95-50-1)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>1,3-Dichlorobenzene (541-73-1)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>1,4-Dichlorobenzene (106-46-7)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>2-Hexanone (591-78-6)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>4-Methyl-2-pentanone (108-10-1)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>Acetone (67-64-1)</td>
<td>10U, B</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>Bromoform (75-25-2)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>Isopropylbenzene (98-82-8)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108029-001/BSG-FB 5</td>
<td>Tetrachloroethylene (127-18-4)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>1,1,2,2-Tetrachloroethane (79-34-5)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>1,2,3-Trichlorobenzene (87-61-6)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>1,2,4-Trichlorobenzene (120-82-1)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>1,2-Dibromo-3-chloropropane (96-12-8)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>1,2-Dichlorobenzene (95-50-1)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>1,3-Dichlorobenzene (541-73-1)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>1,4-Dichlorobenzene (106-46-7)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>2-Hexanone (591-78-6)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>4-Methyl-2-pentanone (108-10-1)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>Acetone (67-64-1)</td>
<td>10U, B</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>Bromoform (75-25-2)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>Isopropylbenzene (98-82-8)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108030-001/CYN-MW15</td>
<td>Tetrachloroethylene (127-18-4)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>108031-001/BSG-TB 23</td>
<td>1,1,2,2-Tetrachloroethane (79-34-5)</td>
<td>UJ, MSS</td>
<td></td>
</tr>
<tr>
<td>Analytical Method</td>
<td>Sample ID</td>
<td>Analyte Name (CAS#)</td>
<td>Qualifier, RC</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>1,2,3-Trichlorobenzene (87-61-6)</td>
<td>UJ, MSS</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>1,2,4-Trichlorobenzene (120-82-1)</td>
<td>UJ, MSS</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>1,2-Dibromo-3-chloropropane (96-12-8)</td>
<td>UJ, MSS</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>1,2-Dichlorobenzene (95-50-1)</td>
<td>UJ, MSS</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>1,3-Dichlorobenzene (541-73-1)</td>
<td>UJ, MSS</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>1,4-Dichlorobenzene (106-46-7)</td>
<td>UJ, MSS</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>2-Hexanone (591-78-6)</td>
<td>UJ, MSS</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>4-Methyl-2-pentanone (108-10-1)</td>
<td>UJ, MSS</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>Acetone (67-64-1)</td>
<td>10UJ, B,C3</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>Bromoform (75-25-2)</td>
<td>UJ, MSS</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>Isopropylbenzene (98-82-8)</td>
<td>UJ, MSS</td>
</tr>
<tr>
<td></td>
<td>108031-001/BSG-TB 23</td>
<td>Tetrachloroethylene (127-18-4)</td>
<td>UJ, MSS</td>
</tr>
</tbody>
</table>

SW846 9056A

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Analyte Name (CAS#)</th>
<th>Qualifier, RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>108030-006/CYN-MW15</td>
<td>Bromide (24959-67-9)</td>
<td>J, MS1,RP1</td>
</tr>
<tr>
<td>108030-006/CYN-MW15</td>
<td>Chloride (16887-00-6)</td>
<td>J, MS1,RP1</td>
</tr>
<tr>
<td>108030-006/CYN-MW15</td>
<td>Fluoride (16984-48-8)</td>
<td>J, MS1,RP1</td>
</tr>
<tr>
<td>108030-006/CYN-MW15</td>
<td>Sulfate (14808-79-8)</td>
<td>J, MS1,RP1</td>
</tr>
</tbody>
</table>

All other analyses met QC acceptance criteria; no further data should be qualified.
SECTION III
TABLE OF CONTENTS

TECHNICAL AREA-V IN-SITU BIOREMEDIATION TREATABILITY STUDY FULL-SCALE
OPERATION, April – June 2019 .. III-1
1.0 Background .. III-1
2.0 Full-Scale Operation Activities at Well TAV-INJ1 ... III-2
 2.1 Volume of Injection .. III-2
 2.2 Substrate Solution and Bioaugmentation Culture .. III-3
 2.3 Cleaning of the Aboveground Injection System ... III-4
3.0 Groundwater Monitoring for Full-Scale Operation at Well TAV-INJ1 III-4
 3.1 Groundwater Levels in the Treatment Zone .. III-5
 3.2 Groundwater Levels at Technical Area-V .. III-6
 3.3 Groundwater Monitoring in the Treatment Zone .. III-6
 3.3.1 Groundwater Monitoring at Well TAV-INJ1 .. III-7
 3.3.2 Groundwater Monitoring at Well TAV-MW6 III-8
 3.3.3 Groundwater Monitoring at Well TAV-MW7 III-9
 3.4 Groundwater Monitoring Outside the Treatment Zone III-9
 3.5 Summary of Groundwater Monitoring Results for the Treatability Study III-10
4.0 Deviations .. III-11
5.0 References ... III-12

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>III-1</td>
<td>Treatment Solution/Groundwater Elevations in Well TAV-INJ1, October 25, 2018 – June 30, 2019</td>
</tr>
<tr>
<td>III-2</td>
<td>Groundwater Elevations in Well TAV-MW6, October 25, 2018 – June 30, 2019</td>
</tr>
<tr>
<td>III-3</td>
<td>Groundwater Elevations in Well TAV-MW7, December 19, 2018 – June 30, 2019</td>
</tr>
<tr>
<td>III-4</td>
<td>Well Locations and Potentiometric Surface Contours for April 2019</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table	Title
III-1 | Summary of Injections at Well TAV-INJ1
III-2a | Proposed Substrate Solution Components for Full-Scale Operation at Well TAV-INJ1
III-2b | Summary of Bioremediation Solution Components for Full-Scale Operation at Well TAV INJ1 by Injections
III-3 | Groundwater Sampling Conducted for Treatability Study, April – June 2019
III-4 | Analytical Results of Groundwater Sampling at Well TAV-INJ1, April – June 2019
III-5 | Analytical Results of Groundwater Sampling at Well TAV-MW6, April – June 2019
III-6 | Analytical Results of Groundwater Sampling at Well TAV-MW7, April – June 2019
III-7 | Analytical Results of Groundwater Sampling at Wells LWDS-MW1, TAV-MW2, TAV-MW4, TAV-MW8, TAV-MW10, TAV-MW11, TAV-MW12, and TAV-MW14, April – June 2019
III-8 | Field Water Quality Measurements before Groundwater Sampling at Each Well, April – June 2019
APPENDICES

Appendix A NMED’s Approval Letter and DOE’s Submittal with the Enclosure Describing Full-Scale Operation Modifications

Appendix B Bioremediation Treatability Study Aboveground Injection System at TAV-INJ1 As-Built Engineering Drawings
This page intentionally left blank.
SECTION III
TECHNICAL AREA-V IN-SITU BIOREMEDIATION TREATABILITY STUDY
FULL-SCALE OPERATION, April – June 2019

1.0 Background

Sandia National Laboratories, New Mexico (SNL/NM) personnel are conducting a Treatability Study of in-situ bioremediation (ISB) at Technical Area-V (TA-V). SNL/NM personnel plan to conduct the Treatability Study in two phases. Phase I includes a pilot test followed by full-scale operation at the first injection well (TAV-INJ1); Phase II includes full-scale operations at two additional injection wells (TAV-INJ2 and TAV-INJ3) contingent on the success of Phase I. The three injection wells, TAV-INJ1, TAV-INJ2, and TAV-INJ3, are located near monitoring wells TAV-MW6, TAV-MW10, and LWDS-MW1, respectively, where the highest contaminant concentrations in TA-V groundwater have been detected.

SNL/NM personnel have installed the first injection well TAV-INJ1 and completed the Phase I pilot test at this well. The operation and results of the pilot test were presented in Section III of the October 2018 Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) (SNL/NM October 2018). The Phase I full-scale operation at well TAV-INJ1 began in October 2018 with the first injection occurring on November 1, 2018. The injection period lasted approximately six months with the final injection on April 25, 2019. The injection period is followed by two years of groundwater monitoring for the performance of the ISB, at a monthly frequency starting May 2019 for three months and then quarterly ending May 2021.

The implementation of the Treatability Study is governed by the Revised Treatability Study Work Plan (TSWP) (SNL/NM March 2016) and where applicable, the approved modifications for the full-scale operation at TAV-INJ1 (U.S. Department of Energy [DOE] July 2018; New Mexico Environment Department [NMED] August 2018). Appendix A includes a copy of the NMED Hazardous Waste Bureau approval letter and DOE’s submittal of the proposed modifications.

This Section III of the ER Quarterly Report provides a summary of the six-month injection period of the Phase I full-scale operation from November 2018 to April 2019. This section also presents the monitoring results for the April – June 2019 reporting period. A technical memorandum for the Phase I Treatability Study, including both the pilot test and the full-
scale operation, will be produced after the Phase I performance monitoring period has concluded in May 2021, in accordance with the Revised TSWP (SNL/NM March 2016).

2.0 **Full-Scale Operation Activities at Well TAV-INJ1**

The ISB Treatability Study is designed to evaluate the efficacy of injecting a substrate solution and bioaugmentation culture to induce the denitrification of nitrate and complete dechlorination of trichloroethene (TCE) in the Regional Aquifer. The substrate solution, along with KB-1 dechlorinating bacteria (a product purchased from SiREM), is gravity-injected into the groundwater via injection wells. As planned in the Revised TSWP, the goal of the full-scale injections at well TAV-INJ1 is to deliver a total of 530,000 gallons of substrate solution mixed with 120 liters of KB-1 dechlorinating bacteria over a six-month period (SNL/NM March 2016).

The As-Built Engineering Drawings for the full-scale injection assembly are included in Appendix B. The drawings include the final site layout plan, injection manifold and well head assembly diagram, and injection system diagram. As shown in Sheet 4, the site layout plan for full-scale test at well TAV-INJ1, two aboveground tanks were used for full-scale operation, reduced from the four originally proposed in the Revised TSWP (SNL/NM March 2016) (see Modification #2 in Appendix A).

2.1 **Volume of Injection**

For the full-scale injections at well TAV-INJ1, the substrate solution was mixed in two aboveground 5,000-gallon polyethylene tanks (Deoxygenation Tanks A and B). The 1st batch was injected on November 1, 2018 and the 110th and final batch was injected on April 25, 2019. Table III-1 presents the volume, the average flow rate, and the maximum injection head (water column height inside the well casing) above static groundwater level for each injection batch. A total of 531,516 gallons of substrate solution was discharged to groundwater, averaging 4,832 gallons per batch (i.e., per injection or per tank).

During the first three months of the injection period, each tank was emptied within one workday (i.e., standard injection). Starting in mid-February 2019, the project team implemented a longer (extended) period of injections at lower flow rates when the substrate solution was controlled to flow at a lower pressure head. Extended injections normally took overnight to complete. Hydrogeologically, extended injections at lower flow rates were beneficial for optimizing the distribution and transport of nutrients and bacteria to the
surrounding region because the flow was more evenly distributed along the well screen. Lowering the pressure head would reduce the mounding near the injection well. Extended injections also helped open up flow channels near the well. Thereafter, the intermittent standard injections experienced less pressure head buildup than previous injections.

2.2 Substrate Solution and Bioaugmentation Culture

Table III-2a presents the functionality of each component of the substrate solution and their weight proposed before starting the full-scale operation. The weight of each component per 1,000 gallons of water is converted to weight per 5,000 gallons of water in the last column of Table III-2a for easy comparison to the actual usage presented in Table III-2b.

Table III-2b presents the actual usage of each component and KB-1 dechlorinating bacteria for each of the 110 injections. The quantities of diammonium phosphate, sodium bromide, and KB-1 dechlorinating bacteria were the same as proposed during the six-month injection. The quantities of potassium bicarbonate and sodium sulfite changed from time to time throughout the injection period. The quantities of ethyl lactate and Accelerite® remained the same as proposed until the last six injections, when the quantity of ethyl lactate was reduced and Accelerite® was eliminated in order to stabilize the final in-well groundwater chemistry in anticipation of the end of the injection period.

Potassium bicarbonate and sodium sulfite were the key ingredients for achieving conditions necessary for the survival of the KB-1 dechlorinating bacteria by lowering dissolved oxygen (DO) to less than 1 milligram per liter (mg/L) and oxidation reduction potential (ORP) to below negative 75 millivolts in the substrate solution. For each injection, these two chemicals were mixed in potable water first to deoxygenate and reduce the water to desired conditions. The water quality in the tanks was evaluated using electronic sondes and meters. The quantities of these two chemicals were increased from the quantities originally planned in Table III-2a in order to achieve the necessary DO and ORP levels. Adjustments to the quantities of these two components were frequently made during the six-month period, as shown in Table III-2b, to induce optimal conditions not only in the tanks but also in the well for the dechlorinating bacteria to establish.

Once the DO and ORP in the tanks reached acceptable levels, the rest of the chemicals (i.e., the nutrients and the tracer) were added to the tanks and recirculated for optimal mixing. A batch was ready to inject when the key parameters were met: potential of hydrogen (pH) between 7 and 9, DO less than 1 mg/L, and ORP below negative 75 millivolts.
The Revised TSWP required that each daily injection be followed by approximately 100 gallons of chase water to push the substrate solution away from the well screen to mitigate biofouling (SNL/NM March 2016). After potassium bicarbonate and sodium sulfite were mixed in the 5,000-gallon tank but before the nutrients and tracer were added, approximately 100 gallons were drawn and stored in a standalone 150-gallon chase water tank. Chase water was used when one injection was completed and the next injection was scheduled for the following workday. Chase water was not necessary when the next injection followed on the same workday (Table III-1).

Table III-2b also presents the total quantities of the chemicals used in the full-scale operation. The mixing ratio for the substrate solution consisted of approximately 99.88 percent potable water and 0.12 percent amendments including the inert tracer. The mixing ratio of the KB-1 dechlorinating bacteria was approximately 1.1 liter per 5,000 gallons of substrate solution. A total of 122.8 liters of the KB-1 dechlorinating bacteria were injected to groundwater during full-scale operation.

2.3 Cleaning of the Aboveground Injection System

After completing the injections, the aboveground injection system was cleaned, partially dismantled, and stored. The project site was secured pending the decision on whether to proceed with Phase II of the Treatability Study. The two 5,000-gallon aboveground tanks and the associated equipment and piping were cleaned using household bleach in May 2019. The wastewater was discharged to a nearby sanitary sewer manhole at TA-V. The discharge was approved by the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) under Permit Number 2069K (ABCWUA September 2018), and was conducted in accordance with the conditions set forth in the approval.

3.0 Groundwater Monitoring for Full-Scale Operation at Well TAV-INJ1

The first treatment zone of the Treatability Study encompasses the injection well TAV-INJ1 and two nearby monitoring wells (TAV-MW6 and TAV-MW7). In-Situ Incorporated Aqua TROLL® 600 Multiparameter sondes were installed in these three wells. The parameters measured by the sonde include pressure, DO, ORP, pH, specific conductivity, temperature, and turbidity, in accordance with the Revised TSWP (SNL/NM March 2016). Pressure readings were converted to groundwater elevation above mean sea level for reporting.
Groundwater levels for the three wells before, during, and after the six-month injection period are discussed in Section 3.1. Details for the other parameters will be presented in the technical memorandum for the Phase I Treatability Study. Section 3.2 presents the groundwater elevation contour map for the entire area of TA-V.

Groundwater samples were collected from the three wells in the treatment zone as well as eight wells outside the treatment zone as planned in the Revised TSWP (SNL/NM March 2016). Table III-3 lists the sampling dates for the April – June 2019 reporting period for all the wells pertinent to the Treatability Study. Sections 3.3 and 3.4 present more details on the sampling frequency and analytical parameters for each well. Analytical results are presented in Tables III-4 through III-7. Table III-8 summarizes the stabilized water quality parameters measured immediately before sample collection at each well sampled during this reporting period.

3.1 Groundwater Levels in the Treatment Zone

Figures III-1 through 3 show the groundwater elevations in wells TAV-INJ1, TAV-MW6, and TAV-MW7, respectively. Note that the vertical scale (treatment solution or groundwater elevation) is different for each figure. The pre-injection static groundwater elevations are also shown as a point of reference throughout the injection period.

Figure III-1 shows the treatment solution/groundwater elevations measured at TAV-INJ1, starting on October 25, 2018 and ending on June 30, 2019. All 110 peak injection heads are included in this figure. The injection head ranged from approximately 120 feet above static to approximately 370 feet above static. Between December 21, 2018 and the first injection in 2019 on January 8, the groundwater elevation returned to approximate static level. After the final injection on April 25, 2019, the water level returned to and remained at static level since May 13, 2019.

Figure III-2 shows the groundwater elevations measured at monitoring well TAV-MW6 during the same period from October 25, 2018 to June 30, 2019. Well TAV-MW6 is located approximately 50 feet east-southeast of the injection well, and is screened across the water table as is the injection well. Ninety-three (93) of the 110 injections were recorded in well TAV-MW6, because the sonde was pulled out of the well the day before the well was sampled and re-installed the day after, while injections were ongoing in well TAV-INJ1. For the 93 injections, the groundwater elevation at well TAV-MW6 rose and fell in response to injections at TAV-INJ1, with a much lower magnitude than observed in the injection well: the peak groundwater elevation above static ranged between 0.21 and 3.77 feet in well
TAV-MW6. The groundwater elevation in well TAV-MW6 has returned to static level by the end of June 2019.

Figure III-3 shows the groundwater elevations measured at monitoring well TAV-MW7 from December 19, 2018 to June 30, 2019. Well TAV-MW7 is located approximately 27 feet east-southeast of the injection well, and is screened approximately 90 feet below the water table. The gaps in Figure III-3 indicate no sonde was in the well either when the well was sampled or because of equipment failure. No sonde was installed in well TAV-MW7 before December 19, 2018 due to equipment failure. The groundwater elevations in well TAV-MW7 did not respond to injections at TAV-INJ1. The groundwater elevation in well TAV-MW7 has returned to static level by the end of June 2019.

3.2 Groundwater Levels at Technical Area-V

Figure III-4 shows the April 2019 groundwater elevation contour map (potentiometric surface figure) for the Regional Aquifer at TA-V. The groundwater elevation contours are similar to the pre-operation October 2018 contours (SNL/NM April 2019). Groundwater flows generally to the west and southwest in the vicinity of the ISB treatment zone. The full-scale injections did not create a long-term impact on the potentiometric surface at TA-V.

3.3 Groundwater Monitoring in the Treatment Zone

Performance monitoring for the ISB Treatability Study full-scale operation at well TAV-INJ1 involves groundwater sampling at the injection well and two nearby monitoring wells TAV-MW6 and TAV-MW7. Even though well TAV-MW7 does not serve for monitoring the performance of ISB, this well is included in the monitoring of the ISB at well TAV-INJ1 to define the vertical impact of the injected solution. Pre-operation sampling was conducted in September 2018 with results presented in the April 2019 ER Quarterly Report (SNL/NM April 2019).

During the six-month injection period from November 2018 to April 2019, injection well TAV-INJ1 was not sampled, well TAV-MW6 was sampled monthly, and well TAV-MW7 was sampled quarterly, in accordance with the Revised TWSP (SNL/NM March 2016) and where applicable, the approved modifications for the full-scale operation at TAV-INJ1 (DOE July 2018; NMED August 2018).
The injection period is followed by two years of groundwater monitoring for the performance of the ISB. Wells TAV-INJ1 and TAV-MW6 will be sampled monthly for May, June, and July 2019, and then quarterly ending May 2021, in accordance with the Revised TSWP (SNL/NM March 2016). Sampling frequency at well TAV-MW7 is quarterly in accordance with Modification #7 in Appendix A.

During this reporting period, injection well TAV-INJ1 was sampled twice after the injections were concluded at the end of April; monitoring well TAV-MW6 was sampled three times; and monitoring well TAV-MW7 was sampled once (Table III-3).

3.3.1 **Groundwater Monitoring at Well TAV-INJ1**

During the full-scale operation, the project team discovered significant sediment accumulation in the injection well. This is probably due to the repeated disturbance of the geological formation by the 110 injections over the six-month period. As a result, the sampling pump was placed higher than the pre-operation sampling when the well was free of suspended sediment. The purge volume before sample collection at well TAV-INJ1 during the pilot test and pre-operation sampling in September 2018, was 59 gallons. However, after six-month injections, the well was dry after pumping approximately 11.5 gallons of well water. The usual practice is to let the well recover overnight and collect samples the next day. However, the microbial sample was required to be collected immediately after purging on the first day. In the two sampling events at well TAV-INJ1, the microbial samples were collected on June 3 and June 25, and the rest of the samples were collected on June 4 and June 26, 2019 (Table III-3).

The analytical parameters for groundwater samples from well TAV-INJ1 include the following in accordance with Modification #8 in Appendix A:

- Alkalinity (total, bicarbonate, and carbonate)
- Ammonia (as nitrogen)
- Anions (bromide and sulfate)
- *Dehalococcoides* (Dhc) and, if Dhc is present, vinyl chloride reductase
- Dissolved metals (arsenic, iron, and manganese)
- Methane/ethane/ethene
- Nitrate plus nitrite (NPN)
- Total organic carbon (TOC)
- Volatile organic compounds (VOCs)

Table III-4 provides the analytical results for the April – June 2019 sampling at well TAV-INJ1. The results show that:
• The two constituents of concern in the groundwater at TA-V, nitrate (as NPN) and TCE, were not detected in the two sampling events at well TAV-INJ1.
• Alkalinity and ammonia concentrations did not change much during the three-week timeframe of the two sampling events in June 2019.
• Results of bromide and sulfate in the June 4, 2019 sample appear to be anomalous because both results were significantly lower than those in the June 26, 2019 sample. The bromide concentration in aboveground tanks was approximately 19 mg/L. The bromide concentration in the June 26, 2019 was more reasonable. Continued sampling in the third quarter of CY 2019 will clarify these results.
• The Dhc are in the same order of magnitude at 10E6 gene copies per liter from the two sampling events. This is the starting population of the introduced dechlorinating bacteria in the groundwater.
• During the ISB, the substrate solution produces strongly redox conditions in the aquifer that solubilize and mobilize naturally occurring metals and metalloids. As expected, concentrations of arsenic, iron, and manganese increased during the three-week timeframe of the two sampling events in June 2019. Concentrations of arsenic exceeded the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 0.01 mg/L. The solubilization of these metals is a transient phenomenon and is limited to the treatment zone. Solubilized metals and metalloids will precipitate into solid form once they leave the anaerobic treatment zone.
• High levels of methane were detected in the groundwater at the injection well, while ethene was not detected.
• TOC concentration decreased more than half.

3.3.2 Groundwater Monitoring at Well TAV-MW6

The analytical parameters for groundwater samples from well TAV-MW6 are the same as those for well TAV-INJ1 in accordance with Modification #8 in Appendix A.

Table III-5 provides the analytical results for the April –June 2019 sampling at well TAV-MW6. The results show that:
• NPN concentrations were 16.6/16.7, 7.9, and 7.29 mg/L in samples collected in April (including a duplicate), May, and June 2019, respectively. NPN concentrations were above the EPA MCL of 10 mg/L in April and were the highest since the well was installed in 2002. NPN concentrations decreased to baseline levels and were below the EPA MCL in May and June.
- TCE concentrations were 6.91/7.56, 6.78, and 6.74 micrograms per liter in samples collected in April (including a duplicate), May, and June 2019, respectively, exceeding the EPA MCL of 5 micrograms per liter. These concentrations are consistent with the baseline sampling results.
- Bromide is the inert tracer that was added to the substrate solution. Bromide concentration is expected to increase in well TAV-MW6 as the substrate solution moves away from the injection well. Bromide concentrations increased gradually from the baseline result of 0.815 mg/L in September 2018 to 4.12 mg/L in June 2019.
- The results for the rest of the analytes are consistent with the baseline sampling results.
- Groundwater field parameters before sample collection in April, May, and June do not show significant change, except for DO (Table III-8). DO has decreased from 5.27 mg/L to 3.63 mg/L from April to June, 2019.

3.3.3 **Groundwater Monitoring at Well TAV-MW7**

The analytical parameters for groundwater samples from well TAV-MW7 include the following in accordance with Modification #7 in Appendix A:

- Bromide
- Dissolved metals (arsenic, iron, and manganese)
- Ethene
- NPN
- VOCs

Table III-6 provides the analytical results for the April – June 2019 sampling at well TAV-MW7, which is screened 90 feet below the water table. The results show that:

- For the two constituents of concern, NPN concentration was 5.47 mg/L which is below the EPA MCL of 10 mg/L and TCE was not detected. These results are consistent with the baseline sampling results.
- The results for the rest of the analytes are also consistent with the baseline sampling results, including bromide.

3.4 **Groundwater Monitoring Outside the Treatment Zone**

In accordance with Section 5.5 of the Revised TSWP (SNL/NM March 2016), eight wells are sampled quarterly for dissolved metals (iron, manganese, and arsenic) to evaluate potential impact of substrate solution on groundwater outside the Phase I Treatability Study...
treatment zone. The eight wells are: LWDS-MW1, TAV-MW2, TAV-MW4, TAV-MW8, TAV-MW10, TAV-MW11, TAV-MW12, and TAV-MW14. The analytical parameters for groundwater samples from these wells include the following:

- Dissolved metals (arsenic, iron, and manganese)
- NPN
- VOCs

These parameters are the same as those for the other wells in the TA-V groundwater monitoring network (SNL/NM June 2019). Table III-3 lists the sampled dates for these wells in this reporting period. Table III-7 provides the analytical results for the April – June 2019 sampling at the eight wells. Duplicate samples were collected from well TAV-MW12, per the monitoring scheme of the SNL/NM Long-Term Stewardship program for the TA-V groundwater monitoring network.

All analytical results and field parameters are consistent with the historical values at these eight wells presented in Chapter 5 of the CY 2018 Annual Groundwater Monitoring Report (SNL/NM June 2019).

3.5 Summary of Groundwater Monitoring Results for the Treatability Study

Approximately one month after injections were completed, the groundwater elevations returned to static level in the injection well (Figure III-1). The groundwater elevations in wells TAV-MW6 and TAV-MW7 also returned to static levels by the end of this reporting period (Figures III-2 and III-3).

Unlike the groundwater level response observed in well TV-MW6, groundwater level response in well TAV-MW7 shows no direct hydraulic connection with the injections. Figure III-3 confirms the rationale for excluding well TAV-MW7 as an ISB performance monitoring well and reverting it back to the TA-V groundwater monitoring network, which is administered by the SNL/NM Long-Term Stewardship program (see Modification #7 in Appendix A).

With the influx of substrate solution, the water in and surrounding the injection well has turned anaerobic and reduced, the conditions necessary for the dechlorinating bacteria to establish population. Based on the groundwater analytical results at the injection well:

- Both NPN and TCE were not detected. Nitrate would have been biodegraded by native bacteria as being the most favorable electron accepter after DO was depleted (see Section 3.0 of the Revised TSWP [SNL/NM March 2016]). It is also possible
that the native groundwater was pushed away from the well by the injections and has not flowed back or completely mixed with the injected solution.

- There was sufficient initial population of the Dhc (on the order of 10E6 gene copies per liter) in the groundwater at the injection well. Additional monitoring is necessary to detect any dechlorination activity.
- Concentrations of dissolved metals have increased as expected.
- High levels of methane and TOC being consumed indicate active microbial activity in the groundwater near the injection well along with carbon consumption. However, ethene is the parameter indicating complete dechlorination from TCE, and dechlorination has not occurred or not to a detectable extent.

Well TAV-MW6 serves as monitoring well for the performance of ISB in the treatment zone. The groundwater analytical results at this well indicate that:

- Bromide, the inert tracer, has migrated to well TAV-MW6.
- The Dhc have not reached well TAV-MW6.
- The groundwater DO levels have decreased at TAV-MW6, an early sign that the groundwater is turning anaerobic at this well.

Groundwater results from well TAV-MW7 indicate that the substrate solution injected at TAV-INJ1 has not impacted the deeper groundwater monitored by this well.

For the eight wells located outside the treatment zone, there is no impact on the groundwater chemistry at these wells from the substrate solution injected at well TAV-INJ1.

4.0 Deviations

No deviations were encountered with regards to the Revised TWSP (SNL/NM March 2016) and where applicable, the approved modifications for the full-scale operation at TAV-INJ1 (DOE July 2018; NMED August 2018).

In Modification #7 in Appendix A, SNL/NM personnel proposed installing an in-situ water quality sonde (i.e., In-Situ Incorporated Aqua TROLL® 600 Multiparameter sonde) in well TAV-MW7 during full-scale operation. The groundwater elevation during and after the six-month injection period (Figure III-3) and the analytical results at well TAV-MW7 (Table III-6) indicate that the injection of approximately 530,000 gallons substrate solution at well TAV-INJ1 did not impact the deep hydrostratigraphic zone where well TAV-MW7 is screened. Therefore, SNL/NM proposes to remove the sonde from this well because
continuously collecting water quality data is not necessary. Groundwater field parameters are measured each time before the well is sampled (as in Table III-8). This provides sufficient information on water quality at well TAV-MW7.

5.0 References

ABCWUA, see Albuquerque Bernalillo County Water Utility Authority.

DOE, see U.S. Department of Energy.

NMED, see New Mexico Environment Department.

Sandia National Laboratories, New Mexico (SNL/NM), March 2016. Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern, Sandia National Laboratories, Albuquerque, New Mexico.

SNL/NM, see Sandia National Laboratories, New Mexico.

Figures
Figure III-1
Treatment Solution/Groundwater Elevations in Well TAV-INJ1, October 25, 2018 – June 30, 2019
Figure III-2
Groundwater Elevations in Well TAV-MW6, October 25, 2018 – June 30, 2019
Figure III-3
Groundwater Elevations in Well TAV-MW7, December 19, 2018 – June 30, 2019
Figure III-4
Well Locations and Potentiometric Surface Contours for April 2019

Note: Wells AV/N-1, TAV-MW7, TAV-MW9, and TAV-MW13 are completed below the water table, and were not contoured (NC). TAV-INJ1 is NC because the well has a 30-foot long screen.
Tables
This page intentionally left blank.
<table>
<thead>
<tr>
<th>Injection #</th>
<th>Date(s) of Injection</th>
<th>Injection Type</th>
<th>Deoxygenation Tank Designation</th>
<th>Totalizer Flow Meter Start (gallons)</th>
<th>Totalizer Flow Meter End (gallons)</th>
<th>Chase Water (gallons)</th>
<th>Volume Injected (gallons per minute)</th>
<th>Average Injection Flow Rate (gallons per minute)</th>
<th>Injection Head (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11/1/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>13980</td>
<td>18626</td>
<td>100</td>
<td>4746</td>
<td>16.3</td>
<td>296.78</td>
</tr>
<tr>
<td>2</td>
<td>11/2/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>18626</td>
<td>23340</td>
<td>100</td>
<td>4814</td>
<td>19.9</td>
<td>268.98</td>
</tr>
<tr>
<td>3</td>
<td>11/3/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>23471</td>
<td>27969</td>
<td>100</td>
<td>4598</td>
<td>18.1</td>
<td>245.90</td>
</tr>
<tr>
<td>4</td>
<td>11/7/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>28070</td>
<td>32746</td>
<td>100</td>
<td>4776</td>
<td>13.5</td>
<td>223.77</td>
</tr>
<tr>
<td>5</td>
<td>11/8/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>32746</td>
<td>37318</td>
<td>0</td>
<td>4568</td>
<td>19.1</td>
<td>235.41</td>
</tr>
<tr>
<td>6</td>
<td>11/9/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>28070</td>
<td>32746</td>
<td>100</td>
<td>4776</td>
<td>13.5</td>
<td>223.77</td>
</tr>
<tr>
<td>7</td>
<td>11/14/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>42038</td>
<td>46708</td>
<td>100</td>
<td>4770</td>
<td>21.8</td>
<td>265.37</td>
</tr>
<tr>
<td>8</td>
<td>11/15/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>40708</td>
<td>51382</td>
<td>100</td>
<td>4784</td>
<td>21.4</td>
<td>266.61</td>
</tr>
<tr>
<td>9</td>
<td>11/16/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>51413</td>
<td>56658</td>
<td>100</td>
<td>4745</td>
<td>18.7</td>
<td>264.74</td>
</tr>
<tr>
<td>10</td>
<td>11/19/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>56182</td>
<td>60650</td>
<td>124</td>
<td>4592</td>
<td>19.1</td>
<td>256.86</td>
</tr>
<tr>
<td>11</td>
<td>11/20/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>60774</td>
<td>65240</td>
<td>100</td>
<td>4566</td>
<td>21.1</td>
<td>272.87</td>
</tr>
<tr>
<td>12</td>
<td>11/21/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>65362</td>
<td>70037</td>
<td>100</td>
<td>4775</td>
<td>19.7</td>
<td>261.23</td>
</tr>
<tr>
<td>13</td>
<td>11/27/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>70162</td>
<td>74889</td>
<td>110</td>
<td>4837</td>
<td>21.9</td>
<td>268.05</td>
</tr>
<tr>
<td>14</td>
<td>11/28/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>79525</td>
<td>79750</td>
<td>100</td>
<td>4925</td>
<td>18.1</td>
<td>270.53</td>
</tr>
<tr>
<td>15</td>
<td>11/30/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>79871</td>
<td>84538</td>
<td>110</td>
<td>4777</td>
<td>18.7</td>
<td>265.86</td>
</tr>
<tr>
<td>16</td>
<td>12/3/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>84669</td>
<td>89345</td>
<td>100</td>
<td>4776</td>
<td>21.9</td>
<td>259.73</td>
</tr>
<tr>
<td>17</td>
<td>12/4/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>89471</td>
<td>94214</td>
<td>100</td>
<td>4843</td>
<td>19.1</td>
<td>263.49</td>
</tr>
<tr>
<td>18</td>
<td>12/5/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>94339</td>
<td>99880</td>
<td>100</td>
<td>4851</td>
<td>18.2</td>
<td>255.53</td>
</tr>
<tr>
<td>19</td>
<td>12/6/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>99214</td>
<td>103865</td>
<td>100</td>
<td>4751</td>
<td>21.4</td>
<td>268.30</td>
</tr>
<tr>
<td>20</td>
<td>12/7/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>104090</td>
<td>108713</td>
<td>100</td>
<td>4723</td>
<td>19.7</td>
<td>273.18</td>
</tr>
<tr>
<td>21</td>
<td>12/10/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>108813</td>
<td>113412</td>
<td>100</td>
<td>4699</td>
<td>17.8</td>
<td>269.74</td>
</tr>
<tr>
<td>22</td>
<td>12/11/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>113335</td>
<td>118223</td>
<td>100</td>
<td>4788</td>
<td>19.6</td>
<td>250.38</td>
</tr>
<tr>
<td>23</td>
<td>12/12/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>118348</td>
<td>123010</td>
<td>100</td>
<td>4762</td>
<td>19.1</td>
<td>299.77</td>
</tr>
<tr>
<td>24</td>
<td>12/13/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>123133</td>
<td>127754</td>
<td>100</td>
<td>4721</td>
<td>16.7</td>
<td>251.35</td>
</tr>
<tr>
<td>25</td>
<td>12/14/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>127878</td>
<td>132457</td>
<td>100</td>
<td>4679</td>
<td>15.3</td>
<td>290.82</td>
</tr>
<tr>
<td>26</td>
<td>12/17/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>132689</td>
<td>137279</td>
<td>100</td>
<td>4690</td>
<td>15.3</td>
<td>265.27</td>
</tr>
<tr>
<td>27</td>
<td>12/18/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>137408</td>
<td>142294</td>
<td>100</td>
<td>4946</td>
<td>16.3</td>
<td>291.13</td>
</tr>
<tr>
<td>28</td>
<td>12/19/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>142379</td>
<td>147004</td>
<td>100</td>
<td>4725</td>
<td>19.2</td>
<td>313.61</td>
</tr>
<tr>
<td>29</td>
<td>12/20/2018</td>
<td>STANDARD A</td>
<td>B</td>
<td>147134</td>
<td>151760</td>
<td>100</td>
<td>4726</td>
<td>13.7</td>
<td>312.68</td>
</tr>
<tr>
<td>30</td>
<td>1/9/2019</td>
<td>STANDARD A</td>
<td>B</td>
<td>151867</td>
<td>156694</td>
<td>100</td>
<td>4907</td>
<td>20.1</td>
<td>290.33</td>
</tr>
<tr>
<td>31</td>
<td>1/11/2019</td>
<td>STANDARD A</td>
<td>B</td>
<td>156728</td>
<td>160959</td>
<td>100</td>
<td>4331</td>
<td>17.1</td>
<td>286.86</td>
</tr>
<tr>
<td>32</td>
<td>1/15/2019</td>
<td>STANDARD A</td>
<td>B</td>
<td>161196</td>
<td>166777</td>
<td>100</td>
<td>4681</td>
<td>12.8</td>
<td>303.93</td>
</tr>
<tr>
<td>33</td>
<td>1/16/2019</td>
<td>STANDARD A</td>
<td>B</td>
<td>165914</td>
<td>170696</td>
<td>100</td>
<td>4882</td>
<td>14.1</td>
<td>296.44</td>
</tr>
<tr>
<td>34</td>
<td>1/17/2019</td>
<td>STANDARD A</td>
<td>B</td>
<td>170717</td>
<td>175414</td>
<td>100</td>
<td>4797</td>
<td>12.4</td>
<td>260.27</td>
</tr>
<tr>
<td>35</td>
<td>1/18/2019</td>
<td>STANDARD A</td>
<td>B</td>
<td>175438</td>
<td>180307</td>
<td>100</td>
<td>4969</td>
<td>12.6</td>
<td>300.81</td>
</tr>
<tr>
<td>Injection #</td>
<td>Date(s) of Injection</td>
<td>Injection Type a</td>
<td>Deoxygenation Tank Designation</td>
<td>Totalizer Flow Meter Start (gallons)</td>
<td>Totalizer Flow Meter End (gallons)</td>
<td>Chase Water b (gallons)</td>
<td>Volume Injected c (gallons)</td>
<td>Average Injection Flow Rate d (gallons per minute)</td>
<td>Injection Head e (feet)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>36</td>
<td>1/21/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>180428</td>
<td>185169</td>
<td>100</td>
<td>4841</td>
<td>13.8</td>
<td>304.37</td>
</tr>
<tr>
<td>37</td>
<td>1/23/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>185346</td>
<td>189859</td>
<td>100</td>
<td>4613</td>
<td>13.5</td>
<td>315.98</td>
</tr>
<tr>
<td>38</td>
<td>1/24/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>189979</td>
<td>194581</td>
<td>100</td>
<td>4702</td>
<td>13.2</td>
<td>299.42</td>
</tr>
<tr>
<td>39</td>
<td>1/25/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>194698</td>
<td>199278</td>
<td>100</td>
<td>4680</td>
<td>13.8</td>
<td>308.36</td>
</tr>
<tr>
<td>40</td>
<td>1/28/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>199399</td>
<td>204019</td>
<td>100</td>
<td>4720</td>
<td>12.4</td>
<td>283.10</td>
</tr>
<tr>
<td>41</td>
<td>1/29/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>204138</td>
<td>208763</td>
<td>100</td>
<td>4725</td>
<td>11.9</td>
<td>283.26</td>
</tr>
<tr>
<td>42</td>
<td>1/30/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>0</td>
<td>4700</td>
<td>105</td>
<td>4805</td>
<td>14.2</td>
<td>318.20</td>
</tr>
<tr>
<td>43</td>
<td>1/31/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>0</td>
<td>4914</td>
<td>100</td>
<td>5014</td>
<td>13.1</td>
<td>313.39</td>
</tr>
<tr>
<td>44</td>
<td>2/1/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>0</td>
<td>4865</td>
<td>100</td>
<td>4965</td>
<td>18.4</td>
<td>294.37</td>
</tr>
<tr>
<td>45</td>
<td>2/4/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>211307</td>
<td>215870</td>
<td>100</td>
<td>4663</td>
<td>16.1</td>
<td>285.23</td>
</tr>
<tr>
<td>46</td>
<td>2/5/2019 - 2/8/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>215994</td>
<td>220702</td>
<td>0</td>
<td>4708</td>
<td>3.4</td>
<td>126.56</td>
</tr>
<tr>
<td>47</td>
<td>2/6/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>220702</td>
<td>225434</td>
<td>100</td>
<td>4832</td>
<td>21.0</td>
<td>218.38</td>
</tr>
<tr>
<td>48</td>
<td>2/7/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>225558</td>
<td>230409</td>
<td>100</td>
<td>4951</td>
<td>19.4</td>
<td>303.60</td>
</tr>
<tr>
<td>49</td>
<td>2/8/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>230535</td>
<td>235315</td>
<td>100</td>
<td>4880</td>
<td>19.5</td>
<td>302.11</td>
</tr>
<tr>
<td>50</td>
<td>2/11/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>235443</td>
<td>240345</td>
<td>0</td>
<td>4902</td>
<td>22.2</td>
<td>306.15</td>
</tr>
<tr>
<td>51</td>
<td>2/11/2019 - 2/12/2019</td>
<td>EXTENDED</td>
<td>B</td>
<td>240345</td>
<td>245236</td>
<td>0</td>
<td>4891</td>
<td>4.5</td>
<td>171.70</td>
</tr>
<tr>
<td>52</td>
<td>2/12/2019 - 2/13/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>245236</td>
<td>250129</td>
<td>0</td>
<td>4893</td>
<td>4.2</td>
<td>167.00</td>
</tr>
<tr>
<td>53</td>
<td>2/13/2019 - 2/14/2019</td>
<td>EXTENDED</td>
<td>B</td>
<td>250129</td>
<td>255097</td>
<td>0</td>
<td>4968</td>
<td>3.4</td>
<td>120.00</td>
</tr>
<tr>
<td>54</td>
<td>2/14/2019 - 2/15/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>255097</td>
<td>260661</td>
<td>0</td>
<td>4564</td>
<td>4.5</td>
<td>161.00</td>
</tr>
<tr>
<td>55</td>
<td>2/15/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>256662</td>
<td>264125</td>
<td>100</td>
<td>4563</td>
<td>21.2</td>
<td>287.39</td>
</tr>
<tr>
<td>56</td>
<td>2/18/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>264257</td>
<td>269155</td>
<td>0</td>
<td>4898</td>
<td>23.3</td>
<td>287.40</td>
</tr>
<tr>
<td>57</td>
<td>2/18/2019 - 2/19/2019</td>
<td>EXTENDED</td>
<td>B</td>
<td>269160</td>
<td>274188</td>
<td>0</td>
<td>5028</td>
<td>4.8</td>
<td>140.50</td>
</tr>
<tr>
<td>58</td>
<td>2/19/2019 - 3/20/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>274188</td>
<td>279137</td>
<td>0</td>
<td>4949</td>
<td>3.6</td>
<td>142.66</td>
</tr>
<tr>
<td>59</td>
<td>2/21/2019 - 2/22/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>279142</td>
<td>284270</td>
<td>0</td>
<td>5128</td>
<td>5.7</td>
<td>171.00</td>
</tr>
<tr>
<td>60</td>
<td>2/22/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>284270</td>
<td>289188</td>
<td>100</td>
<td>5018</td>
<td>29.5</td>
<td>308.00</td>
</tr>
<tr>
<td>61</td>
<td>2/27/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>289314</td>
<td>294101</td>
<td>0</td>
<td>4787</td>
<td>26.1</td>
<td>309.99</td>
</tr>
<tr>
<td>62</td>
<td>2/27/2019 - 2/28/2019</td>
<td>EXTENDED</td>
<td>B</td>
<td>284103</td>
<td>288861</td>
<td>0</td>
<td>4858</td>
<td>3.9</td>
<td>156.00</td>
</tr>
<tr>
<td>63</td>
<td>2/28/2019 - 3/1/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>288861</td>
<td>303730</td>
<td>0</td>
<td>4768</td>
<td>4.9</td>
<td>160.40</td>
</tr>
<tr>
<td>64</td>
<td>3/1/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>303730</td>
<td>308544</td>
<td>100</td>
<td>4914</td>
<td>20.4</td>
<td>190.94</td>
</tr>
<tr>
<td>65</td>
<td>3/4/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>308788</td>
<td>313599</td>
<td>0</td>
<td>4811</td>
<td>22.9</td>
<td>287.79</td>
</tr>
<tr>
<td>67</td>
<td>3/5/2019 - 3/6/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>318422</td>
<td>323627</td>
<td>0</td>
<td>4845</td>
<td>3.4</td>
<td>198.00</td>
</tr>
<tr>
<td>68</td>
<td>3/6/2019 - 3/7/2019</td>
<td>EXTENDED</td>
<td>B</td>
<td>323627</td>
<td>328104</td>
<td>0</td>
<td>4837</td>
<td>5.7</td>
<td>151.00</td>
</tr>
<tr>
<td>69</td>
<td>3/7/2019 - 3/8/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>328104</td>
<td>333000</td>
<td>0</td>
<td>4956</td>
<td>5.5</td>
<td>141.00</td>
</tr>
<tr>
<td>70</td>
<td>3/8/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>333000</td>
<td>337698</td>
<td>100</td>
<td>4738</td>
<td>20.8</td>
<td>285.00</td>
</tr>
</tbody>
</table>
Table III-1 Summary of Injections at Well TAV-INJ1 (continued)

<table>
<thead>
<tr>
<th>Injection #</th>
<th>Date(s) of Injection</th>
<th>Injection Type *</th>
<th>Deoxygenation Tank Designation</th>
<th>Totalizer Flow Meter Start (gallons)</th>
<th>Totalizer Flow Meter End (gallons)</th>
<th>Chase Water b (gallons)</th>
<th>Volume Injected c (gallons)</th>
<th>Average Injection Flow Rate d (gallons per minute)</th>
<th>Injection Head e (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>3/12/2019 - 3/12/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>337831</td>
<td>342741</td>
<td>0</td>
<td>4910</td>
<td>6.3</td>
<td>150.80</td>
</tr>
<tr>
<td>72</td>
<td>3/12/2019 - 3/13/2019</td>
<td>EXTENDED</td>
<td>B</td>
<td>342741</td>
<td>347614</td>
<td>0</td>
<td>4873</td>
<td>5.2</td>
<td>146.00</td>
</tr>
<tr>
<td>73</td>
<td>3/13/2019 - 3/14/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>347614</td>
<td>352534</td>
<td>0</td>
<td>4920</td>
<td>4.9</td>
<td>133.00</td>
</tr>
<tr>
<td>74</td>
<td>3/14/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>352534</td>
<td>357312</td>
<td>0</td>
<td>4778</td>
<td>23.3</td>
<td>276.00</td>
</tr>
<tr>
<td>75</td>
<td>3/14/2019 - 3/15/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>357314</td>
<td>362276</td>
<td>0</td>
<td>4864</td>
<td>4.8</td>
<td>139.00</td>
</tr>
<tr>
<td>76</td>
<td>3/15/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>362276</td>
<td>366982</td>
<td>100</td>
<td>4804</td>
<td>22.3</td>
<td>331.00</td>
</tr>
<tr>
<td>77</td>
<td>3/18/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>367112</td>
<td>371909</td>
<td>0</td>
<td>4797</td>
<td>26.7</td>
<td>301.50</td>
</tr>
<tr>
<td>78</td>
<td>3/18/2019 - 3/19/2019</td>
<td>EXTENDED</td>
<td>B</td>
<td>371909</td>
<td>376742</td>
<td>0</td>
<td>4833</td>
<td>6.2</td>
<td>169.90</td>
</tr>
<tr>
<td>79</td>
<td>3/19/2019 - 3/20/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>376742</td>
<td>381570</td>
<td>0</td>
<td>4828</td>
<td>6.7</td>
<td>153.00</td>
</tr>
<tr>
<td>80</td>
<td>3/20/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>381570</td>
<td>386385</td>
<td>0</td>
<td>4815</td>
<td>22.4</td>
<td>276.00</td>
</tr>
<tr>
<td>81</td>
<td>3/20/2019 - 3/21/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>386385</td>
<td>391266</td>
<td>100</td>
<td>4881</td>
<td>7.6</td>
<td>182.00</td>
</tr>
<tr>
<td>82</td>
<td>3/21/2019 - 3/22/2019</td>
<td>EXTENDED</td>
<td>B</td>
<td>391266</td>
<td>396219</td>
<td>100</td>
<td>5053</td>
<td>8.4</td>
<td>192.00</td>
</tr>
<tr>
<td>83</td>
<td>3/25/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>396219</td>
<td>401050</td>
<td>0</td>
<td>4984</td>
<td>23.4</td>
<td>277.20</td>
</tr>
<tr>
<td>84</td>
<td>3/25/2019 - 3/26/2019</td>
<td>EXTENDED</td>
<td>B</td>
<td>401050</td>
<td>406023</td>
<td>0</td>
<td>4967</td>
<td>6.9</td>
<td>166.00</td>
</tr>
<tr>
<td>85</td>
<td>3/26/2019 - 3/27/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>406023</td>
<td>410923</td>
<td>0</td>
<td>4900</td>
<td>4.5</td>
<td>142.00</td>
</tr>
<tr>
<td>86</td>
<td>3/27/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>410923</td>
<td>415748</td>
<td>0</td>
<td>4925</td>
<td>28.3</td>
<td>305.00</td>
</tr>
<tr>
<td>87</td>
<td>3/27/2019 - 3/28/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>415748</td>
<td>420606</td>
<td>0</td>
<td>4858</td>
<td>4.4</td>
<td>135.00</td>
</tr>
<tr>
<td>88</td>
<td>3/28/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>420606</td>
<td>425590</td>
<td>100</td>
<td>5084</td>
<td>12.4</td>
<td>214.00</td>
</tr>
<tr>
<td>89</td>
<td>4/1/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>425590</td>
<td>430375</td>
<td>0</td>
<td>4740</td>
<td>22.6</td>
<td>261.00</td>
</tr>
<tr>
<td>90</td>
<td>4/1/2019 - 4/2/2019</td>
<td>EXTENDED</td>
<td>B</td>
<td>430375</td>
<td>435269</td>
<td>0</td>
<td>4894</td>
<td>6.3</td>
<td>160.50</td>
</tr>
<tr>
<td>91</td>
<td>4/2/2019 - 4/3/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>435269</td>
<td>440075</td>
<td>0</td>
<td>4806</td>
<td>8.8</td>
<td>187.00</td>
</tr>
<tr>
<td>92</td>
<td>4/3/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>440075</td>
<td>445068</td>
<td>0</td>
<td>4993</td>
<td>23.8</td>
<td>288.50</td>
</tr>
<tr>
<td>94</td>
<td>4/4/2019 - 4/5/2019</td>
<td>EXTENDED</td>
<td>B</td>
<td>449662</td>
<td>454944</td>
<td>100</td>
<td>5062</td>
<td>7.0</td>
<td>182.00</td>
</tr>
<tr>
<td>95</td>
<td>4/8/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>455070</td>
<td>459838</td>
<td>0</td>
<td>4768</td>
<td>23.8</td>
<td>289.82</td>
</tr>
<tr>
<td>96</td>
<td>4/8/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>459838</td>
<td>464809</td>
<td>0</td>
<td>4971</td>
<td>7.3</td>
<td>176.00</td>
</tr>
<tr>
<td>97</td>
<td>4/9/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>464809</td>
<td>469740</td>
<td>0</td>
<td>4931</td>
<td>7.8</td>
<td>189.00</td>
</tr>
<tr>
<td>98</td>
<td>4/10/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>469740</td>
<td>474608</td>
<td>0</td>
<td>4958</td>
<td>7.9</td>
<td>187.00</td>
</tr>
<tr>
<td>99</td>
<td>4/11/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>474608</td>
<td>479649</td>
<td>100</td>
<td>5051</td>
<td>6.1</td>
<td>167.00</td>
</tr>
<tr>
<td>100</td>
<td>4/15/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>479649</td>
<td>484565</td>
<td>0</td>
<td>4816</td>
<td>15.1</td>
<td>238.00</td>
</tr>
<tr>
<td>101</td>
<td>4/15/2019 - 4/16/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>484565</td>
<td>489547</td>
<td>0</td>
<td>4982</td>
<td>7.7</td>
<td>183.00</td>
</tr>
<tr>
<td>102</td>
<td>4/16/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>489547</td>
<td>494588</td>
<td>0</td>
<td>5051</td>
<td>21.9</td>
<td>280.00</td>
</tr>
<tr>
<td>103</td>
<td>4/16/2019 - 4/17/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>494588</td>
<td>499548</td>
<td>0</td>
<td>4950</td>
<td>6.7</td>
<td>160.00</td>
</tr>
<tr>
<td>104</td>
<td>4/18/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>499548</td>
<td>504435</td>
<td>0</td>
<td>4887</td>
<td>25.7</td>
<td>270.00</td>
</tr>
<tr>
<td>105</td>
<td>4/18/2019 - 4/19/2019</td>
<td>EXTENDED</td>
<td>A</td>
<td>504435</td>
<td>509406</td>
<td>100</td>
<td>5071</td>
<td>5.7</td>
<td>136.00</td>
</tr>
</tbody>
</table>
Table III-1 Summary of Injections at Well TAV-INJ1 (concluded)

<table>
<thead>
<tr>
<th>Injection #</th>
<th>Date(s) of Injection</th>
<th>Injection Type a</th>
<th>Deoxygenation Tank Designation</th>
<th>Totalizer Flow Meter Start (gallons)</th>
<th>Totalizer Flow Meter End (gallons)</th>
<th>Chase Water b (gallons)</th>
<th>Volume Injected c (gallons)</th>
<th>Average Injection Flow Rate d (gallons per minute)</th>
<th>Injection Head e (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>4/22/2019</td>
<td>STANDARD</td>
<td>B</td>
<td>598506</td>
<td>514412</td>
<td>0</td>
<td>4906</td>
<td>27.2</td>
<td>279.00</td>
</tr>
<tr>
<td>107</td>
<td>4/22/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>514412</td>
<td>519319</td>
<td>0</td>
<td>4907</td>
<td>17.0</td>
<td>239.00</td>
</tr>
<tr>
<td>108</td>
<td>4/23/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>519319</td>
<td>524148</td>
<td>100</td>
<td>4929</td>
<td>24.6</td>
<td>297.00</td>
</tr>
<tr>
<td>109</td>
<td>4/24/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>524281</td>
<td>529039</td>
<td>100</td>
<td>4858</td>
<td>25.0</td>
<td>289.00</td>
</tr>
<tr>
<td>110</td>
<td>4/25/2019</td>
<td>STANDARD</td>
<td>A</td>
<td>529166</td>
<td>533915</td>
<td>100</td>
<td>4909</td>
<td>25.2</td>
<td>303.00</td>
</tr>
</tbody>
</table>

Notes:

- *STANDARD* = Injection conducted at moderate to high flow rate and completed within the workday.
- *EXTENDED* = Injection conducted at low to moderate flow rate and completed overnight.
- Chase water = 0 when it was not needed because the next injection started on the same workday.
- Volume Injected calculated as the difference between the end and the start of Totalizer Readings plus the Chase Water volume.
- Average Injection Flow Rate is a field estimate based on total volume and duration of an injection.
- Injection Head is a field estimate from the instantaneous readings on the sonde during an injection. Injection head above static levels were furthered calculated and shown in Figure III-1.
- Totalizer flow meter broke and temporarily replaced by another flow meter.
- # = Number.
- INJ = Injection well (acronym used for well identification only).
- TAV = Technical Area-V (acronym used for well identification only).
Table III-2a
Proposed Substrate Solution Components for Full-Scale Operation at Well TAV-INJ1

<table>
<thead>
<tr>
<th>Substrate Solution Component</th>
<th>Function</th>
<th>Mixing Ratio (by weight)</th>
<th>Weight per 1,000 gal of Water</th>
<th>Convert to Weight per Injection (~5,000 gal of Water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl lactate</td>
<td>Electron donor (substrate)</td>
<td>80.4%</td>
<td>5.64 lbs</td>
<td>28.2 lbs</td>
</tr>
<tr>
<td>Diammonium phosphate</td>
<td>Nutrient and pH buffer</td>
<td>9.0%</td>
<td>0.63 lbs</td>
<td>3.15 lbs</td>
</tr>
<tr>
<td>Accelerite® b</td>
<td>Nutrient</td>
<td>6.4%</td>
<td>0.45 lbs</td>
<td>2.25 lbs</td>
</tr>
<tr>
<td>Potassium Bicarbonate</td>
<td>pH buffer and acid reducer</td>
<td>1.7%</td>
<td>0.11 lbs</td>
<td>0.55 lbs</td>
</tr>
<tr>
<td>Sodium Sulfite</td>
<td>Deoxygenation and reduction agent</td>
<td>2.5%</td>
<td>0.17 lbs</td>
<td>0.85 lbs</td>
</tr>
<tr>
<td>Primary Components per 1,000 or 5,000 gal of Potable Water</td>
<td>100%</td>
<td>7 lbs</td>
<td>35 lbs</td>
<td></td>
</tr>
<tr>
<td>Additional Component Mixed with Substrate Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium bromide</td>
<td>Inert tracer (as bromide)</td>
<td>Not applicable; adjusted per field condition</td>
<td>0.2 lbs</td>
<td>1 lbs</td>
</tr>
</tbody>
</table>

Notes:

- Proposed amount as presented in Appendix A, Modification #3 before the start of full-scale operation. Converted to weight per injection of 5,000 gallons of water for easy comparison with Table III-2b.
- Accelerite® Bioremediation Nutrient is a product of JRW Bioremediation, LLC.

% = Percent.
gal = Gallon(s).
INJ = Injection (acronym used for well identification only).
lbs = Pounds.
pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).
TAV = Technical Area-V (acronym used for well identification only).
<table>
<thead>
<tr>
<th>Injection#</th>
<th>Date(s) of Injection</th>
<th>Ethyl Lactate (lbs)</th>
<th>Diammonium Phosphate (lbs)</th>
<th>Accelerite® (lbs)</th>
<th>Potassium Bicarbonate (lbs)</th>
<th>Sodium Sulfite (lbs)</th>
<th>Total Substrate Component per Injection (lbs)</th>
<th>Sodium Bromide (lbs)</th>
<th>KB-1 Dechlorinator (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11/1/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>12.52</td>
<td>8.36</td>
<td>56.39</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>11/2/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>12.52</td>
<td>8.36</td>
<td>56.39</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>3</td>
<td>11/6/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>15.03</td>
<td>10.03</td>
<td>60.56</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>11/7/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>12.52</td>
<td>8.36</td>
<td>56.39</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>5</td>
<td>11/8/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>15.03</td>
<td>10.03</td>
<td>60.56</td>
<td>0.99</td>
<td>2.20</td>
</tr>
<tr>
<td>6</td>
<td>11/9/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>15.04</td>
<td>10.03</td>
<td>60.57</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>11/10/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>12.52</td>
<td>8.36</td>
<td>56.39</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>8</td>
<td>11/16/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>12.52</td>
<td>8.36</td>
<td>56.39</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>9</td>
<td>11/19/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>12.52</td>
<td>8.36</td>
<td>56.39</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>10</td>
<td>11/20/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>12.52</td>
<td>8.36</td>
<td>56.39</td>
<td>0.99</td>
<td>1.40</td>
</tr>
<tr>
<td>11</td>
<td>11/21/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>12.52</td>
<td>8.36</td>
<td>56.39</td>
<td>0.99</td>
<td>1.30</td>
</tr>
<tr>
<td>12</td>
<td>11/27/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>12.52</td>
<td>8.36</td>
<td>56.39</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>13</td>
<td>11/28/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>12.52</td>
<td>8.36</td>
<td>56.39</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>14</td>
<td>11/30/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>12.52</td>
<td>8.36</td>
<td>56.39</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>15</td>
<td>12/3/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>4.39</td>
<td>2.93</td>
<td>42.83</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>16</td>
<td>12/4/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>4.39</td>
<td>2.93</td>
<td>42.83</td>
<td>0.99</td>
<td>0.80</td>
</tr>
<tr>
<td>17</td>
<td>12/5/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>6.89</td>
<td>4.60</td>
<td>47.01</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>18</td>
<td>12/6/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>10.02</td>
<td>6.69</td>
<td>52.22</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>19</td>
<td>12/7/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>8.77</td>
<td>5.86</td>
<td>50.14</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>20</td>
<td>12/10/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>8.77</td>
<td>5.86</td>
<td>50.14</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>21</td>
<td>12/11/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>8.77</td>
<td>5.86</td>
<td>50.14</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>22</td>
<td>12/12/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>6.26</td>
<td>4.17</td>
<td>45.94</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>23</td>
<td>12/13/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>24</td>
<td>12/14/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>25</td>
<td>12/17/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>26</td>
<td>12/18/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>27</td>
<td>12/19/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>28</td>
<td>12/26/2018</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>29</td>
<td>1/9/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Table III-2b
Summary of Bioremediation Solution Components for Full-Scale Operation at Well TAV-INJ1 by Injections
<table>
<thead>
<tr>
<th>Injection #</th>
<th>Date(s) of Injection</th>
<th>Ethyl Lactate (lbs)</th>
<th>Diammonium Phosphate (lbs)</th>
<th>Accelerite® (lbs)</th>
<th>Potassium Bicarbonate (lbs)</th>
<th>Sodium Sulfite (lbs)</th>
<th>Total Substrate Component per Injection (lbs)</th>
<th>Sodium Bromide (lbs)</th>
<th>KB-1 Dechlorinator (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>1/11/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>32</td>
<td>1/15/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>2.20</td>
</tr>
<tr>
<td>33</td>
<td>1/16/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>34</td>
<td>1/17/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>35</td>
<td>1/18/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>36</td>
<td>1/21/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>37</td>
<td>1/23/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>38</td>
<td>1/24/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>39</td>
<td>1/25/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>40</td>
<td>1/28/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>41</td>
<td>1/29/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>42</td>
<td>1/30/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>43</td>
<td>1/31/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>44</td>
<td>2/1/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>45</td>
<td>2/4/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>46</td>
<td>2/5/2019 - 2/6/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>47</td>
<td>2/6/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>48</td>
<td>2/7/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>49</td>
<td>2/8/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>50</td>
<td>2/11/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>2.20</td>
</tr>
<tr>
<td>51</td>
<td>2/11/2019 - 2/12/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>52</td>
<td>2/12/2019 - 2/13/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>53</td>
<td>2/13/2019 - 2/14/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>54</td>
<td>2/14/2019 - 2/15/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>55</td>
<td>2/15/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>56</td>
<td>2/18/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>57</td>
<td>2/18/2019 - 2/18/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>58</td>
<td>2/19/2019 - 2/20/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>59</td>
<td>2/21/2019 - 2/22/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>60</td>
<td>2/22/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>61</td>
<td>2/27/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>2.10</td>
</tr>
<tr>
<td>62</td>
<td>2/27/2019 - 2/28/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>Injection #</td>
<td>Date(s) of Injection</td>
<td>Ethyl Lactate (lbs)</td>
<td>Diammonium Phosphate (lbs)</td>
<td>Accelerite® (lbs)</td>
<td>Potassium Bicarbonate (lbs)</td>
<td>Sodium Sulfite (lbs)</td>
<td>Total Substrate Component per Injection (lbs)</td>
<td>Sodium Bromide (lbs)</td>
<td>KB-1 Dechlorinator (L)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>63</td>
<td>2/28/2019 - 3/1/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>0.90</td>
</tr>
<tr>
<td>64</td>
<td>3/1/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>65</td>
<td>3/4/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>2.00</td>
</tr>
<tr>
<td>66</td>
<td>3/4/2019 - 3/5/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>67</td>
<td>3/5/2019 - 3/6/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>68</td>
<td>3/7/2019 - 3/7/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>70</td>
<td>3/8/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>0.90</td>
</tr>
<tr>
<td>71</td>
<td>3/11/2019 - 3/12/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>3.75</td>
<td>2.51</td>
<td>41.77</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>72</td>
<td>3/12/2019 - 3/13/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>6.28</td>
<td>2.51</td>
<td>44.31</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>73</td>
<td>3/13/2019 - 3/14/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>6.28</td>
<td>2.51</td>
<td>44.31</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>74</td>
<td>3/14/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>6.28</td>
<td>2.51</td>
<td>44.31</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>75</td>
<td>3/14/2019 - 3/15/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>6.28</td>
<td>2.51</td>
<td>44.31</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>76</td>
<td>3/15/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>6.28</td>
<td>2.51</td>
<td>44.31</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>77</td>
<td>3/18/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>78</td>
<td>3/18/2019 - 3/19/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>79</td>
<td>3/19/2019 - 3/20/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>80</td>
<td>3/20/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>1.90</td>
</tr>
<tr>
<td>81</td>
<td>3/20/2019 - 3/21/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>82</td>
<td>3/21/2019 - 3/22/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>1.10</td>
</tr>
<tr>
<td>83</td>
<td>3/25/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>2.50</td>
</tr>
<tr>
<td>84</td>
<td>3/25/2019 - 3/26/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>85</td>
<td>3/26/2019 - 3/27/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>86</td>
<td>3/27/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>2.50</td>
</tr>
<tr>
<td>87</td>
<td>3/27/2019 - 3/28/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>88</td>
<td>3/28/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>89</td>
<td>4/1/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>90</td>
<td>4/1/2019 - 4/2/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>2.50</td>
</tr>
<tr>
<td>91</td>
<td>4/2/2019 - 4/3/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>1.40</td>
</tr>
<tr>
<td>92</td>
<td>4/3/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>2.30</td>
</tr>
<tr>
<td>93</td>
<td>4/3/2019 - 4/4/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>1.94</td>
<td>7.50</td>
<td>2.51</td>
<td>45.52</td>
<td>0.99</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table III-2b
Summary of Bioremediation Solution Components for Full-Scale Operation at Well TAV-INJ1 by Injections (continued)

<table>
<thead>
<tr>
<th>Injection #</th>
<th>Date(s) of Injection</th>
<th>Ethyl Lactate (lbs)</th>
<th>Diammonium Phosphate (lbs)</th>
<th>Accelerite® (lbs)</th>
<th>Potassium Bicarbonate (lbs)</th>
<th>Sodium Sulfite (lbs)</th>
<th>Total Substrate Component per Injection (lbs)</th>
<th>Sodium Bromide (lbs)</th>
<th>KB-1 Dechlorinator (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>4/8/2019</td>
<td>44.09</td>
<td>3.17</td>
<td>1.94</td>
<td>9.37</td>
<td>2.51</td>
<td>61.08</td>
<td>0.99</td>
<td>2.50</td>
</tr>
<tr>
<td>96</td>
<td>4/8/2019</td>
<td>44.09</td>
<td>3.17</td>
<td>1.94</td>
<td>9.37</td>
<td>2.51</td>
<td>61.08</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>97</td>
<td>4/9/2019</td>
<td>44.09</td>
<td>3.17</td>
<td>1.94</td>
<td>9.37</td>
<td>2.51</td>
<td>61.08</td>
<td>0.99</td>
<td>1.20</td>
</tr>
<tr>
<td>98</td>
<td>4/10/2019</td>
<td>44.09</td>
<td>3.17</td>
<td>1.94</td>
<td>9.37</td>
<td>2.51</td>
<td>61.08</td>
<td>0.99</td>
<td>0.90</td>
</tr>
<tr>
<td>99</td>
<td>4/11/2019</td>
<td>44.09</td>
<td>3.17</td>
<td>1.94</td>
<td>9.37</td>
<td>2.51</td>
<td>61.08</td>
<td>0.99</td>
<td>2.50</td>
</tr>
<tr>
<td>100</td>
<td>4/15/2019 - 4/16/2019</td>
<td>44.09</td>
<td>3.17</td>
<td>1.94</td>
<td>9.37</td>
<td>2.51</td>
<td>61.08</td>
<td>0.99</td>
<td>2.50</td>
</tr>
<tr>
<td>101</td>
<td>4/16/2019</td>
<td>44.09</td>
<td>3.17</td>
<td>1.94</td>
<td>9.37</td>
<td>2.51</td>
<td>61.08</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>102</td>
<td>4/16/2019 - 4/17/2019</td>
<td>44.09</td>
<td>3.17</td>
<td>1.94</td>
<td>9.37</td>
<td>2.51</td>
<td>61.08</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>103</td>
<td>4/18/2019</td>
<td>44.09</td>
<td>3.17</td>
<td>1.94</td>
<td>9.37</td>
<td>2.51</td>
<td>61.08</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>104</td>
<td>4/18/2019 - 4/19/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>0.00</td>
<td>9.37</td>
<td>2.51</td>
<td>45.46</td>
<td>0.99</td>
<td>2.50</td>
</tr>
<tr>
<td>105</td>
<td>4/22/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>0.00</td>
<td>12.52</td>
<td>2.51</td>
<td>48.61</td>
<td>0.99</td>
<td>3.80</td>
</tr>
<tr>
<td>106</td>
<td>4/22/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>0.00</td>
<td>12.52</td>
<td>2.51</td>
<td>48.61</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>107</td>
<td>4/23/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>0.00</td>
<td>12.52</td>
<td>2.51</td>
<td>48.61</td>
<td>0.99</td>
<td>1.90</td>
</tr>
<tr>
<td>108</td>
<td>4/24/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>0.00</td>
<td>12.52</td>
<td>2.51</td>
<td>48.61</td>
<td>0.99</td>
<td>2.90</td>
</tr>
<tr>
<td>109</td>
<td>4/25/2019</td>
<td>30.40</td>
<td>3.17</td>
<td>0.00</td>
<td>12.52</td>
<td>2.51</td>
<td>48.61</td>
<td>0.99</td>
<td>2.90</td>
</tr>
<tr>
<td>Total for this Full-Scale Operation</td>
<td>3481 lbs</td>
<td>349 lbs</td>
<td>201 lbs</td>
<td>770 lbs</td>
<td>390 lbs</td>
<td>5191 lbs</td>
<td>109 lbs</td>
<td>122.8 L</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
= Number.
lbs = Pounds.
L = Liter.
Table III-3
Groundwater Sampling Conducted for Treatability Study, April – June 2019

<table>
<thead>
<tr>
<th>Monitoring Well</th>
<th>Sampling Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wells in the Treatment Zone</td>
</tr>
<tr>
<td>TAV-INJ1</td>
<td>3-4 Jun 2019, 25-26 Jun 2019</td>
</tr>
<tr>
<td>TAV-MW6</td>
<td>23 Apr 2019, 28 May 2019, 24 Jun 2019</td>
</tr>
<tr>
<td>TAV-MW7</td>
<td>13 May 2019</td>
</tr>
<tr>
<td></td>
<td>Wells Outside the Treatment Zone</td>
</tr>
<tr>
<td>LWDS-MW1</td>
<td>10 Jun 2019</td>
</tr>
<tr>
<td>TAV-MW2</td>
<td>17 May 2019</td>
</tr>
<tr>
<td>TAV-MW4</td>
<td>22 May 2019</td>
</tr>
<tr>
<td>TAV-MW8</td>
<td>23 May 2019</td>
</tr>
<tr>
<td>TAV-MW10</td>
<td>5 Jun 2019</td>
</tr>
<tr>
<td>TAV-MW11</td>
<td>20 May 2019</td>
</tr>
<tr>
<td>TAV-MW12</td>
<td>30 May 2019</td>
</tr>
<tr>
<td>TAV-MW14</td>
<td>31 May 2019</td>
</tr>
</tbody>
</table>

Notes:
*Microbial samples were collected on June 3 and June 25, and the rest of the samples were collected on June 4 and June 26, 2019 after the water level had recovered.

INJ = Injection well
LWDS = Liquid waste disposal system
MW = Monitoring well
TAV = Technical Area-V
Table III-4
Analytical Results of Groundwater Sampling at Well TAV-INJ1, April-June 2019

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Analyses</th>
<th>Analyte</th>
<th>Result<sup>a</sup></th>
<th>MDL<sup>b</sup></th>
<th>PQL<sup>c</sup></th>
<th>MCL<sup>d</sup></th>
<th>Units</th>
<th>Lab Qual<sup>g</sup></th>
<th>Val Qual<sup>h</sup></th>
<th>Sample No.</th>
<th>Analytical Method<sup>i</sup></th>
<th>Lab<sup>i</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Jun-19</td>
<td>GENERAL CHEMISTRY</td>
<td>Alkalinity as CaCO<sub>3</sub></td>
<td>1260</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>108467-008</td>
<td>SM 2320B</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>GENERAL CHEMISTRY</td>
<td>Alkalinity, bicarb as CaCO<sub>3</sub></td>
<td>1260</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>108467-006</td>
<td>SM 2320B</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>GENERAL CHEMISTRY</td>
<td>Alkalinity, carb as CaCO<sub>3</sub></td>
<td>ND</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108467-005</td>
<td>SM 2320B</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>AMMONIA</td>
<td>Ammonia</td>
<td>80.5</td>
<td>4.25</td>
<td>12.5</td>
<td>NE</td>
<td>mg/L</td>
<td>N</td>
<td>108467-003</td>
<td>EPA 351.1</td>
<td>SW846 9055A</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>ANIONS</td>
<td>Bromide</td>
<td>0.3</td>
<td>0.087</td>
<td>0.2</td>
<td>NE</td>
<td>mg/L</td>
<td>N</td>
<td>108467-004</td>
<td>SW846 9055A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>ANIONS</td>
<td>Sulfate</td>
<td>2.48</td>
<td>0.13</td>
<td>0.4</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>108471-001</td>
<td>SW846 5050A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>3-Jun-19</td>
<td>MICROBIAL</td>
<td>Dehalococcales</td>
<td>3000000</td>
<td>3000</td>
<td>100</td>
<td>NE</td>
<td>Enumeration</td>
<td>J</td>
<td>108471-001</td>
<td>SW846 9055A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>METALS</td>
<td>Arsenic</td>
<td>0.0026</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/l</td>
<td>J</td>
<td>108467-007</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>METALS</td>
<td>Iron</td>
<td>0.724</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/l</td>
<td>J</td>
<td>108467-007</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>METALS</td>
<td>Manganese</td>
<td>3.8</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/l</td>
<td>J</td>
<td>108467-007</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>MEE</td>
<td>Methane</td>
<td>11000</td>
<td>0.094</td>
<td>0.5</td>
<td>NE</td>
<td>µg/l</td>
<td>J</td>
<td>108471-001</td>
<td>AM20GAX</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>MEE</td>
<td>Ethane</td>
<td>0.11</td>
<td>0.011</td>
<td>0.1</td>
<td>NE</td>
<td>µg/l</td>
<td>J</td>
<td>108471-001</td>
<td>AM20GAX</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>MEE</td>
<td>Ethene</td>
<td>ND</td>
<td>0.008</td>
<td>0.1</td>
<td>NE</td>
<td>µg/l</td>
<td>U, Uj</td>
<td>108471-001</td>
<td>AM20GAX</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>NPS</td>
<td>Nitrate plus nitrite as N</td>
<td>ND</td>
<td>0.017</td>
<td>0.05</td>
<td>0.10</td>
<td>µg/l</td>
<td>U, Uj</td>
<td>108471-006</td>
<td>SW846 9055A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>4-Jun-15</td>
<td>TOC</td>
<td>Total Organic Carbon Average</td>
<td>277</td>
<td>73</td>
<td>100</td>
<td>NE</td>
<td>mg/l</td>
<td>J</td>
<td>108467-003</td>
<td>SW846 9055A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>ND</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/l</td>
<td>U</td>
<td>108471-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>4-Jun-19</td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/l</td>
<td>U</td>
<td>108467-007</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>Alkalinity</td>
<td>Alkalinity as CaCO<sub>3</sub></td>
<td>1470</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/l</td>
<td>J</td>
<td>108624-006</td>
<td>SM 2320B</td>
<td>SW846 9055A</td>
<td>GEL</td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>Alkalinity</td>
<td>Alkalinity, bicarb as CaCO<sub>3</sub></td>
<td>1470</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/l</td>
<td>J</td>
<td>108624-006</td>
<td>SM 2320B</td>
<td>SW846 9055A</td>
<td>GEL</td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>Alkalinity</td>
<td>Alkalinity, carb as CaCO<sub>3</sub></td>
<td>ND</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/l</td>
<td>U</td>
<td>108624-005</td>
<td>SM 2320B</td>
<td>SW846 9055A</td>
<td>GEL</td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>Alkaline</td>
<td>Ethylene</td>
<td>112</td>
<td>4.25</td>
<td>12.5</td>
<td>NE</td>
<td>mg/l</td>
<td>"B"</td>
<td>108624-002</td>
<td>EPA 351.1</td>
<td>SW846 9055A</td>
<td>GEL</td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>Alkaline</td>
<td>Ethylene</td>
<td>112</td>
<td>4.25</td>
<td>12.5</td>
<td>NE</td>
<td>mg/l</td>
<td>"B"</td>
<td>108624-002</td>
<td>EPA 351.1</td>
<td>SW846 9055A</td>
<td>GEL</td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>NPS</td>
<td>Nitrate plus nitrite as N</td>
<td>ND</td>
<td>0.57</td>
<td>0.1</td>
<td>NE</td>
<td>µg/l</td>
<td>J</td>
<td>108624-004</td>
<td>SW846 9055A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>NPS</td>
<td>Nitrate plus nitrite as N</td>
<td>ND</td>
<td>0.57</td>
<td>0.1</td>
<td>NE</td>
<td>µg/l</td>
<td>J</td>
<td>108624-004</td>
<td>SW846 9055A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>MEE</td>
<td>Methane</td>
<td>18000</td>
<td>0.046</td>
<td>0.5</td>
<td>NE</td>
<td>µg/l</td>
<td>J</td>
<td>108627-001</td>
<td>AM20GAX</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>MEE</td>
<td>Ethane</td>
<td>0.14</td>
<td>0.005</td>
<td>0.1</td>
<td>NE</td>
<td>µg/l</td>
<td>J</td>
<td>108627-001</td>
<td>AM20GAX</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>MEE</td>
<td>Ethene</td>
<td>ND</td>
<td>0.004</td>
<td>0.1</td>
<td>NE</td>
<td>µg/l</td>
<td>U, Uj</td>
<td>108627-001</td>
<td>AM20GAX</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>NPN</td>
<td>Nitrate plus nitrite as N</td>
<td>ND</td>
<td>0.085</td>
<td>0.25</td>
<td>10</td>
<td>µg/l</td>
<td>U</td>
<td>108624-005</td>
<td>EPA 351.2</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>TOC</td>
<td>Total Organic Carbon Average</td>
<td>104</td>
<td>18.5</td>
<td>50</td>
<td>NE</td>
<td>µg/l</td>
<td>J</td>
<td>108624-003</td>
<td>SW846 9055A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>ND</td>
<td>0.3</td>
<td>5</td>
<td>70</td>
<td>µg/l</td>
<td>U</td>
<td>108621-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>26-Jun-19</td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.3</td>
<td>5</td>
<td>70</td>
<td>µg/l</td>
<td>U</td>
<td>108621-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-8 in the "Footnotes for Technical Area-V Analytical Results Tables" summary.
<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Analyses</th>
<th>Analyte</th>
<th>Result**</th>
<th>MDL*</th>
<th>PQL*</th>
<th>MCL*</th>
<th>Units</th>
<th>Lab Qual*</th>
<th>Val Qual*</th>
<th>Sample No.</th>
<th>Analytical Method*</th>
<th>Lab*</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-Apr-19</td>
<td>Alkalinity</td>
<td>Alkalinity as CaCO₃</td>
<td>190</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>108171-003</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Alkalinity</td>
<td>Alkalinity, total as CaCO₃</td>
<td>190</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>108171-003</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Alkalinity</td>
<td>Alkalinity, carb as CaCO₃</td>
<td>ND</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108171-003</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Ammonia</td>
<td>Ammonia</td>
<td>0.121</td>
<td>0.077</td>
<td>0.05</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108171-003</td>
<td>EPA 350.1</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>Alkalinity</td>
<td>2.15</td>
<td>0.567</td>
<td>0.2</td>
<td></td>
<td></td>
<td>U</td>
<td>108199-003</td>
<td>SW846 9060A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>Sulfate</td>
<td>45.9</td>
<td>0.685</td>
<td>2</td>
<td>NE</td>
<td>mg/L</td>
<td>108199-003</td>
<td>SW846 9060A</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>Dissolved Metals</td>
<td><3000</td>
<td>3000</td>
<td>3000</td>
<td>NE</td>
<td>EnvironInc</td>
<td>U</td>
<td>108194-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00258</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/L</td>
<td>J</td>
<td>108171-004</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108171-004</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.901</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108171-004</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>MEE</td>
<td>4.6</td>
<td>0.046</td>
<td>0.5</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108156-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>MEE</td>
<td>Ethene</td>
<td>ND</td>
<td>0.005</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108156-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>NPN</td>
<td>Ethene</td>
<td>0.004</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108156-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>VOC</td>
<td>NPN</td>
<td>16.8</td>
<td>0.029</td>
<td>1.25</td>
<td>10</td>
<td>mg/L</td>
<td>J</td>
<td>108171-002</td>
<td>EPA 350.1</td>
<td>GEL</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Alkalinity</td>
<td>TOC</td>
<td>TOC, Total Organic Carbon Average</td>
<td>0.07</td>
<td>0.33</td>
<td>1</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>108199-002</td>
<td>SW846 9060A</td>
<td>GEL</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>VOC</td>
<td>Total Organic Carbon Average</td>
<td>0.07</td>
<td>0.33</td>
<td>1</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>108199-002</td>
<td>SW846 9060A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>VOC</td>
<td>Toxic Thrichotethene</td>
<td>6.85</td>
<td>0.3</td>
<td>1</td>
<td>NE</td>
<td>µg/L</td>
<td>J</td>
<td>108199-001</td>
<td>SW846 8200B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Alkalinity</td>
<td>Toxic Trichotethene</td>
<td>191</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>108254-003</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Alkalinity</td>
<td>Toxic Trichotethene</td>
<td>191</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>108254-003</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Alkalinity</td>
<td>Toxic Trichotethene</td>
<td>ND</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>108254-003</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Ammonia</td>
<td>Ammonia</td>
<td>0.132</td>
<td>0.017</td>
<td>0.05</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>108254-001</td>
<td>EPA 350.1</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>Bromide</td>
<td>2.15</td>
<td>0.567</td>
<td>0.2</td>
<td></td>
<td></td>
<td>U</td>
<td>108199-003</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>Sulfate</td>
<td>45.9</td>
<td>0.685</td>
<td>2</td>
<td>NE</td>
<td>mg/L</td>
<td>108199-003</td>
<td>SW846 9060A</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00252</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/L</td>
<td>J</td>
<td>108254-004</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108254-004</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>Anions</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.901</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108254-004</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>MEE</td>
<td>NPN</td>
<td>Ethene</td>
<td>4.6</td>
<td>0.046</td>
<td>0.5</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108150-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>MEE</td>
<td>NPN</td>
<td>Ethene</td>
<td>ND</td>
<td>0.005</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108150-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>NPN</td>
<td>NPN</td>
<td>Ethene</td>
<td>4.6</td>
<td>0.046</td>
<td>0.5</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108150-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>NPN</td>
<td>NPN</td>
<td>Ethene</td>
<td>ND</td>
<td>0.005</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108150-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>NPN</td>
<td>NPN</td>
<td>Ethene</td>
<td>ND</td>
<td>0.004</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108150-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>NPN</td>
<td>NPN</td>
<td>Ethene</td>
<td>ND</td>
<td>0.004</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108150-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>23-Apr-19</td>
<td>NPN</td>
<td>NPN</td>
<td>Ethene</td>
<td>ND</td>
<td>0.004</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108150-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>28-May-19</td>
<td>Alkalinity</td>
<td>Alkalinity as CaCO₃</td>
<td>108</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>108465-006</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>Alkalinity</td>
<td>Alkalinity, total as CaCO₃</td>
<td>108</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>108465-006</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>Alkalinity</td>
<td>Alkalinity, carb as CaCO₃</td>
<td>ND</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108465-006</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>Ammonia</td>
<td>Ammonia</td>
<td>0.146</td>
<td>0.017</td>
<td>0.05</td>
<td>NE</td>
<td>mg/L</td>
<td>108465-002</td>
<td>EPA 350.1</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>Anions</td>
<td>Alkalinity</td>
<td>3.14</td>
<td>0.335</td>
<td>2</td>
<td>NE</td>
<td>mg/L</td>
<td>108465-004</td>
<td>SW846 9060A</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>Anions</td>
<td>Sulfate</td>
<td>39.3</td>
<td>0.665</td>
<td>2</td>
<td>NE</td>
<td>mg/L</td>
<td>108465-004</td>
<td>SW846 9060A</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table III-5 (concluded)

Analytical Results of Groundwater Sampling at Well TAV-MW6, April-June 2019

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Analyses</th>
<th>Analyte</th>
<th>Result*</th>
<th>MDL*</th>
<th>PQL*</th>
<th>MCL*</th>
<th>Units</th>
<th>Lab Qual*</th>
<th>Val Qual</th>
<th>Sample No.</th>
<th>Analytical Method*</th>
<th>Lab*</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-May-19</td>
<td>Microbial</td>
<td>Delhaasocides</td>
<td><0000</td>
<td>5000</td>
<td>5000</td>
<td>NE</td>
<td>Enumeration/L</td>
<td>U</td>
<td>108473-001</td>
<td>Gene-Trac-Drc</td>
<td>SREEM</td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>ND</td>
<td>0.002</td>
<td>0.006</td>
<td>0.51</td>
<td>mg/L</td>
<td>U</td>
<td>108466-007</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>0.0897</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>108466-007</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108466-007</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>MEE</td>
<td>Methane</td>
<td>100</td>
<td>0.046</td>
<td>0.5</td>
<td>NE</td>
<td>µg/L</td>
<td>J</td>
<td>108469-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>MEE</td>
<td>Ethane</td>
<td>ND</td>
<td>0.005</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108469-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>NPN</td>
<td>Nitrate plus nitrite as N</td>
<td>7.9</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>J</td>
<td>108465-006</td>
<td>EPA 353.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>VOC</td>
<td>Dissolvedcenes, cis-1,2</td>
<td>0.86</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>mg/L</td>
<td>J</td>
<td>108465-001</td>
<td>SW846 9000A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>28-May-19</td>
<td>VOD</td>
<td>Trichloroethene</td>
<td>6.78</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>J</td>
<td>108465-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>Alkalinity</td>
<td>Alkalinity, bicarb as CaCO3</td>
<td>205</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108622-006</td>
<td>SM 2300B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>Alkalinity</td>
<td>Alkalinity, carbon as CaCO3</td>
<td>ND</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108622-006</td>
<td>SM 2300B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>Ammonia</td>
<td>Ammonia</td>
<td>0.0599</td>
<td>0.017</td>
<td>0.06</td>
<td>NE</td>
<td>mg/L</td>
<td>"B" J+</td>
<td>108622-002</td>
<td>EPA 355.1</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>Anions</td>
<td>Bromide</td>
<td>4.12</td>
<td>0.33</td>
<td>1</td>
<td>NE</td>
<td>mg/L</td>
<td>"B" J+</td>
<td>108622-004</td>
<td>SW846 9056A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>Anions</td>
<td>Sulfate</td>
<td>38.8</td>
<td>0.65</td>
<td>2</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108622-004</td>
<td>SW846 9056A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>Microbial</td>
<td>Delhaasocides</td>
<td><5000</td>
<td>3000</td>
<td>3000</td>
<td>NE</td>
<td>Enumeration/L</td>
<td>U</td>
<td>108628-001</td>
<td>Gene-Trac-Drc</td>
<td>SREEM</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.006</td>
<td>0.006</td>
<td>0.51</td>
<td>mg/L</td>
<td>J</td>
<td>108466-007</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108466-007</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108466-007</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>MEE</td>
<td>Methane</td>
<td>170</td>
<td>0.046</td>
<td>0.5</td>
<td>NE</td>
<td>µg/L</td>
<td>J</td>
<td>108626-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>MEE</td>
<td>Ethane</td>
<td>ND</td>
<td>0.005</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108626-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>MEE</td>
<td>Ethane</td>
<td>ND</td>
<td>0.004</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>108626-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>NPN</td>
<td>Nitrate plus nitrite as N</td>
<td>7.29</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>J</td>
<td>108622-005</td>
<td>EPA 353.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>TOC</td>
<td>Total Organic Carbon Average</td>
<td>0.66</td>
<td>0.33</td>
<td>1</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>108622-003</td>
<td>SW846 9000A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>24-Jun-19</td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>6.74</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>J</td>
<td>108622-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-8 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.
<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Analyses</th>
<th>Analyte</th>
<th>Resulta</th>
<th>MDLb</th>
<th>PQLc</th>
<th>MCLd</th>
<th>Units</th>
<th>Lab Quala</th>
<th>Val Qualb</th>
<th>Sample No.</th>
<th>Analytical Methodg</th>
<th>Labh</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-May-19</td>
<td>Anions</td>
<td>Bromide</td>
<td>0.26</td>
<td>0.07</td>
<td>0.2</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>NE</td>
<td>108416-005</td>
<td>SW846 9096A</td>
<td>GEL</td>
</tr>
<tr>
<td>13-May-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.002</td>
<td>0.002</td>
<td>0.01</td>
<td>mg/L</td>
<td>J</td>
<td>J</td>
<td>J</td>
<td>108416-003</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
</tr>
<tr>
<td>13-May-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.03</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>NE</td>
<td>108416-003</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
</tr>
<tr>
<td>13-May-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.006</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>NE</td>
<td>108416-003</td>
<td>SW846 3005A/6020B</td>
<td>GEL</td>
</tr>
<tr>
<td>13-May-19</td>
<td>MEE</td>
<td>Ethene</td>
<td>ND</td>
<td>0.004</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>NE</td>
<td>108460-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>13-May-19</td>
<td>NPN</td>
<td>Nitrate plus nitrite as N</td>
<td>5.47</td>
<td>0.17</td>
<td>0.5</td>
<td>mg/L</td>
<td>U</td>
<td>J</td>
<td>108416-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>13-May-19</td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>ND</td>
<td>0.3</td>
<td>1</td>
<td>µg/L</td>
<td>U</td>
<td>NE</td>
<td>108416-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>13-May-19</td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.3</td>
<td>1</td>
<td>µg/L</td>
<td>U</td>
<td>NE</td>
<td>108416-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-8 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.
Table III-7
Analytical Results of Groundwater Sampling at Wells

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Analyses</th>
<th>Analyte</th>
<th>Resulta</th>
<th>MDLb</th>
<th>PQLc</th>
<th>MCLd</th>
<th>Units</th>
<th>Lab Qual*</th>
<th>Val Qualf</th>
<th>Sample No.</th>
<th>Analytical Methodg</th>
<th>Labh</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-Jun-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00458</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/L</td>
<td>J</td>
<td>108455-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>10-Jun-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.003</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108455-001</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>10-Jun-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.004</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108455-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>10-Jun-19</td>
<td>NPN</td>
<td>Nitrate plus nitrite as N</td>
<td>13.8</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>U</td>
<td>108455-002</td>
<td>EPA 352.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>10-Jun-19</td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>3.99</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td>108455-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>10-Jun-19</td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>17.3</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td>108455-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>17-May-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00357</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/L</td>
<td>J</td>
<td>108430-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>17-May-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.003</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108430-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>17-May-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108430-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>17-May-19</td>
<td>NPN</td>
<td>Nitrate plus nitrite as N</td>
<td>8.56</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>U</td>
<td>108430-002</td>
<td>EPA 352.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>17-May-19</td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>0.64</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td>108430-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>17-May-19</td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>5.44</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td>108430-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>22-May-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00369</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/L</td>
<td>J</td>
<td>108437-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>22-May-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.003</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108437-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>22-May-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108437-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>22-May-19</td>
<td>NPN</td>
<td>Nitrate plus nitrite as N</td>
<td>6.25</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>U</td>
<td>108437-002</td>
<td>EPA 352.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>22-May-19</td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>0.54</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>J</td>
<td>108437-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>22-May-19</td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>5.44</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td>108437-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-May-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00238</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/L</td>
<td>J</td>
<td>108441-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-May-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.003</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108441-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-May-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108441-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-May-19</td>
<td>NPN</td>
<td>Nitrate plus nitrite as N</td>
<td>7.97</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>U</td>
<td>108441-002</td>
<td>EPA 352.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-May-19</td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>0.92</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>J</td>
<td>108441-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>23-May-19</td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>4.4</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td>108441-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>5-Jun-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00238</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/L</td>
<td>J</td>
<td>108463-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>5-Jun-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.003</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108463-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>5-Jun-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108463-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>5-Jun-19</td>
<td>NPN</td>
<td>Nitrate plus nitrite as N</td>
<td>15.3</td>
<td>0.85</td>
<td>2.5</td>
<td>10</td>
<td>mg/L</td>
<td>U</td>
<td>108463-002</td>
<td>EPA 352.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>5-Jun-19</td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>1.72</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>J</td>
<td>108463-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>5-Jun-19</td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>13</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td>108463-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>20-May-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00389</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/L</td>
<td>J</td>
<td>108432-003</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>20-May-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.003</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108432-001</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>20-May-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>108432-001</td>
<td>SW846 3005A/8020B</td>
<td>GEL</td>
<td></td>
</tr>
</tbody>
</table>
Table III-7
Analytical Results of Groundwater Sampling at Wells
LWDS-MW1, TAV-MW2, TAV-MW4, TAV-MW8, TAV-MW10, TAV-MW11, TAV-MW12, and TAV MW14, April-June 2019 (concluded)

<table>
<thead>
<tr>
<th>Sample Date</th>
<th>Analyses</th>
<th>Analyte</th>
<th>Resulta</th>
<th>MDLb</th>
<th>PQLc</th>
<th>MCLd</th>
<th>Units</th>
<th>Lab Qual*</th>
<th>Val Qualf</th>
<th>Sample No.</th>
<th>Analytical Methodg</th>
<th>Labh</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-MW11</td>
<td>20-May-19</td>
<td>NPN</td>
<td>8.13</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>J</td>
<td>108432-002</td>
<td>SW846 8280B</td>
</tr>
<tr>
<td></td>
<td>20-May-19</td>
<td>VOC</td>
<td>0.53</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td></td>
<td></td>
<td>J</td>
<td>108432-001</td>
<td>SW846 8280B</td>
</tr>
<tr>
<td></td>
<td>20-May-19</td>
<td>Trichloroethene</td>
<td>4.52</td>
<td>0.3</td>
<td>1</td>
<td>8</td>
<td>µg/L</td>
<td></td>
<td></td>
<td>J</td>
<td>108432-001</td>
<td>SW846 8280B</td>
</tr>
<tr>
<td>TAV-MW12</td>
<td>30-May-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>ND</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>108445-003</td>
<td>SW846 3005A/8020B</td>
</tr>
<tr>
<td></td>
<td>30-May-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.003</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>108445-003</td>
<td>SW846 3005A/8020B</td>
</tr>
<tr>
<td></td>
<td>30-May-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>108445-003</td>
<td>SW846 3005A/8020B</td>
</tr>
<tr>
<td></td>
<td>30-May-19</td>
<td>NPN</td>
<td>7.03</td>
<td>0.42</td>
<td>1.25</td>
<td>10</td>
<td>mg/L</td>
<td>J+</td>
<td></td>
<td>108445-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>30-May-19</td>
<td>VOC</td>
<td>0.3</td>
<td>0.1</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td></td>
<td>108445-001</td>
<td>SW846 8280B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>30-May-19</td>
<td>Trichloroethene</td>
<td>0.31</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td></td>
<td></td>
<td>J</td>
<td>108445-001</td>
<td>SW846 8280B</td>
</tr>
<tr>
<td></td>
<td>30-May-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>ND</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>108446-003</td>
<td>SW846 3005A/8020B</td>
</tr>
<tr>
<td></td>
<td>30-May-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>0.075</td>
<td>0.003</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td></td>
<td>108456-003</td>
<td>SW846 3005A/8020B</td>
</tr>
<tr>
<td></td>
<td>30-May-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>0.00287</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td></td>
<td>108456-003</td>
<td>SW846 3005A/8020B</td>
</tr>
<tr>
<td></td>
<td>30-May-19</td>
<td>NPN</td>
<td>7.1</td>
<td>0.428</td>
<td>1.25</td>
<td>10</td>
<td>µg/L</td>
<td>J+</td>
<td></td>
<td>108456-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>30-May-19</td>
<td>VOC</td>
<td>0.3</td>
<td>0.1</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td></td>
<td>108456-001</td>
<td>SW846 8280B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>30-May-19</td>
<td>Trichloroethene</td>
<td>2.94</td>
<td>0.3</td>
<td>1</td>
<td>6</td>
<td>µg/L</td>
<td></td>
<td></td>
<td>J</td>
<td>108456-001</td>
<td>SW846 8280B</td>
</tr>
<tr>
<td>TAV-MW14</td>
<td>31-May-19</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.0021</td>
<td>0.002</td>
<td>0.005</td>
<td>0.01</td>
<td>mg/L</td>
<td>J</td>
<td></td>
<td>108449-003</td>
<td>SW846 3005A/8020B</td>
</tr>
<tr>
<td></td>
<td>31-May-19</td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.003</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>108449-003</td>
<td>SW846 3005A/8020B</td>
</tr>
<tr>
<td></td>
<td>31-May-19</td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>108449-003</td>
<td>SW846 3005A/8020B</td>
</tr>
<tr>
<td></td>
<td>31-May-19</td>
<td>NPN</td>
<td>9.95</td>
<td>0.85</td>
<td>2.5</td>
<td>10</td>
<td>µg/L</td>
<td>J+</td>
<td></td>
<td>108449-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>31-May-19</td>
<td>VOC</td>
<td>0.46</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>J</td>
<td></td>
<td>108449-001</td>
<td>SW846 8280B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>31-May-19</td>
<td>Trichloroethene</td>
<td>0.044</td>
<td>0.3</td>
<td>1</td>
<td>6</td>
<td>µg/L</td>
<td></td>
<td></td>
<td>J</td>
<td>108449-001</td>
<td>SW846 8280B</td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-8 in the "Footnotes for Technical Area-V Analytical Results Tables" summary.
Table III-8
Field Water Quality Measurements before Groundwater Sampling at Each Well, April-June 2019

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Sample Date</th>
<th>Temperature (°C)</th>
<th>Specific Conductivity (µmhos/cm)</th>
<th>Oxidation Reduction Potential (mV)</th>
<th>pH</th>
<th>Turbidity (NTU)</th>
<th>Dissolved Oxygen (% Sat)</th>
<th>Dissolved Oxygen (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-INJ1</td>
<td>03-Jun-19</td>
<td>20.30</td>
<td>2020.11</td>
<td>-278.38</td>
<td>6.64</td>
<td>79.2</td>
<td>1.00</td>
<td>0.09</td>
</tr>
<tr>
<td>TAV-INJ1</td>
<td>04-Jun-19</td>
<td>21.44</td>
<td>2373.18</td>
<td>-228.65</td>
<td>6.74</td>
<td>16.5</td>
<td>3.53</td>
<td>0.27</td>
</tr>
<tr>
<td>TAV-INJ1</td>
<td>25-Jun-19</td>
<td>20.04</td>
<td>2901.98</td>
<td>-311.43</td>
<td>6.84</td>
<td>58.0</td>
<td>0.26</td>
<td>0.02</td>
</tr>
<tr>
<td>TAV-INJ1</td>
<td>26-Jun-19</td>
<td>21.29</td>
<td>2911.21</td>
<td>-307.32</td>
<td>6.93</td>
<td>63.2</td>
<td>0.32</td>
<td>0.02</td>
</tr>
<tr>
<td>TAV-MW6</td>
<td>25-Apr-19</td>
<td>19.97</td>
<td>677.00</td>
<td>109.5</td>
<td>7.47</td>
<td>1.98</td>
<td>69.70</td>
<td>5.27</td>
</tr>
<tr>
<td>TAV-MW6</td>
<td>28-May-19</td>
<td>22.03</td>
<td>708.00</td>
<td>136.35</td>
<td>7.34</td>
<td>1.75</td>
<td>57.40</td>
<td>4.18</td>
</tr>
<tr>
<td>TAV-MW6</td>
<td>24-Jun-19</td>
<td>22.96</td>
<td>705.12</td>
<td>97.98</td>
<td>7.34</td>
<td>6.28</td>
<td>50.46</td>
<td>3.63</td>
</tr>
<tr>
<td>TAV-MW7</td>
<td>13-May-19</td>
<td>20.43</td>
<td>542.60</td>
<td>77.8</td>
<td>7.39</td>
<td>2.64</td>
<td>2.50</td>
<td>0.19</td>
</tr>
<tr>
<td>TAV-MW8</td>
<td>10-Jun-19</td>
<td>18.75</td>
<td>742.88</td>
<td>162.5</td>
<td>7.38</td>
<td>1.37</td>
<td>95.12</td>
<td>7.49</td>
</tr>
<tr>
<td>TAV-MW9</td>
<td>17-May-19</td>
<td>20.96</td>
<td>758.41</td>
<td>198.4</td>
<td>7.27</td>
<td>1.85</td>
<td>59.13</td>
<td>5.40</td>
</tr>
<tr>
<td>TAV-MW4</td>
<td>22-May-19</td>
<td>20.54</td>
<td>550.62</td>
<td>198.9</td>
<td>7.53</td>
<td>2.53</td>
<td>75.92</td>
<td>5.98</td>
</tr>
<tr>
<td>TAV-MW8</td>
<td>23-May-19</td>
<td>21.46</td>
<td>629.15</td>
<td>198.2</td>
<td>7.44</td>
<td>1.18</td>
<td>76.44</td>
<td>5.91</td>
</tr>
<tr>
<td>TAV-MW10</td>
<td>06-Jun-19</td>
<td>21.41</td>
<td>676.68</td>
<td>34.9</td>
<td>7.51</td>
<td>0.63</td>
<td>81.07</td>
<td>6.21</td>
</tr>
<tr>
<td>TAV-MW11</td>
<td>20-May-19</td>
<td>20.00</td>
<td>667.00</td>
<td>203.2</td>
<td>7.51</td>
<td>0.46</td>
<td>77.00</td>
<td>6.06</td>
</tr>
<tr>
<td>TAV-MW12</td>
<td>30-May-19</td>
<td>20.10</td>
<td>649.00</td>
<td>168.8</td>
<td>7.46</td>
<td>0.98</td>
<td>68.20</td>
<td>5.37</td>
</tr>
<tr>
<td>TAV-MW14</td>
<td>31-May-19</td>
<td>21.59</td>
<td>702.73</td>
<td>37.8</td>
<td>7.46</td>
<td>1.71</td>
<td>62.07</td>
<td>6.27</td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-8 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.
Footnotes for Technical Area-V Analytical Results Tables

% = Percent.
CaCO₃ = Calcium carbonate.
Dhc = *Dehalococcoides*.
Enumeration/L = gene copies per liter.
EPA = U.S. Environmental Protection Agency.
ID = Identifier.
INJ = Injection well (acronym used for well identification only).
LWDS = Liquid waste disposal system (acronym used for well identification only).
µg/L = Micrograms per liter.
mg/L = Milligrams per liter.
MEE = Methane, ethane, ethene.
MW = Monitoring well (acronym used for well identification only).
No. = Number.
NPN = Nitrate plus nitrite, as nitrogen.
TAV = Technical Area-V (acronym used for well identification only).
TOC = Total organic carbon.
VOC = Volatile organic compound.

\[^{a} \text{Result} \]
Detected VOCs are presented in the tables.

\[^{b} \text{MDL} \]
MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is greater than zero, analyte is matrix specific.

\[^{c} \text{PQL} \]
PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by that indicated method under routine laboratory operating conditions.

\[^{d} \text{MCL} \]

\[^{e} \text{Lab Qualifier} \]
If cell is blank, then all quality control samples met acceptance criteria with respect to submitted samples.

\[^{*} \] = Recovery of relative percent difference (RPD) not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD’s are not applicable where the concentration falls below the effective PQL.
B = The analyte was found in the blank above the effective MDL.
J = Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL.
N = Results associated with a spike analysis that was outside control limits.
U = Analyte is absent or below the method detection limit.
Footnotes for Technical Area-V Analytical Results Tables (Continued)

Validation Qualifier
If cell is blank, then all quality control samples met acceptance criteria with respect to submitted samples.
J = The associated value is an estimated quantity.
J+ = Estimated value with a suspected positive bias.
J- = Estimated value with a suspected negative bias.
UJ = The analyte was analyzed for but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

Analytical Method
AM20GAX = Proprietary method of Pace Analytical Services, LLC.
Gene-Trac Dhc = Proprietary method of SiREM.

Lab
GEL = GEL Laboratories LLC, 2040 Savage Rd, Charleston, SC 29407.
SiREM = SiREM, 130 Stone Rd. W, Guelph, Ontario, N1G 3Z2, Canada.

Field Water Quality Measurements
Field measurements collected prior to sampling.
°C = Degrees Celsius.
% Sat = Percent saturation.
µmhos/cm = Micromhos per centimeter.
mg/L = Milligrams per liter.
mV = Millivolts.
NTU = Nephelometric turbidity units.
pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).
Appendix A

NMED’s Approval Letter and DOE’s Submittal with the Enclosure Describing Full-Scale Operation Modifications
August 13, 2018

Jeffrey P. Harrell
Manager
U.S. Department of Energy
NNSA/Sandia Field Office
P.O. Box 5400, MS 0184
Albuquerque, NM 87185-5400

Richard O. Griffith
Senior Manager
Sandia National Laboratories
P.O. Box 5800, MS 0726
Albuquerque, NM 87185-5400

RE: APPROVAL
TECHNICAL AREA-V (TA-V) TREATABILITY STUDY NOTIFICATION OF FULL-SCALE OPERATION AT WELL TAV-INJ1
SANDIA NATIONAL LABORATORY
EPA ID#NM5890110518
HWB-SNL-15-020

Dear Mr. Harrell and Mr. Griffith:

The New Mexico Environment Department (NMED) received the letter titled Technical Area-V (TA-V) Treatability Study Notification of Full-Scale Operation at Well TAV-INJ1, dated July 20, 2018, submitted by the U.S. Department of Energy on behalf of itself and NTESS (collectively, the Permittees), on July 26, 2018. NMED has reviewed the letter and hereby issues this Approval of the proposed modifications to the Work Plan and concurs with the decision to proceed with full-scale operation at well TAV-INJ1 of the Treatability Study/Interim Measure at TA-V.
Mr. Harrell and Mr. Griffith
August 13, 2018
Page 2

If you have any questions regarding this matter, please contact Naomi Davidson of my staff at (505) 222-9504.

Sincerely,

[Signature]

John E. Kieling
Chief
Hazardous Waste Bureau

cc: D. Cobrain, NMED HWB
 B. Wear, NMED HWB
 N. Davidson, NMED HWB
 L. King, EPA Region 6 (6PD-N)
 J. Todd, DOE/NNSA/SFO, MS-0184
 D. Rast, DOE/NNSA/SFO, MS-0184
 J. Cochran, SNL/NM, MS-0719
 E. Boatman, SNL/NM, MS-0718

File: SNL 2018 and Reading, SNL-15-020
JUL 20 2018

Mr. John E. Kieling
Chief
Hazardous Waste Bureau
New Mexico Environment Department
2905 Rodeo Park Drive East, Bldg. 1
Santa Fe, New Mexico 87505

Subject: Technical Area-V (TA-V) Treatability Study Notification of Full-Scale Operation at Well TAV-INJ1

Dear Mr. Kieling:

The Department of Energy/National Nuclear Security Administration/Sandia Field Office (DOE/NNSA/SFO) and its management and operating contractor, National Technology and Engineering Solutions of Sandia, LLC (NTESS) intend to proceed with full-scale operation at well TAV-INJ1 as part of the Treatability Study of in-situ bioremediation at TA-V Groundwater Area of Concern, Sandia National Laboratories/New Mexico (SNL/NM). Full-scale operation will not commence until at least 60 days after this notification is received at New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB), in accordance with the 2016 Revised Treatability Study Work Plan.

Associated modifications to the full-scale operation based on the experience and monitoring results of the pilot test at well TAV-INJ1 were discussed among personnel from DOE/NNSA/SFO, SNL/NM, and NMED HWB in a meeting held on June 20, 2018. The modifications and the rationale for the modifications to conduct full-scale operation at well TAV-INJ1 are provided in the enclosure.

If you have questions contact David Rast of our staff at (505) 845-5349.

Sincerely,

[Signature]

Jeffrey P. Harrell
Manager

Enclosure

cc: See Page 2
cc w/enclosure:
Naomi Davidson
NMED-HWB
121 Tijeras Avenue, NE,
Albuquerque, New Mexico 87102-3400

Dave Cobrain
NMED-HWB
2905 Rodeo Park Drive East, Bldg. 1
Santa Fe, New Mexico 87505

Laurie King
EPA, Region 6
1445 Ross Ave., Ste. 1200
Dallas, Texas 75202

Susan Lucas-Kamat
NMED-OB, MS-1396

Zimmerman Library, UNM
MSC05 3020
1 University of New Mexico
Albuquerque, New Mexico 87101-0001

cc w/o enclosure:
Amy Blumberg, SNL/NM
Paul Shoemaker, SNL/NM
Christi Leigh, SNL/NM
John Cochran, SNL/NM
Jun Li, SNL/NM
Anna Gallegos, SNL/NM
Howard Huie, DOE/EM-31
Douglas Tonkay, DOE/EM-31
Thomas Longo, NNSA/NA-533
Jessica Arcidiacono, NNSA/NA-533
Cynthia Wimberly, SFO/OOM
James Todd, SFO/ENG
Susan Lacy, SFO/ENG
Steven Black, SFO/ENG
David Rast, SFO/ENG
NNSA-2018-001960
Technical Area-V (TA-V) Treatability Study
Notification of Full-Scale Operation at Well TAV-INJ1

CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment for knowing violations.

Signature
July 10, 2018

Paul E. Shoemaker
Defense Waste Management Programs
Sandia National Laboratories/New Mexico
Albuquerque, New Mexico 87185
Operator

and

Signature
1/23/2018

Jeffrey P. Harrell, Manager
U.S. Department of Energy
National Nuclear Security Administration
Sandia Field Office
Owner
The Department of Energy/National Nuclear Security Administration, Sandia Field Office and Sandia National Laboratories, New Mexico (SNL/NM) personnel (i.e., the project team) plan to implement the following modifications for the full-scale operation of the in-situ bioremediation (ISB) Treatability Study at the Technical Area-V (TA-V) Groundwater Area of Concern. The modifications were based on the experience and monitoring results of the pilot test conducted at well TAV-INJ1. The original proposal in the Revised Treatability Study Work Plan (TSWP) (SNL/NM March 2016; NMED May 2016) is repeated verbatim, followed by the rationale for modification and a summary statement of the modification to be implemented in full-scale operation at well TAV-INJ1.

#1: Method for Deoxygenation in Aboveground Tanks

In Section 4.2.2, Page 4-9, the Revised TSWP states, “One tank will be inoculated with a small amount of soil core/cuttings from the injection well screened interval and have KB-1® Primer added. The purposes of adding soil core/cuttings to the substrate solution are to (1) inoculate the solution with native microorganisms, (2) create a diverse microbial community that will more likely work synergistically with the bioaugmentation culture, and (3) reduce the lag time for initiating biostimulation associated with utilization of the substrate in the subsurface.”

Rationale for Modification: Two injections of the substrate solution were conducted during the pilot test. The soil core/cuttings were not added to the substrate solution during the first injection, but were added during the second injection. The pilot test results showed that KB-1® Primer itself could produce favorable conditions – low dissolved oxygen (DO) and negative oxidation-reduction potential (ORP) – for safely injecting KB-1® Dechlorinator. KB-1® Dechlorinator are the dechlorinating bacteria that require anaerobic environment to survive.

Based on the experience gained during the pilot test, it is not necessary to rely on growing the microbial community in the aboveground tanks to produce low DO and negative ORP inside the tanks. In fact, the KB-1® Primer alone can sufficiently produce these conditions. Not relying on microbial growth in the aboveground tanks eliminates the biofouling concern for the water stored in the tanks.

During full-scale injection, we will bioaugment the aquifer with KB-1® Dechlorinator throughout the six-month injection; therefore, the three purposes stated above become unnecessary because of the long-term bioaugmentation in the aquifer.

Full-Scale Operation Modification #1: Use substrate components (i.e., chemicals) only to deoxygenate potable water in aboveground tanks.

#2: Number of Aboveground Deoxygenation Tanks for Full-Scale Operation

In Section 4.2.2, Pages 4-9 and 4-10, the Revised TSWP states “A similar process will be applied to the full-scale injections. Two pairs of tanks will be used for full-scale injection (see section 4.3.2). Both pairs of tanks will be filled halfway with potable water, inoculated, and have KB-1® Primer added. After turning anaerobic, the tanks will be filled with potable water and
mixed with proportional amounts of the substrate solution components. As with the push/pull test, deoxygenation of the entire tank volume is expected within one to two days. Once anaerobic conditions are restored, half of the tank contents (from each pair) will be injected. This pair of tanks will then be refilled with potable water and mixed with proportional amounts of the substrate solution components. Provided that approximately half a tank of the deoxygenated solution remains in each tank, this accelerated deoxygenation schedule is expected to continue without further use of KB-1® Primer during the remainder of the injection period. By alternating two pair of tanks, injection would not be interrupted while waiting for the substrate solution to turn anaerobic."

Rationale for Modification: Using substrate components (i.e., chemicals) to achieve low DO and negative ORP of the substrate solution for safely injecting KB-1® Dechlorinator, the injection operation can be simplified by alternating two deoxygenation tanks. Based on the experience from the pilot test, the chemicals can lower the DO and ORP to desired levels within a couple of hours. It takes about five and a half hours to inject approximately 5,000 gallons of substrate solution. Therefore, theoretically we can prepare a tank of substrate solution and empty it within a single day. In practice, we will prepare one tank and empty its content the next day. We will alternate using the two existing tanks used in the pilot test. With this modification, we do not need to install two more tanks as proposed in the Revised TSWP.

Full-Scale Operation Modification #2: Use two existing 5,000-gallon aboveground tanks for full-scale injection.

#3: Substitute for KB-1® Primer

In Section 4.2.2, Page 4-8, the Revised TSWP states “KB-1® Primer is a proprietary mixture of amino acids, potassium bicarbonate, and sodium sulfite that is used to accelerate deoxygenation of water inorganically (sodium sulfite) while still providing an electron donor (amino acids) and buffer (potassium bicarbonate). It can therefore be used as a substitute for ethyl lactate, diammonium phosphate, and yeast extract, although it is significantly more costly and therefore, not suitable for the large volumes planned under full scale injection."

Rationale for Modification: With the goal of using chemical method for deoxygenation, the project team conducted bench-scale, 5-gallon bucket tests to evaluate the functionality of the key components of KB-1® Primer. The results of the bucket tests showed that by using the two key ingredients, potassium bicarbonate and sodium sulfite, combined with ethyl lactate and diammonium phosphate, we could achieve the same desired conditions as using the KB-1® Primer alone. The functionality of ethyl lactate as the electron donor and diammonium phosphate as the nutrient can effectively substitute for the amino acids in the KB-1® Primer.

Attachment A includes the Safety Data Sheets (SDS) for potassium bicarbonate and sodium sulfite.

Full-Scale Operation Modification #3: Eliminate KB-1® Primer. Use potassium bicarbonate and sodium sulfite. A Revised Table 4-1 is provided below for the substrate solution components in full-scale operation.
Minor adjustments to the quantities of the substrate components could be necessary during full-scale operation depending on the in-situ water quality measurements of the aboveground tanks content and the groundwater in well TAV-INJ1.

Revised Table 4-1
Substrate Solution Components

<table>
<thead>
<tr>
<th>Substrate Solution Component</th>
<th>Function</th>
<th>Mixing Ratio (by weight)</th>
<th>Weight per 1,000 gal Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl lactate</td>
<td>Electron donor (substrate)</td>
<td>80.4%</td>
<td>5.64 lbs</td>
</tr>
<tr>
<td>Diammonium phosphate</td>
<td>Nutrient and pH buffer</td>
<td>9.0%</td>
<td>0.63 lbs</td>
</tr>
<tr>
<td>Accelerite® a</td>
<td>Nutrient</td>
<td>6.4%</td>
<td>0.45 lbs</td>
</tr>
<tr>
<td>Potassium Bicarbonate</td>
<td>Buffer and acid reducer</td>
<td>1.7%</td>
<td>0.11 lbs</td>
</tr>
<tr>
<td>Sodium Sulfite</td>
<td>Deoxygenation and reduction agent</td>
<td>2.5%</td>
<td>0.17 lbs</td>
</tr>
<tr>
<td>Primary Components per 1,000 gal Potable Water</td>
<td>100%</td>
<td></td>
<td>7 lbs</td>
</tr>
<tr>
<td>Additional Component Mixed with Substrate Solution</td>
<td>Sodium bromide</td>
<td>Inert tracer (as bromide)</td>
<td>Not applicable: adjusted per field condition</td>
</tr>
</tbody>
</table>

a Accelerite® Bioremediation Nutrient is a product of JRW Bioremediation, LLC.

% = Percent.
gal = Gallon(s).
lbs = Pounds.

#4: Substitute for Yeast Extract

In Section 4.2.1, Page 4-7, the Revised TSWP states “Diammonium phosphate and yeast extract will be added as nutrients to support microbial growth.”

Rationale for Modification: Accelerite® Bioremediation Nutrient is a product of JRW Bioremediation, LLC (JRW). The composition of Accelerite® is a proprietary nutrient blend of yeast metabolites including B-vitamins and other soluble nutrients. Accelerite® was tested in the bench-scale bucket tests and proved to function the same as the yeast extract obtained from Sigma-Aldrich. There are two advantages of using Accelerite®. First, it is significantly more concentrated, requiring less material to achieve the desired effect. The overall cost for Accelerite® is less than the yeast extract because less material is required. Secondly, Accelerite® is received in liquid form and is much easier to handle in the field than the powder-form yeast extract. Therefore, Accelerite® Bioremediation Nutrient from JRW is chosen to substitute for yeast extract in the full-scale operation.

Attachment A includes the SDS for Accelerite® is Bioremediation Nutrient.

Full-Scale Operation Modification #4: Use Accelerite® Bioremediation Nutrient in place of yeast extract. The Revised Table 4-1 provides the quantity needed for Accelerite® in full-scale operation.
#5: Sampling for Laboratory Analysis of Tank Content

In Section 5.4.2, Pages 5-17 and 5-18 of the Revised TSWP do not state that samples of the injected substrate solution during full-scale injections will be collected for laboratory analysis. However, sampling is implied as we did during the pilot test injections, in accordance with Section 5.4.1, Page 5-15, which states, “A sample of the injected substrate solution will be collected as it is being injected and analyzed for parameters listed in Table 5-4 and measured for field parameters specified in section 5.3.”

Rationale for Modification: Samples of the substrate solution in aboveground tanks were collected for laboratory analysis during the pilot test injections. The objective of sampling the tank content was to confirm the ingredients of the substrate solution. However, significant matrix interferences were reported by the analytical laboratory, which resulted in high dilutions for most samples. While preparing the substrate solution, the daily dose, masses or volumes of the substrate components as well as the KB-1® Dechlorinator could be accurately measured before mixing. The volume of the potable water could be accurately measured by the flow meter connected to the fire hydrant. These records provided sufficient information on what was being injected. The laboratory analysis of the tank content did not add any value because the process knowledge of the injectate was sufficient. Therefore, laboratory analysis of the substrate solution is not necessary. In addition, an in-situ water quality sonde is used to monitor the turbidity, specific conductance, pH, ORP, DO, temperature, and pressure in each tank.

Full-Scale Operation Modification #5: No sampling of the aboveground tank content.

#6: Groundwater Sampling at Well TAV-INJ1 during Injection

In Section 5.2.2, Page 5-18, the Revised TSWP states, “During injection, DO, ORP, and pH will be monitored in well TAV-INJ1 using downhole electronic probes and a data logger. Water levels will also be frequently monitored immediately prior and throughout each workday during injections. Additionally, wells TAV-INJ1, TAV-MW6, and TAV-MW7 will be monitored monthly during injection for the analyses (Table 5-4) and the field parameters listed in section 5.3.”

Rationale for Modification: During the performance monitoring of the pilot test, it was apparent that we were dominantly sampling the substrate solution that was injected at well TAV-INJ1 instead of the native groundwater. Strong matrix interferences were reported by the analytical laboratory due to the various substrate ingredients. Because we know exactly how we prepare the substrate solution in aboveground tanks, it is not necessary to collect groundwater samples from the injection well during the six-month injection period.

However, we will collect groundwater samples from well TAV-MW6 during injection as planned in the Revised TSWP. In addition, in-situ water quality sondes will be installed in wells TAV-INJ1 and TAV-MW6 during injection. Turbidity, specific conductance, pH, ORP, DO, temperature, and pressure (correlates to water level) will be logged continuously at a frequency set by the project team.
Full-Scale Operation Modification #6: No groundwater sampling at injection well TAV-INJ1 during the six-month injection. Groundwater sampling at well TAV-INJ1 will start one month after the completion of full-scale injections, as proposed for the post-injection monitoring in the Revised TSWP.

#7: ISB Performance Monitoring at Well TAV-MW7

In Section 5.2.2, Page 5-17 (top of page), the Revised TSWP states “Did results from deeper well TAV-MW7 support the conclusion that further injections will not adversely affect deeper groundwater?”

Increases in nitrate or bromide concentrations and detections of TCE or associated daughter products in well TAV-MW7 would indicate further injection could drive contamination deeper.

Rationale for Modification: During the pilot test injections, an in-situ water quality sonde was installed in each of the three wells (TAV-INJ1, TAV-MW6, and TAV-MW7). The sonde has sensors for turbidity, specific conductance, pH, ORP, DO, temperature, and pressure. The pressure reading correlates to the height of the water column above the sonde. These seven parameters were logged continuously at a pre-specified interval (e.g., every minute). When injections occurred in well TAV-INJ1 (Figure 1a), we observed instantaneous response in well TAV-MW6 (Figure 1b). However, no response was observed in well TAV-MW7 (Figure 1c). These results indicate that wells TAV-INJ1 and TAV-MW6, both screened across the groundwater table, are not hydrogeologically connected with well TAV-MW7, which is screened 90 feet deeper.

The results from the four-month performance monitoring after the pilot test injections also show no indication of any injected ingredient in well TAV-MW7, even though well TAV-MW7 is laterally closer to well TAV-INJ1 than well TAV-MW6. The monitoring results of well TAV-MW7 have been similar to its baseline sampling results in the October – December 2017 Discharge Permit DP-1845 Quarterly Report submitted to the NMED GWQB. A copy of this report was also provided to the NMED HWB.

Well TAV-MW7 would not be useful for monitoring the ISB treatment zone surrounding wells TAV-INJ1 and TAV-MW6. Therefore, we propose to revert it back to the TA-V groundwater monitoring network, which is administered by the SNL Long-Term Stewardship (LTS) group. Under the LTS monitoring plan, well TAV-MW7 is sampled semiannually for nitrate plus nitrite (NPN), volatile organic compounds, and dissolved metals (arsenic, iron, and manganese).

Full-Scale Operation Modification #7: Revert well TAV-MW7 back to the LTS sampling plan with the following additions:

- Increase the sampling frequency from semiannually to quarterly.
- Include bromide in the current analysis suite.
- Include ethene in the current analysis suite, per requirement of the Discharge Permit DP-1845.
- Install an in-situ water quality sonde in well TAV-MW7 in full-scale operation.
Figure 1a
Pressure and Water Column Height in well TAV-INJ1 during Injections

Figure 1b
Pressure and Water Column Height in well TAV-MW6 in Response to Injections at well TAV-INJ1
In the unlikely event that the sonde readings or the analytical results from well TAV-MW7 show any variation from the baseline, it will be reinstated into the ISB performance monitoring campaign as soon as possible.

#8: Analytical Parameters for Groundwater Samples

In Section 5.3, Page 5-11, Table 5-4, the Revised TSWP provides the analytical parameters for groundwater samples to be collected during the Treatability Study.

Rationale for Modification: Table 5-4 is a comprehensive list that includes all potentially useful parameters identified in the planning stage. Based on the results from the pilot test performance monitoring, nine analytes will be eliminated for full-scale operation as explained below.

- Chloride and fluoride – These analytes are not indicative of the performance of the ISB; therefore, are not useful to monitor.

- Nitrite – Baseline samples were collected from injection well TAV-INJ1 and the two nearby monitoring wells TAV-MW6 and TAV-MW7 before the pilot test. Nitrite was either detected near the Practical Quantification Limit or was not detected in the baseline samples (see Table B-2 of the October – December 2017 DP-1845 Quarterly Report). During pilot test performance monitoring, nitrite was not
detected in any of the groundwater samples from wells TAV-INJ1, TAV-MW6, and TAV-MW7 (see Tables B-1 and B-4 of the October – December 2017 DP-1845 Quarterly Report).

Nitrite is highly reactive and is an intermediate compound formed during nitrification and denitrification. It can be oxidized to nitrate or reduced to ammonium in an aquifer. Results of the baseline sampling and the performance monitoring after pilot test injections (which generated reducing conditions in the aquifer) indicate that nitrite apparently does not exist at detectable concentrations during ISB at TA-V. Based on this understanding, nitrite will be eliminated from the analyte list in full-scale operation. Analyses for ammonia and NPN will remain.

- Calcium, magnesium, potassium, and sodium – These analytes are not indicative of the performance of the ISB; therefore, are not useful to monitor.

- Orthophosphate as P – Diammonium phosphate (DAP) is an ingredient of the substrate solution. It acts as a pH buffer and provides phosphorous to support microbial cell generation. Figure 2 presents the orthophosphate concentrations in well TAV-INJ1 during the pilot test performance monitoring. It shows that phosphorous was rapidly utilized by microbes. Figure 2 also presents the concentrations of Total Organic Carbon (TOC), which is the main source for microbial growth. Figure 2 shows the more gradual consumption of TOC compared to the exponential utilization of orthophosphate. It is expected that phosphorous will be completely consumed prior to the depletion of TOC. Therefore, TOC is a more robust and reliable indicator for microbial respiration and growth in the treatment zone. Based on this understanding, orthophosphate will be eliminated from the analyte list in full-scale operation. Analysis for TOC will remain.

Figure 2
Orthophosphate and TOC Concentrations at TAV-INJ1 following Pilot Test Injections
• Sulfide – Similar to nitrite, sulfides generated during ISB are intermediate compounds and are not expected to persist in a dissolved state. Reactive sulfide was not detected in any of the groundwater samples from wells TAV-INJ1, TAV-MW6, and TAV-MW7 during the pilot test performance monitoring. Therefore, sampling for sulfides in the groundwater from the treatment zone is not warranted for the full-scale operation.

However, due to the potential for hydrogen sulfide gas to accumulate in the well casing of the injection well, a handheld hydrogen sulfide gas meter will be used to monitor the hydrogen sulfide gas levels during the full-scale injections. The data may be useful to evaluate ISB performance and to address any worker safety concerns for conducting groundwater sampling.

Full-Scale Operation Modification #8: Eliminate unnecessary analytical parameters when wells TAV-INJ1 and TAV-MW6 are sampled. The Revised Table 5-4 is provided below for the analytical parameters for full-scale operation.

Revised Table 5-4
Analytical Parameters for Groundwater Samples

<table>
<thead>
<tr>
<th>Analytical Group/Analyte in Table 5-4 of the Revised TSWP</th>
<th>Analyte in Table 5-4 of the Revised TSWP</th>
<th>Revised Analyte List for Full-Scale Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity (total, bicarbonate, and carbonate)</td>
<td>Alkalinity</td>
<td>Yes</td>
</tr>
<tr>
<td>Ammonia (as Nitrogen)</td>
<td>Ammonia</td>
<td>Yes</td>
</tr>
<tr>
<td>Anions</td>
<td>Bromide</td>
<td>Yes</td>
</tr>
<tr>
<td>Anions</td>
<td>Chloride</td>
<td>No</td>
</tr>
<tr>
<td>Anions</td>
<td>Fluoride</td>
<td>No</td>
</tr>
<tr>
<td>Anions</td>
<td>Nitrite</td>
<td>No</td>
</tr>
<tr>
<td>Anions</td>
<td>Sulfate</td>
<td>Yes</td>
</tr>
<tr>
<td>Dehalococcoides (Dhc) and, if Dhc is present, vinyl chloride reductase (vcrA).</td>
<td>Dhc and vcrA</td>
<td>Yes</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>Yes</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Calcium</td>
<td>No</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>Yes</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Magnesium</td>
<td>No</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>Yes</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Potassium</td>
<td>No</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Sodium</td>
<td>No</td>
</tr>
<tr>
<td>Methane/Ethane/Ethene (MEE)</td>
<td>MEE</td>
<td>Yes</td>
</tr>
<tr>
<td>Nitrate plus Nitrite (NPN)</td>
<td>NPN</td>
<td>Yes</td>
</tr>
<tr>
<td>Orthophosphate (as P)</td>
<td>Orthophosphate (as P)</td>
<td>No</td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>TOC</td>
<td>Yes</td>
</tr>
<tr>
<td>Sulfide</td>
<td>Sulfide</td>
<td>No</td>
</tr>
<tr>
<td>Volatile Organic Compounds (VOCs)</td>
<td>VOCs</td>
<td>Yes</td>
</tr>
</tbody>
</table>
References

Sandia National Laboratories, New Mexico (SNL/NM), March 2016. Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern, Sandia National Laboratories, Albuquerque, New Mexico.
Appendix B

Bioresmediation Treatability Study
Aboveground Injection System at TAV-INJ1
As-Built Engineering Drawings