
University of New Mexico
UNM Digital Repository

Optical Science and Engineering ETDs Engineering ETDs

9-12-2014

Bayesian Estimators, Error Bounds, and
Applications to Imaging
Srikanth Narravula

Follow this and additional works at: https://digitalrepository.unm.edu/ose_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Optical Science and Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Narravula, Srikanth. "Bayesian Estimators, Error Bounds, and Applications to Imaging." (2014). https://digitalrepository.unm.edu/
ose_etds/29

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fose_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ose_etds?utm_source=digitalrepository.unm.edu%2Fose_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fose_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ose_etds?utm_source=digitalrepository.unm.edu%2Fose_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ose_etds/29?utm_source=digitalrepository.unm.edu%2Fose_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ose_etds/29?utm_source=digitalrepository.unm.edu%2Fose_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


     
  

           
       Candidate  
      
           

     Department 
      
 
     This dissertation is approved, and it is acceptable in quality and form for publication: 
 
     Approved by the Dissertation Committee: 
 
               
                   , Chairperson 
  
 
           
 
 
           
 
 
           
 
 
           
 
 
           
 
 
            
 
 
            
 
 
            
 
 
  



Bayesian Estimators, Error Bounds, and
Applications to Imaging

by

Srikanth Reddy Narravula

B. Tech., Indian Institute of Technology, Madras, 2007

M.S., ECE, University of New Mexico, 2009

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Optical Science and Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2014



c©2014, Srikanth Reddy Narravula

iii



Dedication

To That which is not.

iv



Acknowledgments

I would like to thank my advisor, Professor Sudhakar Prasad, for his guidance,
patience and support. There are many reasons which make me believe that it is
providence which brought me to him. Science was fun when I was a child, but
somehow along the road, it was lost. It was only after I worked with Prof. Prasad,
just solving problems became exciting again with renewed energy and focus. His
insights into various areas of research from quantum physics to statistical estimation
theory and anything else that is related to science helped me in broadening my
own view on approaching research. Somehow everything is connected and I think I
developed an eye to see things a little deeper. I am grateful to him for giving me
the freedom to express and pursue my ideas. It has been an enriching experience
working with him.

My gratitude goes to Prof. Majeed M. Hayat. In the time I worked with him I
learned about being professional and about perseverance which are invaluable assets
in an increasingly competitive academic environment. I am grateful to Prof. Keith
Lidke and Prof. James Thomas for serving in my committee. I am thankful to my
group members Rakesh, Julian, Henry, and Zhixian for their support.

My gratitude goes to my mother, Radha, father, Ramalinga Reddy, and sister,
Manogna for their constant support and love through the years. I am thankful to all
my friends for making my stay in Albuquerque a memorable one.

v



Bayesian Estimators, Error Bounds, and
Applications to Imaging

by

Srikanth Reddy Narravula

B. Tech., Indian Institute of Technology, Madras, 2007

M.S., ECE, University of New Mexico, 2009

Ph.D., Optical Science and Engineering, University of New Mexico,

2014

Abstract

In a communication system, a signal carrying information about a physical vari-

able, or parameter, is fed into the front end of a channel and noisy or corrupted data

are obtained at its back end, data from which one attempts to estimate the physical

parameter. The error that accompanies such an estimate is usually characterized by

mean squared error (MSE). In a Bayesian setting, the minimum value of the MSE

is obtained by the so-called MMSE estimator (MMSEE), which in this sense is the

best possible estimator. In general, the MMSE as well as the MMSEE are difficult

to compute, which gave early impetus to work on a host of bounds on the MMSE

of varying degrees of tightness over the last fifty years. The bounds, if sufficiently

tight, help us in evaluating the performance of sub-optimal estimators.

A widely used lower bound on the MMSE is the Ziv-Zakai lower bound, which

bounds the MMSE via the minimum probability of error (MPE) of a binary hypoth-

esis testing problem. Extensions of the Ziv-Zakai lower bound and some compu-
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tationally efficient approximations are derived. The extensions include a bound in

terms of the MPE of an M-ary hypothesis testing problem and another bound for

discrete prior probability distributions.

A major focus of the dissertation has been on deriving tight upper bounds on

the MMSE, and their applications to imaging and non-imaging problems. An upper

bound on the MMSE is derived that has a variational character, is easy to compute,

and follows the MMSE tightly. This new upper bound on the MMSE is shown

to be the “bias removed mean squared error” of any test estimator. By choosing

test estimators from suitably parameterized families and then optimizing over the

parameters of the families, we obtain tight upper bounds on the MMSE as well as

the estimators that achieve the upper bound. A new piecewise quasi-linear estimator

which works well particularly when the data depend non-linearly on the parameters

being estimated is proposed. The MMSE upper bound for such estimators performs

tightly in bounding the MMSE for all values of the signal to noise ratio (SNR).

The upper bounds obtained from the test estimators are applied to illustrative,

toy 1-pixel and 2-pixel models of the EM-CCD camera. Further illustrations are

provided by applying the upper bound to a highly non-linear and more realistic

time-delay estimation (TDE) problem which is basic to many signal processing sce-

narios, including source detection, array processing, surveillance, synchronization in

communications, range finding in RADAR, geo-location and tracking in sensor net-

works. A comparison with the existing bounds on the MMSE shows that our upper

bound performs optimally in terms of its tightness to the MMSE and is the best of all

bounds that we considered in all regions of operation. The upper bound was finally

applied to characterize the performance of a newly developed rotating point spread

function imaging system, which is capable of snapshot 3D imaging, and compared

with the performance of a conventional imaging system for localizing point sources

beyond the diffraction limit. New asymptotic analyses of the MMSE are also stud-

vii



ied, both in the low SNR and the high SNR regimes, and a useful interpolational

approximation of the MMSE is presented which seems to approximate accurately the

MMSE for all values of the SNR.
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Chapter 1

Introduction

Error is a natural outcome in any signal or parameter estimation problem. Gener-

ally, the parameter value is known a priori to be bounded, which can sometimes be

described by a statistical distribution called the prior. Measurements of the param-

eter, themselves having a statistical character, can provide more information about

the prior through inference. One of the ways to statistically infer the value of the

parameter from the observations is by using Bayesian estimation which relies on

the posterior distribution. The posterior distribution improves upon the informa-

tion about the parameter contained in the prior, since the observations a posteriori

restrict the possible values of the parameter.

Two widely used inference measures are the mean and the mode of the posterior

distribution. They are, respectively, the minimum mean squared error estimator

(MMSEE) and the maximum a posteriori (MAP) estimator. The MMSEE is the op-

timal estimator in the mean squared error (MSE) sense, and its error is the minimum

mean squared error (MMSE), which is the lower bound on MSE achieved by any es-

timator. The MMSEE is, in general, notoriously difficult to compute numerically, as

is the MMSE, which is an important reason for a host of bounds on the MMSE of
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Chapter 1. Introduction

varying degrees of tightness having been introduced and studied over the last fifty

years. The bounds, if sufficiently tight, help us in evaluating the performance of

sub-optimal estimators. This dissertation is concerned with the derivation of new

bounds on the MMSE and with a detailed comparative study of the new and existing

bounds in the context of certain applications.

In a typical parameter estimation problem, there are three regions of operation,

as shown in Fig. 1.1. In the asymptotic region, where the signal to noise ratio (SNR)

is high or many observations are available, any prior information about a parameter

is typically dwarfed by the information provided by the high quality of data present,

and as a result the MSE can be made small. As the SNR decreases, the MSE rises

rapidly at some point. Because of its steepness, this increase in error, also known

as the threshold phenomenon, might mimic a phase transition of a thermodynamic

system. When the SNR becomes even smaller or when only a few high-quality

observations are available, observations provide little information, and the error is

controlled largely by the prior knowledge, and the error moderates once again.

A powerful statistical analysis of estimation was developed by Fisher [6,7] in the

1920’s. This was divided into the theory of efficient statistics, namely estimators

with no bias provided there are many measurements, and that of sufficient statistics,

estimators that provide all the relevant information even when there are only a few

measurements. The maximum likelihood estimator (MLE) was shown to be an effi-

cient statistic, and also that it was normally distributed when there are large number

of measurements. While this was a significant advance, it was only after the work

done by Cramer [8], Rao [9, 10], Bhattacharya [11], Barankin [12] and Chapman-

Robbins [13] in the late 1940’s that the behavior of error was understood well, and

the transition from the high SNR region to the low SNR region was better appreci-

ated. More bounds on the MSE for deterministic parameter estimation, where the

unknown parameter is assumed to be deterministic, were derived later [14–18]. They

2



Chapter 1. Introduction

Figure 1.1: Typical behavior of the MMSE and the different regions of errors.

are all lower bounds on the variance of an unbiased estimator, and no prior knowl-

edge about the distribution of the parameter values was taken into account. The

simplest of these lower bounds is the Cramer-Rao bound (CRB), which, because it is

easily computable, was used widely in the high SNR region. The probability density

functions, however, need to obey certain regularity conditions for the calculation of

the CRB. Moreover, it is a little too optimistic, underestimating the error, as we

move into the “large-error” region [19] as shown in Fig. 1.1. The transition region

is precisely this large error region and received a lot of interest [17, 18, 20, 21]. The

more complete and computationally intense Barankin bounds (BB) seem to do well

in locating the threshold. Rife et al. [22] and Athley [23] used the method of interval

errors [21] to locate the threshold. All these lower bounds were shown to be special

cases of the Barankin bound by proper selection of test functions [16, 24,25].

3



Chapter 1. Introduction

Since most of the estimators tend to be biased in the low SNR limit, these lower

bounds are not of much use for values of the SNR in the transition region or lower.

Even though the CRB can be formulated for biased estimators [21], which we may

call biased CRB, it is of less practical value as it depends on the gradient of the bias

of the particular estimator with respect to the parameters under estimation. For

performance comparison, a useful lower bound should apply to the entire class of

estimators. Usually, when the parameter or the estimator is constrained to lie is a

closed space, biased estimators are unavoidable [26]. Nevertheless, biased estimators

have been in frequent use as they are observed to reduce the estimation error better

than an unbiased estimator [27]. For example, biased estimators were applied widely

in image restoration [28], where regularization is implemented to reduce noise ampli-

fication (variance) at the expense of reduced spatial resolution (bias). Biased ridge

estimators [29] were used in multiple regression to reduce the variance of ordinary

least squares estimators.

To compare the performance of biased estimators, Hero et al. [30] developed lower

bounds for the MSE, using a multiple parameter Chapman Robbins bound, when the

parameter was constrained to lie on a manifold of the parameter space. Later, a new

bound called the uniform CRB (UCRB) [31] was developed by the same group, for a

scalar function of a deterministic vector parameters. This is a bound on the smallest

attainable error that can be achieved using any estimator with a bias gradient whose

norm is bounded above by a constant. With the UCRB, the trade-off between the

variance and bias of an estimator was analyzed in [32]. The UCRB was extended for

vector parameters, and asymptotically optimal estimators that achieve the UCRB

were developed in [33]. New lower bounds on the MSE of biased estimators were

proposed: in [34] with an integral form of the Barankin bound for biased estimators

and using the kernel of the weighted Fourier transform, and in [35] by restricting the

estimators to a linear bias sub-class and using a minimax criterion to find an optimal

bias vector so that the MSE is minimized uniformly for all the parameter values with

4



Chapter 1. Introduction

respect to the CRB. A tutorial on the relationship between bias and variance of an

estimator can be found in [36].

Another way of approaching the problem of estimation is to look for bounds

on the MMSE that are independent of the bias while being applicable under all

operating conditions. These are the “Bayesian bounds”, which assume the parameter

to be a random variable with a known prior probability distribution, and were first

developed by Ziv and Zakai [26] in the late 1960’s. The Ziv-Zakai bound (ZZB) was

initially formulated for a scalar uniformly distributed parameter. Since the ZZB was

independent of the bias while accounting, albeit statistically, for any prior knowledge,

unlike the previously existing bounds, it represented a significant advance. The ZZB

was shown, however, to be asymptotically poor by Seidman [37], who improved the

ZZB by introducing a parameter over which an optimization was performed. Chanaz

et al. [38] improved the ZZB by avoiding the Chebychev’s inequality. Bellini et al. [39]

improved it further by using the Kotelnikov inequality [40] for the probability of

outage error and by introducing a valley filling function. All of these different versions

of the ZZBs relate the MMSE to the probability of error in a binary hypothesis testing

problem, and they were further extended to arbitrary prior distributions and vector

parameters [1, 41]. A different kind of extension of the ZZB was accomplished by

relating the MMSE to an M-ary hypothesis testing problem: in [42] the number of

hypothesis depended on the size of the parameter space, and in [41] the number of

hypothesis was independent of the size of the parameter space and hence provided

more control over the number of hypotheses. The ZZB was also derived for discrete

priors in [42], even though the Bayes risk considered there is somewhat different from

the traditional MSE.

Another important Bayesian lower bound, the Weiss Weinstein bound (WWB)

[43], was developed based on the covariance inequality. The WWB is expressed in

terms of a test function, defined on the parameter and observation space, which is or-
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Chapter 1. Introduction

thogonal to any function of the observations. By choosing appropriate test functions,

new Bayesian bounds can be formulated. In fact, using this approach the Bayesian

CRB [21], the Bayesian Chapman Robbins bound, the Bayesian Bhattacharya bound

and the Bobrovsky-Zakai bound [44] could all be unified under a single class [45].

In recent years, some new Bayesian bounds have been developed. Renaux et al. [46]

and Todros et al. [47] formulated a general class of lower bounds and generated

new bounds within this class by using different test functions belonging to the class.

Another lower bound on the MMSE was presented in [48] which, while based on a

deterministic, biased version of CRB, did not, unlike the Bayesian CRB, require any

regularity conditions on the prior distribution . They used an optimal bias function

to arrive at the lower bound. A compilation of all the major work done in the field

of Bayesian bounds and their applications, till 2007, can be found in [49].

For the sake of completeness, we note the intrinsic relation between the Bayesian

minimum probability of error (MPE), which is an all encompassing description of er-

ror, and the Bayesian MMSE which is a second order error moment. This is suggested

by the very formulation of the ZZB. Since the MPE is difficult to compute, many sub-

optimal distance measures between statistical distributions were proposed and stud-

ied. notable among them are the Kullback-Leibler distance [50], the Bhattacharyya

distance [51], the Bayesian distance [52] and Ali-Silvey [53] distance. These distance

measures enable one to find bounds on the minimum probability of error [52,54–56].

Recently, Routtenberg et al. [57] presented a general class of bounds on outage errors

and, using a new test function, formed a new bound on the outage error, thereby

developing new bounds on MMSE.

Studies of expected inverse relationships between Bayesian error and statistical

information have also been carried out. Since mutual information [58] represents the

amount of coded information that can be passed through a channel reliably for a

given prior, and since error measures determine the accuracy of the recovered value
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of the parameter (input signal) from the observations (channel output), one expects

an inherent relation between mutual information and the various error measures.

Inequalities exist between information and the probability of error. They include

Fano’s bound [59], and a number of other improved inequalities derived by Feder

et al. [60], Raviv et al. [61], Seidler [62], Santhi et al. [63] and Golic [64], all based

in essence on relations between the equivocation entropy and probability of error.

Verdu et al. [65] discovered a relation between the mutual information and MMSE in

terms of SNR for Gaussian channels and later extended it to Poisson channels [66].

An inequality between mutual information and the MMSE for any channel and prior

was derived by Seidler [62] and more recently by Prasad [67], based on relating the

MMSE to the equivocation.

As we see, the literature on statistical error is very rich, having developed largely

over the past few decades, but only a few attempts have been made to find useful

upper bounds on the MMSE. Seidman [68] derived an upper bound on MMSE by

bounding the corresponding probabilities of the MSE. Hawkes et al. [69] developed

an upper bound based on the Kullback-Leibler distance measure. A recent work by

Flam et al. [70] used an optimal linear estimator to upper bound the MSE which

performed well for the Gaussian-mixture model [71].

In this dissertation, we present the derivation and detailed applications of a new

upper bound that has a variational character, is easy to compute, and follows the

MMSE tightly. Because of these properties, we can use it for a wide range of pa-

rameter estimation problems. This new upper bound on the MMSE is shown to

be the “bias removed mean squared error” of any test estimator. By means of a

properly motivated choice of a class of test estimators and then optimizing over the

parameters that define the class, we can obtain the tightest possible upper bound

on MMSE as well as the corresponding estimators within this class that achieve the

upper bound. Indeed, if good upper and lower bounds can be given for the MMSE

7
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of a particular estimation problem, then it might be possible to answer more readily

the question of their tightness in the asymptotic limit of many independently and

identically distributed measurements.

The bounds developed in this dissertation are first applied to the time delay esti-

mation (TDE) problem [4] which is fundamental to many scenarios, being intimately

linked to detection, array processing, surveillance, synchronization in communica-

tions, range finding in RADAR, as well as geo-location and tracking in sensor net-

works. In the context of sensor networks and geolocation of mobile ad hoc network

nodes, node localization, and tracking of position, the TDE is very important [72]

where the time delay estimates between the nodes can be translated into position

estimates. Localization techniques are also important in understanding biological

processes, and with recent advances in fluorescence microscopy [73], localizing single

molecules well beyond the diffraction limit is now possible. Seen from a spatial point

of view, the TDE problem is formally the same as a one-dimensional version of the

source-localization problem in single molecule imaging applications. Typically, the

images are sub-divided into regions surrounding suspected fluorescent molecules, and

then localization and tracking of molecules is performed region by region [74]. The

usually adopted approaches for localization are the fast non-linear least squares fit-

ting [75], which is a centroid based point spread function fitting, and the MLE [76],

which is optimal whenever there are many measurements [77].

A quantitative study of the various localization techniques was done using the

CRB by Abraham et al. [78], but an error analysis using the CRB is valid only in the

asymptotic limit as we have noted before. An asymptotic treatment of sub-diffractive

and sub-pixel localization is of importance, for example, to find the minimum source

strength required to achieve an M-fold enhancement of source localization accuracy

[79,80]. The asymptotic analysis of the minimum probability of error in point-source

discrimination was done by treating it as a binary hypothesis testing problem [81,82],

8
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and more generally as a multi-hypothesis testing problem [83–85]. However, for

most single molecule experiments, often there are only a few measurements available,

especially when the molecules are being tracked, and also the background noise is

usually high [86]. Therefore, a Bayesian approach, which fully accounts for any prior

information on the spatial bounds on the positions of the molecules and which is

valid for all regions of operation, seems surely to be more desirable [86–88].

In its basic form,the TDE problem, consists of estimating the delay of the center of

a pulse that has been corrupted in its propagation through a noisy environment [89].

A comparison and survey of the various approaches for estimating the delay can

be found in [4, 90–93]. A survey of the performance bounds for the TDE problem

can be found in [94]. Even though the ZZB and the WWB provide significantly

tighter performance bounds than the family of CRB bounds, they also require more

effort to evaluate. The choice of test points is important for the WWB (and the

BB), a fact that can make evaluation of the bound significantly more complex as

more parameters are added to the problem. The vector ZZB also becomes harder

to evaluate due to the more involved calculation of the MPE, involving, in general,

multiple integrals which are often difficult to compute. It may be possible to find

simplified expressions for both the ZZB and the WWB in order to provide valuable

insight. But it has been hard to determine how closely the simplified expressions

approximate the MMSE. Moreover, the derivation of these bounds provides no clue

to the optimal estimators that achieve them. In our examples, we have calculated

the upper bound for different test estimators and compared it to the ZZB and the

WWB. Our upper bound, as we shall see, performs optimally and is by far the best

in all regions of operation.

The dissertation is organized as follows. In Chapter 2 we will review the MMSE,

the MAP estimator and two important lower bounds on the MMSE, the ZZB and

the WWB. We will also review the TDE problem and discuss another toy problem

9
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that is used to compare the different bounds on the MMSE. A particular case where

the ZZB performs poorly is presented. In Chapter 3, we will extend the ZZB using

an M-ary hypothesis testing approach, and also to discrete priors. In Chapter 4, we

will derive our new upper bound, and apply it to a polynomial class of estimators,

and the MAP estimator. A new piecewise linear estimator that performs well in

all the regions of operation will be the centerpiece of the chapter. In chapter 5, we

construct asymptotic expressions for the MMSE estimator and the MMSE for high

and low values of the SNR. In the high-SNR region, since the MLE estimator is

known to achieve the CRB, we expand the MMSE estimator around the MLE in this

region, while in the low-SNR region, where data add little information, the mean of

the prior seems to be a suitable point about which to expand the MMSE estimator.

Using this formalism a different kind of approximation to the MMSE is proposed.

Finally, in Chapter 6, we present some ongoing work and future directions.
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Chapter 2

Review

The problem of extracting signals and parameters of interest from a set of obser-

vations is inherent to many applications, a few of which include amplitude and fre-

quency estimation in RADAR and sonar, direction of arrival of a wireless signal,

estimating the positions of individual molecules in single molecule imaging, image

restoration, image registration, sub-pixel resolution, and feature extraction in com-

pressive sensing. In this chapter we will set up the problem of parameter estimation

and review the MMSE, and the MLE and MAP estimators and some of their prop-

erties. We will also review the ZZB and the WWB, and point to some of their

limitations.

2.1 The estimation problem

A note on the notation used in this dissertation: capital letters denote scalar random

variables and small letters real numbers; capital letters with a bar denote random

column vectors and small letters with a bar column vectors; and bold capital letters

denote deterministic or random matrices. For example, x denotes a real number, X
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a scalar random variable, x̄ a column vector, X̄ a random column vector, and A a

deterministic matrix. RX denotes the set of values that a random variable X takes.

Any other notation will be defined at their first occurrence.

Let X be a parameter to be estimated and Y a statistical data variable from which

X is being estimated. Let the probability distribution (PD) of X be denoted by PX ,

that of Y by PY , and that of the conditional, namely of Y , given X, by PY |X . We may

also call the latter the PD of the channel, borrowing from the terminology of modern

communication theory. However, we shall drop subscripts when the meaning of the

associated symbol is clear from its argument. We take these PDs to be densities,

thus assuming nominally that X and Y take on continuous real values, but we may

easily modify our derivation to apply to either or both of the variables being discrete

by treating probability integrals as appropriate discrete sums over probability mass

functions (PMFs). The parameter X and the data Y can be a scalar or a vector,

but their treatment is a little different in each case. Though the upper bound, the

MMSE and all other bounds can be expressed similarly for both cases, we will focus

on the simpler case of scalar parameters first. The dimensionality of the data space

is arbitrary in this treatment, with a simple reinterpretation of the data integrals as

being multi-dimensional.

We note that there are two ways to approach a parameter estimation problem,

called the classical and Bayesian approaches. In the classical approach parameter

to be estimated is a deterministic quantity, x, and no prior PD is assumed. The

estimate X̂ of x depends only on the statistics of the measured data, Y . Note

that the estimator X̂ is a random variable as it is a function of the data, Y , which

is a random variable. To avoid the trivial estimator, X̂ = x, constraints, such

as unbiasedness of the estimator, are imposed making the estimation problem a

constrained optimization problem. The MLE is a popular choice in the classical

approach. Since no information about the prior is considered, at lower signal to
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noise ratios, these estimators which rely on fitting to the data, will fit to noise,

resulting in poor estimation.

On the other hand, the Bayesian approach involves inferring the parameter from

the data through the posterior distribution,

PX|Y (x|y) =
PX(x)PY |X(y|x)

PY (y)
. (2.1)

This is also known as the Bayes rule and hence the name Bayesian estimation for

this approach. Note that the posterior distribution assumes a prior distribution

on the parameter X. Typically, the posterior distribution, PX|Y (x|y), based on

the conditional data statistics, becomes highly peaked at the value x when there

are many measurements available. There are two major concerns of using such an

approach as opposed to the classical one. The first is on the use of any distribution

a priori on X, which can introduce subjectivity into the estimation process. This

calls into question the appropriateness of a particular prior. The second concern is

that the Bayesian approach is inherently computationally intensive, since it is based

on the posterior distribution which requires calculating the probabilities through

multi-dimensional integrals. The second issue is mostly resolved with the advent of

good computational algorithms, for example Markov chain Monte Carlo (MCMC)

methods. Moreover, at lower SNR values, a good estimate is arrived at only after a

considerable computational expense. In most cases, the first issue, the validity of a

prior PD, can be addressed based on the underlying physics of the problem, and it

only makes sense to assume a scientifically sound prior rather than none at all.

In this dissertation, we use a Bayesian approach to the parameter estimation

problem. This means that the parameter X is assumed to be a random variable with

a prior distribution PX .
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2.2 Minimum mean square error (MMSE)

The error in estimating a Bayesian parameter, X, by means of an estimator X̂(Y )

is ε = X̂(Y )−X, and its MSE is the following expectation over X and Y :

E = E[X̂(Y )−X]2 =

∫
RX

dx

∫
RY

dy [X̂(y)− x]2P (x, y). (2.2)

We will avoid writing RX and RY whenever they are clearly evident from the inte-

grals. We will explicitly state them if needed. Minimizing the MSE with respect to

the estimator function X̂(Y ) requires setting the corresponding first-order variation

of the right-hand side (RHS) of Eq. (2.2) to zero for each data value y,∫
dx 2[X̂(y)− x]P (x, y) = 0, (2.3)

which can be easily simplified to yield the following well-known form of the MMSEE:

X̂M(y) =

∫
dx xP (x, y)∫
dxP (x, y)

=

∫
dx x

P (x, y)

P (y)
=

∫
dx xPX|Y (x|y), (2.4)

where the marginal, PY (y) =
∫
dxP (x, y) and the Bayes rule, Eq. (2.1), are used to

arrive at the final expression. The MMSEE is thus simply the posterior mean of the

parameter being estimated.

Among its general properties, we note, as a simple averaging of expression (2.4)

over y demonstrates, that the mean value of the MMSEE is the mean value of the

Bayesian parameter over its prior. The MMSE is the MSE of is optimal estimator.

We will use 〈.〉 to denote E[.], wherever necessary to make the expressions more

readable.

We may relate the MMSE to the variance of the MMSEE,

σ2
MMSEE = E[X̂M(Y )− 〈X〉]2 =

∫
dy [X̂M(y)− 〈X〉]2PY (y), (2.5)
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by writing, in expression (2.2), [X̂M(y)− x] as [X̂M(y)− 〈X〉]− [x− 〈X〉] and then

squaring it. This procedure is easily seen to yield three terms for the MMSE, EM :

EM =E[X̂M(Y )−X]2 (2.6)

=σ2
X + σ2

MMSEE − 2

∫
dx

∫
dy [X̂M(y)− 〈X〉][x− 〈X〉]P (x, y). (2.7)

But, according to Eq. (2.4),
∫
dx xP (x, y) = PY (y)X̂M(y), which reduces the third

term on the RHS of Eq. (2.7) to −2σ2
MMSEE, and the following important relation

between the MMSE and the variances of the prior and the MMSEE results:

EM = σ2
X − σ2

MMSEE. (2.8)

This result has an important consequence for Bayesian estimation. Since MMSE

is non-negative, the MMSEE variance can never exceed the variance of the prior.

Indeed, in the limit of infinite SNR, the MMSE is expected to vanish, indicating

that the MMSEE, like all other good estimators, provides a perfect estimate of the

Bayesian parameter. In the opposite limit of vanishing SNR, the variance of the

MMSEE is expected to vanish, since P (x|y) → P (x) and the MMSEE simply be-

comes the mean 〈X〉, which is a constant entirely independent of the data. The data

provide no information about the parameter in this limit, and the MMSE reduces to

the variance of the prior information about the parameter.

Both the MMSE and the MMSEE are, in general, difficult to compute because

the posterior distribution, PX|Y , is difficult to compute. The posterior distribution

from Eq. (2.1) can be expressed as

PX|Y (x|y) =
PY |X(y|x)PX(x)

PY (y)
=

PY |X(y|x)PX(x)∫
dxPY |X(y|x)PX(x)

. (2.9)

The statistics of the data, PY , are known only through the conditional distribution,

PY |X . It is the PD of the data in the denominator that usually causes the problems

as it is the expectation of the channel PD over the prior, PX . The integral cannot, in
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general, be evaluated in closed form, but more importantly the posterior is difficult

to compute accurately as the ratio (2.9) becomes numerically ill behaved far in the

wings of its numerator and denominator. Therefore, many ad-hoc estimators have

been proposed. In the next section, the widely used MLE and MAP estimator are

reviewed.

2.3 MLE and the maximum a posteriori (MAP) es-

timator

The MLE is the maximum of the likelihood function L(x|y) = PY |X(y|x) with respect

to x:

X̂MLE(y) = argmax
x∈RX

PY |X(y|x). (2.10)

In other words, the MLE picks that value of X from which the data value, Y , is

most likely to have arisen. The MLE estimator has been researched extensively in

the past few decades. A very powerful iterative algorithm called the expectation-

minimization (EM) algorithm was proposed as a numerically expedient approach

to obtain the MLE iteratively [95–97]. Many extensions and modifications to EM

algorithm have been proposed and applied to a variety of statistical problems [98].

The MLE may also be shown to be optimally efficient [6], i.e., the squared error

of the MLE reaches the CRB, which is a lower bound on the variance of any unbiased

estimator, when there are many measurements. This can also be understood in terms

of the asymptotic behavior of the posterior distribution. The posterior distribution

approaches a Gaussian distribution [99] when there are many measurements, a result

that we call the Bayesian central limit theorem. As the mean and the mode coincide

for a Gaussian distribution, the MLE is nothing but the MMSE estimator in the

high SNR limit. The MLE becomes biased, however, when there are only a few
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measurements. This departure from being an optimally efficient estimator when

there are only a few measurements was studied in [100]. Moreover, as the prior is

not taken into account, the MLE is not useful in the transition region. Seen from an

SNR point of view, the MLE will fit to the data at high SNR but to the noise, and

thus needs to be smoothed, at low SNR. We can incorporate any prior information

available to smooth out the noise arising from the observations at low SNR. This will

lead us to the MAP estimator which is by the maximum of the posterior distribution,

X̂MAP(y) = argmax
x∈RX

P (x|y) (2.11)

= argmax
x∈RX

P (y|x)P (x) (2.12)

Note that the MAP estimator also involves the posterior distribution, (2.11), but the

calculation requires finding only the extremum of the posterior distribution and does

not utilize the entire posterior distribution, unlike the MMSE estimator Eq. (2.4).

The iterative EM algorithm can also be applied to the MAP estimation by modifying

the objective function for the maximization step [98]. Even though in most cases

the MAP estimator is used in place of the MMSE estimator, it is still an ad-hoc

estimator in the mean squared sense. Especially as the SNR decreases, the posterior

distribution is no longer Gaussian, and generally, its mean and mode do not coincide,

which results in a bias.

To understand this biased behavior of the MAP estimate, consider, for example,

the estimation of a parameter with a uniformly distributed prior, X, when the SNR

is low. Since the observations carry little information when the SNR is low, we

have P (x|ȳ) → P (x) and as a result, X̂MAP(ȳ) = argmax
x

P (x|ȳ) → X̃, where X̃

is a uniform random variable with the same support as X, but independent of X.

Therefore the MSE of the MAP estimator becomes

EMAP = E[X̂2
MAP] + E[X2]− 2E[XX̂MAP]

= E[X̂2
MAP] + E[X2]− 2E[X]E[X̂MAP]

17



Chapter 2. Review

= 2(E[X2]− E[X]2)

= 2σ2
X

This simple calculation shows that the MAP estimator is not optimal in the mean

squared sense and can be improved. As we will see in Sec. 4.3.2, this apparent bias

of the MAP estimator is removed by an application of our new upper bound so that

the MAP error follows the MMSE tightly.

We will now review two of the more popular Bayesian lower bounds on MMSE,

the ZZB and the WWB.

2.4 Ziv Zakai bound (ZZB)

The ZZB family of lower bounds relate the MSE to the probability of error in a binary

hypothesis testing problem. Initially developed by Ziv and Zakai [26], it underwent

improvements and modifications in the works of Seidman [37], Chanaz et al. [38],

Bellini et al. [39], and Weinstein [101]. All of these were derived for the case when

the parameter, X, is uniformly distributed with a finite support. The Bellini-Tartara

bound [39] is the tightest in this family. Later on, Bell et al. [1] extended the Bellini-

Tartara formulation of the ZZB, which we will call the extended ZZB (EZZB), to

include vector parameters and arbitrary priors. Bell [41] also proved some important

convergence properties for elliptically distributed priors, and generalized the EZZB

to arbitrary distortion measures, including error measures other than the MSE. Some

weaker but practical bounds were also formulated. In this dissertation, we will use

the EZZB to compare our upper bound performance.

The derivation of the EZZB involves extending the Kotelnikov’s inequality [40] to

arbitrary prior distribution. The EZZB is based upon a well known relation between
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Figure 2.1: Valley filling function, reproduced from [1]

MSE and the probability of outage error [102]:

E =
1

2

∫ ∞
0

dh hPr
(
|ε| ≥ h

2

)
. (2.13)

By writing ε = X̂ −X, the probability of outage error is then expressed as

Pr
(
|ε| ≥ h

2

)
=

∫
dx
[
PX(x) + PX(x+ h)

]
[ PX(x)

PX(x) + PX(x+ h)
Pr

(
X̂ > x+

h

2

∣∣∣x)
+

PX(x+ h)

PX(x) + PX(x+ h)
Pr

(
X̂ < x+

h

2

∣∣∣x+ h

)]
, (2.14)

which is related to the binary hypothesis testing problem:

H0 :X = x; Pr(H0) =
PX(x)

PX(x) + PX(x+ h)
; Y ∼P (Y |X = x)

H1 :X = x+ h; Pr(H1) =1− Pr(H0); Y ∼P (Y |X = x+ h)

(2.15)

The term in the square brackets of Eq. (2.14) is the probability of error for the
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sub-optimal decision scheme:

Decide H0 :X = x; if X̂(Y ) ≤ x+
h

2

Decide H1 :X = x+ h; if X̂(Y ) ≥ x+
h

2

(2.16)

It is then lower bounded by the minimum probability of error, Pmin(x, x+h), for the

binary hypothesis testing problem (2.15) yielding the inequality

Pr
(
|ε| ≥ h

2

)
≥ G

{∫
dx
[
PX(x) + PX(x+ h)

]
Pmin(x, x+ h

)}
, (2.17)

where G[.] is the valley filling function illustrated in Fig. 2.1. For any function f(h),

G[f(h)] is a non-increasing function of h obtained by filling in any valleys in f(h),

i.e., for every h,

G[f(h)] = max
ε≥0

f(h+ ε). (2.18)

combining the relations (2.13) and (2.17), we arrive at the EZZB:

E ≥ EZZB =
1

2

∫
dh hG

{∫
dx
[
PX(x) + PX(x+ h)

]
Pmin(x, x+ h)

}
, (2.19)

where the integration region for x is where P (x) and P (x + h) are non-zero, since

Pmin(x, x+ h) will be zero when one of the hypothesis has zero probability, and the

integration region for h is the length of the interval where P (x) is non-zero. The

bound on probability of outage error given in Eq. (2.17) reduces to the Kotelnikov’s

inequality [40] when X is uniformly distributed in [0, T ] and the bound on MSE in

Eq. (2.19) reduces to the version of Bellini et al. [39]. Further, if the valley-filling

function is omitted the version of ZZB due to Chanaz et al. is obtained [38]. Note

that the minimum probability of error for the binary hypothesis testing problem in

(2.15) can be written as

Pmin(x, x+ h) =

∫
dy min{Pr(H0)P (y|x),Pr(H1)P (y|x+ h)} (2.20)
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Using (2.20), along with the expressions for the hypothesis probabilities, Pr(H0) and

Pr(H1), in (2.15), in the EZZB (2.19), we get

EZZB =
1

2

∫
dh hG

(∫
dx

∫
dymin{P (x, y), P (x+ h, y)}

)
. (2.21)

The EZZB was widely used in all regions of operation and applied to various

fields [41, 94]. Even though the ZZB is optimal for posterior distributions that are

symmetric and unimodal [41], this condition is not true for finite-support prior PDs,

since for such priors, the posterior distribution becomes quite skewed for values of

the parameter close to the support boundaries. As a result, the bound on the error

probability for the sub-optimal binary decision scheme, in terms of which the EZZB

is defined, becomes looser on the whole and thus the EZZB becomes less tight. A

widely employed example of such a prior is the uniform prior.

Yet another case of sub-optimality of the EZZB, where it fails to reach the vari-

ance of the prior distribution at low SNRs, is obtained when the prior probability

distribution has the following properties: a) the prior is defined for positive values

only,RX = [0,∞) and is a monotonically decreasing function and b) 4
3
E2[X] ≤ E[X2]

or E2[X] ≤ σ2
X . For such priors, we will show that the EZZB will not reach the prior

variance when SNR is low. As SNR is reduced, the dependence of the data on the

prior becomes weak and in the limiting case we can assume that P (y|x) = P (y|x+h).

Therefore, in the limiting case of zero SNR, EZZB becomes

EZZB =
1

2

∞∫
0

dh hG
( ∞∫

0

dx

∫
dymin{P (y|x)P (x), P (y|x+ h)P (x+ h)}

)
(2.22)

=
1

2

∞∫
0

dh h

∞∫
0

dxPX(x+ h)

=
1

2

∞∫
0

dh h

∞∫
h

dφPX(φ)
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=
1

4

∞∫
0

dh h2PX(h)

=
σ2
X + E2[X]

4
≤ σ2

X ,

where the second equality follows from the monotonically decreasing nature of PX and

the fourth equality follows by doing an integration by parts. This simple calculation

suggests that the EZZB is not optimal in general. Moreover, we will see from the

results in Sec. 4.4, even for cases for which the EZZB is expected to perform well,

the EZZB is not tight as our upper bound in the transition region.

2.5 Weiss Weinstein bound

Weiss and Weinstein developed lower bound on the MMSE using the Schwarz in-

equality [43]. Consider a function ψ(x, y) satisfying the following equality:∫
RX

dxψ(x, y)P (x, y) = 0, (2.23)

for any y. Such functions are orthogonal to any transformation, g(Y ), of the data:

E
[
(g(y)ψ(x, y)

]
= EY

[
g(y)EX|Y [ψ(x, y)]

]
= 0, (2.24)

This equation holds for any estimator X̂(Y ), as it depend only the data Y . From

Eq. (2.24), we can write

E
[
(x− g(y))ψ(x, y)

]
= E

[
xψ(x, y)

]
(2.25)

By applying Schwarz inequality to the left hand side of Eq. (2.25), we arrive at the

WWB:

E ≥ E2[xψ(x, y)]

E[ψ2(x, y)]
. (2.26)
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By choosing a function ψ satisfying Eq. (2.23), various bounds on MMSE can be

generated. For example, a test function involving the MMSE estimator,

ψ(x, y) = x− EX|Y (x|y), (2.27)

generates the inequality E ≥ EM , which proves that the MMSE is indeed the mini-

mum MSE.

By selecting

ψ(x, y) =
∂ lnP (x, y)

∂x
(2.28)

the Bayesian version of the CRB [21] is generated, given by

E ≥
{
E
[(∂ lnP (x, y)

∂x

)2]}−1

. (2.29)

It should be noted that the Bayesian CRB is very restrictive as it requires the joint PD

to be differentiable. This implies that a very common prior, the uniform distribution,

does not affect the Bayesian CRB.

Using various test functions ψ, the Bayesian version of the Bhattacharya bound

and the Bobrowsky-Zakai bound can be derived using this formulation [45]. The

Bayesian Bhattacharya bound needs to satisfy some regularity conditions, but the

Bobrowsky-Zakai bound avoids the regularity conditions by using finite differences

instead of local derivatives.

To obtain the original Weiss-Weinstein bound, choose

ψ(x, y) = Ls(y;x+ h, x)− L1−s(y;x− h, x), (2.30)

where 0 ≤ s ≤ 1 and h are free parameters and

L(y;x1, x2) =
P (x1, y)

P (x2, y)
. (2.31)
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The resulting lower bound on the MSE does not suffer from any regularity conditions,

and is given by:

E ≥WWB

= max
0≤s≤1,h

h2 exp
(
2µ(s, h)

)
exp
(
µ(2s, h)

)
+ exp

(
2µ(2− 2s,−h)

)
− 2 exp

(
µ(s, 2h)

) , (2.32)

where

µ(s, h) = lnE[Ls(y;x, x+ h)]

= ln

∫
dy

∫
dxP s(x+ h, y)P 1−s(x, y),

(2.33)

which can be related to the Chernoff distance [103] between two statistical distribu-

tions, f0(x) and f1(x), given by∫
dx f s1 (x)f 1−s

0 (x). (2.34)

The computation of the WWB involves choosing a large number of test points, s and

h. But, it is generally observed that s = 1
2

is a good choice. For s = 1
2
, the WWB

can be written as

WWB = max
h

h2 exp
(
2µ(1

2
, h)
)

2
(
1− exp

(
µ(1

2
, 2h)

)) . (2.35)

The MMSEE, the MAP estimation error, the ZZB, and the WWB are computed

for two specific problems which we will review in the following sections.

2.6 Illustrative problems

2.6.1 Poisson channel with exponential prior

A linear Poisson channel or the discrete-time Poisson channel appears naturally in

many optical systems, e.g., an electron multiplied charge coupled device (EM-CCD)
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imaging system can be modeled using a Poisson channel and an exponential prior. A

linear Poisson channel with linear gain, a, and bias, b, is one where the conditional

mean of the data, Y, given the input, X, is E[Y |X = x] = ax + b. The conditional

probability distribution is given by

P (y|x) =
(ax+ b)y

y!
exp[−(ax+ b)], y = 0, 1, 2, . . . (2.36)

The Bayesian parameter X being estimated is taken to have a negative-exponential

prior,

PX(x) =


1

〈X〉
exp

(
− x

〈X〉

)
for x > 0

0 otherwise.

(2.37)

The posterior PD for X, namely PX|Y (x|y), may be calculated by applying the Bayes

theorem (2.9) to the probability distributions (2.36) and (2.37),

PX|Y (x|y) =
1

PY (y)

1

〈X〉
(ax+ b)y

y!
exp

[
−
(
a+

1

〈X〉

)
x− b

]
, x ≥ 0; y = 0, 1, . . . ,

(2.38)

where PY (y) is given by,

PY (y) =

∫ ∞
0

dx

〈X〉
(ax+ b)y

y!
exp

[
−
(
a+

1

〈X〉

)
x− b

]
, y = 0, 1, . . . , (2.39)

=
1

y!

(a 〈X〉)y

(1 + a 〈X〉)y+1
exp

(
b

a 〈X〉

)
Γ

[
y + 1,

b(1 + a 〈X〉)
a 〈X〉

]
, (2.40)

where

Γ(y + 1, u) =

∫ ∞
u

dx xy exp(−x), (2.41)

is the incomplete Gamma function. The detailed derivation of PY (y) can be found

in Appendix A.1. From equations (2.38), (2.39) and (2.4), we have the following
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expression for the MMSEE,

X̂M(y) =
1

PY (y)

∫ ∞
0

dx x
(ax+ b)y

〈X〉 y!
exp

[
−
(
a+

1

〈X〉

)
x− b

]
(2.42)

=
1

PY (y)

∫ ∞
0

dx
(ax+ b)− b

a

(ax+ b)y

〈X〉 y!
exp

[
−
(
a+

1

〈X〉

)
x− b

]
(2.43)

=
1

PY (y)

∫ ∞
0

dx
(ax+ b)y+1

a 〈X〉 y!
exp

[
−
(
a+

1

〈X〉

)
x− b

]
− b

a
(2.44)

=
(y + 1)PY (y + 1)

aPY (y)
− b

a
, (2.45)

where in going from (2.42) to (2.43), we used x =
(ax+ b)− b

a
. Taking the squared

mean of the MMSEE yields

E[X̂2
M ] =

1

a

∞∑
y=0

(y + 1)2P 2(y + 1)

P (y)
− 2

∞∑
y=0

b

a2
(y + 1)P (y + 1) +

b2

a2

∞∑
y=0

P (y)

=
1

a

∞∑
y=0

(y + 1)2P 2(y + 1)

P (y)
− 2b

a
〈X〉 − b2

a2
. (2.46)

According to Eq. (2.8), subtracting this expression from 〈X2〉, which is 2 〈X〉2 for an

exponential PD, yields the desired MMSE,

EM = 2 〈X〉2 +
2b

a
〈X〉+

b2

a2
− 1

a2

∞∑
y=0

(y + 1)2P 2(y + 1)

P (y)
. (2.47)

The MAP estimator, from Eq. (2.11), is given by

X̂MAP(y) =
〈X〉

a 〈X〉+ 1
y − b

a
, (2.48)

which is linear in y. The MAP estimation error, EMAP, can be calculated by substi-

tuting expression (2.48) for the MAP estimator into expression (2.2) for the MSE. To

calculate the EZZB, Eq. (2.21), we first need to calculate min{P (x, y), P (x+ h, y)}.

To facilitate this calculation we first observe that the equivalency of the following

two inequalities:

P (x, y) ≥ P (x+ h, y)⇔ y ≤
[ a+ 1

〈X〉h

ln(1 + ah
a〈X〉+b)

]
, (2.49)
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Figure 2.2: The MMSE, the EZZB and the WWB for the Poisson channel, with bias,
b = 10 and exponential prior with mean 〈X〉 = 2.

where⇔ means “if and only if”, and [.] represents the integer part of a real number.

We can now write the EZZB as

EZZB =
1

2

∫ ∞
0

dh hG
{∫ ∞

0

dx
[ Yl∑
y=0

P (x+ h, y) +
∞∑

y=Yl+1

P (x, y)
]}
, (2.50)

which will be calculated numerically. To calculate the WWB we need to calculate

the mu-function, µ(s, h), from (2.33). It can be written as

exp(µ(s, h)) =
∞∑
y=0

∫ ∞
0

dxP s(x+ h, y)P 1−s(x, y) (2.51)

=

∫ ∞
0

dxP s(x+ h)P 1−s(x)
∞∑
y=0

P s(y|x+ h)P 1−s(y|x). (2.52)

After using the expressions for P (x) and P (y|x) from (2.37) and (2.36), respectively,

and some simple arithmetic, we can carry out the summation over y using a Taylor
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series expansion for the exponential function to give

exp(µ(s, h)) =
exp
( b−sah(1+a〈X〉)

a〈X〉

)
a 〈X〉

∫ ∞
b

dθ exp
(
θ
(
1 +

ah

θ

)s − 1 + a 〈X〉
a 〈X〉

θ
)

(2.53)

where θ = ax+ b. By using the following approximation

(
1 +

ah

θ

)s
= 1 +

sah

θ
, for θ > Nah, (2.54)

where N is a large number, the integral in Eq. (2.53) can be simplified by writing

it as a sum over the two intervals [b,Nah] and [Nah,∞), the latter of which can be

easily calculated. The exponential of the mu-function is then approximated as

exp(µ(s, h)) ≈ exp
(b− ah(s+N)

a 〈X〉

)
+

exp
(
b−sah(1+a〈X〉)

a〈X〉

)
a 〈X〉

∫ Nah

b

dθ exp
(
θ
(
1 +

ah

θ

)s − 1 + a 〈X〉
a 〈X〉

θ
)

(2.55)

Using this expression in Eq. (2.32), and carrying out the optimization over s and h

numerically, we can calculate the WWB. The results are plotted in Fig. 2.2 where we

can see that there is considerable gap between the MMSE and its lower bounds, the

ZZB and the WWB. Since the MAP estimator is an unoptimized linear estimator, its

error can not approximate the MMSE tightly, resulting in a large error at low SNRs.

We used a log-log plot in Fig. 2.3 to include the MAP error alongside the other

results. This clearly shows that the MAP estimator is not able to handle bias very

well, but as we will see in Sec. 4.3.2, a simple application of our upper bound brings,

by a simple linear modification, the MAP estimation error close to the MMSE.

2.6.2 Time-delay estimation (TDE)

Time delay estimation (TDE) problem arises in a variety of signal processing scenar-

ios, such as radar, communications, and geo-location, and TDE performance analysis
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Figure 2.3: Log-log plot for the MMSE, the MAP error, the EZZB and the WWB
for the Poisson channel, with bias, b = 10 and exponential prior with mean 〈X〉 = 2.

is needed to find limits in these applications. Typically, the location of a radiating

source can be determined by passive observation of its signal at two or more spatially

separated receivers. All the relevant information about source location (i.e., bearing

and range) is contained in the relative (differential) delay of the signal wavefront to

the various receiver pairs. TDE and localization have therefore attracted a great

deal of interest in the literature [3, 4, 72,89,91–93,104–107].

To motivate the problem of TDE , consider two spatially separated sensors that

receive a signal from a radiating point source, as shown in Fig. 2.4. Assuming a

constant velocity, v, of propagation for the signal, the difference of the distances of

the source and the two sensors is directly proportional to the time difference of signal

arrival times at the sensors. So the time delay is nothing but the the difference in

path lengths (from the source to each sensor) divided by the propagation velocity.

Relative to the sensors, the source lies on a well defined locus of points for which the
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Figure 2.4: Figure reproduced from [2] representing acoustic source and sensors. The
source need not be acoustic, in general.

time delay is constant. Thus, knowing the time delay, one can locate the source on

the locus of points, which is a hyperboloid as shown in Fig. 2.5. When the source and

the sensors are in a single plane, the source location is estimated from the intersection

of two or more hyperbolas as shown in Fig. 2.6. The remaining ambiguity can be

resolved by the use of a priori information or by using a fourth sensor or with the

bearing estimates.

In its simplest form the received signals at two sensors in a TDE problem can be

stated as follows:

y1(t) =s(t) + n1(t),

y2(t) =s(t− τ) + n2(t),
(2.56)

where τ is the delay parameter, n1(t) and n2(t) are uncorrelated additive white

Gaussian processes and the signal s(t) is assumed to be uncorrelated to the noises.

This assumption is valid when the receivers are widely separated and the source is
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Figure 2.5: Figure reproduced from [2] representing acoustic source and sensors. The
source need not be acoustic, in general.

Figure 2.6: Figure reproduced from [3] representing acoustic source and sensors. The
source need not be acoustic, in general.

sufficiently far off from the sensors. The sensor-to-sensor delay τ is assumed to be

uniformly distributed and confined to:

τl ≤ τ ≤ τu. (2.57)

Such a domain of the prior could be based on the knowledge from the known receiver

separation and the known velocity of pulse propagation in the medium. A further

assumption is made on the observation time, t ∈ [0, T ], that the delayed pulse s(t−τ)

be contained in [0, T ].

The time delay estimate τ̂ can be used to estimate the bearing angle, as shown
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Figure 2.7: Figure reproduced from [4] representing a planar model of two sensors
separated by a distance d.

in Fig. 2.7, approximately as

θ̂ = arccos
(vτ̂
d

)
. (2.58)

This approximation becomes more accurate, the more distant the point source. Thus,

from the discussion in the previous paragraphs, the time delay estimates can be used

to calculate the bearing of the source and also the range of the source, thereby local-

izing the source. Hence, in a typical TDE problem, we are interested in estimating

the time delay, τ in Eq. (2.56), corresponding to a signal that is transmitted either in-

tentionally or unintentionally. Though there exists an intrinsic relationship between

the two scenarios, there are some important differences. When the transmission is

unintentional, no prior knowledge of the signal s(t) is available and the time delay

estimate is obtained from measurements at two or more spatially separated sensors.

This type of problem is referred to as time difference of arrival (TDOA) estimation

and is of concern to passive sonar and microphone array systems. When the trans-

mission is intentional, the TDE problem is also referred to as time of arrival (TOA)

estimation where we are interested in estimating the time-delay between the trans-

mission of a pulse and reception after an echo from a possible target. Knowledge of

the signal pulse s(t) is assumed and this type of problem is encountered in active

RADAR and SONAR systems. Such a time delay estimate can be obtained based on

measurements from a single sensor and the TDE problem from Eq. (2.56) becomes

y(t) = s(t− τ) + n(t), (2.59)
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where n(t) is a sample function of zero-mean stationary Gaussian process with

double-sided noise spectral density, N0. In this dissertation, we will be content with

using Eq. (2.59), by assuming a knowledge about the signal pulse shape transmitted,

which will serve our purpose of comparing the different bounds on the MMSE and

also in evaluating different estimator performances.

We sample the data, uniformly, at Nt time instants {ti|i = 1, 2, . . . , Nt} such that

the time spacing between successive samples is ∆t = ti+1 − ti. The data will then

be the set, {x(t1), . . . , x(tNt)} denoted by the vector x̄. The conditional probability

distribution of the data, given the delay parameter, can be written as:

P (ȳ|τ) =

(
1√

2πσ2
n

)Nt
exp
{
− 1

2σ2
n

Nt∑
i=1

[y(ti)− s(ti − τ)]2
}
, (2.60)

where σn is related to the noise spectral density, N0, as σ2
n = N0/∆t.

For this problem, analytical expressions for the MMSEE and the MAP estimator

are not available. Both EM and EMAP were therefore calculated through simulations,

and are plotted in Fig. 2.8. For the simulations, 1000 noise frames were used and

the error bars are also plotted in the figure. Since the parameter τ is uniformly

distributed in Rτ : [τl, τu], the MAP estimator is given by:

τ̂MAP(ȳ) = argmax
τ∈Rτ

P (τ |ȳ), (2.61)

= argmax
τ∈Rτ

P (ȳ|τ), (2.62)

= argmax
τ∈Rτ

lnP (ȳ|τ), (2.63)

= argmax
τ∈Rτ

Nt∑
i=1

yis(ti − τ), (2.64)

where we assumed that s(t − τ), for all τ ∈ [τl, τu], is contained in [0,T], so that∑
i s

2(ti − τ) is independent of τ . This is the discrete matched filter evaluation of

the first term of the Karhunen-Loeve expansion [108] ehich dominates all the other

terms when SNR is high.
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Figure 2.8: MMSE, MAP, EZZB and WWB for the passive TDE problem. The
MMSE and the MAP are simulated using 1000 noise frames and are plotted with
corresponding error bars.

The expression for the MMSEE, τ̂M , is a bit more involved as it needs the eval-

uation of P (τ |ȳ) explicitly:

τ̂M(ȳ) =

∫
Rτ
dτ τP (τ |ȳ), (2.65)

=

∫
Rτ dτ τP (ȳ|τ)∫
Rτ dτ P (ȳ|τ)

, (2.66)

=

∫
Rτ dτ τ exp( 1

σ2
n

∑Nt
i=1 yis(ti − τ))∫

Rτ dτ exp( 1
σ2
n

∑Nt
i=1 yis(ti − τ))

. (2.67)

The EZZB can be calculated using the form given in (2.19). We will reproduce

it here with appropriate limits for the TDE problem:

EZZB =
1

2

∫ τu−τl

0

dh hG
{∫ τu−h

τl

dx
[
P (τ) + P (τ + h)

]
Pmin(τ, τ + h)

}
. (2.68)

For this particular problem, Pmin(τ, τ + h) can be calculated analytically [21], and is
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given by

Pmin(τ, τ + h) = Q

(√
E

2N0

(1− ρ(h))

)
, (2.69)

where E is the signal energy,

E =

∫
dt s2(t), (2.70)

ρ(h) is the correlation of the deterministic signal, s(t),

ρ(h) =
1

E

∫
dt s(t)s(t− h), (2.71)

and Q(z) is the complementary error function,

Q(z) =

∫ ∞
z

dv√
2π

exp(−v
2

2
). (2.72)

Note that Pmin(τ, τ +h) is independent of τ , so that we can denote it by Pmin(h) and

remove it from the integral inside the valley-filling function, G[.], in Eq. (2.68). By

calling the remaining integral inside the valley filling function A(h), we can write it

as

A(h) =

∫ τu−h

τl

dx
(
P (τ) + P (τ + h)

)
=2
(

1− h

τu − τl

) (2.73)

Since A(h) and Pmin(h) are monotonically decreasing functions of h, we can omit the

valley-filling function from Eq. (2.68) and the EZZB becomes

EZZB =
1

2

∫ τu−τl

0

dh hA(h)Pmin(h). (2.74)

This final form for the EZZB can be calculated numerically.

Finally, to calculate the WWB we will first evaluate the exponential of the mu-

function µ(s, h) defined in (2.33):

expµ(s, h) =

∫ τu−h

0

dτ

τu − τl

∫
· · ·
∫
dȳ P s(ȳ|τ + h)P 1−s(ȳ|τ) (2.75)
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The inner multiple integral being a Gaussian, since P (ȳ|τ) is of a Gaussian from

Eq. (2.60), we can carry out simple algebraic manipulations to arrive at

expµ(s, h) =

∫ τu−h

0

dτ

τu − τl
exp[−s(1− s) E

N0

(1− ρ(h))], (2.76)

where E and ρ are given by equations (2.70) and (2.71). Since the exponential is not

dependent on τ , we can carry out the integration over τ to obtain

expµ(s, h) =
1

2
A(h) exp[−s(1− s) E

N0

(1− ρ(h))], (2.77)

where A(h) is defined in (2.73). Using this expression in Eq. (2.32), and carrying

out the optimization over s and h numerically, we can calculate the WWB.

The EZZB and the WWB as well as the MMSE and the MAP estimation error

are plotted in Fig. 2.8. We can see that both lower bounds and the MAP estimation

error reach the MMSE at high SNR, but as the SNR decreases, there is considerable

gap between the MMSE and the rest.

2.7 Summary

In this chapter, we reviewed the MMSE, the MAP estimator, and two of the most

popular lower bounds on the MMSE, namely the EZZB and the WWB. Since the

MMSEE, as well as the MMSE, are difficult to compute, ad-hoc estimators like the

MLE and MAP estimators are used. To evaluate their performance, tight bounds

on the MMSE are sought, which avoid any explicit calculation of the posterior dis-

tribution, P (x|y), given by Eq. (2.9). Both the EZZB and the WWB provide such

a formulation avoiding the posterior distribution while still making use of the prior

information. Both these bounds can be applied to arbitrary prior distributions and

to vector parameters. An attempt was made to relate the two bounds in [41], but

there are no other results relating the two bounds analytically. These bounds were
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compared numerically for various problems of interest, and it is generally observed

that the WWB is tighter in the low SNR region while the EZZB does well in the

asymptotic region providing a better estimate of the threshold region [109]. Never-

theless, these two families of lower bounds are difficult to compute [70,94] and their

tightness to the MMSE has not been established analytically. Moreover, optimal esti-

mators achieving these bounds, when they are achievable, or even their achievability

are not determined by their general theory.

With the help of illustrative problems where we can compute the MMSE and

its bounds with relative ease, we saw that the MAP estimator is not optimal in the

MSE sense. It is for this reason and also due to the inability of the MAP estimator

to handle bias at low values of the SNR, the MAP estimation error departs from the

MMSE as the SNR decreases. Even though for some problems, mainly in the high

SNR region, the MAP estimator and the MMSE estimator can be shown to be the

same [21], as we move into the low SNR region this is no longer a valid assumption.

This is evident from both problems considered in this section, as shown graphically

in Fig. 2.2 and Fig. 2.8. The two popular lower bounds, the EZZB and the WWB

are also not particularly tight at low to moderate values of the SNR.

In this dissertation, extensions of the EZZB are derived in Chapter 3. Even

though theoretical in nature, these bounds could provide valuable insights in deriving

better bounds. Our upper bound on MMSE is derived in Chapter 4 and applied to

different classes of test estimators. A new piecewise linear estimator is proposed that

does well in all the regions of operation. In general, our upper bound is shown to be

tighter than the EZZB and the WWB. By using the upper bound, the performance

of a new rotating point spread function imager is analyzed in terms of the 2D sub-

pixel localization of a single molecule. Asymptotic expressions for the MMSE and

the MMSEE are constructed in Chapter 5 and a different possible approximation to

the MMSE is proposed. In Chapter 6 possible further developments involving the
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piecewise linear estimator and iterative algorithms for the upper bound are discussed.
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Extensions of the ZZB

3.1 Approximate ZZB

Implementing the EZZB depends on the calculation of the minimum probability of

error (MPE) in a binary, or more generally an M-ary, hypothesis testing problem.

The EZZB is useful only when the MPE is known or can be bounded tightly. Expres-

sions for the MPE were derived, and numerous approximations and bounds which

vary in complexity and tightness for many problems were also evaluated by other

researchers [21, 41, 52, 54–57]. All of them are based on certain distance measures

between statistical distributions. Here we present an alternative approach that does

not depend on any specific distance measure. We will start with the form of the

EZZB presented in Eq. (2.21) except for the valley-filling function,

E ≥1

2

∫
dh h

∫
dx
(
PX(x) + PX(x+ h)

)
Pmin(x, x+ h) (3.1)

=
1

2

∫
dh h

∫
dx

∫
dymin{P (x, y), P (x+ h, y)}. (3.2)

It is the MPE Pmin(x, x + h), that is usually difficult to compute, and one usually

employs bounds on it to facilitate the evaluation of the ZZB [41, 94]. We present a
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simple form for the EZZB using the following lower bound on the minimum of two

positive numbers, a, b:

min(a, b) ≥ ab

(an + bn)1/n
, n > 0. (3.3)

This inequality provides an accurate approximation, for sufficiently large n and dis-

similar values of a, b, for the minimum error probability in Eq. (3.2). Indeed, relation

Eq. (3.3) becomes an equality in the limit n → ∞. Use of this inequality yields a

lower bound on the EZZB itself,

EZZB ≥ 1

2

∫
dh h

∫ ∫
dx dy

P (x, y)P (x+ h, y)

[P n(x, y) + P n(x+ h, y)]1/n
, n > 0. (3.4)

This is our first result proposed in this dissertation. We will call this the approximate

ZZB (AZZB). The advantage of this result will become evident when we apply this

result to the problem considered in Sec. 2.6.1. The AZZB for this problem can be

expressed as:

AZZB =
1

2

∫ ∞
0

dh hG
{∫ ∞

0

dx
∞∑
y=0

[
P (x, y)−n + P (x+ h, y)−n

]− 1
n

}
, (3.5)

A quick comparison of Eq. (3.5) with the exact EZZB calculation in Eq. (2.50)

reveals that there is no increase in numerical complexity. However, note that, for

more complicated problems, the exact calculation of the MPE might not be feasible.

In such scenarios, since we have access to P (x) and P (y|x), the joint distribution

can be calculated and a MCMC approach can be used to evaluate the integral in

(3.4). As we can see from Fig. 3.1 the results are quite accurate. The high accuracy

of these results reflects the fact that, in general, the regions of the joint sample space

of X, Y where the two joint PDs are comparable and the approximation (3.3) is not

accurate, only make small contributions when compared to those made by the rest

of the sample space where that approximation can be quite accurate for sufficiently

large n.
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Figure 3.1: Exact and approximate EZZB for a Poisson channel with exponential
prior described in Sec. 2.6.1. The approximate EZZB is generated using n = 2 and
n = 5 in Eq. (3.4).

3.2 Beyond the ZZB

It should be possible, in general, to improve upon the EZZB whenever that bound

is not tight relative to the MMSE. A possible strategy for doing this is suggested

by the progression of ever improving local lower bounds of estimation, starting from

the CRB, which is inversely related to a single-point derivative measure of sensitiv-

ity, namely Fisher information, to the Chapman-Robbins bound (ChRB), which is

inversely related to a single-point first-order difference measure, and ultimately to

the Barankin bound (BB), which is a multi-point generalization of the ChRB. Since

the ZZB depends on the minimum probability of error of a certain binary-hypothesis

testing problem, a possible way of improving upon the EZZB is to express the exact

MSE as an M -ary (M > 2) hypothesis testing problem. This should enable us to

derive a tighter lower bound than the “binary” EZZB. This is what we do next. Some

results were derived using this same strategy in [41,42]. In [42] the Bayes risk consid-
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ered is somewhat different from the traditional MSE, and the number of hypotheses

depends on the size of the parameter space. In [41] the number of hypotheses was

independent of the size of the parameter space, which provided more control over

the choice of the number of hypotheses.

We will start the derivation from the relation between the MSE and the proba-

bility of outage error as given in Eq. (2.13):

E =
1

2

∫ ∞
0

dh hPr
(
|ε| ≥ h

2

)
(3.6)

=
1

2

∫ ∞
0

dh h
(

1− Pr
(
|ε| < h

2

))
(3.7)

Assuming that x ∈ [Xmin, Xmax], where the limits can, in general, be (−∞,∞), we

divide the interval [Xmin, Xmax] into regular sub-intervals, each of size h, for a given h

in the outer integrals as shown in Fig. 3.2. This is possible for all h ≤ (Xmax−Xmin).

Note that since (Xmax − Xmin) is not, in general, an exact multiple of an arbitrary

h, the last sub-interval of [Xmin, Xmax] in the proposed division into sub-intervals of

length h must in general be smaller than h, but this should present no problems in

the improved bound we derive below. With such a construction, we can express the

Figure 3.2: Construction of the intervals in the derivation of the M-ary EZZB.

probability in Eq. (3.7) as

Pr
(
|ε| < h

2

)
=

∫ Xmax

Xmin

dxPX(x)Pr(|X̂(Y )− x| ≤ h

2
) (3.8)
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=
M−1∑
n=0

∫ Xmin+h

Xmin

dxPX(x+ nh)Pr(|X̂(Y )− x− nh| ≤ h

2
)

+

∫ Xmin+h−∆h

Xmin

dxPX(x+Mh)Pr(|X̂(Y )− x−Mh| ≤ h

2
),

(3.9)

=

∫ Xmin+h

Xmin

dx
M∑
n=0

PX(x+ nh)Pr(|X̂(Y )− x− nh| ≤ h

2
), (3.10)

where, in arriving at Eq. (3.9), we used the substitution x→ x+ nh in the nth sub-

interval to reduce the range of the integral in each sub-interval to (Xmin, Xmin+h). In

the third equation, the last sub-interval is artificially extended to have the same size

by noting that PX(x+Mh) = 0 for x > Xmax−Mh. The sum inside the outer integral

above may be regarded as being proportional to a suboptimal probability of making

the right decision in an (M+1)-ary hypothesis testing problem involving the hypothe-

ses {x, x + h, . . . x + Mh}, with a prior PD equal to {PX(x)
N , PX(x+h)

N , . . . , PX(x+Mh)
N }

where

N =
1

M∑
n=0

PX(x+ nh)

(3.11)

is a normalizing function. The quantity

N
M∑
n=0

PX(x+ nh)Pr(|X̂(Y )− x− nh| ≤ h

2
) (3.12)

may be regarded as the probability of a correct decision when the decision rule is

based on the estimator, X̂(Y ), falling closest to the point in whose favor the decision

is made. This suboptimal decision rule based probability can be upper-bounded

by the maximum probability of correct decision, Pmax({x + nh|n = 0, 1, . . . ,M}),

obtained by using the MAP rule. Thus,

Pr
(
|ε| < h

2

)
≤
∫ Xmin+h

Xmin

dx

N
Pmax({x+ nh|n = 0, 1, . . . ,M}). (3.13)
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Therefore, from Eq. (3.7), we can write a new lower bound on the MSE as

E ≥1

2

∫ ∞
0

dh h
[
1−

Xmin+h∫
Xmin

dx

N
Pmax({x+ nh|n = 0, 1, . . . ,M})

]
, (3.14)

=
1

2

∫ ∞
0

dh h
[
1−

Xmin+h∫
Xmin

dx

∫
dymax{P (x+ nh, y)|n = 0, 1, . . . ,M}

]
,

(3.15)

where M = 1+[Xmax−Xmin

h
], with [.] representing the integer part of a real number, is

the smallest integer larger than Xmax−Xmin

h
. The RHSs of inequalities (3.14) and (3.15)

represent two equivalent forms of our proposed new lower bound for the MSE. We

call it an improved Ziv-Zakai bound (IZZB). It is expected to be tighter, in general,

than the standard EZZB since the maximum probability of a correct decision from

amongst M hypotheses is expected to decrease – and thus the RHS of inequality

(3.15) is expected to increase – with increasing M .

We can avoid calculating the probability of correct decision using a similar tech-

nique as given in Sec. 3.1. An approximate form of the improved ZZB (3.15) may be

given by noting that the maximum of any M non-negative quantities, a1, . . . , aM , is

bounded above by the p-norm of the vector formed from these quantities,

max(a1, . . . , aM) ≤ ‖a‖p, p ≥ 0; a ≡ (a1, . . . , aM), (3.16)

with the above inequality becoming an equality in the limit p→∞. In view of this

upper bound, we have from Eq. (3.15) the following weaker lower bound on MSE:

E ≥ 1

2

∫ ∞
0

dh h

[
1−

∫
h

dx

∫
dy ‖Π(x, x+ h, . . . , x+Mh; y)‖p

]
, (3.17)

where Π stands for the vector
(
P (x, y), P (x + h, y), . . . , P (x + Mh, y)

)
. This

approximate form of the bound may provide a useful numerical approach to evaluate

the improved ZZB by taking p to be sufficiently large compared to 1.
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3.2.1 Relation to the standard ZZB

The standard EZZB (3.2) may also be expressed in a form involving the max function.

Use of the identity,

min(a, b) + max(a, b) = a+ b, (3.18)

valid for any two real quantities a and b, in expression (3.2) implies the following

alternate form for the ZZB:

EZZB =
1

2

∫ ∞
0

dh h

∫ ∫
dx dy

{
P (x, y) + P (x+ h, y)

−max[P (x, y), P (x+ h, y)]
}

=
1

2

∫ ∞
0

dh h
{

2−
∫ ∫

dx dy max[P (x, y), P (x+ h, y)]
}
, (3.19)

where we used the normalization of the joint PD to arrive at the second form. Note

that the form given in Eq. (3.19) is different from the IZZB when there are only two

hypothesis. From Eq. (3.15), for a binary hypothesis testing problem,

IZZB =
1

2

∫ ∞
0

dh h
(

1−
Xmin+h∫
Xmin

dx

∫
dymax{P (x, y), P (x+ h, y)}

)
(3.20)

3.3 Discrete ZZB

The discrete parameter case is already considered in [42], but the Bayes risk con-

sidered there is somewhat different from the traditional MSE, and scalar, uniformly

distributed parameters were considered. Here we derive the discrete EZZB for a

scalar parameter with an arbitrary prior distribution. First of all, note that even

though the parameter to be estimated is discrete, the estimate itself can be continu-

ous. Let the discrete random variable, X, be defined on a discrete set with a uniform
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spacing δx and let NX be the number of values that X can take. The MSE for an

estimator X̂(y) can be written as

E = E[(X̂(ȳ)−X)2] (3.21)

=
∑
x

P (x)

∫
X̂

dX̂ P (X̂|x)(X̂ − x)2 (3.22)

=
∑
x

P (x)

∫ ∞
−∞

dhP (x+ h|x)h2, (3.23)

where X̂ = X + h. Let the inner integral be denoted by E|x, so that

E|x =

∫ ∞
−∞

dhP (x+ h|x)h2 (3.24)

=

∫ ∞
0

dhP (x+ h|x)h2 +

∫ ∞
0

dhP (x− h|x)h2 (3.25)

= 2

∫ ∞
0

dh h(Pr(X̂ > x+ h|x) + Pr(X̂ < x− h|x)), (3.26)

where the last equation is obtained by doing an integration by parts and Pr denotes

the cumulative probability distribution, so that

d

dh
Pr(X̂ > x+ h|x) = −P (x+ h|x), (3.27)

and

d

dh
Pr(X̂ < x− h|x) = −P (x− h|x). (3.28)

The total error can then be written as:

E =
1

2

∫ ∞
0

dh h
∑
x

P (x)(Pr(X̂ > x+
h

2
|x) + Pr(X̂ > x− h

2
)|x), (3.29)

where the redefinition h→ h
2

is used. The derivation of the discrete EZZB has some

elements of the continuous EZZB derivation [1]. We can see that Eq. (3.29) is the

starting point of for the derivation of the continuous EZZB Eq. (2.13), where we can

now define the outage probability for the discrete prior as

Pr(|ε| ≥ h

2
) =

∑
x

P (x)(Pr(X̂ > x+
h

2
|x) + Pr(X̂ > x− h

2
)|x), (3.30)
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Figure 3.3: Relation between the continuous variable h and the discrete variable x.

where ε = X̂−X is the error in estimating the discrete parameter X. This is also the

point where we depart from the continuous EZZB derivation, since PX is not defined

at points x + h as h is continuous. We will expand the integral of Eq. (3.29) in

intervals of δx and aim to arrive at a lower bound on each of the individual integrals.

For the nth such integral:

In =
1

2

∫ nδx

(n−1)δx

dh h
∑
x

P (x)(Pr(X̂ > x+
h

2
|x) + Pr(X̂ < x− h

2
)|x). (3.31)

Knowing that h ∈ [(n − 1)δx, n δx], as shown in Fig. 3.3, we have the following

relations

x+
h

2
≤ x+

nδx

2
(3.32)

x− nδx

2
≤ x− h

2
. (3.33)

The individual probabilities in Eq. (3.31) can then be lower bounded as

Pr(X̂ > x+
h

2
|x) = Pr(X̂ > x+

n δx

2
|x) + Pr(x+

h

2
< X̂ < x+

n δx

2
|x)

(3.34)

≥ Pr(X̂ > x+
n δx

2
|x), (3.35)

where relation (3.32) is used in the first equation, and

Pr(X̂ < x− h

2
|x) = Pr(X̂ < x− n δx

2
|x) + Pr(x− nδx

2
< X̂ < x− h

2
|x)

(3.36)

≥ Pr(X̂ < x− n δx

2
|x), (3.37)
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where relation (3.33) is used in the first equation. Hence, In from Eq. (3.31) can be

bounded below as:

In ≥
1

2

∫ nδx

(n−1)δx

dh h
[∑

x

P (x)Pr(X̂ > x+
n δx

2
|x)

+
∑
x

P (x)Pr(X̂ < x− n δx

2
|x)
]

(3.38)

Note that the inner summation is now independent of h and it can be expressed as

Pr(|ε| ≥ n δx
2

). Carrying out the integration over h, we can express the relation (3.38)

as

In ≥
2n− 1

4
(δx)2Pr(|ε| ≥ n δx

2
), (3.39)

where

Pr(|ε| ≥ n δx

2
) =

∑
x

P (x)Pr(X̂ > x+
n δx

2
|x)+

∑
x

P (x)Pr(X̂ < x−n δx
2
|x). (3.40)

A change of variable from x→ x+ n δx in the second sum of Eq. (3.40) yields

Pr(|ε| ≥ n δx

2
) =

∑
x

[
P (x)Pr(X̂ > x+

n δx

2
|x)

+P (x+ n δx)Pr(X̂ < x+
n δx

2
|x+ n δx)

]
(3.41)

Multiplying and dividing by P (x) + P (x+ n δx),

Pr(|ε| ≥ n δx

2
) =

∑
x

[P (x) + P (x+ n δx)]

[ P (x)

P (x) + P (x+ n δx)
Pr(X̂ > x+

n δx

2
|x)

+
P (x+ n δx)

P (x) + P (x+ n δx)
Pr(X̂ < x+

n δx

2
|x+ n δx)

]
(3.42)

Now, consider the binary hypothesis testing problem:

H0 :X = x; Pr(H0) =
P (x)

P (x) + P (x+ n δx)
; Y ∼P (Y |X = x)

H1 :X = x+ n δx; Pr(H1) =1− Pr(H0); Y ∼P (Y |X = x+ n δx)

(3.43)
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and the suboptimal decision scheme of estimating X and then a nearest neighbor

decision being made:

Decide H0 :X = x; if X̂(Y ) ≤ x+
n δx

2

Decide H1 :X = x+ n δx; if X̂(Y ) ≥ x+
n δx

2

(3.44)

The probability of error for this suboptimal decision scheme is the term inside the

summation of Eq. (3.42). This can be lower bounded by the MPE, Pmin(x, x+n δx).

Thus

Pr(|ε| ≥ n δx

2
) ≥

∑
x

(P (x) + P (x+ n δx))Pmin(x, x+ n δx), (3.45)

and In from (3.39)can be bounded below as,

In ≥
2n− 1

4
(δx)2

∑
x

(P (x) + P (x+ n δx))Pmin(x, x+ n δx), (3.46)

from which we can write the discrete ZZB as:

E ≥ DZZB =

NX−1∑
n=1

2n− 1

4
(δx)2

∑
x

(P (x) +P (x+n δx))Pmin(x, x+n δx), (3.47)

where the upper limit for the summation on n is introduced. Also note that the

region for summation for x is over those values where P (x) and P (x + n δx) are

non-zero. A slightly weaker bound can be achieved which is computationally simpler

if we consider equally likely hypotheses along similar lines by Bell et. al [1]. Towards

this end, we will start by lower bounding the RHS of Eq. (3.41),

Pr(|ε| ≥ n δx

2
) ≥

∑
x

min{P (x), P (x+ n δx)}
[
Pr(X̂ > x+

n δx

2
|x)

+Pr(X̂ < x+
n δx

2
|x+ n δx)

]
(3.48)

= 2
∑
x

min{P (x), P (x+ n δx)}
[1

2
Pr(X̂ > x+

n δx

2
|x)

+
1

2
Pr(X̂ < x+

n δx

2
|x+ n δx)

]
(3.49)
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The expression in the square brackets in Eq. (3.49) can be recognized as a probability

of error for the binary hypothesis testing problem given in (3.43) using the suboptimal

decision rule specified in (3.44) with equal probability for the hypotheses H0 and H1.

This can be lower bounded by the MPE for an equi-probable hypothesis testing

problem, P el
min(x, x+ n δx). Thus,

Pr(|ε| ≥ n δx

2
) ≥ 2

∑
x

min(P (x), P (x+ n δx))P el
min(x, x+ n δx), (3.50)

from which we can lower bound the MSE as

E ≥ DZZBel =

NX−1∑
n=1

2n− 1

2
(δx)2

∑
x

min(P (x), P (x+n δx))P el
min(x, x+n δx). (3.51)

We can also use the relation (3.3) presented in Sec. 3.1 to derive an approximation

to the DZZB in Eq. (3.47),

DZZB =

NX−1∑
n=1

2n− 1

4
(δx)2

∑
x

∑
y

min{P (x, y), P (x+ n δx, y)} (3.52)

≥
NX−1∑
n=1

2n− 1

4
(δx)2

∑
x

∑
y

P (x, y)P (x+ n δx, y)

[P n(x, y) + P n(x+ n δx, y)]
1
n

. (3.53)

3.4 Summary

In this chapter, three new results for the Ziv-Zakai bounds are presented. The

first one is a practical result for the EZZB through an approximation to the MPE

which involves a free parameter. To evaluate the integrals in the AZZB an MCMC

approach can be utilized and a free parameter can be made arbitrary large to get tight

approximations. The advantage of this result is that there is no need to calculate

the different regions in the binary hypothesis testing problem. The second one is

an extension of the EZZB using an M-ary hypothesis formulation. Since the M-ary

formulation, in general, is more comprehensive than the binary one, we expect this
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extension to improve the EZZB. An approximation to the IZZB is also provided

avoiding the explicit calculation of the MPE. The third result considers the case

when the parameter takes only discrete values. These results form the basis for our

paper [110] which is under preparation.
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Chapter 4

Upper Bound on the MMSE

Most of the existing bounds on the MMSE are lower bounds, but only a few attempts

have been made to find useful upper bounds on the MMSE. Seidman [68] derived

an upper bound on the MMSE by bounding the corresponding probabilities of the

squared error in an expansion of the MSE. Hawkes et al. [69] developed an upper

bound based on the information theoretic Kullback-Leibler distance measure. A

recent work by Flam et al. [70] used an optimal linear estimator to derive an upper

bound on the MSE, which performs well for the Gaussian-mixture model. In this

chapter a new upper bound (UB) on the MMSE is derived. The derivation uses

Jensen’s inequality, and is valid for both scalar and vector parameters. We will first

derive the result for scalar parameters and extend it to vector parameters in Sec. 4.2.

4.1 Derivation of the upper bound

Following the same notation given in Chapter 2, let X̂(Y ) be an estimator of a

Bayesian parameter X, E its MSE, and X̂M(Y ) and EM , the MMSEE and the MMSE,

respectively. In the following derivation, we will denote X̂(Y ) by just X̂ to enhance
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readability.

By writing the estimation error as X̂ − X = (X̂ − X̂M) + (X̂M − X) and then

taking its mean squared value (2.2), we may express its MSE in the expanded form

E =EM + E[(X̂ − X̂M)2] + 2E[(X̂ − X̂M)(X̂M −X)]

=EM + E[(X̂ − X̂M)2], (4.1)

where the first equality follows from Eq. (2.6) and the second equality from the fact

that the last term in the first equality vanishes identically, since

E[(X̂ − X̂M)(X̂M −X)] = EY
[
(X̂ − X̂M)EX|Y [X̂M −X]

]
, (4.2)

= EY
[
(X̂ − X̂M)(X̂M − EX|Y [X])

]
, (4.3)

= 0, (4.4)

where we used the relation that the MMSEE is the mean of the posterior, (2.4), in

going from Eq. (4.3) to Eq. (4.4).

The second term in the second equality in (4.1) is the amount by which the MSE

for an estimator must exceed the MMSE. By subtracting this term from both sides

of the equality, we note that this term cannot be smaller than the square of the

mean E[X̂ − X̂M ], as follows immediately from applying the Jensen’s inequality to

the function f(η) = η2. We have thus the following UB on the MMSE:

EM ≤E − E2[X̂ − X̂M ]

=E[(X̂ −X)2]− E2[X̂ −X] (4.5)

=E
[(
δX̂ − δX

)2
]

def
= EUB, (4.6)

where the second line follows from the fact that the mean value of the MMSEE is

simply the mean value of the prior, EX [X]. The third line represents a convenient

way of combining the two terms in the second line and then regrouping them inside
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the square. The symbol δ preceding a variable denotes its deviation from its mean

value, e.g.,

δX ≡ X − E[X]. (4.7)

The rather simple upper bound (4.6) has the immediate benefit that it can be

computed readily since, unlike the MMSE, it does not require any knowledge of

the posterior PD, PX|Y , the chief bane of any MMSE calculation. Furthermore,

since according to Eq. (4.1) the MSE of any estimator differs from the MMSE in

the quadratic order in the deviation of an estimator from the MMSE estimator, a

variational approach to estimate the MMSE by minimizing the UB (4.6) with respect

to classes of estimators should yield excellent accuracy even when the estimator itself

does not approximate the MMSEE as well. Note further that being smaller than the

MSE, which is the first term in (4.5), the UB obtained from any trial estimator is

already closer to the MMSE than its own MSE, and thus potentially furnishes a better

starting point and a faster convergence to the MMSE. This difference E2[X̂ −X] in

(4.5) is the squared Bayesian bias for an estimator and by its subtraction from its

MSE yields the upper bound.

4.1.1 Understanding bias

In the high SNR region, it is well known that the CRB is tight and the MLE estimator

achieves the CRB asymptotically. In this region, estimators can be constructed that

are unbiased and still reach the MMSE. But, as the SNR decreases introducing bias

has been observed to be more advantageous in decreasing the MSE [29,30,33,36,111].

In this section, we will briefly present this theory which can provide valuable insights

into developing iterative methods to find the best upper bound on the MMSE.

Note that the definition of bias in a deterministic setting is different from that in

the Bayesian setting. In a deterministic setting, the parameter x is assumed to be
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non-random and unknown. Bias, b(X̂, x), of an estimator X̂ is defined as:

b(X̂, x) = E[X̂|x]− x, (4.8)

where no prior distribution, PX(x), on the parameter is assumed and the expectation

is taken with P (y|x). This difference from the Bayesian setting leads to a very useful

relation involving the MSE, the bias and the variance of the estimator. We can

express the MSE as,

E = E[(X̂ − x)2|x] = E[
(
(X̂ − E[X̂|x]) + (E[X̂|x]− x)

)2|x] (4.9)

= E[(X̂ − E[X̂|x])2|x] + E[b2(X̂, x)|x]

+ 2E[(X̂ − E[X̂|x])b(X̂, x)|x] (4.10)

= E[(X̂ − E[X̂|x])2|x] + b2(X̂, x) (4.11)

The cross term in Eq. (4.10) is zero because the bias, b(X̂, x), is independent of y

and removed from the expectation resulting in the mean linear deviation, E[(X̂ −

E[X̂|x])|x], which is zero. Thus, the MSE of an estimator in a deterministic setting

is equal to the sum of its squared bias and variance.

Since in the deterministic approach the parameter x is assumed to be non-random,

trivial estimators such as X̂(Y ) = x can be formulated to yield zero MSE. However,

the parameter x is assumed to be unknown which makes the trivial estimator useless

on an average. Constraints such as unbiasedness, b(X̂(Y ), x) = 0, are imposed in

the classical approach. This amounts to reducing the variance of the estimator from

Eq. (4.11). The resulting optimal estimators are called minimum variance unbiased

estimators (MVUE) and were studied extensively [112]. But, reducing the MSE

is, in general, of greater importance in an estimation problem than reducing just

the variance of an estimator. We will consider a particular example of “shrinkage

estimator” which introduces bias linearly to an unbiased estimator so that the overall

MSE is reduced. More details regarding the following presentation can be found

in [36].
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Construct a biased estimator, X̂b(Y ), as

X̂b(Y ) = (1 +m)X̂u(Y ), (4.12)

where X̂u(Y ) is the MVUE with a known variance, σ2
u and m is a free parameter

which will be optimized to reduce the MSE of the biased estimator. From Eq. (4.11),

we can express the MSE of the biased estimator as the sum of its variance and squared

bias,

Eb = σ2
b + (E[X̂b(Y )|x]− x)2. (4.13)

Since E[X̂u(Y )|x] = x, using Eq. (4.12), we can express Eb as

Eb = (1 +m)2σ2
u +m2x2. (4.14)

Since the MSE of the unbiased estimator is its variance, Eu = σ2
u, by optimizing over

m, it is possible to reduce the overall MSE, Eb further. This amounts to reducing the

variance of the estimator more than the increase in the squared bias. The optimal

value of m can be found using a minimax approach as suggested in [111]:

mopt = arg min
m

max
x

(Eb − Eu), (4.15)

where mopt is chosen so that Eb ≤ Eu for all |x| ≤ x0, and that the MSE is reduced

maximally. This approach presents a way of introducing bias into the estimator such

that the overall MSE can be reduced uniformly.

In this dissertation, we are considering a Bayesian bias, where the expectations are

with respect to both the prior and the conditional distribution. As a consequence, a

simple relation between the MSE, the variance and the bias of a Bayesian estimator is

not possible, unlike Eq. (4.11) for the deterministic estimator. However, the minimax

structure presents a way of calculating the upper bound iteratively. We reserve this

as a future direction where a non-linear bias, one that is possibly dependent on the
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parameter, can be introduced in each iteration and the upper bound minimized in

each step resulting in a tighter bound on the MMSE.

Even without the iterative scheme, we observe that when the SNR decreases,

unbiasedness is no longer guaranteed, and to reduce the error, a nonzero squared

Bayesian bias must be subtracted out in general, as in (4.5). As we shall see in

sections 4.3.1 and 4.3.2, it is possible, however to construct unbiased estimators,

even in the low SNR region that can reach the MMSE. Knowledge about the channel

and the prior in a particular problem will help us in determining an appropriate

test estimator so that the corresponding upper bound is as small as possible. In

general, the MMSE is a non-linear, highly complicated function of the data, and a

test estimator that carries similar complexity will yield a tighter upper bound. In

this regard, a test estimator which is linear in the MAP estimator, for example, will

have the needed complexity, at least at moderate to large values of the SNR, and the

calculated upper bound is expected to be much closer to the MMSE than the upper

bound resulting from even the most general linear estimator that can not track a

non-linear parameter even at very high SNR.

4.2 Multi-parameter generalization of the MMSE

and upper bound

As is well known, the form (2.4) of the MMSEE remains valid for the most general

definition of the MSE for multivariate parameter and data vectors,

E def
= E[(

¯̂
X − X̄)TR (

¯̂
X − X̄)], (4.16)

where R is a positive-definite, symmetric, real matrix. As for a scalar parameter, the

MMSEE is that which minimizes (4.16). By a similar calculation as that performed
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to arrive at (2.4), we may easily show that the MMSEE for each parameter,

X̂nM(ȳ) = EX|Y [Xn] =

∫
xn P (xn|ȳ) dxn, n = 1, . . . , Nx, (4.17)

where Nx is the total number of parameters being estimated. The MMSE can be

written as

EM = E[(
¯̂
XM − X̄)TR (

¯̂
XM − X̄)]. (4.18)

Since R is a positive-definite symmetric matrix, there exist a unique positive-definite

symmetric matrix Q such that R = Q2. We can now derive the upper bound for

multivariate parameter by first transforming the MSE (4.16) into a sum of the MSEs

of scalar parameters,

E = E[(
¯̂
X − X̄)TR (

¯̂
X − X̄)] (4.19)

= E[(
¯̂
X − X̄)TQQ (

¯̂
X − X̄)] (4.20)

= E[(
¯̂
Z − Z̄)T (

¯̂
Z − Z̄)] (4.21)

=
Nx∑
n=1

E[(Ẑn − Zn)2], (4.22)

where

Z̄ = QX̄, and
¯̂
Z = Q

¯̂
X. (4.23)

We used Q = QT , since it is a symmetric matrix, in going from (4.20) to (4.21).

From the upper bound relation for scalar parameters (4.5), we have

E[(ẐnM − Zn)2] ≤ E[(δẐn − δZn)2], (4.24)

where

¯̂
ZM = Q

¯̂
XM . (4.25)

By summing over n on both sides of the inequality (4.24), and doing an inverse

transformation using relations (4.23) and (4.25), we arrive at the upper bound

EM ≤ EUB,
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where

EUB = E[(δ
¯̂
X − δX̄)TR(δ

¯̂
X − δX̄)]. (4.26)

We will now apply the upper bound formulation to the polynomial class of esti-

mators as well as the MAP estimator.

4.3 Test estimators

4.3.1 The polynomial class of estimators

Consider first the simple problem of a single parameter being estimated from a single

observation and trial estimators belonging to the class of Nth-order polynomials, i.e.,

X̂N(y) = a0 +
N∑
n=1

any
n. (4.27)

We shall regard {an} as variational parameters that need to be chosen to minimize

the UB (4.6). Substituting the form (4.27) into the formula (4.6), we may express

the UB as

EUB =E
[( N∑

n=1

anδy
n − δX

)2]
=āTMā− 2āT v̄ + σ2

X , (4.28)

where ā denotes the vector (a1, . . . , aN)T , M an N × N symmetric matrix with

elements, Mmn = E[δymδyn], m, n = 1, . . . , N , and v̄ an N × 1 vector of elements

E[δX δyn], n = 1, . . . , N .

Since the matrix M is positive definite, the quadratic problem (4.28) has a single

extremum that is its absolute minimum. Its location ā∗ in the space of the parameter

vector ā is determined by setting the gradient of the expression (4.28) with respect
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to the parameter vector ā equal to 0, namely Mā∗ = v̄, or equivalently ā∗ = M−1v̄.

The corresponding minimum value of the UB (4.28), which we call PN -VB, can then

be simplified as

PN -VB = σ2
X + (M−1v̄)TM(M−1v̄)− 2(M−1v̄)T v̄, (4.29)

= σ2
X − v̄TM−1v̄, (4.30)

where in arriving at the final equation we used the fact that M−1 is symmetric and

MM−1 is the identity matrix.

The minimum value of the UB (4.30) is both smaller than the prior variance,

σ2
X , and lowered in general as the order of the polynomial, N , increases. To prove

the latter assertion, we simply note that the class of (N + 1)th-order polynomials

includes, as a proper subset, the class of Nth order polynomials. Thus the minimum

of the UB over the former class cannot be larger than the that over the latter class.

A more rigorous mathematical proof may also be given based on Schur’s inversion

formula for the block-matrix form of a square matrix.

Curiously, the overall additive constant a0 in the trial form (4.27) of the estimator

is left undetermined. This is not a surprise since the UB form (4.28) is clearly

insensitive to any overall additive constants. Yet, such a constant is in general

included in the actual form of the MMSEE, X̂M , e.g., for a Gaussian channel and a

Gaussian prior, X̂M is a weighted sum of the prior mean, which is a constant, and

the data. We can thus estimate the form of the MMSEE only up to an arbitrary

additive constant even when the UB approximates the MMSE very well. To fix this

constant, we need an additional constraint of unbiasedness obeyed by the MMSEE,

namely that its mean be the same as the prior mean.
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4.3.2 The MAP estimator

As we saw in Sec. 2.3, the MAP estimator must be modified as it does not reach the

prior variance at low SNR values. We will now apply the upper bound variationally

to a MAP estimator. A linear extension of the MAP estimator is formulated as the

following test estimator for the upper bound:

X̂(y) = αX̂MAP(y) + β, (4.31)

where α and β are the variational parameters that need to be chosen to minimize the

upper bound. Substituting the form (4.31) into the formula (4.5) we may express

the UB as

EUB = E
[(
αδX̂MAP(y)− δX

)2
]

(4.32)

and a simple differentiation of the Eq. (4.32) with respect to α and setting it to zero

yields the optimal as

α =
E[δX̂MAPδX]

E[δX̂2
MAP]

. (4.33)

The second derivative at this optimum can easily be checked to be positive so that

the minimum value of the upper bound, the variational bound involving the MAP

estimator (MAP-VB), becomes

MAP-VB = σ2
X −

E2
[
δX̂MAPδX

]
E
[
δX̂2

MAP

] . (4.34)

From Eq. (4.34) then, when SNR is low independent of the prior PD, X̂MAP becomes

independent of X, and the expectation in the numerator of the subtraction term,

E2
[
δX̂MAPδX

]
= E2

[
δX̂MAP

]
E2 [δX] = 0, resulting in MAP-VB = σ2

X . When

SNR is high, X̂MAP → X ⇒ E2
[
δX̂MAPδX

]
→ E2 [δX2] (= σ2

X), which results in

MAP-VB→ 0. By using a variational upper bound of the form (4.34), both ends of
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the error curve are made to follow the MMSE tightly. This further constrains the

error, in all the SNR regions, to be as close as possible to the MMSE, as shown in

the next section with simple illustrative examples. Note that the constant additive

parameter β, as before, does not have any effect in the value of the minimum upper

bound. By noting that the upper bound reduces the mean square error of the esti-

mator by removing the bias, if we chose β so that the estimator becomes unbiased,

we have a way to construct an estimator so that its MSE is the closest to the MMSE.

We will now calculate the upper bound for linear and cubic estimators, and also

the variational MAP upper bound for the problems already considered in Sec. 2.6.

4.4 Results

4.4.1 Poisson channel and exponential prior - single pixel

case

As we saw in Sec. 2.6.1, neither the MAP estimation error, not the ZZB and the

WWB are adequate in approximating the MMSE. The MAP estimator, especially,

is not able to adapt to the highly biased problem and performs very poorly for all

values of SNR. In this section, we will apply the upper bound variationally on the

MAP estimator, Eq. (4.34) and also calculate the upper bound for polynomial class

of estimators, Eq. (4.30). We will see a dramatic improvement in the performance of

the MAP estimator as it is capable of addressing bias and we will further notice that

a simple cubic estimator is able to follow the MMSE nearly perfectly for all values

of SNR.

For the case of a Poisson channel and exponential prior, with a and b being

the gain and bias of the single-pixel detector, the MAP estimator, as we noted in

62



Chapter 4. Upper Bound on the MMSE

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Signal strength, a

M
M

S
E

 a
nd

 it
s 

bo
un

ds

 

 

MMSE
Cubic
VB−MAP
EZZB
WWB

Figure 4.1: MMSE, MAP-VB, P3-VB, EZZB and WWB for the Poisson channel,
with bias, b = 10 and exponential prior with mean 〈X〉 = 2.

Sec. 2.6.1, is the following linear estimator,

X̂MAP =
〈X〉

a 〈X〉+ 1
y − b

a
, (4.35)

where the coefficients are not optimized. By variationally calculating the UB for this

estimator we are optimizing the linear coefficients, there by attaining the best linear

MMSE estimator. An equivalent equation to Eq. (4.34) is

MAP-VB = σ2
X −

E[X̂MAPX]− E[X̂MAP]E[X]

E[X̂2
MAP]− E2[X̂MAP]

. (4.36)

Calculating the MAP-VB, would involve in calculating the various expectations in

Eq. (4.36):

〈X̂MAPX〉 − 〈X̂MAP〉 〈X〉 =
〈XY 〉 − 〈X〉 〈Y 〉

a+ 1
〈X〉

(4.37)

〈X̂2
MAP〉 − 〈X̂MAP〉

2
=
〈Y 2〉 − 〈Y 〉2

(a+ 1
〈X〉)

2
(4.38)

Thus the final expression for MAP-VB can be written as

MAP-VB = σ2
X −

(
〈XY 〉 − 〈X〉 〈Y 〉

)2

〈Y 2〉 − 〈Y 〉2
. (4.39)
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The result is plotted in Fig. 4.1 and we can see that the MAP-VB estimator brings

down the pure-MAP-estimator MSE dramatically at low SNR, and the estimation

error bound follows the MMSE rather tightly.

We also calculated the UB for a cubic estimator :

X̂c = a0 + a1y + a2y
2 + a3y

3, (4.40)

where the UB is minimized over the parameters {a1, a2, a3}. The resulting variational

upper bound is P3-VB, obtained by setting n = 3 in Eq. (4.30). As we can see from

Fig. 4.1, P3-VB follows the MMSE essentially indistinguishably in all regions of

operation.

This simple toy problem shows the power of the variational calculation. A cubic

estimator itself may not be sufficient to approximate the MMSEE, Eq. (2.45), yet

its MSE being of quadratic order approximates the MMSE tightly.

Encouraged by the performance of the UB for the single pixel case, we considered

a two-pixel problem which we discuss in the following section.

4.4.2 Poisson channel and exponential prior - two pixel case

As a simple extension to the single pixel case, we consider a two pixel detector to

resolve two near-by point sources, S1 and S2, as shown in Fig. 4.2. We assume that

the photon counts at the two sensor pixels are independently captured, given the

two source intensities. We further assume a multiplicative gain and a multiplicative

cross-talk with an additive bias, representing the background intensity, expressed by

the following equations:

P (y1, y2|x1, x2) = P (y1|x1, x2)P (y2|x1, x2), (4.41)
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Figure 4.2: Two-pixel detector being used to resolve the two near-by point sources.

P (y1|x1, x2) =
(αx1 + βx2 + γ)y1

y1!
exp[−(αx1 + βx2 + γ)], y1 = 0, 1, . . . ,

(4.42)

P (y2|x1, x2) =
(βx1 + αx2 + γ)y2

y2!
exp[−(βx1 + αx2 + γ)], y2 = 0, 1, . . . .,

(4.43)

where α is the on-axis signal strength, β is the cross-talk signal strength, and γ is a

uniform bias. We assume X1 and X2 are independent and exponentially distributed

random variables.

Since the polynomial class of estimators performed well for the single-pixel case,

we calculated the UB for a linear and quadratic test estimators. The MMSE and

the bounds are evaluated as a function of the signal strength α keeping the overall

intensity received at a pixel α + β fixed. As we can see from figures 4.3 and 4.4 the

quadratic estimator bounds the MMSE nearly perfectly, being indistinguishable from

the MMSE over the entire range of gain values. Exact evaluations of the MMSE and

the various terms in the UB are presented in Appendix A.2.
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Figure 4.3: UB with a quadratic estimator. α + β = 1, γ = 10, 〈X1〉 = 2, 〈X2〉 = 3.

4.4.3 TDE problem

In Sec. 2.6.2 we noted that the MAP estimation error, the ZZB and the WWB in

the transition region depart from the MMSE. In this section, we will calculate the
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Figure 4.4: UB with quadratic estimator. α + β = 0.4, γ = 10, 〈X1〉 = 2, 〈X2〉 = 3.
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MAP-VB as well as the upper bound with linear estimator, and compare them with

the existing bounds.

The MAP estimator can be estimated from Eq. (2.64):

τ̂MAP(ȳ) = argmax
τ∈Rτ

Nt∑
i=1

yis(ti − τ) (4.44)

Once we evaluate the MAP estimator, we can proceed to find the upper bound, by

assuming a test estimator that is linear in the MAP estimator, as in Eq. (4.31). The

upper bound is given by Eq. (4.34). We numerically simulated the MAP estimator

to calculate this upper bound. The result is plotted in Fig. 4.5, from which we can

see that the MAP-VB hugs the MMSE tightly even in the transition region.

We next consider a linear estimator,

τ̂l(ȳ) = ā′ȳ + b, (4.45)

where the UB is optimized over the variational parameters ā, b. The resulting UB,

P1-VB from Eq. (4.30), is plotted in Fig. 4.5. Since the parameter τ depends non-

linearly on the data for this problem, the error from a linear, or in general a polyno-

mial, estimator is insufficient to approximate the MMSE, particularly at high SNR

where it fails to track the nonlinear parameter accurately. A further improvement on

the linear estimator is needed in such cases. A particular approach that avoids expen-

sive calculations of the MAP estimator, and the MAP-VB based on it, is discussed

in detail in the next section.

4.5 Piecewise quasi-linear estimator and associ-

ated upper bound

Even though the polynomial class of test estimators bound the MMSE tightly in

certain cases, they do not have the required complexity to approximate the MMSE,
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Figure 4.5: MMSE, MAP-VB, linear MMSE, EZZB and WWB for the TDE problem.

whenever the parameter depends non-linearly on the signal. This non-linearity in the

parameters renders linear and polynomial estimation inadequate to approximate the

MMSE. In this section, we will formulate a piecewise quasi-linear estimator designed

for a Gaussian channel, which will overcome this drawback.

The prior interval, [τl, τu], is divided into I intervals, as shown in Fig. 4.6 and

in each of the sub-intervals, the estimator is approximated to be linear about the

mid-point of each interval, labeled as τµ, µ = 1, 2, 3 . . . , I. The collection of these

linear estimators are then combined using a Gaussian weighting function, eµ(ȳ),

which has different width parameters for different sub-intervals, which we label as

wµ, µ = 1, 2, 3 . . . , I, that need to be optimized. In formulating the estimator in this

way, the chief advantage we gain is that it is simple enough that the optimization

with respect to the various linear parameters becomes easy and can be carried out

analytically. At the same time sufficient complexity is brought in by the weighting
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Figure 4.6: Non-linear dependency (dashed curve) of the signal on the prior param-
eters and a piecewise linear approximation (solid line segments).

functions which allow for the adaptation of the linear parameters of the estimator

from one interval to the next. Literally, the linear estimator is allowed to evolve

and adjust from one sub-interval to the next in the space of the parameter being

estimated. It is for this reason that such a piecewise linear estimator performs well

in the high SNR region as well.

The piecewise qausi-linear estimator (PQE) is given by:

τ̂(y) =
I∑

µ=1

(bµ + ȳ′Āµ)eµ

=b̄′ē+ ȳ′A ē, (4.46)

where A is an Nt× I matrix (Āµ is the corresponding Nt× 1 column vector), b̄ is an

I element vector of coefficients, and ē is a vector of Gaussian weighting functions,

with widths w̄:

eµ(ȳ) = exp

{
− 1

2w2
µ

Nt∑
i=1

[
y(ti)− s(ti − τµ)

]2
}
. (4.47)
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To understand heuristically the basic idea behind such a formulation, consider a very

high value for the SNR for which a good estimator is expected to track the value of

the prior parameter precisely. In the PQE formulation, the weighting function (4.47)

is significant only in the sub-interval containing the true value of the parameter, and

becomes exponentially small for all the other intervals. In this way, the weighting

function “picks” that interval among the I sub-intervals that contains the true value

of the prior parameter. Since the linear variational parameters Āi and bi are opti-

mized over the respective sub-intervals, we are assured that the overall PQE tracks

the value of the prior parameter optimally in all sub-intervals.

To calculate the upper bound, first substitute the form (4.46) for the test esti-

mator into the upper bound Eq. (4.5), and then set its gradient with respect to the

variational parameters A and b̄ to zero. This can be shown to yield the following set

of equations:

E[(τ̂ − τ)
∂τ̂

∂b̄
] = (E[τ̂ ]− E[τ ])

∂E[τ̂ ]

∂b̄

E[(τ̂ − τ)
∂τ̂

∂A
] = (E[τ̂ ]− E[τ ])

∂E[τ̂ ]

∂A

(4.48)

From Eq. (4.46), we can calculate the various partial derivatives as

∂τ̂

∂b̄
= ē (4.49)

∂E[τ̂ ]

∂b̄
= E[ē] (4.50)

∂τ̂

∂A
= ȳē′ (4.51)

∂E[τ̂ ]

∂A
= E[ȳē′], (4.52)

so that we can rewrite the set of equations (4.48) more explicitly as

{E[ēē′]− E[ē]E[ē′]}b̄+ E[ēȳ′Aē]− E[ē]E[ȳ′Aē] = E[τ ē]− E[τ ]E[ē]

E[(ȳē′)ē′b̄]− E[ȳē′]E[ē′b̄] + E[ȳ′Aēȳ′ē]− E[ȳ′Aē]E[ȳ′ē] = E[τ ȳē′]− E[τ ]E[ȳē′].

(4.53)
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These are the set of matrix equations that need to be solved to arrive at the UB for

our piecewise quasi-linear estimator.

We note that, by lexicographically transforming the indices, we can greatly sim-

plify the set of equations (4.53). We will give a detailed explanation of this proce-

dure for one of the terms, E[ȳ′Aēȳ′ē]. A particular element of this expectation can

be written as E[yiAiµeµyjeν ] = AiµE[yieµyjeν ]. By denoting the new indices lexico-

graphically as ĩ = i + (µ − 1)Nt and j̃ = j + (ν − 1)Nt, we can express the overall

expectation as a true vector-matrix product,

E[ȳ′Aēȳ′ē] = ā′T, (4.54)

where

aĩ = Aiµ, (4.55)

Tĩj̃ = E[yieµyjeν ]. (4.56)

Figure 4.7: Column-wise extraction of elements from a matrix.

Hence, transforming the indices,

i, j ∈ {1, 2, . . . , Nt}, and

µ, ν ∈ {1, 2, . . . , I}
(4.57)
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in this way to ĩ, j̃ as

ĩ = i+ (µ− 1)Nt and j̃ = j + (ν − 1)Nt, ĩ, j̃ ∈ {1, 2, . . . , Nt I}, (4.58)

we can express all the expectations in Eq. (4.53) in terms of the new indices. The

resulting set of equations can be written in a concise form as the following matrix-

vector equations:

Mb̄+ Nā = v̄

N′b̄+ Uā = Q,
(4.59)

where

M = E[ēē′]− E[ē]E[ē′],

v̄ = E[τ ē]− E[τ ]E[ē],

Uĩj̃ = E[yieµyjeν ]− E[yieµ]E[yjeν ]

Nνĩ = E[eνyieλ]− E[eν ]E[yieλ]

Qĩ = E[τyieµ]− E[τ ]E[yieµ].

(4.60)

Note that we can define a new variable d̄ = ȳ′ē under this lexicographic transforma-

tion. The estimator (4.46) can then be written as,

τ̂(ȳ) = b̄′ē+ ā′d̄. (4.61)

The unoptimized upper bound (4.5) itself can be expressed, after the transformation,

as

EUB = E
[
(δτ̂ − δτ)2

]
, (4.62)

= E
[
(δτ)2

]
+ E

[
(δτ̂)2

]
− 2E

[
δτ̂ δτ

]
, (4.63)

= σ2
τ + E

[
(b̄′ē+ ā′d̄)2

]
− 2E

[
b̄′δēδτ + ā′δd̄δτ

]
, (4.64)

= σ2
τ + b̄′E

[
δē δē′

]
b̄+ ā′E

[
δd̄ δd̄′

]
ā+ 2b̄′E

[
δē δd̄′

]
ā

− 2b̄′E
[
δē δτ

]
− 2E

[
δd̄′ δτ

]
ā, (4.65)

= σ2
τ + b̄′Mb̄− 2b̄′(v̄ −Nā) + ā′Uā− 2Q′ā, (4.66)
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where we used the relations in (4.60) to go from Eq. (4.65) to Eq. (4.66).

We can now solve the set of equations Eq. (4.59) for b̄ and ā. First, express b̄ in

terms of ā from the first equation in (4.59),

b̄ = M−1(v̄ −Nā) (4.67)

and then substitute it in the second equation of (4.59) to solve for the optimal value

for ā∗ as

ā∗ = χ−1(Q−N′M−1v). (4.68)

where

χ = U−N′M−1N. (4.69)

The optimal value for b̄∗ can then be calculated from Eq. (4.67) in terms of the

optimal value for ā∗.

We will now substitute b̄∗ in terms of ā∗ into the expression for the upper bound

4.66 to evaluate it as,

VB-PQE = σ2
τ − (M−1v̄ −M−1Nā)′(v̄ −Nā) + ā′Uā− 2Q′ā, (4.70)

= σ2
τ − v̄′M−1v̄ + ā′χ−1ā+ v̄′M−1Nā+ (v̄′M−1Nā)′ − 2Q′ā, (4.71)

= σ2
τ − v̄′M−1v̄ + ā′χ−1ā− 2(Q′ − 2v̄′M−1N)ā, (4.72)

= σ2
τ − v̄′M−1v̄ − (Q−N′M−1v̄)′χ−1(Q−N′M−1v̄), (4.73)

where in going from (4.70) to (4.71) we used the fact that M is symmetric and then

re-grouped the terms. In (4.72) we used the fact that v̄′M−1Nā is a real number so

that it is equal to its transpose. Finally we substituted in (4.73) the optimal value of

ā∗ (4.68) to arrive at the optimum upper bound for the PQE, which we abbreviate

as PQE-VB.

Note that the upper bound, (4.73), still contains the the width parameters {wi}, of

the weighting functions {ei}, which need to be optimized. We carried this remaining

optimization numerically, as we now illustrate for the TDE problem.
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4.5.1 Application of the PQE approach to the TDE problem
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Figure 4.8: MMSE, MAP-VB, PQE, and EZZB for the TDE problem.

We now calculate the PQE-VB for the TDE problem. We assume I = 4 and a

uniform-width weighting function, i.e., wµ = w0 ∀µ = 1, . . . , I, so that the final

numerical optimization is only over a single variable w0. The various expectations

in (4.60), presented in Appendix B, can be calculated numerically.

The PQE-VB is plotted in Fig. 4.8 which shows that the PQE performs really well

in tightly bounding the MMSE. The detailed manner in which we have structured

the PQE serves its purpose in tracking the value of the parameter at high SNRs.

This includes, among other things, a proper selection of the weighting functions
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that enables the estimator to evolve into an appropriate optimum linear estimator

estimator, sub-interval by sub-interval, and thus adjust optimally according to the

corresponding parameter value.

We can see that the calculation of VB-PQE involves inverting the matrix χ,

given by Eq. (4.66). This is an INt × INt matrix, involving a quadratic scaling in

the product of number of data samples, Nt, times the number of prior intervals, I.

For high dimensional estimation this will pose a computational challenge. Therefore,

more sophisticated methods which rely on a sparse sampling from a limited number

of subregions into which the support region of the prior is divided might be needed

for high dimensional problems. However, note that for compressive imaging systems,

the number of data samples are far fewer and therefore the scaling problem may not

be as severe. The PQE might provide an effective solution in such instances.

In the following section, the statistical error analysis is extended to 2D imaging

by means of the upper bound to approximate the MMSE to quantify the performance

of different imaging systems.

4.6 Performance analysis of rotating point spread

function (RPSF) based imaging system

Point spread function (PSF) engineering for encoding depth in the rotation of the

PSF was considered widely in the last decade [113–116]. The rotating-PSF (RPSF)

approach presented in [116] is based on orbital angular momentum states of light,

which we will call OAR-PSF and those presented in [113, 114] are based on Gauss-

Laguerre modes, which we will call GLR-PSF. These computational imaging ap-

proaches simultaneously encode the axial and transverse positions of a point source,

the former by means of the rotation of the PSF. While the two classes of the RPSFs
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are similar, the OAR-PSF, nevertheless, is superior to the GLR-PSF in terms of

generating a more compact PSF, having a larger depth of field, and an ability to

encode information about spherical aberrations of the imaging optics. The other

advantage of this OAR-PSF is that it has a 100% transmission efficiency as opposed

to the older GLR-PSFs, making it more sensitive to depth information even under

low-light levels. Further, since this OAR-PSF has an ability to generate single-lobe

character, it is easier to resolve two nearby point sources which is an attractive prop-

erty to have when extracting defocus from a densely populated 3D field. All these

properties make it a very important 3D imaging modality for at least two important

imaging applications, namely, single molecule biological microscopy and 3D space

debris tracking for space situational awareness [5].

More generally, both kinds of the rotating-PSFs have been applied to 3D super-

localization problems [117–119] and their performance has been evaluated [115,120]

using CRB. Results showed the superior performance of the RPSFs [117] in terms of

their localization accuracy.

In this dissertation, however, we will consider only the OAR-PSF. In future, it

will be useful to compare the different kinds of 3D imaging modalities. The OAR-

PSF maintains its shape and compact size over a large axial depth, as shown in

Fig. 4.9, thereby presenting an approach with high sensitivity over a large range of

values of the axial depth. The axial depth, or defocus, is encoded in the amount

of rotation of the off-center PSF. We will compare the performance of the OAR-

PSF for localizing a point source to sub-diffractive scales, which we call the problem

of super-localization, with that of a conventional imager. The conventional imager

is expected to perform really well at the best focus, but its performance, in terms

of sensitivity and transverse resolution, deteriorates rapidly with defocus as shown,

e.g., in Fig. 4.9(m). In a 3D imaging scenario, the use of conventional imaging would

require scanning, slice by slice, in focus to acquire highly resolvable and sensitive
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Figure 4.9: Surface plots of the OAR-PSF and the ideal diffraction limited PSF
reproduced from [5]. The plots from left to right are for increasing values of defocus,
namely -24, -16, -8, 0, 8, 16, and 24 radians at the pupil edge. At a defocus of 16
radians, the conventional PSF, as shown in (m), broadens wide enough to be deemed
unfit for imaging. On the other hand, the OAR-PSF simply rotates with defocus
and remains compact even at a defocus of 24 radians, as shown in (g).

data, which results in a poor temporal resolution. Unlike the conventional imager,

a RPSF based imager encodes the depth in terms of the rotation of its PSF which

enables a 3D snap-shot imaging modality in which image information from different

depth planes are captured in a single shot.

Unlike a CRB based analysis [117], which is useful mainly in the asymptotic

limit, we will use the upper bound on the MMSE in a Bayesian analysis. For a

general 3D localization performance characterization, the CRB is not adequate. For

example, the conventional PSF is not sensitive to defocus when imaging in focus and

this causes to the first order sensitivity to go to zero, resulting in CRB divergence.

Therefore a Bayesian analysis provides a more robust alternative in evaluating the

performance of various imaging modalities. In this section, we will characterize and

demonstrate the robustness of the OAR-PSF in terms of the MMSE for localizing

a point source to sub-diffractive errors in the 2D transverse plane only, leaving the

axial localization problem for future work.
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Specifically, consider an Np×Np nominal diffraction limited area which represents

the base resolution cell of an imaging system. The problem of super-localizing a

point source may then be phrased in terms of the MSE for localizing the source to

within one of M2 possible sub-cells into which the base resolution cell is subdivided

uniformly. Note that this amounts to finding the 2D location of the center of the

“blur-spot” that corresponds to a point source. The prior PD was chosen to be

uniform over all possible sub-cells. We considered a pseudo-Gaussian conditional

data PD which accurately describes, under rather general conditions, the statistics

of image data acquired under combined photon-number fluctuations and sensor read-

out noise. An appropriate background flux was also taken into consideration. The

conditional data statistics on a set of pixels {xi, yj|i = 1 . . . , N, j = 1, . . . , N}, given

the location (τx, τy) of the point source can be written as

P
(
D(xi, yj)|(τx, τy)

)
=

1∏
i

∏
j

√
2πv2

i,j

exp

{
−
∑
i

∑
j

[
D(xi, yj)−mb −KS(xi − τx, yj − τy)

]2
2v2

i,j

}
,

(4.74)

where D is the observed data, K is the source flux density, S is the PSF of an imaging

system, mb is the mean background (BG) flux present in the system, and

v2
i,j = KS(xi − τx, yj − τy) +mb + σ2

n. (4.75)

The variance of the read out noise, σ2
n, is defined in terms of its noise spectral density,

N0, and the pixel area, ∆x∆y, as

σ2
n =

N0

∆x∆y
. (4.76)

Typically, a region of size Ns × Ns is selected from a larger N × N image data

region containing the possible point source. This can be done by cropping a sub-

image around the pixel with maximum intensity. The selected sub-image is then
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Figure 4.10: MAP-VB for the source super-localization problem with an M = 16
fold enhancement. The conventional imager does exceptionally well at best focus,
but performs very poorly at large defocus. The OAR-PSF, however remains robust
as the defocus changes over a large range.

processed to find the location of the point source. The MSE for this 2D problem is

defined as the sum of the MSEs for the two source position coordinates,

E = E[(τ̂x − τx)2] + E[(τ̂y − τy)2]. (4.77)

We used the MAP-VB as an approximation to the MMSE. Test estimators involv-

ing the MAP estimators, (τ̂x, τ̂y), and variational parameters {αx, βx, αy, βy} can be

written as

τ̃x = αxτ̂x + βx, (4.78)

τ̃y = αy τ̂y + βy. (4.79)

The upper bound

EUB = E
[
(αxδτ̃x − δτx)2]+ E

[
(αyδτ̃y − δτy)2] (4.80)
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is then optimized over the variational parameters {αx, αy} to yield the MAP-VB as

MAP-VB = σ2
x + σ2

y −
E2 [δτ̂xδτx]

E [δτ̂ 2
x ]
− E2 [δτ̂yδτy]

E
[
δτ̂ 2
y

] , (4.81)

where σ2
x and σ2

y are the prior variances E[δτx] and E[δτy] respectively. Note that,

the upper bound (4.80) is independent of {βx, βy} as already noted in Sec. 4.3.2, the

latter simply provide a means to impose the unbiasedness of the estimators without

affecting the optimal upper bound.

For M = 16 fold linear enhancement in the localization accuracy, the prior on

(τx, τy) will be uniform on the M2 = 256 possible positions for the point source.

Since the parameters are uniformly distributed, the MAP estimator is obtained by

maximizing just the conditional data statistics, (4.74), as

(τ̂x, τ̂y) = argmax
(τx,τy)

P
(
(τx, τy)|D(xi, yi)

)
, (4.82)

= argmax
(τx,τy)

P
(
D(xi, yi)|(τx, τy)

)
, (4.83)

= argmax
(τx,τy)

lnP
(
D(xi, yi)|(τx, τy)

)
, (4.84)

= argmin
(τx,τy)

Ns∑
i

Ns∑
j

{
ln v2

i,j +

[
D(xi, yj)−mb −KS(xi − τx, yj − τy)

]2
v2
i,j

}
.

(4.85)

The SNR is redefined as the flux to noise ratio (FNR), K
σ2
n
, involving the total number

of photons incident on the imager. The mean BG, mb is chosen to be a fraction of

the peak value of the total photon number K. As Fig. 4.10 shows, the conventional

imager yields a rapid decrease in 2D-localization MMSE with increasing FNR for

best focus, but its behavior with respect to the OAR-PSF-based imager is reversed,

as we shall see presently, at a large defocus phase,1 ζ = 16 radians, with a rather

small reduction in that MMSE even at FNR = 40 dB. However, the OAR-PSF

1The defocus phase, ζ, is the quadratic phase at the edge of the pupil corresponding to
a defocus distance δz in the object space.
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imager performs robustly over a defocus phase between 0 and 16 (and in fact for

much greater values of the defocus phase). We can define the minimum value of

FNR needed to achieve an M-fold transverse super-localization as that FNR value

at which the MMSE is reduced by a factor M2.

This analysis is part of a comprehensive 3D super-localization performance anal-

ysis, including an MPE analysis, of the OAR-PSF imager to be presented in [121].

The transverse and longitudinal resolution trade-off limits of the OAR-PSF were

studied in [5], in which a robust recovery of transverse and longitudinal resolution

over an increased depth of field was demonstrated. The upper bound thus presents a

convenient way of approximating the MMSE and thus a valuable tool in a statistical

performance analysis of different imaging systems.

4.7 Summary

In this chapter, an upper bound on the MMSE was derived. The upper bound was

also generalized for vector parameters. The so derived upper bound is numerically

efficient to evaluate, and allows for a removal of the Bayesian bias from any estimator.

Since the MSE of any estimator differs from the MMSE by a quadratic deviation of

the estimator from the MMSE estimator, a variational approach provides an accurate

approximation for the MMSE via such an upper bound. The test estimator was

formulated in terms of certain variational parameters over which the upper bound

was minimized.

The upper bound was considered for the polynomial class of estimators and to the

MAP estimator for a variety of applications. The variational upper bound involving

the MAP estimator ties both the high SNR and low SNR ends of the MSE to the

value of the MMSE in those regions, and thus tightly bounds the MMSE for all values

of the SNR. The polynomial class of estimators performs well for certain cases, but,
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in general, does not have the necessary complexity whenever the data depend rather

nonlinearly on a parameter. A piecewise quasi-linear estimator, which is more useful

in such situations, was presented. It accounts for the non-linear complexity through

certain data-dependent weighting functions. Our results show that the piecewise

quasi-linear estimator based UB and the MAP-VB tightly bound the MMSE for all

values of SNR, and outperform the existing popular lower bounds, namely the EZZB

and the WWB, on the MMSE in terms of their tightness. The MAP-VB was used

to analyze and compare the performance of a newly developed rotating-PSF imager

with that of a conventional imager in localizing a point source beyond the diffraction

limit. Based on our results, it was shown that the OAR-PSF imager is quite robust

to large changes of defocus, encoding defocus in PSF rotation, and thus provides a

practical method for 3D snap-shot imaging.

The formulation of the upper bound, the polynomial class of test estimators,

and the MAP-VB form the basis for our paper [122] which is under preparation.

The piecewise quasi-linear upper bound will be presented in another paper [123].

Statistical error analyses of the OAR-PSF imager appear in [121,124].
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Asymptotic Analyses of the

MMSE

Asymptotic analyses of the posterior PD have been widely studied in the literature

[99, 125–129]. All of them use the Laplace method for an aymptotic evaluation of

integrals [130]. An asymptotic analysis of posterior PD is important as it provides

insights into the behavior of a particular estimation rule and of the various bounds on

the MMSE when there are many measurements available. As we already saw in the

previous chapter, the MAP-VB performs well, mainly because it matches the MMSE

at both low and high SNR values. The error is small at high SNR values where the

CRB, which is based on a first order sensitivity metric of information, the Fisher

information, proves sufficient and tightly bounds the MMSE. As the SNR decreases,

thereby increasing the error, a bound that includes higher order derivatives as well

will provide a much tighter approximation to the MMSE.

In this chapter, we will develop a framework to approximate the MMSE for low

values of the SNR first. A subsequent analysis will be presented for the asymptotic

regime of high SNR. Since the data become less informative at lower SNR values,
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a good estimator is expected to attain the mean value of the prior, which is the

MMSEE, in the limiting case of zero SNR. Therefore, a Taylor series expansion is

used to expand the MMSEE about the mean value of the prior, from which, we

construct an approximate expression for both the MMSEE and the MMSE, which

is expected to be valid for low SNR values. At high SNR values, unlike the Laplace

method widely used in the literature [127], a different implementation of the Laplace

method is used for asymptotically evaluating integrals. This, as we will see, yields

an excellent approximate expression for the MMSE. A new parameter, related to

the joint distribution, is introduced and expanded about the MAP estimator. The

resulting MMSE approximation is expected to be valid for a wider range of moderate

to high SNR values. Finally, a new approximation to the MMSE is proposed that

interpolates between the low SNR and high SNR values of the MMSE. Our results

show that it is able to capture the behavior of error for all SNR values.

5.1 The low SNR regime

Equation (2.8) shows that the MMSE is always lower than the variance of the prior.

It improves with the information provided by Y about X, and can be shown to go

to 0 in the asymptotic limit of infinitely high SNR. In the limit of zero SNR, the

MMSE tends to the variance of the prior, σ2
X which is attained by the mean of the

prior, X̂M = E[X], as the data, Y , carry no information about X in this limit.

We present below approximate expressions for the MMSE and the MMSE esti-

mator that are valid in the low SNR regime. These expressions are of a perturbative

nature, with the small perturbative parameter given by the ratio of a first-order data

sensitivity metric, specifically the mean-squared score function, and the prior vari-

ance σ2
X . While it is possible to push our perturbative expansions to higher order

sensitivity parameters, we shall be content, in the following analysis, with the lowest-
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order correction to the prior mean and variance that represent the MMSE estimator

and the MMSE in the zero-SNR limit.

5.1.1 A second order logarithmic expansion of the data PD

At low SNR values, the data PD, P (y|x), is expected to be relatively insensitive to

the value of the random variable X. This suggests the following approximate Taylor

expansion for the log-likelihood function (LLF) around the prior mean:

lnP (y|x) ≈ lnP (y| 〈X〉) + V (y)(δx)− 1

2
S(y)(δx)2 (5.1)

≡ ln P̄ (y|x), (5.2)

where δx = x − 〈X〉 represents a particular realization of the zero mean random

variable δX = X − 〈X〉. Here V (y) is the score function, which is a first-order

sensitivity function, and S(y) is a second-order sensitivity function, both evaluated

at the prior mean and defined by the relations

V (y) =
∂

∂ 〈X〉
lnP (y| 〈X〉), S(y) = − ∂2

∂ 〈X〉2
lnP (y| 〈X〉). (5.3)

We can express Eq. (5.1) equivalently as

P̄ (y|x) = P (y| 〈X〉) exp[V (y)(δx)− 1

2
S(y)(δx)2]. (5.4)

The expected value of the score function over P (y| 〈X〉), namely E[V (Y )| 〈X〉], van-

ishes,

E[V (Y )| 〈X〉] =

∫
RY

P (y| 〈X〉) ∂

∂ 〈X〉
lnP (y| 〈X〉)dy

=
d

d 〈X〉

∫
SY

P (y| 〈X〉)dy = 0, (5.5)

in which the unit normalization of the conditional data PD P (y|X), for any realiza-

tion of X, was used to arrive at the final equality. With the negative sign chosen in
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the definition of S, the expected values of S and V 2 over P (y| 〈X〉) may be shown [21]

to be equal to each other and to J(Y | 〈X〉), the Fisher information (FI) of the data

PD with respect to X at its mean value x = 〈X〉:

E[S(Y )| 〈X〉] = E[V 2(Y )| 〈X〉] = J(Y | 〈X〉), (5.6)

where

J(Y |x) = E
[(∂ lnP (Y |x)

∂x

)2

|x
]

(5.7)

As is well known, the inverse of the FI is the CRB that lower-bounds the variance of

any unbiased estimator of X, so it represents a measure of the maximum first-order

sensitivity with which the data yield information about the signal.

The advantage of expanding the LLF, instead of the likelihood function P (y|x)

itself, about the prior mean is that the approximate PD, P̄ (y|x) is in fact already

normalized correctly to the second order in data sensitivity, i.e., to the same order

as S and V 2. To see this, we expand expression (5.4) to the second order to obtain

P̄ (y|x) = P (y| 〈X〉)
[
1 + V (y)(δx) +

1

2
[V 2(y)− S(y)](δx)2

]
. (5.8)

Since, according to identities (5.5) and (5.6), the expected values of V and V 2 − S

vanish, the integral of P̄ (y|x) over the sample space RY of the data then yields the

integral of P (y| 〈X〉) over the same space, which is one since the exact P (y|x) is

normalized at all values of X, including X = 〈X〉.

5.1.2 The MMSE estimator and the MMSE to second order

By writing x = δx + 〈X〉 in Eq. (2.4) and using the normalization of the posterior

P (x|y), followed by the Bayes relation, P (x|y) = P (y|x)P (x)/P (y), we first express

the MMSE estimator (2.4) as

XM(y) = 〈X〉+
1

P (y)

∫
RX

(δx)P (y|x)P (x)dx (5.9)
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Using relation (5.2) to approximate P (y|x) by P̄ (y|x), substituting the second-order

approximation (5.8) for P̄ (y|x) inside the integral in Eq. (5.9), and then noting that

the expected value of the linear deviation δX is zero for the MMSE estimator, we

get the following expression correct to the second order in sensitivity:

XM(y) = 〈X〉+
P (y| 〈X〉)
P (y)

[
V (y)σ2

X +
1

2

(
V 2(y)− S(y)

)
s

(3)
X

]
, (5.10)

where σ2
X = E[(δX)2] and s

(3)
X = E[(δX)3] are, respectively, the variance and skewness

of the prior. For a prior that is symmetric about its mean, its skewness vanishes

identically, and the MMSE estimator takes the following simple form correct to

second order:

XM(y) = 〈X〉+
P (y| 〈X〉)
P (y)

V (y)σ2
X . (5.11)

We shall be mostly concerned with symmetric priors and thus expect the expression

(5.11), for the MMSE estimator, to be valid in the low-SNR regime. We now calculate

the marginal data PD, P (y), to second order by multiplying expression (5.8) by P (x)

and then integrating over the sample space RX . Using the fact that the expected

value of δX is identically zero, we obtain the result,

P̄ (y) = P (y| 〈X〉)
(
1 +

1

2
[V 2(y)− S(y)]σ2

X

)
. (5.12)

Substituting this expression into Eq. (5.11) and keeping terms to second order only

yields

XM(y) = 〈X〉+
1

1 + (1/2)[V 2(y)− S(y)]σ2
X

V (y)σ2
X (5.13)

≈〈X〉+ V (y)σ2
X , (5.14)

since terms of the form V (V 2−S) are clearly of higher order in sensitivity and must

be omitted for consistency.
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With this form for the MMSE estimator, we may now easily compute the MMSE

in the low-SNR limit,

EM =E[X̂M −X]2 (5.15)

=E[δX]2 − 2σ2
XE[(δX)V (Y )] + σ4

XE[V 2(Y )] (5.16)

=σ2
X

(
1− 2E[(δX)V (Y )] + σ2

XE[V 2(Y )]
)
. (5.17)

The middle term Eq. (5.17) may be simplified by performing the expectation in two

steps - first over P (y|x) and then over P (x). The first of these expectations, when

P (y|x) is approximated by its second-order expression (5.8), evaluates to the second

order as

EY |XV (Y ) =

∫
RY

dyP (y| 〈X〉)V (y){1 + V (y)(δx)

+
1

2
[V 2(y)− S(y)](δx)2} (5.18)

=(δx)E[V 2(Y )| 〈X〉] +
1

2
(δx)2E[(V 2(Y )− S(Y ))V (Y )| 〈X〉], (5.19)

where we used the fact (5.5) that E[V (Y )| 〈X〉] vanishes identically. The final ex-

pectation of δX times this expression over the prior P (x) then yields for the middle

term in (5.17)

E[(δX)V (Y )] =σ2
XE[V 2(Y )| 〈X〉] +

1

2
s

(3)
X E[V (Y )(V 2(Y )− S(Y ))| 〈X〉] (5.20)

=σ2
XE[V 2(Y )], (5.21)

where the last term in the first equality has been dropped to keep all expressions

self-consistent with our second-order approximation. For a symmetric PD function

with zero skewness, that term vanishes identically, however, independent of any

considerations of the order of the approximation. Using the result (5.21) in the

MMSE expression (5.17) and Eq. (5.6) to replace E[V 2(Y )] by the FI, J(Y | 〈X〉),

we obtain the following simple form for the MMSE in the low-SNR, LSNR-MMSE,

regime:

EM = σ2
X [1− σ2

XJ(Y | 〈X〉)]. (5.22)
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5.2 The high SNR regime

Fisher information (FI) serves to provide a good local measure of sensitivity of sta-

tistical data to parameters to be estimated. Its inverse yields the CRB which, as

we have noted earlier, is a lower bound on the variance of any unbiased estimator

of the parameters being estimated. Bhattacharya, Chapman-Robbins, and Barankin

lower bounds improve upon the CRB, whenever the latter is not attainable by any

estimator. However, all such local estimation-fidelity measures fail dramatically at

moderate to low values of SNR for which the information contained in the prior

becomes increasingly important in controlling the MSE. A uniform prior illustrates

rather dramatically the inadequacy of local bounds, since by their very construction

they are unaffected by such a prior and thus unable to accommodate it. We shall

now show how to accommodate arbitrary priors in a more global, Bayesian analysis.

Specifically, we will use the Laplace method for evaluating integrals to obtain an

approximate calculation of the MMSE in terms of the MAP estimator.

First, consider the joint PD to define a new variable u via the identity

P (x, y) =P (X̂MAP(y), y)
P (x, y)

P (X̂MAP(y), y)

=P (X̂MAP(y), y) exp
{
−1

2
〈S(Y )〉 [u− X̂MAP(y)]2

}
.

(5.23)

Equivalently,

[u− X̂MAP(y)]2 = − 2

〈S(Y )〉
ln

(
P (x, y)

P (X̂MAP(y), y)

)
(5.24)

We have the definition of S(y) from the following observation:

P (x, y) = exp[lnP (x, y)]

≈ exp
{

lnP (X̂MAP(y), y)

− 1

2
[x− X̂MAP(y)]2

[
− ∂2

∂X̂2
MAP(y)

lnP (X̂MAP(y), Y )
]}

=P (X̂MAP(y), y) exp
{
−1

2
S(y)[x− X̂MAP(y)]2

}
(5.25)
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where

S(y) = −∂
2 lnP (x, y)

∂x2

∣∣∣∣
x=X̂MAP(y)

(5.26)

and the approximation in the second equation is valid at high values of the SNR.

Note that we can informally derive the Bayesian central limit theorem [99] by noting

that

P (y) =

∫
dxP (x, y) =

√
2π

S(y)
P (X̂MAP(y), y), (5.27)

from which we can write the posterior PD as

P (x|y) =

√
S(y)

2π
exp
{
−S(y)

2
[x− X̂MAP(y)]2

}
, (5.28)

which is a Gaussian PD with mean X̂MAP(y). As a consequence of this the MMSEE

is the same as the MAP estimator. At high SNR, since the data are highly sensi-

tive to the parameter, S(y) will be large which makes the variance of the posterior

distribution about its mean small. As the SNR decreases, the posterior distribution

departs from being a Gaussian, and higher order sensitivities start to become sig-

nificant. Since S(y) is a second-order sensitivity measure, we need to include higher

order sensitivities to approximate the posterior distribution well at lower values of

the SNR.

5.2.1 Higher order corrections

From relation (5.24) we can see that x is a function of both u and y. Keeping y

fixed, let us expand x about u = X̂MAP(y) correct to the 4th order:

x(u, y) = x[u = X̂MAP(y), y] + γ[u− X̂MAP(y)] + ε[u− X̂MAP(y)]2

+ η[u− X̂MAP(y)]3 + ξ[u− X̂MAP(y)]4 (5.29)

90



Chapter 5. Asymptotic Analyses of the MMSE

where

γ =
∂x

∂u

∣∣∣
u=X̂MAP(y)

, ε =
1

2

∂2x

∂u2

∣∣∣
u=X̂MAP(y)

, (5.30)

η =
1

6

∂3x

∂u3

∣∣∣
u=X̂MAP(y)

, ξ =
1

24

∂4x

∂u4

∣∣∣
u=X̂MAP(y)

, (5.31)

are the higher order corrections to an expansion of the posterior distribution when

it departs from being Gaussian. We will now calculate the higher order corrections

γ, ε, η and ξ. Note that as u→ X̂MAP(y), so does x→ X̂MAP(y).

Taking a partial derivative with respect to (w.r.t) u of both sides of the relation,

5.24, we have

u− X̂MAP(y) = − 1

〈S(Y )〉
∂ lnP

∂x

∂x

∂u
, (5.32)

⇒ ∂x

∂u
= −〈S(Y )〉 (u− X̂MAP(y))

∂ lnP

∂x

, (5.33)

where P (x, y) is shortened to P to make the expressions more readable. We will

state the PD explicitly if needed. As u → X̂MAP(y), the numerator → zero. Since

X̂MAP(y) maximizes the posterior P (x|y) and in turn the joint PD, P (x, y), for a

fixed y, the denominator also goes to 0 as u → X̂MAP(y) at which x → X̂MAP(y).

The l’Hospital rule yields the proper limit of the ratio (5.33) as u→ X̂MAP(y):

∂x

∂u

∣∣∣
u=X̂MAP(y)

= − 〈S(Y )〉
∂2 lnP (x, y)

∂x2

∣∣∣
x=X̂MAP(y)

∂x

∂u

∣∣∣
u=X̂MAP(y)

. (5.34)

Multiplying both sides by
∂x

∂u

∣∣∣
u=X̂MAP(y)

yields

(
∂x

∂u

∣∣∣
u=X̂MAP

)2

=
〈S(Y )〉
S(y)

, (5.35)

from which it follows that

γ =

√
〈S(Y )〉
S(y)

. (5.36)
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Taking partial derivative w.r.t u on both sides of Eq. (5.32),

1 = − 1

〈S(Y )〉

[
∂2 lnP

∂x2

(∂x
∂u

)2

+
∂ lnP

∂x

∂2x

∂u2

]
, (5.37)

⇒ ∂2x

∂u2
= −
〈S(Y )〉+

∂2 lnP

∂x2

(∂x
∂u

)2

∂ lnP

∂x

. (5.38)

As u → X̂MAP(y), the numerator tends to 〈S〉 − S 〈S〉
S

= 0. The denominator also

tends to zero as we saw earlier. Using the l’Hospital rule, as u→ X̂MAP(y), we have

∂2x

∂u2

∣∣∣
u=X̂MAP(y)

= −(lnP )(3)

(lnP )(2)
γ2 − 2

∂2x

∂u2

∣∣∣
u=X̂MAP(y)

(5.39)

⇒ ε = −1

6

(lnP )(3)

(lnP )(2)
γ2, (5.40)

where

(lnP )(n) def
=
∂n lnP (x, y)

∂x̂n

∣∣∣
x=X̂MAP(y)

. (5.41)

To find η, we take a partial derivative w.r.t u of both sides of Eq. (5.37), and go

through similar calculations as above to yield,

η =

{
5

12

[(lnP )(3)

(lnP )(2)

]2

− 1

4

(lnP )(4)

(lnP )(2)

}
γ3

6
, (5.42)

ξ =

{
2

9

[(lnP )(3)

(lnP )(2)

]3

− (lnP )(4)(lnP )(3)

[(lnP )(2)]2
− 1

5

(lnP )(5)

(lnP )(2)

}
γ4

24
, (5.43)

Using the expressions for γ, ε, η, and ξ we can express the partial derivative of x

w.r.t u as,

∂x

∂u
= γ + 2ε[u− X̂MAP(y)] + 3η[u− X̂MAP(y)]2 + 4ξ[u− X̂MAP(y)]3. (5.44)

Since we are able to express x and
∂x

∂u
in terms of the correction terms and u,

we can transform the integrals from x to u, which will enable us to calculate the
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probabilities and expectations. We first evaluate P (y) as

P (y) =

∫
dxP (x, y),

=

∫
du
∂x

∂u
P (X̂MAP(y), y) exp

{
−1

2
〈S(Y )〉 [u− X̂MAP(y)]2

}
,

= P (X̂MAP(y), y)

√
2π

〈S(Y )〉

(
γ +

3η

〈S(Y )〉

)
. (5.45)

The posterior PD is given by

P (x|y) =
P (x, y)

P (y)
, (5.46)

=

√
〈S(Y )〉

2π

(
γ +

3η

〈S(Y )〉

)−1

exp
{
−1

2
〈S(Y )〉 [u− X̂MAP(y)]2

}
, (5.47)

which is clearly not Gaussian. This shows that the expression for the posterior

PD is moving away from the limiting asymptotic Gaussian form when higher order

corrections are included. By writing x = [x − X̂MAP(y)] + X̂MAP(y), we can now

calculate the MMSE estimator as,

X̂M(y) =

∫
dxP (x|y)x, (5.48)

= X̂MAP (y) +

∫
du

∂x

∂u
[x− X̂MAP(y)]P (x|y), (5.49)

= X̂MAP (y) +
P (X̂MAP(y), y)

2P (y)

∫
du
∂[x− X̂MAP(y)]2

∂u

exp
{
−1

2
〈S(Y )〉 [u− X̂MAP(y)]2

}
. (5.50)

From relation (5.29), we have

[x− X̂MAP(y)]2 = γ2(u− X̂)2 + ε2(u− X̂)4 + 2γε(u− X̂)3

+ 2γη(u− X̂)4 + 2γξ(u− X̂)5 + 2εη(u− X̂)5 (5.51)

⇒
∂(x− X̂MAP (y))

2

∂u
= 2γ2(u− X̂) + 4ε2(u− X̂)3 + 6γε(u− X̂)2

+ 8γη(u− X̂)3 + 10(γξ + εη)(u− X̂)4, (5.52)
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where we abbreviated X̂MAP (y) as X̂ in the RHS of the equations to simplify the

notation. Thus, from Eq. (5.50), we can express the difference between the MMSEE

and the MAP estimator as

X̂M(y)− X̂MAP(y) =
P (X̂MAP(y), y)

2P (y)

{( 6γε

〈S(Y )〉
+

30(γξ + εη)

〈S(Y )〉2
)√ 2π

〈S(Y )〉

}
(5.53)

=

(
3γε

〈S(Y )〉
+

15(γξ + εη)

〈S(Y )〉2

)(
γ +

3η

〈S(Y )〉

)−1

(5.54)

=

(
3ε

〈S(Y )〉
+

15(γξ + εη)

γ 〈S(Y )〉2

)(
1− 3η

γ 〈S(Y )〉

)
(5.55)

=
3ε

〈S(Y )〉
+

6εη

γ 〈S(Y )〉2
+

15ξ

〈S(Y )〉2
, (5.56)

where we collected all terms up to the order 〈S(Y )〉−2. In arriving at (5.53) we used

the fact that the fourth central moment of a Gaussian is three times its variance.

Using this relation for the MMSEE, we can calculate the MMSE,

EM =

∫ ∫
dx dy P (x, y)[x− X̂M(y)]2, (5.57)

=

∫
dy P (y)

∫
dxP (x|y)[x− X̂M(y)]2, (5.58)

=

∫
dy P (y)

(
γ +

3η

〈S(Y )〉

)−1

∫
du
∂x

∂u
(x− X̂M(y))2

√
〈S(Y )〉

2π
exp
{
−1

2
〈S(Y )〉 (u− X̂MAP(y))2

}
,

(5.59)

where we used the expression (5.47) for the posterior PD in the third line. Using

equations (5.29) and (5.56), we can calculate the integral over u by including terms

up to the order of 〈S(Y )〉−2 to give

EM =

∫
dy P (y)

(
γ +

3η

〈S(Y )〉

)−1{
γ3

〈S(Y )〉
+

6γε2 + 15γ2η

〈S(Y )〉2

}
, (5.60)

=

∫
dy P (y)

(
1− 3η

γ 〈S(Y )〉

){
γ2

〈S(Y )〉
+

6ε2 + 15γη

〈S(Y )〉2

}
, (5.61)
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=

∫
dyP (y)

1

S(y)
+

∫
dyP (y)

6ε2 + 12γη

〈S(Y )〉2
. (5.62)

A detailed evaluation of EM is given in Appendix C. Note that the fourth order

correction ξ appears in the MMSE estimator, but not the MMSE itself. This is in

agreement with the observation in (4.1) that the MSE of an estimator differs by a

quadratic term. Hence, the higher order corrections from an estimator might not

contribute to its MSE. Note that the Bayesian CRB is given by

−
{
E
[ ∂2

∂x2
lnP (x, y)

]}−1

, (5.63)

where the expectation is over X and Y . The first term in the final expression for

MMSE can be bounded below as∫
dyP (y)

1

S(y)
≥ 1

〈S(Y )〉
, (5.64)

which has a similar structure as the Bayesian CRB. The only difference is that a

particular value of X = X̂MAP(y) is being used in our calculations whereas the

Bayesian CRB averages over the prior. For the high SNR case, we expect the two to

be the same, and also equal to the deterministic CRB.

We will now evaluate the approximations developed in the previous sections to

the MMSE at low and high SNR values for the TDE problem. We will consider both

Gaussian and pseudo-Gaussian conditional data statistics.

5.3 TDE problem

5.3.1 The Gaussian channel

Consider the TDE problem with a Gaussian conditional data statistics (2.60),

P (ȳ|τ) =

(
1√

2πσ2
n

)Nt
exp
{
− 1

2σ2
n

Nt∑
i=1

[y(ti)− s(ti − τ)]2
}
, (5.65)
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First, we will calculate the low-SNR approximation, LSNR-MMSE, (5.22) for the

TDE problem. To facilitate this calculation we need to first evaluate

J(Ȳ | 〈τ〉) = −E
[∂2 lnP (Ȳ | 〈τ〉)

∂ 〈τ〉2
| 〈τ〉

]
, (5.66)

where

−∂
2 lnP (ȳ| 〈τ〉)
∂ 〈τ〉2

=
1

σ2
n

Nt∑
i=1

{
[s(ti − 〈τ〉)− yi]

∂2s(ti − 〈τ〉)
∂ 〈τ〉2

+
(∂s(ti − 〈τ〉)

∂ 〈τ〉

)2
}
.

(5.67)

Note that P (yi| 〈τ〉) is Gaussian with mean s(ti − 〈τ〉). So, the second order par-

tial derivative term in the RHS of Eq. (5.67) vanishes when we calculate J(Ȳ | 〈τ〉).

Therefore

J(Ȳ | 〈τ〉) =
1

σ2
n

Nt∑
i=1

(∂s(ti − 〈τ〉)
∂ 〈τ〉

)2

, (5.68)

where we used the unit normalization of P (Ȳ | 〈τ〉). Substituting this J(Ȳ | 〈τ〉) into

the expression (5.22) we can approximately calculate the LSNR-MMSE.

We will now calculate the high SNR approximation to the MMSE, given by

Eq. (5.62). Even though this approximation is based on including higher order

corrections, for this particular Gaussian channel case we will see that the first term

of Eq. (5.62), which we will call HSNR-MMSE,

HSNR-MMSE = E
[ 1

S(Y )

]
, (5.69)

is sufficient to approximate the MMSE over a wide range of SNR values. From

Eq. (5.26), we can calculate S(y), by noting that the partial derivative of the uniform
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prior w.r.t x is zero,

S(y) = −∂
2 lnP (τ̂MAP, ȳ)

∂τ̂ 2
MAP

(5.70)

= −∂
2 lnP (ȳ|τ̂MAP)

∂τ̂ 2
MAP

(5.71)

=
1

σ2
n

Nt∑
i=1

{
[s(ti − τ̂MAP)− yi]

∂2s(ti − τ̂MAP)

∂τ̂ 2
MAP

+
(∂s(ti − τ̂MAP)

∂τ̂MAP

)2
}
,

(5.72)

where τ̂MAP is given by Eq. (2.64).
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Figure 5.1: MMSE, and its approximations for the TDE problem with Gaussian
conditional data statistics.

We calculated the HSNR-MMSE by simulating the MAP estimator. Figure 5.1

shows both the LSNR-MMSE and the HSNR-MMSE evaluated numerically. As we

can see from Eq. (5.68), J(Ȳ | 〈τ〉) increases as the noise, represented by σ2
n, decreases,

and at some point the expression (5.22) even becomes negative. For such values of

SNR, LSNR-MMSE is no longer a good approximation of the MMSE, as shown in
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Fig. 5.1. On the other hand, the HSNR-MMSE seems to approximate the MMSE

well even for lower values of the SNR.

5.3.2 Pseudo-Gaussian channel

In Sec. 4.6 we considered a pseudo-Gaussian channel, which approximates the joint

statistics of Gaussian read-out noise and Poisson photon number distribution when

imaging with photons. Now we will formulate the 1D-TDE problem with a pseudo-

Gaussian conditional data statistics. The conditional PD of the data can be written

as

P (ȳ|τ) =
1

Nt∏
i=1

√
2πv2

i

exp

{
−

Nt∑
i=1

[y(ti)− s(ti − τ)∆t]2

2v2
i

}
, (5.73)

where

v2
i = s(ti − τ)∆t+ σ2

n. (5.74)

As we will see, the HSNR-MMSE is sufficient to approximate the MMSE even for

the pseudo-Gaussian statistics. To calculate the LSNR-MMSE and HSNR-MMSE

approximations to the MMSE, we need to first calculate J(Ȳ |τ), which depends on

the second order partial derivative of the log-likelihood function w.r.t τ ,

lnP (ȳ|τ) = −1

2

Nt∑
i

{
ln(2πv2

i +
[yi − s(ti − τ)∆t]2

v2
i

)

}
, (5.75)

⇒ ∂ lnP (ȳ|τ)

∂τ
=

1

2

Nt∑
i=1

R
∂s(ti − τ)∆t

∂τ
, (5.76)

⇒ ∂2 lnP (ȳ|τ)

∂τ 2
=

1

2

Nt∑
i=1

[
R
∂2s(ti − τ)∆t

∂τ 2
+Q

(∂s(ti − τ)∆t

∂τ

)2
]
, (5.77)
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where

R =
[s(ti − τ)∆t− yi]2 − 2v2

i [s(ti − τ)∆t− yi]− v2
i

v4
i

, (5.78)

Q = −2v6
i − v4

i − 4v4
i [s(ti − τ)∆t− yi] + 2vi[s(ti − τ)∆t− yi]2

v8
i

. (5.79)

We can now evaluate the LSNR-MMSE (5.22) by first calculating the expected

value of the expression (5.77) evaluated at 〈τ〉,

J(Ȳ | 〈τ〉) = E
[
−∂

2 lnP (ȳ| 〈τ〉)
∂ 〈τ〉2

∣∣∣∣ 〈τ〉] (5.80)

= −1

2

Nt∑
i=1

[
E[R| 〈τ〉]∂

2s(ti − τ)∆t

∂τ 2
+ E[Q| 〈τ〉]

(∂s(ti − τ)∆t

∂τ

)2
]
.

(5.81)

Note that P (ȳ| 〈τ〉) is a Gaussian PD with conditional mean s(ti − τ)∆t and condi-

tional variance v2
i , so that

E[R| 〈τ〉] = 0 (5.82)

E[Q| 〈τ〉] = −1 + 2v2
i

v4
i

. (5.83)

Thus, we have

J(Ȳ | 〈τ〉) =
1

2

Nt∑
i=1

1 + 2v2
i

v4
i

(∂s(ti − τ)∆t

∂τ

)2

. (5.84)

The LSNR-MMSE can then be calculated from Eq. (5.22). To calculate the HSNR-

MMSE, we need to evaluate S(y) (5.26). This is equal to negative of the expression

(5.77) evaluated at the MAP estimator, τ = τ̂MAP. The HSNR-MMSE (5.69) is then

evaluated by simulating the MAP estimator.

The results are plotted in Fig. 5.2, which shows that the HSNR-MMSE involving

the MAP estimator performs well for moderate to high values of SNR. Even though

only the first term in Eq. (5.62) is included, the approximation to the MMSE is
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Figure 5.2: MMSE, and its approximations for the TDE problem with pseudo-
Gaussian conditional data statistics.

remarkably tight. The LSNR-MMSE, which depends just on the second order sen-

sitivity evaluated at the mean value of the prior, provides a loose approximation

to the MMSE. This trend is observed both for the Gaussian and pseudo-Gaussian

conditional data statistics. In the next section, we propose a new approximate ex-

pression for the MMSE which interpolates between the high SNR and the low SNR

expressions for the MMSE, and is valid over a wide range of SNR values.

5.4 An approximate MMSE

The high SNR limit of the MMSE is J(Y |x), as given by Eq. (5.7), which is obvi-

ously quite different from both the expressions (5.22) and (5.62). However, from the

results of the previous sections, the approximate expressions, LSNR-MMSE (5.22)

and HSNR-MMSE (5.69), have the necessary structure to approximate the MMSE

in their regions of validity. Since the MAP estimator approximates the MMSE quite
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Figure 5.3: MMSE and its approximations for the TDE problem with Gaussian
conditional data statistics.

well at high to moderate values of the SNR, and the MMSEE is the mean of the prior

at extremely low values of the SNR, we may write down empirically an interpolated

formula for the MMSE as follows:

EM =
σ2
X

1 + σ2
XJ(Y |X̂)

, (5.85)

where X̂(Y ) is our interpolating estimator

X̂(Y ) =
[SNRX̂MAP + E(X)]

SNR + 1
. (5.86)

Note that the estimator (5.86) is exact for the fully Gaussian problem. The

estimator, as desired, tends to the mean value of the prior at the low-SNR regime,

σ2
XJ(Y |X̂) << 1, while it tends to the MAP estimator at the high-SNR regime,

σ2
XJ(Y |X̂) >> 1. The FI term itself tends to J(Y | 〈X〉) in the low-SNR regime and

to J(Y |X̂MAP) in the high-SNR regime. Thus, the interpolated MMSE (5.85), in the
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Figure 5.4: MMSE and its approximations for the TDE problem with pseudo-
Gaussian conditional data statistics.

low-SNR regime, tends to

σ2
X

1 + σ2
XJ(Y | 〈X〉)

≈ σ2
X [1− σ2

XJ(Y | 〈X〉)], (5.87)

which is the LSNR-MMSE (5.22), and in the high-SNR regime, tends to

σ2
X

1 + σ2
XJ(Y |X̂MAP)

≈ 1

J(Y |X̂MAP)
, (5.88)

which is the CRB.

In Figs. 5.3 and 5.4, we plot, by means of dashed lines, this new interpolation for-

mula for the Gaussian and pseudo-Gaussian conditional data statistics, respectively.

The other curves in these figures are the same as those already presented in Figs. 5.1

and 5.2. The interpolation formula captures the behavior of the MMSE for all values

of the SNR. Since expression (5.85) involves the data sensitivity function only to the

lowest order, it may not be accurate in the intermediate-SNR regime where

σ2
XJ(Y |X̂) ∼ 1 (5.89)
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and the MMSE is, in general, determined by a more detailed dependence of the

data statistics P (y|x) on the parameter X being estimated. This inadequacy of the

interpolational formula is clearly seen in Figs. 5.3 and 5.4.

5.5 Summary

In this chapter, approximations to the MMSE were derived, at low values of the SNR

using a perturbative calculation and at high values of the SNR using the Laplace

method for the asymptotic evaluation of integrals. The results will be presented

in [131] which is under preparation. The approximations were evaluated for Gaussian

and pseudo-Gaussian conditional data statistics. Both the LSNR-MMSE and the

HSNR-MMSE perform well in their respective regions of validity, with the HSNR-

MMSE being remarkably tight in approximating the MMSE for a wide range of SNR

values. An empirical interpolational formula for the MMSE was proposed, in terms

of the mean of the prior and the MAP estimator, which captures the behavior of the

MMSE at all values of the SNR. The interpolated formula, however, depends only on

the second order sensitivity metric, the Fisher information, evaluated at the MAP

estimator.
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Conclusions and Future Directions

In this dissertation, the Bayesian parameter estimation problem was considered anew,

with our main focus being on deriving tighter performance bounds and optimal

estimators. The fundamental lower bound on the MSE, namely the MMSE, and

the corresponding optimum estimator, namely the MMSEE, are difficult to compute

numerically, as they depend on the explicit evaluation of the posterior PD. In view

of this computational complexity, ad-hoc estimators like the MLE and the MAP

estimators are traditionally used. With the help of illustrative problems for which

we can compute the MMSE and its bounds with relative ease, it was shown that the

MAP estimator is not optimal in the MSE sense, particularly at moderate to low

SNR values. It is for this reason, exacerbated by the inability of the MAP estimator

to handle bias at low values of the SNR, the MAP estimation error departs from the

MMSE as the SNR decreases. Even though for many problems, the MAP estimator

and the MMSE estimator can be shown to be quite close [21] in the high SNR regime,

they depart significantly from each other as we move into the moderate to low SNR

regime.

To evaluate the performance of sub-optimal estimators, tight, computationally
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efficient bounds on the MMSE are sought, which avoid any explicit calculation of

the posterior distribution. Two popular lower bounds on the MMSE are the Ziv-

Zakai bound (ZZB) and the Weiss-Weinsetin bound (WWB). Both the ZZB and

the WWB provide such a formulation avoiding the posterior distribution while still

making use of the prior information. Both these bounds can be applied to arbitrary

prior distributions and to vector parameters. An attempt was made to relate the two

bounds in [41], but there are no other results relating the two bounds analytically.

These bounds were compared numerically for various problems of interest [94], and it

is generally observed that the WWB is tighter in the low SNR region while the ZZB

does well in the asymptotic region providing a better estimate of the threshold region

[109]. Nevertheless, these two families of lower bounds are difficult to compute [70,94]

and their tightness to the MMSE has not been established analytically. Moreover,

optimal estimators achieving these bounds, when they are achievable, or even their

achievability are not determined by their general theory.

As shown in this dissertation, these two lower bounds are not particularly tight at

low to moderate values of the SNR. A particular case where the ZZB performs poorly

is presented which illustrates the claim of sub-optimality of the ZZB. An extension

to the ZZB using an M-ary hypothesis formulation is presented. Since the M-ary

formulation, in general, is more comprehensive than the binary one, this extension

is expected to improve the ZZB. The ZZB was also extended to discrete priors. A

practical result for the ZZB was presented through an approximation to the MPE

which involves a free parameter. Utilizing a Markov-Chain Monte Carlo (MCMC)

approach, the integrals in this approximated ZZB can be evaluated tightly. The

advantage of this approximation is that there is no need to calculate the different

regions in the binary hypothesis testing problem.

An important result in this dissertation was deriving an upper bound on the

MMSE. The so derived upper bound is numerically efficient to evaluate, and works
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by a removal of the Bayesian bias from an estimator. Since the MSE of any esti-

mator differs from the MMSE by a quadratic deviation of the estimator from the

MMSE estimator, a variational approach that minimizes the upper bound over suit-

ably chosen families of test estimators can provide an accurate approximation for

the MMSE. We have considered a number of families of test estimators in this dis-

sertation, and compared their performances in terms of the tightness of the optimal

upper bounds on the MMSE that they provide. A generalization of upper bound for

vector parameters was also presented.

The upper bound was considered for the polynomial class of estimators as well

as for a linear class based on the MAP estimator. The MAP estimation error was

shown, by a simple linear modification of the estimator, to saturate to values close

to the MMSE in the moderate to low regions of SNR by a simple application of the

upper bound. The variational upper bound involving the MAP estimator thus ties

both the high SNR and the low SNR ends of the MSE to the value of the MMSE

in those regions, and thus tightly bounds the MMSE for all values of the SNR. The

polynomial class of estimators is of interest mainly for two reasons. One is that the

optimization over the variational parameters can be performed analytically and the

other is that the optimum values of the MSE and the optimum estimators can be

found with minimal computational cost.

For certain problems, the polynomial class of estimators was shown to provide

remarkably tight MMSE bounds that are almost indistinguishable from the MMSE

over the entire range of the SNR values. The polynomial class of estimators was

shown to be inadequate, however, for problems where the signal depends in a highly

non-linear fashion on the data. A piecewise quasi-linear estimator, which is more

useful in such situations, was presented. It accounts for any such non-linearities

through certain data-dependent weighting functions. These weighting functions allow

the variational parameters of the linear estimator to evolve from one subregion to the
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next in the support space of the prior while accounting for the non-linear dependency

of the signal on the prior over the full support of the prior.

The upper bounds were applied to both imaging and non-imaging problems. Our

results showed that the piecewise quasi-linear estimator based upper bound and

the MAP-VB tightly bound the MMSE for all values of SNR, and outperform the

existing lower bounds on the MMSE, namely the ZZB and the WWB, in terms of

their tightness. The MAP-VB was used to analyze and compare the performance of

a newly developed rotating-PSF imager with respect to that of a conventional imager

in localizing a point source beyond the diffraction limit. Based on our results, it was

shown that the RPSF imager is quite robust to large changes of defocus, encoding

defocus in PSF rotation, and thus providing a practical method for 3D snap-shot

imaging.

Asymptotic expressions were constructed for the MMSE estimator and the MMSE

for high and low values of the SNR. In the high-SNR region, since the MAP estimator

is known to achieve the CRB and the MMSE, the MMSE estimator was expanded

around the MAP estimator in this region. In the low-SNR region, where data add

little information, the mean of the prior seems to be a suitable point about which to

MMSE estimator was perturbatively approximated. Using this formalism a different

kind of interpolational approximation to the MMSE was proposed, which captures

the behavior of the MMSE for all values of the SNR.

A number of topics related to the upper bound require further research. We list

the most important of these below.

• Iteratively calculating the upper bound

By introducing a non-linear bias, one that is possibly dependent on the parame-

ter, the upper bound can be evaluated iteratively. Such an iterative scheme can

be implemented by performing bias-subtraction and upper bound minimization
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sequentially in each iteration.

• The sampled PQE

The calculation of PQE-VB involves inverting a matrix that involves a quadratic

scaling in the product of number of data samples times the number of prior

intervals. For high dimensional estimation this will pose a computational chal-

lenge. For such problems, more sophisticated methods can be formulated which

rely on sampling from a limited number of smaller subregions into which the

larger support of the prior may be regarded as divided.

• Comparative studies of the PQE-VB and the MAP-VB

The MAP-VB when used in an expectation-maximization (EM) formulation,

might provide a viable approach for iterative algorithms. However, such algo-

rithms can be computationally inefficient. For active systems, an estimator that

can give the estimate in a single shot greatly improves the temporal resolution,

potentially providing real-time performance. In such cases, the PQE presents

a powerful formalism to address the temporal resolution. A comparative study

can be done with regard to the computational overhead for evaluating the

MAP-VB versus the upper bound of the PQE.

• Comprehensive 3D performance analysis of the RPSF

In this dissertation, we demonstrated the robustness of a rotating-PSF based

imager in terms of the MMSE for localizing a point source to sub-diffractive

errors in the transverse plane. The axial localization problem too can be ana-

lyzed along with a full 3D performance analysis of longitudinal and transverse

resolution of the RPSF, based on the MMSE.

• Mutual information and the MMSE

A direct relationship exists between mutual information and the MMSE for

certain Gaussian problems [65]. Using tight approximations to the MMSE
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and thus bounding mutual information evaluations is of much importance to

characterize fidelity of various communication systems. In general, for all the

problems that involve an accurate evaluation of the MMSE, the upper bound

presents a tight, and numerically viable approximation.
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Appendix A

Poisson channel and exponential

prior

A.1 P (y) for the single-pixel problem

We will evaluate data PD given in (2.39),

P (y) =

∫ ∞
0

dx

〈X〉
(ax+ b)y

y!
exp[−(ax+ b)] exp(−x/ 〈X〉) (A.1)

=
1

y! 〈X〉

∫ ∞
0

(ax+ b)y exp[−(ax+
x

〈X〉
+ b)] (A.2)

=
1

y!a 〈X〉
exp

(
b

a 〈X〉

)∫ ∞
b

du uy exp

[
−u1 + a 〈X〉

a 〈X〉

]
(A.3)

=
1

y!

(a 〈X〉)y

(1 + a 〈X〉)y+1
exp

(
b

a 〈X〉

)
Γ

[
y + 1,

b(1 + a 〈X〉)
a 〈X〉

]
, (A.4)

where

Γ(y + 1, z) =

∫ ∞
z

dx xy exp(−x). (A.5)
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To arrive at (A.3), a change of integration variable u = ax + b was used. To arrive

at (A.4), a change of variable 1+a〈X〉
a〈X〉 u = x was used.

Note that P (y) can be calculated iteratively from the following relation,

Γ(y + 1, z) =

∫ ∞
z

dx xy exp(−x), (A.6)

= −xy exp(−x)
∣∣∞
z

+y

∫ ∞
z

dx xy exp(−x), (A.7)

= zy exp(−z) + yΓ(y, z). (A.8)

A.2 Two-pixel problem

The conditional data statistics for the two-pixel problem are given by,

P (y1, y2|x1, x2) = P (y1|x1, x2)P (y2|x1, x2), (A.9)

P (y1|x1, x2) =
(α1x1 + β1x2 + γ1)y1

y1!
exp[−(α1x1 + β1x2 + γ1)], y1 = 0, 1, . . . ,

(A.10)

P (y2|x1, x2) =
(α2x1 + β2x2 + γ2)y2

y2!
exp[−(α2x1 + β2x2 + γ2)], y2 = 0, 1, . . . .

(A.11)

We assume X1 and X2 are independent and exponentially distributed random vari-

ables,

PXi(x) =


1
〈Xi〉 exp(−x/〈Xi〉) for x > 0

0 otherwise,
(A.12)

for i = 1, 2 and PX(x1, x2) = PX1(x1)PX2(x2). We can now express the MMSE

estimators, X̂1M ans X̂2M as

X̂1M =

∫ ∞
0

∫ ∞
0

dx1 dx2 x1P (x1)P (x2)P (y1|x1, x2)P (y2|x1, x2) (A.13)

X̂2M =

∫ ∞
0

∫ ∞
0

dx1 dx2 x2P (x1)P (x2)P (y1|x1, x2)P (y2|x1, x2) (A.14)
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Let us first consider the evaluation of X̂1M . By expressing x1 as a linear combination

of α1x1 + β1x2 + γ1 and α2x1 + β2x2 + γ2, we can express X̂1M in terms of P (y1, y2),

x1 = k1(α1x1 + β1x2 + γ1) + l1(α2x1 + β2x2 + γ2) +m1, (A.15)

where

k1 =
β2

α1β2 − α2β1

(A.16)

l1 = − β1

α1β2 − α2β1

(A.17)

m1 = −k1γ1 − l1γ2 (A.18)

We can then write down X̂1M as

X̂1M =
K1(y1, y2)

P (y1, y2)
, (A.19)

where

K1(y1, y2) = k1(y+ 1)P (y1 + 1, y2) + l1(y2 + 1)P (y1, y2 + 1) +m1P (y1, y2). (A.20)

Similarly, we can express X̂2M as

X̂2M =
K2(y1, y2)

P (y1, y2)
, (A.21)

where

K2(y1, y2) = k2(y + 1)P (y1 + 1, y2) + l2(y2 + 1)P (y1, y2 + 1) +m2P (y1, y2),

(A.22)

where

k2 = − α1

α1β2 − α2β1

(A.23)

l2 =
α2

α1β2 − α2β1

(A.24)

m2 = −k2γ1 − l2γ2 (A.25)
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The MMSE can be written as

EM = 〈X2
1 〉+ 〈X2

2 〉 − 〈X̂2
1 〉 − 〈X̂2

2 〉 , (A.26)

= 〈X2
1 〉+ 〈X2

2 〉 −
∑
y1,y2

K2
1(y1, y2) +K2

2(y1, y2)

P (y1, y2)
. (A.27)

Thus, we can see that if we can evaluate P (y1, y2) iteratively, both the MMSEE and

the MMSE can be calculated. Note that we used R to be an identity matrix in

defining the MMSE (4.18) for multi-variate parameters.

We will now consider the case when α is the on-axis signal strength, β is the cross-

talk signal strength, and γ is a uniform bias. That is α1 = β2 = α, α2 = β1 = β

and γ1 = γ2 = γ. To write down P (y1, y2) iteratively, we will first do a change of

variables,

φ1 = αx1 + βx2, (A.28)

φ2 = βx1 + αx2. (A.29)

This will transform the prior PD PX(x1, x2) to Pφ(φ1, φ2),

Pφ(φ1, φ2) =
1

α2 − β2
PX

(
αφ1 − βφ2

α2 − β2
,
αφ2 − βφ1

α2 − β2

)
(A.30)

=
1

α2 − β2

1

〈X1〉 〈X2〉
exp

(
− φ1

〈φ1〉
− φ2

〈φ2〉

)
, (A.31)

where

〈φ1〉 = (α2 − β2)

(
α

〈X1〉
− β

〈X2〉

)−1

, (A.32)

〈φ2〉 = (α2 − β2)

(
α

〈X2〉
− β

〈X1〉

)−1

. (A.33)

The region of support for (φ1, φ2) is

Rφ = {(φ1, φ2)|β
α
φ2 ≤ φ1 ≤

α

β
φ2}, (A.34)

as shown in Fig. A.1.
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Figure A.1: Region of support for (φ1, φ2) is the shaded region between the lines
αφ1 = βφ2 and αφ2 = βφ1.

We can now express the joint PD P (y1, y2) as,

P (y1, y2) =

∫∫
Rφ

dφ1 dφ2
(φ1 + γ)y1

y1!
exp(−φ1 − γ)

(φ2 + γ)y2

y2!

exp(−φ2 − γ)Pφ(φ1, φ2), (A.35)

=
1

α2 − β2

1

〈φ1〉 〈φ2〉

∫ ∞
0

dφ2
(φ2 + γ)y2

y2!
exp

(
−φ2 −

φ2

〈φ2〉
− γ
)

∫ α
β
φ2

β
α
φ2

dφ1
(φ1 + γ)y1

y1!
exp

(
−φ1 −

φ1

〈φ1〉
− γ
)
, (A.36)

=
n

y1!y2!

∫ ∞
0

dφ2 (φ2 + γ)y2 exp
(
−v2φ2

)
∫ α

β
φ2

β
α
φ2

dφ1 (φ1 + γ)y1 exp
(
−v1φ1

)
, (A.37)

where vi = 1 + 1
〈φi〉 , for i = 1, 2 and where n = exp(−2γ)[〈φ1〉 〈φ2〉 (α2 − β2)−1].

P (y1 + 1, y2) is given by,

P (y1 + 1, y2) =
n

(y1 + 1)!y2!

∫ ∞
0

dφ2 (φ2 + γ)y2 exp
(
−v2φ2

)
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∫ α
β
φ2

β
α
φ2

dφ1 (φ1 + γ)y1+1 exp
(
−v1φ1

)
. (A.38)

Consider the integral over φ1, where we will use integration by parts to express the

integral over φ1 as sum of two terms, one of which is P (y1, y2). Specifically,

∫ α
β
φ2

β
α
φ2

dφ1 (φ1 + γ)y1+1 exp
(
−v1φ1

)
=
−(φ1 + γ)y1+1 exp

(
−v1φ1

)
v1

∣∣∣∣∣
α
β
φ2

β
α
φ2

+

∫ α
β
φ2

β
α
φ2

dφ1 (y1 + 1)(φ1 + γ)y1
exp
(
−v1φ1

)
v1

.

(A.39)

Note that the first term of the RHS is entirely a function of φ2 and the second term

contributes to P (y1, y2) yielding,

P (y1 + 1, y2) =
1

v1

[P (y1, y2) + I1], (A.40)

where

I1 =
n

(y1 + 1)!y2!

{∫ ∞
0

dφ2(φ2 + γ)y2(
β

α
φ2 + γ)y1+1 exp(−v2φ2 −

β

α
v1φ2)

−
∫ ∞

0

dφ2(φ2 + γ)y2(
α

β
φ2 + γ)y1+1 exp(−v2φ2 −

α

β
v1φ2)

}
.

(A.41)

Similarly, we can express P (y1, y2 + 1) as,

P (y1, y2 + 1) =
1

v2

[P (y1, y2) + I2], (A.42)

where

I2 =
n

y1!(y2 + 1)!

{∫ ∞
0

dφ1(φ1 + γ)y1(
β

α
φ1 + γ)y2+1 exp(−v1φ1 −

β

α
v2φ1)

−
∫ ∞

0

dφ1(φ1 + γ)y1(
α

β
φ1 + γ)y2+1 exp(−v1φ1 −

α

β
v2φ1)

}
.

(A.43)
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Using the iterative expressions for P (y1 + 1, y2) and P (y1, y2 + 1), we can eval-

uate K1(y1, y2) and K2(y1, y2) from (A.20) (A.20) and (A.22). Then the MMSE

can be evaluated from (A.26). Note that, the integrals I1 and I2 will be evaluated

numerically.

On the other hand, a quadratic upper bound can be formulated which can be

evaluated analytically with far less computational complexity. Note that the MMSE

(A.26) can be written as

EM = E1M + E2M , (A.44)

which is a sum of the MMSEs for the two sensors pixels. Thus, the corresponding

upper bound can be found from (4.26),

EUB = E1UB + E2UB, (A.45)

= E
[
(δX̂1 − δX1)2

]
+ E

[
(δX̂2 − δX2)2

]
. (A.46)

Let the quadratic estimator be written as

X̂k = b̄′(k)ū, for k = 1, 2 (A.47)

where ū is the vector [y1 y2 y
2
1 y1y2 y

2
2] and the elements of b̄(k) are the variational

parameters over which will minimize the upper bound. Note that the minimization

can be performed independently over each of the terms in (A.46). This amounts to

finding the optimal b̄(1) and b̄(2) independently. This can be done along the same

lines from (4.28) to (4.30). After finding the optimal b̄(1) and b̄(2) and substituting

them back into the upper bound we arrive at,

E1UB = σ2
X1
− v̄T(1)M

−1v̄(1), (A.48)

E2UB = σ2
X2
− v̄T(2)M

−1v̄(2) (A.49)

where M a 5 × 5 symmetric matrix with elements, Mij = E[δuiδuj], i, j = 1, . . . , 5,

and v̄(k) a 5× 1 vector of elements E[δXk δū].
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Appendix A. Poisson channel and exponential prior

To evaluate the upper bound, we need to calculate terms like 〈yi1〉, 〈yi1y
j
2〉, 〈Xky

i
1〉,

and 〈Xky
i
2〉 for k = 1, 2. All of them can be computed analytically very easily in

terms of 〈X1〉, 〈X2〉, α, β, and γ. We will show an outline of the calculation of one

of the terms, e.g., E[Y 2
1 Y2],

E[Y 2
1 Y2] = EX

[
EY |X [Y 2

1 Y2]
]
, (A.50)

= EX
[[

(αX1 + βX2 + γ)2 + (αX1 + βX2 + γ)
]
(βX1 + αX2 + γ)

]
,

(A.51)

where we used the expressions for the moments of a Poisson channel in terms of its

mean. E[Y 2
1 Y2] can then be written in terms of 〈X i

k〉 and 〈X i
1X

j
2〉. The latter can

be written as 〈X i
1〉 〈X

j
2〉 since X1 and X2 are independent of each other. For an

exponential random variable X the higher order moments can be written in terms of

its mean 〈X i〉 = i! 〈X〉. Similarly, all other expectations can be expressed in terms

of the moments of X1 and X2, which are trivial to compute.

Hence, we can evaluate the upper bound for a quadratic test estimator, which

has minimal computational complexity as there is no explicit evaluation of P (y1, y2).
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Appendix B

The various expectations in the

optimal coefficients of the PQE

The vector and matrices in (4.60) can be calculated by first evaluating the following

expectations, E[eµ], E[yieµ], E[τeµ], E[τyieµ], E[eµeν ], E[yieµeν ], E[yiyjeµeν ]. The

conditional data statistics are Gaussian and given by Eq. (2.60), reproduced here

P (ȳ|τ) =

(
1√

2πσ2
n

)Nt
exp

(
−‖ȳ − s̄(τ)‖2

2σ2
n

)
, (B.1)

where

‖ȳ − s̄(τ)‖2 =
Nt∑
i=1

[
yi − si(τ)

]2
, (B.2)

yi = y(ti), and si(τ) = s(ti − τ). We considered the following weighting function, as

defined in Eq. (4.47):

eµ(ȳ) = exp

(
−‖ȳ − s̄(τµ)‖2

2w2
µ

)
. (B.3)
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Appendix B. The various expectations in the optimal coefficients of the PQE

Now, we will evaluate each of the expected values.

E[eµ] =

(
1√

2πσ2
n

)Nt ∫
dτP (τ)

∫
dȳ exp

(
−‖ȳ − s̄(τ)‖2

2σ2
n

− ‖ȳ − s̄(τµ)‖2

2wµ

)
,

(B.4)

where∫
dȳ =

∫
. . .

∫
dy1 . . . dyNt , (B.5)

is an Nt dimensional multivariate integral. Note that we can complete squares for ȳ

as

‖ȳ − s̄(τ)‖2

2σ2
n

+
‖ȳ − s̄(τµ)‖2

2w2
µ

=
‖ȳ − m̄[τ, s̄(τµ), wµ]‖2

2σ2(wµ)
+
‖s̄(τ)− s̄(τµ)‖2

2(w2
µ + σ2

n)
, (B.6)

where

m̄[τ, r̄, w] =
s̄(τ)w2 + r̄σ2

n

w2 + σ2
n

and (B.7)

σ2(w) =
σ2
nw

2

σ2
n + w2

, (B.8)

for some vector r̄ of Nt element vector and real number w. Thus, E[eµ] can be written

as

E[eµ] = Eτ
[
exp

(
−‖s̄(τ)− s̄(τµ)‖2

2(w2
µ + σ2

n)

)
(

1√
2πσ2

n

)Nt ∫
dȳ exp

(
−‖ȳ − m̄[τ, s̄(τµ), wµ]‖2

2σ2(wµ)

)]
(B.9)

= Eτ
[
f [τ, s̄(τµ), wµ]

]
, (B.10)

where

f [τ, r̄, w] = exp

(
−‖s̄(τ)− r̄‖2

2(w2 + σ2
n)

)(
σ(w)

σn

)Nt
, (B.11)

for some vector r̄ of Nt element vector and real number w. We used the unit normal-

ization of the integral in Eq. (B.9) after multiplying and dividing by [2πσ2(wµ)]Nt/2.

Note that E[τeµ] involves the same kind of calculation, and can be evaluated as,

E[τeµ] = Eτ
[
τf [τ, s̄(τµ), wµ]

]
, (B.12)
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Appendix B. The various expectations in the optimal coefficients of the PQE

Evaluating E[yieµ],

E[yieµ] = Eτ
[
Eȳ|τ [yieµ]

]
(B.13)

= Eτ
[
exp

(
−‖s̄(τ)− s̄(τµ)‖2

2(w2
µ + σ2

n)

)
(

1√
2πσ2

n

)Nt ∫
dȳ yi exp

(
−‖ȳ − m̄[τ, s̄(τµ), wµ]‖2

2σ2(wµ)

)]
, (B.14)

= Eτ
[
f [τ, s̄(τµ), wµ]√

2πσ2(wµ)

∫
dyi yi exp

(
−‖ȳ − m̄[τ, s̄(τµ), wµ]‖2

2σ2(wµ)

)]
, (B.15)

= Eτ
[
f [τ, s̄(τµ), wµ]mi[τ, s̄(τµ), wµ]

]
(B.16)

=
hi[τ, s̄(τµ), wµ]w2

µ + E[eµ]si(τµ)σ2
n

w2
µ + σ2

n

, (B.17)

where

hi[τ, r̄, w] = Eτ
[
si(τ)f [τ, r̄, w]

]
. (B.18)

We can evaluate E[τyieµ] in a similar fashion, to give

E[τyieµ] =
ηi[τ, s̄(τµ), wµ]w2

µ + E[τeµ]si(τµ)σ2
n

w2
µ + σ2

n

, (B.19)

where

ηi[τ, r̄, w] = Eτ
[
τsi(τ)f [τ, r̄, w]

]
. (B.20)

To evaluate the remaining expectations E[eµeν ], E[yieµeν ], and E[yiyjeµeν ], note

that

‖ȳ − s̄(τµ)‖2

2w2
µ

+
‖ȳ − s̄(τν)‖2

2wν
=
‖ȳ − ¯̃s‖2

2w2
µν

+
‖s̄(τµ)− s̄(τν)‖2

2(w2
µ + w2

ν)
, (B.21)

where

s̃i =
si(τµ)w2

ν + si(τν)w
2
ν

w2
µ + w2

ν

and (B.22)

w2
µν =

w2
µw

2
ν

w2
µ + w2

ν

. (B.23)
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We can now express E[eµeν ] as

E[eµeν ] = E

[
exp

(
−‖ȳ − s̄(τµ)‖2

2w2
µ

− ‖ȳ − s̄(τν)‖
2

2w2
ν

)]
(B.24)

= E

[
exp

(
−‖ȳ −

¯̃s‖2

2w2
µν

− ‖s̄(τµ)− s̄(τν)‖2

2(w2
µ + w2

ν)

)]
(B.25)

= dE
[
eµν
]
, (B.26)

where

eµν = exp

(
−‖ȳ −

¯̃s‖2

2w2
µν

)
, (B.27)

d = exp

(
−‖s̄(τµ)− s̄(τν)‖2

2(w2
µ + w2

ν)

)
. (B.28)

We can evaluate E[eµν ] by following similar steps from (B.4) to (B.10) to yield

E[eµν ] = Eτ [f [τ, ¯̃s, wµν ]], (B.29)

from which we can evaluate E[eµeν ] using Eq. (B.26).

To evaluate E[yieµeν ], , we first observe that

E[yieµeν ] = dE
[
yieµν

]
. (B.30)

The evaluation of E
[
yieµν

]
follows similar steps from (B.13) to (B.17) to yield

E[yieµν ] =
hi[τ, ¯̃s, wµν ]w

2
µν + E[eµν ]s̃iσ

2
n

w2
µν + σ2

n

, (B.31)

from which we can evaluate E[yieµeν ] using Eq. (B.30).

To evaluate E[yiyjeµeν ] we will first express it as

E[yiyjeµeν ] = dE
[
yiyjeµν

]
. (B.32)

Note that E
[
yiyjeµν

]
involves a joint conditional expectation of yiyj. For all i 6= j

the conditional expectation is a product of individual expectations. For i = j, the
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Appendix B. The various expectations in the optimal coefficients of the PQE

conditional expectation can be written as a sum of variance and conditional mean

square. We can then write E
[
yiyjeµν

]
as

E
[
yiyjeµν

]
= Eτ

[
Eȳ|τ [yiyjeµν ]

]
(B.33)

= Eτ
[
f [τ, ¯̃s, wµν ]

{
mi[τ, ¯̃s, wµν ]mj[τ, ¯̃s, wµν ] + δi,jσ

2(wµν)
}]

(B.34)

From (B.7) we can write down

m̄[τ, ¯̃s, wµν ]m̄[τ, ¯̃s, wµν ] =
s̄(τ)s̄′(τ)w4

µν + w2
µνσ

2
n(s̄¯̃s′ + ¯̃ss̄′) + σ4

n
¯̃s¯̃s′

w2
µν + σ2

n

(B.35)

Thus, we can write E
[
yiyjeµν

]
as

E
[
yiyjeµν

]
=
Fijw

4
µν + w2

µνσ
2
n(his̃j + s̃ihj) + σ4

ns̃is̃jE[eµν ]

w2
µν + σ2

n

+ δijσ
2(wµν)E[eµν ],

(B.36)

where

Fij[τ, r̄, w] = Eτ
[
si(τ)sj(τ)f [τ, r̄, w]

]
, (B.37)

and the arguments for calculating hj, hj, and Fij are the same, namely [τ, ¯̃s, wµν ].

We can then evaluate E[yiyjeµeν ] from Eq. (B.32).
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Appendix C

MMSE approximation in the

high-SNR regime

We have the following relation, from an expansion of x about u = X̂MAP(y) correct

to the 4th order (5.29):

x(u, y) = x[u = X̂MAP(y), y] + γ[u− X̂MAP(y)] + ε[u− X̂MAP(y)]2

+ η[u− X̂MAP(y)]3 + ξ[u− X̂MAP(y)]4 (C.1)

where γ, ε, η and ξ are the higher order corrections to an expansion of the posterior

distribution when it departs from being Gaussian. They are given by equations

(5.36), (5.40), (5.42) and (5.43), respectively. We can then write the partial derivative

of x w.r.t u as,

∂x

∂u
= γ + 2ε[u− X̂MAP(y)] + 3η[u− X̂MAP(y)]2 + 4η[u− X̂MAP(y)]3. (C.2)

We will start from the expression for the high-SNR approximation to the MMSE
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Appendix C. MMSE approximation in the high-SNR regime

as given in Eq. (5.59),

EM =

∫
dy P (y)

(
γ +

3η

〈S(Y )〉

)−1

∫
du
∂x

∂u
(x− X̂M)2

√
〈S(Y )〉

2π
exp
{
−1

2
〈S(Y )〉 [u− X̂MAP(y)]2

}
(C.3)

The MMSE estimator is expressed in terms of the MAP estimator and the higher

order correction in (5.56) as

X̂M(y)− X̂MAP(y) =
3ε

〈S(Y )〉
+

6εη

γ 〈S(Y )〉2
+

15ξ

〈S(Y )〉2
, (C.4)

def
= f(y) (C.5)

We can express the product (x− X̂M(y))2∂x/∂u as

∂x

∂u
(x− X̂M(y))2 = [γ + 2ε(u− X̂) + 3η(u− X̂)2 + 4ξ(u− X̂)3][x− X̂ − f(y)]2,

(C.6)

= [γ + 2ε(u− X̂) + 3η(u− X̂)2 + 4ξ(u− X̂)3]

× [γ(u− X̂) + ε(u− X̂)2 + η(u− X̂)3 + ξ(u− X̂)4 − f(y)]2,

(C.7)

= [γ + 2ε(u− X̂) + 3η(u− X̂)2 + 4ξ(u− X̂)3]

×
[
γ2(u− X̂)2 + ε2(u− X̂)4 + f 2(y)

+ 2γε(u− X̂)3 + 2γη(u− X̂)4 − 2γ(u− X̂)f(y)

− 2ε(u− X̂)2f(y)− 2η(u− X̂)3f(y)− 2ξ(u− X̂)4f(y)
]
, (C.8)

where X̂ is used to denote the MAP estimator. Note that only the even powers of

(u− X̂) contribute to the integral over u in Eq. (C.3). The even powers of (u− X̂)

in the product (x− X̂M)2∂x/∂u are,

Even Powers = γ
[
γ2(u− X̂)2 + ε2(u− X̂)4 + f 2(y) + 2γη(u− X̂)4

− 2ε(u− X̂)2f(y)− 2ξ(u− X̂)4f(y)
]
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+ 2ε
[
2γε(u− X̂)4 − 2γ(u− X̂)2f(y)− 2η(u− X̂)4f(y)

]
+ 3η

[
γ2(u− X̂)4 − 2ε(u− X̂)4f(y) + (u− X̂)2f 2(y)

]
− 8γξ(u− X̂)4f(y), (C.9)

where we discarded powers of (u−X̂) greater than 4. Only these terms contribute up

to 〈S(Y )〉−2. Making this approximation and noting that the fourth central moment

of a Gaussian is three times its variance, we can finally evaluate the integral over u

in (C.3) to yield,

EM =

∫
dy P (y)

(
γ +

3η

〈S(Y )〉

)−1{
γ3

〈S〉
+

3γε2

〈S〉2
+

6γ2η

〈S〉2
+ γf 2 − 2γεf

〈S〉

− 6γξf

〈S〉2
+

12γε2

〈S〉2
− 4γεf

〈S〉
− 12εηf

〈S〉2
+

9γ2η

〈S〉2
+

3ηf 2

〈S〉
− 18εηf

〈S〉2
− 24γξf

〈S〉2

}
(C.10)

Note that f 2 = 9ε2/ 〈S〉2 as we are including only orders up to 〈S〉−2. Therefore, after

some simple algebraic manipulations, we can write the high-SNR approximation to

the MMSE as

EM =

∫
dy P (y)

(
γ +

3η

〈S〉

)−1{
γ3

〈S〉
+

6γε2 + 15γ2η

〈S〉2

}
(C.11)

=

∫
dy P (y)

1

γ

(
1− 3η

γ 〈S〉

){
γ3

〈S〉
+

6γε2 + 15γ2η

〈S〉2

}
(C.12)

=

∫
dy P (y)

{
γ2

〈S〉
+

6ε2 + 12γη

〈S〉2

}
(C.13)

=

∫
dy P (y)

{
1

S
+

6ε2 + 12γη

〈S〉2

}
, (C.14)

which is the final expression (5.62) for the high-SNR approximation to the MMSE.
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