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Abstract

We are living in a world in which the growth rate of the data generated every year is
almost exponential. A significant problem is how we can store this amount of data.
Compressive sensing is giving us a clue about how we can reconstruct images and
signals from frequency data, by having less samples compared to the conventional
ways of data acquisition, which somehow helps us with the storage problem and gives

us some other benefits that we try to present in this thesis.

The basic principle of Nyquist sampling theory has been one of the conventional
ways in data acquisition and reconstruction signals and images. This so-called princi-
ple, introduces a minimum rate at which a signal can be sampled to be reconstructed
without any errors. On the other side of this subject, compressive sensing introduces
an efficient framework that enables us to derive exact reconstruction of a sparse signal

from less measurements.

In this thesis we provide a few notes on mathematical insight related to this new

theory which involves some proofs about the desired properties of the sampling ma-
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trix and explain how we approach the problem of constructing this class of matrices

and at last we move on to the recovery algorithm.
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Chapter 1

Introduction to compressive

sensing

1.1 Introduction

The advent of the digital century has brought us high resolution digital informa-
tion that is generated by exploding digital components every year [1]. To be able to
store or transmit this information, we need to rely on some compression algorithms
that take advantage of the inherent redundancy of the information and translate it

to a new recoverable format which requires lower space.|[2].

In this chapter, we first focus on the transform coding that is based on the
well known Nyquist theory. We will continue with some detailed discussions of the
transform coding and the typical process that is generally followed to encode a signal.
Then we will introduce some new exceptions to Nyquist sampling theory followed
by compressive sensing, a new advanced coding scheme that is based on the sparsity
nature of the signals. Finally we will explain the contribution of this thesis and will

outline the rest of this report.



Chapter 1. Introduction to compressive sensing

1.2 Transform coding

Transform coding is an efficient way to compress information, and can use either a
lossless or a lossy coding technique [3]. The transform coding utilizes the knowledge
of the application to determine the information to discard. For example in audio
coding, since sensitivity of human ear falls within the range of (20 Hz - 20 kHz)
[1, 5], the high frequency content of the signal can safely be discarded, without a

noticeable degradation in the quality of the signal at the receiver.

The block diagram in Fig. 1.1 demonstrates the general process of a transform
coder. In the sampling stage, the input signal which is normally a continuous time
signal is sampled at equi-spaced time intervals, generating a signal that is discrete
in time. The sampling block is followed by a compression block. There are a wide
variety of compression techniques which are mainly based on the redundancy of the

information.

In the case of the compression of visual information, for example, the most pop-

ular techniques are based on either discrete cosine transform (DCT) or wavelets.

K<< N
Input N
) Sample |—P»| Compress
signal
K
Compressed

data <@— Entropy |«@——]Quantization

Figure 1.1: Block diagram of a general transform coder
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In every frame of a video signal, there is a high probability that pixels have the
same color and intensity of color as their neighbors. This feature which is called
intra-sample redundancy is the base of image coding techniques like JPEG, video
coding methods like H263, H264 and MPEG [0]. Another similar redundancy is the
temporal redundancy, meaning that the pixel would have almost the same color and
intensity information in consecutive frames, making the path to implement inter-

frame redundancy reduction [7, &].

Compressed information are fed to a quantization unit, aiming to be able to
represent /transfer /store the compressed information using limited number of bits.
The quantization unit is a critical stage in image/video/audio compression and as
the analog values are quantized to some discrete levels the process is irreversible.
This stage has the highest impact on the distortion of the reconstructed signal and

is the main source of information loss in an encoder [0].

Figure 1.2 demonstrates the uniform quantization of a sin(z) signal, when we
have only 16 distinct levels of quantization. Non-uniform quantizer is the other
quantization method that is selected for some signals with sensitivity which is higher
at different ranges of the signal. For example for an audio signal, our ear is more
sensitive to quantization error when the signal level is lower so it is preferred to use

a kind of quantizer which introduces less noise to low values [(].

The final stage in a transform coder is the entropy coder. The entropy coder
translates the quantized information to some new symbols that are based on the
entropy (frequency) of different values at the output of the quantizer. In some coders
the entropy coder is called the variable length coder (VLC), meaning that it assigns
a symbol of variable length to the codes that are coming out of the quantizer. The
size of the generated code is a function of the frequency for that specific symbol. The

more frequent codes are assigned a smaller symbol, and the codes that are generated
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lower are assigned a longer symbol. In this way the resultant code has a smaller size
[6].

For the purpose of this thesis, since our target area is compressive sensing, the
most important blocks to focus on, is the sampling and compression. In the next

section we will discuss the sampling technique with more details.

1.3 Sampling Theorem

To detail the sampling process, we have demonstrated an example bandwidth
limited signal in Fig. 1.3 (a) and its corresponding Fourier transform in 1.3 (b). As
we will explain in the next section, it is of vital importance that the signal be band-
limited, meaning that there is a frequency B so that all the frequency components of

the signal are lower or equal to B and the signal doesn’t have any component on the

1.25 T T T T T T T T T T T T
1r + _
0.75 - b
0.5 b
X 0.25 .
£ 0¥ 0 o 009Q0 09 Q (-3~
7 o oo ® LY o690 %06
I
>, 0.25 - -
0.5 i
} | Original signal i
0.75 ® Quantized signal o
-1 - | =—© Quantization error B
_1.25 | | | | | | | | | | | |

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Figure 1.2: Demonstration of quantization of sin(x) signal, as an example and the
quantized signal when we have four bits (16 levels of uniform quantization). The
quantization error which is the difference between the original signal and the quan-
tized output which is not reversible, is also shown in red.
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frequencies above B. In other words, a band-limited signal is a signal whose Fourier

transform is compactly supported. [2].

We continue the sampling process of the signal first in the time domain and next

in the frequency domain.

1.3.1 Sampling Theorem in the time domain

The sampling process of a signal x(¢) involves multiplication of the signal by a
periodic sampling function. Figure 1.4 (a) depicts multiplication of the signal x(t) by
the sampling function p(t), which is composed of periodic impulses with the period
of Ty = fl The sampling fuction p(t) shown in Fig. 1.4 (b) is a train of impulse
signals. rlfhe resultant sampled signal x4(¢) is shown on the right side of Fig. 1.4 (c).
Equation 1.1 to 1.9 shows the theoretical concepts of the sampling of the signal x(t)

in both time and frequency domain [2, 9].

z5(t) = p(t)x(t) (1.1)
A X(t) y
t -B B f
a) b)

‘ X(f)

v
 /

Figure 1.3: An example band-limited signal (a) time domain and (b) it’s Fourier
transform
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Now we use a train of impulse functions as the function p(t):

p(t) = i 5(t=nT)), (1.2)

where impulse function is zero on all the horizontal axis with the exception of zero

0
(S(t—to) = (13)
1 t=tg

And: Then we can write z4(t) as:

zs(t) = p(t)a(t)

_ (1) i,o 5(t - nT))

= S 2(t)8(t-nTy) (-4
_ ioox(nTs)é(t—nTs)

Note that x4(t) can be considered as a discrete signal z[n] = z5(nT5).

x(t) p(t) Xs(t)

ot - b
| | S |}

Figure 1.4: Demonstration of the sampling of continuous x(t) using a periodic func-
tion p(t). The resultant sampled function x4(¢) which is discrete in time is shown
on the right.
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1.3.2 Frequency analysis of sampling theorem

In this part, we will review the frequency analysis of the sampling theorem and

will show that the minimum sampling frequency possible for a band-limited signal is

double of its highest frequency component [9].

n@W=p0a(t) LX) = 5 X () « P(iw)

Where:

X(iw) = F{z(t)} = f (1) tdt

And:
p(t) = :zi:o (6(t-nTy)) FALEN —kz ( 27rk; ) P(iw)

So for the X, (w) we can write [2]
X, (iw) = %X(iw) « P(iw)
:%me(iQ)P(i(w—H))dH
:_[ X(i 9){27r 3 (5w _6_2;5k))}d9

Sk —o00

:T%kf[/:: _ ~ 27rk; ]

=—00

Since we know for all § # w — 22& that ¢(w -6 - 2“5’“) is zero.

X, (iw) =

= 27Tk;
o [f ]
Ti i" [X(z( 27rk (5(w 27Tk; ]
1 = , 27Tk
T2 X(i(0 - T )

(1.5)

(1.7)

(1.8)

(1.9)
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The Equation 1.9, in short, says the multiplication of a continuous band limited
1
signal to a period train of sampling impulses 0 of period of Ts = — is equal to

S
infinitely replicating its Fourier transform X (iw) and shifting of the replication

2

by f,=—.
v [ T,

Figure 1.5 depicts the sampling of a continuous signal x(¢) in Fourier domain. The
replication of the Fourier transform of the signal x(t) in the frequency domain occurs
because of the periodic sampling function P(t) = §(t). The receiver/ reconstructor
can easily get rid of this extra replication by use of a low pass filter (LPF) shown in

red in Fig. 1.5.

e X(f)
t -B ! B f
X(f)
[ [
£, -B ! B f, f
x(t) X(f)
A M
t £, -B B f f

Figure 1.5: The sampling process of a continues signal z(t), in Fourier domain. The
red box in the last graph shows the low pass filter that is used at the reconstruction
stage to get rid of the extra side replication of the Fourier transform of the signal.
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1.4 Nyquist rate

To process analog signals, the sampling theorem is the fundamental key to the
gate of digital signal processing [10]. The state of the art analog to digital converters
(ADCs) sample their inputs at equi-spaced time intervals. There are many applica-

tions of this kind of sampling in radio frequency (RF) communications [ 1, 12].

The famous Nyquist rate that is named after electronic engineer Harry Nyquist
has become a mathematical statement that has a high impact in industrial applica-
tions. By definitions, the Nyquist rate is the frequency, twice the highest frequency
content of the signal. When working with band-limited (A band-limited signal is a
signal whose Fourier transform has compact support) continuous (analog) signals,
the Nyquist rate determines the lower limit to the sampling frequency at which the

signal can be recovered without losing information [13].

In the example continuous signal that is shown in Fig. 1.4 and Fig. 1.5, when
the signal is sampled with a sampling frequency of f, there are infinite number of
functions that can fit to the sampled data, but as for all f > f; , X(f) = 0, there
is a unique function that is band-limited to B and fits to the sampled data. Based
on the Nyquist criterion, in the definitions above, we must have f; > 2B, otherwise

the recovered signal from the same data would be different from the original signal

[, 15,

1.5 Aliasing

Figure 1.6 shows the situation when the sampling frequency is smaller then the
rate offered by Nyquist (fs < 2B). As aresult, in the sampled data part of the Fourier
transform of the signal is overlapped with the side replication of Fourier transform.

This effect which is called aliasing destroys the signal and it will not be possible to
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reconstruct the signal.

1.6 Sub-Nyquist sampling

As we explained in the previous section, sampling a signal at a slower rate than
twice of its band limit will cause it being impossible to have a proper reconstruc-
tion, making the Nyquist criterion a must condition to avoid aliasing [10]. Although
the Nyquist sampling theorem offers a solid upper limit to the criterion to the sam-
pling and reconstruction of a band-limited signal, however under specific conditions

sampling below the rate that is offered by the Nyquist rate, is still possible [17, 18].

Recent studies have proven [19] that the Nyquist criterion is not a necessary
condition, if there is enough restriction applied to the desired signal. Compressive
sensing (CS), as an example is a new field that offers significant decrease in the
number of samples that are needed to be acquired, if the signal is sparse [20]. While
Nyquist sampling theorem poses restrictions based on the bandwidth of the signal,

by taking the largest frequency component of the band-limited signal as the base,

2 X(f)

B f f

.

Figure 1.6: Sampling of a signal at a sampling frequency below the rate offered by
Nyquist caused distortion of the signal and since part of the Fourier transform is
lost, will make the reconstruction impossible.

10
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compressive sensing offers a new parameter named effective bandwidth which can be

much lower than the well-studied Nyquist rate.

Another benefit of compressive sensing is the fact that it generates compressed
information at the same place that it samples the information and removes the
need for subsequent blocks to comprehend the sampled data. When it comes to the
hardware implementation, this would lead to much simpler systems. Figure 1.7 shows
the block diagram of a compressive sensing based encoder. One could see that in
the recent advancements the coding has eliminated the need for the sampling-coding

overhead, by taking already compressed information.

And finally, what is making compressed sensing remarkable is that, using this
technique, sensors can gather signal information very briefly, without trying to com-

prehend them.

Input N Compressive K
signal sensing

N>> M >>K
Compressed

data <@—{ Entropy |«@—— Quantization

Figure 1.7: Block diagram of an encoder which is based on compressive sensing.

11
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1.7 Sampling in compressive sensing

Although the sampling rate that is offered by Nyquist, works for every band-
limited signal, it still is so high that is not affordable by means of storage or trans-
mission. To address these challenges, we depend on some compression algorithms
that find and remove redundant information by transforming it to a new basis that
the signal has a more concise form. The new basis is selected with the goal of
providing a sparse or compressible representation for the signal [21]. Note that a

compressible signal is a signal which is sparse in at least one domain.

According to the compressed sensing theory, the encoding of a given signal does
not involve a complex process. Linear sampling/measurement process gets done by

simple matrix multiplication.

1.8 Conclusion

In this chapter we had a brief overview on the concept of the well-known Nyquist
sampling theory and also the specification of a typical transform coder is explained.
We also have introduced a recent coding technique which offers sampling of the signal
at rates that can be much lower than the double of its bandwidth. In the next chapter
we will review the properties of the sensing matrix. We will explain the problem of

the sensing matrix construction in Chapter 3.

12



Chapter 2

Sensing Matrix Properties

2.1 Introduction

As highlighted in the previous chapter, compressive sensing, also known as com-
pressive sampling or sparse sampling is a technique in signal processing for efficiently
acquiring and reconstructing a sparse signal. Sparse representation in compressed
sensing establishes a classified mathematical pattern for studying high dimensional
sparse signals and ways to reconstruct them, introducing a large collection of efficient
algorithms. In a recent research by Candes et. al. [22] it has been shown that using
compressed sensing a sparse representation can be reconstructed exactly from small
set of linear measurements. This result proves the possibility of reconstruction of a

sparse signal by taking much lower number of measurements.

Additionally, compressed sensing is designed to measure sparse signals directly
in a compressed form. Most signals of interest are only “approximately sparse” in
contrast to “ideally sparse” signals which means, despite the fact that the signal
contains only a small fraction of large entries, the other entries are not strictly equal

to zero, however they are very close to zero.

13
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A formal mechanism to sample the signal is at the heart of compressive sensing.
The measurement matrix forms a standard mechanism in which the information
about a signal x is obtained. In other words the measurement matrix A samples a
high dimensional signal x € R using limited linear measurements and plays a central

role in reducing the dimension of the signal x such that:
y=Axr .

Where y € R™ is the dimensionally reduced form of the input vector z. And A is
an m x n matrix which is the dimensionality reduction matrix that maps vector x to
vector y noticing that m <« n. For instance if x is a sinusoid waveform, then y may

be the lower dimensional vector of its Fourier coeflicients.

In this chapter we will specify some important properties corresponding to the
class of measurement /sensing matrices. We restrict our focus to discrete signals in
R”™, however one could extend the same compressive sensing method to continuous
signals as well [23].

The material in this chapter and the next is mostly based on the survey by Davenport

et. al. [24].

2.2 Sparse representation and exact recovery

To start, we introduce a significant concept in the field of compressive sensing,

which is the notion of sparsity.

2.2.1 Sparse signals

As explained in the previous chapter, compressive sensing works on a specific

class of signals named sparse signals. A sparse signal is a signal which can be

14
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represented as a linear combination of relatively few base elements in a basis. In
other words a vector at which there is a large number of zero elements is considered

to be a sparse vector.

Sparse signal representation has been proven to be a drastically powerful tool
in acquiring, representing and compressing high-dimensional signals. The fact that
important classes of signals like images or audio signals, have sparse representations
in some fixed basis (i.e. time or frequency), has been very important in proving this
matter. Sparse representation has been found as a very attractive subject in fields

of signal processing, image processing, pattern recognition and computer vision.

In fact many signals are naturally sparse in the sense that they have concise
sparse representation in a proper basis. In mathematics, a signal x is k-sparse if the
number of its non-zero entries i.e. ||z|,, is less than or equal to k. Set of all k-sparse

signals can be denoted as:
S = (o laly <k (2.1)

Note that however we are using the norm symbol to count the nonzero entries of a

vector, we should notice that |z|, is not a norm. Because |az|, # |o] |z],.
Let’s see how k-sparse signals are related with 2k-sparse signals.

Lemma 2.1. For any non-zero 2k-sparse signal h, there are two different k-sparse
signals, x and x', such that h can be represented as the difference of x and x'. In
other words for any non-zero h, h € Yo, if and only if h = x —x' for some x,x" € X,

with © + x'.

Proof.
(=)

Assume that h = (hy, ha, ..., hy,) is a vector in ¥y, where every h; € R represents an

entry of h. Let the set S = {z e{l1,2,....,n}:h; + 0}, where the set S represents the

15
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positions of the nonzero entries of h. Since h # 0 there is at least one non-zero entry
in it, and since h € Xy, h has at most 2k non-zero entries. So S # @&. Notice that
1 <|S] €2k (]S| denotes the cardinality of S).

Partition the set S into two subsets S; and S5 so that their cardinalities are at most

k. Hence the subsets S; and S5 are such that:
81U52=S, Slﬂ52=®, and |Sl|<k,|52|<k (22)

Necessarily S; # @ or Sy # &, because S # @.

Let x = (1,29, ....,x,), be a vector in ¥} where:

hi 1€ 51
0 otherwise.

and z’ = (x}, ), ...,x}), be a vector in 3 where
—hi 1€ SQ

0 otherwise.

so by construction h =x — 2/, with z,2’ € ¥ and x # 2.

(<)

We are assuming = #+ ' and z,2’ € ¥;. Let h = x — 2’ so h = (hy, ha, -, h,,) where
hi = x; — z}. We want to show that h € Yy;. Consider the sets K, K; and K, which

represent the positions of the non-zero entries of h, x and z’ respectively:
K = {2 € {1,2,-,n}:h; # o},

Ky ={i€ 1,2, n} 2 %0},

and

)

Koy = {2 €{1,2,-n}:al o}.

16
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Note that since z’,x € ¥, the cardinality of K; and K5 is less than or equal
to k or in other words |K;| < k and |Ks| < k. We claim that K ¢ K; u K5, then
|K| <|Ki| + | K| < k+ k = 2k, which implies that h € 3.

Proving the claim: Suppose i € K, then h; # 0, since h; = x; — x| either x; # 0 or
x} # 0, otherwise h; = 0. This means that 7 € K; or ¢ € K5, therefore 7 € K; u K. So

K ¢ K, U K5 and since K, U K5 has at most 2k non-zero entries, we conclude that:

heng .

2.2.2 Null space condition

One important specification of the sensing matrix that we use to sample the data,
is its null space. Considering matrix A, the null space of A is denoted by N (A) and
is defined by:

N(A)={zeR" | Az=0}. (2.5)

In order to be able to recover all k-sparse signals z from Az, A must uniquely

represent all x € > meaning:
Vo, ' e Xy
if: z+a (2.6)
then Az + Ax'.

Otherwise it is not possible to distinguish x from 2’ based on y.
The following theorem specifies a property that makes a matrix represent all k —

sparse vectors, uniquely.

Theorem 2.1. A sensing matriz A, uniquely represents all x € Xy if and only if

N(A) contains no non-zero vector in Yoy,.

17
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Proof. We have to show p <= ¢ where:
p: A uniquely represents all x € 3.

q: N(A) contains no non-zero vector in g

= We try to show the contrapositive of the statement p = ¢: ~q¢=~p
So we are assuming there is a non-zero vector h in Yo, which is also in the
null-space. Since by Lemma 2.1, h can be written as a difference of two

vectors in Y.

h #0
x,x’ € Xy

heYy = h=(x-2") where . (2.7)
r+x

heN(A)

Noticing h € N (A) then Ah =0, so A(z —2') = 0. And since A is a linear

transformation Az = Ax’. This is ~p

<= To show ¢ = p again we prove the contrapositive of the statement ~p = ~q.
So there are x, z' € ¥;, and = # 2’ such that Az = Az’ this implies A(xz-z') = 0.
By Lemma 2.1 h = x — ' is a vector in Xy since z,2’ € X; and also h # 0

since x # a’. So h is a nonzero vector in Xy that is in N'(A). This is ~ g.

So the statement p <= ¢ holds. O]

2.3 Spark and coherence
In this section we aim to explain two important matrix properties in the field

of compressed sensing, which together with some other properties explained in next

chapter, will provide the exact recovery of all k — sparse vectors.

18
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2.3.1 Spark of a matrix

Before we introduce the notion of the spark of a matrix, it is wise to start with

a more familiar concept about matrices in linear algebra:

Rank of a matrix (dimension of the column space)

The rank of a matrix A is the dimension of the vector space spanned by its columns.
So the maximum number of linearly independent column (row) vectors is the rank
of the matrix. If you have the row-echelon form of a matrix, the number of non-zero

rows is the rank.

In the following examples we have evaluated the row-echelon form (REF) of the

matrix A to determine the rank(A):

Example 2.1.
2 -1 3 10 1
1 0 01 -1
A= - REF —
0 2 -1 00 1
1 1 4 00 O
The rank is the number of non-zero rows in REF form, so. = rank(A) =
3.

Full rank matrices: When all of the column vectors in a matrix are linearly inde-

pendent, the matrix is said to be full-rank. See the following example of a full-rank

matrix:
Example 2.2.
1 0 2
A= 2 1 0
3 2 1
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A is a full rank matrixz, because all the columns are linearly independent. If we

compute the row-echelon form of A we get:

1 21
01 2
00 3

We have 3 non-zero rows so the rank is 3 and the matriz A is considered to be a

full-rank matriz.

Definition 2.1. The spark of a matriz is the smallest number of columns of A, that
are linearly dependent.

Remark: If we have a zero column in A, then spark(A) = 1. And that is because
a zero column is considered to be linearly dependent by itself. In general any set of

vectors, containing the vector 0 is linearly dependent, because for any ¢ +0,¢0=0.

If there is no zero column in A, then

2 < spark(A) <rank(A) +1 (2.8)

because rank(A) is the maximum number of linearly independent columns, so if we
have rank(A) + 1 columns, they will always be linearly dependent.

The following examples will illustrate the concept of the spark of a matrix in
different cases:
Example 2.3.

Consider the given matrix A :

10 1 1
01 -1 +1

A=

Any two columns are linearly independent, for instance if we consider the first two

columns which are linearly independent, as soon as we add the third or the fourth
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column, we won’t have the linear independence anymore.

The first and 1 0 The first 1 0 1
b :> b )
the second columns: 0 1 three columns: 0 1 -1

————
Linearly independent Linearly dependent

The second,

The second and 0 1 1 0 1
) = the third and ) ,
the third columns: 1 -1 0 1 -1

the first columns:

Linearly independent Linearly dependent

Since the maximum number of linearly independent columns is 2, the rank is 2, and

since the smallest number of linearly dependent columns is 3
= spark(A) =3 =rank(A)+1
Example 2.4.

Consider the given matrixz B:

1 01 -1
011 O

Since the mazimum number of linearly independent columns is 2, the rank is two,

like the first two columns. However we also can find pairs of columns, for example:

1 -1
( ),( ), which are linearly dependent. So the spark(A) cannot be 3, like the
0 0

previous example, since there are 2 linearly dependent columns in A, and since we

have no zero columns each column is linearly independent so the spark(A) = 2 in

this case.
Example 2.5.
1 0 0 -1
A=
010 O
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Since we have a zero column and a zero column is linearly dependent, then we get

spark(A) = 1. Despite the fact that rank(A) =2 also in this example.

To reiterate:

Assuming we have no zero columns in matrix A:
2 <spark(A) <rank(A) +1

If spark is 1, we have one zero column at least.

The definition of the spark of a matrix allows us to pose the following theorem to

check whether or not a sensing matrix is representing every k-sparse signal, uniquely.

Theorem 2.2. For any vector y € R™, there is at most one signal x € Xy such that:

Az =y if and only if spark(A) > 2k

Proof. We are showing p <= ¢ where:

p: A uniquely represents all k-sparse vectors.

q: Spark(A) > 2k.

= To prove p = g we try to show the contrapositive of the statement, ~q = ~p:
~p : There is more than one x € ¥ such that Az =y

~q : Spark(A) < 2k

The proposition ~g implies that any set of up to (2k — 1) columns or, more
generally, any set of up to spark(A)-1 columns of A is linearly independent.
There is a permutation matrix P such that P separates linearly independent
columns from linearly dependent ones: Since spark(A) < 2k, there is a set
of 2k columns that are linearly dependent. We use permutation P to put

them as the first 2k columns.

Consider:
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AP = Al A2 A2k A2I<:+1 An

linearly dependent

Since {A1, Ay, -+, Agi} are linearly dependent there are constants ¢y, ¢o, -,
cor. not all equal to zero such that:

—

01A1 + CQAQ + e+ CgkAgk =0. (29)

Let C' = (c1,¢a+, Cog, 0-++,0)t, then the equation 2.9 is equal to APC =0.
Let PC = h, since C has at most 2k non-zero entries, so does h, because P is
just a permutation. Also h € N (A), because Ah = APC =0. So by Theorem
2.1, A will not represent all Yo, uniquely. This is ~ p.

= We are to prove ¢ = p. By contradiction assume that, there are x,x" € 3,
and = # z' such that Az = Az’ so A(z —2') = 0. By Lemma 2.1 if we set
x —x' = h then h # 0, also h € Xg. Since spark(A) > 2k all sets of up to
2k columns are linearly independent. Then since Ah =0, if Ay, As, -+, A,

denote the columns of A (without permutation), then:
0=Ah-= h1A1 + h2A2 + -+ hnAny (210)

Where h = (hy, ha, -+, hy)t, since h € 3o, we have at most 2k non-zero entries,
Consider the non-zero entries labeled by, say {ni,ns,---,ns} where 1 < n; <

ng < -+ <ng<n and 1 <s<2k thus (2.10) becomes
hnlAm + thA’fLQ + "'hnsAnS =0. (211)

Knowing that s < 2k and since the spark(A) > 2k, we conclude that the
columns A,,, A,,, -, A, are linearly independent, so h,, = hy, =+ = h,, = 0.

Therefore we end up with A =0 which contradicts with h being non-zero.
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2.3.2 Coherence of a matrix

Coherence of a matrix is another property of matrices that we need for the exact

recovery of k-sparse signals:
Definition 2.2. The coherence of a matriz A, p(A):

M(A) — max |<ai7aj>Rm|

a 1#]
1<i<j<n HGZH2 Haj “2’

Is the largest absolute value of the inner product of any two normalized columns
of A, here we are denoting by a; € R™ the ith column of A.
Note that (X, Y )gm = X.Y denotes the inner product, or dot product of two vectors
in R™, where X = (x1, 29, 2n) and Y = (y1, Y2, -, Ym ), defined as

<X, Y)Rm =XY-= Z TilYi-
i=1

And | X, = \/(X,X) denotes the ¢2 — norm in R". Also, notice that pu(A) <1
by Cauchy-Schwarz inequality: |A.B| < |A|,||B|, and the equality holds when the
vectors A and B are parallel or in other words A = AB for A e R
Remark: If all pairs of columns are orthogonal then p(A) = 0, and if we have a pair

of identical or proportional columns (parallel vectors) then p(A) = 1.

2.3.3 Spark versus coherence

Coherence and spark of a matrix are somehow related. In order to prove this we

need Gershgorin’s Disk Theorem which is stated and proved below.
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Theorem 2.3. The eigenvalues of an n x n matriz A, lie in the union of n discs

d; =d;(¢;,ri), 1<i<n, centered at ¢; = a;; and with radius r; = Y. |a;j|.
%]

Proof. let \ be an eigenvalue of A and x be a corresponding eigenvector. And let x;
be the the largest entry of x in absolute value. Since z is an eigenvector, Ax = A\x.

In other words ). a;;x; = Ax; for i =1,2,--- n, pulling out a;:
J

Z aija:j = /\ZL‘Z — Q5
Jri#g

Now we divide both sides by z;, and also we take absolute value from both sides of
the equation, by triangle inequality:

2 @i

- . a/..x.
A —ag] = Wx— <Z| & j|<2|aij|=m

i Li i%j
7 ] | |

Since we chose z; to be the largest entry of the vector z, in absolute value, for

1% ], < 1, so the last inequality is valid. O

Recall that A c {1,2,...,n} with |A| < n, is a subset of indices and let A°¢ c
{1,2,...,n}\A. For a matrix A, Ay means the m x p matrix derived by deleting
columns of A indexed in A¢.

Remark: Scaling by a non-zero parameter or in particular normalizing columns of
a matrix, does not change the columns linearity so the spark and also the rank of a
matrix do not depend on scaling. If we start with v3, s, -+, v, are linearly indepen-

dent if for any « = (aq, ag, -+, a;,) such that:

041171 + 062'172"' + Oénﬁn =0
Then
o =ag =0y, =0

In case of normalizing we have that if ﬁl ol o m2— ”v2”2 c+ B m2— ”v ”2 then Tl ” U] +

=0 for all

Uy e+ + IIan vy, = 0, since vy, vg, -+, v, are hnearly independent, a; =
ni2

Hvzllz Tos1 .7”
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j- Recall that linearly independent vectors can not be equal to zero vector so |v; ||, > 0.

If we apply the Theorem 2.3 to the Gram matrix G = A} A,, we will have the

following lemma which connects the concepts of spark and the coherence of a matrix:

Lemma 2.2. For any matriz A with non-zero columns,

1
spark(A) > 1+ A
Proof. Without loss of generality we assume that the columns of A are normalized,
or in other words, A has unit-norm columns. Note that, scaling won’t change the
spark(A). See remark 2.3.3.
Consider A = {1,2,---,n} as a set of indices with |A| = p. Also consider the restricted
p x p Gram Matrix G := A{ Ay. Where G is symmetric (G* = (A4 Apy)t = AL Ay = G)
with entries: gi; = (an;,@n;) 50 gi = 1 for 1 <@ < p. Also |gs| < u(A) for 1 < 4,5 <
D, i#E] .
If we choose p < 1+1/u(A) then equivalently (p—1)u(A) < 1. But since |g;;] < u(A),

we get

Slgil < (p-Dpu(A) <1 .

Z#]

Now by Gershgoring theorem since ¥;.;|gi;| < 1 = [g;;| which means the matrix G is
diagonally dominant, G also is a positive definite matrix so all of its columns are
linearly independent, and so are the columns of Ay, as we show:

Al Ap = G is positive definite <= (Gz,z) > 0,2 #0,thus Gr=0 < 2z =0. For
reRp

So null space of G only contains the zero vector. And we conclude that the columns
of G must be linearly independent

Suppose ciaq + caag + -+ + ¢pa, = 0, where ay,as, -+, a, are the columns of A,. Then
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Vi=1,..,p: ci{a,a;)++cplap,a;) =0 so
(a1, a1) (ap, ar)
ay, az Qp, A2
C1 ( ) + - ‘I’Cp ( P > = 0
(a1, ap) {ap, ap)
But the columns of G are linearly independent, so ¢; = ¢ = - = ¢, = 0. Now we

conclude that columns of A, are linearly independent as well. So we have shown
that given A with |[A] = p and p < 1+ 1/u(A) then the columns of A, are linearly
independent. So in conclusion spark(A) > p. Let po = max{p e N:p<1+1/u(A)}
we are going to have 2 cases depending on whether 1+ 1/u(A) is a natural number
or not. Recall |z ], the integer part of x, is the smallest integer less than or equal to

x.

So

. [1+1/pu(A)] if [1+1/u(A)]<1+1/u(A) (2.12)

Un(A)  if 1+ 1/p(A) = 1+ 1/u(A)]

Note that by definition pg < 1+ 1/u(A), we have shown that spark(A) > po.

Case I. (1+1/u(A) ¢ N):
po=|1+1/p(A)] <1+1/u(A) <[1+1/u(A)|+1=po+1<spark(A)

So 1+ 1/u(A) < spark(A)

Case IT. (1+1/u(A) e N):

po = 1/u(A) so u(A) = 1/k where k € N, knowing that py < spark(A). Then,
po+1=1/u(A) +1<spark(A)

So in both cases we get 1+ 1/u(A) < spark(A). O

As a corollary of Lemma 2.2 and Theorem 2.2 we conclude that:
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Corollary 2.1. If 1+ 1/u(A) > 2k then for each y € R™ there is at most one signal
x € 0}, such that Ax =y.
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Chapter 3

Null space and restricted isometry

properties

While we are dealing with ideally or exactly sparse vectors, the spark gives us
a full characterization of when sparse recovery is possible. However, when dealing

with approximately sparse vectors, we must consider a more restrictive condition on

the null-space N'(A) [25].

As mentioned before, most signals of interest are only “approximately sparse”
rather than “ideally sparse”. When a signal contains only a small fraction of large
entries, and the other entries are not strictly equal to zero, but are only close to zero,

the signal is considered to be an approximately sparse signal.

Note that the approximately sparse signals are generalizations of the exactly
sparse signals when some of the zero entries of the exactly sparse signals are set to
some small magnitude numbers.

The material in this chapter and the previous is mostly based on the survey by

Davenport et. al. [24].
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3.1 Null space property (NSP)

Suppose A c {1,2,...,n} is a subset of indices and let A¢ c {1,2,... ,n}\A, xs

means the length n vector derived by setting entries of x indexed by A¢ to zero.

Definition 3.1. Matriz A satisfies the null space property (NSP) of order k, if there
exists a non-negative constant C such that for all h e N (A),

[7ne]y

lhal, < C for all Ac{1,2,-- n} with |A| < k. (3.1)

Where the ¢! norm and the 2 norm are defined by:
[y = (2 1haf)Y2 and [hlly = Y1kl for b= (hy o, ha).
i=1 i1

If a vector h is k-sparse, then there exists a A with |A| < &k such that hjye = 0 and
|hae]; =0, and therefore (3.1) implies that hy =0 also. Hence if A satisfies the N.SP
of order k, then the only k-sparse vector in N'(A) is h = 0.

Definition 3.2. (Informal definition): A recovery method is an algorithm by which
a sampled low-dimensional signal can be retrieved to a human readable format after
being transfered to a low-dimensional form by the encoder.

Note that not all recovery method are necessarily linear.

Let A :R™ — R” represent our recovery method, then the following property

k() for all zeR",

VE (3.2)

where oy (2), = inf |z-2| forp=1.
ZeXy, p

|a(Az) —zf, <C

guarantees exact recovery of all possible signals in Y. Because if x € ¥, then

or(x); = 0, which implies that |A(Az)-z|, = 0, and so A(Az) = x. Indeed, if
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x € X, we can choose & = z, from definition of infimum we conclude:
0<op(z); = jIlEf |z =z, < |z -x|, soor(z) =0, when x € .
TeE2up

Note: The infimum will be reached by a vector zy € ¥ so we could write min instead

of inf. See the Appendix for justification.

The following theorem suggests that if there is any recovery algorithm satisfying

(3.2), the matrix A satisfies NSP of order 2k:

Theorem 3.1. Let Ay @ R™ - R? (where m < n), be a sensing matriz, and
A R™ —» R™ be an arbitrary recovery algorithm. If the pair (A, A) satisfies (3.2),
then A satisfies the NSP of order 2k.

Proof. Let h e N(A) and suppose A be the indices corresponding to the 2k largest
entries of h. So that h = hpy + hpe .

Split A into Ay and Ay where |Ag| = |A;] = &, since |A| = 2k, so that h = hy, + ha, .
Set @ = hp, + hpae and let h = x — 2, so we are going to have, 2’ = —hy, .

This setting works because:

We know, h = hy+hpe, if we split A by the construction mentioned above, we will have:
h = hp,+ha,+hae, since h = x—2" and also x = hy, +hae then x = Ay +hpac—hpa,—ha, —hae
so we get o’ = —hy,.

Since by construction z’ € 3, we can apply (3.2) to get x' = A(Azx’). Plus, since
heN(A): Ah=A(x-2") =0, s0o Az = Az’ and we conclude that 2’ = A(Ax)

Moreover |hyply < ||Blly = |z —2'||y = |z - A(Az)],, and finally by (3.2)

Cop(z)1 o CV2|hyel;
Vk = N

The last inequality is correct because since oy (x); = jrlzf |z - 2|, and also by con-
el

HfB - A(Ax)HQ <

struction we know that x = hy, + hae and hy, € 3i so o(2)1 < ||z = hy, |, = [R5,
thus we get Ay, < %

Which implies that A satisfies the NSP of order 2k by (3.2). O
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Definition 3.3. Suppose A : R® - R™ denotes a sensing matriz and let A : R™ — R”
be a recovery algorithm. Then (A, A) is said to be (C,k)-stable if for any x € Xy and

e € R™ we have:

IA(Az +€) ~ ], < el (3.9
This definition implies that if we add a small amount of noise to the measure-
ments, then its impact on the recovered signal should not be very large.

Theorem 3.2. If the pair (A, A) is (C,k)-stable, then

1
c |zlly < [Az|,  for all x e Xy. (3.4)

Proof. Let y,z € ¥, and note that y— z and z —y € Xo,. We define

_ACY) g e A2 (3.5)

% 2 2

Then Ay +e, = Az +e, = w. Let y = A(Ay +e,) = A(Az +e,). Using the
(C,k)-stability and triangle inequality we have:
ly=zly=ly-9+9-=l,
<ly=dly+ 19 -2,
<Clleyly + Cllecl,
- Ol Ay - Azl

Since this hold for any ¥, z € 3, the result follows for any x € 39, by Lemma 2.1. [
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3.2 Restricted isometry property (RIP)

Matrix A satisfies the restricted isometry property (RIP) of order k if:
There exist a 0y, € (0,1) such that:

(1-60) 2l < [Az] < (1+6¢) ]l (3.6)

for every x € 3. If A satisfies the RIP of order 2k then it means that A approximately
preserves the distance between any pair of k-sparse vectors.

Note that while we are using the given definition for RIP, we are considering bounds
which are symmetric about 1, only for notational convenience.

In practice we can always use:

alaly < |Azl; < Blal;. (3.7)

1 _
where 0 < @ < f < 00. To evaluate o and [ assume, A = E(GA) where 6A = A and 0
is a finite scalar.

Then:

a.0? |z|% < | Az, < 8.6 |3

So:
>?=1-6
{O‘ F o (arp)P=2 = =]
BO* =1+ 0y, a+p3
Having 0, we can use it to get dy:
2
af?=1-6ph=>a.——=1-6;
a+f
2a
-1=-6
:>04+5 b
20 a+fB a-p b -«
— = :—6 6:
:>oc+ﬁ a+f a+p L a+pf
:>O<5k<1
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Since 0 < a < 3 then g%g is positive and less than 1, so it can be our desired d,. Hence
using any 0 < a < § < oo, we can always scale A such that it satisfies the symmetric
bounds about 1 in equation (3.6)

Note that if A satisfies the RIP of order k& with the constant d, 0 < §; < 1, then A
satisfies the RIP of order K’ where k' < k. Then the constant ¢, will be less than ¢,
(O < Ok)-

Lemma 3.1. Let k <n/2 be given. Then there exists a set X c ¥ such that for any

x € X we have |z], < Vk and for any v,z € X with x # 2

o= 2l > V/RP2
and
lo |X|>Elo (E)
g 23 g 2

The proof of this lemma could be found in Appendix B.

For an m x n sensing matrix A, to have the RIP of order 2k < n with 0 < 1/2 there
are some size constraints that must be met. To get these constraints we prove the

following theorem and to do so we need to apply Lemma 3.1

Theorem 3.3. Let A be an m x n matriz that satisfies the RIP of order 2k where
2k < n, with constant § € (0,1/2] then

m > Cklog(n/k) .

Where C = 1/(2log(v/96 + 1)) .

Proof. Since A satisfies the RIP of order 2k, for any = and z with, x # z € X c 3,

-we know X c X, implies X c Yy, since Xy, c Yo~ for the set of points X in Lemma
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3.1, then for 6 < 1/2 we have:

(1-6) |l = 2|5 < | Az = Az[5 < (1+6) |z - =] -

Then by Lemma 3.1:
| Az - Azly > VI=3 | - 2], > V/*/4,

for all x,z € X, since x — z € Xgy.

We also have:

|Az], < VI+6[z], <v/3k/2,

for all x € X, since in that case we have, |z, < Vk.

From the lower bound we can get that for any points x,z € X, if we center closed
balls of radius \/k_/él/4 = \/m at Ax and Az, then these balls will be disjoint. That
is because the distance between centers is d = \/m then dividing by 4 makes us sure
that the close balls centered at Ax and Az are disjoint. In the case of having open
balls it suffices to divide d by 2.

Also the upper bounds tells us that the entire set of balls is itself contained within a
larger ball of radius \/3k/2 +\/k/64 if we let B™(r) = {x e R™ : |x|, <7}, then this
implies that:

vol(B™(\/3k[2+\/k[64) > |X|.vol(B™(\/k[64)

(V3k/2 +\/k[64)™ > | X|.(\/k/96)™

(VG+1)" > ||
—
log(\/%+ 1)
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Where the |X| is the number of balls with radius \/k/64.

n e log | X|
By Lemma 3.1 we know log |X|> —log —. So merging it with m > ——=———
y g|X|> 5 log ging o (/05+ 1)
get:
m > Cklog (n/k) .
Where C =1/(2log (/96 +1)). O

3.3 RIP versus NSP

In this section we will show that if a matrix satisfies the RIP it also satisfies the

NSP. So we can conclude that the RIP is a stronger condition than NSP.

Theorem 3.4. Suppose that the matrix A satisfies the RIP of order 2k with 6o <
V2-1<1L. Then A satisfies the NSP of order 2k with constant:

2
O /26y,
1-(1+v2)by

The proof of this theorem involves proving the following lemmas:

Lemma 3.2. Suppose u € Yy,. Then:

Jull;
< ully < VE|ul,
NG Jully Jul

1 x>1
Proof. For any u we have |u|, = [(u,sgn(u))|. Note that sgn(z) =1 0 2=0
-1 <0

And by this definition: = sgn(zx) = |z|.
Applying Cauchy-Schwarz inequality we obtain:

[, sgn(u))l < Jully [sgn(u)l,
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Then

Jully < ully sgn(u)l,
Note that sgn(u) has no more than k non-zero entries equal to +1 (since u € ¥j) and
thus [sgn(u)], < Vk

= We get the lower bound
Jul,
Vk

For the upper bound just notice that since u € ¥, and by definition we know |u|, =

<Hully -

Cr (uH)M?), and |ul,, = _max |u;|, thus we can observe that each of k nonzero
1=1,2,--n

IR

entries of u can be upper bounded by |u],.

= We get the upper bound:

Jully < VE Jul -

And over all we have proven:

K
< uly < VE Ju -~ -
75 <lula < VEal

]

Next Lemma is the second key to prove Theorem 3.4. This result holds for any
arbitrary h, not only vectors in the null space of the matrix A. It is obvious that the

argument is a lot simpler for h e N'(A)

Lemma 3.3. Suppose that A satisfies RIP of order 2k and let h € R®, h # 0. Let
Ao be any subset of {1,2,---,n} such that |A¢| < k. Define Ay as the index set corre-
sponding to the k entries of hae with the largest magnitude,and set A = AgUA1. Then:

[oa, |
VEk

(Ahy, Ah)|

[7aly <o
. ION P

+5
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Chapter 3. Null space and restricted isometry properties

where
/265 1
a=—F"— [= .

In order to prove this lemma, we establish the following preliminary lemmas.

Lemma 3.4. Suppose u,v are orthogonal vectors. Then

ully + ol < V2 ]u+ v,

Proof. We begin by defining the 2 x 1 vector w = [|ul,, |v],]t € R?. By applying

Lemma 3.2 with k£ = 2, we are having

[wly < V2w,

Using the identity (a + b)? < 2(a? + b?) we have:
2 2
lully + vl < V24/ Tl + o] (3.8)

Since u and v are orthogonal, |[ul3 + [v]3 = |u +v|53.

Using this in (3.8) we get the desired result:
[ully + o], < V2]u +vl,
[l

Lemma 3.5. If A satisfies the RIP of order 2k then for any pair of vectors u,v € X
with disjoint support,
[(Au, Av)| < O [ull 5 [v]], -

Proof. Suppose w,v € ¥, with disjoint support and that |u|, = |v], = 1, moreover
ulv. Note that u+v € Yo and |u+v|; = 2 (due to having disjoint support), then

using the RIP

[u o]y (1-02) < | Auz Avlly < fu o] (1+8) -
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Notice that the support of a vector is defined as supp(x) = {i: z; # 0}. Considering
what we assumed:

2(1 = b1, < | Au £ Av|s < 2(1 + 6y -

Knowing that
| Au+ Av|} = (Au + Av, Au + Av) = (Au, Au) + (Au, Av) + (Av, Au) + (Av, Av).
And also
| Au— Av|; = (Au - Av, Au - Av) = (Au, Au) - (Au, Av) - (Av, Au) + (Av, Av).
So we have
(Au, Av)| = L[| Au + Av| — | Au— Av|2| < 6o, .
So far we have shown that if |uo|, = |[vo[, = 1, and they are in ¥; and have disjoint

support thus we have:

|<A’LLO, AUO>| S 52k .

Suppose u, v € X, are non-zero and have disjoint support and let ug = ﬁ, Vo = HU—H,
u v
0 |ugl| = ||ve| = 1 with disjoint support. Then:

|(Au, Av)|

Aug, Avg)| =
fAuo, Avo)l = ol

Using the properties of inner product we have:
(Au, Av)| < O [ufl 3 [v]], -
O

Lemma 3.6. let Ay be an arbitrary subset of {1,2,--,n} such that |Ao| < k. For any
vector u € R", define Ay as the index corresponding to the k largest entries of uag (in
absolute value), Ay as the index set corresponding to the next k largest entries, and

so on. Then:
Jung]),

. <
> fu <

39



Chapter 3. Null space and restricted isometry properties

Proof. First Observe that for j > 2,

Hu/\j—l H 1
T

s, .. <
And that’s because the A; sort u to have decreasing magnitude. We have:

HuAB H 1

1
;HuAngg\/E]; HUAjHoog_k,];HuAjHl: \/E

Where the first inequality is obtained by applying Lemma 3.2, and the second in-

equality comes from the observation 3.9, and Aj =AUy u--UA, O

Now we have all the keys we need, to prove Lemma 3.7:

Lemma 3.7. Suppose that A satisfies RIP of order 2k and let h €e R?, h # 0. Let
Ao be any subset of {1,2,---,n} such that |A¢| < k. Define Ay as the index set corre-
sponding to the k entries of hae with the largest magnitude,and set A = AgUA1. Then:

h/ c
[Pall,y < o
? VE |2l
where
/264, 1
o= , B= .
1 - Oy, 1 - Oy,

Proof. Since hy € ¥, and the fact that A satisfies the RIP of order 2k we have:
(1= 0k |hall; < [ Ahall;

From the lower bound on the RIP.
Define A; as in Lemma 3.6. Then since by definition hp = h— Yijzoha; = ha,+hy, and

by linearity of A, Ahpy = Ah=3% ;55 Ahy,, we can write the lower bound on the RIP as:

(1= 02 [ha]l < (Aha, Ahp) = (Aha, AR =" Ahy,) .

j>2
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So
(1= 0a) [ha]l5 < (Aha, AR) = (Ahp, > Ahy,) .

Jj=2

Now to bound (AhA,Z]}Q AhAJ) using Lemma 3.5, since we have that for ¢ #

Jsha;y ha; € X and have disjoint supports, hence they are orthogonal:
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(Al Ah ) < e L [, (3.10)

for any i # j . Plus Lemma 3.4 yields: |ha,], + |2, |, < V2 |hall,- Now substituting
it in (3.10) we have:

‘(AhA, > Ahy,)

322

; (Ahn,, Aha,) + Z; (Ahn,, Ahy,)
éu/th, A )| +§; (Ahs,, Al )|

Sar: [|Poag “2; |7, ||, + G [ o, ||2§2 |7, |,
- 62kj§2\\hAj!!2<||hAo||2+|hA1||2>

V200 | ha > HhAJ‘ Hz :
i>2

IN

IN

IN

Using Lemma 3.6 this reduces to:
sl

< \/552/%; || ha || 2 \/E

‘(Ah/\, S Ahy,)

322

Combining it with:

(1= 0or) | hals < (Aha, AR) = (ARy, Y. ARy, ) = (Ahy, Ahy)

722

We have:

(1-6) [hall < ‘(AhA,Ah) —(Ana, Y Aha,)

722

< [(Ahy, AR)|+

(Aha, > Ahy,)

322

he
< [(Aha, AB)| + V203, ||mb%.

Rearranging and dividing by (1 —daz) [ha |, we get the desired result as follow:

[Pl WAna,am)
VE(L=6)  Ihally (1—62¢)

[Paly < V205
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Set:
V200, 1
VI g, -5 .
Therefore:
[Pagl, L 1(ARA, AR)]
|hally S a—F2+ 8 ’ :
? VE I2aly

Notice that if dy, < v/2 - 1 then o < 1. Because the function f(z) = %‘f is strictly
increasing, since f'(x) = % >0and f(vV2-1)=1. n

Now we have all we need to prove Theorem 3.4, which we state again:

Theorem 3.5. Suppose that the matrix A satisfies the RIP of order 2k with dop <
V2-1. Then A satisfies the NSP of order 2k with constant:

CZ \/§52k
1-(1+v2)by

Proof. By definition we know that matrix A satisfies the null space property, NSP
of order 2k, if there exists a non-negative constant C such that for all h e N'(A),

[7oae] [Fae
hal, < C' L<Co 1 where A <2k .
hal V2k VEk A
So it suffices to show |hal, < C ”h\A/%Hl holds for the case where A is the index

set corresponding to the 2k largest entries of A . Therefore we can take Ay to be

the index set corresponding to the k largest entries of h and apply Lemma 3.7. The

Ahp AR)|

term 5“ Tl will be equal to zero since Ah =0. So we only have:

|2,
N

[7all, <

Now by Lemma 3.2
|

1<\/EHhA8

9 -
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Noticing that A = Ag u A; and also knowing that Ay and A; are disjoint with |Ag| =

|A1| = k, using Lemma 3.2 we have:

oy

L= Mgy + Waely < VE g Dy + e

1 -

So it results in:

”hl\cnl)
)

[Pally < al B, ], +

Since |hy, |, < |hally we have :

[oae]],

Vi

Rpc
(1) [hal, < ol

Vi

By assumption do; < v/2 — 1 so we know that a < 1 . Therefore we can divide by

[haly = afal, <

(1 -«) > 0 preserving the direction of the inequality to get the desired result.

[al, < %”h}j‘l -
So the theorem is proved by setting:
o \/55%
T—a 1-(1+v2)m

]

By above theorem we showed that the RIP is a stronger property than NSP.
In next chapter we will introduce a type of matrices that cover all the properties we

need for our sensing matrix.

3.4 Conclusion

In this chapter we defined and proved some theorems and lemmas about the

desired properties of a measuring/sensing matrix. We also showed that if a matrix
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satisfies the RIP it also satisfies the NSP property. So we can conclude that the
RIP is a stronger condition than NSP. Knowing this fact, we move on to the

problem of sensing matrix construction in the following chapter.
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Chapter 4

Sensing Matrix Construction and

Signal Recovery

4.1 Introduction

In the previous chapters we have outlined the properties of a sensing matrix which
is one of the major problems in the world of compressive sensing. More specifically
we showed that in order to be able to successfully reconstruct a signal, the sensing
matrix must satisfy 1) Null space, 2) Spark or 3) RIP properties. In this chapter we
first propose some practical methods which enables creation of the sensing matrix
using some very low cost algorithms. Then we will briefly overview the recovery

algorithm which uses convex optimization to reconstruct a signal.
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Chapter 4. Sensing Matrix Construction and Signal Recovery
4.2 Sensing Matrix Construction

Now that we found the relevant properties of a sensing matrix A, we need to
construct a matrix which satisfies these properties. It is pretty clear that an m xn
Vandermonde matrix V' from m distinct scalars has full rank and so the spark(V) is
going to be m + 1. However when the number of columns n is large, these matrices

are poorly conditioned facing the recovery algorithm [20].

It has been shown that a random matrix of size m x n whose entries are indepen-
dent and identically distributed with continuous distributions satisfies the properties
of a sensing matrix [27, 28, 29, 30]. In the rest of this chapter as a proof to the
concept, we take the random function from Matlab to generate a random Sparse
signal and also a random sensing matrix and using a Library of Matlab functions

that are reported in [31] we reconstruct the signal.

4.3 Deterministic UUP matrices

In this section we are going to look at the class of RIP matrices from another
point of view. In compressive sensing the problem of suggesting a deterministic
method to construct a sensing matrix, is an example of a derandomization problem,
Notice that the process of removing randomness is called derandomization.

As explained in above section a random matrix whose entries are identically ran-
domized based on Gaussian or Bernoulli distribution, satisfies the desired properties
of the measuring/sensing matrix. However these constructions all are probabilistic
in nature. Meaning that these constructions are not 100% guaranteed to practically
generate UU P matrices. But what is a UU P matrix?

UUP stands for uniform uncertainty principle, which are generalization of (rectan-

gular) orthogonal matrices where for all k-sparse sets B, the columns of the matrix
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Chapter 4. Sensing Matrix Construction and Signal Recovery

corresponding to B, are almost orthogonal, rather than being perfectly and globally
orthogonal.

Such matrices will still have the important properties of orthogonal matrices like
computable invertibility as long as we restrict our attention to sparse vectors. UU P
matrices are able to diminish high-dimensional sparse vectors into low-dimensional
vectors and they are also able to reconstruct those high-dimensioned vectors. How-
ever, there is no fast algorithm known to test if a given matrix is UUP or not.
As mentioned above, the construction of the class of UU P matrices involves some
failures while the failure rate can be proven exponentially small. Still, since many
applications of compressed sensing are for noisy environments, even very small inac-
curacy will be dissatisfying. So it’s inevitable to look for a deterministic way which

can give us a reasonably fast algorithm to construct this class of matrices.

But what is rectangular orthogonal matrix? Let aq,as,as, -, a, be the m —
dimensional columns of A which is an m xn matrix. Such a matrix is called orthog-
onal if these column vectors are orthonormal meaning that they have unit length
|a;ll, =1 and {a;, a;) = 0 whenever ¢ # j (this requires m > n). One of the properties
of orthonormal matrices is Pythagoras’ theorem. If we look at the linear transfor-
mation of an n — dimensional vector (by,by, -+, b,), by an orthonormal matrix A,

according to Pythagoras’ we will have:

2 n

= Il (4.1)

J=1

n
> bja;
j=1

The above mentioned is valid for all complex -and so for all real numbers-
b1, by, by Thus (b1, bz,++,b,) = Y71 bja; is an isometry so it can be inverted.
Meaning that if we have ¢ = ¥, bja; the original coefficients by, by, b, can be
uniquely recovered. And plus, a small changes in ¢ will not cause huge oscillations in

by, ba, -+, b,. We obviously see that the original coefficients can be recovered explicitly
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Chapter 4. Sensing Matrix Construction and Signal Recovery

by:

bj = <C, CLj) .

In compressed sensing we wish to make n as large as possible -because we are
dealing with high—dimensional sparse vectors- and m as small as possible -to transfer
those large vectors into smaller ones- . We have, however, a basic problem here. which
is that a rectangular orthogonal matrix exists if the number of columns is less than
the number of the rows, while we wish to have m <« n. Therefore, in order to have
such a matrix, it’s necessary that n < m otherwise we will have too many columns to
still have the linear independence and therefore one must have a non-trivial solution
for the linear combination:

biag + -+ + bnan =0.

So we get for some (by,---,b,) # (0,---,0) which does not match with 4.1. One can
make this condition weaker or in other words Pythagoras’ theorem needs to hold

approximately instead of exactly and we call it almost orthogonality condition:

2 n
<Y eyl
j=1

0.9 Ja;[* <
j=1

n
Y. bja;
7=1

Considering this, the class of matrices we need to look into will become larger know-
ing that the constants 0.9 and 1.1 are not accurately important, but it still does not
remove the condition n < m. It turns out that when we fix k < m as sparsity param-
eter we can say the matrix A or in other words, the set of columns: (ay,as,-, a,)
is a UU P matrix with sparsity k if we have the almost orthogonality condition for
any sets of coefficients (by,ba, -+, b, ) assuming at most k of them are non-zero. Note
that the constants 0.9 and 1.1 will become worse in case that k increases. So as
long as we consider not more than k vectors at a time, the set of vectors ay,as, -+, ay,
will be almost the same as a set of perfectly orthogonal vectors. Almost orthogo-
nality condition turns out to be the same as RIP property which we showed if a

matrix satisfies RIP then it will satisfy the null space property. We showed it in
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Theorem 3.4. The deterministic construction of UU P matrices is still an open ques-
tion But taking advantage of the randomness one can simply select the ay,as, -, a,
randomly for instance using random normalized Gaussian vectors. Noticing that
for very large-dimensional spaces any pairs of random vectors are almost orthogonal

with high probability. [32]

4.4 Signal Recovery via /; Minimization

There now exist a wide variety of approaches to recover a signal x from a restricted
number of measurements, we begin with considering a natural first approach to the
problem of recovering a sparse signal. Assume that we have a sparse, or at least
compressible signal x and y is the signal sampled by the sensing matrix A or in
other words Az = y. It is natural to attempt to recover x by solving the following

optimization problem:

& =arg min|z|, subjectto ze B(y). (4.2)

Where B(y) ensures that & is consistent with the measurement y. For instance
in the case of having noise-free measurements we can set B(y) = {z: Az =y}. When
the measurements have been contaminated with a small amount of bounded noise
we should instead consider B(y) = {z: ||Az —y|, <¢€}.

Notice that in (4.2) it is assumed that the original signal x is sparse. One way to
translate this problem to something more tractable is to replace |.[, by its convex

approximation ||.||;,Thus the problem will be
& =arg min |z||, subjectto ze B(y). (4.3)

Provided that B(y) is convex (4.3) is feasible. While it is clear that replacing (4.2)

with (4.3) transforms an intractable problem into a tractable one, it may not be
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obvious that the solution of (4.3) will be similar to the solution of (4.2) . However
there are intuitive reasons to expect that the use of /; minimization will promote
sparsity for sure.

Figure 4.1 shows that the solution to ¢; minimization problem is exactly the same

as the solution to the ¢, minimization for any p < 1;
T =arg min||z|, subjectto ze B(y).

Note for p < 1 the ¢, norm, is not a norm, because it does not satisfy the triangle
inequality and also the unit ball is not convex.
The following lemma establishes an error bound for ¢; minimization algorithm

described by (4.3) when combined with the sensing matrix satisfying RIP.

Lemma 4.1. Suppose that the matriz A satisfies the RIP of order 2k with 0y, < \/2-1
let x, 2 € R™ be given, and define h = —x. Let Ag denote the index set corresponding
to the k entries of x with largest magnitude and Ay the index set corresponding to

the k entries of A§ with largest magnitude. Set A= AgU Ay. If |Z||, < |z, then

Il < 07 0, e AR)
? Vk 1hal
Where
00:21—(1—ﬂ)52k o - 2

1-(1+v2)00r  1-(1+v2)da

x>

K ~k h N

=7S5”

Figure 4.1: Demonstration of the general solution to ¢; minimization problem [21]
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Recall oy (x); = inf |z -2,
aﬁeEk

Proof. Let’s start with noticing that h = hy + hae so using the triangle inequality we

have

[2lly < [hally + [hae

.. (4.4)

First using Lemma 3.6 to bound |hnc|

< ha | < 071 4.5
gl )

[hacll, =

2,

Jjz

Where A; are defined as in Lemma 3.6, so A; are the index corresponding to the

next k largest entries of hae. Ag as the index set corresponding to the next k largest

entries. and so on. We now wish to bound Hh/\ﬁ . Since ||z|, > ||Z|,, and T =z + h,

applying triangle inequality we obtain

lzly 2z +hly = aa, +haolly + |l zag + Pag],

2 ||$A0|‘1 - ”h/\o “1 + ”h/\(c) 1 ”'TA(C)

L
Rearranging and applying triangle inequality we have:

| 7ag

< Dl = Dol + gl + lag,

< ”CU—JJA0“1+||h1\0”1+HxA(C) 1°

Recalling that oy (z); = HxAg L= = 2aly,

| 7ag

L < Pagly + 200 (@)1 (4.6)

Combined with (4.5) we have:

|50y +20% (21

Vk

ak(x)l

Vi

[nel < <ol +2
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Where the last inequality comes from Lemma 3.2, and also observing that |y, |, <

|hal,, this merged with (4.4) yields:

O'k(lL‘)l‘

hll, <2k +2
Ih]ly <2(hally NG

(4.7)
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Now to establish a bound for ||h,|,, we use a combination of Lemma 3.7, (4.6)

and Lemma 3.2 to obtain:

|haglly (AR, AR)|
+f
Vk I12a ]l
< a||hAo||1+2‘7k($)1+ |<AhA7Ah>|
\/E ”hAHz
Uk(l")l |(AhA,Ah>|
+ .
Vk [Pl

[haly < @

<« Hh/\OHQ +2a

Since [[ha, [, < [hals

then
[(Ahy, Ah)|

[7all,

or(r)1

Vk

We assumed that dy;, < /2—1 it ensures that o < 1. Dividing by (1-«) and using

(1-a)[haf, <2 +f

(4.7) results in:

or(r); 2 or(x)1 [(Aha, AR)|\  20%(2):
[hl, < 2] hall, +2 < 20 +2 +
N R (A TV A A/
4oy or(x) 48 \[(Ahy, Ah)|
hly < (= +2) 1+(1_ ) :
o Vi a’ |hal,
Where
o /264, 1
S 1- 0y 16y
So after plugging o and 8 we get the:
_21—(1—\/5)5% B 4
0= 1

1= (1+v2)6  1—(1+v/2)6
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Chapter 5

¢1-Magic Construction Algorithm

In Chapter 2 we proved some important sensing matrix properties and in Chapter
4 we explained that to generate a sensing matrix it is enough to generate a normal

random matrix, which is computationally easy to generate.

In this chapter, as a proof of the concept, we use the ¢;-Magic algorithm that
uses standard interior-point methods [33] to solve the compressive sensing based on
convex optimization [31]. Using a set of Matlab library routines which are reported in
[31], it is demonstrated that as long as k < m, the standard interior-point methods
can successfully reconstruct sparse vectors that are sampled using a random sampling

matrix.

The Algorithm 1 explained below is based on the recovery procedure developed
by Candes and Romberg [31] and the encoding/decoding Matlab code is based on a
code is reported at codeproject.com [34]. In this project we have modified the code
to sample and reconstruct a sparse image, instead of a vector which is originally
reported in [31, 34]. The modified Matlab code that generates a random sparse

vector and a random sampling matrix is shown in Appendix C.
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Algorithm 1 Sampling an sparse image and reconstruct using ¢;-Magic Algorithm
Procedure /;-MagiclmageCodingAndReconstruction

1: w <« 50 > width of image

2. <50 > length of image

3 n<wxl > the length of the signal that is to sample
4: k< 100 > number of non-zero pixels

5: m < 500 > number of measurements

6:  signal < [random ]y > location non-zero pixels, k¥ random number
7:  x <« random sparse image with peaks non-zero random number.

8:

9: plot (x) > plotting original signal

10:

11: A« [normal random],x, > the sampling matrix

12:

13: plot (y) > plotting measured signal y

14:

15 y« Axzx > sample matrix z using sampling matrix A
16: z9« AT xy > initial guess for the recovered signal

17: x, < lleqpd(zo, A,y) > call ¢;-Magic reconstruction algorithm
18:

19:  plot (z,) > plotting reconstructed signal

20:

131 ZTerpor < T—p > the error signal

21:

22: plot (Terror) > plotting the error signal

23:

We have demonstrated the signals generated using the above algorithm in Fig. 5.1
(a). The graph on the top which is the original signal is a vector of 2500 elements,
represents the serialized form of a 50 x 50 image. The Image is sparse and only
100 of the pixels are not zero. While the Nyquist requires 50 x 50 measurements,
compressive sensing relaxes and let having a percentage of it which in our case is
only 500 measurements. The graph on Fig. 5.1 (b) shows the measured signal which

is the inner-product of the sampling matrix to the original signal.
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Original signal

'00
a) o
500 1000 1500 2000 2500
50 M measured values
0 l
b) .50 | | | I | | I | |
50 100 150 200 250 300 350 400 450 500
Recovered signal
'00
c) o

500 1000 1500 2000 2500
% 10™*Difference between original and recovered signal

|

2L i
d) -4t I I 1 I .
500 1000 1500 2000 2500

Figure 5.1: Demonstration of coding and decoding of an sparse random vector using
(1 Magic code.
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Figure 5.1 (¢) shows the result of the compressive sensing reconstruction of the
signal. The reconstruction error is shown in Fig. 5.1 (d). One can see that the coding
error is smaller than 2 x 10~* and considering that the magnitude of the signal, the
errors are six orders of magnitude smaller than the original signal, and we have used

only 500 measurements.

Figure 5.2 (a) and (b) shows the image form of the signals shown in Fig. 5.1
(a) and (c) respectively. The reformatting of the signals shown in Fig. 5.1 to an
image is based on reshaping a vector of 2500 elements to a 50 x 50 matrix. One
could visually confirm that the reconstructed image at Fig. 5.2 (b) is the same as

the original image, Fig. 5.2 (a), with no distortion.

Figure 5.2: The original random image used as the input of ¢1 Magic compressive
sensing Matlab code (a) and the image after reconstruction (b)
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Chapter 6

Conclusions

In this thesis we have studied compressive sensing, a new signal acquisition
method which potentially reduces the number of measurements needed for a sig-
nal which is sparse or compressible in some basis. The compressive sensing which
challenges the well-known Shannon-Nyquist theorem, instead of measuring the signal
at uniform equi-spaced sampling points and then sending the signal to compression,
measures the inner-product of a sensing matrix to a test-function to complete the
sampling process, in order to reduce the dimension of the given signal or image,
drastically. In this work we have detailed the most important properties of a sensing
matrix that supports reduction of the number of measurements required for a reliable
reconstruction. Then we have outlined that the sensing matrix properties, 1) Null
space, 2) Spark and 3) RIP, can be generated using a normal random function. And
finally we generated a random sparse image and employed the ¢! Magic algorithm
which is a set of Matlab library codes for compressive sensing reconstruction, to

recover the sparse image using convex optimization.
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Appendix A

Justification for (3.2)

Justification for (3.2)

Minimum is reached in the definition of oy (z),:
ou(x)y = inf la 31,

We are to justify that infimum is reached so it’s the desired Minimum. Thus we need

to show there is a 2 € X}, such that
|z = 2o, = ox (),

If so, we can replace inf by min.

By definition of infimum, there exists a sequence Z; € X, such that
lim ]z - 25, = ox(2)y

By pigeonhole principle there is a subsequence {2;,}°; such that all at most k
non-zero terms for each 7;, lie in the same position for all ¢ > 1. Notice that there
are finitely many possible positions for k nonzero entries (since the vectors are in R”

there are (z) such positions, which gives us a finite number) considered to be holes
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here, and infinitely many #;,s (pigeons) to fill out the holes. By this principle, some
hole must have infinitely many pigeons.

We assume without loss of generality that the initial sequence 7, has the following
property: There is a set S ¢ {1,2,---,n} with |S| = k, such that the (th position of z;

for all j, is zero if £ € S¢. In other words:
T, = (x{,xg,---,x%), a:z =0 if (eS° Vy.

By passing to a subsequence we can ensure convergence along each entry if we have

some compactness in R or R®. Knowing that compact sets in R are closed and

o0
i=1

bounded sets, all we need is to ensure that the sequence {xf for each fixed i is
a bounded sequence. Say Vj=1,2,3,..., |xf < M;, and for each i =,1,2,. Because
then the sequence {x}%, will be contained in the compact interval [-M;, M;], and
we know that equivalently every sequence in a compact space has a convergent sub-
sequence that converges to some point in the space.

The fact that the subsequence {xz };i1 for each fixed i is bounded hence it is contained
in a closed interval [a;,b;], comes from the knowledge that oy (z), = lim;.e |2 - 25,
is finite, which implies boundedness of |z - ;|..

lel, = 1ol < 2 = 251, = §/Cer = o)y + (o — ) < M

So each |z — z;| < M = |o]| - |z;| < M

:>‘$z|<M+|$i|::Mi Vi>1

So for each i there is a subsequence of {xi };i1 convergent on [—M;, M;] But we need

a subsequence so that for all i, {a*}2°, converges. We know that if i € S¢ then :L’Z’“ =0

for all k. So we need to take care of those terms with ¢ € S . Let us order the elements

of S'={l1,0ly, {1} where {1 < ly < -+ < £y. We first locate a subsequence of the first

non-zero terms, such that lim, . xi’l“ = m?l .We toss the term not n the convergent

sequence and relable the sequence {Z,}. Next locate a subsequence {Z;} such that

Jk 0

Jk\ oo 0 ; ; SIRE —
{z o }22 | converges to ,,. Notice that for this new subsequence still lim, o 2" = 27 .

Toss all non-selected terms and repeat k times. At the end of this finite process,
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Appendix A. Justification for (3.2)

whe will have a subsequence {%;, }32, of the original sequence {Z;} with the property
that lim, . 27* = 29, for each i = 1,2...,n. Let 2o = (29,29,---,29), and we know for
leSe, ) =0.

Without loss of generality we can assume by relabeling, that the original sequence
{#;} had the property that lim,_ xf = 2?; and necessarily #; - &, where the con-

vergence is in R” with any ¢? norm that is as j — oo:

|25 = Zol,, 0

SO

|2 = 2ol = lim |l = &5, = ox(2)p

For instance assume we have the given k-sparse vectors which have their non zero

entries at same positions:

# =( 20 00z 21 00 - 21 00000)
£y =( 22 00 22 22 00 - 2200000 )

@ =( 2, 00 2, 22 00 « 2 00000 )
| VN \
Zo =( 2y 00 2§ 22 00 - 22 0 0 0 0 0 )
Here in this example the set S ={1,4,5,...,¢}. Due to compactness as explained, we
get a convergent subsequence along each entry. So we will be end up with a vector

which is the desired zg.
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Proof of Lemma 3.1

Lemma 3.1: Let k <n/2 be given. Then there exists a set X c ¥ such that for

any = € X we have |z|, < V& and for any x, 2 € X with 2 # 2

o - 2l > VA2

and
log | X[ > Elog(™)
g 23 g 2

Proof. Consider the set U = {z € {0,+1,-1}": |z|, = k} So by construction || = k
for all x € U. Therefore if we construct X by using elements in U we are going to
have ||z|, = V/k. Also notice that |U| = (})2*. And that’s because the dimension of
the vectors is n and we have k£ nonzero entries, so we have (Z) number of ways that
we can choose k locations out of n where order does not matter. And since each non

zero entry is either +1 or -1 then the cardinality of U is [U] = (})2*. Note also that

for all z,z € U, |z -z, < |z - 2|3, because:
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Appendix B. Proof of Lemma 3.1

0 Zf T = Z;
1 iof wxi=1,2z=00rx;=0,2=-1
Ti— 2 = -1 of zy=-1,z=00rxz;=0,2,=1

2 Zf J]izl,Zi:—l

—2 if w;=-1,z=1.

Also
0 ’lf T, = Z2;
i = 2] = 1 of 2,=0,2#00r2; #0,2,=0
2 Zf €T;2; = -1.
Observing that |z; - 2, = Z Ii’ ?i and ||z; - z]2 = ¥ |z -z, it is clear that

Ti#2;

when |z; — z;| = 1 then % =1 = |z; — z[” but when |z; — z;| = 2 then }ﬁ' ?I =1<22=
|l’i - Zi|2-

So in conclusion ||z - z|, < ||z - z||2

Now if we take |z - 2|} < k/2 then |z - z|, < k/2 and by this we see that for each

k, even
fixed x € U, it matters if k is even or odd, so let: m= =

Bk odd

|
—
|7
[E—

Hz eU: Hx—z”i < k‘/QH < Hz eU:|z-z|,< k/Z}‘ < (:;)319/2 :

The first inequality justification:

Let {zeU:|z-z|}< k/2} be set A and {z €U : |z - z|, < k/2}, set B. If z € A then
|z - 2|3 < k/2, but |z - 2], < |x- 2|3 < k/2, then |z - z|, < k/2 and we conclude
that z € B, or more generally A ¢ B, and this implies |A| < |B|.

The second inequality justification:

If |z - z|, < £ then 2 and 2 must have at most |4] = m different entries. Thus the
cardinality of the set z € U such that z and z have at most | %] different entries will
be counted in (;)3k/2.

Knowing that the cardinality of U is (})2*, consider the set Ay = {z e U : |z - 2|3 <
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Appendix B. Proof of Lemma 3.1

k/2} with cardinality less than or equal to (*)3%2. It is clear that the set Ay={ze
U:|zo - 2|3 < k/2} is a subset of Ay, or more generally, Ay c Ay c U. To construct
X, considering the conditions of the lemma, suppose we pick x; ¢ Ay so |lzo — x1]|y 2

k/2. We observe the set Ay = {z € U |z1 - 2|3 < k/2} has |Al‘ < ()352. Now we
pick x5, such that, x5 ¢ /IO and o ¢ /11 or T € Ag N /If, and we repeat this process N
times to construct the set X by iteratively choosing points that satisfy the condition
of this lemma. The worst case scenario happens when after N steps Ag, Ay, Ao, Ay

are pairwise disjoint subsets of U. After adding N points to the set, there are at

(e-r(i)e

points left to pick from. Thus we can construct a set of size |X|= N provided that

N (”)3“2 < (Z)z’f (B.1)

least

m

Now observe that when k is even, m = g and:

(2) _ (k/2)!(n=k/2)! _ (n-k/2)(n-k/2-1)~(n-k+1) *n-k+i

(k72) kl(n—Fk)! k(k—1)-(k-k/2+1) g Wi (B.2)
Consider ¢(i) = n-k+i then ¢/ (i) = (k/2+i)-(n-k+i) 3k[2-n i sinee

kj2+i’ (k/2+14)2 (k2 +10)?

by hypothesis
k<n/2=3k[2<3n/4<n so we conclude that 3k/2-n <O0.

Since the denominator is always positive we will have ¢/(i) < 0, so the function ¢(7)

is decreasing, therefore it gets its minimum at ¢ = k£/2 so

]i—[/zn—k:+i>(ﬁ_1)k/2
it k2+d Tk 2 ‘

Now back to the problem of finding N when:

) o2e () e
AR AE R A L
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Appendix B. Proof of Lemma 3.1

By hypothesis k <n/2 or equivalently 2 >2, so 3% < -2, and dividing by 4 we have:

k/2
4d\ki2 (n 1 4\ k2
5" (5-3) 6

k)2
(o E) (%)k’/2

k 4k 3
k/2
()7 4y
() @
_ (T\k/2
_(kj) .

Now we need to justify the case when k is odd,
By definition m = %, then the inequality B.1 and the fact that k& =2m + 1 will give

us:

() _ (n—m)Im!
(") (n-k)k!
_(n-m)(n-m—-1)--(n-2m) (B.3)
(2m+1)(2m)---(m+1)
Dn—-2m+1

o m+1+1

, N n-2m+i N~ m+l+i-(n-2m+i) 3m-n+1
d = Th ! = =
Consider ¢(i) m+1+1 en /(i) (m+1+1)2 (m+1+1)%

we know k=2m+1 and k<n/2, by hypothesis, 2k —n <0 and 2k=4m+2
so 2k-n=4m-n+2=3m-n+1+[m+1]<0

therefore: 3m-n+1<-[m+1]<0

Since the denominator, (m+1+1)2, is always positive ¢’(i) < 0. Or ¢(i) is a decreasing
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Appendix B. Proof of Lemma 3.1

function, so it gets it’s minimum at ¢ = m and we conclude that:

ﬁn—2m+i
ico m+1+1
n-—-m
2(2m+1)erl
n m
:(z‘%m—u)m”
n
(k 2)m+1.

And since we are trying to find N which:

GEaR

i) o

For k = 2m+1, Knowing that by hypothesis k < n/2, or equivalently > 2, so 3% < -2,

and dividing by 4 we have: - <‘72=‘71 and
(Z) K12 el E\K/2
@( ) (__2m+1) (5)
0 Ly Ay _n 2 -
>( ) (3) and since w<T°73
m 4\k/2
z‘@ “1(3)

S (_)m+1 (_)m+1/2

- (7 <3"><4>m< 2
- (¢ >m(jf; }
nf

= ( )m( and since % > 2

Which is the exact same lower bound we found for the even case when k = 2m What
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Appendix B. Proof of Lemma 3.1

we have done so far has all been about finding N that fits in B.1 so if we consider:

n n (Z) 4\ k/2
—)™| when ) Rl N
G P () -

[(%)mJ Otherwise
Considering the first case we have N = [(%)™] > (%) .
And since N = |X]|, we have:
log | X| >mlog% :
n
4
The following charts show the surface, Q(—)k/g - [(%)m], is always greater than

() 3

Zero.

So in B.5, N = [(%)mj is never the case. Therefore we always have:

log | X| > mlog%
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Appendix B. Proof of Lemma 3.1

cond_rhs-cond_lhs
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Figure B.1: The surface obtained by plotting Q(—)k/2 - [(%)m] Notice that the

(m) 3

surface never touches the XY plane
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Appendix C

¢1-Magic Matlab code

Listing C.1: ¢;-Magic Matlab code adopted from [31] proving that that a sparse
matrix that is sampled using a random matrix can be successfully reconstructed.

clear

path(path, './Optimization');

% Initialize constants and variables

rng (0) ; % set RNG seed

dim_x = 50;

dim_y = 50;

n = dim_x * dim_y; » length of signal

K = 100; %» number of non-zero peaks

m = 500; % number of measurements to take (
n < L)

X = zeros(n , 1); % original signal (K-sparse)

% Generate signal with K randomly spread values

peaks = randperm(n) ;
peaks = peaks (1:K);
x (peaks) = rand(1l, K)=*256;

amp = 1.2*max(abs(x));
figure;

subplot (4,1,1);

plot (x);
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Appendix C. (1-Magic Matlab code

title('Original signal');
x1lim([1 n]l);

ylim ([0 amp]l);

grid on;

% Obtain m measurements

A = randn(m, n);

y = Axx;

subplot (4,1,2); plot(y); title('m measured values'); xlim
([1 m]); grid on;

% Perform Compressed Sensing recovery
x0 = A.'*xy;
xp lieq_pd(x0, A, y);

Xp = xp .* 128;

subplot (4,1,3);

plot (real (xp));
title('Recovered signal');
x1lim([1 n]);

ylim ([0 ampl);

grid on;

amp = 1.2xmax(abs(x_org - xp));

subplot (4,1,4); plot(x_org - xp);

title('Difference between original and recovered signal');
x1lim([1 n]);

ylim([-amp ampl);

grid on;

figure

imagesc(imresize (reshape(x_org,dim_x,dim_y) ,1)); colorbar
set (gca, 'FontSize' ,12)

set (gca, 'FontWeight', 'bold")

figure
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Appendix C. (1-Magic Matlab code

imagesc(imresize (reshape(xp,dim_x,dim_y) ,1)); colorbar
% pos = get(gca, 'Position');

% pos(3) = 0.6;

% pos (1) 0.5;

% set(gca, 'Position', pos)

set (gca, 'FontSize ' ,12)

set (gca, 'FontWeight', 'bold")

% xlabel ('Position of laser spot (um)', 'FontSize', 12);
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Matlab source code for Figure B.1

Listing D.1: The Matlab source code to prove that the surface obtained by

(%) 4\k2
: (g) —[(E)"ﬂ never touches the XY plane

()

clear; warning('off','all')

n=1:400;

m=1:n(end)/2;

X = m;

k = 2 *x m ;

for i=1:m(end)
if ( mod(m(i),2) == 1)

k(i) = 2 * m(i)+ 1;

end

end

f m_n = NaN(size(m,2),size(n,2));

for i=1:m(end)
for j=2*k(i)+1:n(end)

m_i = m(i);
k_i = k(i);
n_j = n(j);

cond_lhs = ceil ((n_j / k_i) .~ m_i);
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Appendix D. Matlab source code for Figure B.1

cond_rhs = nchoosek(n_j,k_i) / nchoosek(n_j,m_1i) =*
(4.0/3.0) .7 (k_1/2);
if (cond_rhs-cond_lhs <= 0)
fprintf ('%d %d %d %3.2f %3.2f 3.2f\n',m_1i,k_i,
n_j,cond_lhs,cond_rhs,cond_rhs-cond_lhs)
end
f m_n(m_i,n_j) = cond_rhs-cond_lhs;
end
end

[X,Y] = meshgrid(n,m);

subplot (221)

mesh(X,Y,f_m_n)

set (gca, 'ZScale', 'log')

view ([0 90]); xlabel('n'); ylabel('m"');

zlabel ('cond\_rhs-cond\_lhs')

set(gca, 'ZTick',[1e-10 1e0 1el0 1e20 1e30 1e40 1e50]);
zlim([1e-10 1e50])

subplot (222)

mesh(X,Y,f_m_n)

set(gca, 'ZScale', 'log')

view ([90 0]); xlabel('n'); ylabel('m');

zlabel ('cond\_rhs-cond\_1lhs"')

set(gca, 'ZTick',[1le-10 1e0 1el0 1e20 1e30 1e40 1e50]);
zlim([1e-10 1e50])

subplot (223)

mesh(X,Y,f_m_n)

set(gca, 'ZScale', 'log')

view ([0 0]); xlabel('n'); ylabel('m');

zlabel ('cond\_rhs-cond\_lhs')

set(gca, 'ZTick',[1e-10 1e0 1el0 1e20 1e30 1e40 1e50]);
zlim([1e-10 1e50])

subplot (224)

mesh(X,Y,f_m_n)

set (gca, 'ZScale', 'log')

view ([-63 5]); xlabel('n'); ylabel('m')
zlabel('cond\ _rhs-cond\_lhs')
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zlim([1e-10 1e50])
set(gca, 'ZTick',[1e-10 1e0 1el0 1e20 1e30 1e40 1e50]);
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