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Size and Temperature in the Evolution of Fish Life Histories1

ERIC L. CHARNOV2 AND JAMES F. GILLOOLY

Department of Biology, The University of New Mexico, Albuquerque, New Mexico 87131-0001

SYNOPSIS. Body size and temperature are the two most important variables affecting nearly all biological
rates and times, especially individual growth or production rates. By favoring an optimal maturation age
and reproductive allocation, natural selection links individual growth to the mortality schedule. A recent
model for evolution of life histories for species with indeterminate growth, which includes most fish, suc-
cessfully predicts the numeric values of two key dimensionless numbers and the allometry of the average
reproductive allocation versus maturation size across species. Here we use this new model to predict the
relationships of age-at-maturity, adult mortality and reproductive effort to environmental temperature and
maturation size across species. Age-at-maturity, adult mortality and the proportion of the body mass given
to reproduction per year are predicted to show 60.25 power allometries with mass at maturity, and an
exponential (Boltzmann) temperature dependence. Temperature is assumed to affect only body size growth,
so the temperature linkages of maturation, mortality and reproductive effort are indirect via life history
optimization; this is briefly contrasted with the idea that (for example) temperature directly affects mortality.

INTRODUCTION

Fitness optimization and game theory (ESS) models
have long been used to understand the evolutionary
adjustment of life-history parameters in fish. Examples
include age-at-sex-change in sequential hermaphro-
dites (Warner et al., 1975), frequencies of alternative
reproductive strategies among males (Gross and Char-
nov, 1979), egg size (Wootton, 1994; Charnov and
Downhower, 1995), age and size at maturity (Roff,
1984; Schaffer and Elson, 1975; Stearns, 1992; Jensen,
1996) and reproductive effort (Reznick, 1983, 1996;
Gunderson, 1997). Life-history theorists (e.g., Stearns,
1992) often talk about the ‘‘General Life History Prob-
lem’’ by which they usually mean the co-adjustment
by natural selection (5fitness optimization) of the age
(size)-of-first-breeding and the reproductive allocation
thereafter. Indeterminate or continued growth after the
initiation of reproduction is thought to result from not-
all resources being diverted to reproduction, and the
resulting body-size growth curve is due to the individ-
ual’s productive capacity blended with the reproduc-
tive allocation decisions. This paper reviews a recent
fitness optimization model for the general life-history
problem in fish (Charnov et al., 2001), and then ex-
tends the model to make predictions about the relations
between body size, environmental temperature, mor-
tality rates, reproductive effort, and age-at-maturity.

OPTIMAL LIFE HISTORY

Individual production (growth) prior to the initiation
of reproduction is assumed to follow the differential
equation proposed by West et al. (2001),

dm
.755 am 2 bm, (1)

dt

1 From the Symposium Evolution of Thermal Reaction Norms for
Growth Rate and Body Size in Ectotherms presented at the Annual
Meeting of the Society for Integrative and Comparative Biology, 5–
9 January 2004, at New Orleans, Louisiana.

2 E-mail: rlc@unm.edu

where m is mass and b is the maintenance metabolic
rate per existing cell divided by the cost of building a
new cell. To add reproduction to this equation, Char-
nov et al. (2001) suggested that after the onset of re-
production (at age a, size ma), the quantity c·m mass
is given to reproduction per unit of time; so, prior to
maturation, growth follows eq. 1, and after maturation,
growth follows eq. 1 minus c·m. This is illustrated in
Figure 1, where growth follows the hatched area.
Charnov et al. (2001) further developed the idea that
b and c were linked together in a trade-off: higher c
required higher b, so that c/b 5 q. For non-growing
populations, a female’s fitness is given by the net re-
productive rate (R0), the average number of offspring
produced over a female’s life span, or R0 5 Lt·bt dt,`#a

where Lt is the chance of being alive at age t and ft

are the offspring produced at that age. For a fixed off-
spring (egg) size (I), ft 5 c·mt /I or ft } c·mt; thus,

`

R } L cm dt. (2)0 E t t
a

We assume (Fig. 2 in Charnov et al., 2001) that the
instantaneous mortality rate is high (and density de-
pendent) for small t, but drops to some constant value
(Z) prior to feasible ages of maturation. Equation 2 is
then written straightforwardly in terms of a, survival
to age a, Z, q, b, a, and body size at age t (mt). The
equation is very complicated and so is the search for
the optimal life history, which is assumed to set ]R0 /
]a 5 0 and ]R0 /]c 5 0. Thus, the optimal life history
optimizes fitness with respect to age at first reproduc-
tion, a, and reproductive allocation, c (see Charnov et
al., 2001 for the details).

The optimal life history takes a very simple form,
shown in Figure 2. The value of q determines the op-
timal values of the two dimensionless numbers, a·Z
(5C1) and b/Z (5C3), thus setting the number b·q/Z 5
c/Z (5C2). These optimal dimensionless numbers are
independent of the value of a, the coefficient of the
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FIG. 1. Schematic diagram of the growth model (dm/dt, m 5 mass).
Growth prior to maturation (ma) follows the West et al. (2001) pro-
duction relation (thick line). After maturation, c·m of production is
given to reproduction, so growth then follows the thick line minus
c·m. Overall growth follows the hatched area. Natural selection is
assumed to adjust a (or ma) and c to maximize R0 (from Charnov
et al., 2001) (text eq. 2).

FIG. 2. The optimal life history sets the value of two dimensionless
numbers, a·Z and b/Z, as a function of q, the assumed trade-off
between c and b (c 5 q·b); thus, the optimal life history makes c }
Z (from Charnov et al., 2001).

first term in the production equation (eq. 1, Fig. 1).
a·Z has been estimated to be an invariant value of ø2
for several fish data sets (discussed in Charnov, 1993),
and Gunderson (1997) has estimated that c is indeed
proportional to Z (there called M), so that c/Z ø 0.6.
Remarkably, Figure 2 shows that a·Z near 2 predicts
c/Z to be about 0.6, the observed value.

Charnov et al. (2001) also show that if P̄ is the
average mass given to reproduction per unit of time
by the adults, the optimal life history can be expressed
as:

0.75P̄ 5 am f(·)a

where f(·) is a dimensionless function of q, a·Z and
b/Z. Since these dimensionless numbers are predicted
(Fig. 2) to be constants across species, we have P̄ }

a 0.75 scaling of average reproduction alloca-0.75a·m ,a

tion (P̄) on maturation size (ma) for a collection of
species with the same (similar) a values. A large data
set (139 temperate zone species) showed just such a
log linear relation with a high correlation (r 5 0.86)
and a slope (exponent) not different from the predicted
0.75 (Charnov et al., 2001).

OPTIMAL RELATIONSHIP BETWEEN a, c, Z, AND ma

Equation 1 may be integrated from time zero (size m0

; 0) to time a (size ma) to give (West et al., 2001):

a
0.25 2a(b/4)m 5 [1 2 e ]. (3)a 1 2b

Since (a/b)4 is the asymptotic size implied by Eqn. 1 (m
where eq. 1 5 0), we may define the quantity m as

0.25ma 2a(b/4)m 5 5 [1 2 e ]. (4)
a1 2b

m is expected to be an invariant since a·b is an in-
variant (5C1·C3), as shown in Figure 2.

Notice that eqs. 3 and 4 combined with the invari-
ance rules of Figure 2 (for a·Z 5 C1, b/Z 5 C3 and c/
Z 5 C2) imply:

2ln(1 2 m) 4
0.25a 5 m (5a)a1 2[ ]m a

C m a1 20.25Z 5 m (5b)a1 2[ ]2ln(1 2 m) 4

C C m a1 2 20.25c 5 m . (5c)a1 2[ ]2ln(1 2 m) 4

So, a, reproductive effort (c), and adult mortality
(Z) are all predicted to scale as 60.25 with mass at
maturity (ma) for species with the same a value. Since
C1, C2 and C3 are predicted numerically (Fig. 2) at the
optimal life history (e.g., a·Z 5 C1 ø 2 implies C2 ø
0.6 and C3 ø 0.15), the intercepts of the scaling lines
are predicted if a is known.

BUT a DEPENDS ON ENVIRONMENTAL TEMPERATURE

Gillooly et al. (2001, 2002) gave theoretical argu-
ment and showed much data on metabolic rates and
developmental times supporting the idea that a 5
A·e2E/k·T, where T is degrees Kelvin, k is Boltzmann’s
constant, and E is the average activation energy for the
rate-limiting biochemical reactions of metabolism fu-
eling growth (E ø 0.6 eV). Here A is a proportionality
factor expected to be approximately constant within a
taxa like bony fish. Some variation in A as been shown
in zooplankton (Gillooly et al., 2002) to covary with
resource availability (i.e., stoichiometry) of limiting
nutrients (e.g., phosphorus).

Notice that if we substitute A·e2E/k·T for a in Equation
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FIG. 3. (A) The relationship between mass-corrected instantaneous
mortality rate and the yearly average environmental temperature
function (1/k·T; k 5 Boltzmann’s constant; T 5 degrees Kelvin).
From text eq. 7, we expect a negative, linear relation with a slope
near 0.6. (B) The relationship between the temperature-corrected
instantaneous mortality rate (E 5 0.45, as estimated in Fig. 3A) and
body mass, estimated as asymptotic mass (mmax). We expect, by text
eq. 7, a linear relation with a slope of 20.25 (if ma } mmax). Lines
fit with type 1 linear regression. Data from Pauly, 1980.

5, in addition to the quarter-power mass dependence,
we predict an exponential temperature dependence for
a, c and Z, even though temperature only directly af-
fects a in this theory. This leads to:

2E/kT 20.25Z 5 f (C , C , A)e m (6a)1 1 3 a

E/kT 0.25a 5 f (C , C , A)e m (6b)2 1 3 a

2E/kT 20.25c 5 f (C , C , C , A)e m . (6c)3 1 2 3 a

Since the dimensionless numbers (Fig. 2) C1, C2 and
C3 are independent of a, they are thus predicted to be
independent of temperature. f1, f2 and f3 are the in-
tercepts of the temperature/body size relations for Z,
a and c: since C1, C2 and C3 are predictable from life-
history theory, fitting (discussed below) one of the
three relations suffices to predict A, and thus predicts
the intercepts for the remaining two relations.

For example, consider eq. 6a for Z. We can rewrite
it in one of two ways:

E
0.25ln(Zm ) 5 ln(f ) 2 and (7a)a 1 kT

E/kTln(Ze ) 5 ln(f ) 2 0.25 ln m . (7b)1 a

In words, eq. 7a means that the natural log of the
size-corrected mortality rate should be linearly related
to the temperature function 1/k·T with a slope equal to
minus the activation energy (2E), which should be
about 20.6 (Gillooly et al., 2001, 2002; Savage et al.,
2004). Eq. 7b means the natural log of the tempera-
ture-corrected mortality rate should show a 20.25 al-
lometry with size at maturity (ma). Eqs. 6b and 6c may
be treated similarly. In the following section, we pro-
vide a preliminary test of eqn. 7a for the temperature
and body-size dependence of Z.

PAULY’S DATA COMPILATION

Pauly (1980) compiled data on Z (there called M),
mean annual environmental temperature (8C, easily
converted to degree Kelvin) and adult maximum size
(mass 5 mmax) for 175 populations (stocks) of 84 spe-
cies of fish. No data are provided on maturation size,
so here we assume that ma } mmax, known to be ap-
proximately true for fish (Beverton and Holt, 1959;
Charnov, 1993). Figure 3A shows that the log of the
size-corrected mortality (eq. 7a) is indeed linearly re-
lated to the temperature function with an estimated
slope of 20.45, not too different from the expected
20.6. Figure 3B shows eq. 7b; the log of temperature-
corrected (E 5 0.45 is used here) mortality scales as
20.23 with the log of body mass. While the correla-
tions are not particularly strong, the slopes are close
to those that are theoretically predicted.

DISCUSSION

Many biological rates (units of 1/time) such as Z
show a temperature/body-size dependence proportion-
al to e2E/k·T·m20.25, while biological times such as a
show a dependence proportional to eE/k·T·m0.25 (e.g., Gil-
looly et al., 2001, 2002; Savage et al., 2004). The

present life-history model predicts the temperature and
size dependence of Z, c, b, P̄/ma and a entirely through
a mechanism of life-history optimization. The 0.25-
power size dependence follows from the optimization
shown in eq. 2, and holds for a collection of species
with the same a value. The exponential temperature
dependence described by the Boltzmann factor follows
only from the effects of temperature on a, the height
of the growth curve in eq. 1. Consider the mortality
rate Z. The life-history theory allows Z to vary or not
vary directly with temperature and still satisfy the tem-
perature- and body-size dependence discussed above.
This is because life-history optimization would adjust
ma to the a at any temperature matched to any value
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of Z. Thus, Z determines ma via natural selection in
the face of the growth/production function (eq. 1;
Charnov, 1993).

Note, however, some have argued that natural mor-
tality rates are intrinsically determined through prop-
erties of organisms controlled by metabolic rate (i.e.,
free-radical-caused cellular damage). Laboratory data
showing that maximum life span in the absence of
predation follows a Boltzmann-like temperature de-
pendence appears to support these intrinsic causal fac-
tors (Gillooly et al., 2001). Yet, the theory presented
here may also predict this temperature dependence of
maximum life span. This follows provided the invest-
ment in cellular maintenance that sets maximum life
span is closely related to average adult life span (Z21)
in the field. There is, in fact, evidence that supports
this relationship. Beverton and Holt (1959) showed
that Z21 was correlated strongly with field maximum
life spans in fish, while Charnov (1993, 2004) showed
the same for mammals. Further research, including
better data to estimate the intercepts of the scaling
rules of eq. 6, is needed to address more fully whether
mortality is somehow internally determined, or can be
primarily considered external, as is done in the life-
history theory developed here.
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