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Lifts of Frobenius on Arithmetic Jet Spaces of

Schemes
by
Erik Medina

B.A., Mathematics, Dickinson College, 2009
Ph.D., Mathematics, University of New Mexico, 2016

Abstract

According to [Bu05], lifts of Frobenius on formal schemes X over the p-adic com-
pletion of the maximal unramified extension of the p-adic integers, R := Z};\T, may
be viewed as arithmetic analogues of vector fields on manifolds. In particular, vector
fields on the tangent bundle of a manifold, appearing for instance in Hamiltonian
mechanics, have as arithmetic analogues lifts of Frobenius on arithmetic jet spaces

J'(X) of schemes (cf. [BM13]).

In this thesis, we first consider the projective space X = P} and prove that lifts
of Frobenius do not exist on the arithmetic jet spaces J"(P}) for n,m > 1. Ex-
hibiting a contrast in the case n = m = 1 between the arithmetic and geometric
frameworks, we show on the other hand that the space of vector fields on the tangent
bundle T'(P;) lifting vector fields on Py, where k is an algebraically closed field, has
dimension 6 over k. Nevertheless, “normalized” vector fields, which play a role in
Hamiltonian mechanics, do not exist on T'(P},). We proceed to prove a stronger result
for the case n = m = 1, that there are no effective Cartier divisors on J?(P') that

are finite-to-one over J!(P!), and discover that an analogous result holds in geometry.

As a final result, we prove the nonexistence of lifts of Frobenius on the first jet

space of any smooth quadric hypersurface in projective space.
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1. Background

We start by providing an overview of the mathematical objects, concepts, and facts
that form the background and foundation for our subsequent results. Our main

reference for the material in this section is [Bu05].

Definition 1.1. For a fixed prime p € Z, p # 2, let
Zp:{Zaipi:ai €2,0<a; <p-1}
i=0

denote the p-adic integers.

Definition 1.2. For any ring A, define the p-adic completion of A to be
A= Jim A /p"A.

A ring A is p-adically complete if A = A. Then A is itself p-adically complete.

Remark 1.3. Note that Z, = Z = Wm Z/p"Z.

Usually, because of the length of the expressions defining our rings, we will write

A" instead of A.

Definition 1.4. The ring

R=Zy = L,[{Cv} pt N
where ( are primitive Nth roots of unity, is the p-adic completion of the maximal
unramified extension of the of the p-adic integers; it the unique local, complete ring
with maximal ideal generated by p and residue field F,, the algebraic closure of F,,. In
the general theory of “differential calculus with integers” developed by Buium [Bu05],
adjoining the roots of unity above gives our subsequent rings more “constants”, in
a sense to be clarified after Proposition 1.8. In Z itself, only 0,1, and —1 are “con-

stants”.

Definition 1.5. Let u : A — B be a ring homomorphism. Then B has an A-module
structure given by a-b := u(a)b. A map § : A — B is called a p-derivation if §(1) =0

and



(1) (5(@1 + a2) = da; + day — Zf:—ll (;) az‘lagfi 1.

(ii) d(araz) = aldas + ahday + p(day)(das).

Definition 1.6. A [lift of Frobenius on a ring A is a ring homomorphism ¢ : A — A
such that Va € A, ¢(a) = a” mod p.

Proposition 1.7. If A is p torsion-free, then there is a bijection

{p-derivations § : A — A} ~ {lifts of Frobenius ¢ : A — A}.

Proof. Given 0 : A — A a p-derivation, ¢ : A — A defined by ¢(a) = a? + pda is a lift
of Frobenius (one checks it is a ring homomorphism), and given a lift of Frobenius
¢ : A — A, one checks by a computation that 6 : A — A defined by da = d)(“;%ap
satisfies the properties of a p-derivation. The hypothesis that A is p torsion-free is
necessary so that the second map is well-defined. These maps from p-derivations to

lifts of Frobenius and vice versa are inverses. O

Proposition 1.8. There is a unique lift of Frobenius ¢z on our ring R given by
or(a) = a, a € Zy, pr((y) = (& for all N, p{ N. Since R is an integral domain,

hence p-torsion free, there is thus a unique p-derivation dg : R — R given by dg(r) =
Sr(r)—r?P

p

[Note that for a € Z, ¢r(a) = a = a” (mod p) by Fermat’s Little Theorem, and
this fact extends to Z,,.]

The “constants” of R, alluded to after Definition 1.4, are by definition

¢r(a) —a? o a . a) = af
T_O}_{ € R: ¢p(a) }

={Cv:pt N} U{0}.

{a€R:6(a)=0}={acR:

Definition/Proposition 1.9. Let R be as before. Let 2 = {x,...,2,} and
R{z} := R[z,2,2",...,2™,...], where 2 = {z\" ... 2}, Let ¢ : R{z} — R{x}
be the ring homomorphism such that ¢|gr = ¢r, ¢(x;) = 2¥ +px!l, ¢(z}) = (2})P + pa!,
etc. Then ¢ is a lift of Frobenius which hence induces a p-derivation § : R{z} — R{x}
defined by



O(F) =
p
Remark 1.10. By construction, we have
fo)= 2D = _TEpr
p p

Likewise, d(2') = 2”, and in general, 6(z¥)) = 20+,

Definition 1.11. Let A = W =: %. (Any finitely generated R-algebra is of

this form.) For each n > 1, define
Rlz,2',... ™)
(f,0f,....onf)

We let J7'(A) = R and J°(A) = A. We call J"(A) the nth p-jet algebra of A.
For each i € Z, —1 < i < oo, we have ring homomorphisms i; : J'(A) — J1(A)

J(A) =

induced by inclusion of numerators. Also, the p-derivation § : R{z} — R{z} of
Definition/Proposition 1.9 induces p-derivations §; : J*(A) — J**1(A) for each i by
continuity. (A power series that converges p-adically is mapped by the lift of Frobenius
¢ of Definition/Proposition 1.9 to a power series that converges p-adically, since ¢

maps p to itself.)

Remark 1.12. For future computational purposes, it is worth noting what the ele-
ments of J"(A) look like in more down-to-earth terms. It is a fact that can be proven
from the definition of p-adic completion and its universal property that for any ring
A, Alzy, ..., xn] = Alz]" equals

{Z aqz® € Al[z]] : aq — 0 p-adically as |a| — 0},

where « is a multi-index and * = {21,...,2,}. So the elements of J"(A) :=
% are represented by elements of the power series ring R[[z, 2/, ..., 2™

such that the monomial summands become more and more divisible by p as their
powers increase. This also means that reducing any element of J"(A) mod p® for any

s results in a polynomial.



Definition 1.13. Let A be as before. Given an affine scheme X = Spec A, define
the nth arithmetic p-jet space of X by

Rlz,o',...,2™]"

(f,0f...,0nf) "

Given a scheme X = [J, . .Spec A; of finite type over R, the nth arithmetic p-jet
space of X is defined to be

J"(X) := Spf J"(A) := Spf

J"(x) = (X = Spf (7" (40).

finite

Example 1.14. Let X = P} =Spec R[z]U Spec R[y|, glued via zy = 1. Then
JYX) =Spf R[z,2']” U Spf R[y,y’]" We will return to this example in the results.

Remark 1.15. It is not immediate that the definition of jet space is correct. That
is, we must be able to glue the Spf(J"(A;))’s together after localizing. That we can
do this follows from the compatibility of the functor J" with localization. ([Bu96], p.
352)

Definition 1.16. Let X = J Spf //4\1 be a formal scheme over R. A lift of Frobenius
on X is a morphism of formal schemes ¢ : X — X such that the ring maps ¢ :
1/4: — jﬁl\z are lifts of Frobenius for each i, with ¢f|g = ¢r for all i, and for all
i,7, ¢i|spfAAmSprx§ = ¢j|spfAAmSprx} We also say that the induced map of sheaves

0: Ox — Ox is a p-derivation on X.

Definition 1.17. Let k& be an algebraically closed field, and let X :Spec(%) be
a smooth affine scheme over k. The geometric tangent bundle of X is defined to be
T(X) := Spec S(2x/), where Qx/;, is the sheaf of relative differentials of X over k.

One can extend this definition to an arbitrary smooth scheme X = J; X; to get

T(X) = U Spec S(Qx./x)-

(See [Ha77], p. 128.)

Remark 1.18. For each X; = Spec(%) affine, we have

klx, 2]

O(T'(Xi)) = O(Spec S (/i) = S(xiyn) = Fdn)




Whered:%%ﬁ%/k

are in bijection with sections s : X — T'(X) of the projection 7 : T(X) — X, i.e.,

and 2/ := dx. Also, it is a fact that k-derivations Ox — Ox

maps s such that mos = idx, which are by definition the vector fields on X. Similarly,
in differential geometry, given a smooth manifold M, derivations on the ring of smooth
functions C*°(M) are in bijection with smooth sections s : M — T'M, i.e., the smooth
vector fields on M. It turns out that lifts of Frobenius (equivalently, p-derivations)
on a p-adic formal scheme X are in bijection with sections s : X — J*(X). We will

conclude this as a consequence of the following universal property.

Proposition 1.19. ([Bu96], p. 352) Let R be as above, and let A be as in Definition
1.11. For each i € Z, —1 < i < oo, let i; : J/(A) — JT(A) be the “structure”
ring homomorphisms and d; : J*(A) — J"™(A) the p-derivations also described in
Definition 1.11. For any R-algebra homomorphism g : J"(A) — C into a p-adically
complete ring C' and for any p-derivation d : J"~*(A) — C such that doi" 2 = god,_s,
there exists a unique R-algebra homomorphism h : J"(A) — C such that h 0" l=yg
and hod,,_1 = 0:

) )
g "

C

7]

(Here the notation L—S is shorthand for two maps Ji(A4) & J*+1(A) and

k3

Ji(A) 2 JiF1(A))
Proof. Define h(r) = g(r) for all r € R; h(z®) = g(2) for i # n; and

h(z™) = 9(x™V).

(For notational simplicity, we leave off equivalence class symbols in the proof, though

all elements are understood to be classes in their respective quotients.) Note that

for r € R and



for i <n —1, so that h o " ! = ¢g. Similarly, for all » € R we have

ho(Sn_l(r) = hO(gR(T> = hoZ”_loéR(r) = goéR(r) = gO(Sn_2<T) = 802”_2(r) = 8(7’),

for 1 < n — 2 we have

ho 5y (@) = h(zt*D) = g(@™D) = go 5, 5(x?) = Do "2 (@) = o(a);

and

ho 5n_1(x(”_1)) — h(x(”)) _ a(x(n—l))’

which shows that hod,,_; = 0. Since C'is p-adically complete, we get that for any P =
Fy 0 (@!) - (20 € (A, A(P) = X, hlaa h{a) h(w) - bz

= 3 aagla) gl - gla" D)) € C,

since a, — 0 p-adically as o — co. (See Remark 1.12.)

To see uniqueness, suppose there exists i with the same properties. We have
h(r) = hoi™'(r) = g(r) = h(r); for i < n —1, h(z®) = ho " (z®) = g(z®) =
h(z®); and h(z™) = ho §,_y (V) = d(z" V) = h(z(). Thus, h = h, proving
uniqueness and concluding the proof.

O

Corollary 1.20. There exists a natural bijection between the p-derivations on a
formal scheme X and the sections of the projection 7 : J*(X) — X, that is, the

morphisms of formal schemes s : X — J'(X) such that 7o s = idx.

Proof. Write X = |J Spf ;l\z Let 0 : X — X be a p-derivation defined locally by
p-derivations 0; : E — 1/4\@ We also have the identity map id : X — X given locally
by identity maps id; : A; — A;. The projection 7 : JY(X) — X is given locally on
rings by i : ;l\z — JY(A;). This gives the following diagram:

L1, L0,i

R >Ai 5

J'(A)

SR



One checks that the hypotheses of the universal property Proposition 1.19 are
satisfied. To give a section s : X — J'(X) is equivalent to giving ring maps s; :
J 1(Ai) — ZZ such that s7oig; = td; that glue. The universal property gives morphisms
st JYA) — 1/4\2‘, with s} o ig; = id;. One gets glueability from the fact that the J,’s

and ud;’s glue by assumption. The fact that this map from p-derivations to sections is

a bijection follows because the section property requ1res that s7|+ = id;, so that any

* xz}

st is uniquely determined by the value s} (z}) (where A, = ) ), and we can take

7

9i(x;) = s7(x7). u

Definition 1.21. Let X = Spf ( f) -~ be an affine p-adic formal scheme. A normalized
p-derivation 9 : J'(X) — J'(X) is a p-derivation such that

PD(x) =6(x) =2

For X a non-affine formal scheme, a normalized p-derivation 2 : J'(X) — J'(X)
is a p-derivation on J'(X) (see Definition 1.16) such that on each affine piece, 2

is normalized. We call the corresponding lift of Frobenius on J'(X) a normalized

klz]®

lift of Frobenius. Similarly, for an affine scheme X = Spec with tangent bundle

)
T(X) =Spec k[;’f ;}; (recall the notation of Remark 1.18), we call a derivation D :
k([;gz‘; — k([jf C‘Zc; normalized if

D(z) = a' = dx,
and for a non-affine scheme X, we call D : O(T(X)) — O(T(X)) normalized if it is

normalized on each affine piece.

Definition 1.22. Let X = |J, Spf 1/4: be a formal scheme over R. An effective
Cartier divisor on X is given by an open cover {U;} of X and a collection of functions
fi € O(U;) such that for each i, j, there exists uw € O(U;NU,;)* such that f; = u;; f;.

Such a divisor defines a formal

of X. An effective Cartier divisor

(f )
on a scheme is defined in a similar way.

Definition 1.23. A morphism of formal schemes v : X — Y is finite if it has the
form ¢ : X = Spf 1/4\, — Y ={J Spf E, with 1/4\1 a finitely-generated E—module for

each 1.

In the statement of the following proposition we use the fact ([BuSal4], p. 680,
also shown in the proof) that there is a natural closed immersion J?(X) C J'(J}(X)).



Proposition 1.24. A section s : J'(X) — J'(J'(X)) corresponds to a normalized
p-derivation 2 : J'(X) — JY(X) if and only if Im(s) C J*(X) c J'(J(X)).

Remark 1.25. Note that if a section s as above satisfies Im(s) C J*(X) and X is a

smooth curve, then Tm(s) is a Cartier divisor on J?(X) finite over J!(X).

Proof. (of Proposition 1.24) For simplicity, we look at the case where X = A! =
Spf (R[z]"); the general case is proved by reduction to this case via étale coordinates.
We have J'(X) =SpfR[z,0z] " and J'(JY(X)) = SpfR|z,dx,dx,6,(6x)], where
61+ JYR[z] ") — JYJYR[z] ")) = JH(R[x,dx] ") is the p-derivation obtained as in
Definition/Proposition 1.9 and Definition 1.11 (note d; # § : J'(R[z]") — J*(R[z]").
We have the following commutative diagram relating  and s*, by Corollary 1.20:

Rz, 0x] A5—L1> Rz, 0x, 012, 6,(dz)]"
id :
_@

L8 )

v

Rz, dz]"

with s*(z) = z, s*(dz) = dx, s*(hz) = YD(x), s*(610x) = P(6x). Observe that ¥

being normalized is equivalent to

ker s* D (dx — d1x)

since

s*(0x — 01z) = 0x — P (v) = 0 & D(x) = dz.
We next claim that

Rz, 0z, 012, 6,(dz)]"
(0z — 012) '

From Proposition 1.19, we get the following diagram:

J*(Rlz]") =

Rz, 0x] A6—L1> Rz, 0z, 012, 6,(dz)]"
id :

5 h ’

R[z, 6x,6%x])"



where h(z) = x, h(0x) = dx, h(d,2) = dz, and h(§,0x) = 6%(z). This map is surjective

and its kernel is (dz — d;x), so

Rz, 0z, 012, 06,(dz)]"

(0x — d1x)
Now, Ims C J*(X) = Spf (Wé’i—W) is equivalent to kers* O (dz — 012)
(which, as stated before, is equivalent to & being normalized) by the following fact:

>~ Rlz, 6z, 6*x] = J*(R[x]").

given A, B, integral domains and a map s : SpecA — Spec B induced by a ring map
s*: B — A, we have that Ims C SpecB/I < kers* D I.
O

In the appendix, we explain the significance in the context of arithmetic differen-
tial equations of a p-derivation (equivalently, lift of Frobenius) being normalized.
We now state and prove the quotient rule for elements in any ring A for which

there is a p-derivation 0 : A — B; we will use this in the proof of Theorem B.

Proposition 1.26. Let § : A — B be a p-derivation and ¢ : A — B the corresponding
lift of Frobenius. Given f € A, g € A*, we have

PSf _ fP§
5(f/9)=%

Proof. We have

5(f) = 6(§ “9) = (F/9)°6g + 9"6(F /9) + p3(f /9)dg.
hence
6(f/9)(g" +pdg) =of — (f/9)"dg,

SO

of = (f/g)Pdg

019 =~ g
_ g°0f — fPog _ gPof — fPog
g7 (g7 + pog) g#olg)



Definition 1.27. Projective m-space over R is defined to be

7;21 = U Spec R[yio: s 7yim]7

i=0
where y;; = ::_Z In other words, we take m+1 affine n-dimensional planes and glue any
pair Spec (R[Yio, - - - , Yin])y;; and Spec (R[yjo, - - -, Yjn))y,; Via the identity isomorphism.

We obtain a corresponding p-adic formal scheme
PR = U Spf RlYios - - - s Yim)
i=0
and the nth jet space of P, J"(P™), is by definition

JH(P™) = U Spf R[yl-o,...,yim,ygo,...,ygm,...,yl(g),...,yz(sl)]f

Definition 1.28. A smooth quadric Q) C P is a hypersurface

" R[ykm e 7ykm]
Q= Spec ,
,90 (2245 Qi Ykilns)

such that A = (a;;) € GL,41(R) and is symmetric.

Definition 1.29. Fix the notation of Remark 1.18. Given a scheme

X = |, Spec A;, where each A, k[;s] and gluing on each pair 7,7 is given by

z; v g;(z;) for some g; € A;, the geometric jet space J*(X) is defined to be

U Spec blai, i, 2]
(fisdfi, df;)

glued via z; — g;(x;), 2} — d(gj(x;)), 2} — d*(g;(z;)), where

d:kle, o 2" .. .] = klz, 2", 2", .. .]

is the derivation such that dx = 2/, do’ = 2", etc.

10



2. Results

We now state our results; we give the proofs in section 3. Before we begin, we recall
the analogy between the first jet space of a p-adic formal scheme, J'(X), and the
tangent bundle of a manifold, 7'M, and between lifts of Frobenius on p-adic formal
schemes and vector fields on a manifold. We also recall the analogy between the
p-jet space J?(X) and the geometric jet space J?(X). (See Definitions 1.17 and 1.29
and Remark 1.18.) Because of this, we state corresponding results on T'(P') and the

geometric J2(P!) and point out where results carry over and where they do not.

We include the first three propositions in this section for completeness of our
discussion. Proposition 2.1 is an immediate consequence of Grothendieck’s existence

theorem in formal geometry. [Gr61]

Proposition 2.1. The lifts of Frobenius on E/DE are given on the x;'s by ¢(x;) =
2 + pF, == G;, i = 0,1,...,n, where the G,’s are homogeneous polynomials in

Xo, X1, ...,T, of degree p.

The above proposition can be viewed as an analogue of the following well-known

result in the geometric case.

Proposition 2.2. Let k = k be an algebraically closed field. The vector fields on P}
are of the form Y77 L; 7%, where each L; = Y7 a;x; € HO(Py, O(1)).

Here is our first main result.

Theorem A. There are no lifts of Frobenius on the p-jet spaces J"(P™) for

n,m > 1.

It is interesting to compare Theorem A with the following result in the geometric

case.

11



Proposition A’. Let k£ be an algebraically closed field. The space of vector fields on
the geometric tangent bundle T'(P}) lifting vector fields on P}, has dimension 6 over

k. However, there are no normalized vector fields on T'(Py).

Here is our second main result:

Theorem B. There are no effective Cartier divisors D on the p-jet space J?(P!) such
that D — J'(P') is finite.

Compare Theorem B with the following.

Proposition B’. There are no effective Cartier divisors D on the geometric jet space
J?(P'), Spec k[z,2’,2"] U Spec kly,y',y"], such that D — T(P') is finite.

We conclude with the following results:

Proposition C. Let () C P} be a smooth quadric hypersurface. There are no lifts
of Frobenius on J'(Q).

Proposition D. Let z = (z;;) be an n-by-n matrix of indeterminates. There exists
no lift of Frobenius on M,, = Spec R[z] inducing a lift of Frobenius on
GL, = Spec R[z,det z71].

12



3. Proofs of Results

Proposition 2.1. The lifts of Frobenius on I@ are given on the x;'s by ¢(x;) =
a2 + pF; == Gy, 1 = 0,1,...,n, where the F;’s are homogeneous polynomials in

Loy L1y y Ly

Proof. Any morphism of formal schemes éﬁ\ : I@E — @ is induced by a morphism
of schemes ¢ : P}, — P}, by a GAGA theorem of Grothendieck [Gr61]. Thus, it is
enough to find the morphisms P} — P% satisfying the additional property required
to be lifts of Frobenius. Morphisms from any scheme X to P}, are well-known and are
described, for example, in [Ha77], Thm. I1.7.1; any such morphism ¢ is induced by
an invertible sheaf . on X and global sections sy, ..., s, € I'(X,.Z) which generate

Z, with s; = ¢*(x;) on rings under this isomorphism.

Since R is a UFD, Pic R = 0, so Pic(P}) = Z, and every invertible sheaf on P, is
of the form O(d) for some d € Z. Also, I'(P}, O(d)) identifies with the R-module of
homogeneous polynomials of degree d in n + 1 variables. We know that for each ¢ =
0,1,...,n, ¢i(x;) = a¥ + pF; because ¢ is a lift of Frobenius. Therefore, our sections
must come from homogeneous polynomials of degree p. It remains to show that that
the G; := ¥ + pF}’s generate O(p), i.e. that the zero scheme Z := Z(Gy,...,G,) is

empty. We know that the G;’s have no common zeros mod p since Z(xf, 2, ... af) =

0, so Z(Go,...,Gn)(k) = (ZNP2)(k) = 0. By Hilbert’s Nullstellensatz, since k is
algebraically closed, Z NP? = (). Now, we know that P = SpecR is proper ([Ha77],
Thm 11.4.9), so 7(Z) is closed in Spec R = {(0), (p)}. Assume Z # (). Then 7(Z) # 0,

so (p) € m(Z), a contradiction.
[

Proposition 2.2. Let k = k. The vector fields on P} are of the form Y " L7,
where each L; = Y7 aj;x; € HO(PR, O(1)).

Proof. The vector fields on X = P} are by definition H°(P}, Jx), where Jx is the

tangent sheaf on X. Recall the Euler exact sequence

0— OX — Ox(l)n+1 — gX — 0,

[Ha77], p. 182. This induces an exact sequence
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0— HX,0x) =k — H'(X,0x ()" 5 HYX, Tx) — H(X,O0x) = 0,

the last equality by [Ha77], Thm. II1.5.1(b). The map ¢ is given by (Ly,...,L,) —
S Lige. Thus, HY(X, Jx) =Imvp = {31 LizZ : L; € HY(P}, O(1))}.
O

Theorem A. There are no lifts of Frobenius on the p-jet spaces J"(P™) for

n,m > 1.

Proof. Step 1: As a warm-up, we first prove the statement for n = m = 1.
Recall that

J'(P') := Spf R[z,2']" U Spf Rly,y],

where zy = 1. Assume we have a lift of Frobenius on J*(P!). Then it is given by
ring homomorphisms ¢, : Rz, 2'|"— R[z,2']” and ¢ : R[y,y'|"— Rly, ']  satisfying
Definition 1.16. We have

P1(2') = (') +pha(w,2"), ¢1(y) = (V)" + pha(y,y)

for some hy € R[z, 2], ha € R[y, '] For computational purposes, we rewrite

¢1(2') = Z ai(z)(a')', da(y) = Z Biy) ()",

where for each i, o; € R[z|’, f; € R[y|" Observe that

while

ai(z) = Pi(y) =0 (mod p)
for i # p. The intersection compatibility condition requires that ¢;(y") = ¢2(v'),
where on the LHS, ¢/ := §(1) via the isomorphism R[z, 2/, 2] — Rly, v,y ']" Note

that ¢/ == ;T;,(l - pa"f—;) (mod p?). We compute toward a contradiction:
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/ x/

61(y) = é1(~—5 (1= p=))  (mod p?)

_ ¢1(2') (1- ¢1(2') )
N (.Z'p—f—pgl(l’,l‘,))zp (J,’p—{—pg]l(l’,[)?,))p
_ _¢;§:2> (1 _qu;(pf ))

_ Xz z;l(j)(w')’ (1- piio O;;@(x’)l)

_ i z;if)(w')’ (- pap(iz)gx’)p)

_ s (@) (@) N pag () ()

In the last two steps, we used that o;(z) = 0 (mod p) for ¢ # p and that o, (z) =1

(mod p). Moreover, we have

e ZBZ(y)@/)i - Zﬁi(%x_%( - p—/))l (mod p?)
_ SN

Il
I
L[
~~
&
—~
—_
~—
—
|
[a—
~—
S
—
8
—
<
~—

1
T

The last step follows from S3;(+) = 0 (mod p), i # p, and that if i = p we have ip = p*.
Since we need ¢1(y') = ¢2(y') (mod p?), we compare the above two expressions. It

will be enough to examine only the degree 2p terms in z’. We have

(O P g Ly

Clearing denominators, this yields an equality in the ring of Laurent polynomials

(:L,I)Zp

pr(Qp)

(mod p?).

1

Xz

), (3.1)

where ~ means image in (R/p?R)[z, 2~ !]. Recall that the order of a Laurent polyno-

_d2p(x)x2p2 —|—p5z§(m)xp2 = 5219(

mial P(z) is the smallest exponent of its monomials. Now the LHS of (3.1) has order
> p?, while the RHS has order < 0, unless both sides are 0. Hence,
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—a2p(:v)x2p2 +pa§(x)a;p2 =0 (mod p?),

SO

—oz2p(x)xp2 +paZ(z) =0 mod p*.

Using that ag,(z) = 0 (mod p) and a,(z) = 1 (mod p), we obtain, for some
g1,92,93 € R[ZL’]

~
Y

—pgi(2)2” + p(pga(x) + 1) = p?ga(x);

hence

2
—gi(x)a” + p’g5(x) + 2pga(x) + 1 = pys();

SO

1—gi(z)z” =0 (mod p).

Setting = 0, we get 1 =0 (mod p), a contradiction. This ends the proof of the fact
that there is no lift of Frobenius on J*(P!).

Step 2: Extend argument to J'(P").

We recall by Definition 1.27 that

Jl(]P)n) = U Spf R[yi07 e ayin7yz{07 ce ’y’in]:

i=0
where y;; = L. Assume there exists a lift of Frobenius J'(P") — J'(P"). This
translates to having ring endomorphisms ¢; : A; := R[Yio, - - -, Yins Yios - - - » Y] — Ai

gluing on localizations such that

Gi(yii) = yij + 0GisWios - - -, Yins Yios - - - » Yin)

and
¢i(yi;) = (Yi;) + Phij(Yios - - - Yins Yigs - -+ Yin)-
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It is necessary that for each i,4',j, ¢i(yi;) = dw(y;;). Letting ' = j =0, i =1, we
require ¢o(y1y) = ¢1(yjy). We may rewrite

y10 Z (%] KA y107 <oy Yin, yIIOa s >y/107 s 7y£n)(y£0)k

(In the last expression, yio means that yj, is omitted.) Observe that a;o, = 0
(mod p) for k # p and a1, =1 (mod p).

Since y10y01 = 1, a calculation shows that

1 _Youu 1 — @ d »?
Yo = (1 —=p=) (mod p).
Yo1 Yo1

Also, tracing through the calculation for J'(P') of ¢;(y') and ¢o(y’), we find that

_ ko 0,15, (Yo1)' n po,1 (ym)

2p? 3p?
Yo1 Yo1

Po (3/10)

and

ym)
1(¥10) § :0‘1 Ok; ka :
Yo1

Comparing the coefficients of the degree 2p terms in y(, of the above two expres-

sions, we obtain, in the same way as for J'(P!),

— — 2
—040,12p(y017 -+ Yon, y617 s 7y[1)n)y01 +p050 1 (y()la -+ Yon, 3/61, s 7y6n)ygl
= Ov/l,()gp(yma <o Yin, yIIOa s 7y1n) (mOd p2)

In order to compare both sides of this congruence, we rewrite the expressions in

terms of one common set of variables. Note that y;, = Zgl Also, Y15Y01 = Yos, SO that

5(y1sy01) = 5(?/05);

hence
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Yrsyor + Yo1Y1s T PYLsYor = Yos:

SO
) Yos = Yis¥n
e ?ng + PYor
g (),
Yor + PYou
 YosYo1 — YosYo1
=
90]13 + pyfnygl
YosYo1 — YosYo1 PYor 5
= T (1—==—==) (mod p*).
Yo1 Yo1
Substituting for each y,, we obtain A = B (mod p?), where
2 2 2
A - —040,121,(?/017 <oy Yon, 9627 cee 7y/0n)y0f + pao,li(yﬂla <oy Yon, y(/)2a cee 7y(,)n)ygl
and
B— 1 Yon y62ygl — yg2y(l)1 1 PYor yénygl - ygny(l)l 1 PYor
— gy (., S Yool Yoollon(y _ Povy Yol — Voublon (g _ vy,
Yo1 Yo1 Yo1 Yo1 Yo1 Yo1

By the same argument as in the J'(P!) proof, observing that the yo,’s in the

denominators of the RHS can only decrease the RHS’s order in g1,
2 2
—060’121)(3/(]1, <5 Yon,s y[l)27 s 7y6n>y(2)€ + pao,li(y()l? <oy Yon, y627 s 7y6n)ygl =0 (mOd p2)
Since ag,1,p = 0 (mod p) and a1, = 1 (mod p), we get, for some v1,72,73 €

R[y01, <o Yom, y627 s 7y(/)n]:

2
—pybin + p(py2 + 1)% = pPrs;

hence
2
—ybi + (py2 + 1)° = pys;

18



SO
2
1—y5m =0 (mod p).

Letting yo1 = 0, we get 1 = 0 (mod p), a contradiction. Thus, there are no lifts
of Frobenius on J!'(P").

Step 3: Generalize for J"(P™).

Recall that

TUP™) = | SPf RlYios -+ Yims Yigs -+ Yo - U - U]
=0

where as before y;; = 2—7 A lift of Frobenius on J"(P™) is given by ring endomor-
phisms ¢; : A; = R[Yio, - - -, Yims Ybos - - > Yiams - - - ,yi(g), . ,yi(fn)]A — A; which are lifts
of Frobenius and which glue on localizations. As before, the compatibility condition

requires

Gi(s) = (Y DFi Yios - s Yirms Yigs s Yo -1 U3+ 1 Yo,

We may rewrite as before
¢1(y/10) = Z &l,Ok(y017 <oy Yom, y(l)lv 3/627 s 7y6m7 s ﬂy(()rll)v s 7y((]7:72>(y/10)k
k=0
Once again, a9, =0 (mod p) for k # p and a1, =1 (mod p).

Imitating the steps for the J(IP") proof, we obtain

- n n)\_ 2p?
_Q/O,lgp(y()la - Yom,s y617 y(/]27 s 7y6m7 s 7961)7 e ’y((]rrz)y0§7 +
- n n 2
paO,li(yOlv LR 7y0m7y617y627 cee Jy(/)mv cee Jy((]l)u s 7y(()nf2) [Z))l
= 041,02p(y10> < Yims ?AO) y127 cee 7y/1m7 ce 7y§8)7 s 7y§772) (mOd p2)

Note that y;s = %, which has order —1 in yo;. We claim that y&) = yﬁ)

(mod p?) has negative order in yg; for all s € {0,...,m}, » € {0,...,n}. The base

—_—

case of r = 0 was just stated, so assume we have yﬁ_l) with negative order in ;.
Write y{" " := yo! f, where —t is the order in yo; of y\" " and
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- r—1 r—1
fER[?/m,;%m»yio»yig»,yim»,y%o )77y§m )]

has order 0 in yg;. In the following, all elements are understood to be their images

mod p?; we leave off ~ for simplicity of notation. We have

y&) 5(951; Y ) (y(n f)
=(Yor )PO(f) + fP0(yor' ) + PO (yor )o(f)
_ O—ltp(ﬁbp(f; J? )+ fp((ygl +py6;)_t — Yo1 .
(Wb + pyb) ™ = yor T\ (Eu(f) — I7
p(Wh )l D) 2 I

)+

Y

where ¢, : O(JHP™)) — O(J"(P™)) is the lift of Frobenius corresponding to the
universal p-derivation of Definition 1.11. But since the order of f in yg; is 0, the same
holds for ¢,(f) and fP. Therefore, the above expression has order < 0 in ;. Hence,
the presence of the extra “prime variables” yﬁ) can only decrease the order of the

RHS. This leads to the conclusion, as in the proof for J"(P'), that

- n n 2
- a0712p(y017 - Yoms ?/(’)17 ?/(,)27 e ay(/)mv cee ay((]1)7 s 7y((]n’2)ygl
+p0€0 1 <y017 <oy Yom, 9617 y627 cee 7y6m7 cee 7y(()711)7 s 7y(()772) =0 (mOd p2)
and we deduce a contradiction as before.
UJ

Proposition A’. Let k£ be an algebraically closed field. The space of vector fields on
the geometric tangent bundle T'(P}) lifting vector fields on P}, has dimension 6 over

k. However, there are no normalized vector fields on T'(Py).

Proof. A vector field on T(P}) is given by a k-derivation D on the ring of global
functions of T(P}), that is, by Dy : k[z,2'| — kl[z,2'] and Dy : kly,y'] — kly,v/]
such that Dy (z) = Do(z), D1(y) = D2(y), Di(2') = Do(2), and D;(y') = Ds(y'). To
simplify matters, we look at the case where D extends a derivation on P!, i.e, where
D, : k[z] — Ek[x] and Dy : k[y] — k[y] are derivations. We have:
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Di(y) = Du(1) = 1D

12

Write Dy(z) = ap+ a1z + - - - + a,z™ and Do(y) = by + by + - - - + b, y™. Since we
must have D;(y) = D2(y), this gives

ag+ a1x + - -+ ax"

xr2 :b0+b1y+"'+bmyma

hence

1 1
—a0y2—a1y—a2—a3§—---—an — =bo+biy+---+buy™.

n

Thus, n,m < 2, and so Di(z) = ag + a1z + asx® and Dy(y) =—as — a1y — agy?.
Now, we have

Duly) = Dy(~ ) = TR = o2 DD)

4
—2?Dy(2') + 222’ Dy (x)
1

T
/

= —y*Di(2') + 2y3(—%)(a0 + ayx + agr?)

= —y2D1(I/) —2yy'(ap + arz + a2x2)

2a01
= —y*Dy(2') — 2a0yy’ — 2a1y’ — ;y :

We require

2a01
2 — Di(y) = Da(y) € Ky, o).

—y? Dy (') — 2a0yy’ — 2a1y" —

Also, Dy(2') € klz,2']; write Dy(z') = 3, |50 @nmz"(2')™. Then
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a9y’ n( nym
—y’ D (2') — 2a0yy’ — 201y’ — ; == ( ) anma™(@)™) = 2a0yy’

2a1’

— 2a1y’ —

=— Anmy " (—y)™ = 2a0yy’
n,m>0

If a,, m # 0 for any n, m pair such that m > 2, then we would have a monomial of
order > 2 in 3 and order —n4+2 —2m < —n+2 —2(2) = —n — 2 < —2 in y, which
can’t happen because none of the other monomials will cancel this. Hence, a, ,, = 0

for m > 2. Splitting into the m = 0 and m = 1 cases, we are left with

—n+2—2m m 2a2yl
— Dy " (=) 2a0yy — 201y —
n>0,me{0,1}
n n 2a2y'
= =D angoy " = Y a1y MY — 2a0yy’ — 2a1y’ — =
no=>0 n12>0 y

From this, we see that ny < 2 and n; < 1; otherwise, we get, respectively, monomials

" with r < —1, and y®y’ with s < —2. Hence,
Yy vy

a1y’ 2a1’
D1(y/) = _a0,0y2 —a1,0Y — G20 + aO,ly, + % - 2a0yy' - 2a1y' - ; .

This implies that a;; = 2aq, and so, with the surviving coefficients, we get

/ / / 2
DI(QT ) = 2CLQIE$ + ap1x + ag o0l + a1,0T + Q.0

and
Dz(y/) = Dl(yl) = —2@0yy' + (ao,l - 2611)?/ - a0,0y2 — a0y — a20-
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for any ag, as, ag o, a10,a20,a01 € k. Therefore, the space of vector fields on T'(P*)

lifting vector fields on P! has dimension 6 over k.

However, we show that there are no normalized vector fields on T'(P'). To see
this, assume there is a normalized derivation on T'(P') = Spec k[z, 2']U Spec kly, y/'],
xy = 1. Then we have D : klz,2'] — kl[z,2'], Dy : kly,y'| — kly,v'] such that
Dy(z) =2', Dy(y) = y'. We have

' '

Di(y') = Dl(—?) = —Dl(?)

Thus, —y*D;(2') + % equals Dy(y') € kly,y']. Write

Di(2') = Z Ap ™ ()™ = Z anm(i)”(y_)m

n,m>0 n,m>0

Then

_yle(l‘/) + 2<Z,)2 = —y2( Z ammyn(g_;)m) + z(y/)z

n,m>0

= (D @amy ")) +

n,m>0

Let us extract the coefficient of (y/)%: it is — (3,50 an2y™""?) + 2y~ !, which cannot
not be in k[y| since —n—2 < —1 for all n > 0. This contradicts that Dy(y') € kly, y/'].
O
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Theorem B. There are no effective Cartier divisors D on the p-jet space J*(P!) such
that D — J'(P!) is finite.

We need the following;:

Lemma: Let A be an integral domain and and suppose A[z]/(f) is finite over A.

Then f is monic in x, up to multiplication by an invertible element of A.

Proof: Suppose A[x]/(f) is finite over A but f not monic in z. By assumption
Alz]/(f) = Az™ + Azn—1 ..+ AT+ A for some n € N, where upper bar means class
mod f. Since f is not monic up to multiplication by an element of A*, we can write
f=a2" + a2 + -+ ag, where a; € A, a, ¢ A*. We have

" = by + - - 4 b + by

for some b; € A. Hence, ™™™ — bya™ — -+ —byx — by = f - h, so deg, h = n. So
h=cux"+---+cx+cy, ¢; €A Thus a.c, =1, so a, € A*, a contradiction. This

concludes the proof of the lemma.

Proof. (of Theorem) Recall that

J'(P') = Spf Rz, 2']" USpf Ry, y/]’

and

J2(P') = Spf R[z, ', 2" USpf Rly, ',y

Toward a contradiction, assume there exists a D C J*(P!) finite over J'(P').
Write D = Spf M(IT,)‘T”] U Spf R[y,(ny),y//]A7 where f = U - g for some

Ue (Rly,y vy ')
f and g in this last equality are considered in R[y,v’,y”,y~'|" via the isomor-
phism R[z,2’.2" 27" — R[y,v,y",y"']" sending x — y~, 2/ — d(y7'), 2" —
62(y~'). Then by definition, Raolel nd By 4T are finitely generated Rz, z']" -

63 (9)
and Ry, y']"-modules, respectively. Denoting by the bar of a ring its quotient mod

the ideal generated by p, we hence have that
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Rlz,«', "] _ (R/pR)[z,2|[z"] Rly.y,y"] _ (R/pR)ly.y]ly"]
(f) (f modp) ~ (f) (9 mod p)
are finitely generated over R[z,2'|" = (R/pR)[z,2'] and R[y,y']” = (R/pR)[y,v]. By
the lemma above, the leading coefficients of f mod p in 2”7 and ¢ mod p in 3" are
invertible in (R/pR)[z,2'] and (R/pR)[y,y'], respectively. But ((]“’p/]?)R)[:r,f])X =
(R/pR)* ={r+pR:re R*} = ((R/pR)[y,y’])X. Write

f=r@)" + A (z,2) (") + o+ Az, 2)2" + Ag(z,2')  (mod p), (3.2)

where r; € R* and for each i, A;(x,2') € R[x,2']" Now,

(Rly, v, y", v ') ={\" +ph: N€e R*,N € Z,h € R[y,v,y",y ''}.

Indeed, the elements of the LHS must have p-adic valuation 1 and their reduction
mod p must be invertible in Ry, 3/, y",y~!]. Conversely, for any Ay +ph of the RHS,

we have that )\yN+ph = )\yN(l—ll—pMLN) = )\Z/LNZ;ZO(_p) (Az}] )" is in Rly,y',y",y~ "] and

is Ay + pH)~L. So we have

f= " +ph)g (3.3)

for some A € R*, N € Z, h € Rly,y,y",y~']". Let us compute f of equation (3.2)
in terms of y,7/,y” in order to compare to the form of f of equation (3.3). By the
quotient rule (Proposition 1.26)

/ /

n o <2 o -y _ Yy
=00 =0 (500 =~ sy

WPy — (¥)Po(yPo(y))
(yPo(y ))pd)(y%(y )
WP +py)Py" = (yY)Pa(yPo(y))
(y”(y” +py'))Po(yP(y? + py'))
Y = ()P (P (y)
B Yy p(y?) (mod p)
vy — ()P (yPd(y))
Y2 (2 + p(y'))?
vy — )y ey)

y?
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Note that for any &,

P VE g kP E oMY@ i) & o ,
s = WP =y B W) T ey) :Z(k>yp<k_z) 1)

. p
p p im1 N

Also, from the definitions it follows that 0 and ¢ commute, so that

S(yPo(y)) =(y")Po(d(y)) + o(y)Po(y") + pd(y*)o(o(y))

=y oY) + (v + py')? (Z (]Z) Y () ) +
d P\ pp—i) i1/, 1\é /
p(z <Z>y P ) oy

=y ((y/)? +py") + (4 + py' )P (Z (Z;) y" P p () ) +

(> <P> g0 () (W) + py”)

=" (y')? (mod p).

Thus,
s YPY = P W)) Y P ()
' =— ; = yo (mod p).
Y2 o(y?) yr
Therefore,
2p<, M D2 (2,/\2p / 2202, D% (2,/\2p
Yy + P (YY) \n Ly Yy + P ()P 1
f — 1 y4p2 + ATL 1( ’ ﬁ)( y4p2 ) +
y =Yy () y'
+A1(-, Tp)< i ) + Ao(=, ﬁ) (mod p)

2 2 n 1 Yy 2 2 n— 2
= (=" )"+ A O ) 0y g W)

1 y' 2 2 2(n— 1 y’ 2 20
T ) VY T T+ A
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According to equation (3.3), expression (3.4) is = Ay" - g (mod p), so by clearing
the denominator y*°", we find that the numerator of (4) is = Ay**"*Ng (mod p).
Writing

g=7r2(y")" + Bua(y, )W)+ + Bi(y, v )y + Boly,y),

this means that

/

1 _
r(=y™y 7 ()P + Aua %)(—ywy” +y” @)) T e (35)

1 y’ 2 2 2(p— 1 y’ 20
A ) (T W)Y Aol

= My N s (y")" 4 By, y) ")+ -+ Bily,y)y" + Boly, )] (mod p).

Expanding out the LHS of (3.5) and comparing with the RHS, we see that we

must have

Tl(_l)ny2p2n<y//)n = T2)\y4p2n+N(y//)n (mod p)7

so that N = —2p?n. Now, according to the RHS, the (y”)° coefficient must have
order > 4p’n — 2p*n = 2p?n in y. The LHS of (3.5) has the monomial rlyp2”(y/)2p”
with order < 2p?n in y, so it suffices for n > 0 to show that no other term of the LHS
can cancel said monomial. Note that the only terms of the LHS with order 0 in 3"
come from the last terms of each binomial expansion. Thus, if there did exist such
other term, there would exist [,m > 0 and k > 1 such that

(ll)(yT/,,)my”g(""“) (y )Ry heth — o ()2,
y oy
By looking at the power of ¢/, this tells us that m = 2pk, and so we compare the
order of y on each side: we must have —I — 2p(2pk) + p*(n — k) + 4p°k = p’n & —1 =
p?k. But —1 < 0 and p*k > p*(1), so this is impossible.
]
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Proposition B’. There are no effective Cartier divisors D on the geometric jet space
J?(P), Spec k[z,2’,2"] U Spec kly,y',y"], such that D — T(P') is finite.

Proof. We prove the proposition by exactly the same approach as we did Theorem B.

We again assume there exists such a D; we have D = Spec hlzala] | Spec k[y’(yTl)’y/q,

where f = U - g for some U € k[y,y/,y",y~1]%, with k[x’{?)’x”} and k[y,(yT’),y"] finitely-

generated k[z,2']- and kly, y']-modules, respectively. By the lemma in Theorem B’s
proof, f and g are monic, up to multiplication by nonzero element \;, Ay € k, in 2"
and 3", respectively. We also know that U can be written U = \y¥ for some \ € k,
A#0,and N € Z. Hence, we can write

f=ME")" + Ay (z,2) (@) o+ Az, 22" + Ag(x, ') = MyNg. (3.6)

Note that 2’ = d(3) = vO-16) — ¥ while
Yy ) Yy

y4
_ Y+ 2y()°
_ i
Thus,
2.1 N2 / /i N2
-2y 4+ 2y(y' )% \n 1 =2y +2y(y')? \n1
f= )\1( A ) +An_1(§,E)< /i ) 4o
Ly =2y +2y(y)? 1y
+A(-, + A=, 2
1<y Y ) y ) O(y y2)
1 9 .
= M(=v*y" +2y(y')?) +An71(§,y—)(—yQy”+2y(y’)2) Yyt (3.7)
Ly 2.1 "2y, A(n—1) Ly any ) an
+A1(§7y_)( vy +2y(y') )y +A0<§7?)y 1/y
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By equation (3.6), expression (3.7) equals A\y" - g. We get by clearing the denom-
inator of (3.7) that the numerator of (3.7) equals A\y***Ng. Writing g = Xo(y")" +
Bua(y,y") ")+ 4 Bu(y, y')y" + Bo(y, y'), we have

n Ly n—
M(=v*y" +2y(y')?) +An_1(g;,E)(—y2y”+2y(y’)2) Wyt (3.8)
1y 2,11 "2y, 4(n—1 Ly,
+A1(=, ) (=9 + 29(y) D)y Y+ Ao(=, )yt
1(y y2)( (¥')7) o(y yg)

= A"V Do () 4 Buea (y, )W)+ -+ Bi(y, vy + Bo(y, y)).

From the LHS of (3.8) we get

Al(—l)nQQn(y”)n — )\)\gy4"+N(y”)”,
so N = —2n. The RHS of (3.8) says that the (y”)° coefficient must have order
> 4n + N = 4n — 2n = 2n in y, and since the LHS has the monomial \;2"y"(y")*"
with order < 2n in y (assuming n > 0), it is enough to show that no other term of
the LHS can cancel this monomial. The only terms of the LHS with order 0 in 3" are

from the last terms of each binomial expansion, so if there did exist such other term,
there would exist [,m > 0 and k£ > 1 such that

1 y/ m, n— n— n n
G )PPyt = gty
Looking at the power of y', we get that m = 2k, and so we compare the order of
y on each side: we must have —1 —2(2k) + (n— k) +4k =n < —l = k. Since =1 <0
and k£ > 1, this is impossible.

]

Proposition C. Let () C P} be a smooth quadric hypersurface. There are no lifts
of Frobenius on J'(Q).

Proof. Let Q =V (3_"_ aijviz;), where (a;;) € GLni1(R), ie., det(a;) Z0 mod p.
We first show that through an automorphism of R[zy, ..., x|, @ can be rewritten

2 ~ - _ :
as V(3_, z'), where 2; the image of x;. Consider ¢ = }_, ; a;;x;z;. There are two cases:

Case 1: ¢ has square monomials. WLOG, suppose one of the monomials of ¢ is

CLO()I‘% = CLZE%.

29



Case la: a € R*. Write

q = ax(z) + 2a’xOLO(xb s 7xm) + QO(Q:l? s 7~Tm)
= a(x] + 2x9Lo + L) — aLi + Qq
= a(wg + Lo)* + Qo(x1, ..., 7).
The automorphism will send zy — g + L{ := 2. For @6(%1, ..., Tm), we are placed

into either Case 1 or Case 2 and we proceed inductively to rewrite ¢ as a sum of

squares.
Case 1b: a ¢ R*. Then the p-adic valuation v(a) is > 0.

If v(Lg) > 0 also (see above), then we look at )y and place ourselves into either
Case 1 or Case 2. It is not possible that v(a;),v(L;) > 0 for all 4, i.e., to remain in
this case indefinitely, because this would mean that all entries of (a;;) are divisible by

p, so that det(a;;) =0 mod p.
If v(Ly) = 0, then the coefficient of some monomial of Ly has valuation 0. WLOG,
say v(agr) = 0. Set xg = Ty — &1, ¥1 = To + T7 to get
q = a(fo — 1) + ap (To* — T17) + - -
e (a+a01)~f02+“‘ .

Since ag; € R*, v(a+ag) = 0, and we go to Case la, with a+ag; taking the place of a.
Case 2: () has no square monomials. Some coefficient a;; is invertible; otherwise,
det(a;;) = 0 mod p. WLOG, say ag; := a € R*. We have QQ = axozy + ---.

Substitute xg = o — 1, T1 = To + T1, x; = T; for ¢ > 2. Then

Q=a(T’ — &%)+ =afy? —afy > + -

and we are reduced to Case la.

We see through the above process that the first step of the induction goes through,

i.e., that a first change of variables removes the presence of one of the x;’s and gives
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a single Z;> monomial. Assuming WLOG that z; = zo, the matrix representing ¢ in

the new set of variables has the form

a 0 ... 0
0 bll blm
0 blm bmm

where @ € R* and (b;;) € GL,,(R). We can perform the same process on (b;;) (note
that det(b;;) # 0 mod p; otherwise, det(a;;) =0 mod p), and so the inductive step
holds.

After the induction, we have ¢ = ), ¢;Z2, with ¢; € R* for all 4. To make the
square monomials of ¢ have coefficients of 1, we can make another change of variables
2; = /Ci(Z;), using the fact that every element of R* has a square root in R, a con-

sequence of Hensel’s Lemma.

Now, once we have rewritten ¢ = Y, 22, we perform a final change of variables. If

m is odd (so that there is an even number of variables), we set

To — Zo—i"izl
1 = 2o —izl
To = Z9 —|—22’3

T3 = 29 —i23

Tm—1 = Zm—1 T 12m

T = Zm—1 — 1Zm.-

This yields

q=2oT1 + 223+ + Typ1Tpm.

By swapping z1 and x3 for the purposes of the upcoming step of the computation,

we obtain
q=2oT3+T1T2+ "+ Typ1Tm.
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We have

JHQ) =" (Proj(FlEw 21, ]
(a)
= Sof Rz g () ()] o
(22 4 (Z)(22) oo (EmL)(Zm), 52 4 (Z)(22) + -« (Em2)(2m)))
:Spf R[yoh’yom’yél,uy[/)m}A J--

(3/03 + yYo1Yo2 + -+ + Yo,m—1Yon, 0(Yo3 + Yo1Yo2 + - - - + yO,mflyOm))

.
where y;; ==
1

We use the computation from the proof that there are no lifts of Frobenius on
JY(P™) (step 2 of proof of Theorem A). Observe that modding an element of a quo-
tient ring A/I by the ideal (p?A + I)/I is computationally equivalent to modding a
representative in A of that element by the ideal p?A + I, by the Third Isomorphism

Theorem. Therefore, letting

R[y()l) s 7y0m)y61) s 7y(/)m]A
(y03 + YorYo2 + ++ + + Yo,m—1Yom; 6 (o3 + YorYoz + -+ + yO,mfIZJOm))

Ao/Io = Spf

and using the same notation as in the J*(P") proof (see top of p. 22), we get

’ / 2p?
— QQ,14 (Yo1, - - - Yom> Yoo - - » Yom ) Vo1 +
p

2
p@o,li(y()l, <oy Yom, y(,)27 cee 7y6m)ygl =0 mod (p2A0 + IO)

We know that 0,15, = 0 mod (pAo + Ip) and ap1, =1 mod (pAg + Ip), so we

have
2 2
—(py1 + Py + p(pya + ha + 1)%y8) = pPys + by

for some hy, ho, hg € Iy, 1,772,773 € Ag. This gives
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2 2
—pnyey +pyh =0 mod (p*Ag + Ip),

SO

2 2
—p%?/g}f +pyo = P15 (Yos+Yo1Yoa++ - “+Y0.m—1Y0m ) +769 (Yos+Yo1 Yo+ - *+Yo,m—1Yom )

for some 74, v5, V6 € Ao-

Examine the coeflicient of ygi on both sides of the equation. On the LHS, this
coefficient is p. For the RHS, observe that the coefficient of ygi in v5(vo3 + Yo1Yo2 +
4+ Yon—1Yom) is 0. Meanwhile,

D = 6(yo3 + yoryoz + - + Yo,m—1Yom)

(o3 + YorYo2 + - + Yom—1Yom) — (Yo3 + Yo1Yo2 + - = + Yom—1Yom)?
p

Upon expanding this out [recall that ¢(vo;) = vo; + pyp,], we find that no mono-
mial of D is a power of yy; only, but is also divisible by some other variable, so the
coefficient of yé’i in D is 0. This leaves us to examine p*y,. But the coefficient of ygi

in p?v, must be divisible by p?, while p is not.

This concludes the proof in the case that m is odd. If m is even, then for the first

m — 1 variables, we perform the stated change of variables and set z,, = z,, to get

2
q=2oT3 + T1Xo+ -+ Tpy_9Tpm_1 + T,,.

Tracing through the above proof for the even case, we see that the presence of

this extra variable does not have influence.

We have shown that there exists no lift of Frobenius on J(Q). O
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Proposition D. Let z = (z;;) be an n-by-n matrix of indeterminates. There exists

no lift of Frobenius on M,, = Spec R[z] inducing a lift of Frobenius on GL,,.

Proof. We prove the statement for n = 2 first.

Let ¢ : My = Spec Rla,b,c,d] — M be a lift of Frobenius. On rings, this is
given by ¢ : Rla,b,c,d] — R[a,b,c,d] such that ¢(a) = a? + pA, ¢(b) = b* + pB,
o(c) =+ pC, ¢(d) = d” + pD for some A, B,C, D € Rla,b,c,d].

Suppose this induces ¢ G Lo= Spec R[a b,c,d, d —5-] = GL,. This is given on
rings by ¢ : Rla, b, ¢,d, —*—] — R|a,b,c,d

—=—]. But we have the following lemma.

’db ’db

Lemma: Let f € R|a,b,c,d] be irreducible. Then

1
Rla,b,c,d,~]" = {\f" A€ R*,m € Z}.

]
f
Proof of lemma: Certainly RHS C LHS. For any « € LHS, there exists v €
Rla,b,c,d, %] such that wv = 1. Since R|a,b, c,d, l] = Rla,b,c,d]s, we can write
f%l, me, where g, h € Rla,b,c,d] and my,my € Z. We may assume that g
and h do not have f as a factor because R[a, b, ¢, d] is a UFD. Thus, gh = f™ ™2 and
since f is irreducible in R[a, b, ¢, d], either g € R[a,b,c,d]* = R* or h € R*. Without

loss of generality, suppose h € R*. Then f™ 12 divides g. But we already said that

U = v =

g does not have f as a factor, so m; +my = 0, and f™ ™2 = 1. This in turn implies
that g =\ € R*, sou =

where m = —m; € Z.

f%l, where g € R* and m; € Z. We can rewrite u = Af™,

Since ring homomorphisms map invertible elements to invertible elements, we
must have that ¢(ad—bc) € Rla, b, ¢, d, —L-1*. It is well known that the determinant
polynomial is irreducible, so we can apply the above lemma to f = ad — be, and we

have

d(ad — be) = Nad — be)™ (3.9)
for some A € R*, m € Z. This yields
(a? + pA)(d” + pD) — (V¥ + pB)(c? + pC) = A(ad — be)™.
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Reducing mod p, we get

(ad)? — (b’ = Aad)™ + Ay (”;) (ad)™ ¥ (~be)*,
k=1

which implies that m = p and A =1 (mod p).

So we have

(a? + pA)(d? + pD) — (P + pB)(c? + pC) = A(ad — be)?,

which gives

(ad)? — (bc)” + p(AdP + DaP — B — CbP) =

A[(ad)? — p(ad)”~"be + Z (Z) (ad)?~*(be)*]  (mod p?).

But every term of the LHS has order > p in at least one of a, b, ¢, or d, while the
RHS has the term —pA(ad)?~'bc whose order is less than p in a, b, ¢, and d. Thus, we

arrive at a contradiction.

Now consider arbitrary n. Let ¢ : M,, = Spec R[z] — M,,, where x = {x;;}1<; j<n-
On rings this is given by ¢ : R[z] — R[z] such that ¢(z;;) = z}; +pA;; for Aj; € Rlz].
Assume this induces ¢ : GL, =Spec R[z,det(x)”!] — GL,. [With det(z)™!, we
consider z to be the n by n matrix (x;;).] In exactly the same way as for n = 2, one

shows that

R[z, det(z)"1]* = {Adet(z)™, A € R*,m € Z)}.

Hence, we have

o(det(x)) = Adet(z)™ (3.10)

for some A € R*, m € Z.

o ) 1 ifi=753>2
Let us specialize by setting z;; = . Then we have
0, ifi#j;1,5>2
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z11 Z12 O 0
Tor Tz O
0 0 1
Tr =
0 1
0 1

Applying Laplace’s determinant formula detz = Y77, (—1)""/2;;M;;, where M;;
is the determinant of the n — 1 by n — 1 matrix obtained removing the ith row, jth

column of x, we get in this specialized case, with ¢+ = 1, that

det(x) = z11 M1y — 212Mo
:xll(l’m'1'--1)—$12(;E21-1--~1)
= T11X22 — T12721-
Thus, equation (3.10) above reduces to equation (3.9), which we showed cannot hold,

so we are done.

]

36



4. Appendix: Motivation and Further Background

We begin this final section by discussing the relevance of lifts of Frobenius in the larger
context of “arithmetic differential equations,” to be defined shortly. First recall the
situation for smooth manifolds in differential geometry ([Le03], p. 435). Let M be an
m-dimensional smooth manifold with local coordinates =z = {xy,...,x,,}. A smooth
vector field V : M — TM is given by V. =>"", V;'a%i for functions V; € C*°(M). An
integral curve of V is a smooth curve v : J — M, where J C R an open interval is
typically considered as a time domain, such that +'(t) = V), i.e. the tangent vector
to the curve v at each point is determined by the value of the vector field V' at that
point. To find the integral curves v(t) = (x1(¢),...,z,(t)) for some vector field, one

solves the system of ordinary differential equations

{21 (t) = Vi(x (1), ., 27, (1) = Vin(2(1))}

for x1(t), ..., xzm(t). Moreover, the collection of all integral curves forms a flow on M.

There is an analogous situation in arithmetic. For simplicity, we consider an affine
p-adic formal scheme X. Any g € O(J"(X)) represented by a power series G induces
amap g, : X(R) = R by g.(a) := G(a,da,...,0"a). The following definition is found
in [BM13], p. 4.

Definition 4.1. (a) A system of arithmetic differential equations of order n on X is
a subset £ of O(J"(X)).

(b) A solution of £ is an R-point a € X (R) such that g.(a) =0 for all g € £. The
set of all solutions of £ is denoted Sol(£).

(c) Given a p-derivation Z : O(X) — O(X), the d-flow of Z is the system of
arithmetic differential equations of order 1, denoted by £(Z), which is the ideal in
O(J'(X)) generated by elements of the form dg; — Zg;, where g; € O(X) generate
O(X) as an R-algebra.
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Remark 4.2. For a §-flow £(2) as in (c¢) above,

Sol(E(Z)) = {a € X(R) : dg;(a) = Dg;(a) Vj}-

Whereas integral curves y(t) satisfying 7/(t) = V, are solutions to ODE’s determined
by a vector field (derivation) V', the solutions to a system of ADE’s are integral points

(R-points) satisfying an analogous property.

Example 4.3. Let X = A' =Spf R[z]; and let 2 : O(X) = R[z]" — R[z] be the
p-derivation on X given by Z(z) = 2. Note that x generates R[x] as a topological
R-algebra; £(2) = (' — 2*) C O(X) is the d-flow of 2. Also,

X(R) = Hom(SpfR, X') ~ Hom,;,,(R[z], R) = R,

SO

Sol(£(2)) = {a € R: da = a*}.

The following is some of the motivation from physics for looking at p-derivations
on the first jet space J'(X) of a scheme X :Spec%. First recall from Definition
1.21 that a normalized p-derivation 2 : O(J'(X)) — O(J'(X)) is a p-derivation
satisfying 2(x) = 2/. The differential geometric counterpart of J'(X) is the tangent
bundle TM of a manifold M. If M has local coordinates q = (¢4, ..., @), then the
local coordinate functions of TM are (q,p), where p = ¢, and we consider a vector
field # on T'M to be analogous to & if

0(¢;) = Gi == ps

for each 1.

A special case of a normalized vector field is a Hamiltonian vector field defined by
an energy (Hamiltonian) function on the phase space of a mechanical system given

by coordinates (q, p):

E(p.a) = 5 > 5 + Vi) = K(p) + V().

where K and V are kinetic and potential energies, respectively. Indeed, the Hamil-

tonian vector field
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" 0FE 0 0OFE 0
Q_Z Op; 9g; - 0g; 3pi>

=1

satisfies for each 7

oF

i = Gi-

Moreover, along the flow determined by 6, the energy function F is constant— that

is, energy is conserved. (cf. [Le03], pp. 484-488)

Let us now state some already known facts about lifts of Frobenius. They provide

some of the motivation and context for our results.

Proposition 4.4. Let X be an affine, formally smooth p-adic formal scheme over R.
Then X has a lift of Frobenius.

Proof. Write X =Spf B. We prove by induction that for all n > 1, there exists a lift
of Frobenius ¢, : B/p"B — B/p"B compatible with that on R, and by the inverse
limit functor we will get a lift of Frobenius ¢ : B — B. The base case n = 1 holds
since we have ¢, : B/pB — B/pB the Frobenius map, as B/pB has characteristic
p. Now, assume the above holds for n and show its holds for n + 1. We have the

following diagram:

R/pn+1R LN B/pn+lB

% )\ Pn+1

R/p"™M R —— B/p""'B —"— B/p"B —— B/p"B,

where 7 and ¢ are the canonical projection and injection, respectively, and ¢p is
induced from ¢ : R — R of Proposition 1.8. One checks that 7ot 0 ¢ = ¢, 0om oL,
so by definition of smoothness we get a map ¢,,; making the diagram commute.
The commutativity of the right half gives compatibility of ¢,,; with ¢,, and the
commutativity of the left half of the diagram says that ¢,, .1 extends ¢g.

O
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We have the following variant of Proposition 4.4. In what follows a formal scheme

will be called smooth if it is the completion of a smooth scheme.

Proposition 4.5. Given Y; an affine smooth formal scheme over another affine
smooth formal scheme Y;, with maps ¢y, y; : Yo — Y7 and 7 : Y — Y; such that
¢y, y; mod p is Frobenius composed with 7, then there exists a lift of Frobenius
oy, : Yo — Y5 such that 7o ¢y, = ¢y, v;.

Proof. Write Y7 =Spf A, Yo =Spf B. Then the statement can be rephrased as fol-
lows: let v : A — B be a morphism of rings, and assume that for all n > 1, A/p"A
and B/p"B are smooth over R/p"R and B/p"B smooth over A/p"A. Assume we
have ¢4 p : A — B such that ¢4 g(a) = a? (mod p) for all a € A. We must find
a ¢p : B — B such that ¢p(b) = WP (mod p) for all b € B and ¢p(a) = ¢ap(a)
for all a € A. This can be proven using the same basic argument as was done for

Proposition 4.4. We have a commutative diagram

A/prtiA _7 B/p"*'B

J/¢A,BI\.‘“__»” ¢n+1 \

B/p""'B —"— B/p"B — B/p"B.

One checks that ¢, om0y =mo¢s 5. We get ¢, as in the diagram, and so this
means ¢, 1 is a lift of Frobenius on B/p"*!' B that extends ¢4 5. By functoriality, we

get ¢p as desired. O

Proposition 4.6. Let X be smooth and J!(X) be affine. Then J!(X) has a normal-

ized lift of Frobenius.

Proof. Recall that a normalized p-derivation 6,1(x) on J'(X) sends x to z'; equiva-

lently, the corresponding normalized lift of Frobenius sends x to xP + pa’.

We have the lift of Frobenius ¢ : O(X) — O(J'(X)) induced by the universal
p-derivation of Definition 1.11. By the preceding proposition, letting Y5 = J'(X) and
Y = X, as J'(X) is smooth over X, we get a lift of Frobenius ¢ 1(x) : O(J'(X)) —
O(J'(X)) that extends ¢. In particular, this means that ¢ (x)(z) = ¢(x) = 2P +
pox = zP + px’. ]
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For the sake of completeness we end our discussion by stating some known results
about lifts of Frobenius on curves of genus 1 (Theorems 4.7-4.8) and > 2 (Theorems

4.9-4.10), respectively.

For Theorems 4.7 and 4.8, let E be an elliptic curve over R. For the definition of

“canonical lift” we refer to [Me72].

Theorem 4.7. [Me72] E is a canonical lift if and only if it has a lift of Frobenius.

Theorem 4.8. [BuSal4] J'(E) has a lift of Frobenius if and only if F has a lift of

Frobenius.

For Theorems 4.9 and 4.10, let X be a smooth projective curve of genus g > 2.

Theorem 4.9. [Ray83] X has no lifts of Frobenius.

Theorem 4.10. [Bu96] J'(X) is affine; in particular it has lifts of Frobenius.
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