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Lifts of Frobenius on Arithmetic Jet Spaces of

Schemes

by

Erik Medina

B.A., Mathematics, Dickinson College, 2009

Ph.D., Mathematics, University of New Mexico, 2016

Abstract

According to [Bu05], lifts of Frobenius on formal schemes X over the p-adic com-

pletion of the maximal unramified extension of the p-adic integers, R := �Zur
p , may

be viewed as arithmetic analogues of vector fields on manifolds. In particular, vector

fields on the tangent bundle of a manifold, appearing for instance in Hamiltonian

mechanics, have as arithmetic analogues lifts of Frobenius on arithmetic jet spaces

J
1(X) of schemes (cf. [BM13]).

In this thesis, we first consider the projective space X = Pm
R and prove that lifts

of Frobenius do not exist on the arithmetic jet spaces J
n(Pm

R ) for n,m ≥ 1. Ex-

hibiting a contrast in the case n = m = 1 between the arithmetic and geometric

frameworks, we show on the other hand that the space of vector fields on the tangent

bundle T (P1
k) lifting vector fields on P1

k, where k is an algebraically closed field, has

dimension 6 over k. Nevertheless, “normalized” vector fields, which play a role in

Hamiltonian mechanics, do not exist on T (P1
k). We proceed to prove a stronger result

for the case n = m = 1, that there are no effective Cartier divisors on J
2(P1) that

are finite-to-one over J1(P1), and discover that an analogous result holds in geometry.

As a final result, we prove the nonexistence of lifts of Frobenius on the first jet

space of any smooth quadric hypersurface in projective space.
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1. Background

We start by providing an overview of the mathematical objects, concepts, and facts

that form the background and foundation for our subsequent results. Our main

reference for the material in this section is [Bu05].

Definition 1.1. For a fixed prime p ∈ Z, p �= 2, let

Zp = {

∞�

i=0

aip
i : ai ∈ Z, 0 ≤ ai ≤ p− 1}

denote the p-adic integers.

Definition 1.2. For any ring A, define the p-adic completion of A to be

�A := lim
←−

A/p
n
A.

A ring A is p-adically complete if A ∼= �A. Then �A is itself p-adically complete.

Remark 1.3. Note that Zp = �Z = lim
←−

Z/pnZ.

Usually, because of the length of the expressions defining our rings, we will write

Aˆ instead of �A.

Definition 1.4. The ring

R := �Zur
p = Zp[{ζN} : p � N ] ,̂

where ζN are primitive Nth roots of unity, is the p-adic completion of the maximal

unramified extension of the of the p-adic integers; it the unique local, complete ring

with maximal ideal generated by p and residue field Fp, the algebraic closure of Fp. In

the general theory of “differential calculus with integers” developed by Buium [Bu05],

adjoining the roots of unity above gives our subsequent rings more “constants”, in

a sense to be clarified after Proposition 1.8. In Z itself, only 0, 1, and −1 are “con-

stants”.

Definition 1.5. Let u : A → B be a ring homomorphism. Then B has an A-module

structure given by a · b := u(a)b. A map δ : A → B is called a p-derivation if δ(1) = 0

and
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(i) δ(a1 + a2) = δa1 + δa2 −
�p−1

i=1
(pi)
p a

i
1a

p−i
2 · 1B.

(ii) δ(a1a2) = a
p
1δa2 + a

p
2δa1 + p(δa1)(δa2).

Definition 1.6. A lift of Frobenius on a ring A is a ring homomorphism φ : A → A

such that ∀a ∈ A, φ(a) ≡ a
p mod p.

Proposition 1.7. If A is p torsion-free, then there is a bijection

{p-derivations δ : A → A} � {lifts of Frobenius φ : A → A}.

Proof. Given δ : A → A a p-derivation, φ : A → A defined by φ(a) = a
p+pδa is a lift

of Frobenius (one checks it is a ring homomorphism), and given a lift of Frobenius

φ : A → A, one checks by a computation that δ : A → A defined by δa = φ(a)−ap

p

satisfies the properties of a p-derivation. The hypothesis that A is p torsion-free is

necessary so that the second map is well-defined. These maps from p-derivations to

lifts of Frobenius and vice versa are inverses.

Proposition 1.8. There is a unique lift of Frobenius φR on our ring R given by

φR(a) = a, a ∈ Zp, φR(ζN) = ζ
p
N for all N , p � N . Since R is an integral domain,

hence p-torsion free, there is thus a unique p-derivation δR : R → R given by δR(r) =
φR(r)−rp

p .

[Note that for a ∈ Z, φR(a) = a ≡ a
p (mod p) by Fermat’s Little Theorem, and

this fact extends to Zp.]

The “constants” of R, alluded to after Definition 1.4, are by definition

{a ∈ R : δ(a) = 0} = {a ∈ R :
φR(a)− a

p

p
= 0} = {a ∈ R : φR(a) = a

p
}

= {ζN : p � N} ∪ {0}.

Definition/Proposition 1.9. Let R be as before. Let x = {x1, . . . , xm} and

R{x} := R[x, x�
, x

��
, . . . , x

(n)
, . . . ], where x

(i) = {x
(i)
1 , . . . , x

(i)
m }. Let φ : R{x} → R{x}

be the ring homomorphism such that φ|R = φR, φ(xi) = x
p
i +px

�
i, φ(x

�
i) = (x�

i)
p+px

��
i ,

etc. Then φ is a lift of Frobenius which hence induces a p-derivation δ : R{x} → R{x}

defined by
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δ(F ) =
φ(F )− F

p

p
.

Remark 1.10. By construction, we have

δ(x) =
φ(x)− x

p

p
=

x
p + px

� − x
p

p
= x

�
.

Likewise, δ(x�) = x
��, and in general, δ(x(i)) = x

(i+1).

Definition 1.11. Let A = R[x1,...,xm]
(f1,...,fr)

=: R[x]
(f) . (Any finitely generated R-algebra is of

this form.) For each n ≥ 1, define

J
n(A) :=

R[x, x�
, . . . , x

(n)]ˆ

(f, δf, . . . , δnf)
.

We let J
−1(A) = R and J

0(A) = A. We call Jn(A) the nth p-jet algebra of A.

For each i ∈ Z, −1 ≤ i < ∞, we have ring homomorphisms ι̂i : J i(A) → J
i+1(A)

induced by inclusion of numerators. Also, the p-derivation δ : R{x} → R{x} of

Definition/Proposition 1.9 induces p-derivations δi : J i(A) → J
i+1(A) for each i by

continuity. (A power series that converges p-adically is mapped by the lift of Frobenius

φ of Definition/Proposition 1.9 to a power series that converges p-adically, since φ

maps p to itself.)

Remark 1.12. For future computational purposes, it is worth noting what the ele-

ments of Jn(A) look like in more down-to-earth terms. It is a fact that can be proven

from the definition of p-adic completion and its universal property that for any ring

A, A[x1, . . . , xm ]̂ =: A[x]̂ equals

{

�

α

aαx
α
∈ Â [[x]] : aα → 0 p-adically as |α| → 0},

where α is a multi-index and x = {x1, . . . , xm}. So the elements of J
n(A) :=

R[x,x�,...,x(n)]ˆ
(f,δf,...,δnf) are represented by elements of the power series ring R[[x, x�

, . . . , x
(n)]]

such that the monomial summands become more and more divisible by p as their

powers increase. This also means that reducing any element of Jn(A) mod p
s for any

s results in a polynomial.

3



Definition 1.13. Let A be as before. Given an affine scheme X = Spec A, define

the nth arithmetic p-jet space of X by

J
n(X) := Spf Jn(A) := Spf

R[x, x�
, . . . , x

(n)]ˆ

(f, δf, . . . , δnf)
.

Given a scheme X =
�

finiteSpec Ai of finite type over R, the nth arithmetic p-jet

space of X is defined to be

J
n(X) :=

�
J
n(Xi) =

�

finite

Spf (Jn(Ai)).

Example 1.14. Let X = P1
R =Spec R[x]∪ Spec R[y], glued via xy = 1. Then

J
1(X) =Spf R[x, x�]ˆ ∪ Spf R[y, y�] .̂ We will return to this example in the results.

Remark 1.15. It is not immediate that the definition of jet space is correct. That

is, we must be able to glue the Spf(Jn(Ai))’s together after localizing. That we can

do this follows from the compatibility of the functor Jn with localization. ([Bu96], p.

352)

Definition 1.16. Let X =
�

Spf �Ai be a formal scheme over R. A lift of Frobenius

on X is a morphism of formal schemes φ : X → X such that the ring maps φ
∗
i :

�Ai → �Ai are lifts of Frobenius for each i, with φ
∗
i |R = φR for all i, and for all

i, j, φi|Spf�Ai∩Spf�Aj
= φj|Spf�Ai∩Spf�Aj

. We also say that the induced map of sheaves

δ : OX → OX is a p-derivation on X.

Definition 1.17. Let k be an algebraically closed field, and let X =Spec(k[x](f) ) be

a smooth affine scheme over k. The geometric tangent bundle of X is defined to be

T (X) := SpecS(ΩX/k), where ΩX/k is the sheaf of relative differentials of X over k.

One can extend this definition to an arbitrary smooth scheme X =
�

i Xi to get

T (X) =
�

i

SpecS(ΩXi/k).

(See [Ha77], p. 128.)

Remark 1.18. For each Xi =Spec(k[x](f) ) affine, we have

O(T (Xi)) = O(SpecS(ΩXi/k)) = S(ΩXi/k) =
k[x, x�]

(f, df)
,
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where d : k[x]
(f) → Ω k[x]

(f) /k
and x

� := dx. Also, it is a fact that k-derivations OX → OX

are in bijection with sections s : X → T (X) of the projection π : T (X) → X, i.e.,

maps s such that π◦s = idX , which are by definition the vector fields on X. Similarly,

in differential geometry, given a smooth manifoldM , derivations on the ring of smooth

functions C∞(M) are in bijection with smooth sections s : M → TM , i.e., the smooth

vector fields on M . It turns out that lifts of Frobenius (equivalently, p-derivations)

on a p-adic formal scheme X are in bijection with sections s : X → J
1(X). We will

conclude this as a consequence of the following universal property.

Proposition 1.19. ([Bu96], p. 352) Let R be as above, and let A be as in Definition

1.11. For each i ∈ Z, −1 ≤ i < ∞, let ι̂i : J i(A) → J
i+1(A) be the “structure”

ring homomorphisms and δi : J i(A) → J
i+1(A) the p-derivations also described in

Definition 1.11. For any R-algebra homomorphism g : Jn−1(A) → C into a p-adically

complete ring C and for any p-derivation ∂ : Jn−1(A) → C such that ∂◦în−2 = g◦δn−2,

there exists a unique R-algebra homomorphism h : Jn(A) → C such that h◦ în−1 = g

and h ◦ δn−1 = ∂:

· · · J
n−2(A) J

n−1(A) J
n(A)

C

ι̂n−3

δn−3

ι̂n−2

δn−2

ι̂n−1

δn−1

g

∂
h

.

(Here the notation
ι̂i
−→
δi

is shorthand for two maps J i(A)
ι̂i
−→ J

i+1(A) and

J
i(A)

δi
−→ J

i+1(A).)

Proof. Define h(r) = g(r) for all r ∈ R; h(x(i)) = g(x(i)) for i �= n; and

h(x(n)) = ∂(x(n−1)).

(For notational simplicity, we leave off equivalence class symbols in the proof, though

all elements are understood to be classes in their respective quotients.) Note that

h ◦ ι̂
n−1(r) = h(r) = g(r)

for r ∈ R and

h ◦ ι̂
n−1(x(i)) = h(x(i)) = g(x(i))

5



for i ≤ n− 1, so that h ◦ ι̂n−1 = g. Similarly, for all r ∈ R we have

h◦ δn−1(r) = h◦ δR(r) = h◦ ι̂
n−1

◦ δR(r) = g ◦ δR(r) = g ◦ δn−2(r) = ∂ ◦ ι̂
n−2(r) = ∂(r);

for i ≤ n− 2 we have

h ◦ δn−1(x
(i)) = h(x(i+1)) = g(x(i+1)) = g ◦ δn−2(x

(i)) = ∂ ◦ ι̂
n−2(x(i)) = ∂(x(i));

and

h ◦ δn−1(x
(n−1)) = h(x(n)) = ∂(x(n−1)),

which shows that h◦δn−1 = ∂. Since C is p-adically complete, we get that for any P =
�

α aαx
α0(x�)α1 · · · (x(n))αn ∈ J

n(A), h(P ) =
�

α h(aα)h(x)
α0h(x�)α1 · · ·h(x(n))αn

=
�

α

aαg(x)
α0g(x�)α1 · · · g(x(n−1))αn∂(x(n−1))αn ∈ C,

since aα → 0 p-adically as α → ∞. (See Remark 1.12.)

To see uniqueness, suppose there exists h̃ with the same properties. We have

h̃(r) = h̃ ◦ ι̂
n−1(r) = g(r) = h(r); for i ≤ n − 1, h̃(x(i)) = h̃ ◦ ι̂

n−1(x(i)) = g(x(i)) =

h(x(i)); and h̃(x(n)) = h̃ ◦ δn−1(x(n−1)) = ∂(x(n−1)) = h(x(n)). Thus, h̃ = h, proving

uniqueness and concluding the proof.

Corollary 1.20. There exists a natural bijection between the p-derivations on a

formal scheme X and the sections of the projection π : J1(X) → X, that is, the

morphisms of formal schemes s : X → J
1(X) such that π ◦ s = idX .

Proof. Write X =
�

Spf �Ai. Let ∂ : X → X be a p-derivation defined locally by

p-derivations ∂i : �Ai →
�Ai. We also have the identity map id : X → X given locally

by identity maps idi : �Ai →
�Ai. The projection π : J1(X) → X is given locally on

rings by ι̂0,i : �Ai → J
1(Ai). This gives the following diagram:

R �Ai J
1(Ai)

�Ai

ι̂−1,i

δR

ι̂0,i

δ

idi

∂i
s∗i

.

6



One checks that the hypotheses of the universal property Proposition 1.19 are

satisfied. To give a section s : X → J
1(X) is equivalent to giving ring maps s

∗
i :

J
1(Ai) → �Ai such that s∗i ◦ι̂0,i = idi that glue. The universal property gives morphisms

s
∗
i : J

1(Ai) → �Ai, with s
∗
i ◦ ι̂0,i = idi. One gets glueability from the fact that the δi’s

and idi’s glue by assumption. The fact that this map from p-derivations to sections is

a bijection follows because the section property requires that s∗i |�Ai
= idi, so that any

s
∗
i is uniquely determined by the value s

∗
i (x

�
i) (where �Ai =

R[xi]ˆ
(fi)

), and we can take

∂i(x�
i) = s

∗
i (x

�
i).

Definition 1.21. Let X = Spf R[x]ˆ
(f) be an affine p-adic formal scheme. A normalized

p-derivation D : J1(X) → J
1(X) is a p-derivation such that

D(x) = δ(x) := x
�
.

For X a non-affine formal scheme, a normalized p-derivation D : J1(X) → J
1(X)

is a p-derivation on J
1(X) (see Definition 1.16) such that on each affine piece, D

is normalized. We call the corresponding lift of Frobenius on J
1(X) a normalized

lift of Frobenius. Similarly, for an affine scheme X = Spec k[x]ˆ
(f) with tangent bundle

T (X) =Spec k[x,x�]ˆ
(f,df) (recall the notation of Remark 1.18), we call a derivation D :

k[x,x�]ˆ
(f,df) →

k[x,x�]ˆ
(f,df) normalized if

D(x) = x
� := dx,

and for a non-affine scheme X, we call D : O(T (X)) → O(T (X)) normalized if it is

normalized on each affine piece.

Definition 1.22. Let X =
�

i Spf �Ai be a formal scheme over R. An effective

Cartier divisor on X is given by an open cover {Ui} of X and a collection of functions

fi ∈ O(Ui) such that for each i, j, there exists uij ∈ O(Ui ∩Uj)× such that fi = uijfj.

Such a divisor defines a formal subscheme
�

Spf
�Ai
(fi)

of X. An effective Cartier divisor

on a scheme is defined in a similar way.

Definition 1.23. A morphism of formal schemes ψ : X → Y is finite if it has the

form ψ : X =
�

Spf �Ai → Y =
�

Spf �Bi, with �Ai a finitely-generated �Bi-module for

each i.

In the statement of the following proposition we use the fact ([BuSa14], p. 680,

also shown in the proof) that there is a natural closed immersion J
2(X) ⊂ J

1(J1(X)).

7



Proposition 1.24. A section s : J1(X) → J
1(J1(X)) corresponds to a normalized

p-derivation D : J1(X) → J
1(X) if and only if Im(s) ⊂ J

2(X) ⊂ J
1(J1(X)).

Remark 1.25. Note that if a section s as above satisfies Im(s) ⊂ J
2(X) and X is a

smooth curve, then Im(s) is a Cartier divisor on J
2(X) finite over J1(X).

Proof. (of Proposition 1.24) For simplicity, we look at the case where X = A1 =

Spf (R[x] )̂; the general case is proved by reduction to this case via étale coordinates.

We have J
1(X) = SpfR[x, δx] ˆ and J

1(J1(X)) = SpfR[x, δx, δ1x, δ1(δx)]̂ , where

δ1 : J1(R[x] )̂ → J
1(J1(R[x] )̂) = J

1(R[x, δx] )̂ is the p-derivation obtained as in

Definition/Proposition 1.9 and Definition 1.11 (note δ1 �= δ : J1(R[x] )̂ → J
2(R[x] )̂.

We have the following commutative diagram relating D and s
∗, by Corollary 1.20:

R[x, δx]ˆ R[x, δx, δ1x, δ1(δx)]ˆ

R[x, δx]ˆ

ι

δ1
id

D
s∗ ,

with s
∗(x) = x, s∗(δx) = δx, s∗(δ1x) = D(x), s∗(δ1δx) = D(δx). Observe that D

being normalized is equivalent to

ker s∗ ⊃ (δx− δ1x)

since

s
∗(δx− δ1x) = δx− D(x) = 0 ⇔ D(x) = δx.

We next claim that

J
2(R[x] )̂ ∼=

R[x, δx, δ1x, δ1(δx)]ˆ

(δx− δ1x)
.

From Proposition 1.19, we get the following diagram:

R[x, δx]ˆ R[x, δx, δ1x, δ1(δx)]ˆ

R[x, δx, δ2x]ˆ

ι

δ1
id

δ
h ,

8



where h(x) = x, h(δx) = δx, h(δ1x) = δx, and h(δ1δx) = δ
2(x). This map is surjective

and its kernel is (δx− δ1x), so

R[x, δx, δ1x, δ1(δx)]ˆ

(δx− δ1x)
∼= R[x, δx, δ2x]ˆ= J

2(R[x] )̂.

Now, Ims ⊂ J
2(X) ∼= Spf

�R[x,δx,δ1x,δ1(δx)]ˆ
(δx−δ1x)

�
is equivalent to ker s∗ ⊃ (δx − δ1x)

(which, as stated before, is equivalent to D being normalized) by the following fact:

given A, B, integral domains and a map s : SpecA → Spec B induced by a ring map

s
∗ : B → A, we have that Ims ⊂ SpecB/I ⇔ ker s∗ ⊃ I.

In the appendix, we explain the significance in the context of arithmetic differen-

tial equations of a p-derivation (equivalently, lift of Frobenius) being normalized.

We now state and prove the quotient rule for elements in any ring A for which

there is a p-derivation δ : A → B; we will use this in the proof of Theorem B.

Proposition 1.26. Let δ : A → B be a p-derivation and φ : A → B the corresponding

lift of Frobenius. Given f ∈ A, g ∈ A
×, we have

δ(f/g) =
g
p
δf − f

p
δg

gpφ(g)
.

Proof. We have

δ(f) = δ
�f
g
· g

�
= (f/g)pδg + g

p
δ(f/g) + pδ(f/g)δg,

hence

δ(f/g)(gp + pδg) = δf − (f/g)pδg,

so

δ(f/g) =
δf − (f/g)pδg

gp + pδg

=
g
p
δf − f

p
δg

gp(gp + pδg)
=

g
p
δf − f

p
δg

gpφ(g)
.

9



Definition 1.27. Projective m-space over R is defined to be

Pm
R :=

m�

i=0

Spec R[yi0, . . . , yim],

where yij =
xj

xi
. In other words, we takem+1 affine n-dimensional planes and glue any

pair Spec (R[yi0, . . . , yin])yij and Spec (R[yj0, . . . , yjn])yji via the identity isomorphism.

We obtain a corresponding p-adic formal scheme

�Pm
R :=

m�

i=0

Spf R[yi0, . . . , yim ]̂ ,

and the nth jet space of Pm, Jn(Pm), is by definition

J
n(Pm) :=

m�

i=0

Spf R[yi0, . . . , yim, y
�
i0, . . . , y

�
im, . . . , y

(n)
i0 , . . . , y

(n)
im ]̂ .

Definition 1.28. A smooth quadric Q ⊂ Pm
R is a hypersurface

Q =
m�

k=0

Spec
R[yk0, . . . , ykm]

(
�

i,j aijykiykj)
,

such that A = (aij) ∈ GLm+1(R) and is symmetric.

Definition 1.29. Fix the notation of Remark 1.18. Given a scheme

X =
�

i Spec Ai, where each Ai = k[xi]
(fi)

and gluing on each pair i, j is given by

xi �→ gj(xj) for some gj ∈ Aj, the geometric jet space J
2(X) is defined to be

�

i

Spec
k[xi, x

�
i, x

��
i ]

(fi, dfi, d2fi)
,

glued via xi �→ gj(xj), x�
i �→ d(gj(xj)), x��

i �→ d
2(gj(xj)), where

d : k[x, x�
, x

��
, . . . ] → k[x, x�

, x
��
, . . . ]

is the derivation such that dx = x
�, dx� = x

��, etc.
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2. Results

We now state our results; we give the proofs in section 3. Before we begin, we recall

the analogy between the first jet space of a p-adic formal scheme, J1(X), and the

tangent bundle of a manifold, TM , and between lifts of Frobenius on p-adic formal

schemes and vector fields on a manifold. We also recall the analogy between the

p-jet space J
2(X) and the geometric jet space J

2(X). (See Definitions 1.17 and 1.29

and Remark 1.18.) Because of this, we state corresponding results on T (P1) and the

geometric J
2(P1) and point out where results carry over and where they do not.

We include the first three propositions in this section for completeness of our

discussion. Proposition 2.1 is an immediate consequence of Grothendieck’s existence

theorem in formal geometry. [Gr61]

Proposition 2.1. The lifts of Frobenius on �Pn
R are given on the xi’s by φ(xi) =

x
p
i + pFi := Gi, i = 0, 1, . . . , n, where the Gi’s are homogeneous polynomials in

x0, x1, . . . , xn of degree p.

The above proposition can be viewed as an analogue of the following well-known

result in the geometric case.

Proposition 2.2. Let k = k̄ be an algebraically closed field. The vector fields on Pn
k

are of the form
�n

i=0 Li
∂
∂xi

, where each Li =
�n

j=0 aijxj ∈ H
0(Pn

k ,O(1)).

Here is our first main result.

Theorem A. There are no lifts of Frobenius on the p-jet spaces Jn(Pm) for

n,m ≥ 1.

It is interesting to compare Theorem A with the following result in the geometric

case.
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Proposition A’. Let k be an algebraically closed field. The space of vector fields on

the geometric tangent bundle T (P1
k) lifting vector fields on P1

k has dimension 6 over

k. However, there are no normalized vector fields on T (P1
k).

Here is our second main result:

Theorem B. There are no effective Cartier divisors D on the p-jet space J2(P1) such

that D → J
1(P1) is finite.

Compare Theorem B with the following.

Proposition B’. There are no effective Cartier divisors D on the geometric jet space

J
2(P1), Spec k[x, x�

, x
��] ∪ Spec k[y, y�, y��], such that D → T (P1) is finite.

We conclude with the following results:

Proposition C. Let Q ⊂ Pm
R be a smooth quadric hypersurface. There are no lifts

of Frobenius on J
1(Q).

Proposition D. Let x = (xij) be an n-by-n matrix of indeterminates. There exists

no lift of Frobenius on Mn = Spec R[x] inducing a lift of Frobenius on

GLn = Spec R[x, det x−1].
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3. Proofs of Results

Proposition 2.1. The lifts of Frobenius on �Pn
R are given on the xi’s by φ(xi) =

x
p
i + pFi := Gi, i = 0, 1, . . . , n, where the Fi’s are homogeneous polynomials in

x0, x1, . . . , xn.

Proof. Any morphism of formal schemes �φ : �Pn
R → �Pn

R is induced by a morphism

of schemes φ : Pn
R → Pn

R, by a GAGA theorem of Grothendieck [Gr61]. Thus, it is

enough to find the morphisms Pn
R → Pn

R satisfying the additional property required

to be lifts of Frobenius. Morphisms from any scheme X to Pn
R are well-known and are

described, for example, in [Ha77], Thm. II.7.1; any such morphism φ is induced by

an invertible sheaf L on X and global sections s0, . . . , sn ∈ Γ(X,L ) which generate

L , with si = φ
∗(xi) on rings under this isomorphism.

Since R is a UFD, Pic R = 0, so Pic(Pn
R) ∼= Z, and every invertible sheaf on Pn

R is

of the form O(d) for some d ∈ Z. Also, Γ(Pn
R,O(d)) identifies with the R-module of

homogeneous polynomials of degree d in n+ 1 variables. We know that for each i =

0, 1, . . . , n, φi(xi) = x
p
i + pFi because φ is a lift of Frobenius. Therefore, our sections

must come from homogeneous polynomials of degree p. It remains to show that that

the Gi := x
p
i + pFi’s generate O(p), i.e. that the zero scheme Z := Z(G0, . . . , Gn) is

empty. We know that the Gi’s have no common zeros mod p since Z(xp
0, x

p
1, . . . , x

p
n) =

∅, so Z(G0, . . . , Gn)(k) = (Z ∩ Pn
k)(k) = ∅. By Hilbert’s Nullstellensatz, since k is

algebraically closed, Z ∩ Pn
k = ∅. Now, we know that Pn

R
π
→ SpecR is proper ([Ha77],

Thm II.4.9), so π(Z) is closed in Spec R = {(0), (p)}. Assume Z �= ∅. Then π(Z) �= ∅,

so (p) ∈ π(Z), a contradiction.

Proposition 2.2. Let k = k̄. The vector fields on Pn
k are of the form

�n
i=0 Li

∂
∂xi

,

where each Li =
�n

j=0 aijxj ∈ H
0(Pn

k ,O(1)).

Proof. The vector fields on X = Pn
k are by definition H

0(Pn
k ,TX), where TX is the

tangent sheaf on X. Recall the Euler exact sequence

0 → OX → OX(1)
n+1

→ TX → 0,

[Ha77], p. 182. This induces an exact sequence
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0 → H
0(X,OX) = k → H

0(X,OX(1))
n+1 ψ

→ H
0(X,TX) → H

1(X,OX) = 0,

the last equality by [Ha77], Thm. III.5.1(b). The map ψ is given by (L0, . . . , Ln) �→�n
i=0 Li

∂
∂xi

. Thus, H0(X,TX) =Imψ = {
�n

i=0 Li
∂
∂xi

: Li ∈ H
0(Pn

k ,O(1))}.

Theorem A. There are no lifts of Frobenius on the p-jet spaces Jn(Pm) for

n,m ≥ 1.

Proof. Step 1: As a warm-up, we first prove the statement for n = m = 1.

Recall that

J
1(P1) := Spf R[x, x� ]̂ ∪ Spf R[y, y� ]̂ ,

where xy = 1. Assume we have a lift of Frobenius on J
1(P1). Then it is given by

ring homomorphisms φ1 : R[x, x� ]̂ → R[x, x� ]̂ and φ2 : R[y, y� ]̂ → R[y, y� ]̂ satisfying

Definition 1.16. We have

φ1(x
�) = (x�)p + ph1(x, x

�), φ1(y
�) = (y�)p + ph2(y, y

�)

for some h1 ∈ R[x, x� ]̂ , h2 ∈ R[y, y� ]̂ . For computational purposes, we rewrite

φ1(x
�) =

∞�

i=0

αi(x)(x
�)i, φ2(y

�) =
∞�

i=0

βi(y)(y
�)i,

where for each i, αi ∈ R[x]̂ , βi ∈ R[y]̂ . Observe that

αp(x) ≡ βp(y) ≡ 1 (mod p),

while

αi(x) ≡ βi(y) ≡ 0 (mod p)

for i �= p. The intersection compatibility condition requires that φ1(y�) = φ2(y�),

where on the LHS, y� := δ( 1x) via the isomorphism R[x, x�
, x

−1 ]̂ → R[y, y�, y−1 ]̂ . Note

that y� ≡= x�

x2p (1− p
x�

xp ) (mod p
2). We compute toward a contradiction:
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φ1(y
�) ≡ φ1(−

x
�

x2p
(1− p

x
�

xp
)) (mod p

2)

≡ −
φ1(x�)

(xp + pg1(x, x�))2p
(1− p

φ1(x�)

(xp + pg1(x, x�))p
)

≡ −
φ1(x�)

x2p2
(1− p

φ1(x�)

xp2
)

≡ −

�∞
i=0 αi(x)(x�)i

x2p2
(1− p

�∞
i=0 αi(x)(x�)i

xp2
)

≡ −

�∞
i=0 αi(x)(x�)i

x2p2
(1− p

αp(x)(x�)p

xp2
)

≡ −

�∞
i=0 αi(x)(x�)i

x2p2
+

pα
2
p(x)(x

�)2p

x3p2
.

In the last two steps, we used that αi(x) ≡ 0 (mod p) for i �= p and that αp(x) ≡ 1

(mod p). Moreover, we have

φ2(y
�) =

∞�

i=0

βi(y)(y
�)i ≡

∞�

i=0

βi(
1

x
)(−

x
�

x2p
(1− p

x
�

xp
))i (mod p

2)

≡

∞�

i=0

βi(
1

x
)
(−1)i(x�)i

x2pi
(1− ip

x
�

xp
)

≡

∞�

i=0

(βi(
1

x
)
(−1)i(x�)i

x2pi
+

ipβi(
1
x)(−1)i+1(x�)i+1

xp(2i+1)
)

≡

∞�

i=0

(βi(
1

x
)
(−1)i(x�)i

x2pi
).

The last step follows from βi(
1
x) ≡ 0 (mod p), i �= p, and that if i = p we have ip = p

2.

Since we need φ1(y�) ≡ φ2(y�) (mod p
2), we compare the above two expressions. It

will be enough to examine only the degree 2p terms in x
�. We have

−
α2p(x)(x�)2p

x2p2
+

pα
2
p(x)(x

�)2p

x3p2
≡ β2p(

1

x
)(−1)2p

(x�)2p

x2p(2p)
(mod p

2).

Clearing denominators, this yields an equality in the ring of Laurent polynomials

−α̃2p(x)x
2p2 + pα̃

2
p(x)x

p2 = β̃2p(
1

x
), (3.1)

where ∼ means image in (R/p
2
R)[x, x−1]. Recall that the order of a Laurent polyno-

mial P (x) is the smallest exponent of its monomials. Now the LHS of (3.1) has order

≥ p
2, while the RHS has order ≤ 0, unless both sides are 0. Hence,
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−α2p(x)x
2p2 + pα

2
p(x)x

p2
≡ 0 (mod p

2),

so

−α2p(x)x
p2 + pα

2
p(x) ≡ 0 mod p

2
.

Using that α2p(x) ≡ 0 (mod p) and αp(x) ≡ 1 (mod p), we obtain, for some

g1, g2, g3 ∈ R[x]̂ ,

−pg1(x)x
p2 + p(pg2(x) + 1)2 = p

2
g3(x);

hence

−g1(x)x
p2 + p

2
g
2
2(x) + 2pg2(x) + 1 = pg3(x);

so

1− g1(x)x
p2

≡ 0 (mod p).

Setting x = 0, we get 1 ≡ 0 (mod p), a contradiction. This ends the proof of the fact

that there is no lift of Frobenius on J
1(P1).

Step 2: Extend argument to J
1(Pn).

We recall by Definition 1.27 that

J
1(Pn) =

n�

i=0

Spf R[yi0, . . . , yin, y
�
i0, . . . , y

�
in ]̂ ,

where yij = xj

xi
. Assume there exists a lift of Frobenius J

1(Pn) → J
1(Pn). This

translates to having ring endomorphisms φi : Ai := R[yi0, . . . , yin, y�i0, . . . , y
�
in ]̂ → Ai

gluing on localizations such that

φi(yij) = y
p
ij + pgij(yi0, . . . , yin, y

�
i0, . . . , y

�
in)

and

φi(y
�
ij) = (y�ij)

p + phij(yi0, . . . , yin, y
�
i0, . . . , y

�
in).
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It is necessary that for each i, i
�
, j, φi(y�ij) = φi�(y�ij). Letting i

� = j = 0, i = 1, we

require φ0(y�10) = φ1(y�10). We may rewrite

φ1(y
�
10) =

∞�

k=0

α1,0k(y10, . . . , y1n, y
�
10, . . . ,

�y�10, . . . , y�1n)(y�10)k.

(In the last expression, �y�10 means that y
�
10 is omitted.) Observe that α1,0k ≡ 0

(mod p) for k �= p and α1,0p ≡ 1 (mod p).

Since y10y01 = 1, a calculation shows that

y
�
10 = −

y
�
01

y
2p
01

(1− p
y
�
01

y
p
01

) (mod p
2).

Also, tracing through the calculation for J1(P1) of φ1(y�) and φ2(y�), we find that

φ0(y
�
10) ≡ −

�∞
k=0 α0,1k(y

�
01)

i

y
2p2

01

+
pα0,1

2
p(y

�
01)

2p

y
3p2

01

and

φ1(y
�
10) ≡

∞�

k=0

α1,0k

(−1)k(y�01)
k

y
2pk
01

.

Comparing the coefficients of the degree 2p terms in y
�
01 of the above two expres-

sions, we obtain, in the same way as for J1(P1),

−α0,12p(y01, . . . , y0n,
�y�01, . . . , y�0n)y

2p2

01 + pα0,1
2
p(y01, . . . , y0n,

�y�01, . . . , y�0n)y
p2

01

≡ α1,02p(y10, . . . , y1n,
�y�10, . . . , y�1n) (mod p

2).

In order to compare both sides of this congruence, we rewrite the expressions in

terms of one common set of variables. Note that y1s =
y0s
y01

. Also, y1sy01 = y0s, so that

δ(y1sy01) = δ(y0s);

hence
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y
p
1sy

�
01 + y

p
01y

�
1s + py

�
1sy

�
01 = y

�
0s;

so

y
�
1s =

y
�
0s − y

p
1sy

�
01

y
p
01 + py

�
01

=
y
�
0s − ( y0sy01

)py�01
y
p
01 + py

�
01

=
y
�
0sy

p
01 − y

p
0sy

�
01

y
2p
01 + py

�
01y

p
01

≡
y
�
0sy

p
01 − y

p
0sy

�
01

y
2p
01

(1−
py

�
01

y
p
01

) (mod p
2).

Substituting for each y1s, we obtain A ≡ B (mod p
2), where

A = −α0,12p(y01, . . . , y0n, y
�
02, . . . , y

�
0n)y

2p2

01 + pα0,1
2
p(y01, . . . , y0n, y

�
02, . . . , y

�
0n)y

p2

01

and

B = α1,02p(
1

y01
, . . . ,

y0n

y01
,
y
�
02y

p
01 − y

p
02y

�
01

y
2p
01

(1−
py

�
01

y
p
01

), . . . ,
y
�
0ny

p
01 − y

p
0ny

�
01

y
2p
01

(1−
py

�
01

y
p
01

)).

By the same argument as in the J
1(P1) proof, observing that the y01’s in the

denominators of the RHS can only decrease the RHS’s order in y01,

−α0,12p(y01, . . . , y0n, y
�
02, . . . , y

�
0n)y

2p2

01 + pα0,1
2
p(y01, . . . , y0n, y

�
02, . . . , y

�
0n)y

p2

01 ≡ 0 (mod p
2).

Since α0,12p ≡ 0 (mod p) and α0,1p ≡ 1 (mod p), we get, for some γ1, γ2, γ3 ∈

R[y01, . . . , y0n, y�02, . . . , y
�
0n ]̂ ,

−py
p2

01γ1 + p(pγ2 + 1)2 = p
2
γ3;

hence

−y
p2

01γ1 + (pγ2 + 1)2 = pγ3;
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so

1− y
p2

01γ1 ≡ 0 (mod p).

Letting y01 = 0, we get 1 ≡ 0 (mod p), a contradiction. Thus, there are no lifts

of Frobenius on J
1(Pn).

Step 3: Generalize for Jn(Pm).

Recall that

J
n(Pm) =

m�

i=0

Spf R[yi0, . . . , yim, y
�
i0, . . . , y

�
im, . . . , y

(n)
i0 , . . . , y

(n)
im ]̂ ,

where as before yij = xj

xi
. A lift of Frobenius on J

n(Pm) is given by ring endomor-

phisms φi : Ai = R[yi0, . . . , yim, y�i0, . . . , y
�
im, . . . , y

(n)
i0 , . . . , y

(n)
im ]̂ → Ai which are lifts

of Frobenius and which glue on localizations. As before, the compatibility condition

requires

φi(y
�
ij) = (y�ij)

p + pfij(yi0, . . . , yim, y
�
i0, . . . , y

�
im, . . . , y

(n)
i0 , . . . , y

(n)
im ).

We may rewrite as before

φ1(y
�
10) =

∞�

k=0

α1,0k(y01, . . . , y0m,
�y�01, y�02, . . . , y�0m, . . . , y

(n)
01 , . . . , y

(n)
0m)(y

�
10)

k
.

Once again, α1,0k ≡ 0 (mod p) for k �= p and α1,0p ≡ 1 (mod p).

Imitating the steps for the J
1(Pn) proof, we obtain

−α0,12p(y01, . . . , y0m,
�y�01, y�02, . . . , y�0m, . . . , y

(n)
01 , . . . , y

(n)
0m)y

2p2

01 +

pα0,1
2
p(y01, . . . , y0m,

�y�01, y�02, . . . , y�0m, . . . , y
(n)
01 , . . . , y

(n)
0m)y

p2

01

≡ α1,02p(y10, . . . , y1m,
�y�10, y�12, . . . , y�1m, . . . , y

(n)
10 , . . . , y

(n)
1m) (mod p

2).

Note that y1s = y0s
y01

, which has order −1 in y01. We claim that
�
y
(r)
1s := y

(r)
1s

(mod p
2) has negative order in y01 for all s ∈ {0, . . . ,m}, r ∈ {0, . . . , n}. The base

case of r = 0 was just stated, so assume we have
�
y
(r−1)
1s with negative order in y01.

Write
�
y
(r−1)
1s := y

−t
01 f , where −t is the order in y01 of y(r−1)

1s and
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f ∈ R[y10, . . . , y1m, �y�10, y�12, . . . , y�1m, . . . , y
(r−1)
10 , . . . , y

(r−1)
1m ]

has order 0 in y01. In the following, all elements are understood to be their images

mod p
2; we leave off ∼ for simplicity of notation. We have

y
(r)
1s =δ(y(r−1)

1s ) = δ(y−t
01 f)

=(y−t
01 )

p
δ(f) + f

p
δ(y−t

01 ) + pδ(y−t
01 )δ(f)

=y
−tp
01 (

φp(f)− f
p

p
) + f

p
�(yp01 + py

�
01)

−t − y
−tp
01

p

�
+

p
�(yp01 + py

�
01)

−t − y
−tp
01

p

��φp(f)− f
p

p

�
,

where φp : O(Jr−1(Pm)) → O(Jr(Pm)) is the lift of Frobenius corresponding to the

universal p-derivation of Definition 1.11. But since the order of f in y01 is 0, the same

holds for φp(f) and f
p. Therefore, the above expression has order ≤ 0 in y01. Hence,

the presence of the extra “prime variables” y
(r)
1s can only decrease the order of the

RHS. This leads to the conclusion, as in the proof for Jn(P1), that

− α0,12p(y01, . . . , y0m,
�y�01, y�02, . . . , y�0m, . . . , y

(n)
01 , . . . , y

(n)
0m)y

p2

01

+ pα0,1
2
p(y01, . . . , y0m,

�y�01, y�02, . . . , y�0m, . . . , y
(n)
01 , . . . , y

(n)
0m) ≡ 0 (mod p

2)

and we deduce a contradiction as before.

Proposition A’. Let k be an algebraically closed field. The space of vector fields on

the geometric tangent bundle T (P1
k) lifting vector fields on P1

k has dimension 6 over

k. However, there are no normalized vector fields on T (P1
k).

Proof. A vector field on T (P1
k) is given by a k-derivation D on the ring of global

functions of T (P1
k), that is, by D1 : k[x, x�] → k[x, x�] and D2 : k[y, y�] → k[y, y�]

such that D1(x) = D2(x), D1(y) = D2(y), D1(x�) = D2(x�), and D1(y�) = D2(y�). To

simplify matters, we look at the case where D extends a derivation on P1, i.e, where

D1 : k[x] → k[x] and D2 : k[y] → k[y] are derivations. We have:
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D1(y) = D1(
1

x
) =

xD1(1)− 1D1(x)

x2

= −
D1(x)

x2
.

Write D1(x) = a0 + a1x+ · · ·+ anx
n and D2(y) = b0 + b1y+ · · ·+ bmy

m. Since we

must have D1(y) = D2(y), this gives

−
a0 + a1x+ · · ·+ anx

n

x2
= b0 + b1y + · · ·+ bmy

m
,

hence

−a0y
2
− a1y − a2 − a3

1

y
− · · ·− an

1

yn−2
= b0 + b1y + · · ·+ bmy

m
.

Thus, n,m ≤ 2, and so D1(x) = a0 + a1x+ a2x
2 and D2(y) =−a2 − a1y − a0y

2.

Now, we have

D1(y
�) = D1(−

x
�

x2
) =

x
2
D1(−x

�)− (−x
�)2xD1(x)

x4

=
−x

2
D1(x�) + 2xx�

D1(x)

x4

= −y
2
D1(x

�) + 2y3(−
y
�

y2
)(a0 + a1x+ a2x

2)

= −y
2
D1(x

�)− 2yy�(a0 + a1x+ a2x
2)

= −y
2
D1(x

�)− 2a0yy
�
− 2a1y

�
−

2a2y�

y
.

We require

−y
2
D1(x

�)− 2a0yy
�
− 2a1y

�
−

2a2y�

y
= D1(y

�) = D2(y
�) ∈ k[y, y�].

Also, D1(x�) ∈ k[x, x�]; write D1(x�) =
�

n,m≥0 an,mx
n(x�)m. Then
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−y
2
D1(x

�)− 2a0yy
�
− 2a1y

�
−

2a2y�

y
=− y

2
� �

n,m≥0

an,mx
n(x�)m

�
− 2a0yy

�

− 2a1y
�
−

2a2y�

y

=− y
2
� �

n,m≥0

an,my
−n(−

y
�

y2
)m

�
− 2a0yy

�

− 2a1y
�
−

2a2y�

y

=−

�

n,m≥0

an,my
−n+2−2m(−y

�)m − 2a0yy
�

− 2a1y
�
−

2a2y�

y
.

If an,m �= 0 for any n,m pair such that m ≥ 2, then we would have a monomial of

order ≥ 2 in y
� and order −n+ 2− 2m ≤ −n+ 2− 2(2) = −n− 2 ≤ −2 in y, which

can’t happen because none of the other monomials will cancel this. Hence, an,m = 0

for m ≥ 2. Splitting into the m = 0 and m = 1 cases, we are left with

−

�

n≥0,m∈{0,1}

an,my
−n+2−2m(−y

�)m − 2a0yy
�
− 2a1y

�
−

2a2y�

y

= −

�

n0≥0

an0,0y
−n0+2

−

�

n1≥0

an1,1y
−n1y

�
− 2a0yy

�
− 2a1y

�
−

2a2y�

y
.

From this, we see that n0 ≤ 2 and n1 ≤ 1; otherwise, we get, respectively, monomials

y
r with r ≤ −1, and y

s
y
� with s ≤ −2. Hence,

D1(y
�) = −a0,0y

2
− a1,0y − a2,0 + a0,1y

� +
a1,1y

�

y
− 2a0yy

�
− 2a1y

�
−

2a2y�

y
.

This implies that a1,1 = 2a2, and so, with the surviving coefficients, we get

D1(x
�) = 2a2xx

� + a0,1x
� + a2,0x

2 + a1,0x+ a0,0

and

D2(y
�) = D1(y

�) = −2a0yy
� + (a0,1 − 2a1)y

�
− a0,0y

2
− a1,0y − a2,0.
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for any a0, a2, a0,0, a1,0, a2,0, a0,1 ∈ k. Therefore, the space of vector fields on T (P1)

lifting vector fields on P1 has dimension 6 over k.

However, we show that there are no normalized vector fields on T (P1). To see

this, assume there is a normalized derivation on T (P1) =Spec k[x, x�]∪ Spec k[y, y�],

xy = 1. Then we have D1 : k[x, x�] → k[x, x�], D2 : k[y, y�] → k[y, y�] such that

D1(x) = x
�, D2(y) = y

�. We have

D1(y
�) = D1(−

x
�

x2
) = −D1(

x
�

x2
)

= −
x
2
D1(x�)− x

�
D1(x2)

x4

= −
x
2
D1(x�)− x

�(2xx�)

x4

= −
D1(x�)

x2
+

2(x�)2

x3

= −y
2
D1(x

�) + 2(−
y
�

y2
)2y3

= −y
2
D1(x

�) +
2(y�)2

y
.

Thus, −y
2
D1(x�) + 2(y�)2

y equals D2(y�) ∈ k[y, y�]. Write

D1(x
�) =

�

n,m≥0

an,mx
n(x�)m =

�

n,m≥0

an,m(
1

y
)n(

y
�

y2
)m.

Then

−y
2
D1(x

�) +
2(y�)2

y
= −y

2
� �

n,m≥0

an,my
−n(

y
�

y2
)m

�
+

2(y�)2

y

= −
� �

n,m≥0

an,my
−n−2m+2(y�)m

�
+

2(y�)2

y
.

Let us extract the coefficient of (y�)2: it is −
��

n≥0 an,2y
−n−2

�
+ 2y−1, which cannot

not be in k[y] since −n−2 < −1 for all n ≥ 0. This contradicts that D2(y�) ∈ k[y, y�].
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Theorem B. There are no effective Cartier divisors D on the p-jet space J2(P1) such

that D → J
1(P1) is finite.

We need the following:

Lemma: Let A be an integral domain and and suppose A[x]/(f) is finite over A.

Then f is monic in x, up to multiplication by an invertible element of A.

Proof: Suppose A[x]/(f) is finite over A but f not monic in x. By assumption

A[x]/(f) = Axn+Axn−1+ · · ·+Ax+A for some n ∈ N, where upper bar means class

mod f . Since f is not monic up to multiplication by an element of A×, we can write

f = arx
r + ar−1x

r−1 + · · ·+ a0, where ai ∈ A, ar /∈ A
×. We have

xr+n = bnx
n + · · ·+ b1x+ b0

for some bi ∈ A. Hence, xr+n − bnx
n − · · · − b1x − b0 = f · h, so degx h = n. So

h = cnx
n + · · · + c1x + c0, ci ∈ A. Thus arcn = 1, so ar ∈ A

×, a contradiction. This

concludes the proof of the lemma.

Proof. (of Theorem) Recall that

J
1(P1) = Spf R[x, x� ]̂ ∪ Spf R[y, y� ]̂

and

J
2(P1) = Spf R[x, x�

, x
�� ]̂ ∪ Spf R[y, y�, y�� ]̂ .

Toward a contradiction, assume there exists a D ⊂ J
2(P1) finite over J

1(P1).

Write D = Spf R[x,x�,x�� ]̂
(f) ∪ Spf R[y,y�,y�� ]̂

(g) , where f = U · g for some

U ∈ (R[y, y�, y��, y−1 ]̂ )×;

f and g in this last equality are considered in R[y, y�, y��, y−1 ]̂ via the isomor-

phism R[x, x�
, x

��
, x

−1 ]̂ → R[y, y�, y��, y−1 ]̂ sending x �→ y
−1, x

� �→ δ(y−1), x
�� �→

δ
2(y−1). Then by definition, R[x,x�,x�� ]̂

(f) and R[y,y�,y�� ]̂
(g) are finitely generated R[x, x� ]̂ -

and R[y, y� ]̂ -modules, respectively. Denoting by the bar of a ring its quotient mod

the ideal generated by p, we hence have that
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R[x, x�, x�� ]̂

(f)
=

(R/pR)[x, x�][x��]

(f mod p)
,

R[y, y�, y�� ]̂

(f)
=

(R/pR)[y, y�][y��]

(g mod p)

are finitely generated over R[x, x� ]̂ = (R/pR)[x, x�] and R[y, y� ]̂ = (R/pR)[y, y�]. By

the lemma above, the leading coefficients of f mod p in x
�� and g mod p in y

�� are

invertible in (R/pR)[x, x�] and (R/pR)[y, y�], respectively. But
�
(R/pR)[x, x�]

�×
=

(R/pR)× = {r + pR : r ∈ R
×} =

�
(R/pR)[y, y�]

�×
. Write

f ≡ r1(x
��)n + An−1(x, x

�)(x��)n−1 + · · ·+ A1(x, x
�)x�� + A0(x, x

�) (mod p), (3.2)

where r1 ∈ R
× and for each i, Ai(x, x�) ∈ R[x, x� ]̂ . Now,

(R[y, y�, y��, y−1 ]̂ )× = {λy
N + ph : λ ∈ R

×
, N ∈ Z, h ∈ R[y, y�, y��, y−1 ]̂ }.

Indeed, the elements of the LHS must have p-adic valuation 1 and their reduction

mod p must be invertible in R[y, y�, y��, y−1]. Conversely, for any λy
N +ph of the RHS,

we have that 1
λyN+ph = 1

λyN (1+p h
λyN

)
= 1

λyN

�∞
i=0(−p)i( h

λyN )
i is in R[y, y�, y��, y−1 ]̂ and

is (λyN + pH)−1. So we have

f = (λyN + ph)g (3.3)

for some λ ∈ R
×, N ∈ Z, h ∈ R[y, y�, y��, y−1 ]̂ . Let us compute f of equation (3.2)

in terms of y, y�, y�� in order to compare to the form of f of equation (3.3). By the

quotient rule (Proposition 1.26)

x
�� = δ

2(1/y) = δ
� −y

�

ypφ(y)

�
= −δ

� y
�

ypφ(y)

�

= −
(ypφ(y))py�� − (y�)pδ(ypφ(y))

(ypφ(y))pφ(ypφ(y))

= −
(yp(yp + py

�))py�� − (y�)pδ(ypφ(y))

(yp(yp + py�))pφ(yp(yp + py�))

≡ −
y
2p2

y
�� − (y�)pδ(ypφ(y))

y2p
2
φ(y2p)

(mod p)

≡ −
y
2p2

y
�� − (y�)pδ(ypφ(y))

y2p
2(yp + p(y�))2p

≡ −
y
2p2

y
�� − (y�)pδ(ypφ(y))

y4p
2 .
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Note that for any k,

δ(yk) =
(yp + px

�)k − y
kp

p
=

�k
i=1

�
k
i

�
(yp)k−i(py�)i

p
=

k�

i=1

�
k

i

�
y
p(k−i)

p
i−1(y�)i.

Also, from the definitions it follows that δ and φ commute, so that

δ(ypφ(y)) =(yp)pδ(φ(y)) + φ(y)pδ(yp) + pδ(yp)δ(φ(y))

=y
p2
φ(y�) + (yp + py

�)p
� p�

i=1

�
p

i

�
y
p(p−i)

p
i−1(y�)i

�
+

p
� p�

i=1

�
p

i

�
y
p(p−i)

p
i−1(y�)i

�
φ(y�)

=y
p2((y�)p + py

��) + (yp + py
�)p

� p�

i=1

�
p

i

�
y
p(p−i)

p
i−1(y�)i

�
+

p
� p�

i=1

�
p

i

�
y
p(p−i)

p
i−1(y�)i

�
((y�)p + py

��)

≡y
p2(y�)p (mod p).

Thus,

x
��
≡ −

y
2p2

y
�� − (y�)p(yp

2
(y�)p)

y2p
2
φ(y2p)

≡
−y

2p2
y
�� + y

p2(y�)2p

y4p
2 (mod p).

Therefore,

f ≡ r1

�−y
2p2

y
�� + y

p2(y�)2p

y4p
2

�n
+ An−1(

1

y
,
y
�

y2p
)
�−y

2p2
y
�� + y

p2(y�)2p

y4p
2

�n−1
+ · · ·

+A1(
1

y
,
y
�

y2p
)
�−y

2p2
y
�� + y

p2(y�)2p

y4p
2

�
+ A0(

1

y
,
y
�

y2p
) (mod p)

≡ [r1(−y
2p2

y
�� + y

p2(y�)2p)n + An−1(
1

y
,
y
�

y2p
)(−y

2p2
y
�� + y

p2(y�)2p)n−1
y
4p2 + · · · (3.4)

+A1(
1

y
,
y
�

y2p
)(−y

2p2
y
�� + y

p2(y�)2p)y4p
2(n−1) + A0(

1

y
,
y
�

y2p
)y4p

2n]/y4p
2n
.
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According to equation (3.3), expression (3.4) is ≡ λy
N · g (mod p), so by clearing

the denominator y
4p2n, we find that the numerator of (4) is ≡ λy

4p2n+N
g (mod p).

Writing

g ≡ r2(y
��)n +Bn−1(y, y

�)(y��)n−1 + · · ·+B1(y, y
�)y�� +B0(y, y

�),

this means that

r1(−y
2p2

y
�� + y

p2(y�)2p)n + An−1(
1

y
,
y
�

y2p
)(−y

2p2
y
�� + y

p2(y�)2p)n−1
y
4p2 + · · · (3.5)

+A1(
1

y
,
y
�

y2p
)(−y

2p2
y
�� + y

p2(y�)2p)y4p
2(n−1) + A0(

1

y
,
y
�

y2p
)y4p

2n

≡ λy
4p2n+N [r2(y

��)n +Bn−1(y, y
�)(y��)n−1 + · · ·+B1(y, y

�)y�� +B0(y, y
�)] (mod p).

Expanding out the LHS of (3.5) and comparing with the RHS, we see that we

must have

r1(−1)ny2p
2n(y��)n ≡ r2λy

4p2n+N(y��)n (mod p),

so that N = −2p2n. Now, according to the RHS, the (y��)0 coefficient must have

order ≥ 4p2n − 2p2n = 2p2n in y. The LHS of (3.5) has the monomial r1yp
2n(y�)2pn

with order < 2p2n in y, so it suffices for n > 0 to show that no other term of the LHS

can cancel said monomial. Note that the only terms of the LHS with order 0 in y
��

come from the last terms of each binomial expansion. Thus, if there did exist such

other term, there would exist l,m ≥ 0 and k ≥ 1 such that

(
1

yl
)(

y
�

y2p
)myp

2(n−k)(y�)2p(n−k)
y
4p2k = y

p2n(y�)2pn.

By looking at the power of y�, this tells us that m = 2pk, and so we compare the

order of y on each side: we must have −l− 2p(2pk)+ p
2(n− k)+4p2k = p

2
n ⇔ −l =

p
2
k. But −l ≤ 0 and p

2
k ≥ p

2(1), so this is impossible.
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Proposition B’. There are no effective Cartier divisors D on the geometric jet space

J
2(P1), Spec k[x, x�

, x
��] ∪ Spec k[y, y�, y��], such that D → T (P1) is finite.

Proof. We prove the proposition by exactly the same approach as we did Theorem B.

We again assume there exists such a D; we have D = Spec k[x,x�,x��]
(f) ∪ Spec k[y,y�,y��]

(g) ,

where f = U · g for some U ∈ k[y, y�, y��, y−1]×, with k[x,x�,x��]
(f) and k[y,y�,y��]

(g) finitely-

generated k[x, x�]- and k[y, y�]-modules, respectively. By the lemma in Theorem B’s

proof, f and g are monic, up to multiplication by nonzero element λ1,λ2 ∈ k, in x
��

and y
��, respectively. We also know that U can be written U = λy

N for some λ ∈ k,

λ �= 0, and N ∈ Z. Hence, we can write

f = λ1(x
��)n + An−1(x, x

�)(x��)n−1 + · · ·+ A1(x, x
�)x�� + A0(x, x

�) = λy
N
g. (3.6)

Note that x� = d( 1y ) =
y(0)−1(y�)

y2 = −
y�

y2 , while

x
�� = d(x�) = d(−

y
�

y2
) = −d(

y
�

y2
)

= −
y
2(y��)− y

�(2yy�)

y4

=
−y

2
y
�� + 2y(y�)2

y4
.

Thus,

f = λ1

�−y
2
y
�� + 2y(y�)2

y4

�n
+ An−1(

1

y
,
y
�

y2
)
�−y

2
y
�� + 2y(y�)2

y4

�n−1
+ · · ·

+A1(
1

y
,
y
�

y2
)
�−y

2
y
�� + 2y(y�)2

y4

�
+ A0(

1

y
,
y
�

y2
)

= [λ1(−y
2
y
�� + 2y(y�)2)n + An−1(

1

y
,
y
�

y2
)(−y

2
y
�� + 2y(y�)2)n−1

y
4 + · · · (3.7)

+A1(
1

y
,
y
�

y2
)(−y

2
y
�� + 2y(y�)2)y4(n−1) + A0(

1

y
,
y
�

y2
)y4n]/y4n.
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By equation (3.6), expression (3.7) equals λyN · g. We get by clearing the denom-

inator of (3.7) that the numerator of (3.7) equals λy
4n+N

g. Writing g = λ2(y��)n +

Bn−1(y, y�)(y��)n−1 + · · ·+B1(y, y�)y�� +B0(y, y�), we have

λ1(−y
2
y
�� + 2y(y�)2)n + An−1(

1

y
,
y
�

y2
)(−y

2
y
�� + 2y(y�)2)n−1

y
4 + · · · (3.8)

+A1(
1

y
,
y
�

y2
)(−y

2
y
�� + 2y(y�)2)y4(n−1) + A0(

1

y
,
y
�

y2
)y4n

= λy
4n+N [λ2(y

��)n +Bn−1(y, y
�)(y��)n−1 + · · ·+B1(y, y

�)y�� +B0(y, y
�)].

From the LHS of (3.8) we get

λ1(−1)ny2n(y��)n = λλ2y
4n+N(y��)n,

so N = −2n. The RHS of (3.8) says that the (y��)0 coefficient must have order

≥ 4n + N = 4n − 2n = 2n in y, and since the LHS has the monomial λ12nyn(y�)2n

with order < 2n in y (assuming n > 0), it is enough to show that no other term of

the LHS can cancel this monomial. The only terms of the LHS with order 0 in y
�� are

from the last terms of each binomial expansion, so if there did exist such other term,

there would exist l,m ≥ 0 and k ≥ 1 such that

(
1

yl
)(
y
�

y2
)myn−k(y�)2(n−k)

y
4k = y

n(y�)2n.

Looking at the power of y�, we get that m = 2k, and so we compare the order of

y on each side: we must have −l− 2(2k) + (n− k) + 4k = n ⇔ −l = k. Since −l ≤ 0

and k ≥ 1, this is impossible.

Proposition C. Let Q ⊂ Pm
R be a smooth quadric hypersurface. There are no lifts

of Frobenius on J
1(Q).

Proof. Let Q = V (
�m

i,j=0 aijxixj), where (aij) ∈ GLm+1(R), i.e., det(aij) �≡ 0 mod p.

We first show that through an automorphism of R[x0, . . . , xm], Q can be rewritten

as V (
�

i z
2
i ), where zi the image of xi. Consider q =

�
i,j aijxixj. There are two cases:

Case 1: q has square monomials. WLOG, suppose one of the monomials of q is

a00x
2
0 = ax

2
0.
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Case 1a: a ∈ R
×. Write

q = ax
2
0 + 2ax0L0(x1, . . . , xm) +Q0(x1, . . . , xm)

= a(x2
0 + 2x0L0 + L

2
0)− aL

2
0 +Q0

= a(x0 + L0)
2 + �Q0(x1, . . . , xm).

The automorphism will send x0 �→ x0 + L
�
0 := �z0. For �Q0(x1, . . . , xm), we are placed

into either Case 1 or Case 2 and we proceed inductively to rewrite q as a sum of

squares.

Case 1b: a /∈ R
×. Then the p-adic valuation v(a) is > 0.

If v(L0) > 0 also (see above), then we look at Q0 and place ourselves into either

Case 1 or Case 2. It is not possible that v(aii), v(Li) > 0 for all i, i.e., to remain in

this case indefinitely, because this would mean that all entries of (aij) are divisible by

p, so that det(aij) ≡ 0 mod p.

If v(L0) = 0, then the coefficient of some monomial of L0 has valuation 0. WLOG,

say v(a01) = 0. Set x0 = �x0 − �x1, x1 = �x0 + �x1 to get

q = a( �x0 − �x1)
2 + a01( �x0

2
− �x1

2) + · · ·

= (a+ a01) �x0
2 + · · · .

Since a01 ∈ R
×, v(a+a01) = 0, and we go to Case 1a, with a+a01 taking the place of a.

Case 2: Q has no square monomials. Some coefficient aij is invertible; otherwise,

det(aij) ≡ 0 mod p. WLOG, say a01 := a ∈ R
×. We have Q = ax0x1 + · · · .

Substitute x0 = �x0 − �x1, x1 = �x0 + �x1, xi = �xi for i ≥ 2. Then

Q = a( �x0
2
− �x1

2) + · · · = a �x0
2
− a �x1

2 + · · ·

and we are reduced to Case 1a.

We see through the above process that the first step of the induction goes through,

i.e., that a first change of variables removes the presence of one of the xi’s and gives
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a single �zi2 monomial. Assuming WLOG that xi = x0, the matrix representing q in

the new set of variables has the form





a 0 . . . 0

0 b11 b1m

...
... . . .

0 b1m bmm




,

where a ∈ R
× and (bij) ∈ GLm(R). We can perform the same process on (bij) (note

that det(bij) �≡ 0 mod p; otherwise, det(aij) ≡ 0 mod p), and so the inductive step

holds.

After the induction, we have q =
�

i ci�zi
2, with ci ∈ R

× for all i. To make the

square monomials of q have coefficients of 1, we can make another change of variables

zi =
√
ci(�zi), using the fact that every element of R× has a square root in R, a con-

sequence of Hensel’s Lemma.

Now, once we have rewritten q =
�

i z
2
i , we perform a final change of variables. If

m is odd (so that there is an even number of variables), we set

x0 = z0 + iz1

x1 = z0 − iz1

x2 = z2 + iz3

x3 = z2 − iz3

...

xm−1 = zm−1 + izm

xm = zm−1 − izm.

This yields

q = x0x1 + x2x3 + · · ·+ xm−1xm.

By swapping x1 and x3 for the purposes of the upcoming step of the computation,

we obtain

q = x0x3 + x1x2 + · · ·+ xm−1xm.
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We have

J
1(Q) =J

1
�
Proj

�R[x0, x1, . . . , xm]

(q)

�

= Spf
R
�
x1
x0
, . . . , ,

xm
x0
, (x1

x0
)�, . . . , (xm

x0
)�
�
ˆ

�
x3
x0

+ (x1
x0
)(x2

x0
) + · · · (xm−1

x0
)(xm

x0
), δ(x3

x0
+ (x1

x0
)(x2

x0
) + · · · (xm−1

x0
)(xm

x0
))
� ∪ · · ·

= Spf
R
�
y01, . . . , y0m, y

�
01, . . . , y

�
0m

�
ˆ�

y03 + y01y02 + · · ·+ y0,m−1y0n, δ(y03 + y01y02 + · · ·+ y0,m−1y0m)
� ∪ · · · ,

where yij :=
xj

xi
.

We use the computation from the proof that there are no lifts of Frobenius on

J
1(Pn) (step 2 of proof of Theorem A). Observe that modding an element of a quo-

tient ring A/I by the ideal (p2A + I)/I is computationally equivalent to modding a

representative in A of that element by the ideal p2A + I, by the Third Isomorphism

Theorem. Therefore, letting

A0/I0 = Spf
R
�
y01, . . . , y0m, y

�
01, . . . , y

�
0m

�
ˆ�

y03 + y01y02 + · · ·+ y0,m−1y0m, δ(y03 + y01y02 + · · ·+ y0,m−1y0m)
�

and using the same notation as in the J
1(Pn) proof (see top of p. 22), we get

− α0,12p(y01, . . . , y0m, y
�
02, . . . , y

�
0m)y

2p2

01 +

pα0,1
2
p(y01, . . . , y0m, y

�
02, . . . , y

�
0m)y

p2

01 ≡ 0 mod (p2A0 + I0).

We know that α0,12p ≡ 0 mod (pA0 + I0) and α0,1p ≡ 1 mod (pA0 + I0), so we

have

−(pγ1 + h1)y
2p2

01 + p(pγ2 + h2 + 1)2yp
2

01 = p
2
γ3 + h3

for some h1, h2, h3 ∈ I0, γ1, γ2, γ3 ∈ A0. This gives
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−pγ1y
2p2

01 + py
p2

01 ≡ 0 mod (p2A0 + I0),

so

−pγ1y
2p2

01 +py
p2

01 = p
2
γ4+γ5(y03+y01y02+· · ·+y0,m−1y0m)+γ6δ(y03+y01y02+· · ·+y0,m−1y0m)

for some γ4, γ5, γ6 ∈ A0.

Examine the coefficient of yp
2

01 on both sides of the equation. On the LHS, this

coefficient is p. For the RHS, observe that the coefficient of yp
2

01 in γ5(y03 + y01y02 +

· · ·+ y0,n−1y0m) is 0. Meanwhile,

D : = δ(y03 + y01y02 + · · ·+ y0,m−1y0m)

=
φ(y03 + y01y02 + · · ·+ y0,m−1y0m)− (y03 + y01y02 + · · ·+ y0,m−1y0m)p

p
.

Upon expanding this out [recall that φ(y0i) = y
p
0i + py

�
0i], we find that no mono-

mial of D is a power of y01 only, but is also divisible by some other variable, so the

coefficient of yp
2

01 in D is 0. This leaves us to examine p
2
γ4. But the coefficient of yp

2

01

in p
2
γ4 must be divisible by p

2, while p is not.

This concludes the proof in the case that m is odd. If m is even, then for the first

m− 1 variables, we perform the stated change of variables and set xm = zm to get

q = x0x3 + x1x2 + · · ·+ xm−2xm−1 + x
2
m.

Tracing through the above proof for the even case, we see that the presence of

this extra variable does not have influence.

We have shown that there exists no lift of Frobenius on J
1(Q).
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Proposition D. Let x = (xij) be an n-by-n matrix of indeterminates. There exists

no lift of Frobenius on Mn = Spec R[x] inducing a lift of Frobenius on GLn.

Proof. We prove the statement for n = 2 first.

Let φ : M2 = Spec R[a, b, c, d] → M2 be a lift of Frobenius. On rings, this is

given by φ : R[a, b, c, d] → R[a, b, c, d] such that φ(a) = a
p + pA, φ(b) = b

p + pB,

φ(c) = c
p + pC, φ(d) = d

p + pD for some A,B,C,D ∈ R[a, b, c, d].

Suppose this induces φ̃ : GL2= Spec R[a, b, c, d, 1
ad−bc ] → GL2. This is given on

rings by φ̃ : R[a, b, c, d, 1
ad−bc ] → R[a, b, c, d, 1

ad−bc ]. But we have the following lemma.

Lemma: Let f ∈ R[a, b, c, d] be irreducible. Then

R
�
a, b, c, d,

1

f

�×
= {λf

m
,λ ∈ R

×
,m ∈ Z}.

Proof of lemma: Certainly RHS ⊂ LHS. For any u ∈ LHS, there exists v ∈

R[a, b, c, d, 1
f ] such that uv = 1. Since R[a, b, c, d, 1

f ] = R[a, b, c, d]f , we can write

u = g
fm1

, v = h
fm2

, where g, h ∈ R[a, b, c, d] and m1,m2 ∈ Z. We may assume that g

and h do not have f as a factor because R[a, b, c, d] is a UFD. Thus, gh = f
m1+m2 and

since f is irreducible in R[a, b, c, d], either g ∈ R[a, b, c, d]× = R
× or h ∈ R

×. Without

loss of generality, suppose h ∈ R
×. Then f

m1+m2 divides g. But we already said that

g does not have f as a factor, so m1 +m2 = 0, and f
m1+m2 = 1. This in turn implies

that g = λ ∈ R
×, so u = λ

fm1
, where g ∈ R

× and m1 ∈ Z. We can rewrite u = λf
m,

where m = −m1 ∈ Z.

Since ring homomorphisms map invertible elements to invertible elements, we

must have that φ̃(ad−bc) ∈ R[a, b, c, d, 1
ad−bc ]

×. It is well known that the determinant

polynomial is irreducible, so we can apply the above lemma to f = ad − bc, and we

have

φ̃(ad− bc) = λ(ad− bc)m (3.9)

for some λ ∈ R
×, m ∈ Z. This yields

(ap + pA)(dp + pD)− (bp + pB)(cp + pC) = λ(ad− bc)m.
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Reducing mod p, we get

(ad)p − (bc)p ≡ λ(ad)m + λ

m�

k=1

�
m

k

�
(ad)m−k(−bc)k,

which implies that m = p and λ ≡ 1 (mod p).

So we have

(ap + pA)(dp + pD)− (bp + pB)(cp + pC) = λ(ad− bc)p,

which gives

(ad)p − (bc)p + p(Adp +Da
p
− Bc

p
− Cb

p) ≡

λ
�
(ad)p − p(ad)p−1

bc+
p�

k=2

�
p

k

�
(ad)p−k(bc)k

�
(mod p

2).

But every term of the LHS has order ≥ p in at least one of a, b, c, or d, while the

RHS has the term −pλ(ad)p−1
bc whose order is less than p in a, b, c, and d. Thus, we

arrive at a contradiction.

Now consider arbitrary n. Let φ : Mn = Spec R[x] → Mn, where x = {xij}1≤i,j≤n.

On rings this is given by φ : R[x] → R[x] such that φ(xij) = x
p
ij +pAij for Aij ∈ R[x].

Assume this induces φ̃ : GLn =Spec R[x, det(x)−1] → GLn. [With det(x)−1, we

consider x to be the n by n matrix (xij).] In exactly the same way as for n = 2, one

shows that

R[x, det(x)−1]× = {λ det(x)m,λ ∈ R
×
,m ∈ Z}.

Hence, we have

φ̃(det(x)) = λ det(x)m (3.10)

for some λ ∈ R
×, m ∈ Z.

Let us specialize by setting xij =





1 if i = j > 2

0, if i �= j; i, j > 2
. Then we have
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x =





x11 x12 0 · · · · · · 0

x21 x22 0 · · · · · ·
...

0 0 1
...

...
... 0 1

...
... 0

. . .
...

0 · · · 0 · · · 1





.

Applying Laplace’s determinant formula det x =
�n

j=1(−1)i+j
xijMij, where Mij

is the determinant of the n − 1 by n − 1 matrix obtained removing the ith row, jth

column of x, we get in this specialized case, with i = 1, that

det(x) = x11M11 − x12M12

= x11(x22 · 1 · · · 1)− x12(x21 · 1 · · · 1)

= x11x22 − x12x21.

Thus, equation (3.10) above reduces to equation (3.9), which we showed cannot hold,

so we are done.
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4. Appendix: Motivation and Further Background

We begin this final section by discussing the relevance of lifts of Frobenius in the larger

context of “arithmetic differential equations,” to be defined shortly. First recall the

situation for smooth manifolds in differential geometry ([Le03], p. 435). Let M be an

m-dimensional smooth manifold with local coordinates x = {x1, . . . , xm}. A smooth

vector field V : M → TM is given by V =
�m

i=1 Vi
∂
∂xi

for functions Vi ∈ C
∞(M). An

integral curve of V is a smooth curve γ : J → M , where J ⊂ R an open interval is

typically considered as a time domain, such that γ�(t) = Vγ(t), i.e. the tangent vector

to the curve γ at each point is determined by the value of the vector field V at that

point. To find the integral curves γ(t) = (x1(t), . . . , xm(t)) for some vector field, one

solves the system of ordinary differential equations

{x
�
1(t) = V1(x(t)), . . . , x

�
m(t) = Vm(x(t))}

for x1(t), . . . , xm(t). Moreover, the collection of all integral curves forms a flow on M .

There is an analogous situation in arithmetic. For simplicity, we consider an affine

p-adic formal scheme X. Any g ∈ O(Jn(X)) represented by a power series G induces

a map g∗ : X(R) → R by g∗(a) := G(a, δa, . . . , δna). The following definition is found

in [BM13], p. 4.

Definition 4.1. (a) A system of arithmetic differential equations of order n on X is

a subset E of O(Jn(X)).

(b) A solution of E is an R-point a ∈ X(R) such that g∗(a) = 0 for all g ∈ E . The

set of all solutions of E is denoted Sol(E).

(c) Given a p-derivation D : O(X) → O(X), the δ-flow of D is the system of

arithmetic differential equations of order 1, denoted by E(D), which is the ideal in

O(J1(X)) generated by elements of the form δgj − Dgj, where gj ∈ O(X) generate

O(X) as an R-algebra.
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Remark 4.2. For a δ-flow E(D) as in (c) above,

Sol(E(D)) = {a ∈ X(R) : δgj(a) = Dgj(a) ∀j}.

Whereas integral curves γ(t) satisfying γ�(t) = Vγ(t) are solutions to ODE’s determined

by a vector field (derivation) V , the solutions to a system of ADE’s are integral points

(R-points) satisfying an analogous property.

Example 4.3. Let X = A1 =Spf R[x]̂ , and let D : O(X) = R[x]̂ → R[x]̂ be the

p-derivation on X given by D(x) = x
2. Note that x generates R[x]̂ as a topological

R-algebra; E(D) = (x� − x
2) ⊂ O(X) is the δ-flow of D . Also,

X(R) = Hom(SpfR,X) � Homring(R[x]̂ , R) = R,

so

Sol(E(D)) = {a ∈ R : δa = a
2
}.

The following is some of the motivation from physics for looking at p-derivations

on the first jet space J
1(X) of a scheme X =SpecR[x]

(f) . First recall from Definition

1.21 that a normalized p-derivation D : O(J1(X)) → O(J1(X)) is a p-derivation

satisfying D(x) = x
�. The differential geometric counterpart of J1(X) is the tangent

bundle TM of a manifold M . If M has local coordinates q = (q1, . . . , qn), then the

local coordinate functions of TM are (q,p), where p = q̇, and we consider a vector

field θ on TM to be analogous to D if

θ(qi) = q̇i := pi

for each i.

A special case of a normalized vector field is a Hamiltonian vector field defined by

an energy (Hamiltonian) function on the phase space of a mechanical system given

by coordinates (q,p):

E(p,q) =
1

2

n�

i=1

p
2
i + V (q) = K(p) + V (q),

where K and V are kinetic and potential energies, respectively. Indeed, the Hamil-

tonian vector field
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θ =
n�

i=1

�∂E
∂pi

∂

∂qi
−

∂E

∂qi

∂

∂pi

�

satisfies for each i

θ(qi) =
∂E

∂pi
= pi = q̇i.

Moreover, along the flow determined by θ, the energy function E is constant– that

is, energy is conserved. (cf. [Le03], pp. 484-488)

Let us now state some already known facts about lifts of Frobenius. They provide

some of the motivation and context for our results.

Proposition 4.4. Let X be an affine, formally smooth p-adic formal scheme over R.

Then X has a lift of Frobenius.

Proof. Write X =Spf B. We prove by induction that for all n ≥ 1, there exists a lift

of Frobenius φn : B/p
n
B → B/p

n
B compatible with that on R, and by the inverse

limit functor we will get a lift of Frobenius φ : B → B. The base case n = 1 holds

since we have φ1 : B/pB → B/pB the Frobenius map, as B/pB has characteristic

p. Now, assume the above holds for n and show its holds for n + 1. We have the

following diagram:

R/p
n+1

R B/p
n+1

B

R/p
n+1

R B/p
n+1

B B/p
n
B B/p

n
B,

ι

φR φn+1

π

ι π

φn

where π and ι are the canonical projection and injection, respectively, and φR is

induced from φR : R → R of Proposition 1.8. One checks that π ◦ ι ◦ φR = φn ◦ π ◦ ι,

so by definition of smoothness we get a map φn+1 making the diagram commute.

The commutativity of the right half gives compatibility of φn+1 with φn, and the

commutativity of the left half of the diagram says that φn+1 extends φR.
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We have the following variant of Proposition 4.4. In what follows a formal scheme

will be called smooth if it is the completion of a smooth scheme.

Proposition 4.5. Given Y2 an affine smooth formal scheme over another affine

smooth formal scheme Y1, with maps φY2,Y1 : Y2 → Y1 and π : Y2 → Y1 such that

φY2,Y1 mod p is Frobenius composed with π, then there exists a lift of Frobenius

φY2 : Y2 → Y2 such that π ◦ φY2 = φY2,Y1 .

Proof. Write Y1 =SpfA, Y2 =SpfB. Then the statement can be rephrased as fol-

lows: let γ : A → B be a morphism of rings, and assume that for all n ≥ 1, A/pnA

and B/p
n
B are smooth over R/p

n
R and B/p

n
B smooth over A/p

n
A. Assume we

have φA,B : A → B such that φA,B(a) ≡ a
p (mod p) for all a ∈ A. We must find

a φB : B → B such that φB(b) ≡ b
p (mod p) for all b ∈ B and φB(a) = φA,B(a)

for all a ∈ A. This can be proven using the same basic argument as was done for

Proposition 4.4. We have a commutative diagram

A/p
n+1

A B/p
n+1

B

B/p
n+1

B B/p
n
B B/p

n
B.

γ

φA,B
φn+1

π

π

φn

One checks that φn ◦ π ◦ γ = π ◦ φA,B. We get φn+1 as in the diagram, and so this

means φn+1 is a lift of Frobenius on B/p
n+1

B that extends φA,B. By functoriality, we

get φB as desired.

Proposition 4.6. Let X be smooth and J
1(X) be affine. Then J

1(X) has a normal-

ized lift of Frobenius.

Proof. Recall that a normalized p-derivation δJ1(X) on J
1(X) sends x to x

�; equiva-

lently, the corresponding normalized lift of Frobenius sends x to x
p + px

�.

We have the lift of Frobenius φ : O(X) → O(J1(X)) induced by the universal

p-derivation of Definition 1.11. By the preceding proposition, letting Y2 = J
1(X) and

Y1 = X, as J1(X) is smooth over X, we get a lift of Frobenius φJ1(X) : O(J1(X)) →

O(J1(X)) that extends φ. In particular, this means that φJ1(X)(x) = φ(x) = x
p +

pδx = x
p + px

�.
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For the sake of completeness we end our discussion by stating some known results

about lifts of Frobenius on curves of genus 1 (Theorems 4.7-4.8) and ≥ 2 (Theorems

4.9-4.10), respectively.

For Theorems 4.7 and 4.8, let E be an elliptic curve over R. For the definition of

“canonical lift” we refer to [Me72].

Theorem 4.7. [Me72] E is a canonical lift if and only if it has a lift of Frobenius.

Theorem 4.8. [BuSa14] J1(E) has a lift of Frobenius if and only if E has a lift of

Frobenius.

For Theorems 4.9 and 4.10, let X be a smooth projective curve of genus g ≥ 2.

Theorem 4.9. [Ray83] X has no lifts of Frobenius.

Theorem 4.10. [Bu96] J1(X) is affine; in particular it has lifts of Frobenius.
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