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Trade-off-invariant rules

for evolutionarily stable

life histories

Eric L. Charnov
Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA

Optimization models have been widely and successfully used in
evolutionary ecology to predict the attributes of organisms'™.
Most such models maximize darwinian fitness in the face of trade-
offs and constraints; the numerical results usually depend on the
exact form of the trade-offs or constraints. But not always’: for
example, earlier work® predicted that the optimal range in off-
spring size ought to show a —1 scaling with small litter size,
independent of most details of the underlying offspring-survival/
offspring-size trade-off relation. Here I report that in non-
growing (stationary), age-structured populations, three major
life-history attributes (age at first breeding, size of an offspring
in large litters, and reproductive effort) are likely to evolve to
equilibrium values that satisfy a universal numerical rule; the
underlying trade-off will have a slope of — 1 at the optimum,
independent of most other aspects of the trade-off. Each of these
three attributes can be viewed as an allocation problem between
just two alternatives; the trade-off is then between having more of
one alternative and less of the other. The slope of the trade-off is
simply the slope of the curve of allowed combinations of the two
alternatives. The theory predicts that natural selection will push
to an equilibrium where the slope is always — 1. The economic
structure is the same as that which underlies evolution of the sex
ratio where the two alternatives are sons and daughters®™.

Consider an economic problem in the allocation between two
alternatives X; and X, in which allowed values must fall on (or
within) a constraint or trade-off curve, as shown in Fig. 1. Further
suppose that the utility function (fitness) maximized is the simple
product X,-X,, which is equivalent to maximizing In X, + InX,.
Figure 1 is the standard graphical solution from economics, which
plots curves of equal utility, or in our case fitness (In X, + In X, is
constant). The optimum is where the highest equal-fitness curve
just touches the trade-off curve. If In(fitness) equals In X; + In X,,
the optimum will always be where the trade-off curve has a slope of

— 1, for any smooth trade-off curve. This is, of course, where the
percentage increase in X] is just matched by the percentage decrease
in X, (refs 2 and 10).

With fairly elementary economics, some evolutionary allocation
problems can indeed be studied as two-dimensional (X;, X;) and
yield darwinian fitness to be a simple product. The classic example is
evolution of sex allocation? (sex ratio, sperm versus eggs for
hermaphrodites, time as a male (female) for a sex changer), where
autosomal inheritance makes fitness a simple product*'®: gain-via-
male times gain-via-female. It is this product structure for fitness
combined with the two-dimensional allocation that makes sex
allocation the most successful ESS (optimization) theory in evolu-
tionary ecology*™®.

Are any other life-history problems naturally two-dimensional
with fitness a product? Box 1 displays a surprisingly simple answer.
Ry, the ‘net reproductive rate’ for age-structured life histories, can
always be written as a product of three demographic averages,
aggregated variables, which neatly summarize the life history:

R, = S(at)-b-E(e) 1)

where S is the probability of surviving to the age of first breeding
(), b is the average rate of offspring production over the adult
lifespan, and E(c) is the average length of the adult lifespan (that is,
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beginning at age «). Ry is a measure of darwinian fitness appropriate
within stationary (non-growing) populations®. R, = 1, owing to
density dependence for typical individuals, so the trade-offs are
viewed as existing for individuals who deviate from the typical®.
Thus, it is R, for a mutant which is the fitness measure of interest.

Because equation (1) holds for any age-structured life history,
evolutionary rules that follow from it should be quite general; the
trick is to make predictions in terms of the three aggregate variables:
S, Eand b. I consider here three classic allocation problems in the
evolution of life histories. _

First, consider ‘reproductive effort’. Sb is the rate of production
of female babies (alive at age a); E is the mother’s reproductive
lifespan. Denote S-b as B. Beginning with Williams", it has been
widely postulated that B should generally trade-off against E (refs
7, 8); effort devoted to offspring production (B) should decrease the
mother’s own reproductive lifespan. Although there are life-history
models'? that do not make this ‘reproductive effort’ trade-off
assumption, it is a widely held idea”®. Usually the trade-off assump-
tion is implemented on an age-by-age basis (following ref. 11), but
nothing precludes working in terms of the aggregate variables Band
E. Indeed, many existing models’® can be alternatively viewed in

cterms of these averages. Assume it is generally true that natural
selection sets an optimal balance between B and E. As fitness
(equation (1)) is the product of B and E, Fig. 1 tells us that the
optimum will be the place on the In B, In E trade-off surface where
the slope is —1: dlnB/dlnE= — 1, for all age-structured life
histories where R, can be used for fitness.

Second, suppose adult lifespan, E(«), is unrelated to how repro-
ductive resources are divided among offspring; then R, * S-b, a
product, and we have a classic offspring quality (S) versus number
(B) tradeoff (ch. 7 in ref. 7; refs 9, 13). At the optimum allocation
dlnb/dInS= — 1ontheln S, In btrade-off surface’. This — 1 rule
also follows for many other size-versus-number allocations™, where
fitness is naturally expressed as gain per unit multiplied by the
number of units. This — 1 rule assumes maternal control over the
allocation process. The rule will not hold if optimal investment per
offspring is under offspring control; deviations from — 1 may well
be a useful signature of offspring control™.

_ Third, write equation (1) as R, = S(a) V(a), where V() is
b-E(cx), the average production of offspring over the adult lifespan®.
This is the classic trade-off with respect to age at maturity (a; ref. 7,
ch. 6); S goes down with a, while V goes up. As fitness is a product

/X,Xz constant

log. X,

/Slope -1

log. X,

Figure 1 Economic optimization in two dimensions. Allowed combinations of two
alternatives (X, X,) are on (or within) the trade-off curve, here plotted for InX;
versus InX, as a thick curve. If fitness is the simple productX-X;, the optimum (or
ESS) is found by plotting isofitness (InX, +InX, =C, a constant) curves and
finding where the highest one just touches the trade-off curve. For all possible
smooth trade-off curves, this yields a slope of — 1 atthe ESS because — 1 is the
slope of any isofitness curve: 3InX,/8InX, = —1 always, for a function
InX, =C —InX,.
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(§V), the optimum is (again) wheredIn /9ln V= — 1 ontheln S,
In V trade-off surface. This result is derived, but not really under-
stood, in ref. 6.

It seems that several classic problems in life-history evolution
yield a universal trade-off slope of —1 at the optimum because
aggregated fitness (Box 1) is naturally expressed as a product of two
allocation alternatives (E versus B, b versus S, S versus V). Life
histories are often treated as complex objects, with numerous
possible age-dependent trade-offs”*"*. The approach here reduces
them to just a few aggregate variables (S, b, E)®. Although we
sacrifice all information about age-dependent allocation
decisions”?, we gain in finding general rules (hypotheses) about
the shape of aggregate (average) trade-off surfaces at the equili-
brium. I do not know of any data on trade-offs precise enough to
test these differential-invariant predictions, particularly for the size/
number or reproductive effort problems’. Theory for the optimal
age at first reproduction using R, as a fitness measure often
implicitly invokes the minus-one rule as an intermediate step in
the prediction of attributes such as optimal adult body mass®”".
Thus the minus-one rule is tested, at least qualitatively, whenever

these predictions work out. See, for example, the successful predic-
tion of the heights and slopes of the between-species lifespan
allometries for various mammal groups (ref. 6, p. 96; ref. 16). Of
course, there are many qualitative (and a few quantitative) tests of
product maximization for evolution of sex allocation.

The procedure described here is to reduce darwinian fitness to a
function of a few aggregate variables, hoping to find a general form
for fitness (here a product) which then yields general rules for the
equilibrium. The trick is worth trying for other problems in
phenotypic evolution. Economists often use this procedure and,
indeed, production or utility function in the form of products are
common; X,-X,, or more generally X{-X7 (see any advanced text on
price theory; Aand Dare > 0and scale the relative productive value
of inputs to X; and X,, respectively). Then products like that of
equation (1) may often characterize fitness in non-growing popula-
tions with reproductive structure even more complex than simply
age.
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Access to mineral nitrogen often limits plant growth, and so
symbiotic relationships have evolved between plants and a variety
of nitrogen-fixing organisms. These associations are responsible
for reducing 120 million tonnes of atmospheric nitrogen to
ammonia each year. In agriculture, independence from nitrogenous
fertilizers expands crop production and minimizes pollution of
water tables, lakes and rivers. Here we present the complete
nucleotide sequence and gene complement of the plasmid from
Rhizobium sp. NGR234 that endows the bacterium with the ability
to associate symbiotically with leguminous plants. In conjunction
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